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Resumen 

 

En este trabajo derivamos la ecuación de Klein-Gordon que es una ecuación de onda relativista. 

Esta ecuación describe correctamente a todas las partículas con espín cero. Como una teoría 

de campo cuantificada, la ecuación de Klein-Gordon describe bosones. Particularmente, vamos 

a estudiar las soluciones de dispersión de la ecuación de Klein-Gordon de una dimensión con 

la barrera de potencial Lambert-W. También, estudiaremos las soluciones de dispersión del 

potencial de tangente hiperbólica y la barrera de potencial de paso. Estos potenciales 

idealizados son estudiados en esta investigación porque son relativamente fáciles de entender 

y representan excelentes aproximaciones de lo que ocurre en el mundo real. Las soluciones de 

dispersión son derivadas en términos de funciones híper geométricas y discutidos en términos 

de un potencial de barrera con un alto valor. Dividimos nuestra investigación en tres regiones, 

observando superradiancia en uno de ellos. Por último, analizamos el fenómeno conocido 

como la Paradoja de Klein cuando una mayor cantidad de partículas son reflejadas por un 

potencial que partículas que inciden en estas barreras de potencial.  

 

Palabras clave: 

Ecuación de Klein-Gordon, potencial Lambert-W, estados de dispersión, funciones híper 

geométricas, funciones Heun confluentes.  

 

 

 

 

 

 

 



 

Abstract 

 

In this work we derive the Klein-Gordon equation that is a relativistic wave equation. This 

equation describes all spinless particles with positive, negative as well as zero charge. As a 

quantized field theory, the Klein-Gordon equation describes bosons. Particularly, we are going 

to study the scattering solutions of the one-dimensional Klein-Gordon equation with the 

Lambert-W potential barrier. We also study the scattering solutions of the hyperbolic tangent 

potential and the step potential. These idealized potentials are studied in this research because 

they are relatively easy to understand and they are exemplary approximations to real ones. The 

scattering solutions are derived in terms of hypergeometric functions, and discussed in terms 

of the height of the potential barrier. We divide our research into three regions, observing 

superradiance in one of them. At last, we discuss the phenomenon known as Klein Paradox 

when more particles are reflected by a potential than are incident on it. 

 

Keywords:  

Klein-Gordon equation, Lambert-W potential, scattering states, hypergeometric functions, 

confluent Heun functions. 
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Chapter 1

Introduction

In the context of quantum mechanics the physical state of a free particle of mass m is described

by a wave function ψ(~x, t) encompassing all space-time information which is itself a classical

field having a probabilistic interpretation. This work analyzes the relativistic equation for wave

functions, called the Klein-Gordon equation and we will restrict the discussion to motion in one

dimension. For a single free particle a wave function, in the relativistic case, it is solution to the

Klein-Gordon equation∗. A system of N interacting particles will be described by a wave function

ψ(~x1,~x2, ...,~xN ; t)whose squared modulus
∣∣ψ(~x1,~x2, ...,~xN ; t)

∣∣2 represents the probability density
ρ(x) of finding the particles at the points~x1,~x2, ...,~xN at the time t. The normalization of ψ(~x, t)

is fixed by requiring that the probability of finding the particle anywhere in space at any time t

be one ∫ ∣∣ψ(~x, t)
∣∣2 d3x = 1. (1.1)

∗The famous equation suggested by Erwin Schrödinger was studied with great attention by Oskar Benjamin

Klein and Walter Gordon. We know that from elementary quantum mechanics non-relativistic Schrödinger equation

is ih̄ ∂

∂ t ψ(~x, t) =
[
− h̄2

2m0
~∇2 +~V (~x)

]
ψ(~x, t).Remember that the Schrödinger equation for the quantum wave function

is based on the non-relativistic expression for the energy of a particle.

1



2 1.1. PROBLEM STATEMENT

In quantum mechanics, the one-dimensional potential is an idealized system employed to model

incident, reflected and transmitted matter waves. In order to determine the quantum mechanics

about this physical situation, we have to make a model and then solve the Klein Gordon equation

to find the convenient wave functions. In quantum mechanics, it is useful to define the concept

of particle flux, which in one dimension it is defined as the average number of particles passing

a point per unit time1.

1.1 Problem Statement

The physical situation we are modeling is really peculiar. A particle is moving with constant

velocity in the positive x-direction and encounters at some point with a potential energy function

V (x). There exists some potentials for which the stationary Klein-Gordon equation is exactly

determined in terms of special functions. For non-relativistic quantum physics the basic equation

to be solved is the Schrödinger equation, in a certain way it is more common to consider the

Schrödinger equation in order to discuss the properties of the potentials, as well as reflection and

transmission of a particle when interacts with different barriers or obstacles. In response to this

problem, our study proposes to investigate the scattering solutions for Lambert-W potential and

analyze their resemble the characteristics of both step and hyperbolic tangent potentials starting

from the Klein-Gordon equation.

1.2 General and Specific Objectives

We apply a innovative solution to determine reflection and transmission equations for Lambert-W

potential, these solutions of this problem are written in terms of the confluent Heun equations.

We will explain properly the superradiance phenomenon, when the reflection coefficient (R), is
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greater than one.

This undergraduate work is organized of the following way. Chapter 2 shows the scattering

solutions of the Klein-Gordon equation for the step potential barrier and hyperbolic tangent

potential in terms of hypergeometric functions. In both cases the behaviour of the reflection

(R) and transmission (T ), coefficients are studied in different regions of energy. In chapter 3

the results of scattering solutions and the behaviour of R and T coefficients for the Lambert-W

potential are shown. This research ends with the chapter 4, where conclusions are discussed.





Chapter 2

Methodology

2.1 The Klein-Gordon Equation

The description of the phenomena at high energies requires the investigation of relativistic wave

equation2. The principal features of the Klein-Gordon theory for the relativistic description

of spin-0 particles ∗ are explained in this section. Here we deal with negative energy states,

which can be related to antiparticles. Furthermore, we discuss the range of validity of the Klein-

Gordon one-particle and show two examples of interpretational potentials. The transition from

nonrelativistic to a relativistic description implies the next concepts:

1. A relativistic particle cannot be localized more accurately than≈ h̄/m0c, where m0 denotes

the rest mass of the particle.

2. If the position of the particle is uncertain, so that if ∆x > h̄
m0c , the time is also uncertain,

because ∆t ∼ ∆x
c > h̄

m0c . This means that relativistic particle cannot be localized more

precisely than an area whose linear extend is large related to the particle’s Compton wave
∗Those particles with integer spins, such as 0,1,2, are konow as bosons.

5



6 2.1. THE KLEIN-GORDON EQUATION

length3 λc = h̄/(m0c).

In nonrelativistic quantummechanics the starting point is the energy-momentum of a free particle

E =
~p2

2m
, (2.1)

when classical quantities are replaced by the operators energy and momentum, we have respec-

tively

E→ ih̄
∂

∂ t
, ~p→ h̄

i
~∇, pµ → ih̄ ∂

µ .

leads to the free time-dependent Schrödinger equation

ih̄
∂

∂ t
ψ(~x, t) =− h̄2

2m
~∇2

ψ(~x, t). (2.2)

This research analyzes at the simplest relativistic equation for wave functions, called the Klein-

Gordon equation. The discussion will be based to a spinless particle in empty space, where

there is no potential energy. Solutions with a definite value E for the energy take the form

Ψ = ce−iEt/h̄ψ . The Klein-Gordon equation is given by

− 1
c2

∂ 2

∂ t2 ψ(~x, t)+∇
2
ψ(~x, t) =

(
mc2

h̄c

)2

ψ(~x, t) (2.3)

Recall first how the Klein-Gordon equation arose. For the Minkowski metric the contravariant

and covariant metric tensor are identical (gµν = gµν). For the description of the space-time

coordinates the contravariant four-vector for xµ and pµ are represented respectively by

xµ = gµνxν =
(

x0,x1,x2,x3
)
= (ct,x,y,z), (2.4)

pµ = gµν pν =
(

p0, p1, p2, p3
)
=

(
E
c
, px, py, pz

)
. (2.5)

The metric tensor gµν yields the covariant components

xµ = gµνxν = (x0,x1,x2,x3) = (ct,−x,−y,−z), (2.6)

pµ = gµν pν = (p0, p1, p2, p3) =

(
E
c
,−~p

)
. (2.7)
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Using the equation (2.4) and (2.5) we can write the four-momentum operator as

p̂µ = ih̄
∂

∂xµ

=

[
ih̄

∂

∂ (ct)
, ih̄

∂

∂x1
, ih̄

∂

∂x2
, ih̄

∂

∂x3

]
,

=

[
ih̄

∂

∂ (ct)
,−ih̄

∂

∂x
,−ih̄

∂

∂y
, ih̄

∂

∂ z

]
,

= ih̄
[

∂

∂ (ct)
,−~∇

]
. (2.8)

The invariant scalar product of the four-momentum is given by

pµ pµ =
E2

c2 −~p2 = p2
0−~p2 = m2

0c2 , (2.9)

arriving to the corresponding relativistic energy-momentum relation for free particles,

E =
√
~p2c2 +m2

0 c4. (2.10)

where m0 denotes the rest mass of the particle and c indicates the velocity of light in the vacuum.

So, the Klein-Gordon equation in Lorentz-covariant form for free particles is given by the next

expression

p̂µ p̂µψ(x) = m2
0c2

ψ(x) . (2.11)

Additionally, we can write (2.11) in the form

p̂µ p̂µ = ih̄
∂

∂xµ

ih̄
∂

∂xµ
,

=−h̄2 ∂

∂xµ

∂

∂xµ
,

=−h̄2
(

∂

∂x0

∂

∂x0 +
∂

∂x1

∂

∂x1 +
∂

∂x2

∂

∂x2 +
∂

∂x3

∂

∂x3

)
,

=−h̄2

(
∂ 2

c2∂ t2 −
∂ 2

∂x2 −
∂ 2

∂y2 −
∂ 2

∂ z2

)
,

=−h̄2

(
1
c2

∂ 2

∂ t2 −~∇
2

)
. (2.12)
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As is known fromelectrodynamics, thed’Alembert operator�≡ ∂µ∂ µ = ∂

∂xµ

∂

∂xµ =
(

1
c2

∂ 2

∂ t2 −~∇2
)

is invariant under Lorentz transformations.Then

p̂µ p̂µ =−h̄2�, (2.13)

so, (2.13) can be written as

−h̄2� ψ = m2
0c2

ψ,(
�+

m2
0c2

h̄2

)
ψ = 0, (2.14)

which is widely known as the Klein-Gordon equation. It is a quantum relativistic wave equation,

used in the description of particles with spin 04. We recognize (2.14) as the classical wave

equation† including the mass term m2
0c2/h̄2. A possible solution for the wave equation is a plane

monochromatic wave

ψ(~x, t) = ψ0ei(~k.~x−ωt), (2.15)

propagating in the direction of the vector~k. Where ω and~k are constants related to the frequency

f and wavelength λ of the wave by5

w = 2π f , λ =
2π

|~k|
.

Applying into account Einstein’s relation E = h̄ω , and De Broglie’s one, ~p = h̄~k, we can rewrite

the equation for the plane waves (2.15) in terms of the energy and momentum, as

ψ(~x, t) = ψ0ei(~p.~x−Et)/h̄. (2.16)

2.1.1 Lorentz Invariance of the Klein-Gordon Equation

In this section we will demonstrate the Lorentz invariance of the Klein-Gordon equation that is a

direct consequence of the invariance of energy-momentum relation (2.9). Now it is convenient

†The classical wave equation: ∂ 2ψ

∂x2 = 1
c2

∂ 2ψ

∂ t2 = 0
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to express the Klein-Gordon equation (2.14) in the following form[
∂

∂xµ

∂

∂xµ
+

(
m0c

h̄

)2
]

ψ(xµ) = 0.

Therefore, in the transformed system the Klein-Gordon equation it follows that[
∂

∂x′µ

∂

∂x′µ
+(κ)2

]
ψ
′(x′µ) = 0, (2.17)

where κ = m0c/h̄, therefore, we must show that the operator (∂/∂x′µ)(∂/∂x′µ) is invariant under

Lorentz transformations. This is achieved by

p̂µ =+ih̄
∂

∂xµ
,

and, consequently,
∂

∂xµ

∂

∂xµ
≈ p̂µ p̂µ . (2.18)

Lorentz transformation x→ x′ implies ψ → ψ ′ where

ψ(x) = ψ
′(x′), (2.19)

refers to the same space-time point.

2.1.2 Free Solutions of the Klein-Gordon Equation

The equation (2.14) is known as the free Klein-Gordon equation, in order to distinguish it from

generalizations that additionally contain external potentials or electromagnetic. There are two

free solutions in the form of plane waves

ψ
(1)
~p (~x, t) = e−i(cp0t−~p.~x)/h̄, ψ

(2)
~p (~x, t) = e+i(cp0t−~p.~x)/h̄,

with

p0 =+
√
~p2 +m2

0 c2 > 0. (2.20)



10 2.1. THE KLEIN-GORDON EQUATION

Note that theKlein-Gordon equation leads to solutionswith positive energy eigenvaluesE =+cp0

and negative energy eigenvalues E = −cp0. While the positive solutions can be interpreted as

particle wave functions, the physical interpretation of the negative solutions (ψ(2)
~p ) is not so easy.

Both positive and negative energies occur here and the energy is not bounded from below.

2.1.3 Interpretation of the negative solutions

Starting from the equation (2.10), we have E = ±c
√
~p2 +m2

0 c2. Thus, as we have noticed

there exist solutions both for positive E = +c (~p2 +m2
0 c2)1/2 as well as for negative E =

−c (~p2 +m2
0 c2)1/2 energies respectively (see Figure 2.1). Negative solutions can be related to

antiparticles3. At this point we should consider a new degree of freedom, the electric charge‡.

That is, positive solutions describe particles that would carry the charge −e, while negative

solutions describe antiparticles that would carry the charge +e. In experimental results we see

generally the bound states directly below the positive energy continuum with E < m0c2.
‡In the nonrelativistic theory describes states with only one charge sign.
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Figure 2.1: Energy spectrum of a antiparticle (specifically a pion atom)

Now we can determinate the four-current density jµ connected with Klein-Gordon equation. We

take the complex conjugate of the equation (2.11)(
p̂µ p̂µ −m2

0c2
)

ψ
∗ = 0. (2.21)

Multiplying the equation (2.11) by ψ∗ and equation (2.21) by ψ and calculating the difference,

we obtain

ψ
∗
(

p̂µ p̂µ −m2
0c2
)

ψ−ψ

(
p̂µ p̂µ −m2

0c2
)

ψ
∗ = 0,

−ψ
∗
(

h̄2~∇µ
~∇µ +m2

0c2
)

ψ +ψ

(
h̄2~∇µ

~∇µ +m2
0c2
)

ψ
∗ = 0,

−ψ
∗h̄2~∇µ

~∇µ
ψ +ψ h̄2~∇µ

~∇µ
ψ
∗ = 0,

~∇µ

(
ψ
∗~∇µ

ψ−ψ~∇µ
ψ
∗
)
= ~∇µ jµ = 0. (2.22)

Motion in quantum mechanics is probabilistic, hence, this motion about is how the probability

for finding the particle moves around with time. Then, the principal idea we need is to find a
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probability current that relates to how the probability for locating the particle might be changing

with time. Multiplying by ih̄/2m0, so that zero component j0 has the dimension of a probability

density (1/cm3). Then, the four-current density is

jµ =
ih̄

2m0

(
ψ
∗~∇µψ−ψ~∇µψ

∗
)
. (2.23)

This scalar theory does not contain spin and could only describe particles with zero spin. One

of the problems of the Klein-Gordon equation occurs when interpreting the function ψ(x) as

probability amplitude6. Interpretation of ψ(x) as probability amplitude is only possible if there

exists a probability density ρ(x) and a current ~j(x) that satisfy a continuity equation that ensures

conservation of charge
∂

∂ t
ρ(x)+~∇.~j(x) = 0. (2.24)

In this work, it has been successfully derived the Klein-Gordon equation.

2.2 The interaction of Particles with an Electromagnetic Field

In this section we are interested in the case of relativistic particles with spin 0 particle. The

electromagnetic field denoted by the four-vector is defined as

Aµ =
{

A0,~A
}
=
{

A0,Ax,Ay,Az
}
= gµνAν , (2.25)

likewise

Aµ =
{

A0,−~A
}
=
{

A0,−Ax,−Ay,−Az
}
= gµνAν , (2.26)

Ê⇒ ih̄
∂

∂ t
− eA0, ~̂p⇒−ih̄~∇− e

c
~A, (2.27)

which can be rewritten to the four-dimensional and covariant form in the following way

p̂µ ⇒ p̂µ − e
c

Aµ or p̂µ ⇒ p̂µ −
e
c

Aµ , (2.28)
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(
p̂µ − e

c
Aµ

)(
p̂µ −

e
c

Aµ

)
ψ = m2

0c2
ψ, (2.29)

or [
gµν

(
ih̄

∂

∂xν
− e

c
Aν

)(
ih̄

∂

∂xµ
− e

c
Aµ

)]
ψ = m2

0c2
ψ, (2.30)(

g00 ih̄
c

∂ψ

∂ t
−g00 e

c
A0ψ

)2

+gii h̄2 ∂ 2ψ

∂xi2 = m2
0c2

ψ,{[
E
c
− V (x)

c

]2

−m2
0c2 + h̄2~∇2

}
ψ(x) = 0,{[

E−V (x)
]2−m2

0c4 + h̄2c2~∇2
}

ψ(x) = 0,

h̄2c2 d2ψ(x)
dx2 +

{[
E−V (x)

]2−m2
0c4
}

ψ(x) = 0,

then, the one-dimensional Klein-Gordon equation to solve in natural units h̄ = c = 1, is

d2ψ(x)
dx2 +

{[
E−V (x)

]2−m2
0

}
ψ(x) = 0. (2.31)

For simplicity, we also set the mass of the particle equal to one (m0 = 1), we get

d2ψ(x)
dx2 +

{[
E−V (x)

]2−1
}

ψ(x) = 0, (2.32)

where E is the total energy of the particle,V (x) the potential energy function and ψ(x) the spatial

part of wave function.

2.3 Finding Solutions to Klein-Gordon Equation

2.3.1 Step Potential Barrier

In order to start our investigation of simple one-particle systems, we shall explore the behavior

of the solutions to the Klein-Gordon equation for a particle whose potential energy V (x) can be
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represented by

V (x) =

 0, for x < 0,

V0, for x≥ 0.
(2.33)

This potential is know as step potential barrier, illustrate in Figure 2.2. Where V0 is a positive

constant energy and the barrier is positioned at x = 0. Note that the potential energy of the particle

is zero when it is to left of the step. The result we obtain for this potential will allow us to explain

several characteristic quantum mechanical phenomena. Assume that a particle is moving toward

the point x = 0 at which the V (x) suddenly changes its value.

Figure 2.2: A schematic representation of a step potential of height V0

With the purpose of determine the motion of the particle for this case, the x axis breaks up into

two region and then we use the stationary Klein-Gordon equation (2.32). The region I where

x < 0 (left of the step) we have V (x) = 0, ψ(x) = ψI(x), and the region II where x ≥ 0 (right of

the step), we have V (x) =V0 and ψ(x) = ψII(x). So the behavior of the particle is a solution to

the simple K-G equation (2.32). For both regions, we obtain

d2ψI(x)
dx2 +

(
E2−1

)
ψI(x) = 0 (x < 0), (2.34)

d2ψII(x)
dx2 +

[
(E−V0)

2−1
]

ψII(x) = 0 (x≥ 0). (2.35)
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The two equations are solved separately. The differential equation (2.34) can be expressed as

d2ψI(x)
dx2 + k2

ψI(x) = 0. (2.36)

Note that k2 is a positive constant

k =
√

E2−1 (2.37)

The general solution of traveling wave in this region is easy enough to write down. We obtain

ψI(x) = A eikx +B e−ikx, (2.38)

where A and B are arbitrary constants, and we can determine these from the conditions assumed

to apply at certain position. Applying two boundary conditions, at x = 0 we get

ψI(x)
∣∣
x=0 = ψII(x)

∣∣
x=0 (2.39a)

ψI(x)
dx

∣∣∣∣
x=0

=
dψII(x)

dx

∣∣∣∣
x=0

(2.40a)

Now, evaluate the probability current (2.23) for the wave function (2.38), for which

jL = k (AA∗−BB∗) x < 0. (2.41)

So that we can identify the current when x→−∞ as

jL = jinc− jre f , (2.42)

where jinc and jre f are the incident and reflected current, respectively. We can note

jinc = k AA∗, (2.43)

as the probability current incident on the barrier from the left and

jre f = k BB∗, (2.44)

as the probability current reflected from the barrier. Resulting that the reflection coefficient is

expressed by

R =
jre f

jinc
=

BB∗

AA∗
, (2.45)
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and the transmission coefficient for this scattering example is given by

T =
jtrans

jinc
. (2.46)

Next we consider the differential equation for the region in which V (x) =V0.

d2ψII(x)
dx2 +q2

ψII(x) = 0, (2.47)

where q2 is a positive constant

q =

√
(E−V0)

2−1. (2.48)

We calculate its solution

ψII(x) =C eiqx +D e−iqx. (2.49)

Since the energy is greater than the potential energy for x > 0, the solutions are given by (2.49),

where the D term generates a probability current flowing to the left for x > 07. The D term causes

a probability current flowing to the left for x > 0. So, we are interested in which particles are

incident on the potential step only from the left, then we can establish D = 0 in (2.49), we find

ψII(x) =Ceiqx x > 0, (2.50)

Summarizing the general solutions

ψ(x) =

 A eikx +B e−ikx x < 0,

C eiqx x > 0,

and substituting the wave function (2.50) into (2.23), we have

jR = jtrans =CC∗, (2.51)

substituting (2.51) and (2.43) into (2.46), we obtain the transmission coefficient for the step

potential

T =
q
k

CC∗

AA∗
(2.52)
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Let’s now examine the reflection and transmission coefficient in terms of k and q. The arbitrary

constants A, B, andC of equation (2.38) and (2.50) must be so chosen that the total eingenfunction

satisfies the requirements concerning finiteness and continuity, of ψ(x) and ψ ′(x). Continuity of

ψ(x) is obtained by satisfying the relation

A eikx
∣∣∣
x=0

+B e−ikx
∣∣∣
x=0

=C eiqx
∣∣∣
x=0

, (2.53)

and continuity of the derivative

ikA eikx
∣∣∣
x=0
− ikB e−ikx

∣∣∣
x=0

= iq C eiqx
∣∣∣
x=0

, (2.54)

which yield

A+B =C (2.55)

ik (A−B) = iq C (2.56)

Solving this system of equations,we have

C =
2k

k+q
A and B =

k−q
k+q

A (2.57)

Note that we have satisfied the boundary conditions for any value of the energy7. Using (2.45)

and (2.52), we have

R =
(k−q)2

(k+q)2 =

∣∣∣∣(q− k)
(q+ k)

∣∣∣∣2 , (2.58)

the reflection coefficient. On the other hand, we find

T =
4kq

(k+q)2 =
q
k

∣∣∣∣ 2k
q+ k

∣∣∣∣2 , (2.59)

the transmission coefficient. Note that R+T = 1.
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2.3.2 Hyperbolic Tangent Potential

At this moment, we solve the scattering solutions of the Klein Gordon equation in the presence

of the hyperbolic tangent potential. For this potential we calculate the reflection (RHT ) and

transmission (THT ) coefficients. The hyperbolic tangent potential is given by

V (x) =
V0

2
[
1+ tanh(bx)

]
, (2.60)

where V0 represents the height of the potential and b the smoothness of the curve. When b→ ∞

this potential goes into the step potential, we obtain the curve ofV (x) as a function of x shown in

Figure 2.3. First, to consider the scattering solutions, we replace (2.60) in (2.32) and give us the

Figure 2.3: The hyperbolic tangent potential with b = 0.5 (solid line) and b = 3 (dashed line), for

V0 = 3 in both cases.

following differential equation

d2ψ(x)
dx2 +

{[
E− V0

2
[1+ tanh(bx)]

]2

−1

}
ψ(x) = 0. (2.61)
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where tanh(bx) in terms of exponential functions is given by

tanh(bx) =
ebx− e−bx

ebx + e−bx . (2.62)

By making the substitution y =−e2bx,

d2ψ

dx2 =
d
dy

(
2by

dψ

dy

)
dy
dx

=
d
dy

(
2by

dψ

dy

)(
−2be2bx

)
= 4b2y

d
dy

(
y

dψ

dy

)
(2.63)

and equation (2.62) becomes

tanh(bx) =
−iy1/2− iy−1/2

−iy1/2 + iy−1/2 =−1+ y
1− y

. (2.64)

Substituting from (2.63) and (2.64) into (2.61) we get

4b2y
d
dy

(
y

dψ

dy

)
+

[(
E +V0

y
1− y

)2

−1

]
ψ(y) = 0

4b2y(1− y)2 d
dy

(
y

dψ

dy

)
+
[(

E(1− y)+V0 y
)2− (1− y)2

]
ψ = 0 (2.65)

Plugging ψ = yα(1− y)β f (y) into (2.65). This leads to

yα+1(1− y)β+1
[
α

2y−1(1− y) f −αβ f +α(1− y) f ′−β (α +1) f +β (β −1) y (1− y)−1 f −βy f ′+

(α +1)(1− y) f ′−βy f ′+ y(1− y) f ′′
]
+

1
4b2

{[
E(1− y)+V0 y

]2− (1− y)2
}

yα(1− y)β f = 0

(2.66)

After some calculations, we arrive

yα+1(1− y)β+1{y(1− y) f ′′+[(2α +1)− (2α +2β +1) y ] f ′
}
+ yα(1− y)β{

α
2(1− y)2−α β y(1− y)−β (α +1) y(1− y)+β (β −1)y2 +

1
4b2

[(
E(1− y)+V0 y

)2− (1− y)2
]}

︸                                                                                                                                         ︷︷                                                                                                                                         ︸
Ay(1−y)

f = 0

(2.67)
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yα+1(1− y)β+1{y(1− y) f ′′+[(2α +1)− (2α +2β +1) y ] f ′
}
+ yα(1− y)β Ay(1− y) f = 0

(2.68)

y(1− y) f ′′+[(2α +1)− (2α +2β +1) y ] f ′+A f = 0 (2.69)

The equation (2.69) has the form of hypergeometric differential equation8

(1− z)
d2w
az2 +

[
c′− (a′+b′+1) z

] dw
dz
−a′b′w = 0

Thus, (2.69) becomes

y(1− y) f ′′+
[
(1+2α)− (2α +2β +1) y

]
f ′− (α +β − γ)(α +β + γ) f = 0, (2.70)

note that the prime notation indicates derivatives with respect to y, and also this equation has the

general solution in terms of Gaussian hypergeometric function§ 2F1(kHT ,qHT ,λ ;y)

f =C1 2F1(α +β − γ,α +β + γ,1+2α;y)

+C2 y−2α
2F1(−α +β + γ,−α +β − γ,1−2α;y),

(2.71)

where the involved parameters are given as

α = ikHT with kHT =

√
E2−1
2b

, (2.72)

β = λ with λ =
b+

√
b2−V 2

0

2b
, (2.73)

γ = iqHT with qHT =

√
(E−V0)2−1

2b
. (2.74)

§Gaussian or ordinary hypergeometric function is a solution of a second-order linear ordinary differential

equation (ODE)
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Then, (2.71) in terms of x becomes

ψ(x) =C1

(
−e2bx

)ikHT
(

1+ e2bx
)λ

2F1

(
ikHT +λ − iqHT , ikHT +λ + iqHT ,1+2ikHT ;−e2bx

)
︸                                                                                                                  ︷︷                                                                                                                  ︸

incident wave

+C2

(
−e2bx

)−ikHT
(

1+ e2bx
)λ

2F1

(
−ikHT +λ + iqHT ,−ikHT +λ − iqHT ,1−2ikHT ;−e2bx

)
︸                                                                                                                          ︷︷                                                                                                                          ︸

reflected wave

.

(2.75)

This equation provides the incident and reflected waves.Using the following expression

2F1(a,b,c;z) =
Γ(c)Γ(b−a)
Γ(b)Γ(c−a)

(−z)−a
2F1

(
a,1− c+a,1−b+a;z−1

)
+

Γ(c)Γ(a−b)
Γ(a)Γ(c−b)

(−z)−b
2F1

(
b,1− c+b,1−a+b;z−1

)
,

(2.76)

we can find the transmitted wave

ψtrans =C3

(
−e2bx

)iqHT
(

1+ e2bx
)λ (

e2bx
)−λ

2F1

(
ikHT +λ − iqHT ,−ikHT +λ − iqHT ,1+2iqHT ,−e2bx

)
(2.77)

We define the next expression

ψtrans = Aψinc +B ψre f , (2.78)

where

A =
Γ(1−2iqHT ) Γ(−2ikHT )

Γ(−ikHT +λ − iqHT ) Γ(1− ikHT −λ − iqHT )
, (2.79)

B =
Γ(1−2iqHT ) Γ(2ikHT )

Γ(ikHT +λ − iqHT ) Γ(1+ ikHT −λ − iqHT )
. (2.80)

Summarizing, we have

ψinc(x) = A e2ib kHT x
(

1+ e2bx
)λ

2F1

(
ikHT +λ − iqHT , ikHT +λ + iqHT ,1+2ikHT ;−e2bx

)
(2.81)

ψre f (x) = B e−2ib kHT
(

1+ e2bx
)λ

2F1

(
−ikHT +λ + iqHT ,−ikHT +λ − iqHT ,1−2ikHT ;−e2bx

)
.

(2.82)
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In (2.60) when x→ ∞ the V → V0 and the other hand when x→−∞ the V → 0 the asymptotic

behaviour of (2.77), (2.81) and (2.82) result flat waves given by

ψinc(x) → A e2ib kHT x (2.83)

ψre f (x) → B e−2ib kHT x (2.84)

ψtrans(x)→ e2ib qHT x. (2.85)

Using the four-current density (2.23) we can write the reflection and transmission coefficients as

RHT =
jre f

jinc
=

∣∣∣∣BA
∣∣∣∣2 , (2.86)

THT =
jtrans

jinc
=

qHT

kHT

∣∣∣∣ 1A
∣∣∣∣2 . (2.87)

2.4 The Klein’s Paradox ¶ and Superradiance

Oskar Klein was a pioneer in the studies of Dirac’s equation in the presence of a step potential. In

nonrelativistic quantummechanics, electron tunneling into a barrier is observed, with exponential

damping. However, Klein demonstrated that an electron beam propagating in a region with a

large enough potential barrier V can appear without the exponential damping expected‖ 9. In

standard scattering processes, incident waves lose energy due to interaction with the potential

they traverse. Specifically, their incoming amplitude is larger than the amplitude of the reflected

waves10. However, superradiance occurs if a single mode on the potential barrier has a reflected

current greater than its incoming current (that is, the amplitude of the reflected wave is larger than

the amplitude of the incoming one∗∗). Instead, pair creation occur if the vacuum expectation value
¶The topic of Klein’s paradox is commonly treated as a component of an introductory discussion of relativistic

quantum mechanics.
‖This is the first treatment of what came to be known as the Klein paradox.

∗∗This means energy is extracted from the system.
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of the current operator is nonzero11. The reflection and transmission coefficients (R andT ) depend

on the detailed shape of the barrier and the general solutions between the coefficients (known

as Wronskian relations) can be get from current conservation. Superradiance is a phenomenon

where the energy is extracted from the barrier, also appears in relativistic quantum mechanics

when the Klein-Gordon equation is applied for an abrupt or smooth potential barrier. Then, in

order to analyze the occurrence of superradiance, we need a conservation relation, which can be

obtained by the spatial derivative of the Wronskian,

W = f1

(
d
dx

f2

)
− f2

(
d
dx

f1

)
. (2.88)

Let us consider an incident superradiant massless bosonic wave with charge e and energy w < eV

and evaluating the Wronskian (2.88), we see that

|R|2 = |I|2− w− eV
w
|T |2 (0 < w < eV ), (2.89)

it is possible to have superradiance of the reflected current9 particularly |R|> |I|. We know that all

particles incident on the potential barrier are reflected, although the incident beam stimulates pair

creation at the barrier, which emits particles and antiparticles. When w > eV the superradiance

does not occur, and |R|2≤ |I|2. We note that |R|2+|T |2= |I|2. After all, one should remember

that superradiant scattering strongly depends on the spin of the field that is being scattered12.





Chapter 3

Results & Discussion

3.1 The Lambert-W step-potential

The concept new in this research is the use of the Lambert-W function. Wewill find this solution of

a practical problem, the step potential barrier, provides a introduction to the Lambert W function

as one of the family of special functions, which are useful not only for quantum problems but

for a diversity of problems in distinct fields. We introduce a new exactly solvable potential for

the stationary K-G equation. The Lambert-W step-potential affords the exact solution to the

one-dimensional stationary Klein-Gordon equation in terms of the confluent Heun functions.

The potential is given in terms of the Lambert W -function∗, which is an implicitly elementary

functionw=W (z) also known as the product logarithm13that is the analytic multi-branch solution

of W (z)eW (z) = wew = z, where z is the complex argument of W (z). Thus W is the inverse

of the function g(w) = wew. It has infinite number of branches distinguished by a subscript

k = 0,±1,±2,±3,±∞, particularly W0 is called the principal branch that has domain z ≥ −1/e

and rangeW (z)≥−1. Likewise, the branch satisfyingW (z)≤−1 is denoted byW−1(z) and it is
∗The Lambert-W function is named after Johann Heinrich Lambert.

25
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defined on −1/e≤ z < 0. Comparing the Lambert function with the natural logarithm function

log(z), we note that they are closely related; W = log(z) is the multi-branch analytic function14

that solves the equation elog(z) = ew = z. The Lambert-potential is an asymmetric step potential

of heightV0 whose steepness and asymmetry are controlled by parameter σ (see Figure 3.1). The

Lambert-W step-potential is given by

VL(x) =
V0

1+W (e−x/σ )
, (3.1)

where W is the Lambert function.

Figure 3.1: The Lambert potential (3.1), with V0 = 1 and σ = 1,2,3.

3.1.1 Comparison between potentials barriers

We present the only concept new which is the use of the Lambert W function. The hyperbolic-

tangent potential, provides a comprehensible introduction to the Lambert W function as one of
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the family of special functions, which are useful not only for quantum problems but for a diversity

of problems in different fields14. Another expression for the hyperbolic-tangent potential barriers

is given by

VHT (x) =
V0

1+(e−x/d)
, (3.2)

Figure 3.2 shows the comparison of (3.1) with (3.2). Figure 3.3 shows the difference of the three

Figure 3.2: The Lambert (solid lines) and hyperbolic tangent (3.2) (dashed lines) potentials,

V0 = 1 and σ = d = 1,4,12.

potentials studied.
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Figure 3.3: Comparison of the potential barriers, in all cases V0 = 3. Lambert-W potential with

σ = 0.15 (dotted line), hyperbolic tangent potential with b = 0.5 (dashed line), and step potential

(solid line).

Using the K-G equation (2.32) with V (x) =VL(x) and m0 = m

d2ψ(x)
dx2 +

{[
E−VL(x)

]2−m2
}

ψ(x) = 0. (3.3)

Replacing (3.1) into (3.3) we have

d2ψ(x)
dx2 +


[

E− V0

1+W (e−x/σ )

]2

−m2

ψ(x) = 0. (3.4)

The solutions of the confluent Heun’s differential equation has three singular points15: two

regular ones−z = 0 and z = 1, and one irregular one z = ∞. Solving the standart confluent Heun
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function
(
HeunC (α,β ,γ,δ ,η ,z)

)
is a unique particular solution

d2 f (z)
dz2 −

[−α ′z2 +(−β ′+α ′−δ ′−2)z+β ′+1]
z(z−1)

d f (z)
dz

− {[(−β ′−δ ′−2)α ′−2δ ′]z+(β ′+1)α ′+(−δ ′−1)β ′−2η ′−δ ′}
2z(z−1)

f (z) = 0
(3.5)

which is regular around the regular singular point z = 0. Then, f (0) = 1
d f
dz

∣∣∣∣
z=0

=
(−α ′+1+δ ′) β ′+δ ′−α ′+2η ′

2(β ′+1)
(3.6)

Obtaining the following solution

f (z) =C1HeunC (α ′,β ′,γ ′,δ ′,η ′,z)+C2 z−β HeunC (α ′,−β
′,γ ′,δ ′,η ′,z) (3.7)

In order to write (3.4) similar to (3.5)

y =−W
(

e−x/σ

)
(3.8)

The derivative† of W is

dW (x)
dx

=
W (x)

x[1+W (x)]
(3.9)

dy
dx

=
W (e−xσ )

σ [1+W (e−x/σ )]
(3.10)

dψ

dx
=

dψ

dy
dy
dx

(3.11)

=
dψ

dy
W (e−x/σ )

σ [1+W (e−x/σ )]

=− y
σ(1− y)

dψ

dy
(3.12)

†This derivative was calculated in Maple
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d
dx

(
dψ

dx

)
=

d
dy

(
dψ

dx

)
dy
dx

=
d2ψ

dx2 (3.13)

=
d
dy

[
− y

σ(1− y)
dψ

dy

]
dy
dx

=

{
− d

dy

[
y

σ(1− y)

]
dψ

dy
− y

σ(1− y)
d2ψ

dy2

}[
− y

σ(1− y)

]

=

{
−
[

σ(1− y)+σy
σ2(1− y)2

]
dψ

dy
− y

σ(1− y)
d2ψ

dy2

}[
− y

σ(1− y)

]

=

[
− 1

σ(1− y)2
dψ

dy
− y

σ(1− y)
d2ψ

dy2

][
− y

σ(1− y)

]
=

y2

σ(1− y)2
d2ψ

dy2 +
y

σ2(1− y)3
dψ

dy
(3.14)

The equation (3.4) becomes

y2

σ2(1− y)2
d2ψ

dy2 +
y

σ2(1− y)3
dψ

dy
+

[(
E− V0

1− y

)2

−m2

]
ψ = 0

d2ψ

dy2 +
1

y(1− y)
dψ

dy
+

σ2(1− y)2

y2

[(
E− V0

1− y

)2

−m2

]
ψ = 0

d2ψ

dy2 +
1

y(1− y)
dψ

dy
+

σ2(1− y)2

y2

{
[E(1− y)−V0]

2−m2(1− y)2

(1− y)2

}
ψ = 0

d2ψ

dy2 +
1

y(1− y)
dψ

dy
+σ

2

{
[E(1− y)−V0]

2−m2(1− y)2

y2

}
ψ = 0 (3.15)

ψ(y) =C1e
α

2 yy
1
2 β HeunC (α,β ,γ,δ ,η ,y)+C2e

α

2 yy−
1
2 β z−β HeunC (α,−β ,γ,δ ,η ,y) (3.16)
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Where

α = 2σ

√
m2−E2,

β = 2σ

√
m2−E2 +2EV0−V 2

0 ,

γ =−2,

δ = 2σ
2
(

m2−E2 +EV0

)
,

η = 1−2σ
2
(

m2−E2 +EV0

)
.

Equation (3.15) must be written as (3.5), then

1
y(1− y)

=− [−α ′y2 +(−β ′+α ′−δ ′−2)y+β ′+1]
y(y−1)

=− 1
y(y−1)

(3.17)

σ
2

{
[E(1− y)−V0]

2−m2(1− y)2

y2

}
=−

{
[(−β ′−δ ′−2)α ′−2γ]y+(β ′+1)α ′+(−γ ′−1)β ′−2η ′−δ ′

}
2y(y−1)

.

(3.18)

The derivation itself represents tedious mathematical calculation, after some steps we get the

following expression

ψ(x) =C1e−
1
2 αW (e−x/σ )HeunC

[
α,β ,γ,δ ,η ,−W (e−x/σ )

]
W (e−x/σ )+

1
2 β

+C2e−
1
2 αW (e−x/σ )HeunC

[
α,−β ,γ,δ ,η ,−W (e−x/σ )

]
W (e−x/σ )−

1
2 β

(3.19)

The raw variables in (3.17) and (3.18) are unknown variables (α ′,β ′,γ ′,δ ′,η ′). Following the

procedure and making the equations (3.17) and (3.18) to equal zero we get

α
′y2 +(−α

′+β
′+δ

′+2)y−β
′ = 0 (3.20)

2σ
2
(

E2−m2
)

y3 +
[
(−6E2 +4EV0 +6m2)σ2 +(−β

′−δ
′−2)α ′−2δ

′
]

y2+[
(6E2−8EV0 +2V 2

0 −6m2)σ2 +(β ′+1)α ′+(−δ
′−1)β ′− γ

′−2η
′
]

y−2σ
2(E2−2EV0 +V 2

0 −m2) = 0

(3.21)
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First System: y3


2σ2(E2−m2)−α ′ = 0 (A.3a)

σ2(−6E2 +4EV0 +6m2)+(−β ′− γ ′−2)α ′−2γ ′− (−α ′+β ′+ γ ′+2) = 0 (A.3b)

σ2(6E2−8EV0 +2V 2
0 −6m2)+(β ′+1)α ′+(−γ ′−1)β ′− γ ′−2η ′+β ′ = 0 (A.3c)

(3.22)

Here: −2σ2(E2−2EV0 +V 2
0 ) = 0

Second system: y2
σ2(−6E2 +4EV0 +6m2)+(−β ′− γ ′−2)α ′−2δ ′−α ′ = 0 (A.4a)

σ2(6E2−8EV0 +2V 2
0 +6m2)+(β ′+1)α ′+(−γ ′−1)β ′− γ ′−2η ′− (−α ′+β ′+ γ ′+2) = 0 (A.4b)

−2σ2(E2−2EV0 +V 2
0 −m2)+b = 0 (A.4c)

(3.23)

3.2 Reflection and Transmission Coefficients

The reflection coefficient R, and the transmission coefficient T satisfy the unitary relation T +R =

1. In summary, R and T for all cases are expressed as follow,

A. Case 1:

For the hyperbolic Lambert-W potential barrier we have13 16

RLW = e−2πσq
sinh

[
πσ

2k (k−q)2
]

sinh
[

πσ

2k (k+q)2
] (3.24)

TLW = 1−RLW , (3.25)

where for a relativistic particle k =
√

E2−1, and q =
√

(E−V0)2−1. The behavior of the

reflection and transmission coefficients for the Lambert-W potential barrier is represented in

Figure 3.5.
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B. Case 2:

For the hyperbolic tangent potential barrier the equivalent of (2.86) and (2.87), respectively

are

RHT =

∣∣∣∣BA
∣∣∣∣2 , (3.26)

THT =
qHT

kHT

∣∣∣∣ 1A
∣∣∣∣2 , (3.27)

where the coefficients A and B in (3.26) and (3.27) can be expressed in terms of the Gamma

functions is as follows

A =
Γ(1−2iqHT ) Γ(−2ikHT )

Γ(−ikHT +λ − iqHT ) Γ(1− ikHT −λ − iqHT )
, (3.28)

B =
Γ(1−2iqHT ) Γ(2ikHT )

Γ(ikHT +λ − iqHT ) Γ(1+ ikHT −λ − iqHT )
, (3.29)

where kHT =
√

E2−1
2b , qHT =

√
(E−V0)2−1

2b , and λ =
b+
√

b2−V 2
0

2b .

C. Case 3:

The equivalent of (2.58) and (2.59) for the step potential barrier are therefore given by

RSP =

∣∣∣∣(q− k)
(q+ k)

∣∣∣∣2 , (3.30)

TSP =
q
k

∣∣∣∣ 2k
q+ k

∣∣∣∣2 . (3.31)

The dispersion relation k and q must be positive because they correspond to an incident particle

moved from left to right and, their signs depend on the group velocity, which is calculated by

taking the derivative of each dispersion relation with respect to the energy E

dE
dk′

=
k′

E
≥ 0, (3.32)

dE
dq′

=
q′

E−V0
≥ 0. (3.33)
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For these potentials we have three regions, which are showed in Table 3.1.

Region I E >V0 +m k′ > 0 k ∈ IR q′ > 0 q ∈ IR

Region II V0+m > E >V0−

m

k′ > 0 k ∈ IR q ∈ II

Region III V0−m > E > m k′ > 0 k ∈ IR q′ < 0 q ∈ IR

Table 3.1: Different regions in which we divided our study. We pay special attention to region

III.

It is important to note that in the region II (V0 +m > E >V0−m) and the dispersion relations k

and q are pure imaginary number and the transmitted wave is attenuates, that is to say R = 1. In

the region III (V0−m > E > m) k′ > 0 and q′ < 0 we have that R > 1, so superradiance occurs8.

The Figure 3.4 shows the graphs for the three reflection coefficients for region I (E >V0+m).

We note that in this region the range of reflection is distributed over the range [0,1]. Whereas,

figures 3.5, 3.6, and 3.7 show the reflection R and transmission T coefficients for different

parameters of each potential. We observed in the figures that in the region III the reflection

coefficient R is larger than 1, whereas the transmission coefficient T becomes negative, so we

observed superradiance, likewise the R and T coefficients satisfy the unitary condition T +R = 1.
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Figure 3.4: Comparison between the reflection RLW (solid line), RSP (dotted line), and RHT

(dashed line), scaled to the range E >V0 +m with V0 = 3, σ = 0.15, b = 3, and m = 1.

(a) (b)

Figure 3.5: The reflection R and transmission T coefficients varying energy E for the relativistic

Lambert-W potential barrier with V0 = 3, σ = 0.15, and m = 1.
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(a) (b)

Figure 3.6: The reflection R and transmission T coefficients varying energy E for the relativistic

hyperbolic tangent potential barrier with V0 = 3, b = 3, and m = 1.

(a) (b)

Figure 3.7: The reflection R and transmission T coefficients varying energy E for the relativistic

step potential barrier with V0 = 3 and m = 1.



Chapter 4

Conclusions & Outlook

In this work we have studied the solution of the klein-Gordon equation for three different barrier

potentials. The analysis was presented in mathematical and physical detail to stimulate further

research in this and related avenues. The study of fields in strong electromagnetic backgrounds,

known as the Klein paradox include two distinct phenomena superradiance and pair creation.

Wave scattering processes are characterized by the interaction between an incident wave and a

physical barrier. Superradiance occurs when the reflected current is greater than the incoming

current, that is to say the reflection coefficient R is larger than one so the transmission coefficient

T becomes negative. The scattering solutions are discussed in terms of the height of the potential

barrier. For the region V0−m > E > m we observe superradiance for the Lambert-W potential

barrier. Finally, the problems and cases addressed in this research of the Klein-Gordon equation

are approximations to scenarios related with problems that one finds in the real world and real.

The solutions of these simplified potentials can give us insight into the behavior, both qualitative

and quantitative, of actual physical systems.

37





Bibliography

[1] Alastair I. M. Rae, J. N. Quantum Mechanics, Sixth Edition; Taylor & Francis Group, 2016.

[2] Greiner, W. Relativistic Quantum Mechanics, Wave Equation; Springer-Verlag Berlin Hei-

delberg, 2000.

[3] Wachter, A. Theoretical and Mathematical Physics Relativistic Quantum Mechanics;

Springer, 2011.

[4] A. Molgado, O. M.; Vallejo, J. Virtual beams and the Klein paradox for the Klein-Gordon

equation. Revista Mexicana de Física 2018, E-64, 1–6.

[5] Wolsky, A. Theory of electromagnetic fields. CERN-2011-007 2014, v2, 15–65.

[6] Wysin, G. M. Probability Current and Current Operators in Quantum Mechanics; Depart-

ment of Physics, Kansas State University, 2011.

[7] Townsend, J. S. A Modern Approach to Quantum Mechanics, Second Edition; University

Science Books, 2012.

[8] Rojas, C. Scattering of a scalar relativistic particle by the hyperbolic tangent potential.

Centro de Estudios Interdisciplinarios de la Física - Instituto Venezolano de Investigaciones

Científicas (CEIF - IVIC) 2014, 93, 85–88.

39



40 BIBLIOGRAPHY

[9] Richard Brito, V. C.; Pani, P. Superradiance. Lecture Notes in Physics 2015, 906, 1–221.

[10] Mauricio Richartz, A. J. P., Silke Weinfurtner; Unruh, W. G. Generalized superradiant

scattering. Physical Review D 2009, 2, 1–4.

[11] Manogue, C. A. The Klein Paradox and Superradiance. Annals of Physics 1987, 181, 261–

263.

[12] Glampedakis, K.; Andersson, N. Scattering of scalar waves by rotating black holes.Classical

Quantum Gravity 2001, 18, 1939–1966.

[13] Ishkhanyan, A. The Lambert-W step-potential-an exactly solvable confluent hypergeometric

potential. Physics Letter A 2016, 380, 640–644.

[14] Roberts, K.; Valluri, S. Tutorial: The quantum finite square well and the Lambert W

function. Can. J. Phys 2016, 95, 105–110.

[15] Fiziev, P. P. Novel relations and new properties of confluent Heun’s functions and their

derivatives of arbitrary order. Journal of Physics A: Mathematical and Theoretical 2009, 3,

1–9.

[16] Luis Puente, C. C.; Rojas, C. Study of Superradiance in the Lambert-W barrier. Article

submitted for publication 2019, 1, 1–5.


	List of Figures
	List of Tables
	List of Papers
	Introduction
	Problem Statement
	General and Specific Objectives

	Methodology
	The Klein-Gordon Equation
	Lorentz Invariance of the Klein-Gordon Equation
	Free Solutions of the Klein-Gordon Equation
	Interpretation of the negative solutions

	The interaction of Particles with an Electromagnetic Field
	Finding Solutions to Klein-Gordon Equation
	Step Potential Barrier
	Hyperbolic Tangent Potential

	The Klein's Paradox The topic of Klein's paradox is commonly treated as a component of an introductory discussion of relativistic quantum mechanics. and Superradiance

	Results & Discussion
	The Lambert-W step-potential
	Comparison between potentials barriers

	Reflection and Transmission Coefficients

	Conclusions & Outlook
	Bibliography

