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Resumen

Se calcula las frecuencias naturales para las oscilaciones de la frontera libre de
las ondas estacionarias capilares en contacto con un contenedor sélido. Primero,
estudiamos el caso del semiplano. Deducimos una ecuaciéon evolutiva
integrodiferencial para la frontera libre linealizada e imponemos condiciones de
borde fijo y borde libre. Para ambos casos, se proporcionan las frecuencias de
oscilaciones naturales para las superficies libres y se comparan con las
frecuencias en ausencia de paredes. Luego, mediante mapeos conformes, se
puede hacer el mismo analisis en contenedores arbitrarios 2D, con toda la
informacion sobre su geometria contenida en una matriz, que aparece como un
factor en un sistema lineal para el calculo de frecuencias propias. En particular,
hacemos el analisis a una tira vertical infinita y un contenedor redondo.

Palabras Clave: frecuencias, oscilaciones, extremo fijo, extremo libre, ondas
capilares, superficie libre.



Abstract

We compute the natural frequencies for the oscillations of the free boundary of
capillary standing waves in contact with a solid container. First, we study the case of
the half-plane. We deduce an integrodifferential evolutionary equation for the
linearized free boundary and impose pinned-end and free-end boundary conditions.
For both cases, the natural oscillations frequencies for the free surfaces are provided
and compared with the frequencies in the absence of solid walls. Then, by conformal
mappings, the same analysis can be done to arbitrary 2D containers, with all the
information on their geometry contained into a matrix that appears as a factor in a
linear system for the computation of eigenfrequencies. In particular, we make the
analysis to a vertical-infinite strip and a rounded container

Keywords: frequencies, oscillations, pinned-end, free-end, capillary waves, free
surface.
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1 Introduction

In the present work, we describe the motion of a perfect and incompressible fluid delimited above by a free
surface under capillary action. We are going to compute the frequencies for the oscillations of the free boundary
of these capillary waves in contact with solid walls. During this analysis, we neglect gravity since we are working
on a small scale. We want to emphasize that the manner that waves arise depends on the presence of walls
and the contact with the free surface. Besides, we study different two-dimensional geometrical cases, namely:
the half-plane, an infinite vertical strip, and a semicircular shaped container. We also compare our results with
those in the literature: the natural frequencies for the gravity-capillary case in different geometries are shown
in [1] and [2]. The analysis will allow us to determine the manner the container geometry affects the frequencies
of oscillations.

The methodology for the half-plane is as follows: we first deduce an integrodifferential evolutionary equation
for the linearized Euler equations. We also impose two different boundary conditions: Dirichlet homogeneous
or pinned-end condition, and Neumann homogeneous or free-end condition; in this last case, we consider a
contact angle of 7/2 between the wave and the solid wall, which has been used before in the literature (see
[3]). For the purpose of this work, we are going to use the separation of variables technique; and, in this way,
transform our problem to an ordinary differential equation in the time variable and an eigenvalue problem in
the space-variable. The eigenvalue problem can be approximated numerically by finite matrices. Once we get
the frequencies for the free surfaces, we can compare them with the frequencies in the absence of solid walls
(sine and cosine frequencies). For this comparison, MATLAB is a valuable tool since it allows us to numerically
approximate systems in each case and, for instance, to determine the free surface shape in both cases: in
the presence or in the absence of walls. Besides, MATLAB is also useful in checking the convergence of the
eigenvalues.

In order to study the remaining geometries, the main tool to be used is the conformal mapping technique
to transform any two-dimensional domain into a simpler one. We first consider the technique for a general
geometry and then apply it to the geometries in mention: we will conformally map both the infinite vertical
strip and the semicircular geometry into the half-plane.

The motivation to work on this topic is that the technique is useful in engineering. The technique is related to
the ink-jet print technology. Besides the conventional printing on paper technique, the ink-jet print technology
goes further. For example, we can find some of its application in the displays industry to create the transparent
electrodes that criss-cross the front and rear surfaces of computer displays [4], in biology and medicine to
build pregnancy and diabetes tests [4], in chemistry for nanoelectrospray ionization [5], in physics for droplet
generators, which has a lot of applications by itself (mass spectroscopy, fuel processing, multilayer parts and
circuits manufacture, etc.) [6, 7] and in fluid mechanics when one tries to control the surface by injecting fluid
through the boundary, as is done in the treatment of mining disposals [8].

The structure of the work is organized in the following way: first, we will introduce some important results
on Fourier and Hilbert transforms and Tchebyshev’s first and second-kind polynomials which will be useful later
when decomposing the Hilbert transform into an orthogonal L? basis. Then, we present the deduction of the
conservation equations in order to get the Euler incompressible equations and also the Navier-Stokes equations.
Once this framework is settled down, we formulate the problem and proceed to linearize the related equations.
As mentioned before, we are going to deduce an integrodifferential evolutionary equation to find the natural
oscillation frequencies. Next, by employing conformal mappings, we are going to extend our results to other
geometries and compare them. Finally, we will discuss the results, conclude, and give an outlook for future
research.

Mathematician 4 Final Grade Project
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2 Objectives

2.1 General Objective

To compute the natural frequencies for the oscillations of the free boundary of capillary waves in contact with
an specific solid container: half-plane, vertical infinite-strip and rounded container.

2.2 Specific Objectives
e To deduce conservation equations in order to get the incompressible Euler equations.
e To linearize the Euler equations in order to solve it explicitly, after a domain transformation.

e To solve the eigenvalue problem arising from the linear conservation laws, for each boundary condition
and each container geometry, in order to get the free surface profile.

e To approximate numerically the eigenvalue problem by using MATLAB.

To explore the application of this technique by considering different geometries.

3 Preliminaries

In the present chapter we will deduce some important results. These results will be used further in the following
sections. We will first introduce the so-called Fourier transform that owes its name to Jean-Baptiste Joseph
Fourier; in his publications Mémoire sur la propagation de la chaleur dans les corps solides (1807) and Théorie
analytique de la chaleur (1822), Fourier showed that there are functions that can be expressed as trigonometric
series. In a simple definition, the Fourier transform is a linear transform that decomposes a signal into its
contributing frequencies[9]. The applications of Fourier transform can be found in many fields: in signal
analysis, for example when processing seismic waves[10] or when obtaining the first image of a black hole[11];
in communication theory to understand how a signal passes through communication channels[12]; in physics,
for spectral estimation[13]; among others.

Furthermore, Tchebyshev polynomials of first and second-kind will be introduced. The main reason to
choose this basis instead of the Fourier basis is that the weight in the linearized conservation equations makes
Tchebyshev polynomials the most reasonable option to work with. Some of the properties of these polynomials
are also presented. Finally, the explicit way of obtaining the curvature of the free surface that we will be later
working with; and the deduction of the conservation equations that later poses our problem are showed during
this section.

3.1 The Fourier transform

It is important to first mention the Fourier series. For introducing the series we will rely on [14]. Let Q =
[-7, 7] C R and let’s consider the Fourier basis

F={15} U{Cn/n e N}U{S,/n e N} C C (),
where 1¢ is defined as follows

1fZQ—>R
t— 15 () =1,

and, for n € N,
Cn (t) =cos(nt), S, (t)=sin(nt).

Let f be a 2mr—periodic function on 2. The Fourier series allow us to represent the function f in terms of
simpler functions in the following way:

ag 00 0o
= —1 1
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implying
t) = =0 =+ E an COS (Tlt) + E by, sin (nt) a.e Vt € ) (3 2)
n=1 ! ! ’ . ’ .

ao:%/gf(t) d, an:%/ﬂf(t) cos (nt) dt, and bnzi/ﬂf(t) sin (nt) dt

The Fourier transform is an extension of the Fourier series; in this case the period of the function can approach
infinity. In the case of the Fourier transform, the sine and coefficients are written as complex exponential
coefficients by using the Euler’s formula. We will now introduce the Fourier transform as presented in [15]. The
Fourier transform of a function f € L? [—o0, ] is given by:

FIf] (k) = f (k) ¢%/’Z“f (3.3)

and its inversion formula, also given in [15], is

P (R) = f(k ¢%/‘-%v 2)dz (3.4)

Theorem 3.1 (Derivative of the transform). Let u € L' (R) such that |z|"u € L' (R). Then 4 € C™ (R) and
the following holds:

with

dd%a(k) = F [(iz)" u] (k), for a such that |a| < n. (3.5)

Proof. We know that

L eik(k—ko) _ 1
etk Oxida?.

k*ko \/27r/ k — ko

Let ¢ (z,v) =
o (z,0)] < |z,
and
lim ¢ (z,v) = ix.
v—0
Applying the dominated convergence theorem, we finally obtain that
. u(k)—1a(ko) _
T
— P liz] (ko)

z) etfo dy;

da
Theorem 3.2 (Transform of the derivative). Let u € C” (R) such that dm—: € LY (R) for all |a| < n. Then,

d*u e
F <dx(’> (k) = (—ik)" a (k). (3.6)
Proof. Let’s prove it by mathematical induction.

Base case: for @ = 1. We need to prove that:

F o (2)] (k) = (~ik) (k).

By using integration by parts and given the fact that u has compact support we get that:
1 .
Flu(x k:—/ume’kmdx
o @] () = = [ ule)
T _
S u (x) e dx

Ver Jr
= (—ik)a (k).
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Inductive hypothesis: let @ € N such that 1 < a <n — 1. Then,
d*u

F|—

{dma

] (k) = (—ik)* a (k).

Inductive step: for a = n, let’s prove that:
d’rL
F { “] (k) = (—ik)" @ (k) .

dzm

We know that

d™u 1 d"u ,
F k)= —= | 5—e*"d
{daz”} (k) o Jr dzn ¢

du d" 1y

1
V2 /IR % dxn—1

By using integration by parts, and the inductive hypothesis, we obtain

ek .

ezkw dr

d”iu (k) = —ik A"ty
dxm  \or Jg dant

O

Theorem 3.3 (Convolution theorem). Let u,v € L? [—00, ). Recall that the convolution of u and v is defined

as

(u*v)(x):/mu(z)v(x—z)dz.

— 00

The Fourier transform of the convolution of u and v is given by
Fluxv] (k) =V2r (Fu] (k) Fv](k)).
Proof. Let u,v € L? [—00, ], generic. Then,

Fluxv T (4 % v) (x) do

=7 e

:\/%/Reim (/Ru(z)v(x—z)dz> da.

By appliyng Fubini and then the change of variable y = = — z, we get

F[u*v]:\/%/Ru(z) (/Reimv(x—z)dx>dz

:/Reikzu (2) (\/12771_/]1{6“@1} (y) da:) dz
:/Re“”u (2)dz - F|v] (k)
= V2 (F[u] (k) F[v] (k))

We conclude by the arbitrariness of u and v.
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3.1.1 The Hilbert transform

In this section we will focus on establishing a relation between the Fourier transform and the Hilbert transform.
We will rely on the results shown in [15]. The Hilbert transform of ¢ € L? (R) is the operator defined as:

furzlfwfﬂ@d% f(2) € I* (R). (3.8)

T ) o T—Y

The * above the integral indicates that it is a Cauchy principal value integral. This means that it cannot be
calculated as an improper integral because of the point y = x. The Cauchy principal value integral is defined

as:
/*¢@u%ﬂm<fﬂ¢@uw_w¢@u0'
—00 Y =0 —00 T TY z+e L — Y

Theorem 3.4. For f as in (3.8), we have that:
H (H (6)) = 0. (39)

In order to prove the theorem, we first need to prove the following two lemmas:

o oo* o oo™ isy
/ gise / OW) gy = / €52 () di / €y (3.10)
—00 —0 T Y —00 —oo Y

Proof. First, the left-hand side of (3.10) can be rewritten as:

/O:o /O:o ei"j(_y)ydydz. (3.11)

Now, apply Fubini’s theorem to (3.11) and then start solving:

oo oot o 00" Lis(y+z—y)
/ / er’” L (v) dzdy = / 10) (y)/ e - dxdy
—c0 J— r—y —0 —o0 r—=y
0 ) 00" Jis(z—y)
[ swee | dady
—00 —0o0 r—y

oo 0o* isw
_ / 6 (y) €Y / € dwdy
—o0 —0 W

= / o (y) e™¥dy / € _dw, (by Fubini).
— 00 oo W

Lemma 3.5.

@

Then, the lemma has been proved. O

Lemma 3.6.

/000 sin (s7) dx = gsgn (s). (3.12)

X

Proof. By using Fubini’s theorem we get:

/OOO (/OOO e”™sin (sx)dy> dz = /OOO </OOO e~ ™Y sin (s:c)dx> dy, (3.13)

oo

where

—aySin (57)

o0
/ e"sin (sx)dy = —e
0 T o

_ m (e_xysin (sx)) N sin (sx)

Yy—oo T xT

_ sina(:sx)7 (3.14)
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and

o0
/OO e "sin (sx)dxr = — /00 ye ™Y cos (sz) da — e~oy E28T) (s2)
0 0 s 0

|
|
|
/N
o\
8
|
8
<
2
=
&
js8
+
|
8
<
@
=
—
&

1
=—= e”™sin (sx)dx + —
S 0 S

2 [e'e]
Y —zy 1
1+ = Y dr = —,
< 52>/0 e ™sin (sx)dx S

S
82+y2'

Therefore,

which implies,

/ e ™sin (sx)dx =
0

By replacing (3.14) and (3.15) in (3.13) we get:

Ja Ty
0 T 0o S°+Y
1 [ 1
sho1e(y)
e vanton ()
= —.s-arctan | =
S S
:arctan(y)
5/ 1o

= lim arctan (y) -0
y—00 s

oo

0

_ %, s>0

| -5 s<0
T

7§sgn(s)

Thus, the lemma has been proved.

(3.15)

Now that both lemmas are proved, we can use these results to prove theorem 3.4 as follows:

Proof. We begin by computing the following integral by using (3.10),

I

0o*  is
sy

) _ L * isT

ydydm—m/_ooe ¢(m)dm/_oo ” dy
™ isy

= F(fb)/ ey dy,

— 00

where F' is the Fourier transform, and by using (3.12), we have

0™ isy oo™ co*
/ e dy = / cos (sy) dy —|—i/ sin (sy) dy
-0 Y —00 Y ) Y

_ 9 /OO* sin (sy) dy
0 Y

= i sgn (s) .
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Therefore, by applying Fourier transform to (3.8) we get:

isgn(s) F(¢) = F(f), (3.16)

¢ (x) = —l/oo Mdy- (3.17)

T ) o T—Y

from where we obtain

We will denote the operator defined in (3.8) as H. Thus, (3.8) and (3.17) can be rewritten as:
H(¢)=f

so the statement of the theorem has been proved. Besides, from these two equations it follows that:

H (H (¢)) = H (f)

By (3.16) we also get:
F(H(¢)) =F ()
=i sgn(s)F (),
which indicates that H (¢) € L? (—o0, 00). O

An special case of the transform is the finite Hilbert transform that comes from the airfoil problem in
aerodynamics (see [15]). This modified Hilbert transform is of the form

19, gy [6(2)] (@) = £ (2), f(x)eL?[-1,1], (3.18)

mJ)_1 T —Z
and its solution leads to the following inversion formula (see Appendix A for details)

LTV E S,
™) 1 VJ]1—22x2—2

¢ () = (3.19)

3.2 Tchebyshev polynomials

In the present section we will introduce the first and second-kind Tchebyshev polynomials as well as its main
properties. It is important to mention these polynomials since they form the L? we are looking for our problem.
The following definitions and the properties statements are based on [16], and [17].

3.2.1 The first-kind polynomial T,
The Tchebyshev polynomial of the first kind, denoted T;, (z), is a polynomial in « of degree n, given by:

T, (x) = cos (nd), when z = cos(6), (3.20)

and —1 <z < 1.
The recurrence relation

T, (z) =22T,_1 (x) — Th—2(x), n=2,3,.. (3.21)

together with the initial conditions
To(z)=1, Ti(x)=uw, (3.22)

generates all the polynomials recursively. The first five first-kind polynomials are shown in Figure 1.
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Figure 1: first-kind Tchebyshev polynomials up to degree 4.

3.2.2 The second-kind polynomial U,

0.5 1.0

To(x)
T1(x)
To(x
T3(x’
Ta(x

= oo

The Tchebyshev polynomial of the second kind, denoted as U, (z), is a polynomial in z of degree n, given by:

Un (z) = sin ()

and —1 <z < 1.
The recurrence relation

U, () =22Up—1 () — Up—2o (2),

along with the initial conditions

sin [(n + 1) 6]

Up(z) =1, U;(z) =2z,

,  when & = cos (0),

n=23,..

(3.23)

(3.24)

(3.25)

generates all the polynomials recursively. The first five second-kind polynomials are shown in Figure 2.

Figure 2: second-kind Tchebyshev polynomials up to degree 4.

3.2.3 Properties

Uo(x)
Ui (x)
Ua(x)
Us(x)
Ua(x)

Proposition 3.7 (Symmetry). If the Tchebyshev polynomials are of an even order, then they have even sym-
metry, and, besides they only have even powers of x. If the Tchebyshev polynomials are of an odd order, then

they have odd symmetry, and, besides they only have odd powers of x, i.e.,

T, (—z) = (=1)"T, (x) (3.26)

[ T,(x), n even,
- { T, (x), n odd. (3.27)

And

Up (—z) = (=1)"U, () (3.28)

_ U, (z), n even,
"l “Un(z), n odd (3.29)
Mathematician 11 Final Grade Project
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Proof. We will work with the first-kind polynomial since the proof for the second kind is analogous. We are
going to prove the result inductively.

e Base case: it holds for n=0:
To(—z)=1=(-1)"Ty ().

e Inductive hypothesis: we assume the statement is true for 0 < n < k, i.e., it holds that

e Inductive step: we are now going to prove it for n = k + 1. By definition of 7;, and the inductive
hypothesis, we have that

Tit1 (—2) = =22T, (—2) — Tp—1 (—2)

=22 (=) T () — (=) ' Ty (2)
() Ty (@) = (-1 Ty ()
D (22T (2) — Tho (2)]
D T (2)

2x
(—
(-

O

Proposition 3.8 (Roots and extrema). A Tchebyshev polynomial of degree n has n different simple roots,
called Tchebyshev roots, in the interval [—1,1].

The roots of T, are given by
k+1/2
T = COS (W) , k=0,...,n—1.

In a similar way, the roots of U, are given by

k
Tk cos(n+17r), R )

The extrema of T,, on [—1,1] are located at:

k
Tl = COS <7r> , k=0,..,1.
n

Both the first and second kinds of Tchebyshev polynomial have extrema at the endpoints, given by:

T, (1) =1,
T, (_1) = (_1)n7
Up (1) =n+1,

Un(=1) = (n+1)(-1)"

Proof. Let’s first find the roots of the first-kind polynomials T,. By definition T;, () = cos (nf), then T, (z) =0
implies that

cos (nf) =0,
from were we know that
nb = (k+1/2)m,
and finally we can solve for 6:

0:7T(k+1/2),
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Since x = cos (6), then

k+1/2
T = COS <M>7 k=0,...,n—1.

n
Besides,
d d
d—z = %cos(e) = —sin(0),
implying,
do 1
— = . 3.30
dx sin (0) (3:30)
Now let’s find where its extrema are located. For this we need to use (3.30),
d
0=—T,
75 In (@)
d
= o cos (nd)
de d
= 275 ¢ (nd)
__ nsin(nd)
sin (0)
Therefore the above result states that
sin (nd) =0,
thus ]
0=—m,
n
and since we know that & = cos (6) we have that
k
T} = COS <7r> , k=0,..,n.
n
If we evaluate T), in xg and z,,, we find that polynomial endpoints give also extrema:
T, (x0) =T, (1) =1,
T (zn) =Tn (1) = (-1)".
. . .. sin [(n+ 1) 6]
Now let’s find the roots of the second-kind polynomials U,,. By definition U, (z) = W, then by
letting
U, (z) =0,
we get that, in particular,
sin [(n+1)6] =0,
then,
(n+1)6 = kn,
and
_k
Con+1
Since = = cos (), we have that
k
Tk COS(n—i—l >, sy T
O
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Proposition 3.9 (Differentiation and integration). The derivatives of the Tchebyshev polynomials are given

by:
dT,
— =nU,_1, 3.31
dx " ! ( )
U, (n+1)Thy1 —2U,
= . 2
dz 2 -1 ’ (3.32)
4T, nT,, — zU,_1 (n+1)T, -U,
= = . 3.33
dz T 21 " 2 -1 ( )
Concerning integration,
/ Updax ”* L (3.34)
Proof. Let’s begin by proving (3.31),
T, df d
T = 4o as °% (nh)
sin (nf)
sin (6)
= TLUn_l.

Now we prove (3.32):

dU, df d sin[(n+1)06]
dr  drdf  sin (9)

1 (n+1)cos[(n+1)6]sin(f) —sin [(n+1)6] cos (0)
~ sin(0) sin? (0)
_ 1 (n+1)Thi1 sin( ) —Upsin(0) x
sin (0) x? -1
(’I’L + 1) Tn+1 —zU,
B 22 —1 '

Next, we are going to prove (3.33):

T, _ 4 (ar,
dz?  dx \ dx
T,

_do d (dT,
" dx df ( dz )
do d sin (nd)
T dzdo (n sin (6) )
n  ncos(n#)sin (0) — sin (nd) cos (6)
~sin (6) sin” (6)
_n nT,sin(f) —Up_1sin(0)x
~ sin(6) x?—1
_ nTy —xUp
B x2-1

Finally, let us prove (3.34). Using (3.31), we get:

d (Tn-i-l )

= 1) Uy,
. (n+1)
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which implies that

T 1
ntl _ / U, dx.
n + 1 1

O

Proposition 3.10 (Orthogonality). The first-kind polynomials T,, are orthogonal with respect to the weight

1
Vi—a?
on the interval [—1,1], i.e.,
1 de 0, n #m,
/_1Tn(x)Tm (@) s = ; Ziz;g (3.35)

Similarly, the second-kind polynomials U,, are orthogonal with respect to the weight

V1-— 22,

on the interval [—1,1], i.e.,

/ U () U, () V1~ 22 = { g nzm (3.36)

—1 ) m
Proof. Let’s begin studying the first-kind polynomials.
e n#m. Let x = cos (0), thus dz = —sin (6) df and

[1 Ty (x) T () \/% _ /Ow T,y [cos ()] Trn [cos (6)] df

= /F cos (nf) cos (mb) df

0
_ %/0 [cos [(n+m) 6] + cos [(n —m) 9” do
1 [sin [(n+m)6] N sin [(n — m) 9]]

2 n+m n—m

0

=0.

e n=m=0. Let x = cos (0), thus dz = —sin (0) df and

-1

/ T () Ty () \/% = /07T T, [cos (0)] Ty, [cos (0)] d6

= / cos (nf) cos (mb) df
0
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e n=m #0. Let = cos (0), thus dz = —sin (0) df and

3

I
8

Il
[\3.\:1 N = N = m\»—th‘C\

/ L () T (1)

-1

T,y [cos ()] Tpn [cos (6)] df

—
I

8
o

cos (n#) cos (m0) d

3

[cos [(n+m) 6] + cos [(n —m) 9]} do

[cos (2n8) + cos (0)] db

o\:‘c\

sin (2n0) +9} "

n

—

0

Now let’s work with the second-kind polynomials.

e n % m. Let x = cos (0), thus dz = — sin (0) df and

/ U, (2) Uy, (2) /1 — 22da = / U, [cos (6)] U, [cos (6)] sin? (6) do

-1 0
- /OW sin [(n 4 1) 0] sin [(m + 1) 6] d6

;/Oﬂ [7cos [(n+m+2)9] + cos [(nfm)ﬂ)} do

T

n+m+ 2 n—m

[_sin [(n+m+2)6] N sin [(n—m)@}]

0

[=R e

e n=m. Let x = cos (0), thus dz = —sin (0) df and

/ Upn () Up () V1 — 22dx = / Uy, [cos ()] Uy, [cos (9)] sin® (6) d¢

1 0
= /07T sin [(n 4 1) 0] sin [(m + 1) 6] df

:;/O7r [—cos[(n—i-m—i-Q)G]+cos[(n—m)9)} do

1/; [— cos [(n + 1) 26] + cos (0)] o

2

+0

sin [(n 4 1) 26|
 2(n+1)

0

SRR

3.3 Curvature

The objective of this section is to get an analytic expression for the curvature of a graph of a function. The
curvature, denoted as k, is a measurement of how much a curve bends [18]. While moving along a curve, one
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can notice that the direction of the tangent changes as the curve bends. Since we are interested in direction of
the tangent instead of its magnitude, we shall consider the unit tangent vector.

In order to define the curvature, we need some previous definitions. In a curve, its arc length s is defined as
the distance between two points along it. For a curve parametrized by r (¢), it is given by

S(t) = / v (r)ldr, (3.37)

where v = dr/dt.

Let C be a smooth curve parametrized by r (). Now, we also know that s = s(¢) as it can be seen in
(3.37). Therefore, from this last equation, it is possible to get t such that ¢t = ¢ (s). As a consequence, any curve
parametrized in terms of ¢ can be also parametrized in terms of s: we are able to rewrite r =7 (¢ (s)) =7 (s).

For a smooth curve C parametrized by r (t), let v = dr/dt be its velocity vector. The velocity vector is
tangent to r (). We define the unit tangent vector T' as follows

and T is a differentiable function of s as long as v is also a differentiable function of s.
We are now able to define what the curvature is. Let C' be a smooth curve with position vector r (s), where
s is the arc length parameter. Then, the curvature x of C' is

g
ds

R =

, (3.38)

where T is the unit tangent vector.
The following theorem give us an alternative way to compute the curvature.

Theorem 3.11. Let C be a smooth curve with position vector r (t). Then, the following formula can be used

to compute the curvature, K,
_ @) x " @)

3.39
" OF (339
Proof. Let’s first compute ', 7" and its cross product.
1. Let’s compute 77 ().
By definition,
o )
I (@)1
and, by applying fundamental theorem of calculus in (3.37), we get
ds
o= 7] (3.40)
Therefore, we get that
d
r = £T. (3.41)
2. Let’s compute 7" (t). By the last part,
d (ds d?s ds
"= —=T) =T+ -1 42
" dt(dt ) az T (342)

3. Now, let’s compute the cross product 7’ (¢) x r” (¢) and its norm. By (3.41) and (3.42),

2 2
=y () ).
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Since T” is tangent to T, §# = /2 is the angle between them, and
d
I = ()

ds
=( )IﬁmThmﬁ

(ds) Isin (3 )

I (&) x " (O] = [Ir" 1]l

and by using (3.40), we get

Therefore,
iy = I @< )
[l (£)1?
Now, by applying (3.40), we have
dr
K=|—
ds
dt (d
— | =T
ds (dt ) H
_ T @l
[l (@)l
_ @) x " (@)l
I @
O
Finally, we introduce a theorem that allow us to compute the curvature of the graph of a function.
Theorem 3.12. If C is a curve given by y = f (x), with f twice differentiable, then
/" (@)
= 373 (3.43)
1 + (x) )
Proof. To parametrize the curve given by y = f (z) as a 3D parametric curve, we use
r=c
y=[(x)
z=0
Then, the position vector of C'is 7 (z) = (z, f (x),0) and it follows that
r'(z) = (1, f (2),0),
" (x) = (0, f" (2),0).
Hence,
rxr’ = (0,0, i (x)) ,
therefore,
I x| = [f" (@)l
We also know that
2
Il = /14 (f' ()
18 Final Grade Project
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Thus,
I xa
[l ()|

@)
(1 + (f (x))z)

3/2°

3.4 Conservation equations

During the development of this section, we are going to deduce the mass and momemtum conservation laws by
making use of the Reynold’s transport theorem. The aim will be to later deduce the Euler equations as well as
Navier-Stokes equations. We will base on the results presented in [19] and [20].

3.4.1 Eulerian and Lagrangian approach

In order to derive mass and momemtum conservation equations, first it is essential to choose a coordinate
system: the eulerian or the lagrangian system. Before choosing the coordinate system, it is of key importance
to define a control volume. According to [21], a control volume is a volume in space (independent of mass)
through which fluid may flow. Furthermore, as any volume in space can be considered as a control volume, we
have to establish which control volume will be working with for the deduction of the equations. For the purpose
of this section, we might assume an arbitrary control volume.

On one hand, the eulerian coordinate system can be used when a control volume is fixed and we focus on the
fluid passing through it. In this case, at different times, the portion of the fluid we are seeing is also different
but the control volume remains the same. Besides, the independent variables are the spatial coordinates x, v, z
and also the time variable .

On the other hand, in the lagrangian system we choose a portion of the fluid and follow it during a time
interval. Therefore, at different times we still have the same portion of fluid but at different spatial coordinates.
In this case, the independent variables are xq, yg, 20 and t, where xg,yo and zy denote the spatial coordinates
of the portion of the fluid at time ty. For convenience, we choose this last approach in order to derive the
conservation equations.

3.4.2 Material derivative

Let a be a given property of the fluid and u denote the velocity vector of the fluid. Then, the material derivative

is defined as follows: D 5
D—? = a—i‘ +(u-V)a (3.44)
As mentioned before, we will deduce the mass and momemtum conservation laws in the lagrangian approach.
First, the left-hand side of (3.44) shows the total change in « in the lagrangian system, that is, how « changes
as we follow a particular portion of the fluid as it flows. In the right-hand side of (3.44), the total change in
« in the eulerian approach is represented: the first term represents the eulerian time derivative, that is how «
changes as t does it (recall that the portion of fluid is different for different times); while the second-term shows

how « changes in a system that does not depend on time.

3.4.3 Reynold’s transport theorem

The Reynold’s transport theorem will allow us to relate the eulerian and the lagrangian approaches. Let V'
be an arbitrarily shaped control volume, let o denote an arbitrary property of the fluid and let u denote the
velocity vector of the fluid. Then,

D% /V adV = /V [%‘;ﬂv-(au)} dv, (3.45)
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where V - (au) denotes the divergence of au. Equivalently,

el adV / Za (oug) | dV. (3.46)
Tk

3.4.4 Mass conservation law

Let us consider an specific mass of fluid with an arbitrary volume V. If this fluid mass is followed as it flows, then
it can be seen that despite the fluid shape changes, its mass remains constant. This is called the conservation
of mass principle. If fluid density is denoted as p, the principle states that

D
dV = 0. 3.47
Di / P (3.47)
By using Reynold’s transport theorem and setting o = p, we get

/[gt+v (p )}dV:Q

and since V was arbitrarily chosen, the only way that the equality can be satisfied is by setting the integrand
equal to zero, i.e.,

dp
(pu) = 4
8t+v (pu) =0, (3.48)
or, by (3.44),
90 Vot pVou=0 = 224 viu—o (3.49)
ot pre N Dt 7 - '

3.4.5 Momentum conservation law

The momentum conservation law is a direct consequence of the Newton’s second law of motion. The law states
that the rate of change of momentum variation is equal to the sum of the resultant forces, that is, for an

arbitrary volume V,
D
Dt/ pudV = /f +f.dV, (3.50)

where f, denotes the contact density forces and f. denotes the external density forces. Let u = (u1, ug, ..., uy).
To obtain an explicit formula from (3.50), we can work by components as follows:

D
/V(chrfe)id Dt/ pu;dx
— (pui) + V- (puiu)} dx

@

pa(,;;i + V(pu;) - u+ pu; V- u} dx

dp Ouy;
= _auw/) 5 +(quz+qup)-U+usz-U] dx
AN A
= ul(at—i—Vpu—ka u>+p(at -u)]dw,

which, by (3.49), becomes
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Since this equality is true for any domain V', we conclude

(91,61‘

ot

(fc—&—fe)i:p( +Vui~u>.

Writing equation above in vector form, give us

fc—|—f6:p<(z)ltl—|—(u-V)u).

n

This last result holds since, for a fixed component i, Vu; -u = Z ugOku; is the i-th component of (u- V) u.
k=1
Furthermore, the contact forces f. are the sum of a pressure and a viscosity component, that is, f. =f,+f,.

Johann and Daniel Bernoulli as well as Leonhard Euler worked in describing the contact forces components.
They managed to describe the pressure component as f, = —Vp (see [20]). Finally, the momentum conservation

law has the form 5
p ((,;tl +(u-V) u> =—-Vp+1,(x,t) + £ (z,t), (3.51)

where f, represents the viscous effects on the fluid.

4 Theoretical framework of the project

Once the mass and momemtum conservation equations has been deduced, we can proceed studying the Fuler
equations equation as well as the Navier-Stokes equations. As we will see later, the Euler equations are of great
importance in the present work: we are going to linearize these equations and solve the system in particular
domains of R?. The results are based on results in [19], [20], and [22].

4.1 Euler equations

Let u = (u,us,...,u,) be the velocity vector of the fluid. The inconvenience with the system described in
(3.49) — (3.51) is that the system give us n + 1 equations while it has n + 2 unknowns (u, p and p). Thus,
to overcome the difficulties of this system, Bernoulli and Euler (XVIII century) proposed to find reasonable
conditions to reduce the problem to one that actually can be mathematically analyzed. This reduction consists
of two considerations, the first is to consider fluids that cannot be compressed, known as incompressible fluids;
and the second is to consider fluids that do not suffer viscous effects, known as perfect fluids.

4.1.1 Incompressibility

This incompressible fluid condition states the following:

Dp

=0.
Dt

Besides, in order to subject the fluid to the mass conservation law in (3.49), it also happens that
V-u=0.
If we add spatial homogeneity p = p(t), then, from Dp/Dt = 0 we can get dp/0t = 0; that is, p should be
constant in time and space, therefore, p is not a variable of the system anymore.

4.1.2 Perfect fluids

For fluids that are sensible to pressure but not to shear stress, the only contact force that will play a role will
be the pressure component, where f, = —Vp and the dynamic equation (3.51) becomes

aa—;l+u~Vu:—% [(Vp) + £ (z,1)] . (4.1)
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By adding the incompressibility hypothesis, we have
V.-u=0. (4.2)
It is common to assume homogeneity, thus p is a constant. The Euler system for perfect fluids consists of
equations (4.1) and (4.2). Thus, this new system has n + 1 unknown variables as well as n + 1 equations.

4.2 Navier-Stokes equations

The Navier-Stokes system (NSS) is a set of non-linear PDEs describing the motion of an incompressible fluid. In
contrast to Euler system, NSS takes viscous effects into consideration. The NSS owes its name to Claude-Louis
Navier and sir George Gabriel Stokes since they determined the viscosity component in (3.51).

The force due to viscosity is defined as follows

f, = V1oV = Vrézdydz, (4.3)

where 7 is a shear stress. The shear stress is a tensor, and therefore, has three forces in each direction as
represented in Figure 3.

X

Figure 3: representation of the components of the forcing viscosity terms in a small region of volume 0V.

For each direction x,y and z, we can sum the forces due to viscosity and get

OTwx n OTya n 0Tz

—f, 4.4
ox y 0z e (44)
5‘sz 8Tyy 87-zy

=1, , 4.
or + oy + 0z Y (45)
OTx n 0Ty n 0T, — . (4.6)

or y 0z

For a fluid with constant viscosity, commonly referred as a newtonian fluid, the stress is proportional to the
rate of deformation. This means that

Ou; = Ou, .
Tij :< - + uj):u’v fOI' 1,7 6{17273}7

Ox;  Ox;
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where u = (u1, u2,u3) and (21, z9,23) = (z,y, z). In particular,

ou Ju
Tey = Tyx = ( 8; + 31'2) s (47)
- o 8u1 87.1,3
Taz = Tzx = < D2 + Oz ) s (48)
ou Ju
Tyz = Tay = < 82’2 + a;) s (4.9)
Top = 2u%, (4.10)
ou
S (@)
au;g
Yy = 22— 4.12
T ry, (4.12)

Replacing (4.7) — (4.12) in (4.4), we now get
0 ouq ouq 0 [(Ouy Ous 0 [Ou; Ous
f’U = — _— _— _— _— _— _— _— —_—
N az(uax+M3x)+8y(8y+3x)u+az<3z+3x)'u

B AU N0 B )
TR G2 T2 T2 ) T T Har \ar 1t T oyt T 9,12

since we are assuming that V- u = 0. Analogously, we can obtain explicit expressions for f, and f,_,
0? 0? 0?
fon =052 T o2 T2 | "

0? o2 0?
£, =u L+ L T )
= = H | 922 + Oy? + 922 | 3

Then, with these results and (4.3), we have that
f, = pAuoV.
Now, we are able to replace the viscosity term in (3.51) to get

1
%‘: +(u-V)u= - (VP + pAudV + £, (x,t))

Let v = pu/p be the parameter characterizing the viscosity property which depends on each fluid, we finally
get the NSS with constant density and viscosity:

V-u=0. (4.14)
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4.3 Problem statement

The problem considered in the present work consists of analyzing the waves in a container with a small hole,
around the origin, of size 2 at the center of the top wall. That is, we want to study incompressible, perfect
fluids, on general domains in R?. We start by considering the lower half-plane case, Q = R? = {(x,y) /z € R
and y < 0}. The container geometry is represented in Figure 4, where the top walls are assumed to extend to
infinity.

x5
x=-1 [reesurface x=1I

Figure 4: half-plane container geometry.

Some assumptions on the liquid inside the container are that it has a constant density p and a surface tension
o, which appears on the system as an external force, related to the pressure. Therefore, our fluid will obey the
system of equations (4.1) — (4.2). The external force component to be considered is the gravity acceleration
denoted as —gesy, with g > 0 and e = (0, 1), the unit normal vector in the vertical direction. Thus, the fluid is
ruled by the following system:

V-u=0, (4.15)

p [861; +(u-V) u] = —Vp — ges. (4.16)

In our case, gravity effects on the fluid can be neglected since we are working on a microscale and there is
almost no contribution in comparison to surface tension. Let the velocity vector u (z,y) = (u,v), where u and
v denote the velocity components in  and y, respectively. We will consider the following conditions for the
asymptotic behaviour at infinity:

u,v =0, asy— —oo or |z| = oco. (4.17)
We also impose an impermeability condition on the walls, i.e.,
v=0, aty=0and |z]>1. (4.18)
Let the equation of the free surface be of the form
y=h(z,t), for|z|] <L (4.19)
At the free surface, consider that the pressure is given by the following expression
p = 0K, (4.20)

where o is the surface tension and & is the curvature of the surface. In this case, by (3.43),

K= —hay/ (1 + hfﬁ)s/2 . (4.21)

We can define T' (x,y,t) = y — h(z,t). Thus, by the mass conservation and (4.19) we have that
a_ords ordy or
dt Oz dt Oydt Ot
= —uhy +v—h
=0.

Therefore,
hy = —uh, +v. (4.22)
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4.4 Linearized equations

In this section we are going to linearize Euler equations. Then, by using the Fourier transform method, we will
write the system on the free surface only, as a scalar equation involving an integral operator.

Before, let us reformulate the problem in terms of the velocity potential ¢. Assume an incompressible,
inviscid and irrotational flow fluid satisfying the conservation equations. Then, we can consider a potential
function ¢ (x,y) of u such that u = V.

Then, from (4.15) we get that for (z,y) € Q:

0=V-.u
=V -Vop
= Aep.

Now, from (4.16) and considering that

(u-V)qu(éu-u)—ux(qu),

we get
oV 1
p [af + V§ IVe|* = Vi x (V x V‘P)} =—Vp,
but for any scalar ¢, it holds that
V xVp=0.
Therefore, we get:
8Vg0 1 2
— + V- =-V
| + V5 IVel| ==
dp 1 2|
o9 |5+ 5 9P| = -

implying,

ot

where we can assume the constant ¢ to be zero.
Hence, for (z,y) € 9,

dp 1
p [@+2|le1 = —p+e

9%

1, o 1
S Ve + Zp=o.
5 T 51V¥l +op

Finally, the boundary conditions in (4.17) for u, can be rewritten in terms of ¢, as

Op O
—907—('0—)0, as y — —oo  or |z| = oo.
ox’ Oy
Summarizing, we have
Ap =0, for (z,y) e R?, (4.23)
4z Zp= f R 4.24
oo+ Vel =0, for (ny) € R, (121)
gi;, % —0, asy— —oo or |z|— oo. (4.25)

System (4.23) — (4.25), is known as the Bernoully formulation of Euler equations. As we mentioned above,
we are going to linearize this system, which will allow us to find an explicit solution.
Let
h(xz,t)=¢ef (x,t), |z|<]1. (4.26)
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Then, it is expected that the velocity potential be a small perturbation of the trivial solution for the

Laplacian. Therefore, let
¢ =c+ep. (4.27)

Next, we are going to write system (4.23) — (4.25) in terms of ¢ and f. From (4.23), and the above equation

we obtain:
Ap=eA¢p =0, fory<O.
Since ¢ is arbitrary, it follows that
A¢p =0, fory<DO.
By replacing (4.20), (4.21), and (4.27) into (4.24), we get

0 1 . 8 -
0—€—¢+—|V P+ o % —¢+—|V E— fim :
ot p (1+h2) ot P (L+e2f2)
Dividing by e, we obtain
3¢ Sz
X vl = 2|
P (1+e2f2)
3(;5 o
Since the O (g) terms are negligible, we get:
3(;5 o
5= 2t
By (4.26) and (4.22) we get the following equation:
eft = —eufy +v, for|z]<1andy=0.
We also know that (u,v) = (¢, ¢y) = (¢, €0y ), then
efe = _52¢zfz + 5¢y>
fi= ¢y — ey fa
=¢,+0O(e), for|z|]<1landy=0.
Thus, by taking a first order approximation, we finally get:
ft:%, for |z| <1 and y = 0.
Ay
By (4.27) and condition in (4.18), we obtain
1
g—j:gg—zzo, for |z| > 1 and y = 0.
The following conditions follow directly from (4.25):
%,%%0, as y — —oo or |z| — oo.
To summarize, the Bernoully system, in terms of ¢ and f, becomes
A¢p =0, fory<0, (4.28)
0
a—f = %fw, for y =0 and |z| <1, (4.29)
0
fr= a—j, for || <1 and y =0, (4.30)
0
a—z =0, for|z|>1andy=0, (4.31)
0¢p 0
83 (,;yb — 0, asy— —ooor |z] = oco. (4.32)
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Remark 4.1. Our system needs boundary conditions (4.29) and (4.30) because part of the boundary (free surface
f) is unknown and it is precisely what we want to determine. This is what is known in the literature as a free
boundary problem.

4.5 Integrodifferential equation

From (4.28), we know that ¢ satisfies Laplace equation on the lower half plane. Then, we can find a solution
for ¢ under conditions (4.31) and (4.30) by applying the Fourier transform in « as in (3.6). That is:

~ oy
—0.

F(iFMam+§;w@w> D F(6) - KF (9

Besides, we know that the general solution of a second order ordinary differential equation with constant
coefficients is of the form:
F [(b] (kvyvt) = clelk‘y + C2€_Ik|y'

By (4.32), we also get that:

QF [¢] = c1|k|e®1Y — cy|kle™*lv —— 0,
dy y——00

which implies that co = 0, i.e.,

F 9] (k,y,t) = creltlv.

At y=0, we have:
F(¢] (k,0,t) = c1,
thus,
F[¢] (k,y,t) = F [¢] (k,0,t) el*lv. (4.33)

Since the inverse transform of el*l¥ corresponds to the Poisson kernel P,(z) = 7%, and by using

the convolution theorem in (3.7), we have that:
F (8] (k,y.1) = F (6] (k,0,1) ™l
— Flg](k,0.1)- F (P,)

1
=—F

Ver

By using the inverse tranform once again we get:

T Joso (w—2) ¢

-2y

o0 )

By taking partial derivative with respect to y in (4.33) and evaluating at y = 0 we obtain:

OF [9]

dy = |k|F [¢] (k’ 0, t)

y=0
= (i) sgn (k) (=ik) F [¢] (K, 0,1)

by using (3.6) and (3.16), the equation becomes:

OF [¢]

dy

= (i)sgn (k) F BZ) (k,O,t)}

i[5 o)
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where H denotes the Hilbert transform.
Taking the inverse Fourier transform, we get

99
oz v=o|

By using (3.9) and (4.31), we obtain

9¢
1 / 3¢/3y z,0,t)
— ——dz
T J_o T —z
" (o
21 / (99/0y) (2,0, AIPL9Y) &S g, (4.34)
T J 1 T —z
by (4.30), we get
1*
99 =—— fi (1) dz.
Oox y=0 T)_4 T—2

By derivating with respect to t in both sides, and using (4.29), we get

1 ’ ¢
’ TJo Tz

dz.
We can assume the term o/p = 1 to obtain

1 v z,t
fa:xac (1‘,25)2—7 ftt( )
™ J_1 xr—z

dz. (4.35)

4.6 Solution of the integrodifferential equation

In this subsection we focus on solving (4.35). First, apply the separation of variables method to rewrite the
equation as an eigenvalue problem, for which we will use the linearized system in (4.28) — (4.32). Besides, in
this subsection we use Tchebyshev polynomials as a basis to decompose the spatial frequencies.

Let’s assume that

flz,t) =A(t) S (x).
By replacing this on (4.35), we have

1
S"(x)A(t) = flA" (t)/ &dz, vt > 0,Vz € (—1,1).
T 1 r—2z
Thus,
S//I( ) A/I (t)
1 (Z) ~dz A(t)

=—\ Vt>0,Vze(-1,1).

Therefore, we have two problems: (1) an ODE in the time variable and (2) an eigenvalue problem in space.
L A"(t)+XA(t) =0

We can assume A # 0, which is the case we are interested in. We know that the characteristic equation
associated to the above ode is:

m24+A=0 = m==+vV-\

e Case 1. A < 0, thus we have real roots and the solution is given by:

At) = cle‘/i’5 + coe VA
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e Case 2. A > 0, thus we have complex roots and the solution is given by:

A(t) = ¢y sin (ﬁt) + cg cos (ﬁt) .

9. g (l‘) _ /\/1* S(Z) dz.

7r

In this case,
5" (z) = H [AS (2)] (2),

where H denotes the finite Hilbert transform in 3.18. Thus, by using the corresponding inversion in (3.19),

we get

\/71,25///()
m T—z

S/// Z
\/1— 2 d 4.36
x/ V31— 22 x—z)z (4.36)

AS (z) = dz

We have to complement last equation with proper boundary conditions. We have two possible cases: (1)
homogeneous Dirichlet boundary condition, i.e, S (+1) = 0; or, (2) homogeneous Neumann boundary condition,

: 12}
ie., 8—2 (x) L= 0.

e Case 1. Dirichlet homogeneous, S (£1) = 0.

It is also known as the pinned-end case. As it is a linear problem we can expect a Fourier expansion of
S (x), satisfying S (£1) = 0. The first kind of solution is the anti-symmetric one, as shown in Figure 5a;
this solution is of the form: -

= Z ¢p sin (nmz) .

n=1

The second kind of solution is the symmetric solution, which is shown in Figure 5b; this solution is of the

form:

o0

1

:E cpcos| (n—= |7z |.

2

n=1
— Container walls — Container walls
-2 -1 9 f 2 Free surface of the fluid -2 -1 0 1 2 Free surface of the fluid
(a) Anti-symmetric (b) Symmetric
Figure 5: pinned-end edge case

e Case 2. Neumann homogeneous, — =0.

on|y,

It is also known as the free-end edge condition. Physically, this case means that waves form an angle of 5
with the side walls. In this case the symmetric solution, shown in Figure 6a, is given by:

o0
= Z Cp, cos (nrx) .
n=1
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The anti-symmetric solution, as in Figure 6b is given by:

zcnsm ((n_;) x>

— Container walls — Container walls

-2 -1 0 1 2 Free surface of the fluid -2 -1 p 1 2 Free surface of the fluid

(a) Symmetric (b) Anti-symmetric
Figure 6: free-end edge case
Let’s proceed to study each case individually.
4.6.1 Anti-symmetric pinned-end boundary condition

o0
x) = Z ap sin (nmx) .
n=1

Replacing the condition in (4.36), we obtain:

21 VI =22 (x—2)

cos (nmz)

1 m(:rfz)

Because of the weight in the integral, T'chebyshev polynomials are a suitable basis to work with.
Let

[ee] 1 1* 1 o)
A Z ap sin (nrz) = ——/1 — 22 / —_— |- Z an (nm)? cos (nmz) | dz
n=1 T

n=1

dz.

cos (nmx) Z cienTi (x (4.37)

with
1 f_ll cos (nmx) ﬁdm, k=0,

Ckn =

%f_ll cos (nmx) %dw, k>1.
Recall that T}, (z) is the first-kind Tchebyshev polynomial, defined as in (3.21) . Thus,

= . o 1 Yo Tk (2)
A Z an sin (nrx) =1 —2x Z an, (7rn) \/1’“_7022 @—2) dz
T (

1 2)
1— 22 Cknp (1) 3 - —_—dz
AR IPY TG

—/1—z2 Z ClnQn, (wn)?’ Up—1 (), (4.38)

n,k>1

n=1

where Uy, (x) is the second-kind Tchebyshev polynomial defined as in (3.25) .
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We need to expand the left hand side in order to have both sides in function of the second-kind polynomial.
Let

sin 'fL’/TZL’
A Zem 1 ( (4.39)

where

1
Ern = g/ sin (nmx) Up_1 () dz.
™)

Replacing it into (4.38), it becomes

A ermanlUe 1 (@) == > crnan (mn)’ Uk (x),

n,r>1 n,k>1
A Z Crnln = — Z Cknln (7”1)3 , Vk,r>1.
n>1 n>1
In matrix notation:
\EG = —C (diag (m)3) a, (4.40)

From (4.37), (4.39) and the orthogonality of the Tchebyshev polynomials, we can explicitly get the coefficients
of matrices C and E.

Proposition 4.2. If C is defined as above, and

1
D =dy, = / cos (nmx) T, (v) dz, Vk>0,Vn > 1, (4.41)

-1
then DT = C~1,
Proof. We know that

cos (nmx) g cinTy (x

thus,

1 T () B & Tk () Tpy, (2) .
/_1 cos (nma) ﬁda@ = /_1 ’;cknim d

_ LT ) T (),
- Ckn [1 ,71—l‘2 d

TCmn, m=mn =20,
s —_
5Cmn, m=mn#0.

1 f_ll cos (nmx) ﬁdm, k=0,

From where, we obtain that

Ckn =

%f_ll cos (nmx) f%dx, k>1.

Analogous to (4.37), we can assume that

cos (nmx) Qkn
Z . h —
By orthogonality,
%f_ll cos (nmx) Ty, (z) do = %dkn, k=0,
Qfpn =

%f_ll cos (nmz) Ty, (z) dow = 2dp,, k> 1.
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then,
1 zk
= —d, n =+ — d n
cos (nmx) —do g k

We also know that

1
Onm = / cos (nmz) cos (mmx) dx
-1

L s 1 1 2 T; ()
Cndk (x —dyy,— + — di —kE 2| dx
L || |in g+ 2 s

2 LT, () T, ()
= E nd: PR g
+ - Cln Qi B €T

1 1 1
= —condon —dx
T /—1\/1*CE2 V1—2?

cOndOn + E Ckndk:n

k,k>1

E>1
= Z Ckndkn,
k>0
which, by (3.35), becomes
nm Z Ck:ndkma
or, in matrix notation
ct'pD=1 = DTC =1,

therefore, the proposition has been proved. O

We already know that (4.40) holds for k,n > 1, while (4.41) holds for k¥ > 0 and n > 1. Therefore, before
multiplying (4.40) by DT, we need to add a zero first-row to E and a first-row of coefficients cy,, to C, for n > 1.
These completed matrices are going to be denoted as E and C, respectively.

The system that is going to be multiplied by D7 is the following:

M\Ed = —C diag (n7)?, (4.42)

and this is valid as long as the following condition holds

3 Zn>1 an (nm)? cos (nmz)
Z con (n)° ay, = de

V1—22
et 1 T

1 "
I R S VN
1V 1- x2

=0.
Finally, multiplying (4.42) by D, we have:
ADTEg = —diag (n7)® .

This eigenvalue problem can be solved by using MATLAB. In order to solve the problem, we first need to
truncate it. Let us consider the problem for dimension N = 50, then the obtained eigenvalues \; for ¢ = 1 : 50,
and their associated eigenvectors a® are the ones given in Table 1. Furthermore, notice that for a given 4,

; T
a® = lay,ag,...,as0]" .
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A1 = 34.31338847 Ay = 262.2696816

A3 = 870.0457763 A4 = 2043.686572

As = 3969.230952

ai -1 0.114282556 -0.100089552 -0.092637944 0.08692467

as -0.007266829 -1 0.078165716 0.062956624 -0.05758339

as 0.001155386 -0.015954596 -1 -0.065430934 0.048908545
a4 -0.000320826 0.003777839 -0.021632909 1 -0.059016131
as 0.000118319 -0.001355745 0.006190956 0.025444976 1

ae -5.21E-05 0.000597542 -0.002555324 -0.008135654 0.028148725
ar 2.60E-05 -0.000300007 0.001253401 0.003666506 -0.009679945
ag -1.41E-05 0.000165155 -0.000684589 -0.00193096 0.004633667
ag 8.26E-06 -9.74E-05 0.000403365 0.00111826 -0.002566991
aio -5.10E-06 6.07E-05 -0.000251681 -0.000691965 0.001551898
ai 3.29E-06 -3.95E-05 0.000164307 0.000450068 -0.000996409
a2 -2.21E-06 2.67E-05 -0.000111293 -0.000304485 0.000669167

Table 1: first eigenvalues and its associated eigenvectors for the anti-symmetric pinned-end case. This data was
obtained by using MATLAB and by letting NV = 50.

From Figure 7, it seems that the frist eigenvalue is convergent as N — oco. In fact, \; converges to 34.3134
as N grows.

34.316

34.3155 | |

34315 - |

< 34.3145

34.314

34.3135

34.313 ! ! . . ! !
10 15 20 25 30 35 40 45

Figure 7: different values for A\; as dimension N grows.

Since we have solved the eigenvalue problem, we are now able to plot the free surface for a fixed value of .
Let us consider ¢t = 0, then h (z,t) = h () = S (x). The free surface of the fluid in presence of walls differs from
the case where no walls are considered, this can be seen in Figure 8.
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(c) Eigenfunction associated to A3 in comparison with sin (37x).

Figure 8: the free surface h(x) in presence of walls compared to the free surface in absence of walls (sine

frequencies).

4.6.2 Symmetric pinned-end boundary

S(x)ngncos (

1
n— =

2

)

In this case, it is possible that the free-surface is as illustrated in Figure 9. Clearly, the area under the curve
is not zero and as a consequence, there is no mass conservation.
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— Container walls

Free surface of the fluid

3 T 0 1 2
Figure 9: symmetric pinned-end case without mass conservation.

But we want our surface to be subjected to the mass conservation law. Thus, we need to impose an extra
condition on f (z,t) = A(t) S (z) as follows:

Oz/_llf(x,t)dx
:A(t)/1 S (z) dz
Zb / cos <<n - ;) 7rx> dz. (4.43)

n=1

Recall that

and, thus for
(4.44)

(4.43) becomes
> wnby = 0. (4.45)

n=1

We also know that replacing the symmetric pinned end condition in (4.36), we obtain:

)\ni_o:lbncos<<n—;> ):—\/7/ n= 1 jgb(zjsinz()(nz)ﬂz)dz

_mg [(n - ;) w] 3 bn% : Sjg(x)_ﬂj? dz.

((n ;) ) chnTk (4.46)

N[

Let

where,
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¢

Il
|
—_
|
8
(V]
3
A%
A
ol
v
[en}
/N
N
3
|
I

)\ibncos ((n ;) 7r:c> :—Mi ((ni) w>3bn71r 1: %dz
(

3
1) bl T (2 d
7| Cinbn— 4z
nin e |, V1I—=22(z - 2)

3
1
=+/1—z2 <(n — 2) 7'(') CknanUg—1 (7). (4.47)
n,k>1
Let
1
cos ( n— 5) mc) o0
1_ 22 :Zler Urfl(x)a
where,
2 ! 1
Crp = — cos| (n—= |7z | U—q(z)dx
™ J_1 2
Using this identity in (4.47), we get:
) 3
A Z bpernUr—_1 (z) = Z <<n — 2) 7T> CknbnUk—1 () .
n,r>1 n,k>1
Therefore,
3
1
/\Z bpérn = Z ((n — 2) 7r> Cknbn, Vk,r>1
n>1 n>1
or, in matrix notation,
3
. 1 .
AEb = C | diag [(n - 2) ™ b. (4.48)
Again, we can explicitly get the coeflicients of matrices C and FE.
Proposition 4.3. If C is defined as above, and
! 1
D = d, :/ sin (n 2) mx | Ty (z) de, Vk,n>1,
-1
then
Dt =c!
Proof. We know that
1 o0
sin ((n — 2> wm) = Z cin Ty (), (4.49)
k=1
thus,
1 1 o
. 1 T (2) Tk (z) Ty, ()
sin n——|rx| ——=%=dx = Ckn dzx
/4 (( 2) )\/1—962 71;]6 V1 —a?
o) 1
T, Tm
—S o [ @I,
k=1 -1 VI-a?
_T.
- 2 mn
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From this, we obtain that

Analogous to (4.46), let us assume

By orthogonality, it holds that

2 ! 1 2
An = */ sin <<n - ) 7T.’,E> Tk (I) dr = *dkn.
i 2 T

Then,

Besides, we know that

[«

3

3

I

@

=
VR
/N

3

|
N =
"

3

8
~

2.

=
VRS
/~

3

|
N =
~~

3

8
~

Q.

=

-1

B g 1 %) o ) T. (LII)
= . [1 kZ:lenTk (JC) ;dkm\/f_ixz dx
LT (2) T, ()

2
. d- ZR\T) TR T)
- Z Chn@lm 1 /1 — 2

k,k>1

9]
§ ckndknw
k=1

dx

or, in matrix notation,

C'"D=1 = D"C=1
Therefore, the proposition has been proven. O

By multiplying (4.48) by DT we get:

3
ADTEb = diag Kn - ;) wl b, (4.50)

but this system does not consider mass conservation law, so we need to impose condition (4.45).

Therefore, consider the system
) 3
ANDTE)b = diag Kn — 2) w]

with (DTE) being the D E matrix adding a zero first row and diag being the same diagonal matrix added
coefficients wy,,n > 1 in the first row. The sytem in mention satisfies both (4.45) and (4.50), hence it is the
system we are working with in order to get the eigenvalues.

Again, we solve this eigenvalue problem with MATLAB and we truncate it. Let us consider the problem for
dimension N = 50, then the obtained eigenvalues \; for i = 1 : 50, and their associated eigenvectors a’ are the
ones given in Table 2. Furthermore, notice that for a given i, = b* = [by, b, ..., b50]T

b

)
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A1 = 89.07560592

Ao = 447.185654330556

A3 = 1263.38586834285

Ay = 2725.0041811121

by
by
b3
by
bs
bs
bz
bg
by
b1o
b1y

b12

-0.010916623
-0.06120303
0.002288109

-0.000684191

0.00029081
-0.000147563
8.37E-05
-5.14E-05
3.34E-05
-2.27E-05
1.60E-05
-1.17E-05

-0.007633327
0.011168489
0.102746236

-0.004210158

0.00149753

-0.000722119
0.000402494

-0.000245425
0.000159369

-0.000108494

7.66E-05
-5.58E-05

-0.005956717
0.007733839
-0.011931031
-0.139787439
0.005762789
-0.002236615
0.001158436
-0.000684334
0.000437674
-0.000295706
0.00020814
-0.000151331

-0.004884362
0.006275705
-0.007800237
0.012657817
0.173926497
-0.007021789
0.002870289
-0.001555826
0.000955686
-0.000632051
0.000439552
-0.000317342

Table 2: first eigenvalues and its associated eigenvectors for the symmetric pinned-end case. This data was
obtained by using MATLAB and by letting NV = 50.

4.6.3 Symmetric free-end boundary condition

= Z by, cos (nmz) .
n=1

Replacing the condition in (4.36), we obtain:

oo 377
)\Zb cos (nmz) M/ Zn=11(”7f) by, sin (mrz)dz

V1—22(xz—2)
o0 .
~ 1 sin (nmz)
1—x mr nf ———dz.
R VI3
Let
sin (nmx) Zc;mT;C (4.51)
with )
Chn = — sin (nmx) ——=dx.
¥ m /_1 ( ) V1—a22
Thus,
[ee] [ee} 1* [e%}
~ ~ 1 Z ~ 1 Cndl (Z)
A by, cos (nmx) = —/1 — 22 nm)? by~ k=l TR
R e D M R =
~1 B Tk (Z
—/1—22 (mr)3 Clinbn— dz
=V1-22 > (1)’ cknbpUs-1 (x) (4.52)
n,k>1
Let
cos (nma) (nmx)
Zern r— 1
with
9 [l
Crn = 7/ cos (nmx) Up_1 () dz.
TJ-1
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Using this identity in (4.52), we get:

A buernlUpoa (z) = > (07)° chnbnUs-1 (2) .

n,r>1 n,k>1

Therefore,

A Z 6;67“71 = Z (nﬂ)g Cknl;;u v‘I€7T Z 1a

n>1 n>1
or, in matrix notation,
AEb=C (diag (mr)d) b.
Again, we can explicitly get the coefficients of matrices C and FE.
Proposition 4.4. If C is defined as above, and
1
D =d;,, = / sin (nmx) Ty, (x) d,
-1

then
T — C* 1

Proof. We know that
sin (nmx) Z cinTr (x

thus,

1
SlIl nmx
[ ( ) —x2 /1k 1 hn vl—x2

)
P 1—2

s
= —Cmn-
2

From this, we obtain that

2 [t Ty (z)
Chn = — sin (nmx) ——=dx.
b ™ [1 ( ) V1—22

Analogous to (4.51), assume

sin (nmx) E a;m
1 - :v2

By orthogonality, it holds that

2 [ 2
Qo = — sin (nwx) Ty, (z) de = —dgp.-
x| T

1

Then,
= Ty (
sin (nmz) E dkn k

T (@) T (2)

1
-1

(4.53)

(4.54)
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Besides, we know that

1
Onm = / sin (nmzx) sin (mnz) dx

—1

2/1 > > T; (z)

— cindi (x dg,,—F—= | dz
<) |2 et @) ; b T — 2

2 L T

z Z Chnd, Mdm

T m oy V=22

kk>1

oo
= E Ckndk:n"m
k=1

or, in matrix notation,

C'"D=1 = D"C=1
Therefore, the proposition has been proven. O

By multiplying (4.53) by DT, we finally get:
ADTEb = diag (nm)*b.

Again, we solve this eigenvalue problem with MATLAB and we truncate it. Let us consider the problem for

dimension N = 50, then the obtained eigenvalues \; for i = 1 : 50, and their associated eigenvectors a’ are the
T

ones given in Table 3. Furthermore, notice that for a given i, b= [51,52, ...,550}

A1 = 34.31336564 Ao = 262.2693226 A3 = 870.0439734 A4 = 2043.680906 A5 = 3969.217186

b 1 -0.057140528 0.033362423 -0.023158677 0.017384073
by 0.014533452 1 -0.05210861 0.031476691 -0.023031761
b -0.003466077 0.023930969 1 -0.049069802 0.029342457
by 0.001283261 -0.007555277 0.028841721 1 -0.047207557
bs -0.000591566 0.003389125 -0.010317288 0.031802324 1

b 0.000312668 -0.001792466 0.005110054 -0.012201692 0.033772334
br -0.000181656 0.00104991 -0.002924192 0.006415269 -0.013549076
bs 0.000113157 -0.000660534 0.001825267 -0.003861134 0.007412068
by -7.44E-05 0.00043843 -0.001209859 0.002515492 -0.004619301
IE) 5.10E-05 -0.00030347 0.000838748 -0.001729447 0.003102818
b1y -3.62E-05 0.000217289 -0.00060231 0.001237319 -0.002191345
b1 2.65E-05 -0.000159975 0.000444977 -0.000912981 0.001605036

Table 3: first eigenvalues and its associated eigenvectors for the symmetric free-end case. This data was obtained
by using MATLAB and by letting N = 50.

From Figure 10, it seems the first eigenvalue is convergent as N — co. In this figure, we see that A\; converges
to 34.3133 as N grows.
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34314 T T
34312 /

3431}

< 34308 |

34.306 -

34.304 |

34.302 : : : : . :
10 15 20 25 30 35 40 5

Figure 10: different values for A\; as dimension N grows.
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X;

(a) Eigenfunction associated to A1 in comparison(b) Eigenfunction associated to A2 in comparison
with cos (7z). with cos (27z).

cos(3mx)

(c) Eigenfunction associated to Az in comparison
with cos (37z).
Figure 11: the free surface h (z) in presence of walls compared to the free surface in absence of walls (cosine

frequencies).

We are able to plot the free surface for a fixed value of t. Let us consider ¢t = 0, then h (z,t) = h (z) = S (z).
The free surface of the fluid in presence of walls differs from the case where no walls are considered, this can be

seen in Figure 11.
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4.6.4 Anti-symmetric free-end boundary condition

S (z) = nia;sm <(n— ;) m) .

Replacing the condition in (4.36), we obtain:

Ani @, sin <<n - 1) 7790) = iﬂ/j s ((n _j%a;cfsz((n ~2) m) dz

2 )

7L (1)) L

Let
1 oo
cos ((n — 2) 7rx> = Z cknTr (2) (4.55)
k=0
with
%f_ll cos ((n -3 7T£L’) \/11_7dx, k=0,
Ckn =
%fil cos ((n -3) ﬂ'a;) Ti‘gg? de, k>1
Thus,

1 v T (2)

= —V/1-2a? 1 ((n - ;) ﬂ) 3 CrnanUs—1 (). (4.56)

Besides, let

sin (0 —3)7e) S el (1), (4.57)

Replacing it into (4.38), it becomes

A Z erntnUr_1 (T) = — Zl ((n - ;) 7T>361m5t;Uk—1 (),

n,r>1 n,k>
) 3
)\Ze’rnaf;:_z <<n_2> ’/T) Ck;na\;v Vk,?“Zl
n>1 n>1
In matrix notation: s
1
AEG = —C | diag [(n - 2) w] a. (4.58)

Once again, we can explicitly get the coefficients of matrices C and E.

Proposition 4.5. If C' is defined as above, and

! 1
D =dy, = / Ccos <<n - 2) 7rx> Ty (z)dx, Vk>0,Yn>1, (4.59)

-1

then DT = C—1.
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Proof. We know that

thus,

[ (o)) o= | e

T (= )T (z)

= Chkn ——dx
TCmn, MM =N = Oa
5Cmny, Mm=n#0
From where, we obtain that
%fil oS ((n — %) 7Tl‘) 11741:2 dr, k=0,
Ckn =
gfl cos ((n— ) mz) L@ g k>1
7 J-1 2 Vi—zz s =4
Analogous to (4.55), we can assume that
1) ) > Ty (z)
cos (n— — x| = Za;m
< 2 k=0 V1—a?
By orthogonality,
%fllcos((n—%)mc) dx = Zdjn, k=0,
Qfn =
%f | cos ((n -3 71'33) Ty (z)de = 2dp,, k>1,
then,
1 1 dy, 2 & Ty ()
cos| [ n | = ——F—+ — d
(( 2> ) T1— 22 W; k"\/l—xQ
We also know that
! 1 1
Onm = / cos ((n — 2) FZ‘) cos ((m - 2) m:) dx
-1
1 00 )
1 d()n 2 T; (J?)
= cenTy (x —_—— 1t — d; —k2 | dx
,/71 kz_jok (@) TV1— 22 Wg kn /1= 22
2 YTy (2) Ty, ()
SR~ / 2 ey, [ POTED,
k,k21 -1 I-z
= COndOn + Z ckzndkn
E>1
= chndkm

k>0
or, in matrix notation
c'D=1 = DTCc=1,

therefore, the proposition has been proved. O
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We already know that (4.58) holds for k,n > 1, while (4.59) holds for k£ > 0 and n > 1. Therefore, before
multiplying (4.40) by DT, we need to add a zero first-row to E and a first-row of coefficients cy,, to C, for n > 1.
These completed matrices are going to be denoted as E and C, respectively.

The system that is going to be multiplied by DT is the following:

MEG@ = —C diag (n7)®, (4.60)

and this is valid as long as the following condition holds

S ((-2) >: L Sosatn (1= 3)7) eos (n—3)7e)

n>1 mJ-1 1 71‘2
1 1 S///
I S PN
m™J_1V1—x2

=0.

Finally, multiplying (4.60) by D, we have:

3
S 1 .
ADTEaq = — diag <n — 2) w] a.
As before, we solve this eigenvalue problem with MATLAB and we truncate it. Let us consider the problem

for dimension N = 50, then the obtained eigenvalues \; for i = 1 : 50, and their associated eigenvectors a’ are
the ones given in Table 4. Furthermore, notice that for a given i, a* = [ay, aq, .‘.,550]T.

A1 =5.005739892 A =113.9431184 A3 = 509.724646 A4 = 1378.354237 A5 = 2905.865588

ai -1 -0.078454478 0.04092459 -0.026253864 0.018674219
az -0.008835174 1 -0.062644329 0.037292738 -0.026643463
as 0.001473296 0.023195705 1 -0.055374691 0.033155007
on -0.000448371 -0.00645288 0.029497567 1 -0.051572518
as 0.000182643 0.002649954 -0.009897411 0.032859789 1

ag -8.86E-05 -0.001313684 0.004665272 -0.012129809 0.034930139
az 4.84E-05 0.000732449 -0.002566623 0.006179825 -0.013655862
ag -2.87E-05 -0.000443288 0.001551749 -0.003622984 0.007309918
ag 1.82E-05 0.000285177 -0.001001827 0.002308539 -0.004471194
aro -1.21E-05 -0.000192374 0.00067937 -0.001557381 0.002954909
an 8.36E-06 0.0001348 -0.000478796 0.001096159 -0.002057393
ara -5.97E-06 -9.75E-05 0.000348134 -0.000797576 0.001488515

Table 4: first eigenvalues and its associated eigenvectors for the anti-symmetric free-end case. This data was
obtained by using MATLAB and by letting N = 50.

From Figure 12, it seems the first eigenvalue is convergent as N — oco. In this figure, we see that A\; converges
to 5.0057 as N grows.
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5.0058 . . . . : :

5.0057 | e

5.0056 |

5.0055 | /
< s0054f [

5.0053 |

5.0052 |

5.0051

5.005 ‘
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Figure 12: different values for A\; as dimension N grows.

Once again, we are able to plot the free surface for a fixed value of ¢. Let us consider ¢t = 0, then h (z,t) =
h(xz) = S (x). The free surface of the fluid in presence of walls differs from the case where no walls are considered,

this can be seen in Figure 13.

15 15
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05 - B 05 B
1 fommmm -1
15 . . . . . 15 . . . . .
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X

(a) Eigenfunction associated to A1 in comparison(b) Eigenfunction associated to A2 in comparison

. : T . : 3z
with sin <7> with sin <T>
1.5 T T T
—— ()
sin(5mx/2)
1 A
/ ;
// /
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05 / / /A
// /’
/ \
,[ i\
0 i \ /
/ j \ /
4/ / /
05 / / / 1
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g /
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(c) Eigenfunction associated to Az in comparison

with sin (EWTI) .

Figure 13: the free surface h (z) in presence of walls compared to the free surface in absence of walls (sine

frequencies).
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4.7 Conformal mapping

In this section we will try to solve system (4.28) — (4.32) for any arbitrary geometry of the container. The
technique consists on making a change of variable such that the geometry in mention is transformed into the
lower half-plane, where the problem has already been solved. The main idea is to get an expression for the
normal derivative in terms of the conformal map. This technique is widely described in [23].

Let v : D C C — R be defined as follows:

(0 ((E,y) = 1#(2)

Then, for w =2’ + 1y € 15, QZ: D C C — R is defined as:
)= () = (¢ (@.y) v (@ y)).

where z = x + iy € D, f is injective on D U dD and it is holomorphic.
By definition: _
b (z,y) = (¢ (2,9),y (z,y)),
where

w=f(2), (4.61)

is our conformal mapping.
Let C be a curve in the z-plane written as z = z (¢), we have that the normal derivative of 1) is defined in

[24] as follows: since
oY o B oY dy\ .0y dy
m K&f‘mJ 1 I bx( *dJ @( *’ﬁﬂ

:Im(w—f— Qdy OV, de)
ot Ox dt Ot Oy dt
_OYvdy  OYdx

T ot dt  dy dt

_|dz|oY

dt|on’

0 1, [(20 00y i
on |4 | oxr Oy '

dt

then,

Under (4.61), C' is mapped into C* : w(t) = f(z (t)) By applying the chain rule, if {/?(x’,y’) =

o (o @y o (@y))
‘dw a¢ (a{z aw)

ov (0r L 0x\, 0 (Oy oy
x \ Ox' 3y oy \ oy’ 28 dt

{
(2000 ddw]
(

=Im

=G Ty ) dwoa
*m'@_@

N or oy
_|d=|ow

T |dt|on
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Then,
oy _ | dz|0¢
on~ |dw|on
1 o
— .y 4.62
7 ()] on (4.62)

4.8 Solution of the integro-differential equation in a container with vertical walls

As before, let us consider the case of a container with a small hole, around the origin, of size 2 at the center
of the top wall, but this time with vertical walls at = £(b + 1), for some positive b. The idea is to solve the
problem by using a conformal map. In fact, the conformal map that transforms the geometry in mention into
the lower half-plane is

Tz
=sin|——1. 4.63
£l =sin |57 (4.63)
The domain in mention can be denoted as
0, —(14b) <z <—1;
D=q(z,y): |z <b+ly<q h(zt), 2| < 1; ;
0, l<ax<b+1,

and its boundary is defined by the free surface and the walls. The new container geometry is shown in Figure
14.

x=_1 Jreesurface x=1I

Figure 14: container with vertical walls.

Again, ¢ is the velocity potential satisfying:

Aé =0 in D, (4.64)
g—z = 0 on the walls. (4.65)

The mapping defined in (4.63) transforms D into l~), defined as:

0, ' < —sin (2(173&;)) ;
D=1 (zy) || <00,y <{ f(h(x,t)) =H(z,1), |a:’|<sin(ﬁ);
0, 33/ > sin (ﬁ) s

where 2’ and y’ are coordinates in the w—plane. This is a variation of our first domain (lower half-plane case).
By means of the conformal mapping, our new problem is given by

Ad (2',y') =0in D, (4.66)
95
8—2 (2/,4') = 0 on the corresponding walls, (4.67)

where 7 is the normal vector in the w—plane.
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By (4.62), we know that N
dp  2(b+1) 099

on - ! :| 87’1
2(b+1)

TI'COS[

Analogous to (4.34), we get

) 1l (90/07) (2,0,0)
oa'ly—0 7 / dz. (4.68)
oz’ y'=0 T 7sin[L] x — 2
2(b+1)
By (4.62), we obtain
1 0 1 w550 (96/0n) (2,0.¢
lf" (2)] 8% 0 7f ) /) %dz (4.69)
y= —sm[z(b’jrl)]
. =l (00/0m) 0.0 (1.10)
alL’ y=0 ™ —sin[ s ] ' —z
2(b+1)
Let ' = sin {2(;7%}, then
9¢ 1 [ T ] /1* (9p/dn) (2,0,t)
O T €08 . : dz. (4.71)
Oz ly=0 2(b+1) 206+1) ] J1 gin [2(2711)} — sin [ﬁ}

By derivating both sides with respect to ¢, we finally get

1 { T } /1* hit (2,t)
- cos dz. (4.72)
2(0+1) 204+ D ] sin {2(511)} —sin {2(;?1)}

7hma:;r =

If once again we consider h (x,t) = A (t) S () and we apply the separation of variables method, we obtain
A" (t)+ AA(t) =0,
already solved in last section, and

oo A - L S(2)
;S (x) = 201 1) cos {2(()—&- 1)} /4 sin [”7“’1} — sin [%} "

2(b+1)

We cannot proceed as before since the weight inside the integral does not allow us to work with Tchebyshev
polynomials anymore. Then, let’s study the problem by cases. We will consider the following two cases:
(1)b — oo and (i) b = 0.

4.8.1 First case: b — oo

In this case we know that
T
li 5[ ———— | = cos =1.
Jim_ cos (2(6 1)) cos (0)

Let us consider the change of variable u = 2(27%, then

Mathematician 48 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

which means that
T

T
lim si = .
boroe (2(b+ 1)) 2(b+1)
Plugging these results into (4.72) and assuming that o/p = 1, we get
1Y g (2t
| _,/ Mdz,

), T—=2

which is the same as (4.35), which was already studied.

4.8.2 Second case: b=0

In this case we consider a container with vertical walls at x = +1. Given the fact that we already know the
solution for the temporary part of h (z,t), we can assume that h (z,t) = ™S (z). Thus, (4.72) becomes

2 1~
geiwts/// (z) = ieiwt cos (W) / — S (Z) _ dz
p 2 2 _1 sin (7) — sin (7)

om0 Lon(5) ]

2

Let’s first consider the anti-symmetric pinned-end case. In this case,
S(x) = Z ap sin () .
n

Let

. A
sin (nwz) = ;qugr,l (sm (2>> ,

1
Qrn = / sin (nwx) Top—1 <sin <7T;>> dx.
1

1Y T.(z B
- /_1 mdz =-U,_ (), (4.74)

1* Th._q (sin (%)  nx
/_1 sin (ﬂ;)(_ sin (”22) de= 2 <Sm <2)>
oy cos ((r -1/2) mc)
cos (7z/2) ’

where, by orthogonality,

By using the identity

we get

(4.75)

By using the anti-symmetric pinned-end conditon and (4.75), the right-hand side of (4.73) becomes

) 1 9 1 Thp—q (sin (5
waOS (ﬂ-x) / N S(Z) dz = i ZanQTn COSs (m) / . v ( ( : )) dz
2 2 _1 sin (BE) — sin (%) 2 e 2 —y sin (%) — sin (%)

2

= ? ;anqﬂl (—1)" cos ((r - ;) 7T$L'> .

In the same way, the left-hand side of (4.73) becomes

%S’” () = %Z (n7)° an (—1)" prn cos ((7“ - ;) 7737) ,

n,r
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where,

Prn = (=1)" ! /_11 cos (nmx) cos <<r - ;) 7r:c> dz.

Finally, if we assume o/p = 1, then (4.73) is now of the form
Z(mr)Sa (—=1)" prpcos | [ r— 1 T :wQZa Grn (—1) " cos | [ r— 1
— n ™ 2 £ n4rn 2 I’

or, given r > 1,

> ()’ (1) prnan = w? Y (=1) grnan. (4.76)

n

Now, let us consider the symmetric pinned-end case, where

We need to impose the mass conservation condition, i.e., f_ll h(x,t) = 0, which leads to (4.43). The mass
conservation condition is, again,

Z Wnby, =0 (4.77)
n=1
where,
2
n = (-1 n+1 4.78
R (4.78)
Let
1
<< 2> 7rsc> Z tn COS rms
and
1
( ( 2) 7r:17> Z Spp sin (rmax)
where
1
/ o (( n— ) 7Tx> cos (rmx) dz,
1
and

Sym = [ 11 sin <<(n - ;) m> sin (rmz) da.

Replacing these expansions into (4.73) and by letting o/p = 1, we get

2((- 1)) st S pronen () [ i

n,r

At this moment, identity (4.74) and the following identities are useful

T,, (cosf) = cos (nh) , (4.80)
U, (cosf) = W (4.81)
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Therefore, (4.79) becomes

5 (- 2)7) sotesmtorn - 4 Stutnen () [ (me). .

n,r 1SIH(2)7SIH(2

T , T
= wQ;t,,nbn cos (2> (-1) M Usy (sm( 5 >> .

For the free cases with a contact angle of 7/2, the problem has a classical solution (see [25]). The eigenfunc-

N—

tions for this solution are cos (nmz) and sin ((n —-1/2) 7rm> and the frequencies are given by w2 = (c/p) (nm)?.

Let’s first consider the symmetric pinned-end case, i.e.,
h(z,t) = e™! cos (nmzx),

Thus, the right-hand side of (4.73) becomes

w? (7‘(‘.’1’:) /1* S (2) w? (7‘(‘.’1}) /1* cos (nmz)
—cos | — - - dz = —cos | — - - dz
2 2 _1 sin (ZE) —sin (%) 2 2 _1 sin (ZE) —sin (%)

Il

o [\

o

o

|95}
/?
“‘a
N———
|\H
= *
2]
25
A3
|
SN—

|

2]

=
—
|

I
| &,
o
o
W
7 N

3
v 2
——
[t
N~—
%
+
=
S
3
|
-
/N
2.
=
N
3
v 2
——
~

While, the left-hand side of (4.73) becomes

O am g 3 .
—S"(z) = — (nm)” sin (n7x) .
5 (2) p(ﬂ) (nmx)

A similar analysis can be done with the anti-symmetric free case, where h (z,t) = e™*sin ((n — 1/2) 7rx> .

4.9 Solution of the integro-differential equation in a rounded container

In this section, we want to solve our problem for the following domain:

D=A{(z,y):|z|<1l,—V1-22<y<h(z,t)} (4.82)

which is represented in Figure (15),

x=-1 free surface x=1

Figure 15: rounded container geometry.

The map to transform the half unit disk into the half-plane is given by
(4.83)

where J (z) is known as the Joukowski map and it is given by

J() =5 (z + i) . (4.84)
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Let’s see that f (z) maps D into the lower half-plane. For z = €¥ such that 7 < § < 27, we have that

J(z)zé(l‘“r;e)

1 . ]
5 (619 4 6—19)

1 (cos (6) + isin (6) + cos (/) — isin (6))

2
= cos (0),
thus, '
w = f(z) =sec(0), for z =€ such that 7 < 6 < 2m. (4.85)
As 6 varies from 7 to 2w, then w € (—o0, —1) U (1, 00). Besides, z = x + iy such that z € [-1,1] and y =0
is mapped into w = 2’ + iy’ such that 2’ = [—1,1] and 3/ = 0.

Since f is conformal and injective, it follows that f (D) is either the upper or the lower half-plane (see [26]).
In order to determine which half is the image of D, let’s check the image of a point of the domain. If we take
z = —0.5¢ € D, then

Since f (—0.5¢) is on the lower half-plane, therefore D’ = f (D) coincides with the lower half-plane.
Analogous to (4.34) and using (4.62), we get

_ /1* 09/ (,0.1)

1 ' —z

a7 =
1 [ 9¢/0n(2,0,1) i
B /,1 |f (2)] (" = 2)

Now, proceed as before and take the derivative with respect to ¢ in both sides. Let f (2/,t) = A (¢) S (2').

Thus,
gy~ L [T ATSE)
A(t) 8" (') = WL TR (4.86)

By using separation of variables, we obtain

A7 (1) + AA(t) =0, (4.87)
111 l_/ — é b S (2) =
'@ =2 pene—a® (488)

The first ordinary differential equation was already solved in last section, thus let us focus on (4.88). By
inverting, the equation becomes

\S (a )__i S
| ()] ! -1 \/1—22(x’—2)d'

Namely,

AS (x )z_ﬂ/l_x/z|f ‘/ Jﬂm — (4.89)
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We want an explicit expression for |f' (z)]. If z € [-1,1] and y = 0, then 2’ € [—1,1] and ¥’ = 0, which
means that

¥ =f(z)= , (4.90)

and

x’ (x2 + 1) =2z
z? (x2 + 1) = 2xa’
222 + 2% — 22’ =0
(.1‘1‘/)2 —2zx' +1=1-2"
(za’ — 1)2 =1—2"
zr’ —1=4/1— 22,

Since f (0) = 0, the only possible solution is

zr' =1—+1—2a"2. (4.91)

Besides, we know that

where we can apply (4.90) to get

1 1
7@l =50 (52 1)
1 a2
= 3" (m”)
1
2

We can now use (4.91) and obtain

1
/5C le2<—l>
£ @l = (s
x'? — x'? (1 — m)
1-V1-a72
N
1—+v1—2

B ( 11_$\l2/1+1z_/2x/2> (1 - m)

=v1—-a?2+1-2a"7
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Finally, we get an explicit expression for |f’ (z)|, given by

If' (2) = V1— 22 (1 V1o x’2) . (4.92)
By plugging last equality into (4.89), equation now becomes
S///
(2) — 2. (4.93)

~(1- )(”Vl‘“’”’Q) RV

AS (2') = -

It is already known that S (z') can be expressed as the sum of a symmetric and an anti-symmetric function
We can assume either pinned-end or free-end boundary condition as it was done before. Let’s proceed to study

each case in the following subsections.

4.9.1 Anti-symmetric pinned-end boundary condition

o0
) = Z an sin (nrx')
n=1

Let
coS (nﬂ':zr’) = Z crn Ty (x’) ,
r>0
and
sin mrx Zem\/ 1—22U,_4 ( )
r>1
with
T ('
- %f_il cos (nra’) \/%dx', E>1,
L7 cos (nm ’)ﬁdm’, k=0,
and
2 ! . / / /
Crn = 7/ sin (mrx ) U,_1 (x ) dx'.
T™J-1
Thus, by replacing into (4.93) we get
L nE)
A ernan V1 — 22U, (2') = ( ’2) (1 +41- x’2) Chn@n, (NTT) 3
rglrzzl WZ>1;€Z>0 1 V1I=2%2(a' — 2)
= _ (1 — a:’Q) (1 +v1 - 1:’2) Z Clin G, (7177)3 Un_1 (x’) .
n,k>1
Namely,
/
A Z €rnln Ur—1 (I) - _ Z Clon G, (mr)3 Ui_1 (x’) ) (4.94)
nor>1 V1—2z? (1 +v1-—- $’2) nk>1
Let U
1 (@) =3 drUs—1 (
N (1 Vs x’2> =
where, by orthogonality,
d - g /1 Ur—l (1‘/) Uk:—l (LE/)
A PR B =

Therefore, (4.94) becomes
7)\ Z dkrernanUk 1

n,r,k>1

Z Chnln mr) Uk— 1( )

n,k>1

Final Grade Project

54

Mathematician



School of Mathematical and Computational Sciences YACHAY TECH

and we get the following eigenvalue problem:

A Z dirrnln = — Z (mr)‘3 Chnln, Vk>1,

n,r>1 n>1

or in matrix notation,
ADEG = —C diag (n7)*a. (4.95)
Proposition 4.6. If
1
F=fi,= / cos (nra’) Ty, () da’, Vk >0,Vn > 1,

-1

then FT = C~1.
Proof. We know that

cos (nra’) = Z e Ty (2),

r>0

thus

L cos (mrx’) T, (x’) LT (x’) T (x/)
d '= § n/ d /a
/_1 1— a7 v = ck 1 1=z r

from where we get

' cos (nma’) T’;(le dr', k>1,

2
Chn = { 1 fll cos (mmt’) L _d', k=0
mJ— V1i—z'2 ) -

)

Furthermore, we can assume that

Tk (l’/)
cos (nwz’) = Qg — .

By orthogonality,

2 frny k1,
Apn =
%fkn, k= 07
then,
2 Tk(w')
cos (nﬂ-x/) = T{Zk fk-n@, k>1,
T Zk fk’n \/m, k = 0

We also know that

1
Orim, = / cos (nra’) cos (mmz') da’

-1

{ 21 [Zk con T (3?’)} [Z;; f;;m%] dr', k> 1,
2
k

1 [Zk crnTh (x’)} [z,; f,;mﬁ} dz', k. k=0

Chnfrms

or,
CTF=1 = FTCc=1.

Thus, we have proven the proposition. O
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Since (4.95) is true for k > 1, we need to add a zero-row in its left-hand side and cg,, for n > 1, in the
right-hand side. This is true as long as

1 "
o— [ 2@ 4
1V 1-— $2
3
= Z con (n7)” an,
n>1
1 /
2 3 cos (mrx) ,
= n°m’a, ——dx
nz>:1 [1 V1—2a?

Thus, (4.106) can be rewritten as follows
AFTDEG = — diag (nr)® d., (4.96)

where DE is the DE matrix with zeros in the first-row.

This eigenvalue problem can be solved by using MATLAB. In order to solve the problem, we first need to
truncate it. Let us consider the problem for dimension N = 50, then the obtained eigenvalues \; for i =1 : 50,
and their associate:ﬁi eigenvectors a' are the ones given in Table 5. Even more, notice that for a given i,
a’ = la1,ag, ..., as0]"

A1 =34.5371909  Ap = 237.683905 A3 = 762.8201969 A4 = 1763.282708 A5 = 3392.374965

ax 1 -0.011749505 0.158864149 -0.193297445 0.216205884
az -0.018096007 1 0.196038358 0.040254537 -0.070465041
a3 0.002200392 -0.073582931 1 0.339260795 0.014808558
ay -0.000514854 0.01425807 -0.143722189 1 0.484246245
as 0.000169097 -0.004272845 0.036615337 -0.22033077 1

ae -6.85E-05 0.001641838 -0.012819593 0.068191237 -0.302027205
ar 3.19E-05 -0.000741438 0.00546377 -0.026739837 0.109062192
ag -1.65E-05 0.000375176 -0.002660431 0.012300352 -0.046850253
ag 9.25E-06 -0.000206628 0.001426307 -0.006334939 0.022913636
aio -5.51E-06 0.000121522 -0.000822517 0.003547709 -0.012343203
ai 3.45E-06 -7.53E-05 0.000502273 -0.00211922 0.007158007
a2 -2.25E-06 4.87TE-05 -0.000321226 0.001332503 -0.004398419

Table 5: first eigenvalues and its associated eigenvectors for the anti-symmetric pinned-end case. This data was
obtained by using MATLAB and by letting NV = 50.

From Figure 16, it seems that the first eigenvalues is convergent as N — oo. In this figure, it can be seen
that Ay converges to 34.5371 as N grows.

34.58

34.575 |- |
|

3457 |
|

34.565 |
34.56
34555
34.55
34.545

34.54

34.535
il

o 15 20 25 30 35 40 45 50 55

Figure 16: values of A\; as dimension N grows.
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Since we have solved the eigenvalue problem, we are now able to plot the free surface for a fixed value of .
Let us consider ¢ = 0, then A (x,t) = h(x) = S (z), the free surface can be seen in Figure 17.
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(c) Eigenfunction associated to Az in comparison with sin (37z).

Figure 17: the free surface h () in presence of walls compared to the free surface in absence of walls (sine

frequencies).

4.9.2 Symmetric pinned-end boundary condition

S(a') = Z b,, cos (n — ;) '
n=1

As in last section, we need to impose mass conservation extra condition. In the same way we did before, we get

the following conditon:

> wnbn =0, (4.97)
where
1 cos ((n—l)ms’>
W, :/ 2 da’ (4.98)
-1 y/1 -z (1—1—\/1—37’2
Mathematician 57
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Besides, let

r>1
and
1
sin ((n - 2) 773:’) = chnTk‘ ('),
k>1
where
! 1
ern =~ /_1 cos ((n — 2) 7T$/> Ur—1 (2'),

and

2 ! 1 T ('
Ckn = 7/ sin <n — > ' Mdm’.
™ 1 2 1— lez

Thus, by replacing into (4.93) we get

3 *
N — 2 1 1! T (2)
A;,,«Z:l erabu /1= 22U, (o) = = (1 =2”) (14 V1 -2?) RZMC’M"" <<” B 2) W) ) w1

() (14 V) X (- ) ) Ui ().

n,k>1
Namely,
U, («/) N\
A ernb - = Clenbn, <n—>7r Up_; (2') . (4.99)
2 ) e ((2-3)7) @)
Let

/
UT—l (1‘) = derkal (l./) ’
Vi—aZ (1+VI-27) i

where, by orthogonality,

do — g /1 Ur—l (l‘/) Uk:—l (.’L‘/)
b 4 14122

™

Therefore, (4.99) becomes

1
A dirernbaUir (27) = ) canbn Kn— 2) m

n,r,k>1 n,k>1

3
Uk*l (LC,) )

and we get the following eigenvalue problem:

3
A dprernbn = ((n - ;) 77) Cionbn,  Vk>1,

n,r>1 n>1

or in matrix notation,

3
ADEb = C diag l (<n - ;) 7r> b,
which is equivalent to
3
- 1 -
MC'DEb = diag [(n - 2) w] b. (4.100)
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Proposition 4.7. If

! 1
szan/ sin((n—2> m:’) Ty (2') da’, Vk,n>1,
1

then FT = C~1.
Proof. We know that

sin ((n — ;) mc’) => Tk (7)),

k>1

thus

pole b, o pre e,

. N 2 122

from where we get

By orthogonality,

2
Qp = 7fkn;
then,
IR 2 Ty (2)
sin ((n— 2) wx) = ;kz;lflm T2

We also know that

>,
3
3
I
Dy
<
]
N
RS
3
|
NSRS
N——
3
H\
~_—
&,

]
VR
N
3
|
N
N——
3
H\
~_—
jSH

H\

2 1 , T- / ,
2 [ [

T k>1 E>1

Z Cknfk:mu

k>1

or,

C'F=1 = FT'C=1
Thus, we proved the proposition.

By replacing this last result in (4.100), the system we get is

AFTDEb = diag (nm)® b.

/
)

As we already did, we need to impose the mass conservation condition to the system, from where we get

AFTDEb = diag (n7)® b,

(4.101)

where DFE is the DE matrix with a zero first-row and diag is the diagonal matrix adding a w, first-row, for

n>1.
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This eigenvalue problem can be solved by using MATLAB. Let us consider the problem for dimension
N = 50, then the first obtained eigenvalues ); for i = 1 : 50, and their associated eigenvectors b are the ones

given in Table 6. Even more, notice that for a given 4, b° = [by, b, ..., b50]T.

A1 = 230.462753328928 Ao = 1033.25945399075 A3 = 2794.34728973065 A4 = 5896.23667957228

b1 0.0117503830609352 -0.0116682850493653 -0.0103058546089242 0.00908256966009043
b -0.179476253951130 0.0243460861408048 0.0200673240656862 -0.0171754462362053
b3 0.0315127140495187 -0.144729669147775 -0.0209068627961600 0.0163466151413946
by -0.0101306596924217 0.0536990914015066 0.111720959303023 -0.0185954975041048
bs 0.00440911559175099 -0.0239654485006214 -0.0640062906193418 0.0849398802474573
be -0.00229665443646346 0.0124747602697866 0.0360864166706974 -0.0652492246984256

by 0.00134652421502298 -0.00725612153295742 -0.0216511398617178 0.0440674945344670
bs  -0.000858214561045399  0.00457927436158034 0.0138315802912714 -0.0297679881154231
bg 0.000581942365752926  -0.00307412695303720  -0.00932101837699070 0.0206493874222004
bio -0.000413887855585407  0.00216555377923844 0.00656488520437511 -0.0147726539208492
bi1 0.000305713368224388  -0.00158539144747019  -0.00479552524676257 0.0108825445253124
b1z -0.000232861833943009  0.00119773545128140 0.00361130525339064 -0.00823051641759035

Table 6: first eigenvalues and its associated eigenvectors for the anti-symmetric free-end case. This data was

obtained by using MATLAB and by letting N = 50.

4.9.3 Symmetric free-end boundary condition

& ~
= Z by, cos (nma’)
n=1
Let
cos mrx Zem\/ 1—22U,_4 ( )
r>1
and
sin nﬂ'az Z c;mT;g
k>1
with L
Ern = f/ cos (nmz’) Up—y (2') dz
™J-1
and

1 /
Chin = 2/ sin (mrx') Mdm’.

Thus, by replacing into (4.93) we get

A Y b T= 280, () = — (1= 0%) (14 VI=72) Y cpuli (o L [ DL

n,r>1 n,k>1

(1 ) <1+ V1 —1'/2> Z Ckn n
n,k>1
Namely,
/
A Z €rn6; UT’*l( ) Z Ckn n
n,r>1 vV1-— x? (]- +v1- x/2) n,k>1
Let

Urs (@) derUk 1 (
VI=a? (1+V1=27) iz

TJo1 V1—22(2 —2)

™)’ Ug—1 (2) .

) U1 (2') . (4.102)
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where, by orthogonality,

d i g /1 Ur—l (1’/) Uk—l (.TC')
Foa)a ievice?
Therefore, (4.102) becomes

A Z dkrernb Uk 1 Z Ckn n Uk: 1( )

n,r,k>1 n,k>1

and we get the following eigenvalue problem:

A Z dkrernl;; = Z (’I’L7T)3 cknl;;u Vk > 1,

n,r>1 n>1

or in matrix notation,

—

ADEb = C diag (n7)>b,

which is equivalent to

—

AC'DEb = diag (n7)*b. (4.103)
Proposition 4.8. If
1
F = fin :/ sin (nwz’) Ty, (2') da’, Vk,n>1,

-1

then FT = C—1.

Proof. We know that
sin n7r:r Z c;mT;c
k>1

thus

/1 sin (mrx’) T (CE/) da’ — Z Con /1 Md;ﬂ

—1 1-— £L'/2

from where we get

1 T, /
Ckn = %[1 sin (mrx') \/%dx’.

Furthermore, we can assume that
sin mm: g « )
kn 1_ QC/2
E>1

By orthogonality,

Qfp = 7fkna
m

then,

sin mrx = E ;m

k>1

We also know that

1
O = / sin (nra’) sin (mma') da’

2 /1 chnTk (z') kam N ) dx’

k>1 k>1

I
7
g
=

2
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or,

CTF=1 —= FTC=1.

Thus, we proved the proposition.

By replacing this last result in (4.103), the system we get is

AFTDEb = diag (nm)®b.

—

(4.104)

This eigenvalue problem can be solved by using MATLAB. Let us consider the problem for dimension

N = 50, then the first obtained eigenvalues \; for 7 = 1 : 50, and their associated eigenvectors b’ are the ones

-~ ~ - 1T
given in Table 7. Even more, notice that for a given 4, b* = [bl, ba, ..., b50} .

A1 = 34.2175586272960

A2 = 300.557895998749

A3 = 1025.35445855159 Ay = 2437.22062288403

b 1 -0.502920749237398 0.145159683202213 -0.102054838998293
by -0.0515531686145348 -1 -0.603362498736936 0.0890614719726122
bs 0.0101796570090243 0.139459671406230 -1 -0.791194266006952
by -0.00328802075595610 -0.0381132638500681 0.237934316980673 -1

b 0.00137561477588171 0.0145463800669990 -0.0805838360851182 0.345252329326353
be  -0.000675645063586782  -0.00675443336895904 0.0345008428641132 -0.138312614217566
br 0.000370236892861313 0.00356672127107907 -0.0172333678149811 0.0649412580344996
bs  -0.000219686543035991  -0.00206253560718778 0.00958163012496778 -0.0343820877602204
by 0.000138487874635901 0.00127617192316913 -0.00576102980667357 0.0199065071452755
I;lvo -9.15577648315637e-05  -0.000832066840944857  0.00367635894969585 -0.0123370079997454
by 6.28962749340519¢-05  0.000565607675542838  -0.00245825241621866 0.00806242470784695
b -4.47123978114624e-05 -0.000398482184078008  0.00170901090731494 -0.00550238080160748

Table 7: first eigenvalues and its associated eigenvectors for the anti-symmetric free-end case. This data was
obtained by using MATLAB and by letting N = 50.

From Figure 18, it can seems that the first eigenvalue converges as N — oo. For the case of the first
eigenvalue, it can be seen that it converges to 34.0801 as N grows.

36 |-

35

Figure 18: values of A\; as dimension N grows.
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(c) Eigenfunction associated to A3 in comparison with cos (3mx).

Figure 19: the free surface h (z) in presence of walls compared to the free surface in absence of walls (cosine

frequencies).

4.9.4 Anti-symmetric free-end boundary condition

1 /
n——- |7z
2

S(x’):&:ni_o:lsin (

Let
1
coS <n — 2) x| = ;OcknTk (:1:’) ,
and
1
sin (n — 2) x| = Zern\/ 1—22U,_4 (xl) )
r>1
where
T !
2 f,ll cos ((n -3) Wm’) %daﬁ’, k>1,
Ckn =
1
L7 cos ((n -3 7rx/> ﬁdm’, k=0,
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and

2 [t 1
ern =~ [1 sin <<n - 2) mc’) Up—1 (7).

Thus, by replacing into (4.93) we get

A eV T— 22U, (@) = — (1-22) (14 VI—22) % enna ((n ) 1) W>3 L e

nar>1 n>1k>0 2 m)a VI= 22 (2" = 2)
3
= (1 — x’2) (1 +41— gc’2) Z ClnGm ((n — ;) 7r> Uk_1 (m’) .
n,k>1
Namely,
3
_ U,y (') N<< 1) ) ,
A €rnln = Cinan |l ln—=17| Uip_1(2). (4.105)
n%l /1= /2 <1 +41— .%'/2) 7,,%221 k 2 k—1 ( )
Let

!
Ur_y (o) =i Ui (o)
Vi (1+V1-27) i

where, by orthogonality,

™

d - 2 /1 U,«_l (1‘/) Uk—l (x’)
b 1 1+vV1—2? '
Therefore, (4.105) becomes

— — 1
A Z dirernanU,—1 («7:/) = Z ClenQp, [(TL — 2) ™

n,r,k>1 n,k>1

3
Uszl (SL'/) ;

and we get the following eigenvalue problem:
) 3
A ngr AierCrnly, = En ((n — 2) 7r> Ciknln, Vk>1,

or in matrix notation,

3
ADEG = C diag [(n - ) 77] a. (4.106)

Proposition 4.9. If
! 1
F = fun :/ cos (n— 2) mx' | Ty (2') da’, Vk >0,Yn > 1,

-1
then FT = C~1.
Proof. We know that

1
cos <<n - 2) 7rx/> = Z CenTk (m') )
k>0

thus

/1 cos ((n — %) mc’) T (x’) o Z /1 T, (:z:’) T, (I/)d /
r = Ckn I T,
1 V1—z? = F _1 V1—2?
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from where we get

Ckn =

2 1 cos ((n -3) m:’) dr', k>1,
1

L cos (0= ) ) romde’, k=0

Furthermore, we can assume that

By orthogonality,

ifkna k> 17
Qfpn =
%fkna k= Oa
then,
2 T’“(m/) E>1
cos (nﬂ'a:’) A 2ok fin W’ =7
a5 = 0.

1
= 2 Jen s

We also know that

! 1 / 1 ! /
Onm = cos n——|mx | cos m—— |7z | dx
1 2 2

2 [ : Ti (@) ) g L 1 / 1 :
;/71 %:CknTk () %:fkmm dx +;00nf0m‘/71 z};cknTk(ﬂC) z};m dx

= Z cknfk:m + COnfom

E>1

= chnfkma

k>0

or,
CTF=1 = FTC=1.

Thus, we have proven the proposition. O

Since (4.106) is true for & > 1, we need to add a zero-row in its left-hand side and c¢g,, for n > 1, in the
right-hand side. This is true since

S e (o- )it L@ (-3 r) cos(fn-p o)

n>1

=0.

Thus, (4.106) can be rewritten as follows

3
. 1 =
MFTDFEa = diag [(n - 2) F] a, (4.107)
where DE is the DE matrix with zeros in the first-row.
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This eigenvalue problem can be solved by using MATLAB. Let us consider the problem for dimension
N = 50, then the first obtained eigenvalues \; for ¢ = 1 : 50, and their associated eigenvectors a® are the ones
given in Table 8. Even more, notice that for a given 4, a* = [a1, as, ...7a50]T.

A1 = 3.86095364427419 Ao = 127.056248760284 A3 = 594.338943011707 A4 = 1634.25532825826

ai 1 -0.495080904664665 0.184192436151974 -0.124196571593678
az -0.0135369424178429 -1 -0.521278403012665 0.107548862539826
as 0.00192722754746661 0.0910908001306199 -1 -0.680885339819841
a;  -0.000534078338660874  -0.0213308109713834 0.186320360255083 -1

as 0.000204254688261910 0.00750108505138570 -0.0568882881153110 0.289298281773372
ag  -9.45500439668107¢-05  -0.00330644323041500 0.0230174187370253 -0.106742686663164

az 4.96744705988181e-05 0.00168332034941237 -0.0110899869518590 0.0478711426585793
ag  -2.85609898764373e-05 -0.000947171930926002  0.00601091532861416 -0.0246192219481397
ag 1.75691442511158e-05  0.000573688234802021  -0.00354532814705515 0.0139693090697572
arp -1.13901960561351e-05 -0.000367683087906929  0.00222835309251833 -0.00852844942194157
apn  7.70109393216882e-06  0.000246448031264094  -0.00147177105887005 0.00550861706810430
arz  -5.38752955327135e-06 -0.000171281355613452  0.00101136349086949 -0.00372013373317179

Table 8: first eigenvalues and its associated eigenvectors for the anti-symmetric free-end case. This data was
obtained by using MATLAB and by letting N = 50.

From Figure 20, it seems that the first eigenvalue converges as N — oo. In this case, A converges to 34.8447
as N grows.

4.1

<395

39

Figure 20: values of A\ as dimension N grows.
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(a) Eigenfunction associated to A1 in comparison with sin (rz/2). (b) Eigenfunction associated to A2 compared to sin (3wz/ 2).
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(c) Eigenfunction associated to A3 in comparison with sin (57z/2).

Figure 21: the free surface h (x) in presence of walls compared to free surface in absence of walls (sine frequen-
cies).

5 Conclusions and future work

We have developed a method to compute natural frequencies of a liquid surface, in three different geometries: the
half-plane, an infinite vertical-strip and a rounded container. We considered two different boundary conditions
for each geometry: first, when the waves of the free surface are pinned to the container and second, when
these waves form a contact angle of 7/2 with the walls of the container. We first introduce a linearized
integrodifferential equation involving the Hilbert transform, which can be solved in natural basis formed by
Tchebyshev polynomials. As a result, we get an eigenvalue problem which can be approximated by truncating
the associated infinite matrices. Nonetheless, as N — oo the solution quickly converges to the solution of the
original system. With this method, we found the eigenvalues of the linear Euler equations.

To study the remaining cases, we applied the conformal mapping technique. The tecnhique consists of
collecting the information of the new geometry in a matrix D, that appears as a factor. As a consequence,
a given geometry can be conformally mapped into the half-plane, where we already now how to obtain the
eigenvalues.

In all the studied cases it is clear that the presence of walls directly affects the free surface behavior. In
general, it seems that for the free-end edge condition, the frequencies for the anti-symmetric case were larger than
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the ones for the symmetric case; this is regardless of the container geometry. On the other hand, the eigenvalues
depends on container geometry, but the variation from one geometry to another is not very substantial.

For future work, it is of interest to study a container with two free surfaces separated by a given distance
d. For this problem, the Duhamel’s principle may be of use. It is also of interest to see how much it changes in
comparison to our problem and how much one surface affects the other.
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Appendices

A Inversion formula for the finite Hilbert transform

Let us consider the following equation:

LT sml) i g o
A cos ( ¢(2)dz=f(z), feL[0,n]. (A1)

T x) — cos (2)

Let ¢ = sin (nz) (n € N) in the equation above. Then, we obtain

f(x)zl/o’r sin(2)sin(nz) .

T cos () — cos (2)
_ 1 ™ cos [(n — 1)z] — cos [(n +1)2] i
27 Jo cos(z) — cos(z) ’

which by the parity of the cosine function becomes
1 /”* cos [(n —1)z] — cos [(n+1)z]
4w cos(z) — cos(z)

1 /7r* [ei(n—l)z — ¢ilnt1)z e—in—1)z _ o—i(n+1)z

f(z) dz

—T

dz

T8 cos(x) — cos(z) i cos(z) — cos(z)

—T

1 /ﬂ* 6i(n71)z _ 6i(n+1)z

T 4r = cos(z) — cos(z)

Let us consider the change of variable e?* = y. Then,

1 ynfl _ yn+1 dy
f@)=— i1,
4mi Jjy)=1 cos(z) — TR
B 1 ynfl o ynJrl
2w Jjy = 2y cos(z) —y? — 1
1 yn—l _ yn+1
— 3 dy
210 Jjy)=1 y* — 2y cos(z) + 1

(y . eiw) (y _ e—m) —y—y (em i e—im) 41

=y? — 2ycos(z) + 1.

dy

Notice that

Therefore, replacing into the equation above,

1 ynfl _yn+1
r) = ——— - —dy.
T =5 e o) (g — )™

n—1 _ ,n+l1 ) )
Let g (y) = J_ Y — . thus ¢ has two simple poles at: y = ' and y = e **. Let us compute the
(y—e*) (y—e)
residues at both poles.

e Residue at pole y = e**:

. n—1_ ,n+1
Res (g (y),e”) — lim LY

y—ei® Yy — e~

eiz(n—l) _ eim(n+1)

eiz _ efi:r
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e Residue at pole y = e~%*:

Res (g (y) ,e_”) = lim

e
- e~ T _ piT
—_ 67i:1:n'
Therefore, by the residue theorem, we have that
=——(—m) (e
2mi
= cos(nz). (A.2)

In this last step, we only consider half the residues since x € (0, 7).
Back to (A.1), we can take the sine expansion of ¢ as follows:

o(2) =Y \/f sin (na)

n>1

thus, by (A.2),

The a,, coefficients are determined by using the cosine orthonogality,

/Oﬂf(x) cos (nx) dx = Z am\/z/: cos (mz) cos (nz) dz

m>1

:an\/j
an = \/z /0 " £ (2) cos (n2) de.

6 () = ;1 \/3 /O " £ (2) cos (n2) dzﬁ cos (nz)
-

:‘;/ cosfm(x) f(2)dz. (A-3)
0

x) — cos (2)

implying,

Therefore,

Recall that the Hilbert transformation of ¢ € L? [—1,1] is given by:

1 : Mdz:f(x).

), x—z
Let us consider the change of variables given by:
x =cos(u), z=cos(n),

g () = f(cos(u), ¥ (n)=d(cos(n).
Thus, we have that

| s =g ().

m p) — cos (1)

Mathematician 72 Final Grade Project



N

School of Mathematical and Computational Sciences

YACHAY TECH

where, by using (A.3), we get

1 sin (p)

¥p)=—— /0 cos (1) — cos (n)g(n) dn
_ 1 1- cos2 (1)
- / V) ) an,

i cos (p) — cos (n)

Now, we go back to the original variables to obtain

_ U VI-a? f(2)
¢($)* mm_zd'za

giving us the inversion formula we wanted to prove.

B Anti-symmetric pinned-end boundary condition codes

In this section, the codes for the half-plane geometry are given. The codes for the other geometries are alike

with the difference of the matrix F that carries information about the geometry.

B.1 Function to compute the E matrix

%Lorena Correa
%Yachay Tech University
function E=matrixE_antipinned(N)
E=zeros (N,N);
for r=1:floor (N/2)
for n=1:N
ee=0(x) sin(n*pi*x).*chebyshevU(2*r-1,x);
E(2*r,n)=(2/pi)*integral (ee,-1,1);
end
end
end

B.2 Function to compute the D matrix

%Lorena Correa
%Yachay Tech University
function D=matrixD_antipinned (N)
D=zeros (N,N);
for r=1:floor (N/2)
for n=1:N
d=0(x) cos(n*pi*x).*chebyshevT (2*r,x);
D(2*r,n)=integral(d,-1,1);
end
end
end

B.3 Function to compute the diagonal matrix

%Lorena Correa
%Yachay Tech University
function diag=diagonal_antipinned (N)
diag=zeros (N,N);
for n=1:N
diag(n,n)=(n*pi)~3;
end
end
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B.4 Function to compute eigenvalues and eigenvectors

%Lorena Correa

%Yachay Tech University

function [V,vp]l=main_antipinned(N)

D=matrixD_antipinned(N); Ycompute D matrix of dimension NxN
Ep=matrixE_antipinned(N); Jcompute E matrix of dimension NxN

diag=diagonal_antipinned(N); Ycompute diagonal matrix of dimension NxN

E=zeros(N,N); Y%complete E matrix

for i=2:N
for j=1:N
E(i,j)=Ep(i-1,j);
end
end
P=D’*E;
Q=-diag;

[V,L]1=eig(P,Q); %return eigenvalues and eigenvectors for P*x=lambda*Q*x

vp=zeros (N,1);
for i=1:N
vp(i,1)=1/L(i,i); %eingevalues for our problem
end
end

B.5 Plotting convergence of an specific eigenvalue

%Lorena Correa
%Yachay Tech University
%plot convergence for the first eigenvalue
%we consider matrix dimension NxN, from N=10 to N=45
lambda=zeros (36,1);
Nvalue=[10:1:45];
for N=10:45
[V,vpl=main_antipinned (N);

lambda(N-9,1)=vp(1,1); %select the first eigenvalue for the given N

end
plot(Nvalue,lambda)

B.6 Plotting the free surface function

We know that the free surface function depends on ¢ and z. For plotting the surface, we consider a fixed ¢. In

this case, we plot for ¢t = 1.

%Lorena Correa
%Yachay Tech

%first load eigenvectors for N=50, use eigenvectors with positive diagonal

for i=1:50
if V(i,i)<0
for j=1:50
V(i,j)=-1*V(i,j);
end
end
end

% %Para lambda_1

% valor=0(j,x) (V(j,1)*sin(j*pi*x));
% x=-1:0.02:1;

% suma=zeros (length(x),1);
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% for i=1:length(x)

% for j=1:50

% suma (i,1)=suma(i,1)+valor(j,x(1,1i));
% end

% end

% plot(x,suma)

% hold on

% plot(x, sin(pi*x),’-.")

% hold off

%

%Para lambda_2
valor=0(j,x) (V(j,2)*sin(j*pi*x));
x=-1:0.02:1;
suma=zeros (length(x) ,1);
for i=1:length(x)
for j=1:50
suma (i,1)=suma(i,1)+valor(j,x(1,1i));
end
end
plot (x, suma)
hold on
plot(x, sin(2*pix*x),’-.7)
hold off

% %Para lambda_3

% valor=0(j,x) (V(j,3)*sin(j*pi*x));
% x=-1:0.02:1;

% suma=zeros (length(x),1);

% for i=1:1length(x)

% for j=1:50

% suma (i,1)=suma(i,1)+valor(j,x(1,1i));
% end

% end

% plot(x,suma)

% hold on

% plot(x, sin(3*pix*x),’.-7)
% hold off

C Symmetric pinned-end condition codes

Plotting the free surface and the convergence of the eigenvalues is analogous to the anti-symmetric pinned-end
case. The rest of the codes are listed below.

C.1 Function to compute the E matrix

%Lorena Correa
%Yachay Tech
function E=matrixE_symmpinned (N)
E=zeros (N,N);
for r=1:ceil(N/2)
for n=1:N
ee=0(x) cos((n-0.5)*pi*x).*chebyshevU(2*r-2,x);
E(2*xr-1,n)=(2/pi)*integral (ee,-1,1);
end
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end
end

C.2 Function to compute the D matrix

%Lorena Correa
%Yachay Tech
function D=matrixD_symmpinned (N)
D=zeros (N,N);
for r=1:ceil (N/2)
for n=1:N
d=0(x) sin((n-0.5)*pi*x).*chebyshevT (2*r-1,x);
D(2*xr-1,n)=integral(d,-1,1);
end
end
end

C.3 Function to compute the diagonal matrix

%Lorena Correa

%Yachay Tech

function diag=diagonal_symmpinned (N)
diag=zeros (N,N);

for n=1:N
diag(n,n)=((n-0.5)*pi) "3;

end

end

C.4 Function to compute mass conservation condition

%Lorena Correa
%Yachay Tech
%compute mass conservation condition for an NxN matrix
function omega=mass_conservation (N)
omega=zeros (1,N);
for n=1:N
omega (1,n)=((-1)"(n+1))*2/((n-0.5)*pi);
end
end

C.5 Function to compute eigenvalues and eigenvectors

%Lorena Correa

%Yachay Tech

function [V,vp]l=main_symmpinned (N)

vp=zeros(N,1);

omega=mass_conservation(N);

D=matrixD_symmpinned (N); %compute D matrix of dimension NxN
E=matrixE_symmpinned (N); Y%compute E matrix of dimension NxN
diag=diagonal_symmpinned(N); Jcompute diagonal matrix of dimension NxN
Pi=D’*E;

P=zeros (N,N);

for n=1:N

P(1,n)=omega(n); %impose mass conservation condition
end
for r=2:N

for n=1:N
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P(r,n)=Pi(r-1,n);
end
end
Q=zeros (N,N);
for i=2:N Yfirst row remains as zeros (mass conservation)
for j=1:N
Q(i,j)=diag(i-1,j);

end
end
[V,Ll=eig(P,Q);
for i=1:N
vp(i,1)=1/L(i,i); %select the first eigenvalue for the given N
end
end

D Symmetric free-end condition codes

Computing eigenvalues and eigenvectors, and plotting the free surface and convergence of eigenvalues are anal-
ogous to the anti-symmetric pinned-end case. Functions to compute E, D and diagonal matrices are below.

D.1 Function to compute the E matrix

%Lorena Correa
%Yachay Tech
function E=matrixE_symmfree (N)
E=zeros (N,N);
for r=2:ceil (N/2)
for n=1:N
ee=0(x) cos(n*pi*x).*chebyshevU(2*r-2,x);
E(2*xr-1,n)=(2/pi)*integral (ee,-1,1);
end
end
end

D.2 Function to compute the D matrix

%Lorena Correa
%Yachay Tech
function D=matrixD_symmfree (N)
D=zeros (N,N);
for r=1:ceil(N/2)
for n=1:N
d=0(x) sin(n#*pi*x).*chebyshevT (2*r-1,x);
D(2*xr-1,n)=integral(d,-1,1);
end
end
end

D.3 Function to compute the diagonal matrix

%Lorena Correa
%Yachay Tech
function diag=diagonal_symmfree (N)
diag=zeros(N,N);
for n=1:N
diag(n,n)=(n*pi) " 3;
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end
end

E Anti-symmetric free-end condition codes

Computing eigenvalues and eigenvectors, and plotting the free surface and convergence of eigenvalues are anal-
ogous to the anti-symmetric pinned-end case. Functions to compute E, D and diagonal matrices are below.

E.1 Function to compute the E matrix

%Lorena Correa
%Yachay Tech
function E=matrixE_antifree (N)
E=zeros (N,N);
for r=1:floor(N/2)
for n=1:N
ee=0(x) sin((n-0.5)*pi*x).*chebyshevU (2*r-1,x);
E(2*r,n)=(2/pi)*integral (ee,-1,1);
end
end
end

E.2 Function to compute the D matrix

%Lorena Correa
%Yachay Tech
function D=matrixD_antifree (N)
D=zeros (N,N);
for r=1:floor (N/2)
for n=1:N
d=0(x) cos((n-0.5)*pi*x).*xchebyshevT (2*r,x);
D(2*r,n)=integral(d,-1,1);
end
end
end

E.3 Function to compute the diagonal matrix

%Lorena Correa

%Yachay Tech

function diag=diagonal_antifree (N)

diag=zeros (N,N);

for n=1:N
diag(n,n)=((n-0.5)*pi) " 3;

end

end
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