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Resumen

El entrenamiento de redes neuronales artificiales usualmente involucran funciones
objetivos no suaves a ser minimizadas. Este problema de optimización actualmente se
resuelve evitando puntos de ensilladura y por tanto alcazando un minimizador local
o global. Optimizadores conocidos como Descenso por Gradiente (GD) o su versión
estocástica llamada Método de Gradiente Estocástico (SG) dependen de la dirección
de descenso más próximo. Análisis de convergencia de estos métodos dejan mucho que
desear cuando se asume que convexiddad y/o suavidad local (véase, [1][2]). Aunque en la
práctica estos métodos iterativos funcionan bien a través de la estrategia de propagación
de error hacia atrás, nosotros desarrollamos un método determińıstico de optimización
global llamado SALGO-TOAST. El acrónimo de SALGO describen las iniciales en
ı́ngles de la técnica Succesive Abs-Linearization o Abs-Linearizaciones Sucesivas de
la función objetivo y la tarea de Global Optimization u Optimización Global sobre
la aproximación mencionada. Lo último es realizado a través de nuestro método de
trajectoria de búsqueda promediada orientada a objetivos o TOAST. Su nombre trata
de explicar el comportamiento de las direcciones de búsqueda obtenidas en el método.
De hecho, cada dirección de búsqueda está definida por un promedio de la dirección de
descenso más próximo y orientado por un valor objetivo a ser alcanzado [4]. La diferencia
principal de nuestra estrategia y el algoritmo de propogación de error hacia atrás es
nuestra consideración de la no suavidad de la función de predicción. Implementamos
TOAST al entrenamiento de redes neuronales artificiales con funciones de activación de
visagra o ReLUs para solucionar el problema de aprendizaje de la regresión de la función
Griewank y el reconocimiento de imágenes de d́ıgitos. Los resultados son comparados
con SG, GD y otro método determińısticco llamado Optimización Mixta Entero Lineal
(MILOP). Este útimo método tiene una formulación preliminaria y es la única con el
que puede ser probado que un mı́nimo global ha sido obtenido [6].

Palabras clave: Abs-Linearización Sucesiva, Regularización Cuadráti-
ca, Forma Abs-Normal, Descenso Generalizado, Trayectoria de Búsqueda
Dinámica.

Abstract

The training of artificial neural networks usually involves nonsmooth objective func-
tions to be minimized. This optimization problem is currently solved just avoing saddle
points and thus reaching a local and fortunately a global minimizer. Well-known opti-
mizers like Gradient Descent (GD) or its stochastic version called Stochastic Gradient
(SG) depend on the steepest descent direction. Convergence analysis of these methods
leave a lot to be desired when is assumed local smoothness and/or (strong) convexity
(see, [1][2]). Though, in practice, these iterative methods work well through the back-
propagation algorithm [3], we develop a deterministic global optimization method called
SALGO-TOAST. Here SALGO denotes the Succesive Abs-Linearization technique of
the objective function and the Global Optimization task over that approximation. The
latter task is given by our Target Oriented Averaging Search Trajectory (TOAST).
Its name try to describe the behavior of the search direction developed in the method.
Indeed each direction is defined by an average of the stepest descent direction and
oriented by a target value to be reached [4]. The main difference of our algorithm
and backpropagation is that the latter does not consider the nonsmoothness of the
prediction function. We implement our method to the training of the Rectifier ANNs
[5] to solve the learning problem of the Griewank function regression and the digit-
image recognition. The results are compared with SG, GD and another deterministic
method called Mixed Integer Linear Optimization (MILOP). The last method has a
preliminary formulation and is the only one able to reach a global minima [6].

Keywords: Successive Abs-Linearization, Quadratic Regularization, Abs-
Normal Form, Generalized descent, Dynamic Search Trajectory.
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1. Introduction and Motivation.

Machine Learning (ML) concieved with the ambitious goal to automatically reproduce the
human learning. A first example of this was the Perceptron Algorithm [7], a model of an arti-
ficial neuron learning from samples. Nowadays the computational capacity allows us to apply
the basics of the Perceptron Algorithm on a symbolic net of these artificial neurons which is
well-known as Artificial Neural Networks (ANNs). ANN and all ML prediction models likewise
employ an ML algorithm to solve an optimization problem (a.k.a. learning problem) through dif-
ferent learning stages. In general, the optimization is done over a non-smooth and non-negative
objective function. This function depends on a set of parameters and is evaluated on a known
dataset called samples. The ANN considers subsets of these samples to train, validate, or test
itself. In supervised learning, the purpose is that the ANN can produce a prediction function or
a predictor that fits the training sample and predicts similar data depending on the adjustments
of its parameters. The researchers label the fitness error average the Empirical Risk (ER) where
its minima are solutions of the optimization problem [1].

Nowadays, the literature presents outstanding results of the fitting power of the Rectifier
ANN. That is the ANN using hinge activation functions called Rectifier Linear Units (Re-
LUs)(see, e.g. [3],[8]). However the training task of algorithmically choosing the ANN param-
eters, weights and shifts, in order to globally minimize the associated non-smooth objective
function ER, turns out not to be simple in this case study. For example, let us briefly study
the single-layer case of the Recitifier ANN with constant output weighting p P t´1, 1ud. The
predictor

fpχ;xq ” pJmaxp0,Wχ` bq componentwise, with x ” pW, bq P Rdpn`1q (1)

depends on a feature vector χ P Rn, the corresponding label y P R, and the prediction
function parameter weights W P Rdˆn, and the shifts b P Rd. Then the learning problem

min
x
ϕpxq “ 1

m

m
ÿ

k“1

|fpχk;xq ´ yk| (2)

over a training sample of m pairs pχk, ykq
m
k“1 sets a complex scenario for any optimization method

or optimizer. We describe this scenario in the following four observations:

1. Nonsmoothness. At all isolated local, and at least one global, minimizer of the ER, ϕpxq
is not differentiable.

2. Multi-modality. There may be local minima with values higher than the globally mini-
mal value of the ER.

3. Singularity. Reciprocal scaling of succesive weights leaves the prediction values constant.

4. Zero-Plateau. For large negative b the prediction function f and the ER gradient ∇ϕpxq
vanish identically.

These four constitute an optimizer’s house of horrors. Most of the users often neglect these
aspects implementing ML algorithms and their respective optimizers as black boxes. Such a
pragmatic approach constrasts with the convergence analysis of steepest descent variants under
ideal assumptions like local smoothness and/or (strong) convexity (see, e.g. [2]). Nevertheless,
we notice in some experiments that classical optimizers such as Stochastic Gradient Method
(SG) and Gradient Descent (GD) may get stuck in saddle points and at some local minima.
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The latter suggests that the training of the Rectifier ANN could be improved. Therefore our
motivation is to enhance such a training by means of a novel (nonsmooth) optimizer. For a
meaningful implementation, this optimizer should take care of the house of horrors and enforce
implicit optimality conditions of the theory of nonsmooth optimization (see e.g. [9][10]).

This research focuses on two aspects of the training of the Rectifier ANN: the nonsmooth-
ness and the global optimization of the correspondant ER. We formulate a global nonsmooth
optimization approach called Successive Abs-Linear Global Optimization (SALGO). The aim of
SALGO is to exploit the echeloned nonsmooth composition of hinge activation functions through
a suitable representation of the ER namely Abs-Normal Form [11][12][13]. SALGO also allows
for a family of different search strategies to find global minima. One of them is the Target
Oriented Averaging Search Trajectory (TOAST) based on the generalized descent proposed in
[4]. These tools are the mathematical foundation of our SALGO-TOAST algorithm and its ap-
plication to the training of the Rectifier ANN. Summarizing, our algorithm performs two tasks:
the Successive Abs-Linearization of the objective function ER and its Global Optimization using
TOAST. These tasks are implemented in the outer and the inner loop of the algorithm. The
reader can view our optimizer like the Gradient Momentum Method [14] rather than just: as a
variant of steepest descent. Aditionally, we develop another method called Mixed Integer Bilin-
ear Optimization, MIBLOP. We exploit the multi-piecewise linearity with respect to the weights
and shifts of the prediction function and thus the objective function. A preliminary formulation
is given for just the one-layer ANN case. Unlike to SALGO-TOAST philosophy, MIBLOP is an
iterative but not heuristic method that can be proven mathematically to reach a global minima
of the objective function in a finite number of iterations.

This document is organized in six main chapters and one appendix. The chapter of pre-
liminaries introduces main concepts of machine learning to formulate the optimization problem
of our interest. At its last two subsections, we present the approximation technique of abs-
linearization. We describe its properties like uniformly boundness and the resulting formulation
of the piecewise smooth structure. The next chapter is the supervised learning via artificial
neural networks. We present the mathematical formulation of the prediction function deduced
by the multi-layer case of the Rectifier ANNs. In its two sections, we formally describe the op-
timizer’s house of horrors and two academic learning problems: the regression of the Griewank
function and the recognition of hand-written numbers. Afterwards, there are the chapters ti-
tled Succesive Abs-Linearization and optimization strategies in SALGO approach. In both, we
detail our strategies to solve the optimization problem of learning. Those are MIBLOP and
TOAST. Finally, we end up with our experimental results but just for the one-layer case and
the conclusions about our algorithms implemented. In the appendix, one can consult a further
analysis for the multi-layer case of the SALGO-TOAST algorithm, the codes of the numerical
simulation of the methods used, and more.
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2. Preliminaries: Viewing Machine Learning as Optimization.

2.1. Learning from samples: a supervised approach.

Machine Learning (ML) is the scientific field that researches fundamental principles and
develops algorithms capable of leveraging collected data to automatically produce accurate pre-
diction functions applicable to similar data (see, e.g., [1][15][16]). Here a computer is in charge
to preprocess such information to convert it into a useful dataset representation. In general,
a vector or matrix of real numbers are behalf on the dataset so that the ML algorithm A can
operate. This dataset is called samples or prior knowledge where each data point is composed
of its features and labels. We write a description of this terminology below.

Samples (Prior Knowledge): The dataset K of the pairs of known features and labels,
i.e. K “ X ˆ Y, collected by an electronic device such that A can operate, evaluate, or
test itself with K. For example, K can be a set of voice notes, photos, or e-mails which
are accompanied with their respective labels. These can be levels of soundness, sort of
objects, and issues of content, respectively.

Features: A subset of K that are the atributes of each sample. The common representa-
tion is a real column vector χ P X where X denotes the set of all possible features. X is
also known as the input space.

Labels: Values or categories that corresponds to a sample accompanying its features.
Depending on the learning task, the label is a real value or a real vector y P Y where Y is
the set of all possible labels. Y is also known as the output space.

So far we can say that the key ingredient of A is the richness of the prior knowledge and
its representation. This implies that the complexity of the data representation and the
dimension of the samples determine the applicability of a particular ML algorithm. This
observation is currently studied in ”The Representation Learning”, a field itself in the ML
community [17]. Nevertheless, we assume a ”good” representation of the prior knowledge
so the capacity of the ML algorithm relies on its computational complexity and its memory
usage. Both factors are discussed for SALGO-TOAST and MIBLOP algorithms. The
question now is how we manipulate this knowledge. The following terminology describes
the mathematical perspective of such an approach.

Prediction model: A prediction model is said to be a representation of a family of
functions F that aims to estimate or generalize a data which has not been previously
analyzed. Prediction models like artificial neural networks particularly represent a family
of parametrized predictors that no longer depend on the input data. This kind of prediction
functions are denoted by f ” fpχ;xq where χ P X and x is the only independent variable
made up of prediction model parameters. Afterwards we establish the conditions under
which A uses f to achive an approximate solution of the (supervised) learning problem.

Supervised learning problem: Let us assume that each known sample pχ, yq P K is
independently and identically distributed (i.i.d.) according to some fixed, but unknown
distribution P. Consider a family of parametrized prediction functions F which is fixed
and each f P F is defined as

f : Ω Ă Rq Ñ Ȳ

pχ;xq ÞÑ fpχ;xq
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where the value fpχ;xq is called prediction and Ȳ does not necessarily coincide with
the output space Y. Taking S “ pχ1, . . . , χmq Ă X , we define a concept c, which is
unknown in general, that pointwise maps S to Y. So the vector of labels is defined by
y “ pcpχ1q, . . . , cpχmqq P Y. Therefore the learning problem is based on how the prediction
function f learns the (unknown)concept c. Mathematically, it is the selection of the optimal
parameters x that minimize the generalization error (a.k.a. Expected Risk) between f and
c over the prior knowledge K.

Definition 2.1 (Generalization error). For any prediction function f P F , a concept c evaluated
in S, and pχ, y “ cpχqq i.i.d. by P, the generalization error R : F Ñ R is given by

Rpfq “ EχvP r`pfpχ;xq, yqs (3)

where ` : Ȳ ˆ Y Ñ R is called the loss function that quantifies the discrepancy between the
prediction fpχ;xq and the label y.

In other words, the generalization error estimates how poorly the prediction is on the infinity
of future samples that are distributed by P. So the learning problem can be mathematically
written as a variational problem of the generalization error in terms of the functional f

min
fPF

Rpfq (4)

Unfortunately, (4) is not explicitly computable because the distribution P is unknown. In-
stead we compute an approximation of (3) called Empirical Risk (ER).

Definition 2.2 (Empirical Risk). For any f P F and a given dataset D Ă K, we denote the
empirical risk as ϕ : F Ñ R given by

ϕpf,Dq “ 1
|D|

ÿ

pχ,yqPD

`pfpχ;xq, yq (5)

where |D| is the number of samples in D. Since D is fixed, note that ϕ just depends on the
functional f .

This measure tells us how poorly the evaluation of the prediction is on average on the
dataset D. The Empirical Risk Minimization(ERM) principle says that one should find
a predictor f˚ that minimizes the Empirical Risk over D, i.e.

f˚ “ argmin
fPF

ϕpf,Dq. (6)

So we can afford a good estimate ϕpf˚,Dq of the generalization error Rpfq[16].

Example 2.1 (Binary Classification.). We are going to prove that the expected value of the ER
evaluated in f˚ is equal to the Generalization Error for the binary classification problem. Let us
denote the concept c as the binary mapping χ ÞÑ y P Y “ t0, 1u, and the loss function by

`px, yq “ 1rfpχ;xq ‰ ys, where 1rEs “

#

1, the event E is true
0, the event E is false

, (7)

namely the indicator function. Since the samples are drawn i.i.d. and because of the linearity of
the expectation value, one obtains the following equalities
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EχivP rϕpf
˚,Dqs “ 1

|D|

|D|
ÿ

i“1

EχivP r1rfpχi;xq ‰ yiss “
1
|D|

ÿ

EχvP r1rfpχ;xq ‰ yss

for any pχ, yq P K. Due to the arbitrariness of pχ, yq, the expected value repeats |D| times.
Thus the desired equality

EχvP rϕpf
˚, Dqs “ Rpfq

holds as the generalization error is the expected value of the loss function.

The construction of the proof of the above equality is nontrivial when the prediction model
represents a family of complex prediction function, e.g. non-linear functions, to solve a multi-
classification problem or a regression of a non-polynomial mapping. A futher observation is the
i.i.d choice of the sample points to evaluate the ER. Otherwise the computation of the ER would
result in a biased estimate of the generalization error. For this purpose, the prior knowledge
K is split in three subsets: training sample, validation data, and test sample to be used in the
following learning stages, see Figure 1:

Figure 1: Learning stages of a supervised learning algorithm

Training stage: Given a random subset DTRAIN Ă K called training sample, the training
stage is the usage of an optimizer in order to implement the ERM principle using DTRAIN.

Validation stage: Given a random subset DVALID Ă K, called validation data, the so-
lution of the optimizer is validated with a different dataset than DTRAIN. This stage is
also utilized to adjust the hyperparameters Θ of A if a substantial reduction of the ER is
presented. Here the hyperparameters are free parameters of A and not determined by A
itself, e.g. the stepsize of A’s optimizer.

Test stage: A utilizes the last adjustment of the ML algorithm hyperparameters and
prediction parameter to compute a new prediction. This evaluation is done over the test
sample. Here the test sample is a random subset DTEST Ă K. Unlike DTRAIN or DVALID,
DTEST must never have been used during training or validation stages of A.

Remark 2.3. The hyperparameters can be automatically adjusted in which case the validation
stage is not always necessary. This possibility will depend on the sophistication or generalization
power of the prediction model and the ML algorithm.

In summary, a family F of (parametrized) prediction functions and a loss mapping ` to evaluate
the quality of the predictions are needed to attack the learning problem through A. The missing
component is to find a suitable method that solves the ERM principle described in (6). Since
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this is an optimization problem, the ML comunity refers to this optimization method as an
optimizer. Whence the optimization task is to search the optimal (hyper)parameters x,Θ of the
functional f , and A. The following are the steps to follow for solving the ERM principle and
achieving an estimate of the solution of the supervised learning problem.

Algorithm 1 Supervised learning algorithm ApΘq
Require: K, x,Θ, f, `

function Split(K) Ź split the dataset of samples in three: DTRAIN,DVALID,DTEST

end function
while f˚ does not sufficiently minimize ϕpf,DTRAINq do

function Optimizer(x,Θ, f, `) Ź The ERM principle solved by the optimizer
end function

return f˚

end while Ź The above loop is called the TRAINING of A
evaluate ϕpf˚,DVALIDq “ ϕ˚ Ź Remember that ϕ is a functional
function Adjust(Θ)” Θ0 Ź Adjustment of Θ to possibly enforce a reduction of the ER
end function

evaluate ϕpf˚,DVALID,Θ0q “ ϕ̄
if ϕ˚ ă ϕ̄ then return ϕ˚

else TRAIN again with Θ0

end if Ź This if-statement is called the VALIDATION stage of A
return ϕpf˚,DTESTq Ź Compute the unbiased estimate of the GE. This is the TEST stage.

The variational problem (6) is simplified if one choose a fixed form of the parametrized
functional f . Then the ER becomes a function dependent on just the predictor’s parameters,
i.e. ϕ : Ω Ñ R. This implies that, during the training stage, the optimizer tries to obtain x˚
given by

x˚ “ argmin
xPΩ

ϕpxq ” argminϕpfpχ;xq,DTRAINq. (8)

Here x˚ is denoted as the outcome of the training of the prediction model represented by f .
However this problem could be NP-hard if the loss function is discontinuous or the prediction
function is very nonlinear. For instance, the indicator loss function described in (7) is non-
differentiable almost everywhere with respect to the parameters x. In [15][18], they argue that
the minimization of the ER become possible if the surrogate loss function is convex and non-
decreasing. The goal is to get an upper bound of the original error using a surrogate loss function.
This observation is verified for the indicator function and its following convex non-decreasing
surrogate functions. For any prediction f and any label y P t0, 1u, the binary classification
problem has indicator loss function values upper bounded by the following mappings

Hinge loss: `pf, yq “ maxp0, f ´ yq

Exponential loss: `pf, yq “ exppf ´ yq

Logistic loss: `pf, yq “ log2pe
f ´ yq

Euclidean norm loss: `pf, yq “ pf ´ yq2

Squared Hinge loss: `pf ´ yq “ pmaxp0, f ´ yqq2.

The multiclass classification problem, when the labels are two or more, holds the observation
above.
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We should note that Algorithm 1 is just useful for the supervised learning problem, but not
for other approaches like semi-supervised, unsupervised, and reinforcement learning. Because
the way to estimate the generalization error is different [19]. In unsupervised learning, there are
no labels in the output space, so A must generate a descriptive model of the input space rather
than a prediction model. Tasks like clustering, dimensional reduction, ranking, and density
estimation are examples of this kind of learning. Meanwhile a reinforcement learning algorithm
needs a feedback called reward or reinforcement as input in order to take a new decision de-
pending on all(or some) past decisions. For example, a reinforcement learning model is the
Markov decision process. With a mix of all these approaches in just one algorithm, the goal is
to construct the ultimate Machine Learning Algorithm [20][21].

In the next section we deep on the analysis of the training stage. This optimization task
relies on that all of the prediction models construct a nonsmooth and nonnegative ER. We will
check that the geometry and smoothness of the ER make of the optimization problem in (8)
hard to solve. The latter is due to the non-uniqueness of its gradient and the existence of several
stationary points high above the globally minimal value.

2.2. Training with global optimization methods.

We introduce our mathematical approach to the training of a specific family of parametrized
prediction function, the Rectifier ANN. During the training stage, ML generally attempts to
avoid getting stuck at saddle points to hopefully reach low local minima of the ER. But the
difficulty of this task relies on the mathematical properties of the predictor and the loss function.
For example, the predictor in (1) for the two variable-case is given by

fpχ;W q ” pJmaxp0,Wχq with χ,W P R2. (9)

So the choice of the loss function implies different mathematical geometries for the ER surface.
If we consider the ER evaluated on one training sample point pχ, yq “ p1, 1q and pJ “ p1,´1q,
we obtain the following loss surfaces where ϕpxq ” `pfpχ;xq, yq

Figure 2: Loss surfaces of an one-layer ANN based on 2 neurons using each one of the loss
functions listed in the last section

The ER consequently has a non-differentiable domain with zero Lebesgue measure even
for a larger training sample. These few insights set up a realistic scenario about what the
optimization methods should consider for mathematically and computationally guaranteeing a
global minimizer. We extend our analysis by the following definitions, theorems, and examples.

Definition 2.4 (Global Optimization). We say that global optimization is the design and nu-
merical comparisons of heuristic procedures to locate low local minima of an objective function
most successfully [4].
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This characterization emphasizes that, apart of space covering/filling techniques, all other
strategies are heuristic, e.g. trajectory methods, random-search methods, and methods based
on stochastic models [22][23]. The justification for using these methods is that, for more than
two variables, space covering methods tend to exceed computational limitation, as they have
to evaluate the function on a sufficiently dense grid to cover the search area. We suggest that
the search for minimal values should reach the promising region in the parameter normed space
pRn, } ¨ }pq with n ă 8. } ¨ }p denotes the lp norm with p P t1, 2,8u given by

} ¨ }p : v P Rn ÞÑ }v}p “

$

’

’

&

’

’

%

ř

iPI |vi|, if p “ 1
b

ř

iPI v
2
i , if p “ 2

maxpviqiPI , if p “ 8

where I is the index that contains the i-th components of the vector v. Thus if the ER domain
Ω Ă Rn is a compact set then it is closed and bounded (see, [24]). Theoretically, the existence
of a global minimum of a function defined in that normed space is assumed as follows.

Definition 2.5. A function ϕ : Rn Ñ R is called lower semi-continuous (l.s.c.) on a set Ω if
for x0, x P Ω

ϕpx0q ď lim inf
xÑx0

ϕpxq

Given the ER is a continuous mapping, it holds to be a lower semicontinuous function.
Therefore the minimization of the ER is always possible because of the Weierstrass theorem.

Theorem 2.6 (Weierstrass). Given a l.s.c. function ϕ : Ω Ă Rn Ñ R and if Ω is a compact
set, then ϕ attains a global minimizer

x˚ “ argmin
xPΩ

ϕpxq

So one should design a strategy to attain the minimizer of the ER according to its geometrical
and analytical properties. By definition, the ER might be convex as it is the average of the convex
and non-decreasing surrogate loss function.

Definition 2.7 (Convex set and Convex function). We call a set C Ă Rn convex if for all real
numbers λ P r0, 1s

x, y P C ñ λx` p1´ λqy P C,

whereas a function ` : C Ñ R is said to be convex if for any x, y P C, where C Ă Rn is a convex
set, and for all λ P r0, 1s Ă R the relation

`pλx` p1´ λqyq ď λ`pxq ` p1´ λq`pyq

holds.

Example 2.2. The surrogate loss functions: hinge, exponential, logistic, Euclidean norm,
squared hinge loss are convex on R.

However, this is not a guarantee that the ER is convex. In Figure 2, the composition of
a convex function and the subtraction of two other convex functions is not convex. Thus the
learning problem cannot generally be classified as a convex optimization problem (see, Table 1).
Therefore we extend to a more analytical rather than a geometric approach. We study the
Lipschitz continuity of ϕ so that } ¨ } denotes the Euclidean norm without loss of generality.
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Table 1: Cases that a convex function maintains convexity. The (concave) hinge column refers
to the composition between a convex function and the hinge function where the concave case
denotes minp0, `q.

Geometry Scaling Addition Subtraction Composition Hinge Concave hinge

Convex Yes Yes No No Yes No

Definition 2.8 (Lipschitz continuity). A function ϕ : Ω Ă Rn Ñ R is called locally Lipschitz
continuous over Ω if, for all x0 P Ω, there exist ε ą 0 and a constant L ą 0 such that

@x P ΩXBεpx0q : |ϕpx0q ´ ϕpxq| ď L}x0 ´ x}

where Bεpx0q “ tx P Rn : }x0 ´ x} ă εu denotes the open ball around x0 with radius ε. If there
exists a choice of L, so that

@x1, x2 P Ω : |ϕpx1q ´ ϕpx2q| ď L}x1 ´ x2}

holds, then we call ϕ globally Lipschitz continuous on Ω.

Furthermore, we denote ϕ P C1,1pΩq where the second superscript refers to the Lipschitz
continuity of the first-order derivative of ϕ. The constant L is referred as the Lipschitz constant.
The following statement establishes the relation between convexity and Lipschitz continuity.

Proposition 2.9. Any convex function ϕ is Lipschitz continuous with some Lipschitz constant
L on some open ball Bεpx0q with ε “ εpx0q ą 0 for all x0 P C Ă Rn.

From now on we assume that the ER is Lipschitz continuous because the prediction function
and the loss function studied before are too. But this is not true for the indicator function or
any other discontinuous loss function. Then we can apply the following theorem.

Theorem 2.10 (Rademacher). Suppose ϕ : Rn Ñ R is locally Lipschitz continuous on Ω Ă Rn,
then there exists the Fréchet derivative

ϕ1pxq P Rn with }ϕ1pxq} ď Lpxq s.t. lim
sÑ0

}ϕpx` sq ´ ϕpxq ´ ϕ1pxqs}

}s}
“ 0

at all x P ΩzS where S is a singular set, i.e. S has Lebesgue measure zero.

Other important property to analyze is the ER smoothness. The term smooth refers to, for
any order d ě 1, a function being continuously differentiable and represented by the set CdpRnq
of real valued mappings. So if ϕ P C1pRnq, the equality between the Fréchet derivative and
the gradient ∇ϕpxq holds. But, like in (9), ML often involves non-smooth predictors and loss
functions of different d orders. This fact also corresponds to the nonsmooth of the ER because
of continuity. So we need to generalize the concept of the derivative as follows:

Definition 2.11 (Limiting gradient). For all x P Ω we call

BLϕpxq ”
 

lim
kÑ8

ϕ1pxkq : xk Ñ x and xk R S
(

the set of limiting gradients which are also called Bouligand derivative in the literature.
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Definition 2.12 (Convex hull). We define the convex hull of a set V Ă Rn as

conv V “ tx P Rn : x “
k
ÿ

i“1

λixi,
k
ÿ

i“1

λi “ 1, xi P V, λi ě 0, k ą 0u.

Taking the convex hull of the set of the limiting gradient BLϕpxq, we obtain Clarke’s gener-
alized derivative

BCϕpxq ” conv pBLϕpxqq.

Another popular generalized derivative is the one defined by the directional derivatives or
Hadamard derivative.

Definition 2.13 (Hadamard derivative). The Hadamard derivative of ϕ in the direction d P Rn
is denoted by

ϕ1px; dq “ lim
tÑ0`

1
t rϕpx` tdq ´ ϕpxqs P RY t´8u

provided the limit on the right hand side exists.

Even for Lipschitz functions this equality is not necessarily true in all direction d P Rn.
However, Hadamard derivative does always exist on piecewise smooth functions, which are of
our interest. Then the sub-gradient or generalized derivative of ϕ is defined as follows:

Definition 2.14 (Sub-gradient). We call the sub-gradient of ϕ the convex set Bϕ defined by the
supporting function ϕ1px0, ¨q, i.e.

Bϕ ” tg P Rn : gJd ď ϕ1px0; dq, for d P Rnu

which is identical to the set

tg P Rn : ϕpxq ě ϕpx0q ` g
Jpx´ x0q, for x P Rnu

Then if ϕ is Lipschitz continuous and convex, the concept of subgradient and Clarke’s gen-
eralized derivative coincide. In the nonconvex case Bϕ may be empty, whereas BCϕpxq ‰ H

everywhere in the Lipschitz continuous case.

This classical generalized differentiation approach simply reduces to the computing of the
slopes where the function is smooth for some piecewise differentiable functions (which are stud-
ied in the next subsection). For numerical purposes, any of these generalizations really give
no indication whether there is nearby a jump/kink or the nonsmooth domain. This scenario
encourages ML users to implement optimization methods like Gradient Descent or Stochastic
Gradient without considering the nonsmoothness as the nondifferentiable domain is singular.
The next subsection discusses the mathematical properties of this sort of functions constructing
its abs-normal form.

2.2.1. Abs-normal form.

Definition 2.15 (Piecewise differentiable). Let Ω be an open set and a locally Lipschitz con-
tinuous function ϕ : Ω Ă Rn Ñ R and d P N, we say that ϕ is d times picewise differentiable
if at any x P Ω there exists a selection function ϕσpxq P CdpΩq such that ϕpxq “ ϕσpxq. Here σ
belongs to some finite index set E labeling the selection functions ϕσ.
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The majority of the objective functions associated to the ML prediction models is piecewise
differentiable (see, Definition 2.15). This class is enough to represent compositions of all the
surrogate loss functions, affine transformations, and the so-called activation functions presented
in ANN. In [13], the authors emphasize compositions of nonlinear smooth elemental functions
and the absolute value function abspxq “ |x| “ p|x1|, . . . , |xn|q which includes the convex or
concave hinge function. One can successively number all arguments of the absolute value eval-
uations as switching (real or vector)variables z ” tziu

s
i“1. Under these observations, we define

the following subset of piecewise differentiable functions.

Definition 2.16 (Composite piecewise smooth functions.). The set of functions ϕ : Ω Ă Rn Ñ R
that can be defined by an abs-normal form

z “ Λpx, |z|q (10)

ϕpxq “ λpx, |zpxq|q, (11)

where Λ : ΩˆRs` ÞÑ Rs and λ : ΩˆRs` ÞÑ R with ΩˆRs` Ă Rn`s such that λ,Λ P CdpΩˆRs`q,
is said to be composite piecewise differentiable. We denote this set by CdabspΩq for any d P N.

Here, the switching variables can only influence each other in an echeloned manner, that
is, zi influences zj only if i ă j. In consequence, for any x P Ω, the evaluation of the piecewise
smooth value zpxq is unique. Nevertheless, the set of composite piecewise differentiable functions
does not include every piecewise differentiable function.

Example 2.3. Consider the predictor f defined in (9) and using the squared hinge loss function
to construct the following ER on the training sample D ” DTRAIN

ϕpW q “ 1
|D|

ÿ

pχ,yqPD

“

maxp0, pfpχ,W q ´ yqq
‰2
.

Then the abs-normal form of the ER is

pz1, z2q “ pWχ, 1
2p
JpWχ` abspz1qq ´ yq

ϕpz1, z2q “
1

16|D|

ÿ

pχ,yqPD
ppJpz1 ` abspz1q ´ yq ` abspz2qq

2

where absp¨q is the componentwise mapping of the absolute value function.

One can identify the combinatorial structure of the nonsmooth function ϕ by the signature
vector

σ “ σpxq ” sgnpzpxqq P t´1, 0,`1us (12)

and the signature matrix
Σ “ Σpxq “ diagpσpxqq P Rsˆs. (13)

Then we can defines the selection function

ϕσpxq ” λpx,Σzpxqq s.t. zpxq “ Λpx,Σzpxqq

where ϕ ” ϕσ is smooth on each signature σ. This fact verifies that every composite piecewise
smooth function is piecewise differentiable.

The abs-normal form of any composite piecewise differentiable function leads us to imple-
ment a new set-valued mapping of gradients relevant for the optimization of ϕ. First, we take
advantage of the explicit formulation of the selection smooth functions ϕσ.
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Definition 2.17 (Active selections.). The selection function ϕσ is said to be active at 8x P Ω if
the coincidence set Mσ “ tx P Ω : ϕpxq “ ϕσpxqu contains 8x. Moreover ϕσ is called essentially
active if 8x is in the closure of the interior of Mσ. Finally, it is called conically active if the
tanget cone of Mσ at 8x has a nonempty interior. The index sets of the correspondingly active
selection function indexes is characterized by the inclusion chain Ecp 8xq Ă Eep 8xq Ă Eap 8xq Ă E .

Lemma 2.1 (Scholtes [25]). For any piecewise smooth function ϕ, the limiting gradient is the
span of the essentially active gradients, i.e.

BLϕp 8xq “
ď

σPEe

t∇ϕσp 8xqu.

Therefore, for the index of the active selection functions, the following order of the set-valued
mappings

H ‰ BKϕp 8xq ”
ď

σPEcpxq
t∇ϕσp 8xqu Ă BLϕp 8xq Ă

ď

σPEapxq
t∇ϕσp 8xqu

holds. Here BK refers to the conical derivative. It can be shown that, for a given a local
minimizer 8x, 0 P convtBKϕp 8xqu. This is a stronger requirement than the Clarke stationarity
condition [9]. But the computational verification of this condition is not easy. We approximate
this condition using a strategy of linearization and local minimization described in [11],[13].

2.2.2. Abs-linear form.

Definition 2.18 (Semi-smoothness). A function ϕ : Rn Ñ Rm is called semi-smooth at a point
x if it holds

sup
MPBϕpx`sq

}ϕpx` sq ´ ϕpxq ´M ¨ s} “ op}s}q

Also, ϕ is said to be strong semi-smooth if the above equality holds for Op}s}2q. Both properties
are maintained by elemental function compositions.

Since the abs-normal of objective functions are strongly semi-smooth, their generalized gra-
dients satisfy the backward approximation property for a fixed 8x as follows

ϕpxq ´ ϕp 8xq ´ gJpx´ 8xq “ Op}x´ 8x}2q for all g P BCϕpxq. (14)

Applying the classical first order Taylor expansion to the abs-normal form in (10) and (11), one
obtains the general smooth Taylor expansion for the reference point 8x given by

«

z ´ 8z
ϕ´ 8ϕ

ff

“

«

Z L
aJ bJ

ff«

x´ 8x
|z| ´ |8z|

ff

`O

˜

}x´ 8x}2

}z ´ 8z}2

¸

(15)

with 8z “ zp 8xq. We call (15) the abs-linear form (ALF) of ϕpxq at 8x. Here the matrices Z,L are
given by

L ”
BΛpx, |z|q

B|z|
P Rsˆs, Z ”

BΛpx, |z|q

Bx
P Rsˆn (16)

and the vectors a, b are given by

a “
Bλpx, |z|q

Bx
P Rn, b “

Bλpx, |z|q

B|z|
P Rs. (17)

Z,L, a, b are evaluated at the reference point p 8x, 8zq. Because of the echeloned dependence between
the zi, L is a lower triangle matrix and so one can easily check by induction that }z ´ 8z} “
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Op}x´ 8x}q. Therefore we can obtain the approximation of any composite piecewise differentiable
function as follows

∆ϕp 8x; ∆xq ” aJx` bJ|z| “ ϕpxq ´ ϕp 8xq `Op}∆x}2q (18)

where
z ” 8z ´ L|8z| ` Z∆x` L|z|. (19)

Since the ER in (5) has an abs-normal form then it has an abs-linear form. A useful remark is
that ∆ϕ is piecewise linear with respect to x.

Definition 2.19 (Piecewise linear function). A function ϕ : Ω Ă Rn ÞÑ R is called piecewise lin-
ear if it is piecewise differentiable according to the Definition 2.15 and all its selection functions
are linear or affine. We denote this set by LabspR

nq.

Moreover, the signature vector (12) and signature matrix (13) carry over the abs-linearization
of ϕ. Actually from the signature vector and using the partial order of the signatures σ “ sgnpzq
given by

σ ă σ̃ ô σ̃iσi ď σ̃2
i , for i “ 1 . . . s (20)

we can partition the whole domain Rn into polyhedra

Pσ ” tx P Rn : σpxqu. (21)

Here their essential closures
P̄σ ” tx P Rn : σpxq ă σu

satisfy the inclusion
Pσ Ă Pσ̃.

This inclusion is equivalent to the condition in (20). Therefore we can solve the equality con-
straint of the abs-linear form in (19) over each polyhedra Pσ. Using the equality |z| “ Σz for
all x P P̄σ, we obtain the affine function

zpxq “ pI ´ LΣq´1pc` Zxq where c “ 8z ` L|8z|. (22)

Here the matrix pI ´LΣq´1 is well defined for any σ because of the strict lower triangularity of
L. If one restricts σ to t´1,`1us, we obtain Pσ with non-empty interior and made up of the
solutions of the system of inequalities

|zpxq| “ ΣpI ´ LΣq´1pc` Zxq “ pΣ´ Lq´1pc` Zxq ě 0,

if we assume 8x “ 0 without loss of generality.
Considering the last analysis of the abs-linear form, one can therefore compute the active gra-
dients gσ of ∆ϕ given by

gσ “ aJ ` bJpΣ´ Lq´1Z. (23)

These gradients can be replaced in (14) and the equality can be still held. Consequently we
have a more descriptive and computable gradient to define optimality conditions of a piecewise
smooth function. In fact, the following equality holds

H ‰ BKx ϕpxq|x“8x ” B
L
∆x∆ϕp 8x,∆xq|∆x“0 Ă B

L
xϕpxq|x“8x (24)

where
BL∆x∆ϕp 8x,∆xq|∆x“0 “

ď

0Sσą8σ

taJ ` bJpΣ´ Lq´1Zu.

In other words, the conical derivative of the original model ϕ is the limiting gradient of its local
piecewise linearization ∆ϕ. We use this result in our optimization approach called SALGO and
in its respective underlying algorithms: SALGO-TOAST and MIBLOP.
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3. Supervised learning via artificial neural networks.

Before we study the SALGO approach, we detail the training stage of an ML algorithm that
will depend on the prediction model given by an ANN. This model is made up of interconnected
neurons that are arranged in layers. These hidden layers are between an input and a resulting
prediction while their intermediate connections represent smooth or nonsmooth transformations
of the input. In general, the whole network is studied as the compositons of activation functions
and affine transformation dependent on the so-called weights and shifts and evaluated in the
input. Particularly, we consider a fully connected feedforward ANN, that is, a net graph with
the same number of connections as per number of neuron pairs from adjacent layers.

Mathematically we describe this sort of ANNs as an interconnected graph composed of l` 2
layers. Here the 0-th layer is the input data or features χk P Rn and the pl`1q-th layer represents
the prediction fpχk, xq P R. However, there will be cases where the dimension of the label is
a vector instead of a real number. Both cases are implemented in section 5.3. Moreover each
layer has a finite number of neurons which describes the dimensionality of each intermediate
variable. We denote this dimension by di for the i-th layer. Ultimately this ANN is composed of
l affine transformations given by x “ pW, b, pq and also of activation functions that (in)activate
(i.e. active if the mapping evaluations differ from 0, or inactive otherwise) the affine mapping.

Remark 3.1. The superscript is reserved to denote the layer which the transformation, param-
eter, or dimension correspond to.

Here the affine mappings for each i-th layer are given by

apiq : Rm Ñ Rs

xpiq “ pW piq, bpiqq ÞÑ apχ;xq “W piqχ` bpiq

and represent the connections between each neuron of the adjacent ANN intermediate layers.
Meanwhile the activation function is a componentwise mapping given by

h : Rs Ñ Rs

v ÞÑ hpvq “ phpv1q, . . . , hpvnqq

that acts on the affine transformation values.
If we have a real-valued prediction function, the output of the prediction model is computed
as a linear combination of the entries of the l-th layer neurons. We represent this mapping by
the weighting vector p P t´1,`1ud

l
, i.e. p has components of ones with different signs. This

data-based model only depending on the hinge activation function is called Rectifier ANN. So
we formulate our prototypical prediction model as follows:
For a fixed feature χ P Rn, the prediction function is given by

pχ;xq P Rq ÞÑ R Q fpχ;xq “ pJΦpxq (25a)

where q “
řl
i“0 d

i`1pdi ` 1q, and Φ is a mapping made up of compositions and defined by

Φ : x P Rq ÞÑ R Q Φpxq “ hlpalp¨ ¨ ¨h1pa1px1qq ¨ ¨ ¨ qq (25b)

where hp¨q “ pmaxp0, ¨q, . . . ,maxp0, ¨qq. We select this model because of the investigations done
in [8],[5],[26]. Under their claims, we can approximate any continuous function to any accuracy.
Notice that the prediction function is multi-piecewise linear function w.r.t. the parameters
x P Rq and piecewise linear w.r.t. the features χ.
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Definition 3.2 (Multi-piecewise linear function). Consider a real-valued function

f “ fpx1, ¨ ¨ ¨ , xj´1, xj , xj`1, ¨ ¨ ¨ , xqq.

It is said that f is a multi-piecewise linear function if it is piecewise linear with respect to xj
when xi are constant with i P t1, . . . , qu ´ tju.

The piecewise linear functions maintain their geometric form under the transformations
described in Table 1. Since the set of piecewise linear functions LabspR

nq are closed under
addition, (min)maximization, and composition. This is not true for piecewise quadraties and
other generalizations. We extend this characterization of Rectifier ANN when the prediction
function is a vector mapping. In that case, we define f ” Φ where Φ is defined in (25b). Thus
each of its components fi is a piecewise linear function with respect to xi “ pWi, biq.

Example 3.1. Consider the prediction model for the one-layer case in (25b), so the associated
ER ϕ evaluated over one training sample pair pχ, yq “ p1, p1, 1qq is given by

ϕpW q “ |maxp0, w1q ´ 1| ` |maxp0, w2q ´ 1| “ }fpW q ´ y}1.

Here x “W P R2 with the weights W “ pw1, w2q as the inhomogeneity shift b “ p0, 0q. One can
see that the lower bound of ϕ is clearly zero and applying some basic algebra its global minimizer
is at the point pw1, w2q “ p1, 1q. Also, fixing one of the weights, one hinge function is preserved
maintaining the piecewise linearity of ϕ over the other weight.

Figure 3: Left: The graph of ϕ turned upside down with a global minimizer at (1,1). Right:
The contours of ϕ that induce a certain polyhedral decomposition of the domain with respect
to each piece, where ϕ is smooth.

The example 3.1 also illustrates that variations of steepest descent methods may get stuck at
local minimizers of the associated ER. In the next subsection, we study this possible phenomenon
based on the following four simple observations of the empirical risk: nonsmoothness, multi-
modality, singularity, and zero-plateau. We emphasize again that these features constitute an
optimizer’s house of horrors.

3.1. Optimizer’s house of horrors.

We recall the learning problem for an ANN with a single intermediate layer of d nodes and
hinge activation [6] given in (1) as already mentioned in the introduction. This problem can be
mathematically described by

min
x
|fpχ;xq ´ y| where f is given in (25a) with x ” pW, b, pq . (26)

Here χ P Rn is a feature vector from a training set, y P R the corresponding label, W P Rdˆn
the weight matrix in a vector form between the sample input and the intermediate layer, b P Rd
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the shift inhomogeneity and p P Rd the output weight vector.

The empirical risk objective to be minimized is the average of the losses |fpχ;xq ´ y| for
pχ, yq P Rn`1 ranging over a training set. In other words we are looking for an optimal l1 fit
over a set of sample points rather than just minimizing the discrepancy at one particular point.
This summation does not effect the properties of the objective with respect to the optimization
variables x “ pW, b, pq P Rdˆpn`2q to be discussed here. Firstly we observe that due to the
positive homogeneity of the hinge function for a scalar 0 ă ρ P R

fpχ; ρW, ρb, p{ρq “ pp{ρqJmaxp0, pρW qχ` pρbqq

“ pJmaxp0,Wχ` bq “ fpχ;W, b, pq .

This invariance implies immediately that all local and global minimizers cannot be isolated and
their Hessians must be singular if they exist at all.

Of course a similar reciprocal scaling of weights and shifts can be applied between successive
layers in more general networks leaving the resulting prediction function invariant and thus the
risk function minimization problem singular. To remove the singularity in the single layer case
considered here, we could fix the components of the output weight vector to be ´1 or `1 so
that the prediction function would effectively be split into

fpχ;W`,W´, b`, b´q “ eJ`maxp0,W`χ` b`q
loooooooooooomoooooooooooon

”f`pχ;W`,b`q

´ eJ´maxp0,W´χ` b´q
loooooooooooomoooooooooooon

“f´pχ;W´,b´q

where e` and e´ denote vectors of ones in suitable dimensions n´ and n`. If we choose n` “
n “ n´ we have twice as many weights and shifts and all possible prediction functions of the
original model can be reproduced. Even for this extremely simple model we have universality in
the sense that every continuous function can be approximated up to an arbitrarily small absolute
error ε ą 0 as shown by Yarotsky in [5]. Of course the necessary size 2n of the intermediate layer
will grow rapidly as ε becomes small. We also note that in this normalized single layer case the
prediction function fpχ;xq and the averages of the losses |fpχ;xq ´ y| are piecewise linear w.r.t
to each variable in x “ pW, bq. Hence the learning problem is a global multi-piecewise linear
optimization problem so that for any Cartesian basis vector ej the function fpχ;xj ` tejq ´ y,
and thus its absolute value is piecewise linear in t. Then the result below follows easily because
the multi-piecewise linearity of the objective function verifies its multi-modal nature on each
kink.

Proposition 3.3 (Minimizers are generically nonsmooth).
Suppose a locally Lipschitz continuous function ϕ : Rq ÞÑ R has a nonempty bounded level set
tx P Rq : ϕpxq ď ϕpx0qu for some x0 P Rq and is multi-piecewise linear as defined above. Then
ϕ has global minimizers where it is not differentiable, which also applies at all geometrically
isolated local minimizers.

Proof. Say x˚ is a global minimizer of ϕ so that clearly t˚ “ 0 is a global minimizer of ϕjptq “
ϕpx˚ ` tejq for any j “ 1 . . . q. Then t˚ typically represents a kink, i.e ϕjptq is linear on two
intervals rt˚ ´ δ, t˚s and rt˚, t˚ ` δs but not their union. That means that the left and right
directional derivative of ϕjptq differ at t˚ so that neither ϕj is differentiable at t˚ “ 0 nor ϕ is
differentiable at x˚. Now, if t˚ “ 0 does not represent a kink in the sense above, it must belong
to the interior of a maximal interval rtlo, this Ă R on which ϕj is linear and, in fact, constant.
Otherwise t˚ “ 0 could not be a global minimizer. Because ϕ is assumed to have a bounded level
set, the interval rtlo, this must also be bounded. So its two endpoints represent global minimizers
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of the univariate function ϕj and thus the multi-variate ϕ, at which the former has a kink and
the latter is therefore not differentiable. If we have a geometrically isolated-local minimizer it
follows immediately that t˚ “ 0 must be a kink, which concludes the proof.

In general, a point x˚ which is coordinate minimal in that all univariate restrictions ϕjptq “
ϕpx˚ ` tejq are first order minimal need not be first order minimal for ϕpxq itself. This is true
even for piecewise linear ϕ, like for example the lemon squeezer described in [12]. However, there
is some hope that the special case of ANN, where the variables represent weights-coordinate min-
imality, might have some implications for the behavior of ϕ in the full space.

Of course, the observation that machine learning problems are not everywhere differentiable
is not new. However, it is often suggested that this nonsmoothness is only transitionary and does
not matter in the end, which we believe to be unduly optimistic, even if one uses a smooth loss
function. In the book [9] several classes and many individual examples of nonsmooth problems
are described and locally optimized by bundle and other general purpose nonsmooth optimiza-
tion methods.

The essential message of the above observations is that all global and even local minimizers of
multi-piecewise linear functions are nonsmooth. Theoretically, and with some luck, this problem
can be overcome by smoothing of the activation function. However, it seems rather difficult to
find the right smoothing scale such that the algorithm behavior is markedly improved without
the objective function and its minimizers being altered significantly. In the next chapter, we
pursue the strategy of accounting for the nonsmoothness and its combinatorial consequences
explicitly. Near a kink steepest descent and all other algorithms designed for smooth problems
are likely to chatter back and forth across the kink severely limiting their ability to move tan-
gentially along a valley towards a minimizer that also has directions with smooth growth of
second order. It was shown in [12] that under the Linear Independent Kink Qualification such
a so-called V´U decomposition always exists. The usual recipe for dealing with this chattering
or zig-zagging problem is to successively reduce the step-size at a suitable rate. Loosely speak-
ing, the stepsize, also known as learning rate, must be smaller than twice the local Lipschitz
constant, which is of course difficult to determine.

There is a fourth difficulty, namely that for all bounded χ and sufficiently large negative b the
prediction function fpχ;xq and its gradients with respect to all variables will vanish identically,
so that gradient based methods including stochastic variants can not move away at all. We
denote this phenomenon as the zero-plateau. In conclusion, we note that from a classical
optimization point of view of ANN training problems represent the worst of two worlds, namely
nonsmoothness and various singularities. In some other contexts these two properties can be
traded off against each other, but here they occur jointly in a generic fashion. This means that
the frequently presented convergence analyses [1],[2] for variants of steepest descent assuming
smoothness and strong convexity simply do not apply to ANNs with piecewise linear activation.
To deal with such problems we pursue the strategy of piecewise linearization described in the
next chapter.

3.2. Academic learning problems.

For computational purposes, we highlight two supervised learning tasks: classification and
regression. Each approach is presented by its respective academic learning problem (see, Chapter
2.1 to recall terminology).
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Classification: Handwritten-digits from MNIST database

Figure 4: On the left, there is the raw version of a sample of a hand-written seven from the
MNIST database in a 28 ˆ 28 pixel image. On the right, a real square matrix M28ˆ28. Each
entry corresponds to the color of each pixel in the left image.

The MNIST database provides images of isolated black and white handwritten digits from 0
to 9 [27]. There are in total 70000 images like Figure 4. The size of these images are normalized
and centered in a two-dimensional image (28 pixels in each direction). For each hand-written
digit, the feature χ belongs to the input space X “ r0, 1s784 that describes the unitary grayscale
of each pixel, and the correspondant label y P Y, a vector with discrete components represent-
ing.0 each digit category, i.e. the output space Y “ t0, 1, . . . , 8, 9u. This dataset comes already
split in three categories to develop each learning stage: the training sample D55000, the valida-
tion data D5000, and the test sample D10000.

The standard loss function for the multiclass classification is the indicator function defined
in Example 2.1

`pfpχ;xq, yq “ 1rfpχ;xq ‰ ys

where f is the parametrized prediction function. However, this loss function is not useful for
any optimizer since it is almost discontinuous everywhere. Therefore the optimizer should im-
plement a continuous surrogate function to measure the misclassification loss.

Regression: the bivariate Griewank function
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Figure 5: The bivariate Griewank function. The left image is the graph of c, formally written
as graphpcq “ tpχ, cpχqq : χ P X Ă R2u. The right one shows different level sets l of c taking
values ρ “ t0.25, 0.50, . . . , 2.00, 2.25u, i.e. lpcq “ tχ P X : cpχq “ ρu
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The Griewank function is a real valued mapping c : Rn Ñ R given by

cpχq “
n
ÿ

k“1

χ2
k

4000 ´

n
ź

k“1

cosp χk?
k
q ` 1 (27)

where n is the order of the function or the number of components that the vector χ “ pχ1, . . . , χnq
has (see, e.g [4]). The reader can verify that c P C2pRnq. For this problem, we use the l1 norm
as our loss function to measure the distance between the prediction values and the Griewank
function. In our experimental results, we study a high dimensiional case of this function.
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4. Successive Abs-Linear Global Optimization (SALGO).

First, let us generalize the abs-normal form in Definition 2.16 and the abs-linear form given
in (15) for any objective function in CdabspR

nq with d ě 1.

4.1. Generalized abs-normal form (GANF) and generalized abs-linear form
(GALF).

We have studied that Rectifier ANNs and ML objective functions are compositions of a
sequence of arithmetic operations, smooth intrinsic functions and the nonsmooth elemental
functions abs,min and max. Mathematically we can interpret such an evaluation procedure as
the generalized abs-normal form

minϕpxq ” λpx, z, vq s.t. z “ Λpx, z, vq and v “ abspzq (28)

where
λ : Rq`s`s ÞÑ R and Λ : Rq`s`s ÞÑ Rs

This is a slight generalization of the usual abs-normal form (see, subsection 2.2.1) where z does
not occur directly as arguments of ϕ. As usual, we must require that the matrices

M ”
BΛ

Bz
P Rsˆs and L ”

BΛ

Bv
P Rsˆs

are strictly lower triangle. That means we can compute for any x the piecewise smooth functions
zpxq and vpxq “ abspzpxqq which finally yields the objective

ϕpxq “ λpx, zpxq, vpxqq : Rq ÞÑ R

As a motivation for allowing z itself to occur as an argument of Λ and λ, it was observed in
[28] that encoding the maximum in the nonsymmetric form

maxpu, ũq “ u` 1
2 rz ` vs with z “ ũ´ u (29)

generates in a repeated application to compute maxima of vectors matrices M and L that are
quite sparse. In contrast the repeated application of the symmetric form

maxpu, ũq “ 1
2 ru` ũ` abspzqs with z “ ũ´ u (30)

gives us the matrix L in the standard form when M ” 0, i.e. v is not defined.

Given a code for evaluating (28), every AD tool for given 8x and 8z will be able to compute
the partitioned Jacobian as follows

BrΛ´ z, λs

Brx, z, vs
”

«

Z M ´ I L
aJ bJ cJ

ff

P Rps`1qˆpq`s`sq .

Hopefully, this can be done in sparse matrix formats so it does not matter that M , and especially
L may have many completely vanishing columns [29]. Therefore we obtain the piecewise linear
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model

z “ z̊ ` Zpx´ x̊q `Mpz ´ z̊q ` Lp|z| ´ |̊z|q

“ p̊z ´ Zx̊´Mz̊ ´ L|̊z|q
looooooooooooomooooooooooooon

“d̊

`Zx`Mz ` L|z|, (31)

∆ϕp 8x, x´ 8xq “ ϕ̊` aJpx´ x̊q ` bJ pz ´ z̊q ` cJp|z| ´ |̊z|q

“ pϕ̊´ aJx̊´ bJz̊ ´ cJ|̊z|q
loooooooooooooomoooooooooooooon

“µ̊

`aJx` bJz ` cJ|z| . (32)

where the constant shift µ̊ does not sometimes consider in the piecewise linear model ∆ϕ since
we are doing optimization. Note that due to the triangularity structure of M and L we can
unambiguously evaluate the piecewise linear functions zpxq and ∆ϕp 8x, x ´ 8xq. Besides, (31)
allows us to solve the equality constraint in the following manner

pI ´M ´ LΣqz “ d̊` Zx (33)

which implies
z “ pI ´M ´ LΣq´1pd̊` Zxq, (34)

if we assume that x belongs to a fixed polyhedron Pσ or σ has a fixed sign of 1. Therefore one
can uniquely represent every succesive abs-linearization of the original model when we replace
(34) in (32), i.e.

∆ϕp 8x, x´ 8xq “ 8µ`aJx`bJpI´M´LΣpzpxqqq´1p 8d`Zxqz`cJΣpI´M´LΣq´1p 8d`Zxqz. (35)

The advantages of these generalizations can be studied with the following trouble-maker example.

Example 4.1. For the composite piecewise differentiable function ϕ : Rs Ñ R given by

ϕpxq “ max
0ďiďs

paJi x´ βiq with ai P Rn, βi P R for 0 ď i ď s,

the sparsity of the L matrix between the GALF and ALF is notorious as shown in the Appendix
A.1.

It is of our interest to compute explicity the active gradient of the piecewise linearization for
optimization purposes. Therefore the gradient of the piecewise linear approximation for a fixed
σ is

gσ “ aJ ` bJpI ´M ´ LΣq´1Z ` cJpΣ´M ´ Lq´1Z. (36)

One can compare the similarity between the GALF and the ALF active gradients shown in (23).
In the next sections, we use the GANF and thus the GALF of ϕ to minimize it accordingly the
SALGO approach and its subsequent algorithms.

4.2. SALGO approach.

As we have discussed earlier, the ”nonsmoothness” of the ER leads to a ”house of horrors”
for optimizers such as Stochastic Gradient and Gradient Descent. Those observations lead us to
question whether the training could be improved. In this section, we propose our own approach
to deal with this optimization task and the subsequent house of horrors. We call it SALGO
which stands for Successive Abs-Linear Global Optimization.
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The aim of SALGO is to solve the optimization problem

min
xPΩ

ϕpxq. (37)

exploiting the objective function nonsmoothness. Let us recall the piecewise linearization
form and its uniform quadratic error w.r.t. the original model. This observation relies on the
inequality

ˇ

ˇϕpxq ´ ϕp̊xq ´∆ϕp̊x;x´ x̊q
ˇ

ˇ ď
γ
2 }x´ x̊}

2

where the piecewise linear approximation ∆ϕp̊x;x ´ x̊q and 8µ are defined in (32) and (35). In
this sense, we add up the quadratic error, which is from now on called proximal term, to the
piecewise linearization ∆ϕ to construct the following function form.

Definition 4.1 (Prox-linear form). The prox-linear form of a composite piecewise smooth func-
tion ϕ is given by

φp 8x,∆xq “ gJx` ν ` γ
2 }∆x}

2 (38)

where gJ is defined in (36) and

ν “ 8µ` bJpI ´M ´ LΣq´1 8d` cJΣpI ´M ´ LΣq´1 8d

The goal of the prox-linear form is to smooth the original model on each Pσ where piecewise
linearization was constructed. Since this procedure is possible in the whole decomposition of
the objective function domain, one can compute succesively as many abs-linearizations and thus
prox-linear forms as the optimization method requires to reach a global minimizer. We denote
xk the iterate in which the optimizers updates its search. Under this approach, we formulate
the following iterative procedure that describes SALGO in essence.

xk`1 “ xk ` argmin
∆x

!

∆ϕp 8x; ∆xq ` γk
2 }∆x}

2
)

“ xk ` argmin
∆x

 

φkp 8x; ∆xq
(

, (39)

where φk is identified by its constant proximal term γk. The right choice of γk will determine
if the minima of the novel approximation φk is close enough to the ones of ϕσ. We call this
procedure SALGO. The next question arises wheter the optimization strategy over the prox-
linear form is able to generate a finite sequence txkukPN that has a cluster point x˚ and all the
cluster points are Clarke stationary or even better. We attack this task with two different search
strategies: Mixed Integer Bilinear Optimization (MIBLOP), and Target Oriented Averaged
Search Trajectory (TOAST). Here MIBLOP is the only strategy that can guarantee a global
minimizer of the local model meanwhile TOAST is based on the empirical results.
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5. Optimization strategies of SALGO.

5.1. Mixed Integer Linear Optimization (MILOP).

The minimization of a function in abs-linear form can be written as the task

min aJx` bJz ` cJΣz s.t. z “ d` Zx`Mz ` LΣz and Σz ě 0 , (40)

where the elements σi P t´1, 1u of the diagonal matrix Σ “ diagpσq are binary variables. Equa-
tion (40) is a Mixed Integer Bilinear Optimization Problem (MIBLOP). It can be transformed
[30] into a Mixed Integer Linear Optimization (MILOP), provided we have a uniform bound γ
on the components of |z|. We may then even add a proximal term and get the MILOP

min
px,z,v,σqPRq,s,s,s

´

aJx` bJz ` cJh` γ
2 }x}

2
¯

s.t. z “ Zx`Mz ` Lh , (41)

´h ď z ď h and h` γpσ ´ eq ď z ď ´h` γpσ ` eq, (42)

which can be solved by very effective modern solvers like Gurobi.
However, there is the slight problem that for learning we actually want to minimize not with

respect to x but with respect to the coefficients

α “ pZ,M,L, J,N, Y q P Rpsˆq,sˆs,sˆs,mˆq,mˆs,mˆsq » Rspq`s´1q`mpq`2sq.

Whereas in general we have only multi-piecewise linearity w.r.t. x, we have noted that in the
single layer case with fixed weighting, this problem is also piecewise linear and it can be rewritten
as the mixed bilinear programming problem

min
x
ϕpxq “ 1

m

m
ÿ

k“1

uk s.t. zk “Wχk ` b, gk “
1
2p
Jpzk ` hkq ´ yk , (43)

µkgk “ uk ě 0 P R, and hk “ Σkzk ě 0 P Rn .

where the µk P t´1, 1u and the diagonal elements σk P t´1, 1us of the matrices Σk are binary
variables. The bilinear terms can be replaced in the usual fashion by the system of linear
inequalities for k “ 1 . . .m

´uk ď gk ď uk and uk ` δkpµk ´ 1q ď gk ď ´uk ` δkpµ` 1q P R ,

´hk ď zk ď hk and hk ` γkpσk ´ eq ď zk ď ´hk ` γkpσk ` eq P Rd .

where δk P R must be an upper bound on the gk P R and γk P Rs on all components of zk P Rs.
Here e represents the corresponding vector of ones. Explicitly, let us denote i P t1, . . . , su and
k P t1, . . . ,mu where s and m are the numbers of intermediate values and of training sample
points, respectively. Due to the equality constraints in (43), we obtain the upper bound γk,i for
each compontent of the vector zk.

zk,i ď }W
piq}8}χk}1 ` }b}8 “: γk,i (44)

Finally, considering γk as the vector of γk,i, we define the upper bound δk of the real number gk
as follows

gk ď }y}8 ` }p}1}γk}8 “: δk,i (45)

Preliminary results of this method were achieved using the AMPL interface (see, subsec-
tion B.1). We discuss the experimental implementation in section 6. Remarkly, in contrast
to the following heuristic approach, MILOP is guaranteed to locate global minimizer of the
piecewise linear model.
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5.2. Target Oriented Averaging Search Trajectory (TOAST).

As a second optimization method we consider the generalized descent proposed in [4]. But we
avoid that terminology in order to not invite association with the concept of generalized deriva-
tive. We interpret it like a search trajectory rather than a variant of steepest descent. Since
this search is oriented to reach a target value and defined by an average of the steepest descent
direction, we use the acronym TOAST referring to Target Oriented Averaging Search Trajectory.

First we introduce the mathematical derivation of TOAST from the calculus of variations.
Let us consider two distinct points y0, y1 contained in a simply connected compact set Ω Ă Rn,
and the set R of all rectifiable curves on Ω, i.e. continuous curves with finite length. Let
y P R such that it is parametrized over the nonnegative real-valued interval rτ0, τ1s. We denote
ypτ0q “ y0 and ypτ1q “ y1. We also assume that the real-valued objective function ϕ P C2pRnq.
Finally, we denote by

d ” min
vPΩ
pϕpvqq and D ” max

vPΩ
pϕpvqq,

lpyq the length of the curve y and ds its infinitesimal measure. For c P R such that c ă d,
we define the functional q : RÑ R as

qpyq “

ż y1

y0

ds

pϕpypτqq ´ cq
.

Then q is continuous and positive, and the inequality:

lpyq

pD ´ cq
ď qpyq ď

lpyq

pd´ cq

holds. Consequently, there exists an infimum

q0 “ inf
yPR

qpyq

and a minimizing sequence yj P R such that

q0 “ lim
jÑ8

qpyjq.

We aditionally normalize the independendent parameter τ such that for all yj we have
ds “ lpyjq ¨ dτ . In this sense, we can bound the length lpyjq as follows

q1 “ max
jPN

qpyjq ě qpyjq ě
lpyjq

pD ´ cq
, for all j.

Furthermore, yj satisfies the uniformly Lipschitz condition over τ , i.e.

}yjpτ `∆τq ´ yjpτq} ď

ż yjpτ`∆τq

yjpτq
ds ď lpyjq ¨∆τ ď ∆τ ¨ q1pD ´ cq.

Definition 5.1. A family of functions F is uniformly equicontinuous if

@y P R,@ε ą 0, Dδ ą 0 : }τ0 ´ τ1} ă δ ñ }ypτ0q ´ ypτ1q} ă ε

Theorem 5.2 (Arzela-Ascoli). Any uniformly bounded equicontinuous sequence of functions in
CpIq has a subsequence that converges uniformly.
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The Arzela-Ascoli theorem proves the existence of a limit curve x “ xpτq, which is continuous
with respect to τ , rectifiable, and almost everywhere differentiable. Let us assume that x is
second order continuously differentiable. To make the x independent of affine transformations,
we use an arbitrary invertible positive definite matrix H to redefine its infinitesimal length so
that

ds “ p 9xpτqqH´1 9xpτqq
1
2dτ, where 9xpτq ”

dxpτq

dτ

For 0 ď τ̃ ď τ ď 1, we then obtain

qpxq “

ż τ

0

p 9xJpτ̃qH´1 9xpτ̃qq
1
2

ϕpxpτ̃qq ´ c
dτ̃

Therefore the following variational necessary condition holds replacing F pτ̃ , xpτ̃q, 9xpτ̃qq “
p 9xJpτ̃qH´1 9xpτ̃qq0.5

ϕpxpτ̃qq´c .

Proposition 5.3 (DuBois-Reymond equality). If x P R is an extremal of the functional q, then
the following equality holds by first order variation:

F 9xpτ, xpτq, 9xpτqq “ C `

ż τ

0
Fxpτ̃ , xpτ̃q, 9xpτ̃qqdτ̃

where C P R is constant.

Because x is differentiable, the differential-integral equation below has a solution.

H´1 9x

pϕpxq ´ cqp 9xJH´1 9xq
1
2

“
H´1 9xp0q

pϕp0q ´ cqp 9xJ0 H´1 9x0q
1
2

´

ż τ

0

∇ϕpτ̃qp 9xpτ̃qJH´1 9xpτ̃qq
1
2

pϕpτ̃q ´ cq2
dτ̃

Remark 5.4. Here the subscripting of x and 9x means partial differentiation w.r.t those variables.
Also the functional F is given by

F pτ̃ , xpτ̃q, 9xpτ̃qq “
p 9xJpτ̃qH´1 9xpτ̃qq

1
2

ϕpxpτ̃qq ´ c
.

Then its partial derivatives are

BF

Bx
“ ´

p 9xJH´1 9xq´
1
2

pϕpxq ´ cq2
∇ϕpxq

BF

B 9x
“

H´1 9x

pϕpxq ´ cqp 9xJH´1 9xq
1
2

B2F

B 9xB 9x
“

1

pϕpxq ´ cqp 9xJH´1 9xq
1
2

˜

H´1 ´
H´1 9x 9xJH´1

9xJH´1 9x

¸

Because ds “ lpxqdτ “ p 9xJH´1 9xq
1
2dτ we find that

9x

pϕpxq ´ cqlpxq
“

9xp0q

pϕp0q ´ cqlpxq
´H

ż τ

0

∇ϕpxpτ̃qqlpxq
pϕpxpτ̃qq ´ cq2

dτ̃ . (46a)
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All functions on the right hand side are assumed to be differentiable. Therefore we obtain the
second order ordinary differential equation

:x

pϕpxq ´ cq
´

9x 9xJ∇ϕpxq
pϕpxq ´ cq2

“ ´
H ¨∇ϕpxq ¨ l2pxq
pϕpxq ´ cq2

. (46b)

Finally, with a change of variable, we set:

t “ plpxqq´1 ¨ τ, x1 ”
dx

dt
“ 9x ¨ plpx̂qq´1, x2 “

d2x

dt2
“ :x ¨ plpx̂qq´2.

This yields the equation

x2 “ ´pH´ x1x1Jq ∇ϕpxq
?pϕpxq ´ cq

Remark 5.5. Observe that B2F
B 9xB 9x is positive semidefinite so that the Legendre condition is always

satisfied.

Theorem 5.6 (Legendre’s condition). A necessary condition, for the functional

qpxq “

ż 1

0
F pt, xptq, 9xptqqdt, xp0q “ x0, xp1q “ x1

to have a minimum evaluated on the curve x ” xptq, is that the inequality

F 9x, 9x ľ 0

be satisfied at every point of the curve. In other words, F 9x, 9x ” Fx, 9xpt, xptq, 9xptqq is a square
matrix that must be positive semidefinite.

Thus no other additional condition on x is needed to satisfy the above minimal variational
condition for q. The search trajectory x is the solution of the second order differential equation.
We can define H “ I, i.e. the identity matrix in Mnˆn. So

x2ptq “ ´pI ´ x1x1Jptqq
∇ϕpxptqq
ϕpxptqq ´ c

, }x1p0q} “ 1 (47)

for an arbitrary initial condition pxp0q, 9xp0qq “ px0, 9x0q P RnˆRn. Aditionally, the unitary norm
of 9xptq is satisfied for all t ą 0.

Remark 5.7. Afterwards the derivatives of the solution xptq w.r.t the time t ą 0 will be denoted
by the dot notation.

Here the method parameter c is the target value that one wants to reach from above at every
specific stage of the optimization procedure. Besides, we define the target level as the closure of
the level set defined by c

BLcpϕq “ tx P Rn : x “ ϕ´1pcqu. (48)

so that the level set Lc “ tx P Rn : x ď ϕ´1pcqu is denoted as the target sub-level ϕ´1p´8, cq.
Let us denote by tc ă 8 the supremum of all t for which xptq is defined. Then the trajectory
must reach the target level Lc, i.e.

lim
tÑtc

xptq “ xptcq “ xc P ϕ
´1pcq (49)
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Otherwise the trajectrory may be infinite and never even come close to the target level.
As can be seen from (46a), the TOAST direction is given by an average of the steepest descent
direction of the objective function´∇ϕpxptqq weighted by the reciprocal of the difference between
the current evaluation ϕpxptqq and the real target value c. Actually, as long as the current
evaluation of ϕpxptqq is high above the target value, the reciprocal will be small and thus the
search direction will be more or less constant and hopefully ignore small local wiggles of the
objective function. Once ϕpxptqq gets closer to c, the adjustment of 9x towards the steepest
descent direction will be more drastic. Provided that the gradient does not vanish, 9x reduces to
the steepest descent direction when ϕpxq ´ c tends to zero, i.e.

lim
tÑtc

9x “ ´
∇ϕpxcq
}∇ϕpxcq}

(50)

When tc ă 8 we can define the extended system

maxr0, ϕpxq ´ cs:x` pI ´ 9x 9xJq∇ϕpxq “ 0 (51)

for any initial point mentioned above (see, [4]).

Once the target value has been reached and if it is not satisfactory, it can be lowered to a
more ambitious level. For the ANN training, since the ER ϕ ě 0, we wish to get down as close
to zero as possible. One may find the target value to be unattainable during the minimization
calculation. Then one has to move the target value up towards the values that have already
been attained during the current run. This adjustment of c is the main heuristic aspect of the
proposed method and will be discussed later.

Most observations described above are still valid in the equation (47) when we add a new
parameter called the sensitivity parameter e ą 0, namely

:xptq “ ´epI ´ 9x 9xJptqq
∇ϕpxptqq
ϕpxptqq ´ c

, } 9xp0q} “ 1, (52)

where its integrated equivalent is

9xptq
“

ϕpxptqq ´ c
‰e “

9x0

rϕ0 ´ cs
e ´ e

ż t

0

∇ϕpxpτqq
“

ϕpxpτqq ´ c
‰e`1dτ. (53)

In the original paper it was suggested that e should be selected as the reciprocal of the growth
rate of ϕpxq ´ ϕp̊xq in the catchments of its local minimizers x̊ such that

ϕpxq ´ ϕp̊xq „ }x´ x̊}1{e .

Hence we can think of 1{e as an average degree of positive homogeneity. This would suggest the
choice e “ 1

2 for essentially quadratic and otherwise smooth functions, and e “ 1 for functions
with linear growth. We apply now this result when the objective function is piecewise smooth
functions so that it can be abs-linearized.

5.2.1. Generalization to piecewise smooth functions.

Under conditions of machine learning the smoothness assumption on ϕ (see, [2]) is only likely
to be satisfied on the generally nonlinear coincidence sets Mσ defined by the GANF of ϕ (see,
Definition 2.17). The corresponding theoretical observations given in the last section need to be
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spliced together. This would mean the implementation of the second-order differential equation
(47) over each Mσ with ϕ P CdabspR

nq and d ě 2. We carry out this task taking advantage of
the ϕ nonsmoothness through its successive abs-linearization on each Mσ.

This approach is based on the approximation of the gradient information of the original
model ER by its GALF and, consequently, by its prox-linear form φ (as shown in (24)). This
implies that the gradient of the right hand side satisfies that ∇φ P LabspR

n,Rnq. Because Rn is

a finite dimensional space, we obtain that ∇φ P C8,1
abs
pRn,Rnq. So each smooth piece of the prox-

linear form in (38) is defined over each coincidence polyhedral set Mσ “ Pσ which are defined by
different proximal terms γk and reference points 8x. Therefore we use the TOAST formulation on
the prox-linear form φ of the objective function ϕ. Here the sensitivity parameter e “ 1 based on
the positive homogeneity of the abs-linearization holds when x is close enough to the reference
point 8x. At this homogeneity neighborhood, the proximal term can be closed enough to zero so
that the 2-degree homogeneity of }∆x}2 would not affect the following characterization of the
prox-linear form φp 8x;xq ” ∆ϕp 8x,∆xq ` γ

2 }∆x}
2 :

φp 8x` ρpx´ 8xqq ´ φp 8xq “ ρ
“

φpxq ´ φp 8xq
‰

for ρ ą 0 (54)

and
φpxq ´ φp 8xq „ }x´ 8x}. (55)

Hopefully this characterization holds when the trajectory arrives at some boundary of Pσ where
the piecewise linearization term was constructed. Here the distance rptq “ }xptq ´ x̊} satisfies

9rptqrptq

rφpxptqq ´ cse
“

9r0r0

rφ0 ´ cse
`

ż t

0

p1´ eqrφpxpτqq ´ φp̊xqs ` pφp̊xq ´ cq

rφpxpτq ´ cse`1
dτ . (56)

Since e “ 1 it is clear that the right hand side is monotonically falling or growing if the constant
φp̊xq´ c is negative or positive, respectively. Thus we get the following result for any trajectory
that moves at some time t towards x̊ in that 9xptqJp 8x ´ x0q “ 2 9rptqrptq ă 0. Without loss of
generality we may assume that this happens at the initial time t “ 0.

Proposition 5.8 (convergence/divergence in homogeneous case).
Suppose (55) holds almost everywhere along the trajectory xptq defined by (52) with e “ 1 and
9r0 ă 0. Then xptq must approach the target sub-level φ´1p´8, cq if φp̊xq is desirable, i.e. at or
below the target value c. If φp̊xq is undesirable, i.e. above the target value c, then the trajectory
either reaches the target value somewhere else or rptq “ }xptq} diverges monotonically towards
infinity.

Proof. First let us consider the desirable case φp̊xq ď c. If the target level was not approached
9rptq would by (56) be negative and bounded away from zero which leads to a contradiction
since rptq cannot become negative. Hence we are left with the undesirable case φp̊xq ą c. If
the feasible set is not approached then the trajectory xptq is well defined for all t ě 0. If rptq
was bounded above the integral on the right hand side of (56) would go to plus infinity. Hence
9rptqrptq in the numerator of the left hand side would also have to go to infinity, which is a
contradiction. Hence rptq must be unbounded which means that its derivative 9rptq at some t1
and thus by (56) all subsequent t ě t1 must be positive. This constitutes together with the
unboundedness monotonic divergence towards infinity, which completes the proof.

The last implies that, once the search trajectory xptq enters a ball of radius r0 about some x̊
in which φpxq is homogeneous with respect to x̊ in the sense of (54), xptq does reach the target
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level if φp̊xq ď c and otherwise it either leaves the ball altogether or finds another point in the
ball below the target value. The last situation cannot arise if x̊ is a local minimizer of φ. Hence
we see that local, homogeneous minimizers attract the trajectory if they are desirable and repulse
it if they are undesirable, i.e. above the target level. With and without the local minimality of
x̊ we have excluded the highly undesirable possibility of the trajectory circling within the ball
forever without reaching the target. Of course this may still happen when φ does not satisfy the
rather stringent homogeneity assumption (54). Nevertheless, since the prox-linear form is posi-
tive homogenous one can be optimistic that the selective behavior of the trajectory will work in
many situations. The proximal term will effectively limit the search region. Since e “ 1 makes
the trajectory turn back towards x0 when the proximal term dominates the piecewise linear
components. Thus, baring severe degeneracies, the TOAST philosophy can still be applied in
the piecewise-smooth case. Of course, the finitely many transitions must be handled numerically.

Finally, the prox-linear case also gives an analytical observation about the target level to be
reached. Since the equality φpxq “ c, i.e.

gJx` ν ` γ
2 }x´ 8x}2 “ c,

must hold, where 8x is the reference point, we multiply by 2
γ and reorder the terms to obtain

xJpx` 2
γ g ´ 2 8xq “ 2

γ pc´ νq ´ } 8x}2.

Adding up } 1
γ g ´ 8x}2 in both sides,

xJpx` 2
γ g ´ 2 8xq ` } 1

γ g ´ 8x}2 “ 2
γ pc´ νq ´ } 8x}2 ` } 1

γ g ´ 8x}2.

The equality above is equivalent to

}x` 1
γ g ´ 8x}2 “ 2

γ pc´ νq ´ } 8x}2 ` } 1
γ g ´ 8x}2. (57)

Thus the target level is a circle with radius equal to the squared root of the left hand side in
(57). Notice that it can be empty if the root is imaginary.

Figure 6: TOAST graph defined by the prox-linear form φ : R2 Ñ R starting at x0 and ending
at x˚. Here x˚ can be a local minimum above the target value c or a point of the target level
ϕ´1pcq. The disjunctive situation relies on the condition of desirability of ϕp 8xq w.r.t. c.
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5.2.2. Numerical integration of TOAST given the prox-linear form.

Let us implement the numerical integrator of Mathematica 11.3 to solve our initial value
problem (47) w.r.t. the prox-linear form (see, 97) for the two-dimensional case, i.e.

φpx1, x2q “ rg1, g2s
Jpx1, x2q ` ν `

γ
2 px

2
1 ` x

2
2q,

with an arbitrary selection of g, ν, c and x denoted by px1, x2q P R2. So the initial value problem
is rewritten as the following system

:x1 “ ´p 1
hqp 9x2

2pg1 ` γx1q ´ 9x1 9x2pg2 ` γx2qq (58)

:x2 “ ´p 1
hqp 9x2

1pg2 ` γx2q ´ 9x1 9x2pg1 ` γx1qq (59)

for the initial condition pxp0q, 9xp0qq “ px0, 9x0q, where h ” hpx1, x2q “ φpx1, x2q ´ c.

Figure 7: Here g “ r0, 0s , γ “ 1 and b ´ c “ ´1. From left to right the initial conditions are:

px1p0q, x2p0qq “ p´
?

2
2 ´ 5.5,

?
2

2 ´ 3.5q, p´
?

2
2 ` 3.5,

?
2

2 ´ 3.01q, p´
?

2
2 ` 2,

?
2

2 ` 2q

The figures above show no problems w.r.t. the trajectory and its goal to reach the target
level. We can say that the selection of the initial conditions allows the trajectory to start in
the homogeneity neighborhood. Further, since the minimum of this prox-linear form is given
by γpx1, x2q “ p0, 0q, then the origin is its actual minimizer. Since x˚ “ p0, 0q is desirable, i.e.
x˚ ď ϕ´1pcq, the numerical simulation of the trajectory satisfies the convergence proposition
described in the last subsection. Indeed, the results suggest that xptq can be circular segments.

Out[ ]= Out[ ]=

Out[ ]=

Figure 8: Here g “ p2, 5q, ν “ 8, c “ 0.01 and γ “ 1. From left to right the initial conditions
are: px1p0q, x2p0qq “ p4, 10q, p4, 10q, p4,´10q
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Unlike the last prox-linear form, we obtain with a nonzero g more difficulties to recognize.
Here the minimum is given by x˚ “ ´g which is desirable as the right hand side in (57) is 13.
However, this would imply a contradiction between the first two results and the last one. In this
case, the numerical integration seems worthless as their initial conditions are symmetric w.r.t.
x1-axis. This symmetry would suggest that the homogeinity neighborhood includes both initial
conditions, which implies that the trajectory should converge to the target level.

Theoretically, the cases mentioned in the convergence proposition are studied further in [4].
As we will see in the following subsection the exact solutions are circle trajectories so that the
numerical integration results appear worthless. This conviction is due to the failing on simple
prox-linear formulation. So far we just assumed global smoothness in the search space which is
not our requierement for the successive prox-linear forms.

Remark 5.9. The lilac contour is the circular target level given in (57). All the experiments
have the initial tangent 9x0 “ p0.8, 0.6q, which has unit norm.

5.2.3. Exact solution of TOAST for the prox-linear case.

In a first stage, we construct TOAST for the novel approximation of the piecewise smooth real
valued function ϕ. Since the piecewise linear model ∆ϕp 8x,∆xq P C1,1

abs
pRnq, then its prox-linear

form φ P C8,1
abs
pRnq due to the proximal term γ

2 }∆x}
2. In this sense, we satisfy the assumption

of smoothness in TOAST formulation in its polyhedral domain. The following theorem gives
the exact form of the search trajectory saying that the prox-linear form is our new objective
function.

Theorem 5.10. With x0, 9x0 and φpxq is defined by the prox-linear form as shown in (38), and
a constant target value c ă φ0, the solution of the initial-value problem in (47) is given by the
circle segment

xptq “ x0 `
sinpωtq
ω 9x0 `

1´cospωtq
ω2 :x0 (60)

where
:x0 “ ´

1
h0
pg ` γx0 ´ g

J 9x0 9x0 ´ γ 9x0x0 9x0q (61)

and
hpxq “ φpxq ´ c and ω “ }:x0} (62)

Proof. We claim that the ODE

h:x “ ´g ´ γx` 9xJg 9x` γp 9xJxq 9x (63)

has solution with formula shown in (60). First, the ansatz with trigonometric form holds the
initial conditions

9xptq “ cospωtq 9x0 `
sinpωtq
ω :x0, 9xp0q “ 9x0, (64)

:xptq “ cospωtq:x0 ´ ω sinpωtq 9x0, :xp0q “ :x0. (65)

One can also verify the orthogonality between the initial tangent and the curvature of the
trajectory xptq

:xJ0 9x0 “ 0 (66)

from the assumption on :x0 (see, (61)).
This assumption additionally implies that

ω2h2
0 “ ´pγx

J
0 9x0 ` g

J 9x0q
2 ` }g}22 ` γ

2}x0}
2
2 ` 2γgJx0 (67)
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and
´ ω2h0 “ gJ:x` γxJ0 :x0. (68)

Now we manipulate the right hand side of the equality in (63). Using (65) and (66), the term
9xJg 9x is rewritten as

9xJg 9x “
´

sin2pωtq
ω2 gJ:x0 `

cospωtq sinpωtq
ω gJ 9x0

¯

:x0 `

´

sinpωtq cospωtq
ω gJ:x0 ` cos2pωtqgJ 9x0

¯

9x0. (69)

The same replacement in 9x but in γ 9xJx 9x abd using (67) to obtain

γ 9xJx 9x “ γ
´

´p1´cospωtqq`sin2pωtq
ω2 :xJ0 x0 `

sinpωtq cospωtq
ω 9xJ0 x0 `

sin2pωtq
ω2

¯

:x0

`γ
´

sinpωtq cospωtq
ω2 :xJ0 x0 ` cos2pωtq 9xJ0 x0 ´

sinpωtqp1´cospωtqq
ω

¯

9x0.
(70)

Now the left hand side in (63) is equivalent to

h:x “ pgJx` ν ´ c`
γ

2
}x}22qpcospωtq:x0 ´ ω sinpωtq 9x0q (71)

where
}x}22 “ }x0}

2
2 ` 2

´

1´cospωtq
ω2 `

sinpωtq
ω xJ0 9x0 `

1´cospωtq
ω2 xJ0 :x0

¯

. (72)

However, (71) and (72) imply that

h:x “
´

h0 cospωtq ` sinpωtq cospωtq
ω gtop 9x0 `

p1´cospωtqq cospωtq
ω2 gJ:x0

¯

:x0

´

´

h0ω sinpωtq ` sin2pωtqgJ 9x0 `
sinpωtqp1´cospωtqq

ω gJ:x0

¯

9x0

`γ
´

p1´cospωtqq cospωtq
ω2 `

sinpωtq cospωtq
ω xJ0 9x0 `

p1´cospωtqq cospωtq
ω2 xJ0 :x0

¯

:x0

´γ
´

p1´cospωtq sinpωtqq
ω ` sin2pωtqxJ0 9x0 `

sinpωtqp1´cospωtqq
ω xJ0 :x0

¯

9x0.

(73)

From (69),(70),(73) we simplify and obtain the following equality for (63)

´g ´ γx0 “´ γ
´

1´cospωtq
ω2 xJ0 :x0

¯

:x0 ´ γ
´

xJ0 :x0 `
sinpωtq
ω xJ0 :x0

¯

9x0

`

´

h0 cospωtq ´ 1´cospωtq
ω2 gJ:x0

¯

:x0 ´

´

h0ω sinpωtq ` gT 9x0 `
sinpωtq
ω gJ:x0

¯

9x0.
(74)

By assumption over :x0 in (61), the equality above turns to be

h0:x0 “´ γ
´

1´cospωtq
ω2 xJ0 :x0

¯

:x0 ´ γ
´

sinpωtq
ω xJ0 :x0

¯

9x0

`

´

h0 cospωtq ´ 1´cospωtq
ω2 gJ:x0

¯

:x0 ´

´

h0ω sinpωtq ` sinpωtq
ω gJ:x0

¯

9x0.
(75)

Reordering and dividing by h0,

p1´cospωtqq:x0 “ ´ω sinpωtq 9x0´

´

1´cospωtq
ω2h0

gJ:x0 ` γ
1´cospωtq
ω2h0

xJ0 :x0

¯

:x0´

´

sinpωtq
ωh0

gJ:x0 ` γ
sinpωtq
ωh0

xJ0 :x0

¯

9x0

(76)
Using (68), the equality (76) is equivalent to

p1´ cospωtqq:x0 “ ´ω sinpωtq 9x0 ` p1´ cospωtqq:x0 ` ω sinpωtq 9x0 ô
ÝÑ
0 “

ÝÑ
0 (77)

In other words, for any initial conditon px0, 9x0q, (76) is satisfied by our ansatz. Thus our
trigonometric solution solves the initial-value problem.
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The difficult situations arise: when we hit two or more faces at the same time, i.e. two
or more zipxptqq want ot change sign at the same time; or when the trajectory has transitions
between polyhedra with a zero transition angle to the common polyhedral boundary. Though
our preliminary formulation just assume any of these cases do not occur. Under these conditions
called unique transversality, we ratify the uniqueness of TOAST. Also one can prove that the
union of each piece of the trajectory is C8,1

abs
pRnq. The latter is denoted by tφku

Kă8
k“1 and called

the prox-abs-linear form.

A consequence of the proposition is the circle-shaped search trajectory given by its constant
distant with respect to the following center

}xptq ´
´

x0 ´
1
ω2 :x0

¯

} “
1

ω
. (78)

Here xptq takes itself t “ 2π
ω units to complete a loop. Notice that if x0 is colinear to the gradient

g ` γx0, then ω, :x0 vanish and the circle degenerates to the straight line xptq “ x0 ` t 9x0.
Otherwise the function value along the circle trajectory is given by

ϕpxptqq “ ϕ0 `
sinpωtq
ω

”

pg ` γx0q
J 9x0

ı

`
1´cospωtq

ω2

”

γ ´ ω2pϕ0 ´ cq
ı

(79)

where the trigonometric quotients on the right hand side reduce to t and 1
2 t

2 in the straightline
case ω2 “ 0.

5.3. SALGO-TOAST algorithm.

We call SALGO-TOAST algorithm to the implementation of SALGO approach described
in (39) and the search strategy proposed in TOAST for the prox-linear case. Each task is
formulated in the outer and inner loop of the algorithm. A remarkable fact of its inner loop
is that we should generate a strategy to compute the most nearby polyhedra boundary that
TOAST intersects under the suitable conditions mentioned at the end of the last subsection.
The following pseudo code describes the two loops of the algorithm:

1. Form piecewise linearization ∆ϕ of objective ϕ at the current iterate x̊ and estimate the
proximal coefficient γ, set x0 “ x̊,

2. Set the initial tangent 9x0 and σ “ sgnpzpx0qq.

3. Compute and follow circular segment xptq in Pσ.

4. Determine minimal t˚ where ϕpxpt˚qq “ c or x˚ “ xpt‹q lies on the boundary of Pσ with
some Pσ̃.

5. If ϕpx˚q ď c, lower c or go to step p1q with x̊ “ x˚ or terminate.

6. Else, set x0 “ x˚, 9x0 “ 9xpt˚q, σ “ σ̃ and continue with step (3).

Step (1) represent the successive computation of the prox- linear forms which result in the prox-
abs-linear form tφku

Kă8
k“1 on its union. If the starting point x0 lies in the interior of a polyhedron

and one chooses any target value c, the resulting circle segment will usually leave the polyhedron
unless it reaches the target level or stays inside Pσ completing the circle. In this section we will
address the problem of distinguishing these three cases in step p5q and in particular computing
the value of t for which the circle leaves the current polyhedron. This procedure is called the
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inner loop of the TOAST strategy.

Under the assumption of Theorem 5.10 with Σ “ diagpσq definite so that Σ “ Σ´1, we know
that xptq P Pσ exactly as long as the s components of

zptq “ d` Zxptq `Mzptq ` LΣzptq ðñ zptq “ pI ´M ´ LΣq´1pd` Zpxptqq

do not change their sign. Substituting (60) for xptq and multiplying by Σ we get

Σzptq “ z̄ ` ẑ sinpωtq
ω ` z̃ p1´cospωtqq

ω2 (80)

“ z̄ ` tẑ ` 1
2 t

2z̃ `Opω2t3q “ z̄ ` tẑ `Opωt2q (81)

ě z̄ ´ t|ẑ| ` 1
2 t

2 minp0, z̃q (82)

where

z̄ “ pΣ´MΣ´ Lq´1pd` Zx0q ě 0 ,

ẑ “

´

Σ´MΣ´ Lq´1pZ 9x0

¯

,

z̃ “

´

Σ´MΣ´ Lq´1pZ:x0

¯

“ Opωq.

In principle we now have to calculate for each i “ 1 . . . s the bound

ti “ supt0 ď t : σiziptq ě 0u P r0,8s (83)

so that σiziptq is nonnegative on the interval r0, tis i “ 1 . . . s. Then we obtain the limiting step
size as the minimum

t˚ “ ti˚ “ min
0ďiďs

ti P r0,8s .

where we have included the value t0 at which the target c is or would be reached as discussed
in the previous subsection. Notice that the trajectory must really leave Pσ and cannot just tan-
gentially graze the boundary. In that case σizi˚ptq would stay nonnegative in the neighborhood
of t˚ so that ti˚ would be bigger than t˚ in contradiction to its definition.

Theoretically t˚ can be infinite when ω “ 0 or satisfy the following equalities

ti “

$

’

’

&

’

’

%

´z̄i{ẑi if σiz̄i ą 0 ą σiẑi

0 if σiz̄i “ 0 ą σiẑi

8 if σiz̄i “ 0 ď σiẑi

.

If ω ą 0 and t˚ ě 2π{ω the full circle is contained in the current polyhedron. That can only
happen if we start in the interior rather than entering transversally. In any case the trajectory
must then circle around the unconstrained minimizer

x˚ “ ´g{γ with ϕpx˚q “ ϕ0 ´
1

2γ }g ` γx0}
2 “ µ´ 1

2γ }g}
2. (84)

Even though this local minimizer must lie above the target level it would again seem natural to
go to it and restart with a new search direction and possibly lower target level.

To compute the exit value t˚ defined in (83) we need to solve a sequence of trigonometric
equations starting with (79) and continuing with (80). The current estimate t̃˚ can be lowered by
each new ti but this needs only computed at all if the lower bound (81) is negative at the current
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t̃˚. In practice this means that the following somewhat expensive solution of the trigonometric
equations is only applied very rarely.

The exact solution τi of the equation zipτ{ωq “ 0 is the nonnegative root of the equation

0 “
pz̄i ` z̃iq
b

ẑ2
i ` z̃

2
i

`
pẑi sinpτiqq
b

ẑ2
i ` z̃

2
i

´
pz̃i cospτiqq
b

ẑ2
i ` z̃

2
i

which is equivalent to

γi ”
pz̄i ` z̃iq
b

ẑ2
i ` z̃

2
i

“ cospτi ` δiq

where δi P p´π, πs is uniquely defined by

sinpδiq “
ẑi

b

ẑ2
i ` z̃

2
i

and cospδiq “
z̃i

b

ẑ2
i ` z̃

2
i

.

In the C math library this angle can be computed directly as δi “ atan2pẑi, z̃iq. There exists a
first positive root τi if and only if |γi| ď 1. Then we can compute

τi “ τ̃i ´ δi with τ̃ “ arccospγiq P r0, πs .

To actually obtain the smallest positive τi we may have to make some adjustments. Because the
cosine is an even function, the only other solution in r´π, πs is given by the smaller τi “ ´δi´ τ̃i,
which may still be greater than δi. On the other hand the next larger solution is given by
τi “ 2π ´ τ̃i ´ δi. In other words we have to take τi as the first positive value of the ordered
sequence

´δi ´ τ̃i ď τ̃i ´ δi ď 2π ´ τ̃i ´ δi .

Hence to check out the first positive root τi of zipτ{ωq “ 0 we have to evaluate one square root
and two inverse trigonometric functions, a considerable amount of work, which rarely needs to
be performed.

We also have to remember the i˚ representing the last index i P t0 . . . su for which the
minimal value τ̃˚ was decremented to τ˚, which means that the switching variable zi˚ and thus
σi˚ changes sign in the transition to the neighboring polyhedron. The corresponding exit time
is of course given by t˚ “ τ˚{ω. We may then switch into the next polyhedron Pσ defined by
σ “ σ ´ 2ei˚σi˚ . Even if τ˚ is attained at several indices the new polyhedron will be different
and resetting t to zero we can progress to the new starting point

x0 “ x0 `
`

:x0 ` ω sinpτ˚q 9x0 ´ cospτ˚q:x0

˘

M

ω2

9x0 “ cospτ˚q 9x0 ` sinpτ˚q:x0{ω .

Moreover, we have to update the absolute term ν and the gradient g according to the formulae
(32) and (36). Note that the new Σ “ diagpσq differs from its previous value only in the sign of
one of its diagonal elements so that we have a rank-one change that is extremely sparse. Hence
ν and g can be updated cheaply using low rank linear algebra techniques. After that :x0 and its
norm ω can be computed according to the formula (47). Notice that the sequential computing
of g through the (generalized)abs-linear form is equivalent to the backpropation algorithm [31].
The big difference is the consideration and procedures after its computation like the construction
of the prox-abs-linear form and its optimization. Also, the computational cost of g is the same
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as the function evaluation of the ER when its dimensionality and the intermediate (or switching)
values satisfy certain relation described in [29].

Note that all computations are at most of order pn`sq2, whereas the local minimizer SALMIN
involves matrix factorizations with a computational cost of order pn ` sq3. On the other hand
SALGO is strongly dependent on the Euclidean norm and thus significantly effected by variable
rescalings or more general linear transformations. Via the proximal term γ

2 }x}
2 the current

version of SALMIN is also effected and furthermore the pivot selection is like in any active set
type method scaling dependent. Fortunately, the weights and shifts in a neural network seem
to have a natural and quite homogeneous scaling.
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6. Experimental Results.

6.1. TOAST path.

The next experiment shows how TOAST is generated by SALGO-TOAST algorithm for the
training of the prototypical two-dimensional Rectifier ANN described in (9). As the parameter
space is R2, it is possible to plot the ER surface. Here the loss function is the l1-norm. That is
the sum of the absolute discrepency values between the predictions and the labels of the training
sample.

At each iteration the algorithm produces an update of the parameters in which the predictor
evaluates. Thus SALGO-TOAST algorithm produces a sequence of iteratives. Along each
evaluation, a path over the surface is traced according to the TOAST circle segments (see,
(79)). The TOAST capacity of searching is notorious as the path ”climbs” or ”falls” in order
to look for the locally minimal value of the prox-abs-linear form. We should recall that each
iterate depends on the imposed target value c of search.

Figure 9: Nonlinear regression of the univariate Griewank function. Here the training sample
is DTRAIN “ pp´1.33005,´1.1395q, p1.39886,´0.016524qq or just univariate Griewank function
evaluations.

The starting point is located at the forth quadrant of the Cartesian plane. There the ob-
jective function is evaluated and the target value is set to that evaluation. This first target
is reached in one steepest descent step still within the initial polyhedron. Again the target is
halved so the search continues till the edge of the zero-plateau. From there the trajectory reaches
a point closed to a corner of intersection of polyhedra. Hopefully the trajectory would not be
affected and still holding the unique transversality condition. The outcome over this plateau is
a circle segment. However, our drawing tool connects the two iterates by a straight line. The
next iterates come close to the global minimizer but passed it by, due to the ambitious target
level imposed by the target value. The latter means that the target is unachievable because
it is empty or the other cases analyzed in Proposition 5.8. After some iterates, the trajectory
leaves the vicinity of the global minimizer and climbs up a hill until it enters into the neighbor
valley. There it cannot find lower values of the last lowest one reached. Finally it returns in a
meandering fashion towards the vicinity of the global minimizer.
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This behavior shows clearly that our successive halving strategy needs modification so that
the target is gradually moved upwards when it is not achievable over a long stretch of the
search trajectory. Also the ER surface describes consistently the house of horrors of the learning
problem (see, section 3.1).

6.2. Regression of Griewank function.

We simply minimize the averaged losses |fpw;xq ´ ypxq| defined in (26) for the Griewank
function [4]

y “ cpχq “ 1`
1

40000

n
ÿ

k“1

χ2
k ´

n
ź

k“1

cos

ˆ

χk
?
k

˙

over m different sample points χ P Rn chosen uniformly at random in the cube r´8, 8sn. The
results reported are for n “ 4, the number of nodes d “ 10 and m “ 20 sample points. A
comparison is done among the optimizers based on steepest descent (SD), stochastic gradient
(SG), SALGO-TOAST algorithm, and MIBLOP. The next figures represent numerical results
showing the ER evaluations with the same initial parameter setup.

Figure 10: Nonlinear regression of the forth´th order Griewank function through steepest de-
scent and Stochastic Gradient.

Figure 11: SALGO-TOAST implementation

In figures 10(a), 10(b), 11 we let TOAST and steepest descent run for a 1000 steps and
stochastic gradient for 20000. Both steepest descent and stochastic gradient were run with a
constant stepsize, which clearly is supoptimal. In Figure 10(a), the steepest descent method
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got stuck after some 150 steps, oscillating between values of about 0.038 and 0.06. The stepsize
was chosen as 0.003 also for stochastic gradient. The latter method reaches its lowest values of
about 0.006 after about 10000 steps. TOAST reaches a lower value of about 0.002 at the end of
the 1000 steps, when it still is going down. The horizontal lines show the target levels obtained
by halving the target value reached. It is noteworthy that after the later halvings the TOAST
trajectory does some significant hill climbing to eventually reach the lower values required by
the new target. In this sense we have a true global optimization method.

Figure 12: Decimal digits gained by four methods on single layer regression problem.

Now we compare these methods with MILOP strategy. Its results are given by 220 binary
variables and equations, 484 real variables, and 880 equality constraints. Larger choices of n, d
and m can be explore for our AMPL model using the solver Gurobi via the NEOS server. The
good news is that the MILOP system was solved exactly with an objective value of zero so
that the regression problem reduced actually to an interpolation problem. The bad news is
that Gurobi reached this result by solving 2529 branch and bound nodes using a total number
of 95309 Simplex iterations. Though a direct complexity comparison appears difficult, it seems
certain that each of them is much more costly than evaluating the empirical risk and its gradient
by back propagation. That is the cost of each steepest descent iteration of which we allowed
10000. We allowed the same number of iterations to TOAST, whose steps are a little more
costly than those of steepest descent. Each step of stochastic gradient costs about one m-th of
the cost for steepest descent. Because the latter we allowed a total of 20000 iterations for SG.
At every 200-th iteration of SG we evaluated and plotted the full empirical risk and computed
the minimum of all these values over the trajectory. For the other methods we plotted every
tenth value but took the minimal value over all iterations (see, Figure 12). The numbers in the
second and the third row of the following table give the minimal value and the iteration counter
at which it was achieved, respectively.

method TOAST MILOP SD SG

minvalue 0.0000006 0.0000000 0.069400 0.0017503
iteration 9999 195309 7036 189400

Here the stepsize for SG and GD are anymore constant. SD and SG were run with the step
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sizes given respectively by 0.35 and 0.01 divided by the square root of the iterations count. The
vertical axis in Figure 12 represents the decimal logarithm of the ratio between the current and
the initial empirical risk. As one can see the coordinate search gets stuck in the neighborhood
of a local minimizer after some 3000 iterations. Except for Gurobi TOAST achieved the lowest
value of 6 10´6, which involved halving the target about 19 times. Every time the trajectory
picks up speed and goes uphill for a while before dropping down to the desired lower value.
The average rate of convergence appear to be linear, i.e. what in machine learning is sometimes
called exponential. Steepest descent and stochastic gradient appear to get stuck or at least slow
down near a local minimizer or saddle point. Their performance most probably can be improved
by a more sophisticated step size selection heuristic.
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7. Conclusions.

The advantages of SALGO-TOAST algorithm are the following. The construction of the
Abs-Normal Form of the ER is not a difficulty. Our code already defines the prox-linear form
of the ER. Our algorithm also can train an ANN with any architecture, that is, an arbitrary
number of neurons and synapses. Unlike steepest descent, our alogrithms compute by itself the
stepsize of the optimizer. This step size is given by TOAST length in each polyhedron where
the approximation of the ER is smooth. Another advatange is that stopping criterium of the
training is given by the target level imposed. The user can define a targeting strategy and a
bound of search since the ER minima are nonnegative. For instance, we show results using the
half of the initial ER and halving it as many times as it can be reached. Our stop criteria is
defined by the user as an arbitrary tolerance given by the difference between the lowest minimum
reached and the last target level.
Further improvements concern partially the linear algebra implemmentation. For example, the
fact that at each polyhedral boundary the weight matrices undergo only a rank one change can
be used to reduce the linear algebra cost per step by a factor equal to the feature dimension.
That is still higher than the cost of stochastic gradient by a factor equal to the average layer
size.
So far we have applied TOAST only to formulations with an l1-norm loss function, which intro-
duces a lot of nonsmoothness. In fact the large majority of the polyhedral boundaries crossed
were generated by sign changes in the difference fpχ;xq´y. Therefore one might expect a better
performance of TOAST when the loss is quantified by one of the smooth alternatives.
Another aspect that requires further development is the strategy for adjusting the target level
c. The simple halving strategy applied so far leads in some cases to an overly ambitious target
just below the actual global minimizer and thus an infinitely long search trajectory.
Of course, our simple minded scalar implementation must be vectorized and optimized for par-
allel architectures and Graphical Processing Un its. Only then a meaningful comparison with
steepest descent and stochastic gradient as implemented in such packages as TensorFlow and
PyTorch will be possible. We have already verified the applicability of TOAST to the MNIST
dataset.
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Appendices

A. Further analysis.

A.1. Advantages of the GANF/GALF.

In parts of the nonsmooth analysis literature, particular attention is devoted to the convex
case (see e.g. [32]). It is well understood that any globally defined convex piecewise linear
function is continuous and can be represented in the simple max form

ϕpxq “ max
0ďiďs

paJi x´ βiq with ai P Rn, βi P R for 0 ď i ď s

Obviously its evaluation in one way or another must involve s comparisons. We will consider
the simple loop

γ0 “ aJ0 x´ β0 , γi “ maxpγi´1, a
J
i x´ βiq for 1 ď i ď s , y “ γs

In terms of absolute values the loop can be rewritten as

γi “ aJi x´ βi `
1
2zi `

1
2 |zi| with zi “ γi´1 ´ a

J
i x` βi

Expressing γi in terms of zi`1 we obtain for i “ 0 . . . s´ 1

zi`1 “ ´ã
J
i`1x` β̃i`1 `

1
2zi `

1
2 |zi| with ãi`1 “ ai`1 ´ ai and β̃i`1 “ βi`1 ´ βi

With L P Rsˆs the square matrix, whose only nonzero entries are in the s ´ 1 subdiagonal
positions with constant value 1

2 , we obtain in matrix vector form

z “ Lz ` b̃´ Ãx` L|z| with b̃ “ pβ̃iq1ďiďs P Rs and Ã “ pãJi q1ďiďs P Rsˆn

To arrive at the abs-normal form we have to solve for z using the lower triangular inverse

I ` L̃ ” pI ´ Lq´1 “
`

cij
˘1ďiďs

1ďjďs
with cij “

#

p1
2q
i´j if i ě j

0 else

Using pI ´ Lq´1L “ pI ´ Lq´1pL ´ I ` Iq “ pI ´ Lq´1 ´ I “ L̃ we obtain finally the standard
triangular system

z “ pI ` L̃qpb̃´ Ãxq ` L̃|z|

for the switching variable vector z.
The objective function takes the somewhat complicated form

ϕpxq “ aJs x´ βs `
1
2e
J
s

”

pI ` L̃qpb̃´ Ãxq ` L̃|z|
ı

` 1
2 |zs| “ α` aJx` bJ|z|

with
α “ 1

2e
J
s pI ` L̃qb̃´ βs, aJ “ aJs ´

1
2e
J
s pI ` L̃qÃ, bJ “ 1

2e
J
s pI ` L̃q

because we have to include zs as a contribution to γs “ y. Given the simplicity of the original
function definition, the abs-normal form we derived is surprisingly complicated. More specifi-
cally, since L̃ is triangular but otherwise dense the naive evaluation in the final form requires an
effort of order s2, whereas the original problem can be quite sparse depending on the structure of
A of course. It may also suffer a lot of fill-in in the transition to Ã. One aspect that is similarly
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troubling is that from the final procedure it is no longer clear that all the zi like the γi are
convex functions of the input vector x. This is really a serious objection. One ad hoc possibility
to improve things is to generalize the abs-normal representation of the switching variables to

z “ Zx`Mz ` Lv ` c where c “ 8z ` L8v `M 8z with v “ abspzq

where M “
BΛpx,z,vq
Bz a triangular matrix whose inverse must have by definition only positive

entries.

A.2. SALGO-TOAST inner loop for the multilayer case.

From now on we consider the global optimization of the ER based on a more general Rectifier
ANN discussed in Chapter 3. In each i-th layer, the affine transformations depends on the weight
matrices W piq and shifts bpiq. Due to the isomorphism between matrices and vector spaces, we
consider the weight matrix in its vector form, i.e.

W piq “ pW
piq
1 , ¨ ¨ ¨ ,W

piq
j , ¨ ¨ ¨ ,W

piq
di
qJ

where W
piq
j P Rdi´1 , is the j-th row of the matrix W piq. Also the shifts are denoted in its vector

form, i.e.

bpiq “ pb
piq
1 , ¨ ¨ ¨ , bji , ¨ ¨ ¨ , b

piq
di
qJ P Rdi .

Therefore an element of the parameter space is given by

x “
´

W
p1q
1 , ¨ ¨ ¨ ,W

p1q
d1
, bp1q,W

p2q
1 , ¨ ¨ ¨ ,W

p2q
d2
, bp2q, ¨ ¨ ¨ ,W

plq
1 , ¨ ¨ ¨ ,W

plq
dl
, bplq

¯

P Rq

and, for all 1 ď i ď l,
xpiq “ pW piq, bpiqq P Rdipdi´1`1q.

For a given feature χ P Rd0 , the prediction function f is given by the following mapping

x P Rq ÞÑ fpχ;xq ” Φpxq (85)

where Φpxq is defined in (25b). Then the ER can be defined over the training dataset pχk, ykq P
Rmˆpd0ˆdl`1q as follows

ϕpxq “
1

m

m
ÿ

i“1

|fpχk;xq ´ yk| (86)

So the training of the predictor is given by the optimization problem:

min
xPRq

ϕpxq ” Λpx, z, vq s.t. z “ λpx, z, vq and v “ abspzq (87)

where the ER is written in its GANF as we describe below.

Let us define the switching vector z P Rs with s “
řl`1
i“1 di that contains each intermediate

switching vector variable of the ANN, which are denoted by zpiq P Rdi . Explicitly, z is written
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as:

z “

»

—

—

—

—

—

—

–

zp1q

zp2q

...

zplq

zpl`1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

z
p1q
1
...

z
p1q
d1

z
p2q
1
...

z
p2q
d2
...

z
plq
1
...

z
plq
dl

z
pl`1q
1

...

z
pl`1q
dl`1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

W
p1q
1 χk ` b

p1q
1

...

W
p1q
d1
χk ` b

p1q
d1

1
2pW

p2q
1 pzp1q ` vp1qq ` b

p2q
1

...
1
2pW

p2q
d2
pzp1q ` vp1qq ` b

p2q
d2

...
1
2pW

plq
1 pzpl´1q ` vpl´1qq ` b

plq
1 q

...
1
2pW

plq
dl
pzpl´1q ` vpl´1qq ` b

plq
dl
q

1
2pz

plq
1 ` v

plq
1 q ` y

1
k

...
1
2pz

plq
dl
` v

plq
dl
` ydlk q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(88a)

One should notice that each switching variable recursively depends on the last intermediate
switch. The last equality defines the constraint z “ λpx, z, vq. Replacing z in the ER formula
(86), ϕpxq turns out to depend on justm, zpl`1q as follows:

ϕpxq “
›

›

›
zpl`1q ´ yk

›

›

›

1
” 1

2

›

›

›
zplq ` vplq

›

›

›

1
“ 1

2pz
plq ` vplqqJ1 with 1 P Rdl`1 . (88b)

The right hand side results fron the nonnegativity of 1
2pz

plq ` vplqq components. Notice that
dl “ dl`1 due to componentwise mapping of the hinge fucntion. Since we have verified that the
ER for the multilayer case has a GANF, then its GALF is described by the following gradients:

M ”
BΛ

Bz
P Rsˆs ; L ”

BΛ

Bv
P Rsˆs ; Z ”

BΛ

Bx
P Rsˆq.

As Λ is a vector function, we express it by l ` 1 component functions Λqi in terms of each
intermediate switching vector variable zpiq, i.e.

Λipx, z, vq “ zpiq, @1 ď i ď l ` 1

Due to the echeloned dependence between the switching vector variables, we obtained Z,M,L
as follows:

Z “
´

BΛi

Bxpjq

¯

@1ďi,jďl`1`
(89a)

where

BΛi

Bxpjq
“

$

’

’

’

’

&

’

’

’

’

%

´

χJk b Id1 , Id1

¯

d1ˆd1pd0`1q
, if i “ j “ 1

´

1
2pz

pi´1qJ ` vpi´1qJq b Idi , Idi

¯

diˆdipdi´1`1q
, @1 ď i “ j ă l

0, @1 ď i ‰ j ď l ` 1

and Idi is the identity matrix of d2
i components.

M “

´

BFi

Bzpjq

¯

@1ďiďl`1
,

BFi

Bzpjq
“

$

’

’

’

’

&

’

’

’

’

%

1
2W

piq @1 ď j “ i´ 1 ă l ` 1

0 @1 ď j ‰ i´ 1 ă l ` 1
1
2Idl i “ l ` 1, j “ l

0 i “ l ` 1, j ‰ l

(89b)
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L “
´

BFi

Bvpjq

¯

@1ďiďl`1
,

BFi

Bvpjq
“

$

’

’

’

’

&

’

’

’

’

%

1
2W

piq @1 ď j “ i´ 1 ă l ` 1

0 @1 ď j ‰ i´ 1 ă l ` 1
1
2Idl i “ l ` 1, j “ l

0 i “ l ` 1, j ‰ l

(89c)

At this point, we should mention that each 0 in our matrices does not have the same dimensions.
Under these above computation is easily verify the lower triangle form of L,M . Furthermore,

a “ 0 P Rq c “ b “
”

0,1
ı

P Rs with 0 P Rs̄,1 P Rdl`1 and s̄ “
l
ÿ

i“1

di (90)

We obtain so the GALF of our ER given by

z “ pI ´M ´ LΣq´1d̊` pI ´M ´ LΣq´1Zx (91a)

∆ϕp 8x,∆xq “ µ̊` bJrz ` vs (91b)

where

µ̊ “ ϕ̊´ bJp̊z ` ẘq and d̊ “ z̊ ` Z 8x´Mz̊ ´ Lv̊ and 8z “ zp 8xq, 8v “ vp 8xq

Remark A.1. The matrices Z,L,M in (89a),(89b),(89c) are evaluated at the base point 8x.
Besides the procedure of abs-linearization is equivalent to the backpropagation algorithm.

Remember that the full domain Rn is now decomposed into polyhedra Pσ as in (21) which
can be identified by the signature vector σ and signature matrix Σ given by

σ “ σpxq ” sgnpzpxqq P t´1, 0,`1us and Σ ” Σpxq “ diagpσpxqq P Rsˆs.

Since L “M and thus b “ c, we obtain the piecewise linear model replacing (91a) in (91b) and
given by

∆ϕp 8x,∆xq “ µ̊` bJpΣ` IqppI ´M ´ LΣq´1d̊` pI ´M ´ LΣq´1Zxq. (92)

Because Σ is a diagonal matrix LΣ is a block strictly lower triangle which is the same structure
as L. Afterwards, we denote by Lσ “ LΣ that contains the active components of L on its
nonzero entries. Therefore Is ´M ´ Lσ is block lower triangle, invertible, and given by

pIs´M´Lσq
J “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Id1 ´1
2W̄

p2qJ 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0

0 Id2 ´1
2W̄

p3qJ 0
...

...
...

...
...

... 0
. . .

. . . 0
...

...
...

...
...

... 0 Idi ´1
2W̄

piqJ 0
...

...
...

...
...

... 0
. . .

. . . 0
...

...
...

...
...

... 0 Idl´1
´1

2W̄
pl´1qJ 0 0

...
...

...
...

... 0 Idl´1
´1

2W̄
plqJ 0

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 Idl ´1
2 Īdl

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 0 Idl

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(93)
where W̄ piq “W piqpIdi ` Σdiq and Īdl “ IdlpIdl ` Σdlq.
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Proposition A.2. Consider r “ pr1, r2, ¨ ¨ ¨ , rl`1q
J P Rsˆ1 where ri P Rdi. Let us define

rJ “ bJpIs `ΣqpIs ´M ´Lσq
´1 with b defined in (90) and Is ´M ´Lσ defined in (93). Then

the linear system

pIs ´M ´ Lσq
Jr “ r0,1` σl`1s

J, where σl`1 “ 1JΣdl`1
(94)

has a unique solution given by

r “ rr1, .., rl´1,
1
2p1` σl`1 ` σl ` σl ¨ σl`1q,1` σl`1s

J (95)

where

@1 ď i ď l ´ 1 : ri “
1

2l´i`1

¨

˝

l
ź

j“i`1

W̄ pjqJ

˛

‚r1` σl`1 ` σl ` σl ¨ σl`1s (96)

Proof. The uniqueness is given by (93) since all the diagonal values of Is ´M ´ Lσ are ones.
Because of the bidiagonal block structure of pIs ´M ´ Lσq, the solution is given by

rl`1 “ Idl`1
r1` σl`1s

J “ r1dl`1
` σl`1s

J

rl “
1
2 Īdlrl`1 “

1
2pr1` σl`1s

J ` rσl ¨ 1dl`1
` σl ¨ σl`1s

Jq “ 1
2 r1` σl`1 ` σl ` σl ¨ σl`1s

J

Then, by recursivity and Idi invertibility, we obtain explicitly ri for all 1 ď i ď l´1 the equality
in (95).

Proposition A.2 provides an explicit formula for our multi-piecewise linear model in (92)
using (95) at any base point x̊. That is

∆ϕp 8x,∆xq “ µ̊` rJd̊` rJZx. (97)

Under this formulation, we proceed to the construction of the prox-abs-linear form of the
ER and the inner loop of the TOAST strategy suggested in subsection 5.3.
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B. Codes.

B.1. SALGO-MILOP code in AMPL.

param n integer; #number of nodes

param m integer; # number of samples

param d integer; #feature dimension

set Samples={1..m};

set Nodes={1..n};

set Dim={1..d};

param x{Samples, Dim}=Uniform(-8, 8); #features, real vectors

param x_norm{k in Samples}= sum{j in Dim}abs(x[k,j]);

param y{k in Samples}=1+((1/4000)*sum{j in Dim}x[k,j]*x[k,j])

-(product{j in Dim}cos(x[k,j]/sqrt(j+1))); #labels

param y_norm = max{k in Samples} abs(y[k]);

var W{Nodes, Dim}, := Uniform(-0.5, 0.5);

var W_norm;

var b{Nodes}, :=Uniform(-0.5, 0.5);

var b_norm ;

param p {i in Nodes} = 2*(i mod 2)-1;

param p_norm = sum{i in Nodes} abs(p[i]);

var SIGMA{Samples, Nodes} binary;

var sigma{k in Samples, i in Nodes}= 2*SIGMA[k, i]-1; #sign of switching variables

var z{Samples, Nodes}; #switching variables

var h{Samples, Nodes}>=0; #nonnegative switching

var sigma_nn{k in Samples, i in Nodes}=1+sigma[k, i]; #translation by unit vector

var sigma_np{k in Samples, i in Nodes}=-1+sigma[k, i]; #translation by negative unit vector

var g{Samples}; #discrepancy

var u{Samples}>=0; #loss evaluations

var MU{Samples} binary;

var mu{k in Samples}=2*MU[k]-1;#sign of loss evaluation

param gamma{Samples, Nodes};

param delta{Samples}; #upper bounds of discrepancy

minimize Prediction: (1/m)*(sum {k in Samples} u[k]);

s.t. z_equa {k in Samples, i in Nodes}: z[k, i]= sum{j in Dim}(W[i,j]*x[k,j]+b[j]);

s.t. g_equa {k in Samples}: g[k]=0.5*(sum{i in Nodes}p[i]*(z[k, i]+h[k, i]))-y[k];
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#inequality constraints

s.t. z1_constraints {k in Samples, i in Nodes}:-h[k, i]<=z[k, i];

s.t. z2_constraints {k in Samples, i in Nodes}:z[k, i]<=h[k, i];

s.t. z3_constraints {k in Samples, i in Nodes}:z[k, i]<=gamma[k, i]*(sigma_nn[k, i])-h[k, i];

s.t. z4_constraints {k in Samples, i in Nodes}:z[k, i]>=h[k, i]+gamma[k, i]*(sigma_np[k, i]);

s.t. g11_constraints {k in Samples}: -u[k] <= g[k];

s.t. g12_constraints {k in Samples}: g[k] <= u[k];

s.t. g21_constraints {k in Samples}: g[k] <= -u[k]+delta[k]*(mu[k]+1);

s.t. g22_constraints {k in Samples}: g[k] >= u[k]+delta[k]*(mu[k]-1);
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