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Resumen	
	
	

Se	calcula	 las	 frecuencias	naturales	para	 las	oscilaciones	de	 la	 frontera	 libre	de	
las	ondas	estacionarias	capilares	en	contacto	con	un	contenedor	sólido.	Primero,	
estudiamos	 el	 caso	 del	 semiplano.	 Deducimos	 una	 ecuación	 evolutiva	
integrodiferencial	para	la	frontera	libre	linealizada	e	imponemos	condiciones	de	
borde	 fijo	 y	 borde	 libre.	 Para	 ambos	 casos,	 se	 proporcionan	 las	 frecuencias	 de	
oscilaciones	 naturales	 para	 las	 superficies	 libres	 y	 se	 comparan	 con	 las	
frecuencias	 en	 ausencia	 de	 paredes.	 Luego,	 mediante	 mapeos	 conformes,	 se	
puede	 hacer	 el	 mismo	 análisis	 en	 contenedores	 arbitrarios	 2D,	 con	 toda	 la	
información	sobre	su	geometría	contenida	en	una	matriz,	que	aparece	como	un	
factor	en	un	sistema	lineal	para	el	cálculo	de	frecuencias	propias.	En	particular,	
hacemos	el	análisis	a	una	tira	vertical	infinita	y	un	contenedor	redondo.	

	

Palabras	 Clave:	 frecuencias,	 oscilaciones,	 extremo	 fijo,	 extremo	 libre,	 ondas	
capilares,	superficie	libre.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



Abstract	
	
	

We	 compute	 the	 natural	 frequencies	 for	 the	 oscillations	 of	 the	 free	 boundary	 of	
capillary	standing	waves	in	contact	with	a	solid	container.	First,	we	study	the	case	of		
the	 half-plane.	 We	 deduce	 an	 integrodifferential	 evolutionary	 equation	 for	 the	
linearized	free	boundary	and	impose	pinned-end	and	free-end	boundary	conditions.	
For	both	cases,	the	natural	oscillations	frequencies	for	the	free	surfaces	are	provided	
and	compared	with	the	frequencies	in	the	absence	of	solid	walls.	Then,	by	conformal	
mappings,	 the	 same	 analysis	 can	 be	 done	 to	 arbitrary	 2D	 containers,	 with	 all	 the	
information	on	their	geometry	contained	into	a	matrix	that	appears	as	a	factor	in	a	
linear	 system	 for	 the	 computation	of	 eigenfrequencies.	 In	particular,	we	make	 the	
analysis	to	a	vertical-infinite	strip	and	a	rounded	container	

	

Keywords:	 frequencies,	 oscillations,	 pinned-end,	 free-end,	 capillary	 waves,	 free	
surface.	



School of Mathematical and Computational Sciences YACHAY TECH

Contents

1 Introduction 4

2 Objectives 5
2.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Preliminaries 5
3.1 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 The Hilbert transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Tchebyshev polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 The first-kind polynomial Tn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 The second-kind polynomial Un . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Conservation equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Eulerian and Lagrangian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Material derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.3 Reynold’s transport theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.4 Mass conservation law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.5 Momentum conservation law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Theoretical framework of the project 21
4.1 Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Incompressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Perfect fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Linearized equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Integrodifferential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Solution of the integrodifferential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6.1 Anti-symmetric pinned-end boundary condition . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6.2 Symmetric pinned-end boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6.3 Symmetric free-end boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6.4 Anti-symmetric free-end boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Conformal mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.8 Solution of the integro-differential equation in a container with vertical walls . . . . . . . . . . . 47

4.8.1 First case: b→∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8.2 Second case: b = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.9 Solution of the integro-differential equation in a rounded container . . . . . . . . . . . . . . . . . 51
4.9.1 Anti-symmetric pinned-end boundary condition . . . . . . . . . . . . . . . . . . . . . . . . 54
4.9.2 Symmetric pinned-end boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.9.3 Symmetric free-end boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9.4 Anti-symmetric free-end boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Conclusions and future work 67

References 69

Appendices 71

A Inversion formula for the finite Hilbert transform 71

Mathematician 2 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

B Anti-symmetric pinned-end boundary condition codes 73
B.1 Function to compute the E matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.2 Function to compute the D matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.3 Function to compute the diagonal matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.4 Function to compute eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.5 Plotting convergence of an specific eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.6 Plotting the free surface function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C Symmetric pinned-end condition codes 75
C.1 Function to compute the E matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.2 Function to compute the D matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
C.3 Function to compute the diagonal matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
C.4 Function to compute mass conservation condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
C.5 Function to compute eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

D Symmetric free-end condition codes 77
D.1 Function to compute the E matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
D.2 Function to compute the D matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
D.3 Function to compute the diagonal matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

E Anti-symmetric free-end condition codes 78
E.1 Function to compute the E matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
E.2 Function to compute the D matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
E.3 Function to compute the diagonal matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Mathematician 3 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

1 Introduction

In the present work, we describe the motion of a perfect and incompressible fluid delimited above by a free
surface under capillary action. We are going to compute the frequencies for the oscillations of the free boundary
of these capillary waves in contact with solid walls. During this analysis, we neglect gravity since we are working
on a small scale. We want to emphasize that the manner that waves arise depends on the presence of walls
and the contact with the free surface. Besides, we study different two-dimensional geometrical cases, namely:
the half-plane, an infinite vertical strip, and a semicircular shaped container. We also compare our results with
those in the literature: the natural frequencies for the gravity-capillary case in different geometries are shown
in [1] and [2]. The analysis will allow us to determine the manner the container geometry affects the frequencies
of oscillations.

The methodology for the half-plane is as follows: we first deduce an integrodifferential evolutionary equation
for the linearized Euler equations. We also impose two different boundary conditions: Dirichlet homogeneous
or pinned-end condition, and Neumann homogeneous or free-end condition; in this last case, we consider a
contact angle of π/2 between the wave and the solid wall, which has been used before in the literature (see
[3]). For the purpose of this work, we are going to use the separation of variables technique; and, in this way,
transform our problem to an ordinary differential equation in the time variable and an eigenvalue problem in
the space-variable. The eigenvalue problem can be approximated numerically by finite matrices. Once we get
the frequencies for the free surfaces, we can compare them with the frequencies in the absence of solid walls
(sine and cosine frequencies). For this comparison, MATLAB is a valuable tool since it allows us to numerically
approximate systems in each case and, for instance, to determine the free surface shape in both cases: in
the presence or in the absence of walls. Besides, MATLAB is also useful in checking the convergence of the
eigenvalues.

In order to study the remaining geometries, the main tool to be used is the conformal mapping technique
to transform any two-dimensional domain into a simpler one. We first consider the technique for a general
geometry and then apply it to the geometries in mention: we will conformally map both the infinite vertical
strip and the semicircular geometry into the half-plane.

The motivation to work on this topic is that the technique is useful in engineering. The technique is related to
the ink-jet print technology. Besides the conventional printing on paper technique, the ink-jet print technology
goes further. For example, we can find some of its application in the displays industry to create the transparent
electrodes that criss-cross the front and rear surfaces of computer displays [4], in biology and medicine to
build pregnancy and diabetes tests [4], in chemistry for nanoelectrospray ionization [5], in physics for droplet
generators, which has a lot of applications by itself (mass spectroscopy, fuel processing, multilayer parts and
circuits manufacture, etc.) [6, 7] and in fluid mechanics when one tries to control the surface by injecting fluid
through the boundary, as is done in the treatment of mining disposals [8].

The structure of the work is organized in the following way: first, we will introduce some important results
on Fourier and Hilbert transforms and Tchebyshev’s first and second-kind polynomials which will be useful later
when decomposing the Hilbert transform into an orthogonal L2 basis. Then, we present the deduction of the
conservation equations in order to get the Euler incompressible equations and also the Navier-Stokes equations.
Once this framework is settled down, we formulate the problem and proceed to linearize the related equations.
As mentioned before, we are going to deduce an integrodifferential evolutionary equation to find the natural
oscillation frequencies. Next, by employing conformal mappings, we are going to extend our results to other
geometries and compare them. Finally, we will discuss the results, conclude, and give an outlook for future
research.

Mathematician 4 Final Grade Project
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2 Objectives

2.1 General Objective

To compute the natural frequencies for the oscillations of the free boundary of capillary waves in contact with
an specific solid container: half-plane, vertical infinite-strip and rounded container.

2.2 Specific Objectives

• To deduce conservation equations in order to get the incompressible Euler equations.

• To linearize the Euler equations in order to solve it explicitly, after a domain transformation.

• To solve the eigenvalue problem arising from the linear conservation laws, for each boundary condition
and each container geometry, in order to get the free surface profile.

• To approximate numerically the eigenvalue problem by using MATLAB.

• To explore the application of this technique by considering different geometries.

3 Preliminaries

In the present chapter we will deduce some important results. These results will be used further in the following
sections. We will first introduce the so-called Fourier transform that owes its name to Jean-Baptiste Joseph
Fourier; in his publications Mémoire sur la propagation de la chaleur dans les corps solides (1807) and Théorie
analytique de la chaleur (1822), Fourier showed that there are functions that can be expressed as trigonometric
series. In a simple definition, the Fourier transform is a linear transform that decomposes a signal into its
contributing frequencies[9]. The applications of Fourier transform can be found in many fields: in signal
analysis, for example when processing seismic waves[10] or when obtaining the first image of a black hole[11];
in communication theory to understand how a signal passes through communication channels[12]; in physics,
for spectral estimation[13]; among others.

Furthermore, Tchebyshev polynomials of first and second-kind will be introduced. The main reason to
choose this basis instead of the Fourier basis is that the weight in the linearized conservation equations makes
Tchebyshev polynomials the most reasonable option to work with. Some of the properties of these polynomials
are also presented. Finally, the explicit way of obtaining the curvature of the free surface that we will be later
working with; and the deduction of the conservation equations that later poses our problem are showed during
this section.

3.1 The Fourier transform

It is important to first mention the Fourier series. For introducing the series we will rely on [14]. Let Ω =
[−π, π] ⊂ R and let’s consider the Fourier basis

F = {1f} ∪ {Cn/n ∈ N} ∪ {Sn/n ∈ N} ⊆ C (Ω) ,

where 1f is defined as follows

1f : Ω −→ R
t 7−→ 1f (t) = 1,

and, for n ∈ N,
Cn (t) = cos (nt) , Sn (t) = sin (nt) .

Let f be a 2π−periodic function on Ω. The Fourier series allow us to represent the function f in terms of
simpler functions in the following way:

f =
a0

2
1f +

∞∑
n=1

anCn +

∞∑
n=1

bnSn, (3.1)
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implying

f (t) =
a0

2
+

∞∑
n=1

an cos (nt) +

∞∑
n=1

bn sin (nt) , a.e ∀t ∈ Ω, (3.2)

with

a0 =
1

π

∫
Ω

f (t) dt, an =
1

π

∫
Ω

f (t) cos (nt) dt, and bn =
1

π

∫
Ω

f (t) sin (nt) dt.

The Fourier transform is an extension of the Fourier series; in this case the period of the function can approach
infinity. In the case of the Fourier transform, the sine and coefficients are written as complex exponential
coefficients by using the Euler’s formula. We will now introduce the Fourier transform as presented in [15]. The
Fourier transform of a function f ∈ L2 [−∞,∞] is given by:

F [f ] (k) = f̂ (k) =
1√
2π

∫ ∞
−∞

eikxf(x)dx, (3.3)

and its inversion formula, also given in [15], is:

F−1 [f ] (k) = f̌ (k) =
1√
2π

∫ ∞
−∞

e−ikxf(x)dx, (3.4)

Theorem 3.1 (Derivative of the transform). Let u ∈ L1 (R) such that |x|nu ∈ L1 (R). Then û ∈ Cn (R) and
the following holds:

dα

dkα
û (k) = F

[
(ix)

α
u
]

(k) , for α such that |α| ≤ n. (3.5)

Proof. We know that

û (k)− û (k0)

k − k0
=

1√
2π

∫ ∞
−∞

u (x) eik0x
eik(k−k0) − 1

k − k0
dx.

Let ϕ (x, v) = eixv−1
v . Then,

|ϕ (x, v)| ≤ |x|,
and

lim
v→0

ϕ (x, v) = ix.

Applying the dominated convergence theorem, we finally obtain that

lim
k→k0

û (k)− û (k0)

k − k0
=

1√
2π

∫
R
ixu (x) eik0xdx

= F [ixu] (k0)

Theorem 3.2 (Transform of the derivative). Let u ∈ Cnc (R) such that
dαu

dxα
∈ L1 (R) for all |α| ≤ n. Then,

F

(
dαu

dxα

)
(k) = (−ik)

α
û (k) . (3.6)

Proof. Let’s prove it by mathematical induction.
Base case: for α = 1. We need to prove that:

F
[
u′ (x)

]
(k) = (−ik) û (k) .

By using integration by parts and given the fact that u has compact support we get that:

F
[
u′ (x)

]
(k) =

1√
2π

∫
R
u (x) eikxdx

= − ik√
2π

∫
R
u (x) eikxdx

= (−ik) û (k) .

Mathematician 6 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Inductive hypothesis: let α ∈ N such that 1 ≤ α ≤ n− 1. Then,

F

[
dαu

dxα

]
(k) = (−ik)

α
û (k) .

Inductive step: for α = n, let’s prove that:

F

[
dnu

dxn

]
(k) = (−ik)

n
û (k) .

We know that

F

[
dnu

dxn

]
(k) =

1√
2π

∫
R

dnu

dxn
eikxdx

=
1√
2π

∫
R

du

dx

dn−1u

dxn−1
eikxdx.

By using integration by parts, and the inductive hypothesis, we obtain

F

[
dnu

dxn

]
(k) =

−ik√
2π

∫
R

dn−1u

dxn−1
eikxdx

= −ikF

[
dn−1u

dxn−1

]
(k)

= (−ik) (−ik)
n−1

û (k)

= (−ik)
n
û (k) .

Theorem 3.3 (Convolution theorem). Let u, v ∈ L2 [−∞,∞]. Recall that the convolution of u and v is defined
as

(u ∗ v) (x) =

∫ ∞
−∞

u (z) v (x− z) dz.

The Fourier transform of the convolution of u and v is given by

F [u ∗ v] (k) =
√

2π
(
F [u] (k) · F [v] (k)

)
. (3.7)

Proof. Let u, v ∈ L2 [−∞,∞], generic. Then,

F [u ∗ v] =
1√
2π

∫
R
eikx (u ∗ v) (x) dx

=
1√
2π

∫
R
eikx

(∫
R
u (z) v (x− z) dz

)
dx.

By appliyng Fubini and then the change of variable y = x− z, we get

F [u ∗ v] =
1√
2π

∫
R
u (z)

(∫
R
eikxv (x− z) dx

)
dz

=

∫
R
eikzu (z)

(
1√
2π

∫
R
eikyv (y) dx

)
dz

=

∫
R
eikzu (z) dz · F [v] (k)

=
√

2π
(
F [u] (k) · F [v] (k)

)
We conclude by the arbitrariness of u and v.
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3.1.1 The Hilbert transform

In this section we will focus on establishing a relation between the Fourier transform and the Hilbert transform.
We will rely on the results shown in [15]. The Hilbert transform of φ ∈ L2 (R) is the operator defined as:

f (x) =
1

π

∫ ∞∗
−∞

φ (y)

x− y
dy, f (x) ∈ L2 (R) . (3.8)

The ∗ above the integral indicates that it is a Cauchy principal value integral. This means that it cannot be
calculated as an improper integral because of the point y = x. The Cauchy principal value integral is defined
as: ∫ ∞∗

−∞

φ (y)

x− y
dy = lim

ε→0

(∫ x−ε

−∞

φ (y)

x− y
dy +

∫ ∞
x+ε

φ (y)

x− y
dy

)
.

Theorem 3.4. For f as in (3.8), we have that:

H
(
H (φ)

)
= −φ. (3.9)

In order to prove the theorem, we first need to prove the following two lemmas:

Lemma 3.5. ∫ ∞
−∞

eisx
∫ ∞∗
−∞

φ (y)

x− y
dydx =

∫ ∞
−∞

eisxφ (x) dx

∫ ∞∗
−∞

eisy

y
dy. (3.10)

Proof. First, the left-hand side of (3.10) can be rewritten as:∫ ∞
−∞

∫ ∞∗
−∞

eisx
φ (y)

x− y
dydx. (3.11)

Now, apply Fubini’s theorem to (3.11) and then start solving:∫ ∞
−∞

∫ ∞∗
−∞

eisx
φ (y)

x− y
dxdy =

∫ ∞
−∞

φ (y)

∫ ∞∗
−∞

eis(y+x−y)

x− y
dxdy

=

∫ ∞
−∞

φ (y) eisy
∫ ∞∗
−∞

eis(x−y)

x− y
dxdy

=

∫ ∞
−∞

φ (y) eisy
∫ ∞∗
−∞

eisw

w
dwdy

=

∫ ∞
−∞

φ (y) eisydy

∫ ∞∗
−∞

eisw

w
dw, (by Fubini) .

Then, the lemma has been proved.

Lemma 3.6. ∫ ∞
0

sin (sx)

x
dx =

π

2
sgn (s) . (3.12)

Proof. By using Fubini’s theorem we get:∫ ∞
0

(∫ ∞
0

e−xy sin (sx)dy

)
dx =

∫ ∞
0

(∫ ∞
0

e−xy sin (sx)dx

)
dy, (3.13)

where ∫ ∞
0

e−xy sin (sx)dy = −e−xy sin (sx)

x

∣∣∣∣∞
0

= lim
y→∞

(
e−xy

sin (sx)

x

)
+

sin (sx)

x

=
sin (sx)

x
, (3.14)
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and ∫ ∞
0

e−xy sin (sx)dx = −
∫ ∞

0

ye−xy
cos (sx)

s
dx− e−xy cos (sx)

s

∣∣∣∣∞
0

= −y
s

∫ ∞
0

e−xy cos (sx)dx+
1

s

= −y
s

(∫ ∞
0

ye−xy
sin (x)

s
dx+ e−xy

sin (x)

s

∣∣∣∣∞
0

)
+

1

s

= −y
2

s2

∫ ∞
0

e−xy sin (sx)dx+
1

s

Therefore, (
1 +

y2

s2

)∫ ∞
0

e−xy sin (sx)dx =
1

s
,

which implies, ∫ ∞
0

e−xy sin (sx)dx =
s

s2 + y2
. (3.15)

By replacing (3.14) and (3.15) in (3.13) we get:∫ ∞
0

sin (sx)

x
dx =

∫ ∞
0

s

s2 + y2
dy

=
1

s

∫ ∞
0

1

1 +
(
y
s

)2 dy
=

1

s
· s · arctan

(
y

s

)∣∣∣∣∞
0

= arctan

(
y

s

)∣∣∣∣∞
0

= lim
y→∞

arctan

(
y

s

)
− 0

=

{
π
2 , s ≥ 0
−π2 , s < 0

=
π

2
sgn (s) .

Thus, the lemma has been proved.

Now that both lemmas are proved, we can use these results to prove theorem 3.4 as follows:

Proof. We begin by computing the following integral by using (3.10),

1√
2π

∫ ∞
−∞

eisx
∫ ∞∗
−∞

φ (y)

x− y
dydx =

1√
2π

∫ ∞
−∞

eisxφ (x) dx

∫ ∞∗
−∞

eisy

y
dy

= F (φ)

∫ ∞∗
−∞

eisy

y
dy,

where F is the Fourier transform, and by using (3.12), we have∫ ∞∗
−∞

eisy

y
dy =

∫ ∞∗
−∞

cos (sy)

y
dy + i

∫ ∞∗
−∞

sin (sy)

y
dy

= 2i

∫ ∞∗
0

sin (sy)

y
dy

= πi sgn (s) .
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Therefore, by applying Fourier transform to (3.8) we get:

i sgn (s)F (φ) = F (f) , (3.16)

from where we obtain

φ (x) = − 1

π

∫ ∞∗
−∞

f (y)

x− y
dy. (3.17)

We will denote the operator defined in (3.8) as H. Thus, (3.8) and (3.17) can be rewritten as:

H (φ) = f

φ = −H (f) ,

so the statement of the theorem has been proved. Besides, from these two equations it follows that:

H
(
H (φ)

)
= H (f)

= −φ.

By (3.16) we also get:

F
(
H (φ)

)
= F (f)

= i sgn (s)F (φ) ,

which indicates that H (φ) ∈ L2 (−∞,∞).

An special case of the transform is the finite Hilbert transform that comes from the airfoil problem in
aerodynamics (see [15]). This modified Hilbert transform is of the form

1

π

∫ 1∗

−1

φ (z)

x− z
dz = H

[
φ (z)

]
(x) = f (x) , f (x) ∈ L2 [−1, 1] , (3.18)

and its solution leads to the following inversion formula (see Appendix A for details)

φ (x) = − 1

π

∫ 1∗

−1

√
1− x2

√
1− z2

f (z)

x− z
dz. (3.19)

3.2 Tchebyshev polynomials

In the present section we will introduce the first and second-kind Tchebyshev polynomials as well as its main
properties. It is important to mention these polynomials since they form the L2 we are looking for our problem.
The following definitions and the properties statements are based on [16], and [17].

3.2.1 The first-kind polynomial Tn

The Tchebyshev polynomial of the first kind, denoted Tn (x), is a polynomial in x of degree n, given by:

Tn (x) = cos (nθ) , when x = cos (θ) , (3.20)

and −1 ≤ x ≤ 1.
The recurrence relation

Tn (x) = 2xTn−1 (x)− Tn−2 (x) , n = 2, 3, ... (3.21)

together with the initial conditions
T0 (x) = 1, T1 (x) = x, (3.22)

generates all the polynomials recursively. The first five first-kind polynomials are shown in Figure 1.

Mathematician 10 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Figure 1: first-kind Tchebyshev polynomials up to degree 4.

3.2.2 The second-kind polynomial Un

The Tchebyshev polynomial of the second kind, denoted as Un (x), is a polynomial in x of degree n, given by:

Un (x) =
sin
[
(n+ 1) θ

]
sin (θ)

, when x = cos (θ) , (3.23)

and −1 ≤ x ≤ 1.
The recurrence relation

Un (x) = 2xUn−1 (x)− Un−2 (x) , n = 2, 3, ... (3.24)

along with the initial conditions
U0 (x) = 1, U1 (x) = 2x, (3.25)

generates all the polynomials recursively. The first five second-kind polynomials are shown in Figure 2.

Figure 2: second-kind Tchebyshev polynomials up to degree 4.

3.2.3 Properties

Proposition 3.7 (Symmetry). If the Tchebyshev polynomials are of an even order, then they have even sym-
metry, and, besides they only have even powers of x. If the Tchebyshev polynomials are of an odd order, then
they have odd symmetry, and, besides they only have odd powers of x, i.e.,

Tn (−x) = (−1)
n
Tn (x) (3.26)

=

{
Tn (x) , n even,
−Tn (x) , n odd.

(3.27)

And

Un (−x) = (−1)
n
Un (x) (3.28)

=

{
Un (x) , n even,
−Un (x) , n odd.

(3.29)
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Proof. We will work with the first-kind polynomial since the proof for the second kind is analogous. We are
going to prove the result inductively.

• Base case: it holds for n=0:
T0 (−x) = 1 = (−1)

0
T0 (x) .

• Inductive hypothesis: we assume the statement is true for 0 ≤ n ≤ k, i.e., it holds that

Tn (−x) = (−1)
n
Tn (x) .

• Inductive step: we are now going to prove it for n = k + 1. By definition of Tn and the inductive
hypothesis, we have that

Tk+1 (−x) = −2xTk (−x)− Tk−1 (−x)

= −2x (−1)
k
Tk (x)− (−1)

k−1
Tk−1 (x)

= 2x (−1)
k+1

Tk (x)− (−1)
k+1

Tk−1 (x)

= (−1)
k+1 [

2xTk (x)− Tk−1 (x)
]

= (−1)
k+1

Tk+1 (x) .

Proposition 3.8 (Roots and extrema). A Tchebyshev polynomial of degree n has n different simple roots,
called Tchebyshev roots, in the interval [−1, 1].

The roots of Tn are given by

xk = cos

(
π
(
k + 1/2

)
n

)
, k = 0, ..., n− 1.

In a similar way, the roots of Un are given by

xk = cos

(
k

n+ 1
π

)
, k = 1, ..., n.

The extrema of Tn on [−1, 1] are located at:

xk = cos

(
k

n
π

)
, k = 0, ..., 1.

Both the first and second kinds of Tchebyshev polynomial have extrema at the endpoints, given by:

Tn (1) = 1,

Tn (−1) = (−1)
n
,

Un (1) = n+ 1,

Un (−1) = (n+ 1) (−1)
n
.

Proof. Let’s first find the roots of the first-kind polynomials Tn. By definition Tn (x) = cos (nθ), then Tn (x) = 0
implies that

cos (nθ) = 0,

from were we know that

nθ =
(
k + 1/2

)
π,

and finally we can solve for θ:

θ =
π
(
k + 1/2

)
n

.
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Since x = cos (θ), then

xk = cos

(
π
(
k + 1/2

)
n

)
, k = 0, ..., n− 1.

Besides,

dx

dθ
=

d

dx
cos (θ) = − sin (θ) ,

implying,
dθ

dx
= − 1

sin (θ)
. (3.30)

Now let’s find where its extrema are located. For this we need to use (3.30),

0 =
d

dx
Tn (x)

=
d

dx
cos (nθ)

=
dθ

dx

d

dθ
cos (nθ)

=
n sin (nθ)

sin (θ)
.

Therefore the above result states that
sin (nθ) = 0,

thus

θ =
k

n
π,

and since we know that x = cos (θ) we have that

xk = cos

(
k

n
π

)
, k = 0, ..., n.

If we evaluate Tn in x0 and xn, we find that polynomial endpoints give also extrema:

Tn (x0) = Tn (1) = 1,

Tn (xn) = Tn (−1) = (−1)
n
.

Now let’s find the roots of the second-kind polynomials Un. By definition Un (x) =
sin
[
(n+ 1) θ

]
sin (θ)

, then by

letting
Un (x) = 0,

we get that, in particular,
sin
[
(n+ 1) θ

]
= 0,

then,
(n+ 1) θ = kπ,

and

θ =
k

n+ 1
π.

Since x = cos (θ), we have that

xk = cos

(
k

n+ 1
π

)
, k = 1, ..., n.
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Proposition 3.9 (Differentiation and integration). The derivatives of the Tchebyshev polynomials are given
by:

dTn
dx

= nUn−1, (3.31)

dUn
dx

=
(n+ 1)Tn+1 − xUn

x2 − 1
, (3.32)

d2Tn
dx2

= n
nTn − xUn−1

x2 − 1
= n

(n+ 1)Tn − Un
x2 − 1

. (3.33)

Concerning integration, ∫ 1

−1

Undx =
Tn+1

n+ 1
. (3.34)

Proof. Let’s begin by proving (3.31),

dTn
dx

=
dθ

dx

d

dθ
cos (nθ)

= n
sin (nθ)

sin (θ)

= nUn−1.

Now we prove (3.32):

dUn
dx

=
dθ

dx

d

dθ

sin
[
(n+ 1) θ

]
sin (θ)

= − 1

sin (θ)

(n+ 1) cos
[
(n+ 1) θ

]
sin (θ)− sin

[
(n+ 1) θ

]
cos (θ)

sin2 (θ)

=
1

sin (θ)

(n+ 1)Tn+1 sin (θ)− Un sin (θ)x

x2 − 1

=
(n+ 1)Tn+1 − xUn

x2 − 1
.

Next, we are going to prove (3.33):

d2Tn
dx2

=
d

dx

(
dTn
dx

)
=
dθ

dx

d

dθ

(
dTn
dx

)
=
dθ

dx

d

dθ

(
n

sin (nθ)

sin (θ)

)
= − n

sin (θ)

n cos (nθ) sin (θ)− sin (nθ) cos (θ)

sin2 (θ)

=
n

sin (θ)

nTn sin (θ)− Un−1 sin (θ)x

x2 − 1

= n
nTn − xUn−1

x2 − 1
.

Finally, let us prove (3.34). Using (3.31), we get:

d (Tn+1)

dx
= (n+ 1)Un,
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which implies that
Tn+1

n+ 1
=

∫ 1

−1

Undx.

Proposition 3.10 (Orthogonality). The first-kind polynomials Tn are orthogonal with respect to the weight

1√
1− x2

,

on the interval [−1, 1], i.e.,

∫ 1

−1

Tn (x)Tm (x)
dx√

1− x2
=

 0, n 6= m,
π, n = m = 0,
π
2 , n = m 6= 0.

(3.35)

Similarly, the second-kind polynomials Un are orthogonal with respect to the weight√
1− x2,

on the interval [−1, 1], i.e., ∫ 1

−1

Un (x)Um (x)
√

1− x2dx =

{
0, n 6= m,
π
2 , n = m.

(3.36)

Proof. Let’s begin studying the first-kind polynomials.

• n 6= m. Let x = cos (θ), thus dx = − sin (θ) dθ and∫ 1

−1

Tn (x)Tm (x)
dx√

1− x2
=

∫ π

0

Tn
[
cos (θ)

]
Tm
[
cos (θ)

]
dθ

=

∫ π

0

cos (nθ) cos (mθ) dθ

=
1

2

∫ π

0

[
cos
[
(n+m) θ

]
+ cos

[
(n−m) θ

]]
dθ

=
1

2

[
sin
[
(n+m) θ

]
n+m

+
sin
[
(n−m) θ

]
n−m

] ∣∣∣∣∣
π

0

= 0.

• n = m = 0. Let x = cos (θ), thus dx = − sin (θ) dθ and∫ 1

−1

Tn (x)Tm (x)
dx√

1− x2
=

∫ π

0

Tn
[
cos (θ)

]
Tm
[
cos (θ)

]
dθ

=

∫ π

0

cos (nθ) cos (mθ) dθ

=

∫ π

0

cos2 (0) dθ

=

∫ π

0

dθ

= θ
∣∣π
0

= π.
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• n = m 6= 0. Let x = cos (θ), thus dx = − sin (θ) dθ and∫ 1

−1

Tn (x)Tm (x)
dx√

1− x2
=

∫ π

0

Tn
[
cos (θ)

]
Tm
[
cos (θ)

]
dθ

=

∫ π

0

cos (nθ) cos (mθ) dθ

=
1

2

∫ π

0

[
cos
[
(n+m) θ

]
+ cos

[
(n−m) θ

]]
dθ

=
1

2

∫ π

0

[
cos (2nθ) + cos (0)

]
dθ

=
1

2

[
sin (2nθ)

2n
+ θ

] ∣∣∣∣∣
π

0

=
π

2
.

Now let’s work with the second-kind polynomials.

• n 6= m. Let x = cos (θ), thus dx = − sin (θ) dθ and

∫ 1

−1

Un (x)Um (x)
√

1− x2dx =

∫ π

0

Un
[
cos (θ)

]
Um

[
cos (θ)

]
sin2 (θ) dθ

=

∫ π

0

sin
[
(n+ 1) θ

]
sin
[
(m+ 1) θ

]
dθ

=
1

2

∫ π

0

[
− cos

[
(n+m+ 2) θ

]
+ cos

[
(n−m) θ

)]
dθ

=
1

2

[
−

sin
[
(n+m+ 2) θ

]
n+m+ 2

+
sin
[
(n−m) θ

]
n−m

] ∣∣∣∣∣
π

0

= 0.

• n = m. Let x = cos (θ), thus dx = − sin (θ) dθ and

∫ 1

−1

Un (x)Um (x)
√

1− x2dx =

∫ π

0

Un
[
cos (θ)

]
Um

[
cos (θ)

]
sin2 (θ) dθ

=

∫ π

0

sin
[
(n+ 1) θ

]
sin
[
(m+ 1) θ

]
dθ

=
1

2

∫ π

0

[
− cos

[
(n+m+ 2) θ

]
+ cos

[
(n−m) θ

)]
dθ

=
1

2

∫ π

0

[
− cos

[
(n+ 1) 2θ

]
+ cos (0)

]
dθ

=
1

2

[
−

sin
[
(n+ 1) 2θ

]
2 (n+ 1)

+ θ

] ∣∣∣∣∣
π

0

=
π

2
.

3.3 Curvature

The objective of this section is to get an analytic expression for the curvature of a graph of a function. The
curvature, denoted as κ, is a measurement of how much a curve bends [18]. While moving along a curve, one
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can notice that the direction of the tangent changes as the curve bends. Since we are interested in direction of
the tangent instead of its magnitude, we shall consider the unit tangent vector.

In order to define the curvature, we need some previous definitions. In a curve, its arc length s is defined as
the distance between two points along it. For a curve parametrized by r (t), it is given by

s (t) =

∫ t

t0

|v (τ)|dτ, (3.37)

where v = dr/dt.
Let C be a smooth curve parametrized by r (t). Now, we also know that s = s (t) as it can be seen in

(3.37). Therefore, from this last equation, it is possible to get t such that t = t (s). As a consequence, any curve
parametrized in terms of t can be also parametrized in terms of s: we are able to rewrite r = r

(
t (s)

)
= r (s).

For a smooth curve C parametrized by r (t), let v = dr/dt be its velocity vector. The velocity vector is
tangent to r (t). We define the unit tangent vector T as follows

T =
v (s)

‖v (s)‖
,

and T is a differentiable function of s as long as v is also a differentiable function of s.
We are now able to define what the curvature is. Let C be a smooth curve with position vector r (s), where

s is the arc length parameter. Then, the curvature κ of C is

κ =

∥∥∥∥∥dTds
∥∥∥∥∥, (3.38)

where T is the unit tangent vector.
The following theorem give us an alternative way to compute the curvature.

Theorem 3.11. Let C be a smooth curve with position vector r (t). Then, the following formula can be used
to compute the curvature, κ,

κ =
‖r′ (t)× r′′ (t)‖
‖r′ (t)‖3

. (3.39)

Proof. Let’s first compute r′, r′′ and its cross product.

1. Let’s compute r′ (t).

By definition,

T =
r′ (t)

‖r′ (t)‖
,

and, by applying fundamental theorem of calculus in (3.37), we get

ds

dt
= ‖r′‖. (3.40)

Therefore, we get that

r′ =
ds

dt
T. (3.41)

2. Let’s compute r′′ (t). By the last part,

r′′ =
d

dt

(
ds

dt
T

)
=
d2s

dt2
T +

ds

dt
T ′. (3.42)

3. Now, let’s compute the cross product r′ (t)× r′′ (t) and its norm. By (3.41) and (3.42),

r′ × r′′ =
ds

dt

d2s

dt2
(T × T ) +

(
ds

dt

)2 (
T × T ′

)
.
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Since T ′ is tangent to T , θ = π/2 is the angle between them, and

‖r′ × r′′‖ =

(
ds

dt

)2

‖T × T ′‖

=

(
ds

dt

)2

‖T‖‖T ′‖ sin θ

=

(
ds

dt

)2

‖T ′‖ sin

(
π

2

)
,

and by using (3.40), we get

‖r′ (t)× r′′ (t)‖ = ‖r′ (t)‖2‖T ′‖.

Therefore,

‖T ′‖ =
‖r′ (t)× r′′ (t)‖
‖r′ (t)‖2

.

Now, by applying (3.40), we have

κ =

∥∥∥∥∥dTds
∥∥∥∥∥

=

∥∥∥∥∥ dtds
(
d

dt
T

)∥∥∥∥∥
=
‖T ′ (t)‖
‖r′ (t)‖

=
‖r′ (t)× r′′ (t)‖
‖r′ (t)‖3

.

Finally, we introduce a theorem that allow us to compute the curvature of the graph of a function.

Theorem 3.12. If C is a curve given by y = f (x), with f twice differentiable, then

κ =
|f ′′ (x)|(

1 +
(
f ′ (x)

)2)3/2
. (3.43)

Proof. To parametrize the curve given by y = f (x) as a 3D parametric curve, we use x = x
y = f (x)
z = 0

Then, the position vector of C is r (x) =
(
x, f (x) , 0

)
and it follows that

r′ (x) =
(
1, f ′ (x) , 0

)
,

r′′ (x) =
(
0, f ′′ (x) , 0

)
.

Hence,
r′ × r′′ =

(
0, 0, f ′′ (x)

)
,

therefore,
‖r′ × r′′‖ = |f ′′ (x)|.

We also know that

‖r′‖ =

√
1 +

(
f ′ (x)

)2
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Thus,

κ =
‖r′ × r′′‖
‖r′ (x)‖3

=
|f ′′ (x)|(

1 +
(
f ′ (x)

)2)3/2
.

3.4 Conservation equations

During the development of this section, we are going to deduce the mass and momemtum conservation laws by
making use of the Reynold’s transport theorem. The aim will be to later deduce the Euler equations as well as
Navier-Stokes equations. We will base on the results presented in [19] and [20].

3.4.1 Eulerian and Lagrangian approach

In order to derive mass and momemtum conservation equations, first it is essential to choose a coordinate
system: the eulerian or the lagrangian system. Before choosing the coordinate system, it is of key importance
to define a control volume. According to [21], a control volume is a volume in space (independent of mass)
through which fluid may flow. Furthermore, as any volume in space can be considered as a control volume, we
have to establish which control volume will be working with for the deduction of the equations. For the purpose
of this section, we might assume an arbitrary control volume.

On one hand, the eulerian coordinate system can be used when a control volume is fixed and we focus on the
fluid passing through it. In this case, at different times, the portion of the fluid we are seeing is also different
but the control volume remains the same. Besides, the independent variables are the spatial coordinates x, y, z
and also the time variable t.

On the other hand, in the lagrangian system we choose a portion of the fluid and follow it during a time
interval. Therefore, at different times we still have the same portion of fluid but at different spatial coordinates.
In this case, the independent variables are x0, y0, z0 and t, where x0, y0 and z0 denote the spatial coordinates
of the portion of the fluid at time t0. For convenience, we choose this last approach in order to derive the
conservation equations.

3.4.2 Material derivative

Let α be a given property of the fluid and u denote the velocity vector of the fluid. Then, the material derivative
is defined as follows:

Dα

Dt
=
∂α

∂t
+ (u · ∇)α. (3.44)

As mentioned before, we will deduce the mass and momemtum conservation laws in the lagrangian approach.
First, the left-hand side of (3.44) shows the total change in α in the lagrangian system, that is, how α changes
as we follow a particular portion of the fluid as it flows. In the right-hand side of (3.44), the total change in
α in the eulerian approach is represented: the first term represents the eulerian time derivative, that is how α
changes as t does it (recall that the portion of fluid is different for different times); while the second-term shows
how α changes in a system that does not depend on time.

3.4.3 Reynold’s transport theorem

The Reynold’s transport theorem will allow us to relate the eulerian and the lagrangian approaches. Let V
be an arbitrarily shaped control volume, let α denote an arbitrary property of the fluid and let u denote the
velocity vector of the fluid. Then,

D

Dt

∫
V

αdV =

∫
V

[
∂α

∂t
+∇ · (αu)

]
dV, (3.45)
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where ∇ · (αu) denotes the divergence of αu. Equivalently,

D

Dt

∫
V

αdV =

∫
V

∂α
∂t

+
∑
k

∂

∂xk
(αuk)

 dV. (3.46)

3.4.4 Mass conservation law

Let us consider an specific mass of fluid with an arbitrary volume V . If this fluid mass is followed as it flows, then
it can be seen that despite the fluid shape changes, its mass remains constant. This is called the conservation
of mass principle. If fluid density is denoted as ρ, the principle states that

D

Dt

∫
V

ρdV = 0. (3.47)

By using Reynold’s transport theorem and setting α = ρ, we get∫
V

[
∂ρ

∂t
+∇ · (ρu)

]
dV = 0,

and since V was arbitrarily chosen, the only way that the equality can be satisfied is by setting the integrand
equal to zero, i.e.,

∂ρ

∂t
+∇ · (ρu) = 0, (3.48)

or, by (3.44),

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0 ⇐⇒ Dρ

Dt
+ ρ∇ · u = 0. (3.49)

3.4.5 Momentum conservation law

The momentum conservation law is a direct consequence of the Newton’s second law of motion. The law states
that the rate of change of momentum variation is equal to the sum of the resultant forces, that is, for an
arbitrary volume V ,

D

Dt

∫
V

ρudV =

∫
V

fc + fedV, (3.50)

where fc denotes the contact density forces and fe denotes the external density forces. Let u = (u1, u2, ..., un).
To obtain an explicit formula from (3.50), we can work by components as follows:∫

V

(fc + fe)i dx =
D

Dt

∫
V

ρuidx

=

∫
V

[
∂

∂t
(ρui) +∇ · (ρuiu)

]
dx

=

∫
V

[
∂ρ

∂t
ui + ρ

∂ui
∂t

+∇ (ρui) · u + ρui∇ · u
]
dx

=

∫
V

[
∂ρ

∂t
ui + ρ

∂ui
∂t

+ (ρ∇ui + ui∇ρ) · u + uiρ∇ · u
]
dx

=

∫
V

[
ui

(
∂ρ

∂t
+∇ρ · u + ρ∇ · u

)
+ ρ

(
∂ui
∂t

+∇ui · u
)]

dx,

which, by (3.49), becomes ∫
V

(fc + fe)i dx =

∫
V

ρ

(
∂ui
∂t

+∇ui · u
)
dx.
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Since this equality is true for any domain V , we conclude

(fc + fe)i = ρ

(
∂ui
∂t

+∇ui · u
)
.

Writing equation above in vector form, give us

fc + fe = ρ

(
∂u

∂t
+ (u · ∇) u

)
.

This last result holds since, for a fixed component i, ∇ui ·u =

n∑
k=1

uk∂kui is the i-th component of (u · ∇) u.

Furthermore, the contact forces fc are the sum of a pressure and a viscosity component, that is, fc =fp+fv.
Johann and Daniel Bernoulli as well as Leonhard Euler worked in describing the contact forces components.
They managed to describe the pressure component as fp = −∇p (see [20]). Finally, the momentum conservation
law has the form

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p+ fv (x, t) + fe (x, t) , (3.51)

where fv represents the viscous effects on the fluid.

4 Theoretical framework of the project

Once the mass and momemtum conservation equations has been deduced, we can proceed studying the Euler
equations equation as well as the Navier-Stokes equations. As we will see later, the Euler equations are of great
importance in the present work: we are going to linearize these equations and solve the system in particular
domains of R2. The results are based on results in [19], [20], and [22].

4.1 Euler equations

Let u = (u1, u2, ..., un) be the velocity vector of the fluid. The inconvenience with the system described in
(3.49) − (3.51) is that the system give us n + 1 equations while it has n + 2 unknowns (u, ρ and p). Thus,
to overcome the difficulties of this system, Bernoulli and Euler (XVIII century) proposed to find reasonable
conditions to reduce the problem to one that actually can be mathematically analyzed. This reduction consists
of two considerations, the first is to consider fluids that cannot be compressed, known as incompressible fluids;
and the second is to consider fluids that do not suffer viscous effects, known as perfect fluids.

4.1.1 Incompressibility

This incompressible fluid condition states the following:

Dρ

Dt
= 0.

Besides, in order to subject the fluid to the mass conservation law in (3.49), it also happens that

∇ · u = 0.

If we add spatial homogeneity ρ = ρ (t), then, from Dρ/Dt = 0 we can get ∂ρ/∂t = 0; that is, ρ should be
constant in time and space, therefore, ρ is not a variable of the system anymore.

4.1.2 Perfect fluids

For fluids that are sensible to pressure but not to shear stress, the only contact force that will play a role will
be the pressure component, where fp = −∇p and the dynamic equation (3.51) becomes

∂u

∂t
+ u · ∇u = −1

ρ

[
(∇p) + fe (x, t)

]
. (4.1)
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By adding the incompressibility hypothesis, we have

∇ · u = 0. (4.2)

It is common to assume homogeneity, thus ρ is a constant. The Euler system for perfect fluids consists of
equations (4.1) and (4.2). Thus, this new system has n+ 1 unknown variables as well as n+ 1 equations.

4.2 Navier-Stokes equations

The Navier-Stokes system (NSS) is a set of non-linear PDEs describing the motion of an incompressible fluid. In
contrast to Euler system, NSS takes viscous effects into consideration. The NSS owes its name to Claude-Louis
Navier and sir George Gabriel Stokes since they determined the viscosity component in (3.51).

The force due to viscosity is defined as follows

fv = ∇τδV = ∇τδxδyδz, (4.3)

where τ is a shear stress. The shear stress is a tensor, and therefore, has three forces in each direction as
represented in Figure 3.

Figure 3: representation of the components of the forcing viscosity terms in a small region of volume δV.

For each direction x, y and z, we can sum the forces due to viscosity and get

∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

= fvx , (4.4)

∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

= fvy , (4.5)

∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

= fvz . (4.6)

For a fluid with constant viscosity, commonly referred as a newtonian fluid, the stress is proportional to the
rate of deformation. This means that

τij =

(
∂ui
∂xj

+
∂uj
∂xi

)
µ, for i, j ∈ {1, 2, 3},
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where u = (u1, u2, u3) and (x1, x2, x3) = (x, y, z). In particular,

τxy = τyx =

(
∂u1

∂y
+
∂u2

∂x

)
µ, (4.7)

τxz = τzx =

(
∂u1

∂z
+
∂u3

∂x

)
µ, (4.8)

τyz = τzy =

(
∂u2

∂z
+
∂u3

∂y

)
µ, (4.9)

τxx = 2µ
∂u1

∂x
, (4.10)

τyy = 2µ
∂u2

∂y
(4.11)

τzz = 2µ
∂u3

∂z
. (4.12)

Replacing (4.7)− (4.12) in (4.4), we now get

fvx =
∂

∂x

(
µ
∂u1

∂x
+ µ

∂u1

∂x

)
+

∂

∂y

(
∂u1

∂y
+
∂u2

∂x

)
µ+

∂

∂z

(
∂u1

∂z
+
∂u3

∂x

)
µ

= µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u1 + µ

∂

∂x

(
∂

∂x
u1 +

∂

∂y
u2 +

∂

∂z
u3

)

= µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u1 + µ

∂

∂x
∇ · u

= µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u1,

since we are assuming that ∇ · u = 0. Analogously, we can obtain explicit expressions for fvy and fvz ,

fvy = µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u2,

fvz = µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u3.

Then, with these results and (4.3) , we have that

fv = µ∆uδV.

Now, we are able to replace the viscosity term in (3.51) to get

∂u

∂t
+ (u · ∇) u = −1

ρ

(
∇p+ µ∆uδV + fe (x, t)

)
Let ν = µ/ρ be the parameter characterizing the viscosity property which depends on each fluid, we finally

get the NSS with constant density and viscosity:

∂u

∂t
+ (u · ∇) u +

1

ρ
∇p− ν∆u = −1

ρ
fe (x, t) , (4.13)

∇ · u = 0. (4.14)
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4.3 Problem statement

The problem considered in the present work consists of analyzing the waves in a container with a small hole,
around the origin, of size 2 at the center of the top wall. That is, we want to study incompressible, perfect
fluids, on general domains in R2. We start by considering the lower half-plane case, Ω = R2

− := {(x, y) /x ∈ R
and y ≤ 0}. The container geometry is represented in Figure 4, where the top walls are assumed to extend to
infinity.

x

y

x=! 1 x=1free surface

Figure 4: half-plane container geometry.

Some assumptions on the liquid inside the container are that it has a constant density ρ and a surface tension
σ, which appears on the system as an external force, related to the pressure. Therefore, our fluid will obey the
system of equations (4.1) − (4.2). The external force component to be considered is the gravity acceleration
denoted as −ge2, with g > 0 and e2 = (0, 1), the unit normal vector in the vertical direction. Thus, the fluid is
ruled by the following system:

∇ · u = 0, (4.15)

ρ

[
∂u

∂t
+ (u · ∇) u

]
= −∇p− ge2. (4.16)

In our case, gravity effects on the fluid can be neglected since we are working on a microscale and there is
almost no contribution in comparison to surface tension. Let the velocity vector u (x, y) = (u, v), where u and
v denote the velocity components in x and y, respectively. We will consider the following conditions for the
asymptotic behaviour at infinity:

u, v → 0, as y → −∞ or |x| → ∞. (4.17)

We also impose an impermeability condition on the walls, i.e.,

v = 0, at y = 0 and |x| ≥ 1. (4.18)

Let the equation of the free surface be of the form

y = h (x, t) , for |x| ≤ 1. (4.19)

At the free surface, consider that the pressure is given by the following expression

p = σκ, (4.20)

where σ is the surface tension and κ is the curvature of the surface. In this case, by (3.43),

κ = −hxx/
(

1 + h2
x

)3/2

. (4.21)

We can define Γ (x, y, t) = y − h (x, t). Thus, by the mass conservation and (4.19) we have that

dΓ

dt
=
∂Γ

∂x

dx

dt
+
∂Γ

∂y

dy

dt
+
∂Γ

∂t

= −uhx + v − ht
= 0.

Therefore,
ht = −uhx + v. (4.22)
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4.4 Linearized equations

In this section we are going to linearize Euler equations. Then, by using the Fourier transform method, we will
write the system on the free surface only, as a scalar equation involving an integral operator.

Before, let us reformulate the problem in terms of the velocity potential ϕ. Assume an incompressible,
inviscid and irrotational flow fluid satisfying the conservation equations. Then, we can consider a potential
function ϕ (x, y) of u such that u = ∇ϕ.

Then, from (4.15) we get that for (x, y) ∈ Ω:

0 = ∇ · u
= ∇ · ∇ϕ
= ∆ϕ.

Now, from (4.16) and considering that

(u · ∇) u = ∇
(

1

2
u · u

)
− u× (∇× u) ,

we get

ρ

[
∂∇ϕ
∂t

+∇1

2
|∇ϕ|2 −∇ϕ× (∇×∇ϕ)

]
= −∇p,

but for any scalar ϕ, it holds that
∇×∇ϕ = 0.

Therefore, we get:

ρ

[
∂∇ϕ
∂t

+∇1

2
|∇ϕ|2

]
= −∇p

ρ∇
[
∂ϕ

∂t
+

1

2
|∇ϕ|2

]
= −∇p,

implying,

ρ

[
∂ϕ

∂t
+

1

2
|∇ϕ|2

]
= −p+ c,

where we can assume the constant c to be zero.
Hence, for (x, y) ∈ Ω,

∂ϕ

∂t
+

1

2
|∇ϕ|2 +

1

ρ
p = 0.

Finally, the boundary conditions in (4.17) for u, can be rewritten in terms of ϕ, as

∂ϕ

∂x
,
∂ϕ

∂y
→ 0, as y → −∞ or |x| → ∞.

Summarizing, we have

∆ϕ = 0, for (x, y) ∈ R2
−, (4.23)

∂ϕ

∂t
+

1

2
|∇ϕ|2 +

1

ρ
p = 0, for (x, y) ∈ R2

−, (4.24)

∂ϕ

∂x
,
∂ϕ

∂y
→ 0, as y → −∞ or |x| → ∞. (4.25)

System (4.23)− (4.25), is known as the Bernoully formulation of Euler equations. As we mentioned above,
we are going to linearize this system, which will allow us to find an explicit solution.

Let
h (x, t) = εf (x, t) , |x| < 1. (4.26)
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Then, it is expected that the velocity potential be a small perturbation of the trivial solution for the
Laplacian. Therefore, let

ϕ = c+ εφ. (4.27)

Next, we are going to write system (4.23)− (4.25) in terms of φ and f . From (4.23), and the above equation
we obtain:

∆ϕ = ε∆φ = 0, for y < 0.

Since ε is arbitrary, it follows that
∆φ = 0, for y < 0.

By replacing (4.20), (4.21), and (4.27) into (4.24), we get

0 = ε
∂φ

∂t
+
ε2

2
|∇ϕ|2 +

1

ρ
σ

(
− hxx

(1 + h2
x)

3/2

)
= ε

∂φ

∂t
+
ε2

2
|∇ϕ|2 − ε

ρ
σ

[
fxx

(1 + ε2f2
x)

3/2

]
.

Dividing by ε, we obtain

∂φ

∂t
+
ε

2
|∇ϕ|2 =

σ

ρ

[
fxx

(1 + ε2f2
x)

3/2

]
,

∂φ

∂t
=
σ

ρ
fxx +O (ε) .

Since the O (ε) terms are negligible, we get:

∂φ

∂t
=
σ

ρ
fxx.

By (4.26) and (4.22) we get the following equation:

εft = −εufx + v, for |x| ≤ 1 and y = 0.

We also know that (u, v) =
(
ϕx, ϕy

)
=
(
εφx, εφy

)
, then

εft = −ε2φxfx + εφy,

ft = φy − εφxfx
= φy +O (ε) , for |x| ≤ 1 and y = 0.

Thus, by taking a first order approximation, we finally get:

ft =
∂φ

∂y
, for |x| ≤ 1 and y = 0.

By (4.27) and condition in (4.18), we obtain

∂φ

∂y
=

1

ε

∂ϕ

∂y
= 0, for |x| > 1 and y = 0.

The following conditions follow directly from (4.25):

∂φ

∂x
,
∂φ

∂y
→ 0, as y → −∞ or |x| → ∞.

To summarize, the Bernoully system, in terms of φ and f , becomes

∆φ = 0, for y < 0, (4.28)

∂φ

∂t
=
σ

ρ
fxx, for y = 0 and |x| ≤ 1, (4.29)

ft =
∂φ

∂y
, for |x| ≤ 1 and y = 0, (4.30)

∂φ

∂y
= 0, for |x| > 1 and y = 0, (4.31)

∂φ

∂x
,
∂φ

∂y
→ 0, as y → −∞ or |x| → ∞. (4.32)
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Remark 4.1. Our system needs boundary conditions (4.29) and (4.30) because part of the boundary (free surface
f) is unknown and it is precisely what we want to determine. This is what is known in the literature as a free
boundary problem.

4.5 Integrodifferential equation

From (4.28), we know that φ satisfies Laplace equation on the lower half plane. Then, we can find a solution
for φ under conditions (4.31) and (4.30) by applying the Fourier transform in x as in (3.6). That is:

F

(
∂2

∂y2
φ (x, y) +

∂2

∂x2
φ (x, y)

)
=

∂2

∂y2
F (φ)− k2F (φ)

= 0.

Besides, we know that the general solution of a second order ordinary differential equation with constant
coefficients is of the form:

F [φ] (k, y, t) = c1e
|k|y + c2e

−|k|y.

By (4.32), we also get that:

∂

∂y
F [φ] = c1|k|e|k|y − c2|k|e−|k|y −−−−−→

y→−∞
0,

which implies that c2 = 0, i.e.,
F [φ] (k, y, t) = c1e

|k|y.

At y=0, we have:
F [φ] (k, 0, t) = c1,

thus,
F [φ] (k, y, t) = F [φ] (k, 0, t) e|k|y. (4.33)

Since the inverse transform of e|k|y corresponds to the Poisson kernel Py (x) = −
√

2y√
π(x2+y2)

, and by using

the convolution theorem in (3.7), we have that:

F [φ] (k, y, t) = F [φ] (k, 0, t) e|k|y

= F [φ] (k, 0, t) · F
(
Py
)

=
1√
2π
F

[
φ (k, 0, t) ∗ −

√
2y√

π (x2 + y2)

]
.

By using the inverse tranform once again we get:

φ (x, y, t) = − y
π

∫ ∞
−∞

φ(z, 0, t)

(x− z)2
+ y2

dz.

By taking partial derivative with respect to y in (4.33) and evaluating at y = 0 we obtain:

∂F [φ]

∂y

∣∣∣∣
y=0

= |k|F [φ] (k, 0, t)

= (i) sgn (k) (−ik)F [φ] (k, 0, t) ,

by using (3.6) and (3.16), the equation becomes:

∂F [φ]

∂y

∣∣∣∣
y=0

= (i) sgn (k)F

[
∂φ

∂x
(k, 0, t)

]

= F

[
H

[
∂φ

∂x
(k, 0, t)

]]
,
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where H denotes the Hilbert transform.
Taking the inverse Fourier transform, we get

∂φ

∂y

∣∣∣∣
y=0

= H

[
∂φ

∂x

∣∣∣∣
y=0

]
.

By using (3.9) and (4.31), we obtain

∂φ

∂x

∣∣∣∣
y=0

= −H

[
∂φ

∂y

∣∣∣∣
y=0

]

= − 1

π

∫ ∞∗
−∞

(
∂φ/∂y

)
(z, 0, t)

x− z
dz

= − 1

π

∫ 1∗

−1

(
∂φ/∂y

)
(z, 0, t)

x− z
dz, (4.34)

by (4.30), we get

∂φ

∂x

∣∣∣∣
y=0

= − 1

π

∫ 1∗

−1

ft (z, t)

x− z
dz.

By derivating with respect to t in both sides, and using (4.29), we get

σ

ρ
fxxx (x, t) = − 1

π

∫ 1∗

−1

ftt (z, t)

x− z
dz.

We can assume the term σ/ρ = 1 to obtain

fxxx (x, t) = − 1

π

∫ 1∗

−1

ftt (z, t)

x− z
dz. (4.35)

4.6 Solution of the integrodifferential equation

In this subsection we focus on solving (4.35). First, apply the separation of variables method to rewrite the
equation as an eigenvalue problem, for which we will use the linearized system in (4.28) − (4.32). Besides, in
this subsection we use Tchebyshev polynomials as a basis to decompose the spatial frequencies.

Let’s assume that
f (x, t) = A (t)S (x) .

By replacing this on (4.35), we have

S′′′ (x)A (t) = − 1

π
A′′ (t)

∫ 1∗

−1

S (z)

x− z
dz, ∀t > 0,∀x ∈ (−1, 1) .

Thus,
S′′′ (x)

− 1
π

∫ 1∗

−1
S(z)
x−z dz

=
A′′ (t)

A (t)
= −λ, ∀t > 0,∀x ∈ (−1, 1) .

Therefore, we have two problems: (1) an ODE in the time variable and (2) an eigenvalue problem in space.

1. A′′ (t) + λA (t) = 0.

We can assume λ 6= 0, which is the case we are interested in. We know that the characteristic equation
associated to the above ode is:

m2 + λ = 0 =⇒ m = ±
√
−λ.

• Case 1. λ < 0, thus we have real roots and the solution is given by:

A (t) = c1e
√
−λt + c2e

−
√
−λt.
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• Case 2. λ > 0, thus we have complex roots and the solution is given by:

A (t) = c1 sin
(√

λt
)

+ c2 cos
(√

λt
)
.

2. S′′′ (x) =
λ

π

∫ 1∗

−1

S (z)

x− z
dz.

In this case,
S′′′ (x) = H

[
λS (z)

]
(x) ,

where H denotes the finite Hilbert transform in 3.18. Thus, by using the corresponding inversion in (3.19) ,
we get

λS (x) = − 1

π

∫ 1∗

−1

√
1− x2

√
1− z2

S′′′ (z)

x− z
dz

= − 1

π

√
1− x2

∫ 1∗

−1

S′′′ (z)√
1− z2 (x− z)

dz. (4.36)

We have to complement last equation with proper boundary conditions. We have two possible cases: (1)
homogeneous Dirichlet boundary condition, i.e, S (±1) = 0; or, (2) homogeneous Neumann boundary condition,

i.e., ∂S
∂n (x)

∣∣∣
±1

= 0.

• Case 1. Dirichlet homogeneous, S (±1) = 0.

It is also known as the pinned-end case. As it is a linear problem we can expect a Fourier expansion of
S (x), satisfying S (±1) = 0. The first kind of solution is the anti-symmetric one, as shown in Figure 5a;
this solution is of the form:

S (x) =

∞∑
n=1

cn sin (nπx) .

The second kind of solution is the symmetric solution, which is shown in Figure 5b; this solution is of the
form:

S (x) =

∞∑
n=1

cn cos

((
n− 1

2

)
πx

)
.

(a) Anti-symmetric (b) Symmetric

Figure 5: pinned-end edge case

• Case 2. Neumann homogeneous,
∂S

∂n

∣∣∣∣
±1

= 0.

It is also known as the free-end edge condition. Physically, this case means that waves form an angle of π
2

with the side walls. In this case the symmetric solution, shown in Figure 6a, is given by:

S (x) =

∞∑
n=1

cn cos (nπx) .
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The anti-symmetric solution, as in Figure 6b is given by:

S (x) =

∞∑
n=1

cn sin

((
n− 1

2

)
πx

)
.

(a) Symmetric (b) Anti-symmetric

Figure 6: free-end edge case

Let’s proceed to study each case individually.

4.6.1 Anti-symmetric pinned-end boundary condition

S (x) =

∞∑
n=1

an sin (nπx) .

Replacing the condition in (4.36), we obtain:

λ

∞∑
n=1

an sin (nπx) = − 1

π

√
1− x2

∫ 1∗

−1

1√
1− z2 (x− z)

− ∞∑
n=1

an (nπ)
3

cos (nπz)

 dz
=
√

1− x2

∞∑
n=1

(nπ)
3
an

1

π

∫ 1∗

−1

cos (nπz)√
1− z2 (x− z)

dz.

Because of the weight in the integral, Tchebyshev polynomials are a suitable basis to work with.
Let

cos (nπx) =

∞∑
k=0

cknTk (x) , (4.37)

with

ckn =


1
π

∫ 1

−1
cos (nπx) 1√

1−x2
dx, k = 0,

2
π

∫ 1

−1
cos (nπx) Tk(x)√

1−x2
dx, k ≥ 1.

Recall that Tk (x) is the first-kind Tchebyshev polynomial, defined as in (3.21) . Thus,

λ

∞∑
n=1

an sin (nπx) =
√

1− x2

∞∑
n=1

an (πn)
3 1

π

∫ 1∗

−1

∑∞
k=0 cknTk (z)√
1− z2 (x− z)

dz

=
√

1− x2
∑
n≥1

∑
k≥0

cknan (πn)
3 1

π

∫ 1∗

−1

Tk (z)√
1− z2 (x− z)

dz

= −
√

1− x2
∑
n,k≥1

cknan (πn)
3
Uk−1 (x) , (4.38)

where Uk (x) is the second-kind Tchebyshev polynomial defined as in (3.25) .
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We need to expand the left hand side in order to have both sides in function of the second-kind polynomial.
Let

sin (nπx)√
1− x2

=

∞∑
r=1

ernUr−1 (x) , (4.39)

where

ern =
2

π

∫ 1

−1

sin (nπx)Ur−1 (x) dx.

Replacing it into (4.38), it becomes

λ
∑
n,r≥1

ernanUr−1 (x) = −
∑
n,k≥1

cknan (πn)
3
Uk−1 (x) ,

λ
∑
n≥1

ernan = −
∑
n≥1

cknan (πn)
3
, ∀k, r ≥ 1.

In matrix notation:
λE~a = −C

(
diag (nπ)

3
)
~a, (4.40)

From (4.37), (4.39) and the orthogonality of the Tchebyshev polynomials, we can explicitly get the coefficients
of matrices C and E.

Proposition 4.2. If C is defined as above, and

D = dkn =

∫ 1

−1

cos (nπx)Tk (x) dx, ∀k ≥ 0,∀n ≥ 1, (4.41)

then DT = C−1,

Proof. We know that

cos (nπx) =

∞∑
k=0

cknTk (x) ,

thus, ∫ 1

−1

cos (nπx)
Tm (x)√
1− x2

dx =

∫ 1

−1

∞∑
k=0

ckn
Tk (x)Tm (x)√

1− x2
dx

=

∞∑
k=0

ckn

∫ 1

−1

Tk (x)Tm (x)√
1− x2

dx

=

 πcmn, m = n = 0,

π
2 cmn, m = n 6= 0.

From where, we obtain that

ckn =


1
π

∫ 1

−1
cos (nπx) 1√

1−x2
dx, k = 0,

2
π

∫ 1

−1
cos (nπx) Tk(x)√

1−x2
dx, k ≥ 1.

Analogous to (4.37), we can assume that

cos (nπx) =

∞∑
k=0

αkn
Tk (x)√
1− x2

.

By orthogonality,

αkn =


1
π

∫ 1

−1
cos (nπx)Tk (x) dx = 1

πdkn, k = 0,

2
π

∫ 1

−1
cos (nπx)Tk (x) dx = 2

πdkn, k ≥ 1.
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then,

cos (nπx) =
1

π
d0n

1√
1− x2

+
2

π

∑
k≥1

dkn
Tk (x)√
1− x2

.

We also know that

δnm =

∫ 1

−1

cos (nπx) cos (mπx) dx

=

∫ 1

−1

 ∞∑
k=1

cknTk (x)


 1

π
d0n

1√
1− x2

+
2

π

∑
k̂≥1

dk̂n
Tk̂ (x)
√

1− x2

 dx
=

1

π
c0nd0n

∫ 1

−1

1√
1− x2

dx+
2

π

∑
k,k̂≥1

ckndk̂m

∫ 1

−1

Tk (x)Tk̂ (x)
√

1− x2
dx

= c0nd0n +
∑
k≥1

ckndkn

=
∑
k≥0

ckndkn,

which, by (3.35), becomes

δnm =

∞∑
k=0

ckndkm,

or, in matrix notation
CTD = I =⇒ DTC = I,

therefore, the proposition has been proved.

We already know that (4.40) holds for k, n ≥ 1, while (4.41) holds for k ≥ 0 and n ≥ 1. Therefore, before
multiplying (4.40) by DT , we need to add a zero first-row to E and a first-row of coefficients c0n to C, for n ≥ 1.
These completed matrices are going to be denoted as E and C, respectively.

The system that is going to be multiplied by DT is the following:

λE~a = −C diag (nπ)
3
, (4.42)

and this is valid as long as the following condition holds

∑
n≥1

c0n (nπ)
3
an =

1

π

∫ 1

−1

∑
n≥1 an (nπ)

3
cos (nπx)

√
1− x2

dx

= − 1

π

∫ 1

−1

S′′′ (x)√
1− x2

dx

= 0.

Finally, multiplying (4.42) by DT , we have:

λDTE~a = −diag (nπ)
3
~a.

This eigenvalue problem can be solved by using MATLAB. In order to solve the problem, we first need to
truncate it. Let us consider the problem for dimension N = 50, then the obtained eigenvalues λi for i = 1 : 50,
and their associated eigenvectors ai are the ones given in Table 1. Furthermore, notice that for a given i,
ai = [a1, a2, ..., a50]

T
.
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λ1 = 34.31338847 λ2 = 262.2696816 λ3 = 870.0457763 λ4 = 2043.686572 λ5 = 3969.230952
a1 -1 0.114282556 -0.100089552 -0.092637944 0.08692467
a2 -0.007266829 -1 0.078165716 0.062956624 -0.05758339
a3 0.001155386 -0.015954596 -1 -0.065430934 0.048908545
a4 -0.000320826 0.003777839 -0.021632909 1 -0.059016131
a5 0.000118319 -0.001355745 0.006190956 0.025444976 1
a6 -5.21E-05 0.000597542 -0.002555324 -0.008135654 0.028148725
a7 2.60E-05 -0.000300007 0.001253401 0.003666506 -0.009679945
a8 -1.41E-05 0.000165155 -0.000684589 -0.00193096 0.004633667
a9 8.26E-06 -9.74E-05 0.000403365 0.00111826 -0.002566991
a10 -5.10E-06 6.07E-05 -0.000251681 -0.000691965 0.001551898
a11 3.29E-06 -3.95E-05 0.000164307 0.000450068 -0.000996409
a12 -2.21E-06 2.67E-05 -0.000111293 -0.000304485 0.000669167

Table 1: first eigenvalues and its associated eigenvectors for the anti-symmetric pinned-end case. This data was
obtained by using MATLAB and by letting N = 50.

From Figure 7, it seems that the frist eigenvalue is convergent as N →∞. In fact, λ1 converges to 34.3134
as N grows.

Figure 7: different values for λ1 as dimension N grows.

Since we have solved the eigenvalue problem, we are now able to plot the free surface for a fixed value of t.
Let us consider t = 0, then h (x, t) = h (x) = S (x). The free surface of the fluid in presence of walls differs from
the case where no walls are considered, this can be seen in Figure 8.
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(a) Eigenfunction associated to λ1 in comparison with sin (πx). (b) Eigenfunction associated to λ2 in comparison with sin (2πx).

(c) Eigenfunction associated to λ3 in comparison with sin (3πx).

Figure 8: the free surface h (x) in presence of walls compared to the free surface in absence of walls (sine
frequencies).

4.6.2 Symmetric pinned-end boundary

S (x) =

∞∑
n=1

bn cos

((
n− 1

2

)
πx

)
.

In this case, it is possible that the free-surface is as illustrated in Figure 9. Clearly, the area under the curve
is not zero and as a consequence, there is no mass conservation.
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Figure 9: symmetric pinned-end case without mass conservation.

But we want our surface to be subjected to the mass conservation law. Thus, we need to impose an extra
condition on f (x, t) = A (t)S (x) as follows:

0 =

∫ 1

−1

f (x, t) dx

= A (t)

∫ 1

−1

S (x) dx

= A (t)

∞∑
n=1

bn

∫ 1

−1

cos

((
n− 1

2

)
πx

)
dx. (4.43)

Recall that ∫ 1

−1

cos

((
n− 1

2

)
πx

)
dx =

1(
n− 1

2

)
π

sin

((
n− 1

2

)
πx

)∣∣∣∣∣
1

−1

= (−1)
n+1 2(

n− 1
2

)
π
,

and, thus for

ωn = (−1)
n+1 2(

n− 1
2

)
π
, (4.44)

(4.43) becomes
∞∑
n=1

ωnbn = 0. (4.45)

We also know that replacing the symmetric pinned end condition in (4.36), we obtain:

λ

∞∑
n=1

bn cos

((
n− 1

2

)
πx

)
= − 1

π

√
1− x2

∫ 1∗

−1

∑∞
n=1

((
n− 1

2

)
π
)3

bn sin
((
n− 1

2

)
πz
)

√
1− z2 (x− z)

dz

= −
√

1− x2

∞∑
n=1

[(
n− 1

2

)
π

]3

bn
1

π

∫ 1∗

−1

sin
((
n− 1

2

)
πz
)

√
1− z2 (x− z)

dz.

Let

sin

((
n− 1

2

)
πx

)
=

∞∑
k=1

cknTk (x) , (4.46)

where,

ckn =
2

π

∫ 1

−1

sin

((
n− 1

2

)
πx

)
Tk (x)√
1− x2

dx.

Mathematician 35 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Thus,

λ

∞∑
n=1

bn cos

((
n− 1

2

)
πx

)
= −

√
1− x2

∞∑
n=1

((
n− 1

2

)
π

)3

bn
1

π

∫ 1∗

−1

∑∞
k=0 cknTk (z)√
1− z2 (x− z)

dz

= −
√

1− x2
∑
n≥1

∑
k≥0

((
n− 1

2

)
π

)3

cknbn
1

π

∫ 1∗

−1

Tk (z)√
1− z2 (x− z)

dz

=
√

1− x2
∑
n,k≥1

((
n− 1

2

)
π

)3

cknanUk−1 (x) . (4.47)

Let

cos
((
n− 1

2

)
πx
)

√
1− x2

=

∞∑
r=1

ernUr−1 (x) ,

where,

ern =
2

π

∫ 1

−1

cos

((
n− 1

2

)
πx

)
Ur−1 (x) dx.

Using this identity in (4.47), we get:

λ
∑
n,r≥1

bnernUr−1 (x) =
∑
n,k≥1

((
n− 1

2

)
π

)3

cknbnUk−1 (x) .

Therefore,

λ
∑
n≥1

bnern =
∑
n≥1

((
n− 1

2

)
π

)3

cknbn, ∀k, r ≥ 1

or, in matrix notation,

λE~b = C

diag

[(
n− 1

2

)
π

]3
~b. (4.48)

Again, we can explicitly get the coefficients of matrices C and E.

Proposition 4.3. If C is defined as above, and

D = dkn =

∫ 1

−1

sin

((
n− 1

2

)
πx

)
Tk (x) dx, ∀k, n ≥ 1,

then
DT = C−1

Proof. We know that

sin

((
n− 1

2

)
πx

)
=

∞∑
k=1

cknTk (x) , (4.49)

thus, ∫ 1

−1

sin

((
n− 1

2

)
πx

)
Tm (x)√
1− x2

dx =

∫ 1

−1

∞∑
k=1

ckn
Tk (x)Tm (x)√

1− x2
dx

=

∞∑
k=1

ckn

∫ 1

−1

Tk (x)Tm (x)√
1− x2

dx

=
π

2
cmn.
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From this, we obtain that

ckn =
2

π

∫ 1

−1

sin

((
n− 1

2

)
πx

)
Tk (x)√
1− x2

dx.

Analogous to (4.46), let us assume

sin

((
n− 1

2

)
πx

)
=

∞∑
k=1

αkn
Tk (x)√
1− x2

.

By orthogonality, it holds that

αkn =
2

π

∫ 1

−1

sin

((
n− 1

2

)
πx

)
Tk (x) dx =

2

π
dkn.

Then,

sin

((
n− 1

2

)
πx

)
=

2

π

∞∑
k=1

dkn
Tk (x)√
1− x2

.

Besides, we know that

δnm =

∫ 1

−1

sin

((
n− 1

2

)
πx

)
sin

((
m− 1

2

)
πx

)
dx

=
2

π

∫ 1

−1

 ∞∑
k=1

cknTk (x)

 ∞∑
k̂=1

dk̂m
Tk̂ (x)
√

1− x2

 dx

=
2

π

∑
k,k̂≥1

ckndk̂m

∫ 1

−1

Tk (x)Tk̂ (x)
√

1− x2
dx

=

∞∑
k=1

ckndkm,

or, in matrix notation,
CTD = I =⇒ DTC = I.

Therefore, the proposition has been proven.

By multiplying (4.48) by DT , we get:

λDTE~b = diag

[(
n− 1

2

)
π

]3

~b, (4.50)

but this system does not consider mass conservation law, so we need to impose condition (4.45).
Therefore, consider the system

λ
(
DTE

)
~b = diag

[(
n− 1

2

)
π

]3

~b,

with
(
DTE

)
being the DTE matrix adding a zero first row and diag being the same diagonal matrix added

coefficients wn, n ≥ 1 in the first row. The sytem in mention satisfies both (4.45) and (4.50), hence it is the
system we are working with in order to get the eigenvalues.

Again, we solve this eigenvalue problem with MATLAB and we truncate it. Let us consider the problem for
dimension N = 50, then the obtained eigenvalues λi for i = 1 : 50, and their associated eigenvectors ai are the
ones given in Table 2. Furthermore, notice that for a given i, = bi = [b1, b2, ..., b50]

T
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λ1 = 89.07560592 λ2 = 447.185654330556 λ3 = 1263.38586834285 λ4 = 2725.0041811121
b1 -0.010916623 -0.007633327 -0.005956717 -0.004884362
b2 -0.06120303 0.011168489 0.007733839 0.006275705
b3 0.002288109 0.102746236 -0.011931031 -0.007800237
b4 -0.000684191 -0.004210158 -0.139787439 0.012657817
b5 0.00029081 0.00149753 0.005762789 0.173926497
b6 -0.000147563 -0.000722119 -0.002236615 -0.007021789
b7 8.37E-05 0.000402494 0.001158436 0.002870289
b8 -5.14E-05 -0.000245425 -0.000684334 -0.001555826
b9 3.34E-05 0.000159369 0.000437674 0.000955686
b10 -2.27E-05 -0.000108494 -0.000295706 -0.000632051
b11 1.60E-05 7.66E-05 0.00020814 0.000439552
b12 -1.17E-05 -5.58E-05 -0.000151331 -0.000317342

Table 2: first eigenvalues and its associated eigenvectors for the symmetric pinned-end case. This data was
obtained by using MATLAB and by letting N = 50.

4.6.3 Symmetric free-end boundary condition

S (x) =

∞∑
n=1

b̃n cos (nπx) .

Replacing the condition in (4.36), we obtain:

λ

∞∑
n=1

b̃n cos (nπx) = − 1

π

√
1− x2

∫ 1∗

−1

∑∞
n=1 (nπ)

3
b̃n sin (nπz)√

1− z2 (x− z)
dz

= −
√

1− x2

∞∑
n=1

(nπ)
3
b̃n

1

π

∫ 1∗

−1

sin (nπz)√
1− z2 (x− z)

dz.

Let

sin (nπx) =

∞∑
k=1

cknTk (x) , (4.51)

with

ckn =
2

π

∫ 1

−1

sin (nπx)
Tk (x)√
1− x2

dx.

Thus,

λ

∞∑
n=1

b̃n cos (nπx) = −
√

1− x2

∞∑
n=1

(nπ)
3
b̃n

1

π

∫ 1∗

−1

∑∞
k=1 cknTk (z)√
1− z2 (x− z)

dz

= −
√

1− x2
∑
n,k≥1

(nπ)
3
cknb̃n

1

π

∫ 1∗

−1

Tk (z)√
1− z2 (x− z)

dz

=
√

1− x2
∑
n,k≥1

(nπ)
3
cknb̃nUk−1 (x) . (4.52)

Let
cos (nπx)√

1− x2
=

∞∑
r=1

ernUr−1 (x) ,

with

ern =
2

π

∫ 1

−1

cos (nπx)Ur−1 (x) dx.
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Using this identity in (4.52), we get:

λ
∑
n,r≥1

b̃nernUr−1 (x) =
∑
n,k≥1

(nπ)
3
cknb̃nUk−1 (x) .

Therefore,

λ
∑
n≥1

b̃nern =
∑
n≥1

(nπ)
3
cknb̃n, ∀k, r ≥ 1,

or, in matrix notation,

λE
~̃
b = C

(
diag (nπ)

3
)
~̃
b. (4.53)

Again, we can explicitly get the coefficients of matrices C and E.

Proposition 4.4. If C is defined as above, and

D = dkn =

∫ 1

−1

sin (nπx)Tk (x) dx,

then
DT = C−1

Proof. We know that

sin (nπx) =

∞∑
k=1

cknTk (x) , (4.54)

thus, ∫ 1

−1

sin (nπx)
Tm (x)√
1− x2

dx =

∫ 1

−1

∞∑
k=1

ckn
Tk (x)Tm (x)√

1− x2
dx

=

∞∑
k=1

ckn

∫ 1

−1

Tk (x)Tm (x)√
1− x2

dx

=
π

2
cmn.

From this, we obtain that

ckn =
2

π

∫ 1

−1

sin (nπx)
Tk (x)√
1− x2

dx.

Analogous to (4.51), assume

sin (nπx) =

∞∑
k=1

αkn
Tk (x)√
1− x2

.

By orthogonality, it holds that

αkn =
2

π

∫ 1

−1

sin (nπx)Tk (x) dx =
2

π
dkn.

Then,

sin (nπx) =
2

π

∞∑
k=1

dkn
Tk (x)√
1− x2

.
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Besides, we know that

δnm =

∫ 1

−1

sin (nπx) sin (mπx) dx

=
2

π

∫ 1

−1

 ∞∑
k=1

cknTk (x)

 ∞∑
k̂=1

dk̂m
Tk̂ (x)
√

1− x2

 dx
=

2

π

∑
k,k̂≥1

ckndk̂m

∫ 1

−1

Tk (x)Tk̂ (x)
√

1− x2
dx

=

∞∑
k=1

ckndkm,

or, in matrix notation,
CTD = I =⇒ DTC = I.

Therefore, the proposition has been proven.

By multiplying (4.53) by DT , we finally get:

λDTE
~̃
b = diag (nπ)

3 ~̃
b.

Again, we solve this eigenvalue problem with MATLAB and we truncate it. Let us consider the problem for
dimension N = 50, then the obtained eigenvalues λi for i = 1 : 50, and their associated eigenvectors ai are the

ones given in Table 3. Furthermore, notice that for a given i, b̃i =
[
b̃1, b̃2, ..., b̃50

]T
.

λ1 = 34.31336564 λ2 = 262.2693226 λ3 = 870.0439734 λ4 = 2043.680906 λ5 = 3969.217186

b̃1 1 -0.057140528 0.033362423 -0.023158677 0.017384073

b̃2 0.014533452 1 -0.05210861 0.031476691 -0.023031761

b̃3 -0.003466077 0.023930969 1 -0.049069802 0.029342457

b̃4 0.001283261 -0.007555277 0.028841721 1 -0.047207557

b̃5 -0.000591566 0.003389125 -0.010317288 0.031802324 1

b̃6 0.000312668 -0.001792466 0.005110054 -0.012201692 0.033772334

b̃7 -0.000181656 0.00104991 -0.002924192 0.006415269 -0.013549076

b̃8 0.000113157 -0.000660534 0.001825267 -0.003861134 0.007412068

b̃9 -7.44E-05 0.00043843 -0.001209859 0.002515492 -0.004619301

b̃10 5.10E-05 -0.00030347 0.000838748 -0.001729447 0.003102818

b̃11 -3.62E-05 0.000217289 -0.00060231 0.001237319 -0.002191345

b̃12 2.65E-05 -0.000159975 0.000444977 -0.000912981 0.001605036

Table 3: first eigenvalues and its associated eigenvectors for the symmetric free-end case. This data was obtained
by using MATLAB and by letting N = 50.

From Figure 10, it seems the first eigenvalue is convergent as N →∞. In this figure, we see that λ1 converges
to 34.3133 as N grows.
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Figure 10: different values for λ1 as dimension N grows.

(a) Eigenfunction associated to λ1 in comparison
with cos (πx).

(b) Eigenfunction associated to λ2 in comparison
with cos (2πx).

(c) Eigenfunction associated to λ3 in comparison
with cos (3πx).

Figure 11: the free surface h (x) in presence of walls compared to the free surface in absence of walls (cosine
frequencies).

We are able to plot the free surface for a fixed value of t. Let us consider t = 0, then h (x, t) = h (x) = S (x).
The free surface of the fluid in presence of walls differs from the case where no walls are considered, this can be
seen in Figure 11.
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4.6.4 Anti-symmetric free-end boundary condition

S (x) =

∞∑
n=1

ãn sin

((
n− 1

2

)
πx

)
.

Replacing the condition in (4.36), we obtain:

λ

∞∑
n=1

ãn sin

((
n− 1

2

)
πx

)
=

1

π

√
1− x2

∫ 1∗

−1

∑∞
n=1

((
n− 1

2

)
π
)3

ãn cos
((
n− 1

2

)
πz
)

√
1− z2 (x− z)

dz

=
√

1− x2

∞∑
n=1

((
n− 1

2

)
π

)3

ãn
1

π

∫ 1∗

−1

cos
((
n− 1

2

)
πz
)

√
1− z2 (x− z)

dz.

Let

cos

((
n− 1

2

)
πx

)
=

∞∑
k=0

cknTk (x) , (4.55)

with

ckn =


1
π

∫ 1

−1
cos
((
n− 1

2

)
πx
)

1√
1−x2

dx, k = 0,

2
π

∫ 1

−1
cos
((
n− 1

2

)
πx
)

Tk(x)√
1−x2

dx, k ≥ 1.

Thus,

λ

∞∑
n=1

ãn sin

((
n− 1

2

)
πx

)
=
√

1− x2
∑
n,k≥1

((
n− 1

2

)
π

)3

cknãn
1

π

∫ 1∗

−1

Tk (z)√
1− z2 (x− z)

dz

= −
√

1− x2
∑
n,k≥1

((
n− 1

2

)
π

)3

crnãnUk−1 (x) . (4.56)

Besides, let

sin
((
n− 1

2

)
πx
)

√
1− x2

=

∞∑
r=1

ernUr−1 (x) , (4.57)

ern =
2

π

∫ 1

−1

sin

((
n− 1

2

)
πx

)
Ur−1 (x) dx.

Replacing it into (4.38), it becomes

λ
∑
n,r≥1

ernãnUr−1 (x) = −
∑
n,k≥1

((
n− 1

2

)
π

)3

cknãnUk−1 (x) ,

λ
∑
n≥1

ernãn = −
∑
n≥1

((
n− 1

2

)
π

)3

cknãn, ∀k, r ≥ 1.

In matrix notation:

λE~a = −C

diag

[(
n− 1

2

)
π

]3
~a. (4.58)

Once again, we can explicitly get the coefficients of matrices C and E.

Proposition 4.5. If C is defined as above, and

D = dkn =

∫ 1

−1

cos

((
n− 1

2

)
πx

)
Tk (x) dx, ∀k ≥ 0,∀n ≥ 1, (4.59)

then DT = C−1.
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Proof. We know that

cos

((
n− 1

2

)
πx

)
=

∞∑
k=0

cknTk (x) ,

thus, ∫ 1

−1

cos

((
n− 1

2

)
πx

)
Tm (x)√
1− x2

dx =

∫ 1

−1

∞∑
k=0

ckn
Tk (x)Tm (x)√

1− x2
dx

=

∞∑
k=0

ckn

∫ 1

−1

Tk (x)Tm (x)√
1− x2

dx

=

 πcmn, m = n = 0,

π
2 cmn, m = n 6= 0.

From where, we obtain that

ckn =


1
π

∫ 1

−1
cos
((
n− 1

2

)
πx
)

1√
1−x2

dx, k = 0,

2
π

∫ 1

−1
cos
((
n− 1

2

)
πx
)

Tk(x)√
1−x2

dx, k ≥ 1.

Analogous to (4.55), we can assume that

cos

((
n− 1

2

)
πx

)
=

∞∑
k=0

αkn
Tk (x)√
1− x2

.

By orthogonality,

αkn =


1
π

∫ 1

−1
cos
((
n− 1

2

)
πx
)
dx = 1

πdkn, k = 0,

2
π

∫ 1

−1
cos
((
n− 1

2

)
πx
)
Tk (x) dx = 2

πdkn, k ≥ 1,

then,

cos

((
n− 1

2

)
πx

)
=

1

π

d0n√
1− x2

+
2

π

∞∑
k=1

dkn
Tk (x)√
1− x2

.

We also know that

δnm =

∫ 1

−1

cos

((
n− 1

2

)
πx

)
cos

((
m− 1

2

)
πx

)
dx

=

∫ 1

−1

 ∞∑
k=0

cknTk (x)

 1

π

d0n√
1− x2

+
2

π

∞∑
k̂=1

dk̂n
Tk̂ (x)
√

1− x2

 dx

=
1

π
c0nd0n

∫ 1

−1

1√
1− x2

dx+
2

π

∑
k,k̂≥1

ckndk̂m

∫ 1

−1

Tk (x)Tk̂ (x)
√

1− x2
dx

= c0nd0n +
∑
k≥1

ckndkn

=
∑
k≥0

ckndkn,

or, in matrix notation
CTD = I =⇒ DTC = I,

therefore, the proposition has been proved.
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We already know that (4.58) holds for k, n ≥ 1, while (4.59) holds for k ≥ 0 and n ≥ 1. Therefore, before
multiplying (4.40) by DT , we need to add a zero first-row to E and a first-row of coefficients c0n to C, for n ≥ 1.
These completed matrices are going to be denoted as E and C, respectively.

The system that is going to be multiplied by DT is the following:

λE~a = −C diag (nπ)
3
, (4.60)

and this is valid as long as the following condition holds

∑
n≥1

c0n

((
n− 1

2

)
π

)3

an =
1

π

∫ 1

−1

∑
n≥1 an

((
n− 1

2

)
π
)3

cos
((
n− 1

2

)
πx
)

√
1− x2

dx

= − 1

π

∫ 1

−1

S′′′ (x)√
1− x2

dx

= 0.

Finally, multiplying (4.60) by DT , we have:

λDTE~̃a = − diag

[(
n− 1

2

)
π

]3

~̃a.

As before, we solve this eigenvalue problem with MATLAB and we truncate it. Let us consider the problem
for dimension N = 50, then the obtained eigenvalues λi for i = 1 : 50, and their associated eigenvectors ai are
the ones given in Table 4. Furthermore, notice that for a given i, ãi = [ã1, ã2, ..., ã50]

T
.

λ1 = 5.005739892 λ2 = 113.9431184 λ3 = 509.724646 λ4 = 1378.354237 λ5 = 2905.865588
ã1 -1 -0.078454478 0.04092459 -0.026253864 0.018674219
ã2 -0.008835174 1 -0.062644329 0.037292738 -0.026643463
ã3 0.001473296 0.023195705 1 -0.055374691 0.033155007
ã4 -0.000448371 -0.00645288 0.029497567 1 -0.051572518
ã5 0.000182643 0.002649954 -0.009897411 0.032859789 1
ã6 -8.86E-05 -0.001313684 0.004665272 -0.012129809 0.034930139
ã7 4.84E-05 0.000732449 -0.002566623 0.006179825 -0.013655862
ã8 -2.87E-05 -0.000443288 0.001551749 -0.003622984 0.007309918
ã9 1.82E-05 0.000285177 -0.001001827 0.002308539 -0.004471194
ã10 -1.21E-05 -0.000192374 0.00067937 -0.001557381 0.002954909
ã11 8.36E-06 0.0001348 -0.000478796 0.001096159 -0.002057393
ã12 -5.97E-06 -9.75E-05 0.000348134 -0.000797576 0.001488515

Table 4: first eigenvalues and its associated eigenvectors for the anti-symmetric free-end case. This data was
obtained by using MATLAB and by letting N = 50.

From Figure 12, it seems the first eigenvalue is convergent as N →∞. In this figure, we see that λ1 converges
to 5.0057 as N grows.
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Figure 12: different values for λ1 as dimension N grows.

Once again, we are able to plot the free surface for a fixed value of t. Let us consider t = 0, then h (x, t) =
h (x) = S (x). The free surface of the fluid in presence of walls differs from the case where no walls are considered,
this can be seen in Figure 13.

(a) Eigenfunction associated to λ1 in comparison

with sin
(
πx
2

)
.

(b) Eigenfunction associated to λ2 in comparison

with sin
(

3πx
2

)
.

(c) Eigenfunction associated to λ3 in comparison

with sin
(

5πx
2

)
.

Figure 13: the free surface h (x) in presence of walls compared to the free surface in absence of walls (sine
frequencies).
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4.7 Conformal mapping

In this section we will try to solve system (4.28) − (4.32) for any arbitrary geometry of the container. The
technique consists on making a change of variable such that the geometry in mention is transformed into the
lower half-plane, where the problem has already been solved. The main idea is to get an expression for the
normal derivative in terms of the conformal map. This technique is widely described in [23].

Let ψ : D ⊆ C→ R be defined as follows:

ψ (x, y) = ψ(z).

Then, for w = x′ + iy′ ∈ D̃, ψ̃ : D̃ ⊆ C→ R is defined as:

ψ̃ (w) := ψ
(
f−1 (w)

)
= ψ

(
x
(
x′, y′

)
, y
(
x′, y′

))
,

where z = x+ iy ∈ D, f is injective on D ∪ ∂D and it is holomorphic.
By definition:

ψ (x, y) = ψ̃
(
x′ (x, y) , y′ (x, y)

)
,

where
w = f (z) , (4.61)

is our conformal mapping.
Let C be a curve in the z-plane written as z = z (t), we have that the normal derivative of ψ is defined in

[24] as follows: since

Im

[(
∂ψ

∂x
− i∂ψ

∂y

)
dz

dt

]
= Im

[
∂ψ

∂x

(
dx

dt
+ i

dy

dt

)
− i∂ψ

∂y

(
dx

dt
+ i

dy

dt

)]

= Im

(
∂ψ

∂t
+ i

∂ψ

∂x

dy

dt
+
∂ψ

∂t
− i∂ψ

∂y

dx

dt

)
=
∂ψ

∂t

dy

dt
− ∂ψ

∂y

dx

dt

=

∣∣∣∣dzdt
∣∣∣∣∂ψ∂n ,

then,

∂ψ

∂n
=

1∣∣dz
dt

∣∣ Im
[(

∂ψ

∂x
− i∂ψ

∂y

)
dz

dt

]
.

Under (4.61), C is mapped into C∗ : w (t) = f
(
z (t)

)
. By applying the chain rule, if ψ̃

(
x′, y′

)
=

ψ
(
x
(
x′, y′

)
, y
(
x′, y′

))
,

∣∣∣∣dwdt
∣∣∣∣∂ψ̃∂ñ = Im

( ∂ψ̃
∂x′
− i ∂ψ̃

∂y′

)
dw

dt


= Im

{∂ψ
∂x

(
∂x

∂x′
− i ∂x

∂y′

)
+
∂ψ

∂y

(
∂y

∂y′
− i ∂y

∂x′

)}
dw

dt


= Im

[(
∂ψ

∂x
− i∂ψ

∂y

)
dz

dw

dw

dt

]

= Im

[(
∂ψ

∂x
− i∂ψ

∂y

)
dz

dt

]

=

∣∣∣∣dzdt
∣∣∣∣∂ψ∂n .
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Then,

∂ψ̃

∂ñ
=

∣∣∣∣ dzdw
∣∣∣∣∂ψ∂n

=
1

|f ′ (z)|
∂ψ

∂n
. (4.62)

4.8 Solution of the integro-differential equation in a container with vertical walls

As before, let us consider the case of a container with a small hole, around the origin, of size 2 at the center
of the top wall, but this time with vertical walls at x = ±(b+ 1), for some positive b. The idea is to solve the
problem by using a conformal map. In fact, the conformal map that transforms the geometry in mention into
the lower half-plane is

f (z) = sin

[
πz

2 (b+ 1)

]
. (4.63)

The domain in mention can be denoted as

D =

(x, y) : |x| < b+ 1, y <

 0, − (1 + b) < x < −1;
h (x, t) , |x| < 1;
0, 1 < x < b+ 1,

 ,

and its boundary is defined by the free surface and the walls. The new container geometry is shown in Figure
14.

Figure 14: container with vertical walls.

Again, φ is the velocity potential satisfying:

∆φ = 0 in D, (4.64)

∂φ

∂n
= 0 on the walls. (4.65)

The mapping defined in (4.63) transforms D into D̃, defined as:

D̃ =


(
x′, y′

)
: |x′| <∞, y′ <


0, x′ < − sin

(
π

2(1+b)

)
;

f
(
h (x, t)

)
= H

(
x′, t

)
, |x′| < sin

(
π

2(1+b)

)
;

0, x′ > sin
(

π
2(1+b)

)
,


where x′ and y′ are coordinates in the w−plane. This is a variation of our first domain (lower half-plane case).

By means of the conformal mapping, our new problem is given by

∆φ̃
(
x′, y′

)
= 0 in D̃, (4.66)

∂φ̃

∂ñ

(
x′, y′

)
= 0 on the corresponding walls, (4.67)

where ñ is the normal vector in the w−plane.
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By (4.62), we know that

∂φ̃

∂ñ
=

2 (b+ 1)

π cos
[

πx′

2(b+1)

] ∂φ
∂n

.

Analogous to (4.34), we get

∂φ̃

∂x′

∣∣∣
y′=0

= − 1

π

∫ sin
[

π
2(b+1)

]∗
− sin

[
π

2(b+1)

]
(
∂φ̃/∂ñ

)
(z, 0, t)

x′ − z
dz. (4.68)

By (4.62), we obtain

1

|f ′ (z)|
∂φ

∂x

∣∣∣
y=0

= − 1

π|f ′ (z)|

∫ sin
[

π
2(b+1)

]∗
− sin

[
π

2(b+1)

]
(
∂φ/∂n

)
(z, 0, t)

x′ − z
dz (4.69)

∂φ

∂x

∣∣∣
y=0

= − 1

π

∫ sin
[

π
2(b+1)

]∗
− sin

[
π

2(b+1)

]
(
∂φ/∂n

)
(z, 0, t)

x′ − z
dz. (4.70)

Let x′ = sin
[

πx
2(b+1)

]
, then

∂φ

∂x

∣∣∣
y=0

= − 1

2 (b+ 1)
cos

[
πx

2 (b+ 1)

] ∫ 1∗

−1

(
∂φ/∂n

)
(z, 0, t)

sin
[

πx
2(b+1)

]
− sin

[
πz

2(b+1)

]dz. (4.71)

By derivating both sides with respect to t, we finally get

σ

ρ
hxxx = − 1

2 (b+ 1)
cos

[
πx

2 (b+ 1)

] ∫ 1∗

−1

htt (z, t)

sin
[

πx
2(b+1)

]
− sin

[
πz

2(b+1)

]dz. (4.72)

If once again we consider h (x, t) = A (t)S (x) and we apply the separation of variables method, we obtain

A′′ (t) + λA (t) = 0,

already solved in last section, and

σ

ρ
S′′′ (x) =

λ

2 (b+ 1)
cos

[
πx

2 (b+ 1)

] ∫ 1∗

−1

S (z)

sin
[

πx
2(b+1)

]
− sin

[
πz

2(b+1)

]dz.
We cannot proceed as before since the weight inside the integral does not allow us to work with Tchebyshev

polynomials anymore. Then, let’s study the problem by cases. We will consider the following two cases:
(i) b→∞ and (ii) b = 0.

4.8.1 First case: b→∞

In this case we know that

lim
b→∞

cos

(
π

2 (b+ 1)

)
= cos (0) = 1.

Let us consider the change of variable u = πx
2(b+1) , then

lim
b→∞

sin
(

π
2(b+1)

)
π

2(b+1)

= lim
u→0

sin (u)

u

= 1,
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which means that

lim
b→∞

sin

(
π

2 (b+ 1)

)
=

π

2 (b+ 1)
.

Plugging these results into (4.72) and assuming that σ/ρ = 1, we get

hxxx = − 1

π

∫ 1∗

−1

htt (z, t)

x− z
dz,

which is the same as (4.35), which was already studied.

4.8.2 Second case: b = 0

In this case we consider a container with vertical walls at x = ±1. Given the fact that we already know the
solution for the temporary part of h (x, t), we can assume that h (x, t) = eiωtS (x). Thus, (4.72) becomes

σ

ρ
eiωtS′′′ (x) =

ω2

2
eiωt cos

(
πx

2

)∫ 1∗

−1

S (z)

sin
(
πx
2

)
− sin

(
πz
2

)dz
σ

ρ
S′′′ (x) =

ω2

2
cos

(
πx

2

)∫ 1∗

−1

S (z)

sin
(
πx
2

)
− sin

(
πz
2

)dz. (4.73)

Let’s first consider the anti-symmetric pinned-end case. In this case,

S (x) =
∑
n

an sin (nπx) .

Let

sin (nπx) =
∑
r

qrnT2r−1

(
sin

(
πx

2

))
,

where, by orthogonality,

qrn =

∫ 1

−1

sin (nπx)T2r−1

(
sin

(
πx

2

))
dx.

By using the identity

1

π

∫ 1∗

−1

Tz (z)√
1− z2 (x− z)

dz = −Ur−1 (x) , (4.74)

we get

∫ 1∗

−1

T2r−1

(
sin
(
πz
2

))
sin
(
πx
2

)
− sin

(
πz
2

)dz = −2U2r−2

(
sin

(
πx

2

))

= 2 (−1)
r

cos
((
r − 1/2

)
πx
)

cos
(
πx/2

) . (4.75)

By using the anti-symmetric pinned-end conditon and (4.75), the right-hand side of (4.73) becomes

ω2

2
cos

(
πx

2

)∫ 1∗

−1

S (z)

sin
(
πx
2

)
− sin

(
πz
2

)dz =
ω2

2

∑
n,r

anqrn cos

(
πx

2

)∫ 1∗

−1

T2r−1

(
sin
(
πx
2

))
sin
(
πx
2

)
− sin

(
πz
2

)dz
= ω2

∑
n,r

anqrn (−1)
r

cos

((
r − 1

2

)
πx

)
.

In the same way, the left-hand side of (4.73) becomes

σ

ρ
S′′′ (x) =

σ

ρ

∑
n,r

(nπ)
3
an (−1)

r
prn cos

((
r − 1

2

)
πx

)
,
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where,

prn = (−1)
r+1

∫ 1

−1

cos (nπx) cos

((
r − 1

2

)
πx

)
dx.

Finally, if we assume σ/ρ = 1, then (4.73) is now of the form

∑
n,r

(nπ)
3
an (−1)

r
prn cos

((
r − 1

2

)
πx

)
= ω2

∑
n,r

anqrn (−1)
r

cos

((
r − 1

2

))
,

or, given r ≥ 1, ∑
n

(nπ)
3

(−1)
r
prnan = ω2

∑
n

(−1)
r
qrnan. (4.76)

Now, let us consider the symmetric pinned-end case, where

S (x) =
∑
n

bn cos

((
n− 1

2

)
πx

)
.

We need to impose the mass conservation condition, i.e.,
∫ 1

−1
h (x, t) = 0, which leads to (4.43). The mass

conservation condition is, again,
∞∑
n=1

ωnbn = 0 (4.77)

where,

ωn = (−1)
n+1 2(

n− 1
2

)
π
. (4.78)

Let

cos

((
(n− 1

2

)
πx

)
=
∑
r

trn cos (rπx) ,

and

sin

((
(n− 1

2

)
πx

)
=
∑
r

srn sin (rπx) ,

where

trn =

∫ 1

−1

cos

((
(n− 1

2

)
πx

)
cos (rπx) dx,

and

srn =

∫ 1

−1

sin

((
(n− 1

2

)
πx

)
sin (rπx) dx.

Replacing these expansions into (4.73) and by letting σ/ρ = 1, we get

∑
n,r

((
n− 1

2

)
π

)3

srnbn sin (rπx) =
ω2

2

∑
n,r

trnbn cos

(
πx

2

)∫ 1∗

−1

cos (rπz)

sin
(
πx
2

)
− sin

(
πz
2

)dz. (4.79)

At this moment, identity (4.74) and the following identities are useful

Tn (cos θ) = cos (nθ) , (4.80)

Un (cos θ) =
sin
(
(n+ 1) θ

)
sin θ

. (4.81)
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Therefore, (4.79) becomes

∑
n,r

((
n− 1

2

)
π

)3

srnbn sin (rπx) =
ω2

2

∑
n,r

trnbn cos

(
πx

2

)∫ 1∗

−1

T2r

(
cos
(
πz/2

))
sin
(
πx
2

)
− sin

(
πz
2

)dz
= ω2

∑
n,r

trnbn cos

(
πx

2

)
(−1)

r+1
U2r−1

(
sin

(
πx

2

))
.

For the free cases with a contact angle of π/2, the problem has a classical solution (see [25]). The eigenfunc-

tions for this solution are cos (nπx) and sin
((
n− 1/2

)
πx
)

and the frequencies are given by ω2
n =

(
σ/ρ

)
(nπ)

3
.

Let’s first consider the symmetric pinned-end case, i.e.,

h (x, t) = eiωt cos (nπx) ,

Thus, the right-hand side of (4.73) becomes

ω2

2
cos

(
πx

2

)∫ 1∗

−1

S (z)

sin
(
πx
2

)
− sin

(
πz
2

)dz =
ω2

2
cos

(
πx

2

)∫ 1∗

−1

cos (nπz)

sin
(
πx
2

)
− sin

(
πz
2

)dz
=
ω2

2
cos

(
πx

2

)∫ 1∗

−1

T2n

(
cos (πz/ 2)

)
sin
(
πx
2

)
− sin

(
πz
2

)dz
=
ω2

2
cos

(
πx

2

)
(−1)

r+1
U2n−1

(
sin

(
πx

2

))
.

While, the left-hand side of (4.73) becomes

σ

ρ
S′′′ (x) =

σ

ρ
(nπ)

3
sin (nπx) .

A similar analysis can be done with the anti-symmetric free case, where h (x, t) = eiωt sin
((
n− 1/2

)
πx
)
.

4.9 Solution of the integro-differential equation in a rounded container

In this section, we want to solve our problem for the following domain:

D = {(x, y) : |x| < 1,−
√

1− x2 < y < h (x, t)}, (4.82)

which is represented in Figure (15),

x=! 1 x=1free surface

Figure 15: rounded container geometry.

The map to transform the half unit disk into the half-plane is given by

f (z) =
1

J (z)
, (4.83)

where J (z) is known as the Joukowski map and it is given by

J (z) =
1

2

(
z +

1

z

)
. (4.84)
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Let’s see that f (z) maps D into the lower half-plane. For z = eiθ, such that π < θ < 2π, we have that

J (z) =
1

2

(
eiθ +

1

eiθ

)
=

1

2

(
eiθ + e−iθ

)
=

1

2

(
cos (θ) + i sin (θ) + cos (θ)− i sin (θ)

)
= cos (θ) ,

thus,
w = f (z) = sec (θ) , for z = eiθ such that π < θ < 2π. (4.85)

As θ varies from π to 2π, then w ∈ (−∞,−1) ∪ (1,∞). Besides, z = x+ iy such that x ∈ [−1, 1] and y = 0
is mapped into w = x′ + iy′ such that x′ = [−1, 1] and y′ = 0.

Since f is conformal and injective, it follows that f (D) is either the upper or the lower half-plane (see [26]).
In order to determine which half is the image of D, let’s check the image of a point of the domain. If we take
z = −0.5i ∈ D, then

f

(
− i

2

)
=

1

1
2

(
− i

2 + 2i
)

=
1

1
2

(
3
2 i
)

=
4

3i

= −4

3
i.

Since f (−0.5i) is on the lower half-plane, therefore D′ = f (D) coincides with the lower half-plane.
Analogous to (4.34) and using (4.62), we get

∂φ̃

∂x̃′

∣∣∣
y′=0

= − 1

π

∫ 1∗

−1

∂φ̃/∂ñ (z, 0, t)

x′ − z
dz

= − 1

π

∫ 1∗

−1

∂φ/∂n (z, 0, t)

|f ′ (z)| (x′ − z)
dz.

Now, proceed as before and take the derivative with respect to t in both sides. Let f
(
x′, t

)
= A (t)S

(
x′
)
.

Thus,

A (t)S′′′
(
x′
)

= − 1

π

∫ 1∗

−1

A′′ (t)S (z)

|f ′ (z)| (x′ − z)
dz. (4.86)

By using separation of variables, we obtain

A′′ (t) + λA (t) = 0, (4.87)

S′′′
(
x′
)

=
λ

π

∫ 1∗

−1

S (z)

|f ′ (z)| (x′ − z)
dz. (4.88)

The first ordinary differential equation was already solved in last section, thus let us focus on (4.88). By
inverting, the equation becomes

λS
(
x′
)

|f ′ (x′)|
= − 1

π

√
1− x′2

∫ 1∗

−1

S′′′ (z)√
1− z2 (x′ − z)

dz.

Namely,

λS
(
x′
)

= − 1

π

√
1− x′2

∣∣f ′ (x)
∣∣ ∫ 1∗

−1

S′′′ (z)√
1− z2 (x′ − z)

dz. (4.89)
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We want an explicit expression for |f ′ (z)|. If x ∈ [−1, 1] and y = 0, then x′ ∈ [−1, 1] and y′ = 0, which
means that

x′ = f (x) =
2

x+ 1
x

, (4.90)

and

x′
(
x2 + 1

)
= 2x

x′2
(
x2 + 1

)
= 2xx′

x2x′2 + x′2 − 2xx′ = 0(
xx′
)2 − 2xx′ + 1 = 1− x′2(

xx′ − 1
)2

= 1− x′2

xx′ − 1 = ±
√

1− x′2.

Since f (0) = 0, the only possible solution is

xx′ = 1−
√

1− x′2. (4.91)

Besides, we know that

|f ′ (x)| = dx′

dx
= 2

1− x2

(x2 + 1)
2

=
2

(x2 + 1)
2 −

2x2

(x2 + 1)
2

=
2x2

(x2 + 1)
2

(
1

x2
− 1

)
=

1

2

(
2x

x2 + 1

)2(
1

x2
− 1

)
,

where we can apply (4.90) to get

|f ′ (x)| = 1

2
x′2
(

1

x2
− 1

)
=

1

2
x′2
(

2

xx′
− 2

)
= x′2

(
1

xx′
− 1

)
.

We can now use (4.91) and obtain

|f ′ (x)| = x′2
(

1

1−
√

1− x′2
− 1

)

=
x′2 − x′2

(
1−
√

1− x′2
)

1−
√

1− x′2

=
x′2
√

1− x′2

1−
√

1− x′2

=

(√
1− x′2 + 1− x′2

1−
√

1− x′2

)(
1−

√
1− x′2

)
=
√

1− x′2 + 1− x′2.
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Finally, we get an explicit expression for |f ′ (x)|, given by

|f ′ (x)| =
√

1− x′2
(

1 +
√

1− x′2
)
. (4.92)

By plugging last equality into (4.89), equation now becomes

λS
(
x′
)

= − 1

π

(
1− x′2

)(
1 +

√
1− x′2

)∫ 1∗

−1

S′′′ (z)√
1− z2 (x′ − z)

dz. (4.93)

It is already known that S
(
x′
)

can be expressed as the sum of a symmetric and an anti-symmetric function.
We can assume either pinned-end or free-end boundary condition as it was done before. Let’s proceed to study
each case in the following subsections.

4.9.1 Anti-symmetric pinned-end boundary condition

S
(
x′
)

=

∞∑
n=1

an sin
(
nπx′

)
.

Let
cos
(
nπx′

)
=
∑
r≥0

crnTr
(
x′
)
,

and
sin
(
nπx′

)
=
∑
r≥1

ern
√

1− x′2Ur−1

(
x′
)
,

with

ckn =

 2
π

∫ 1

−1
cos
(
nπx′

) Tk(x′)√
1−x′2 dx

′, k ≥ 1,
1
π

∫ 1

−1
cos
(
nπx′

)
1√

1−x′2 dx
′, k = 0,

and

ern =
2

π

∫ 1

−1

sin
(
nπx′

)
Ur−1

(
x′
)
dx′.

Thus, by replacing into (4.93) we get

λ
∑
n≥1

∑
r≥1

ernan
√

1− x′2Ur−1

(
x′
)

=
(

1− x′2
)(

1 +
√

1− x′2
)∑
n≥1

∑
k≥0

cknan (nπ)
3 1

π

∫ 1∗

−1

Tk
(
z′
)

√
1− z2 (x′ − z)

= −
(

1− x′2
)(

1 +
√

1− x′2
) ∑
n,k≥1

cknan (nπ)
3
Uk−1

(
x′
)
.

Namely,

λ
∑
n,r≥1

ernan
Ur−1

(
x′
)

√
1− x′2

(
1 +
√

1− x′2
) = −

∑
n,k≥1

cknan (nπ)
3
Uk−1

(
x′
)
. (4.94)

Let
Ur−1

(
x′
)

√
1− x′2

(
1 +
√

1− x′2
) =

∑
k≥1

dkrUk−1

(
x′
)
,

where, by orthogonality,

dkr =
2

π

∫ 1

−1

Ur−1

(
x′
)
Uk−1

(
x′
)

1 +
√

1− x′2
.

Therefore, (4.94) becomes

−λ
∑

n,r,k≥1

dkrernanUk−1

(
x′
)

=
∑
n,k≥1

cknan (nπ)
3
Uk−1

(
x′
)
,
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and we get the following eigenvalue problem:

λ
∑
n,r≥1

dkrernan = −
∑
n≥1

(nπ)
3
cknan, ∀k ≥ 1,

or in matrix notation,
λDE~a = −C diag (nπ)

3
~a. (4.95)

Proposition 4.6. If

F = fkn =

∫ 1

−1

cos
(
nπx′

)
Tk
(
x′
)
dx′, ∀k ≥ 0,∀n ≥ 1,

then FT = C−1.

Proof. We know that

cos
(
nπx′

)
=
∑
r≥0

crnTr
(
x′
)
,

thus ∫ 1

−1

cos
(
nπx′

)
Tm
(
x′
)

√
1− x′2

dx′ =
∑
k≥0

ckn

∫ 1

−1

Tk
(
x′
)
Tm
(
x′
)

√
1− x′2

dx′,

from where we get

ckn =

 2
π

∫ 1

−1
cos
(
nπx′

) Tk(x′)√
1−x′2 dx

′, k ≥ 1,
1
π

∫ 1

−1
cos
(
nπx′

)
1√

1−x′2 dx
′, k = 0.

Furthermore, we can assume that

cos
(
nπx′

)
=
∑
k≥0

αkn
Tk
(
x′
)

√
1− x′2

.

By orthogonality,

αkn =


2
πfkn, k ≥ 1,

1
πfkn, k = 0,

then,

cos
(
nπx′

)
=

 2
π

∑
k fkn

Tk(x′)√
1−x′2 , k ≥ 1,

1
π

∑
k fkn

1√
1−x′2 , k = 0.

We also know that

δnm =

∫ 1

−1

cos
(
nπx′

)
cos
(
mπx′

)
dx′

=


2
π

∫ 1

−1

[∑
k cknTk

(
x′
)] [∑

k̂ fk̂m
Tk̂(x

′)√
1−x′2

]
dx′, k.k̂ ≥ 1,

1
π

∫ 1

−1

[∑
k cknTk

(
x′
)] [∑

k̂ fk̂m
1√

1−x′2

]
dx′, k, k̂ = 0.

=
∑
k

cknfkm,

or,
CTF = I =⇒ FTC = I.

Thus, we have proven the proposition.
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Since (4.95) is true for k ≥ 1, we need to add a zero-row in its left-hand side and c0n, for n ≥ 1, in the
right-hand side. This is true as long as

0 =

∫ 1

−1

S′′′ (x)√
1− x2

dx

=
∑
n≥1

c0n (nπ)
3
an

=
∑
n≥1

n2π3an

∫ 1

−1

cos
(
nπx′

)
√

1− x′2
dx′

Thus, (4.106) can be rewritten as follows

λFTDE~a = − diag (nπ)
3
~a., (4.96)

where DE is the DE matrix with zeros in the first-row.
This eigenvalue problem can be solved by using MATLAB. In order to solve the problem, we first need to

truncate it. Let us consider the problem for dimension N = 50, then the obtained eigenvalues λi for i = 1 : 50,
and their associated eigenvectors ai are the ones given in Table 5. Even more, notice that for a given i,
ai = [a1, a2, ..., a50]

T
.

λ1 = 34.5371909 λ2 = 237.683905 λ3 = 762.8201969 λ4 = 1763.282708 λ5 = 3392.374965
a1 1 -0.011749505 0.158864149 -0.193297445 0.216205884
a2 -0.018096007 1 0.196038358 0.040254537 -0.070465041
a3 0.002200392 -0.073582931 1 0.339260795 0.014808558
a4 -0.000514854 0.01425807 -0.143722189 1 0.484246245
a5 0.000169097 -0.004272845 0.036615337 -0.22033077 1
a6 -6.85E-05 0.001641838 -0.012819593 0.068191237 -0.302027205
a7 3.19E-05 -0.000741438 0.00546377 -0.026739837 0.109062192
a8 -1.65E-05 0.000375176 -0.002660431 0.012300352 -0.046850253
a9 9.25E-06 -0.000206628 0.001426307 -0.006334939 0.022913636
a10 -5.51E-06 0.000121522 -0.000822517 0.003547709 -0.012343203
a11 3.45E-06 -7.53E-05 0.000502273 -0.00211922 0.007158007
a12 -2.25E-06 4.87E-05 -0.000321226 0.001332503 -0.004398419

Table 5: first eigenvalues and its associated eigenvectors for the anti-symmetric pinned-end case. This data was
obtained by using MATLAB and by letting N = 50.

From Figure 16, it seems that the first eigenvalues is convergent as N → ∞. In this figure, it can be seen
that λ1 converges to 34.5371 as N grows.

Figure 16: values of λ1 as dimension N grows.
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Since we have solved the eigenvalue problem, we are now able to plot the free surface for a fixed value of t.
Let us consider t = 0, then h (x, t) = h (x) = S (x), the free surface can be seen in Figure 17.

(a) Eigenfunction associated to λ1 in comparison with sin (πx). (b) Eigenfunction associated to λ2 in comparison with sin (2πx).

(c) Eigenfunction associated to λ3 in comparison with sin (3πx).

Figure 17: the free surface h (x) in presence of walls compared to the free surface in absence of walls (sine
frequencies).

4.9.2 Symmetric pinned-end boundary condition

S
(
x′
)

=

∞∑
n=1

bn cos

((
n− 1

2

)
πx′

)
.

As in last section, we need to impose mass conservation extra condition. In the same way we did before, we get
the following conditon: ∑

n

ωnbn = 0, (4.97)

where

ωn =

∫ 1

−1

cos
((
n− 1

2

)
πx′
)

√
1− x′2

(
1 +
√

1− x′2
)dx′. (4.98)
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Besides, let

cos

((
n− 1

2

)
πx′

)
=
∑
r≥1

ern
√

1− x′2Ur−1

(
x′
)
,

and

sin

((
n− 1

2

)
πx′

)
=
∑
k≥1

cknTk
(
x′
)
,

where

ern =
2

π

∫ 1

−1

cos

((
n− 1

2

)
πx′

)
Ur−1

(
x′
)
,

and

ckn =
2

π

∫ 1

−1

sin

((
n− 1

2

)
πx′

)
Tk
(
x′
)

√
1− x′2

dx′.

Thus, by replacing into (4.93) we get

λ
∑
n,r≥1

ernbn
√

1− x′2Ur−1

(
x′
)

= −
(

1− x′2
)(

1 +
√

1− x′2
) ∑
n,k≥1

cknbn

((
n− 1

2

)
π

)3
1

π

∫ 1∗

−1

Tk (z)√
1− z2 (x′ − z)

=
(

1− x′2
)(

1 +
√

1− x′2
) ∑
n,k≥1

cknbn

((
n− 1

2

)
π

)3

Uk−1

(
x′
)
.

Namely,

λ
∑
n,r≥1

ernbn
Ur−1

(
x′
)

√
1− x′2

(
1 +
√

1− x′2
) =

∑
n,k≥1

cknbn

((
n− 1

2

)
π

)3

Uk−1

(
x′
)
. (4.99)

Let
Ur−1

(
x′
)

√
1− x′2

(
1 +
√

1− x′2
) =

∑
k≥1

dkrUk−1

(
x′
)
,

where, by orthogonality,

dkr =
2

π

∫ 1

−1

Ur−1

(
x′
)
Uk−1

(
x′
)

1 +
√

1− x′2
.

Therefore, (4.99) becomes

λ
∑

n,r,k≥1

dkrernbnUk−1

(
x′
)

=
∑
n,k≥1

cknbn

[(
n− 1

2

)
π

]3

Uk−1

(
x′
)
,

and we get the following eigenvalue problem:

λ
∑
n,r≥1

dkrernbn =
∑
n≥1

((
n− 1

2

)
π

)3

cknbn, ∀k ≥ 1,

or in matrix notation,

λDE~b = C diag

[
= (

(
n− 1

2

)
π

)3

~b,

which is equivalent to

λC−1DE~b = diag

[(
n− 1

2

)
π

]3

~b. (4.100)
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Proposition 4.7. If

F = fkn =

∫ 1

−1

sin

((
n− 1

2

)
πx′

)
Tk
(
x′
)
dx′, ∀k, n ≥ 1,

then FT = C−1.

Proof. We know that

sin

((
n− 1

2

)
πx′

)
=
∑
k≥1

cknTk
(
x′
)
,

thus

∫ 1

−1

sin
((
n− 1

2

)
πx′
)
Tm
(
x′
)

√
1− x′2

dx′ =
∑
k≥1

ckn

∫ 1

−1

Tk
(
x′
)
Tm
(
x′
)

√
1− x′2

dx′,

from where we get

ckn =
2

π

∫ 1

−1

sin

((
n− 1

2

)
πx′

)
Tk
(
x′
)

√
1− x′2

dx′.

Furthermore, we can assume that

sin

((
n− 1

2

)
πx′

)
=
∑
k≥1

αkn
Tk
(
x′
)

√
1− x′2

.

By orthogonality,

αkn =
2

π
fkn,

then,

sin

((
n− 1

2

)
πx′

)
=

2

π

∑
k≥1

fkn
Tk
(
x′
)

√
1− x′2

.

We also know that

δnm =

∫ 1

−1

sin

((
n− 1

2

)
πx′

)
sin

((
m− 1

2

)
πx′

)
dx′

=
2

π

∫ 1

−1

∑
k≥1

cknTk
(
x′
)
∑
k̂≥1

fk̂m
Tk̂
(
x′
)

√
1− x′2

 dx′
=
∑
k≥1

cknfkm,

or,
CTF = I =⇒ FTC = I.

Thus, we proved the proposition.

By replacing this last result in (4.100), the system we get is

λFTDE~b = diag (nπ)
3~b.

As we already did, we need to impose the mass conservation condition to the system, from where we get

λFTDE~b = diag (nπ)
3~b, (4.101)

where DE is the DE matrix with a zero first-row and diag is the diagonal matrix adding a ωn first-row, for
n ≥ 1.
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This eigenvalue problem can be solved by using MATLAB. Let us consider the problem for dimension
N = 50, then the first obtained eigenvalues λi for i = 1 : 50, and their associated eigenvectors bi are the ones
given in Table 6. Even more, notice that for a given i, bi = [b1, b2, ..., b50]

T
.

λ1 = 230.462753328928 λ2 = 1033.25945399075 λ3 = 2794.34728973065 λ4 = 5896.23667957228
b1 0.0117503830609352 -0.0116682850493653 -0.0103058546089242 0.00908256966009043
b2 -0.179476253951130 0.0243460861408048 0.0200673240656862 -0.0171754462362053
b3 0.0315127140495187 -0.144729669147775 -0.0209068627961600 0.0163466151413946
b4 -0.0101306596924217 0.0536990914015066 0.111720959303023 -0.0185954975041048
b5 0.00440911559175099 -0.0239654485006214 -0.0640062906193418 0.0849398802474573
b6 -0.00229665443646346 0.0124747602697866 0.0360864166706974 -0.0652492246984256
b7 0.00134652421502298 -0.00725612153295742 -0.0216511398617178 0.0440674945344670
b8 -0.000858214561045399 0.00457927436158034 0.0138315802912714 -0.0297679881154231
b9 0.000581942365752926 -0.00307412695303720 -0.00932101837699070 0.0206493874222004
b10 -0.000413887855585407 0.00216555377923844 0.00656488520437511 -0.0147726539208492
b11 0.000305713368224388 -0.00158539144747019 -0.00479552524676257 0.0108825445253124
b12 -0.000232861833943009 0.00119773545128140 0.00361130525339064 -0.00823051641759035

Table 6: first eigenvalues and its associated eigenvectors for the anti-symmetric free-end case. This data was
obtained by using MATLAB and by letting N = 50.

4.9.3 Symmetric free-end boundary condition

S
(
x′
)

=

∞∑
n=1

b̃n cos
(
nπx′

)
.

Let
cos
(
nπx′

)
=
∑
r≥1

ern
√

1− x′2Ur−1

(
x′
)
,

and
sin
(
nπx′

)
=
∑
k≥1

cknTk
(
x′
)
,

with

ern =
2

π

∫ 1

−1

cos
(
nπx′

)
Ur−1

(
x′
)
dx′

and

ckn =
2

π

∫ 1

−1

sin
(
nπx′

) Tk
(
x′
)

√
1− x′2

dx′.

Thus, by replacing into (4.93) we get

λ
∑
n,r≥1

ernb̃n
√

1− x′2Ur−1

(
x′
)

= −
(

1− x′2
)(

1 +
√

1− x′2
) ∑
n,k≥1

cknb̃n (nπ)
3 1

π

∫ 1∗

−1

Tk (z)√
1− z2 (x′ − z)

=
(

1− x′2
)(

1 +
√

1− x′2
) ∑
n,k≥1

cknb̃n (nπ)
3
Uk−1

(
x′
)
.

Namely,

λ
∑
n,r≥1

ernb̃n
Ur−1

(
x′
)

√
1− x′2

(
1 +
√

1− x′2
) =

∑
n,k≥1

cknb̃n (nπ)
3
Uk−1

(
x′
)
. (4.102)

Let
Ur−1

(
x′
)

√
1− x′2

(
1 +
√

1− x′2
) =

∑
k≥1

dkrUk−1

(
x′
)
,
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where, by orthogonality,

dkr =
2

π

∫ 1

−1

Ur−1

(
x′
)
Uk−1

(
x′
)

1 +
√

1− x′2
.

Therefore, (4.102) becomes

λ
∑

n,r,k≥1

dkrernb̃nUk−1

(
x′
)

=
∑
n,k≥1

cknb̃n (nπ)
3
Uk−1

(
x′
)
,

and we get the following eigenvalue problem:

λ
∑
n,r≥1

dkrernb̃n =
∑
n≥1

(nπ)
3
cknb̃n, ∀k ≥ 1,

or in matrix notation,

λDE
~̃
b = C diag (nπ)

3 ~̃
b,

which is equivalent to

λC−1DE
~̃
b = diag (nπ)

3 ~̃
b. (4.103)

Proposition 4.8. If

F = fkn =

∫ 1

−1

sin
(
nπx′

)
Tk
(
x′
)
dx′, ∀k, n ≥ 1,

then FT = C−1.

Proof. We know that

sin
(
nπx′

)
=
∑
k≥1

cknTk
(
x′
)
,

thus ∫ 1

−1

sin
(
nπx′

)
Tm
(
x′
)

√
1− x′2

dx′ =
∑
k≥1

ckn

∫ 1

−1

Tk
(
x′
)
Tm
(
x′
)

√
1− x′2

dx′,

from where we get

ckn =
2

π

∫ 1

−1

sin
(
nπx′

) Tk
(
x′
)

√
1− x′2

dx′.

Furthermore, we can assume that

sin
(
nπx′

)
=
∑
k≥1

αkn
Tk
(
x′
)

√
1− x′2

.

By orthogonality,

αkn =
2

π
fkn,

then,

sin
(
nπx′

)
=

2

π

∑
k≥1

fkn
Tk
(
x′
)

√
1− x′2

.

We also know that

δnm =

∫ 1

−1

sin
(
nπx′

)
sin
(
mπx′

)
dx′

=
2

π

∫ 1

−1

∑
k≥1

cknTk
(
x′
)
∑
k̂≥1

fk̂m
Tk̂
(
x′
)

√
1− x′2

 dx′

=
∑
k≥1

cknfkm,
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or,
CTF = I =⇒ FTC = I.

Thus, we proved the proposition.

By replacing this last result in (4.103), the system we get is

λFTDE
~̃
b = diag (nπ)

3 ~̃
b. (4.104)

This eigenvalue problem can be solved by using MATLAB. Let us consider the problem for dimension

N = 50, then the first obtained eigenvalues λi for i = 1 : 50, and their associated eigenvectors b̃i are the ones

given in Table 7. Even more, notice that for a given i, b̃i =
[
b̃1, b̃2, ..., b̃50

]T
.

λ1 = 34.2175586272960 λ2 = 300.557895998749 λ3 = 1025.35445855159 λ4 = 2437.22062288403

b̃1 1 -0.502920749237398 0.145159683202213 -0.102054838998293

b̃2 -0.0515531686145348 -1 -0.603362498736936 0.0890614719726122

b̃3 0.0101796570090243 0.139459671406230 -1 -0.791194266006952

b̃4 -0.00328802075595610 -0.0381132638500681 0.237934316980673 -1

b̃5 0.00137561477588171 0.0145463800669990 -0.0805838360851182 0.345252329326353

b̃6 -0.000675645063586782 -0.00675443336895904 0.0345008428641132 -0.138312614217566

b̃7 0.000370236892861313 0.00356672127107907 -0.0172333678149811 0.0649412580344996

b̃8 -0.000219686543035991 -0.00206253560718778 0.00958163012496778 -0.0343820877602204

b̃9 0.000138487874635901 0.00127617192316913 -0.00576102980667357 0.0199065071452755

b̃10 -9.15577648315637e-05 -0.000832066840944857 0.00367635894969585 -0.0123370079997454

b̃11 6.28962749340519e-05 0.000565607675542838 -0.00245825241621866 0.00806242470784695

b̃12 -4.47123978114624e-05 -0.000398482184078008 0.00170901090731494 -0.00550238080160748

Table 7: first eigenvalues and its associated eigenvectors for the anti-symmetric free-end case. This data was
obtained by using MATLAB and by letting N = 50.

From Figure 18, it can seems that the first eigenvalue converges as N → ∞. For the case of the first
eigenvalue, it can be seen that it converges to 34.0801 as N grows.

Figure 18: values of λ1 as dimension N grows.
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(a) Eigenfunction associated to λ1 in comparison with cos (πx). (b) Eigenfunction associated to λ2 in comparison with cos (2πx).

(c) Eigenfunction associated to λ3 in comparison with cos (3πx).

Figure 19: the free surface h (x) in presence of walls compared to the free surface in absence of walls (cosine
frequencies).

4.9.4 Anti-symmetric free-end boundary condition

S
(
x′
)

= ãn

∞∑
n=1

sin

((
n− 1

2

)
πx′

)
.

Let

cos

((
n− 1

2

)
πx′

)
=
∑
k≥0

cknTk
(
x′
)
,

and

sin

((
n− 1

2

)
πx′

)
=
∑
r≥1

ern
√

1− x′2Ur−1

(
x′
)
,

where

ckn =


2
π

∫ 1

−1
cos
((
n− 1

2

)
πx′
)
Tk(x′)√

1−x′2 dx
′, k ≥ 1,

1
π

∫ 1

−1
cos
((
n− 1

2

)
πx′
)

1√
1−x′2 dx

′, k = 0,
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and

ern =
2

π

∫ 1

−1

sin

((
n− 1

2

)
πx′

)
Ur−1

(
x′
)
.

Thus, by replacing into (4.93) we get

λ
∑
n,r≥1

ernãn
√

1− x′2Ur−1

(
x′
)

= −
(

1− x′2
)(

1 +
√

1− x′2
)∑
n≥1

∑
k≥0

cknãn

((
n− 1

2

)
π

)3
1

π

∫ 1∗

−1

Tk (z)√
1− z2 (x′ − z)

=
(

1− x′2
)(

1 +
√

1− x′2
) ∑
n,k≥1

cknãn

((
n− 1

2

)
π

)3

Uk−1

(
x′
)
.

Namely,

λ
∑
n,r≥1

ernãn
Ur−1

(
x′
)

√
1− x′2

(
1 +
√

1− x′2
) =

∑
n,k≥1

cknãn

((
n− 1

2

)
π

)3

Uk−1

(
x′
)
. (4.105)

Let
Ur−1

(
x′
)

√
1− x′2

(
1 +
√

1− x′2
) =

∑
k≥1

dkrUk−1

(
x′
)
,

where, by orthogonality,

dkr =
2

π

∫ 1

−1

Ur−1

(
x′
)
Uk−1

(
x′
)

1 +
√

1− x′2
.

Therefore, (4.105) becomes

λ
∑

n,r,k≥1

dkrernãnUk−1

(
x′
)

=
∑
n,k≥1

cknãn

[(
n− 1

2

)
π

]3

Uk−1

(
x′
)
,

and we get the following eigenvalue problem:

λ
∑
n,r

dkrernãn =
∑
n

((
n− 1

2

)
π

)3

cknãn, ∀k ≥ 1,

or in matrix notation,

λDE~̃a = C diag

[(
n− 1

2

)
π

]3

~̃a. (4.106)

Proposition 4.9. If

F = fkn =

∫ 1

−1

cos

((
n− 1

2

)
πx′

)
Tk
(
x′
)
dx′, ∀k ≥ 0,∀n ≥ 1,

then FT = C−1.

Proof. We know that

cos

((
n− 1

2

)
πx′

)
=
∑
k≥0

cknTk
(
x′
)
,

thus ∫ 1

−1

cos
((
n− 1

2

)
πx′
)
Tm
(
x′
)

√
1− x′2

dx′ =
∑
k≥0

ckn

∫ 1

−1

Tk
(
x′
)
Tm
(
x′
)

√
1− x′2

dx′,
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from where we get

ckn =


2
π

∫ 1

−1
cos
((
n− 1

2

)
πx′
)
Tk(x′)√

1−x′2 dx
′, k ≥ 1,

1
π

∫ 1

−1
cos
((
n− 1

2

)
πx′
)

1√
1−x′2 dx

′, k = 0.

Furthermore, we can assume that

cos

((
n− 1

2

)
πx′

)
=
∑
k≥0

αkn
Tk
(
x′
)

√
1− x′2

.

By orthogonality,

αkn =


2
πfkn, k ≥ 1,

1
πfkn, k = 0,

then,

cos
(
nπx′

)
=


2
π

∑
k fkn

Tk(x′)√
1−x′2 , k ≥ 1,

1
π

∑
k fkn

Tk(x′)√
1−x′2 , k = 0.

We also know that

δnm =

∫ 1

−1

cos

((
n− 1

2

)
πx′

)
cos

((
m− 1

2

)
πx′

)
dx′

=
2

π

∫ 1

−1

∑
k

cknTk
(
x′
)∑

k̂

fk̂m
Tk̂
(
x′
)

√
1− x′2

 dx′ +
1

π
c0nf0m

∫ 1

−1

∑
k

cknTk
(
x′
)∑

k̂

1√
1− x′2

 dx′

=
∑
k≥1

cknfkm + c0nfom

=
∑
k≥0

cknfkm,

or,
CTF = I =⇒ FTC = I.

Thus, we have proven the proposition.

Since (4.106) is true for k ≥ 1, we need to add a zero-row in its left-hand side and c0n, for n ≥ 1, in the
right-hand side. This is true since

∑
n≥1

c0nπ

(
n− 1

2

)
ãn =

1

π

∫ 1

−1

∑
n ãn

((
n− 1

2

)
π
)3

cos
((
n− 1

2

)
πx′
)

√
1− x′2

dx′

=
1

π

∫ 1

−1

S′′′
(
x′
)

√
1− x′2

dx′

= 0.

Thus, (4.106) can be rewritten as follows

λFTDE~̃a = diag

[(
n− 1

2

)
π

]3

~̃a, (4.107)

where DE is the DE matrix with zeros in the first-row.
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This eigenvalue problem can be solved by using MATLAB. Let us consider the problem for dimension

N = 50, then the first obtained eigenvalues λi for i = 1 : 50, and their associated eigenvectors âi are the ones
given in Table 8. Even more, notice that for a given i, ai = [a1, a2, ..., a50]

T
.

λ1 = 3.86095364427419 λ2 = 127.056248760284 λ3 = 594.338943011707 λ4 = 1634.25532825826
ã1 1 -0.495080904664665 0.184192436151974 -0.124196571593678
ã2 -0.0135369424178429 -1 -0.521278403012665 0.107548862539826
ã3 0.00192722754746661 0.0910908001306199 -1 -0.680885339819841
ã4 -0.000534078338660874 -0.0213308109713834 0.186320360255083 -1
ã5 0.000204254688261910 0.00750108505138570 -0.0568882881153110 0.289298281773372
ã6 -9.45500439668107e-05 -0.00330644323041500 0.0230174187370253 -0.106742686663164
ã7 4.96744705988181e-05 0.00168332034941237 -0.0110899869518590 0.0478711426585793
ã8 -2.85609898764373e-05 -0.000947171930926002 0.00601091532861416 -0.0246192219481397
ã9 1.75691442511158e-05 0.000573688234802021 -0.00354532814705515 0.0139693090697572
ã10 -1.13901960561351e-05 -0.000367683087906929 0.00222835309251833 -0.00852844942194157
ã11 7.70109393216882e-06 0.000246448031264094 -0.00147177105887005 0.00550861706810430
ã12 -5.38752955327135e-06 -0.000171281355613452 0.00101136349086949 -0.00372013373317179

Table 8: first eigenvalues and its associated eigenvectors for the anti-symmetric free-end case. This data was
obtained by using MATLAB and by letting N = 50.

From Figure 20, it seems that the first eigenvalue converges as N →∞. In this case, λ1 converges to 34.8447
as N grows.

Figure 20: values of λ1 as dimension N grows.
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(a) Eigenfunction associated to λ1 in comparison with sin (πx/ 2). (b) Eigenfunction associated to λ2 compared to sin (3πx/ 2).

(c) Eigenfunction associated to λ3 in comparison with sin
(
5πx/2

)
.

Figure 21: the free surface h (x) in presence of walls compared to free surface in absence of walls (sine frequen-
cies).

5 Conclusions and future work

We have developed a method to compute natural frequencies of a liquid surface, in three different geometries: the
half-plane, an infinite vertical-strip and a rounded container. We considered two different boundary conditions
for each geometry: first, when the waves of the free surface are pinned to the container and second, when
these waves form a contact angle of π/2 with the walls of the container. We first introduce a linearized
integrodifferential equation involving the Hilbert transform, which can be solved in natural basis formed by
Tchebyshev polynomials. As a result, we get an eigenvalue problem which can be approximated by truncating
the associated infinite matrices. Nonetheless, as N → ∞ the solution quickly converges to the solution of the
original system. With this method, we found the eigenvalues of the linear Euler equations.

To study the remaining cases, we applied the conformal mapping technique. The tecnhique consists of
collecting the information of the new geometry in a matrix D, that appears as a factor. As a consequence,
a given geometry can be conformally mapped into the half-plane, where we already now how to obtain the
eigenvalues.

In all the studied cases it is clear that the presence of walls directly affects the free surface behavior. In
general, it seems that for the free-end edge condition, the frequencies for the anti-symmetric case were larger than
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the ones for the symmetric case; this is regardless of the container geometry. On the other hand, the eigenvalues
depends on container geometry, but the variation from one geometry to another is not very substantial.

For future work, it is of interest to study a container with two free surfaces separated by a given distance
d. For this problem, the Duhamel’s principle may be of use. It is also of interest to see how much it changes in
comparison to our problem and how much one surface affects the other.
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Appendices

A Inversion formula for the finite Hilbert transform

Let us consider the following equation:

1

π

∫ π∗

0

sin (z)

cos (x)− cos (z)
φ (z) dz = f (x) , f ∈ L2 [0, π] . (A.1)

Let φ = sin (nx) (n ∈ N) in the equation above. Then, we obtain

f (x) =
1

π

∫ π∗

0

sin (z) sin (nz)

cos (x)− cos (z)
dz

=
1

2π

∫ π∗

0

cos
[
(n− 1)z

]
− cos

[
(n+ 1)z

]
cos(x)− cos(z)

dz,

which by the parity of the cosine function becomes

f (x) =
1

4π

∫ π∗

−π

cos
[
(n− 1)z

]
− cos

[
(n+ 1)z

]
cos(x)− cos(z)

dz

=
1

8π

∫ π∗

−π

[
ei(n−1)z − ei(n+1)z

cos(x)− cos(z)
dz +

e−i(n−1)z − e−i(n+1)z

cos(x)− cos(z)

]
dz

=
1

4π

∫ π∗

−π

ei(n−1)z − ei(n+1)z

cos(x)− cos(z)
dz.

Let us consider the change of variable eiz = y. Then,

f (x) =
1

4πi

∫
|y|=1

yn−1 − yn+1

cos(x)− y2+1
2y

dy

y

=
1

2πi

∫
|y|=1

yn−1 − yn+1

2y cos(x)− y2 − 1
dy

= − 1

2πi

∫
|y|=1

yn−1 − yn+1

y2 − 2y cos(x) + 1
dy.

Notice that (
y − eix

)(
y − e−ix

)
= y2 − y

(
eix + e−ix

)
+ 1

= y2 − 2y cos(x) + 1.

Therefore, replacing into the equation above,

f (x) = − 1

2πi

∫
|y|=1

yn−1 − yn+1(
y − eix

) (
y − e−ix

)dy.
Let g (y) =

yn−1 − yn+1(
y − eix

) (
y − e−ix

) , thus g has two simple poles at: y = eix and y = e−ix. Let us compute the

residues at both poles.

• Residue at pole y = eix:

Res
(
g (y) , eix

)
= lim
y→eix

yn−1 − yn+1

y − e−ix

=
eix(n−1) − eix(n+1)

eix − e−ix
= −eixn.
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• Residue at pole y = e−ix:

Res
(
g (y) , e−ix

)
= lim
y→e−ix

yn−1 − yn+1

y − eix

=
e−ix(n−1) − e−ix(n+1)

e−ix − eix
= −e−ixn.

Therefore, by the residue theorem, we have that

f (x) = − 1

2πi
(−πi)

(
eixn + e−ixn

)
= cos(nx). (A.2)

In this last step, we only consider half the residues since x ∈ (0, π).
Back to (A.1), we can take the sine expansion of φ as follows:

φ (x) =
∑
n≥1

an

√
2

π
sin (nx) ,

thus, by (A.2),

f (x) =
∑
n≥1

an

√
2

π
cos (nx) .

The an coefficients are determined by using the cosine orthonogality,∫ π

0

f (x) cos (nx) dx =
∑
m≥1

am

√
2

π

∫ π

0

cos (mx) cos (nx) dx

= an

√
π

2
,

implying,

an =

√
2

π

∫ π

0

f (z) cos (nz) dz.

Therefore,

φ (x) =
∑
n≥1

√
2

π

∫ π

0

f (z) cos (nz) dz

√
2

π
cos (nx)

= − 1

π

∫ π∗

0

sin (x)

cos (x)− cos (z)
f (z) dz. (A.3)

Recall that the Hilbert transformation of φ ∈ L2 [−1, 1] is given by:

1

π

∫ 1∗

−1

φ (z)

x− z
dz = f (x) .

Let us consider the change of variables given by:

x = cos (µ) , z = cos (η) ,

g (µ) = f
(
cos (µ)

)
, ψ (η) = φ

(
cos (η)

)
.

Thus, we have that

1

π

∫ π∗

0

sin (η)

cos (µ)− cos (η)
ψ (η) dz = g (µ) ,
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where, by using (A.3), we get

ψ (µ) = − 1

π

∫ π∗

0

sin (µ)

cos (µ)− cos (η)
g (η) dη

= − 1

π

∫ π∗

0

√
1− cos2 (µ)

cos (µ)− cos (η)
g (η) dη.

Now, we go back to the original variables to obtain

φ (x) = − 1

π

∫ 1∗

−1

√
1− x2

√
1− z2

f (z)

x− z
dz,

giving us the inversion formula we wanted to prove.

B Anti-symmetric pinned-end boundary condition codes

In this section, the codes for the half-plane geometry are given. The codes for the other geometries are alike
with the difference of the matrix F that carries information about the geometry.

B.1 Function to compute the E matrix

1 %Lorena Correa

2 %Yachay Tech University

3 function E=matrixE_antipinned(N)

4 E=zeros(N,N);

5 for r=1: floor(N/2)

6 for n=1:N

7 ee=@(x) sin(n*pi*x).* chebyshevU (2*r-1,x);

8 E(2*r,n)=(2/pi)* integral(ee ,-1,1);

9 end

10 end

11 end

B.2 Function to compute the D matrix

1 %Lorena Correa

2 %Yachay Tech University

3 function D=matrixD_antipinned(N)

4 D=zeros(N,N);

5 for r=1: floor(N/2)

6 for n=1:N

7 d=@(x) cos(n*pi*x).* chebyshevT (2*r,x);

8 D(2*r,n)= integral(d,-1,1);

9 end

10 end

11 end

B.3 Function to compute the diagonal matrix

1 %Lorena Correa

2 %Yachay Tech University

3 function diag=diagonal_antipinned(N)

4 diag=zeros(N,N);

5 for n=1:N

6 diag(n,n)=(n*pi)^3;

7 end

8 end

Mathematician 73 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

B.4 Function to compute eigenvalues and eigenvectors

1 %Lorena Correa

2 %Yachay Tech University

3 function [V,vp]= main_antipinned(N)

4 D=matrixD_antipinned(N); %compute D matrix of dimension NxN

5 Ep=matrixE_antipinned(N); %compute E matrix of dimension NxN

6 diag=diagonal_antipinned(N); %compute diagonal matrix of dimension NxN

7 E=zeros(N,N); %complete E matrix

8 for i=2:N

9 for j=1:N

10 E(i,j)=Ep(i-1,j);

11 end

12 end

13 P=D’*E;

14 Q=-diag;

15 [V,L]=eig(P,Q); %return eigenvalues and eigenvectors for P*x=lambda*Q*x

16 vp=zeros(N,1);

17 for i=1:N

18 vp(i ,1)=1/L(i,i); %eingevalues for our problem

19 end

20 end

B.5 Plotting convergence of an specific eigenvalue

1 %Lorena Correa

2 %Yachay Tech University

3 %plot convergence for the first eigenvalue

4 %we consider matrix dimension NxN , from N=10 to N=45

5 lambda=zeros (36 ,1);

6 Nvalue =[10:1:45];

7 for N=10:45

8 [V,vp]= main_antipinned(N);

9 lambda(N-9,1)=vp(1,1); %select the first eigenvalue for the given N

10 end

11 plot(Nvalue ,lambda)

B.6 Plotting the free surface function

We know that the free surface function depends on t and x. For plotting the surface, we consider a fixed t. In
this case, we plot for t = 1.

1 %Lorena Correa

2 %Yachay Tech

3 %first load eigenvectors for N=50, use eigenvectors with positive diagonal

4 for i=1:50

5 if V(i,i)<0

6 for j=1:50

7 V(i,j)=-1*V(i,j);

8 end

9 end

10 end

11 %

12 % %Para lambda_1

13 % valor=@(j,x) (V(j,1)* sin(j*pi*x));

14 % x= -1:0.02:1;

15 % suma=zeros(length(x),1);
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16 % for i=1: length(x)

17 % for j=1:50

18 % suma(i,1)= suma(i,1)+ valor(j,x(1,i));

19 % end

20 % end

21 % plot(x,suma)

22 % hold on

23 % plot(x, sin(pi*x),’-.’)

24 % hold off

25 % %

26 %Para lambda_2

27 valor=@(j,x) (V(j,2)* sin(j*pi*x));

28 x= -1:0.02:1;

29 suma=zeros(length(x),1);

30 for i=1: length(x)

31 for j=1:50

32 suma(i,1)= suma(i,1)+ valor(j,x(1,i));

33 end

34 end

35 plot(x,suma)

36 hold on

37 plot(x, sin (2*pi*x),’-.’)

38 hold off

39 %

40 % %Para lambda_3

41 % valor=@(j,x) (V(j,3)* sin(j*pi*x));

42 % x= -1:0.02:1;

43 % suma=zeros(length(x),1);

44 % for i=1: length(x)

45 % for j=1:50

46 % suma(i,1)= suma(i,1)+ valor(j,x(1,i));

47 % end

48 % end

49 % plot(x,suma)

50 % hold on

51 % plot(x, sin(3*pi*x),’.-’)

52 % hold off

C Symmetric pinned-end condition codes

Plotting the free surface and the convergence of the eigenvalues is analogous to the anti-symmetric pinned-end
case. The rest of the codes are listed below.

C.1 Function to compute the E matrix

1 %Lorena Correa

2 %Yachay Tech

3 function E=matrixE_symmpinned(N)

4 E=zeros(N,N);

5 for r=1: ceil(N/2)

6 for n=1:N

7 ee=@(x) cos((n -0.5)* pi*x).* chebyshevU (2*r-2,x);

8 E(2*r-1,n)=(2/pi)* integral(ee ,-1,1);

9 end
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10 end

11 end

C.2 Function to compute the D matrix

1 %Lorena Correa

2 %Yachay Tech

3 function D=matrixD_symmpinned(N)

4 D=zeros(N,N);

5 for r=1: ceil(N/2)

6 for n=1:N

7 d=@(x) sin((n -0.5)* pi*x).* chebyshevT (2*r-1,x);

8 D(2*r-1,n)= integral(d,-1,1);

9 end

10 end

11 end

C.3 Function to compute the diagonal matrix

1 %Lorena Correa

2 %Yachay Tech

3 function diag=diagonal_symmpinned(N)

4 diag=zeros(N,N);

5 for n=1:N

6 diag(n,n)=((n -0.5)* pi)^3;

7 end

8 end

C.4 Function to compute mass conservation condition

1 %Lorena Correa

2 %Yachay Tech

3 %compute mass conservation condition for an NxN matrix

4 function omega=mass_conservation(N)

5 omega=zeros(1,N);

6 for n=1:N

7 omega(1,n)=(( -1)^(n+1))*2/((n -0.5)* pi);

8 end

9 end

C.5 Function to compute eigenvalues and eigenvectors

1 %Lorena Correa

2 %Yachay Tech

3 function [V,vp]= main_symmpinned(N)

4 vp=zeros(N,1);

5 omega=mass_conservation(N);

6 D=matrixD_symmpinned(N); %compute D matrix of dimension NxN

7 E=matrixE_symmpinned(N); %compute E matrix of dimension NxN

8 diag=diagonal_symmpinned(N); %compute diagonal matrix of dimension NxN

9 Pi=D’*E;

10 P=zeros(N,N);

11 for n=1:N

12 P(1,n)= omega(n); %impose mass conservation condition

13 end

14 for r=2:N

15 for n=1:N
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16 P(r,n)=Pi(r-1,n);

17 end

18 end

19 Q=zeros(N,N);

20 for i=2:N %first row remains as zeros (mass conservation)

21 for j=1:N

22 Q(i,j)=diag(i-1,j);

23 end

24 end

25 [V,L]=eig(P,Q);

26 for i=1:N

27 vp(i ,1)=1/L(i,i); %select the first eigenvalue for the given N

28 end

29 end

D Symmetric free-end condition codes

Computing eigenvalues and eigenvectors, and plotting the free surface and convergence of eigenvalues are anal-
ogous to the anti-symmetric pinned-end case. Functions to compute E, D and diagonal matrices are below.

D.1 Function to compute the E matrix

1 %Lorena Correa

2 %Yachay Tech

3 function E=matrixE_symmfree(N)

4 E=zeros(N,N);

5 for r=2: ceil(N/2)

6 for n=1:N

7 ee=@(x) cos(n*pi*x).* chebyshevU (2*r-2,x);

8 E(2*r-1,n)=(2/pi)* integral(ee ,-1,1);

9 end

10 end

11 end

D.2 Function to compute the D matrix

1 %Lorena Correa

2 %Yachay Tech

3 function D=matrixD_symmfree(N)

4 D=zeros(N,N);

5 for r=1: ceil(N/2)

6 for n=1:N

7 d=@(x) sin(n*pi*x).* chebyshevT (2*r-1,x);

8 D(2*r-1,n)= integral(d,-1,1);

9 end

10 end

11 end

D.3 Function to compute the diagonal matrix

1 %Lorena Correa

2 %Yachay Tech

3 function diag=diagonal_symmfree(N)

4 diag=zeros(N,N);

5 for n=1:N

6 diag(n,n)=(n*pi)^3;
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7 end

8 end

E Anti-symmetric free-end condition codes

Computing eigenvalues and eigenvectors, and plotting the free surface and convergence of eigenvalues are anal-
ogous to the anti-symmetric pinned-end case. Functions to compute E, D and diagonal matrices are below.

E.1 Function to compute the E matrix

1 %Lorena Correa

2 %Yachay Tech

3 function E=matrixE_antifree(N)

4 E=zeros(N,N);

5 for r=1: floor(N/2)

6 for n=1:N

7 ee=@(x) sin((n -0.5)* pi*x).* chebyshevU (2*r-1,x);

8 E(2*r,n)=(2/pi)* integral(ee ,-1,1);

9 end

10 end

11 end

E.2 Function to compute the D matrix

1 %Lorena Correa

2 %Yachay Tech

3 function D=matrixD_antifree(N)

4 D=zeros(N,N);

5 for r=1: floor(N/2)

6 for n=1:N

7 d=@(x) cos((n -0.5)* pi*x).* chebyshevT (2*r,x);

8 D(2*r,n)= integral(d,-1,1);

9 end

10 end

11 end

E.3 Function to compute the diagonal matrix

1 %Lorena Correa

2 %Yachay Tech

3 function diag=diagonal_antifree(N)

4 diag=zeros(N,N);

5 for n=1:N

6 diag(n,n)=((n -0.5)* pi)^3;

7 end

8 end
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