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Resumen

En la actualidad existe un interés creciente en comprender las dinámicas de ciertos procesos

f́ısicos y biológicos que son parcialmente observados y que se generan a gran escala en espacio

y tiempo. Los modelos estad́ısticos espacio temporales se vienen utilizando cada vez más en

una amplia variedad de disciplinas cient́ıficas tales como el mapeo de enfermedades en determi-

nadas regiones, la interpretación de trazas śısmicas en la industria petrolera, análisis de redes

de sensores robóticos y el monitoreo de estaciones meteorológicas entre otras aplicaciones. Esta

metodoloǵıa es apropiada para describir y predecir los procesos espacialmente expĺıcitos que

evolucionan en el tiempo. En este trabajo se utilizó una metodoloǵıa bayesiana que involucra la

combinación de un filtro Kriging universal y el filtro de Kalman. Las superficies de predicción

espacial del modelo se construyeron usando el algoritmo de Kriging y los efectos temporales se

estimarán por el algoritmo de filtro de Kalman. El Kriging proporciona un enfoque de estima-

ción exitoso desde el punto de vista de la estad́ıstica espacial y el filtro de Kalman facilita un

procedimiento recursivo bien establecido para la estimación de los modelos en la forma espacio

estado. Se utilizarón algunas medidas de bondad de ajuste para validar las predicciones del

modelo. La metodologia fue ilustrada usando series de tiempo de 30 años de tres estaciones me-

teorológicas del Ecuador. La estructura unificada del modelo permite hacer predicciones sobre la

temperatura, las precipitaciones y la humedad en las 3 provincias analizadas obteniendo buenos

ajustes. Comprender los patrones espaciales y tendencias puede ayudar a evualar politicas que

contribuyan a la reducción del cambio climatico. Se usó la raiz del error cuadratico medio como

medida de bondad de ajuste para medir la calidad de estimacion del algoritmo obteniendose

resultados satisfactorios.

Palabras clave: Filtro Kriging Kalman, filtro Kriging Universal, Filtro de Kalman,

modelos espacio temporales

VIII



Abstract

Nowadays there is a growing interest in understanding the dynamics of certain physical

and biological processes. Those concepts are being partially observed and are generated

on a large space and time scale. The use of spatio-temporal statistical models have been

increase in a wide variety of scientific disciplines such as mapping diseases in certain re-

gions, interpretation of oil industry seismic traces, robotic sensor networks analysis, and

monitoring of stations meteorological among other applications. This methodology is

appropriate to describe and predict spatial explicit processes, which evolves over time.

A Bayesian methodology that involves the combination of a universal Kriging filter and

the Kalman filter were proposed. The spatial prediction surfaces of the model were con-

structed using the Kriging algorithm and the Kalman filter algorithm. It will be able to

estimate the temporal effects. Kriging provides a successful estimation approach from the

point of view of spatial statistics. On the other hand, the Kalman filter facilitates describe

a well-established recursive procedure in order to estimate models in the form of space-

state. Some measures of goodness of fit were used to validate model predictions. The

methodology was illustrated using 30-year time series from three meteorological stations

in Ecuador. The unified structure of the model allows predictions about temperature,

precipitation and humidity in the 3 states analyzed to obtain good adjustments. Under-

standing spatial patterns and trends can help to evaluate policies which contribute to

climate change reduction. The root mean square error was used as a measure of goodness

of fit to measure the algorithm estimation quality and to get satisfactory results.

Keywords: Kriging Kalman filter, Universal Kriging filter, Kalman filter,

spatio-temporal models.
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Chapter 1

Introduction

In the last years, spatio-temporal modelling has developed due to the necessity of

analyze the temporal evolution of spatial behavior of random magnitudes. Thouse mag-

nitudes are important in a variety of studies developed in various applied areas such as

Geo-statistics, Geophysics Environment, Hydrology, Meteorology, Biology and Medicine.

The approach that will form the basis of our space time modelling of the data is based

on General State Space (GSS) model for Spatial-Temporal data (ST-GSS model) designed

to model the evolution of spatial fields through time [1]. We will use the Kalman filter

due to estimation is recursive. The approach combines Kriging and the Kalman filter.

We call it the Kriged Kalman filter (KKF) [2]. Recall that

a) Kriging has provided a successful Weiner prediction approach in Spatial Statistics/-

Geostatistics.

b) The Kalman filter gives a well-established recursive procedure for estimation in general

state space models applied to time series.

Several studies have used Kriging and the Kalman filter, [2] used a KKF and give

a specific implementation using pollution data. [3] built a model to predict spatial sur-

face using the well-known method of Kriging for optimum spatial prediction and they

analyzed the temporal effects using the models underlying the Kalman filtering method.

[4] give a practical introduction into Kalman filtering and one of its by products, the

5
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Ensemble Kalman Filter (EnKF) to do history matching of oil reservoirs. [5] used a

Bayesian method of the kriging algorithm with the aim of predicting random Gaussian

fields, taking into account the uncertainty in the covariance function. They analyzed the

best predictor estimator unbiased within a Bayesian structure, considering the parame-

ters in the structure of the covariance and the effect on the quality of real and predicted

prediction. [6] assure that the EnKF is largely unknown in the statistics community and

they aim to change it. Additionally, they pretend to entice more statisticians to work on

this topic. In [7], a methodology was proposed to design a distributed estimation algo-

rithm that enables a robotic sensor network taking successive measurements of a dynamic

physical process modeled as a spatio-temporal random field to obtain consistent and sta-

tistically sound representations of the spatial field. A robust KKF model is used in [8]

that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity,

a l1-regularized estimator that jointly predicts the spatialtemporal process at unmonitored

locations, while identifying measurement outliers. In [9] developed an inversion technique

that combines the reduced basis (RB) method and the ensemble Kalman filter to solve

state parameter identification problems for large-scale nonlinear dynamical systems aris-

ing from the discretization of nonlinear time-dependent PDEs. Kriging algorithm is used

[10] because it method produced the most accurate results of daily mean wind speeds,

it was proved in previous studios, and he used the Kalman filter because it does not re-

quire extensive database management and yields significant model improvement. Some

notions of Bayesian analysis with emphasis on Bayesian modeling and calculation are

reviewed in [11], [12]. Additionally, a general hierarchical model for times series analysis

is presented and discussed. [13], [14] and [15] have concepts for spacial data that can

be used for spatio-temporal modeling, exploratory data analysis, and statistical inference

(estimation, prediction, uncertainty quantification). The maximum likelihood principle

is used in [16], [17] and [18] for models to time series with missing data observations

or incomplete data. [19] used the Kriging Kalman filter to obtain global temperature

predictions given local temperature measurements. By solving the heat transfer partial

differential equation driving the wildfire evolution, it is shown that the spatio-temporal

Mathematician 6 Final Grade Project
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mean temperature process associated with a wildfire evolving in a finite spatial domain

under certain prescribed conditions can be approximated by a Fourier series. The Kriging

Kalman filter is used to predict the wildfire temperature evolution and it is compared

to that of standard Gaussian process regression. A software developed in Matlab based

on the Kriged Kalman Filter model for dynamic spatio-temporal interpolation of Global

Navigation Satellite System (GNSS) missing data is presented in [20]. The users can load

source GNSS data, set parameters, view the interpolated series and save the final results.

Other related works are: [21] used a dynamic temporal space model that allowed in-

ference about precipitation states in weather stations at Venezuela. In that work, Markov

Chains Monte Carlo algorithm were used, in particular, the Gibs algorithm is used to

complete the missing data, they also used a sequential Monte Carlo algorithm known as

the parallelized ensemble Kalman filter to make efficient estimates at weather stations. In

[22] proposed a method based on a sensor placement method for spatio-temporal field esti-

mation based on a kriged Kalman filter (KKF) using a network of static or mobile sensors.

The developed work dynamically designs the optimal to place the sensors. They combine

the estimation error with minimization problem with a sparsity-enforcing penalty. They

used a general structure of covariance matrices. Adittionally, the KKF is used to estimate

the field using the measurements from the selected sensing locations.

Due to the stated in the previous paragraphs, this thesis considers the analysis and

modelling of daily data from 1987 to 2017 of temperature, precipitation and relative hu-

midity of three states of Ecuador (Imbabura, Carchi and Pichincha). We use Kriging

Kalman Filter to predict the temporal space evolution of environmental phenomena men-

tioned before.

1.1 Problem Statement

Suppose that the data x(s1, t1), · · · , x(sN , tN) are obtained from a continuous spatial

process x(s, t), where s = (x, y) ∈ D ⊂ R2, and t = {1, 2, · · · } is a discrete time in-

dex. Suppose that the observable process has a measurement error component expressed

Mathematician 7 Final Grade Project
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through an observation equation

x(s, t) = µ(s, t) + ε(s, t), ε(s, t) ∼ N(0, k(s, t)) (1.1)

where µ(s, t) can be seen as a softer process than x(s, t) and ε(s, t) is an error component.

The objective is predict the process µ(·, ·) in all spatial locations and at points of time of

interest, regardless of where and when the data x(s1, t1), · · · , x(sN , tN) are observed.

The component µ(s, t) can be expressed as a linear combination that varies in the time

α(t) of spatial fields h(s), which we can call it common fields of the space-state model

µ(s, t) = h1(s)α1(t) + h2(s)α2(t) + · · ·+ hp(s)αp(t) = h(s)Tα(t) (1.2)

where

h(s)T = (h1(s), h2(s), · · ·, hp(s)) and

α(t) =


α1(t)

α2(t)
...

αp(t)


The vector α(t) represents the state equation of (1.2), this is

α(t) = Pα(t− 1) +Kη(t), η(t) ∼ N(0,Ση) (1.3)

It is assumed that p, K and Ση are known.

Mathematician 8 Final Grade Project
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1.2 Objectives

1.2.1 General Objective

To formulate a stochastic estimation process for predicting the temporal space evolu-

tion of some environmental phenomena such as: temperature, precipitation and relative

humidity, in three provinces of the Republic of Ecuador.

1.2.2 Specific Objectives

The next specific objectives will be followed in order to achieve the main goal.

� To promote a statistical model witch considers the temporal space variation for

predicting the dynamics of the environmental phenomena studied.

� To use the methodology based on the Bayesian Kriged Kalman filter to estimate

the parameters of the model.

� To obtain daily forecast of environmental phenomenon of Pichincha, Carchi and

Imbabura ecuadorian provinces.

1.3 Justification

The approach on this model is developed on the general structure of space-state models

for space-time data. It is designed to model the evolution of spatial fields through the

time [1]. This research proposes to implement and validate the Kriging filter methodology

in combination with the Kalman filter in order to estimate and predict some unknown

variables or states of the climate, such as, temperature, rainfall and relative humidity in

three provinces of Ecuador (Imbabura, Carchi and Pichincha). The objective is to make

contributions for environmental organizations which are in charge of studying climate

change in the Republic of Ecuador.

The Kalman filter will be used because the estimation is recursive. The approach

proposed a mix of the Universal Kriging filter and the Kalman filter. We call it the

Mathematician 9 Final Grade Project
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Kriging Kalman filter (KKF) [2]. It is important to note that the Kriging filter has been

used successfully for prediction in Spatial Statistics also called Geostatistics. On the other

hand, the Kalman filter provides a well-established recursive procedure for estimation in

space-state models applied to time series.

1.4 Contribution

We are going to apply modern methodologies that allow:

� To reduce the problem dimension.

� To reduce the computational cost.

� To select models that allow spatial and temporal predictions of temperature, pre-

cipitation and humidity states quickly, efficiently and accurately.

� To compare and improve theoretical models with respect to empirical models.

� To build models that describe important climate aspects.

1.5 Thesis overview

This work is divided into 6 main Chapters named as follows: Introduction, Theoretical

Framework, Methodology, Data description, Result, and Conclusions.

Chapter 1, the problem statement, objectives, the justification of this work and the

scientific contributions of this research are presented.

Chapter 2, the statistical techniques that are used in spatial analysis are reviewed.

Also, we discuss the fundamental geo-statistical methodologies to analyse spatial and

spatio-temporal data in particularly the approaches we have used in this thesis.

The estimation for the KKF is presented in Chapter 3. At the begining, we will review

the Kalman Filter and its use to estimate the states α(t) given the data, assuming the

parameters and common fields to be specified. Next, the method of maximum likelihood

estimation (MLE) and its interpretation using expectation–maximization (EM) algorithm

Mathematician 10 Final Grade Project
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will be discussed. Finally, we are going to analize the implementation of the algorithms

that incorporates both modeling spatial in order to define the set of common fields leading

to H, and the MLE and the Kalman filter.

Chapter 4 gives a description of available data which we use in this thesis. We describe

data preparation, editing and cleaning. It is necessary for the raw metereological data

that we obtained from the national institute of meteorology and hydrology (INAMHI).

We also present summary statistics for all data sets after getting into analysable form.

Chapter 5 gives the experimental results.

In Chapter 6, the conclusions obtained from this work are presented and introduced

some ideas that can be extended for future work.

Mathematician 11 Final Grade Project



Chapter 2

Theoretical Framework

In this chapter we present some useful to deal with our problem. The statistical tech-

niques which are used in spatial analysis are reviewed. Also, we discuss the fundamental

geo-statistical methodologies to analyse spatial and spatio-temporal data specially the

approaches we have used in this thesis.

2.1 Spatial Data

Spatially dependent data are often classified into three major types see e.g., [23].

These are: (i) point-referenced data (ii) point pattern data, and (iii) areal data. Below

we discuss these three types of data.

Figure 2.1: The map showing meteorological stations in Ecuador.

12
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2.1.1 Point-referenced Data

In point-referenced data (also known as geostatistical data) the random observation

Z(s) is measured at a location s ∈ S ⊂ Rd, and s varies continuously over the study

region S. Theoretically, the number of locations in S is infinite. For example, see Figure

2.1 where the meteorological phenomena are monitored in several sites in Ecuador [24].

2.1.2 Point Pattern Data

In this type of spatial data, the study domain S is random and its index set gives the

locations of random events that describe the observed spatial point patterns. An example

of point pattern data is given in Figure 2.2, where the points represent locations of 3605

trees of the species Beilschmiedia pendula (Lauraceae) in a 1000 by 500 meter rectangular

sampling region in the tropical rain forest of Barro Colorado Island [25].

Figure 2.2: Example of point pattern data showing locations of trees in the rain forest of
Barro Colorado Island.

2.1.3 Areal Data

In areal data, the study domain S is a fixed subset with regular or irregular shape,

but partitioned into a finite number of areal units with well-defined boundaries.[24] For
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example, Figure 2.3 shows the average 4th highest ozone concentration levels for the 33

states in the eastern US in 1997.

Figure 2.3: A choropleth map of the statewise average 4th highest ozone concentration
levels in 1997.

2.2 Spatio-temporal data

Spatial data are traditionally thought of as random according to either geostatistical,

areal or lattice, or point process (and sometimes random set) behavior. We think of

geostatistical data as the kind where we could have observations of some variable or

variables of interest (e.g., temperature and wind speed) at continuous locations over a

given spatial domain, and where we seek to predict those variables at unknown locations

in space. Lattice processes are defined on a finite or countable subset in space (e.g., grid

nodes, pixels, polygons, small areas), such as the process defined by work-force indicators

on a specific political geography (e.g., counties in the USA) over a specific period of time.

A spatial point process is a stochastic process in which the locations of the points are

random over the spatial domain, where these events can have attributes given in terms of

marks (e.g., locations of trees in a forest are random events, with the diameter at breast

height being the mark). Given the proliferation of various data sources and geographical
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information system (GIS) software, it is important to broaden the perspective of spatial

data to include not only points and polygons, but also lines, trajectories, and objects.

It is also important to note that there can be significant differences in the abundance of

spatial information versus temporal information. It should not be surprising that data

from spatio-temporal processes can be considered from either a time-series perspective or

a spatial-random-process perspective, as described in the previous paragraph [13].

2.3 Spatio-temporal models

Spatio-temporal data analysis is an emerging research area due to the development

and application of novel computational techniques allowing for the analysis of large spatio-

temporal databases. When the data are collected across time as well as space and has

at least one spatial and one temporal property we can say that spatio-temporal models

arise. An event in a spatio-temporal dataset describes a spatial and temporal phenomenon

that exists at a certain time t and location x. Applications for spatio-temporal analysis

include cases in the domains of biology, ecology, meteorology, medicine, transportation

and forestry [13].

2.4 Dinamic spatio-temporal models

Dynamic modeling in the context of spatio-temporal data is simply the notion that

we build statistical models that posit (either probabilistically or mechanistically) how a

spatial process changes through time. It is inherently a conditional approach, in that we

condition on knowing the past, and then we model how the past statistically evolves into

the present. If the spatio-temporal phenomenon is what we call “stationary,” we could

take what we know about it in the present (and the past) and forecast what it will look

like in the future.

Building spatio-temporal models using the dynamic approach is closer to how scientists

think about the etiology of processes they study – that is, most spatio-temporal data

really do correspond to a mechanistic real-world process that can be thought of as a
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spatial process evolving through time.

The power of these models comes from established knowledge about the process’s be-

havior, which may not be available for the problem at hand. In that case, one might

specify more flexible classes of dynamic models that can adapt to various types of evolu-

tion, or turn to the descriptive approach and fit flexible mean and covariance functions

to the data [13].

2.5 Covariograms and Semivariograms

2.5.1 Covariogram

We consider empirical spatio-temporal covariograms (and their close cousins, semi-

variograms) for measures of the joint spatio-temporal dependence. The characterizing of

covariability in the spatio-temporal data as a function of specific lags in time and in space

we are interested. Note that the lag in time is a scalar, but the lag in space is a vector

(corresponding to the displacement between locations in d-dimensional space).

Consider the empirical spatio-temporal covariance function for various space and time

lags. Here, we make an assumption that the first moment (mean) depends on space but

not on time and that the second moment (covariance) depends only on the lag differences

in space and time. Then the empirical spatio-temporal covariogram for spatial lag h and

time lag τ is given by

Ĉz(h; t) =
1∣∣Ns(h)
∣∣ 1∣∣Nt(τ)

∣∣ ∑
Si,Sk∈Ns(h)

∑
tj ,tl∈Nt(τ)

(
Z(si; tj)− µ̂z,s(si)

) (
Z(sk : tl))− µ̂z,s(Sk)

)
(2.1)

where you will recall that µ̂z,s(si) = (1/T )
∑T

j=1 Z(si; tj), Ns(h) refers to the pairs of

spatial locations with spatial lag within some tolerance of h, Nt(τ) refers to the pairs of

time points with time lag within some tolerance of τ , and |N(·)| refers to the number

of elements in N(·). Under isotropy, one often considers the lag only as a function of

distance, h = ||h||, where || · || is the Euclidean norm [13].
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2.5.2 Semivariogram

The semivariogram is defined as:

γz(si, sk; tj, tl) =
1

2
var

(
Z(si; tl)− Z(sk; tl)

)
In the case where the covariance depends only on displacements in space and differences

in time, this can be written as

γ(h; τ) =
1

2
var

(
Z(s+ h; t+ τ)− Z(s; t)

)
= Cz(0; 0)− cov

(
Z(s+ h; t+ τ)− Z(s; t)

)
= Cz(0; 0)− Cz(h; τ)

(2.2)

where h = sk − si is a spatial and τ = tl − tj is a temporal lag. Now, equation (2.2)

does not always hold. It is possible that γz is a function of spatial lag h and temporal

lag τ , but there is no stationary covariance function Cz(h; τ). We generally try to avoid

these models of covariability by fitting trend terms that are linear and/or quadratic in

spatio-temporal coordinates.

Figure 2.4: Semivariogram.
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If the covariance function of the process is well defined, then the semivariogram is

generally characterized by the nugget effect, the sill, and the partial sill. The nugget

effect is given by γz(h; τ) when h → 0 and τ → 0, while the sill is γz(h; τ) when h → ∞

and τ → ∞. The partial sill is the difference between the sill and the nugget effect.

The diagram below shows these components of a semivariogram as a function of spatial

distance ‖h‖.[13]

2.6 Hierarchical Statistical Models

Hierarchical modeling is based on the basic fact from probability theory that a col-

lection of random variables with joint distribution can be decomposed into a marginal

distribution and a series of conditional distributions. That is, if A, B, C are random

variables, then we can write the joint distribution in terms of factorizations, such as

[A,B,C] = [A|B,C][B|C][C], where the bracket notation [C] refers to a probability dis-

tribution for C, and [B|C] refers to the conditional probability distribution of B given

C, etc. For a spatial process, the joint distribution describes the stochastic behavior of

the spatially referenced data and parameters. This can be difficult (if not impossible)

to specify for many problems. It is often much easier to specify the distribution of the

relevant conditional models (e.g., conditioning the observed data on the true process and

parameters, etc.). In this case, the product of a series of relatively simple conditional

models leads to a joint distribution that can be quite complex.

For complicated processes in the presence of data, it is useful to approach the problem

by breaking it into three primary stages [11]:

1. Data Model: [data|process, parameters]

2. Process Model: [process|parameters]

3. Parameter Model: [parameters]

The first stage is concerned with the observational process or “data model,” this model

or process specifies the distribution of the data given the process of interest as well as
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the parameters that describe the data model. The second stage describes a distribution,

conditional on other parameters, for the process,. The last stage referees to the uncertainty

in the parameters by endowing them with distributions. In general, each of these stages

may have multiple substages.

Ultimately, we are interested in the “posterior” distribution, i.e., the distribution of

the process and parameters updated by the data. This is obtained by Bayes’ rule in

which the posterior distribution is proportional to the product of the data, process, and

parameter distributions:

[process, parameters|data] ∝ [data|process, parameters]×[process|parameters][parameters]

where the normalizing constant represents the integral of the right-hand side with respect

to the process and parameters. This formula serves as the basis for hierarchical Bayesian

analysis [14].

2.7 Kriging

We suppose that a spatially distributed variable is of interest, which in theory is defined

at every point over a bounded study region of interest, S ⊂ Rd, where d = 2, 3. Also, We

suppose further that this variable has been observed at each of distinct points in S, and

that from the observations we wish to make inferences about the process that governs how

this variable is distributed spatially and about values of the variable at locations where

it was not observed [14].

The method used to achieve these objectives is known as kriging, it is very similar to

a multiple linear regression applied to a spatial context, where the random variables Z(s)

act as regressor variables, and the random variable at the point where the prediction is

interesting, Z(s0), serves as the dependent variable. This is a local estimation technique

which has the quality of being the best unbiased linear estimator of Z. [26]

In the classical Geostatistic analysis, the final stage is the prediction of values of Z(s)

at desired locations, perhaps even at all points. The South African mining engineer Danie
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Krige, who was the first to develop and apply them by what, all methods dedicated to

this purpose are called kriging.

The kriging predictor depends of the model adopted for the random function Z(s):

In general, Z(s) is usually split into a trend component and a residual component, as

expressed in the equation

Z(s) = µ(s) + ε(s) (2.3)

where µ(s) = E[Z(s)] is the average function (the mean is assumed to be constant) and

ε(s) is the residual component of which the variogram or the covariogram is supposed to

be known.

The kriging variants depend on the model adopted for the trend µ(s), following de-

scribes Simple, Ordinary and Universal kriging. In [15] this method is found in greater

detail and also others such as: indicator, lognormal, transgaussian, robust kriging and

cokriging for the multinomial case.

2.7.1 Simple Kriging

Let the stochastic response ε(s) (point-referenced data) at site s be strictly stationary,

so that it is written as:

Z(s) = µ(s) + ε(s) (2.4)

where, µ(s) is a known function and ε(s) is the spatial error process and assumed it to be

Gaussian with mean zero and covariance matrix Σ. Let Z(s) = (z(s1), ..., z(sn))T . The

mean and variance of the process is written as, E(Z(s)) = µ(s) and V ar(Z(s)) = Σ. To

obtain prediction at unknown site s0, we can estimate the optimal prediction Z(s0) as:

Ẑ(s0) = µ̂(s0) + CTΣ−1(Z(s)− µ(s))

where, CT = cov(Z(s), Z(s0)). This type of kriging is known as simple kriging.[24]
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2.7.2 Ordinary Kriging

Assume that the mean process µ(s) = µ is known and does not vary with spatial

locations s, hence the model in equation (2.4) is written as:

Z(s) = µ(s) + ε(s)

The estimated optimal prediction Z(s0) at site s0 is known as the ordinary kriging,

and is written as:

Ẑ(s0) = µ̂+ C ′Σ−1(Z(s)− µ)

where, µ̂ = (1′Σ−11)−11′Σ−1Z(s), and 1 is a vector with all elements equal to 1.[24]

2.7.3 Universal Kriging

Assume the mean process µ(s) is unknown and it varies over space in the linear

regression form µ(s) = X(s)′β, and the covariance function Σ is known as in the model

(2.4). The model is written as:

Z(s) = XT (s)β + µ(s)

where, µ(s) = (µ(s1), · · · , µ(sn))′ and µ(s) ∼ N(0,Σ), Z(s) = (Z(s1), · · · , Z(sn))′, β =

(β1, ..., βp)
′ is the p parameters and XT (s) is the pxn covariate matrix.

Hence, we can estimate the optimal prediction at site s0 as:

Ẑ(s0) = XT (s)β̂ + C ′Σ−1(Z(s)−XT (s)β̂)

where, β̂ = (XT (s)Σ−1X(s))−1XT (s)Σ−1Z(s).

This type of kriging is known as the universal kriging [24].

Mathematician 21 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

2.8 Kalman Filter

Kalman filters are used to estimate states based on linear dynamical systems in state

space format [27]. The process model defines the evolution of the state from time k − 1

to time k as:

xk = Fxk−1 +Buk−1 +wk−1 (2.5)

where F is the state transition matrix applied to the previous state vector xk−1, B

is the control input matrix applied to the control vector uk−1, and wk−1 is the process

noise vector that is assumed to be zero-mean Gaussian with the covariance Q, i.e. -

wk−1 ∼ N(0, Q). The process model is paired with the measurement model that describes

the relationship between the state and the measurement at the current time step k as:

zk = Hxk + νk (2.6)

where zk is the measurement vector, H is the measurement matrix, and νk is the

measurement noise vector that is assumed to be zero-mean Gaussian with the covariance

R, i.e., νk ∼ N(0, R) Note that sometimes the term “measurement” is called “observation”

in different literature.

The role of the Kalman filter is to provide estimate of xk at time k, given the initial

estimate of x0, the series of measurement, z1, z1, · · · , zk and the information of the sys-

tem described by F, B, H, Q, and R. Note that subscripts to these matrices are omitted

here by assuming that they are invariant over time as in most applications. Although the

covariance matrices are supposed to reflect the statistics of the noises, the true statistics

of the noises is not known or not Gaussian in many practical applications [28]. There-

fore, Q and R are usually used as tuning parameters that user can adjust to get desired

performance.

Kalman filter algorithm consists of two stages: prediction and update. Note that terms

“prediction” and “update” are often called “propagation” and “correction,” respectively,

in different literature. The Kalman filter algorithm is summarized as follows:
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Prediction
Predicted state estimate x−k = F x̂+

k−1 +Buk−1
Predicted error covariance P−k = FP+

k−1F
T + q

Update:
Measurement residual ŷ = zk −Hx̂−k
Kalman gain Kk = P−k H

T (R +HP−k H
T )−1

Updated state estimate x+
k = x−k +Kkŷ

Updated error covariance P+
k = (I −KkH)P−k

Table 2.1: The Kalman filter algorithm

In the above equations, the hat operator ( ˆ ) means an estimate of a variable. That

is, x̂ is an estimate of x. The superscripts – and + denote predicted (prior) and updated

(posterior) estimates, respectively.

The predicted state estimate is evolved from the updated previous updated state

estimate. The new term P is called state error covariance. It encrypts the error covariance

that the filter thinks the estimate error has. Note that the covariance of a random variable

x is defined as cov(x) = E
[
(x− x̂)(x− x̂)T

]T
where E denotes the expected (mean)

value of its argument. One can observe that the error covariance becomes larger at the

prediction stage due to the summation with Q, which means the filter is more uncertain

of the state estimate after the prediction step.

In the update stage, the measurement residual ỹk is computed first. The measurement

residual, also known as innovation, is the difference between the true measurement,zk,

and the estimated measurement,Hx̂−k . The filter estimates the current measurement by

multiplying the predicted state by the measurement matrix. The residual, ỹk, is later

then multiplied by the Kalman gain,Kk, to provide the correction, Kkỹk, to the predicted

estimate x̂−k . After it obtains the updated state estimate, the Kalman filter calculates the

updated error covariance, P+
k , which will be used in the next time step. Note that the

updated error covariance is smaller than the predicted error covariance, which means the

filter is more certain of the state estimate after the measurement is utilized in the update

stage.

Mathematician 23 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

We need an initialization stage to implement the Kalman filter. As initial values, we

need the initial guess of state estimate, x̂+
0 , and the initial guess of the error covariance

matrix, P+
0 . Togetherwith Q and R, x̂+

0 and P+
0 play an important role to obtain desired

performance. There is a rule of thumb called “initial ignorance”, which means that the

user should choose a large P+
0 for quicker convergence. Finally, one can obtain implement

a Kalman filter by implementing the prediction and update stages for each time step,

k = 1, 2, 3, . . . , after the initialization of estimates.

Note that Kalman filters are derived based on the assumption that the process and

measurement models are linear, i.e., they can be expressed with the matrices F , B, and

H, and the process and measurement noise are additive Gaussian. Hence, a Kalman filter

provides optimal estimate only if the assumptions are satisfied [28].
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Chapter 3

Methodology

Our estimation for the KKF consists of several parts: first, we are going to review

the Kalman Filter in scene of spatio-temporal models and its use to estimate the states

α(t) given the data. We will assume the parameters and common fields to be specified.

Second, we obtein the common fields with the method of maximum likelihood estimation

(MLE). Also,we use that interpretation to get EM algorithm of the parameters P,Ση, and

Σε data about the common fields, the matrix H. Additionally, we discuss implementation

of the algorithms. For that reason we review some overall strategic concerns and turn

to specifics of the implementation of the full algorithm that incorporates both spatial

modeling to define the set of common fields leading to H, the MLE, and the Kalman

filter.

3.1 Principal fields

The systematic spatial component in x(s, t) is modeled as linear combinations that

vary in the time of p common fields, comprising q trend fields and r = p− q main fields,

which is written as:

h(s)T = (h1(s), · · · , hq(s), hq+1(s), · · · , hq+r(s)) (3.1)
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the fields are found considering components of common tendency, and common spatial

dependence through time. Consider the spatial linear model

x(s) = fT (s)β + ζ(s) (3.2)

where β = (βq, · · · , βq)T , f(s) = (f1(s), · · · , fq(s))T y los fj(s) (j = 1, · · · , q) are fields

of tendency of a polynomial form given in the coordinates of s. Let

cov(ζ(s), ζ(s′)) = σζ(s, s
′) (3.3)

a positive definite conditional function. Suppose, that the observations x = (x1, · · · , xm)

are taken in m locations, m ≥ p, s∗1, · · · , s∗m. The common spatial dependence through

time is expressed as the set of krigring predectores, possibly with restrictions because it

is an array of not complete range for the set of observations on these sites.

We write σζ(s) for the m-vector of covariances with i-th element σζ(s
∗
i , s), and we write

Σζ as the matrix of covariance m×m with (Σζ)ij = σζ(s
∗
i , s
∗
j). Let fj is the m-vector of

j-th field trend in the sites, are the i-th element fj(s
∗
i ).

The kriging predictor is

x̂(s) = f(s)TAx + σζ(s)TBx (3.4)

where, writing F : m× q for the trend matrix with ij-th element fj(s
∗
i ),

A = (F TΣ−1ζ F )−1F TΣ−1ζ (3.5)

is the trend matrix, and

B = Σ−1ζ − Σ−1ζ F (F TΣ−1ζ F )−1F TΣ−1 (3.6)

is the partial information matrix or generalized bending energy matrix, where we

assume that Σζ and F TΣ−1ζ F be non-singular. It is assumed that the columns of F are
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linearly independent. It is considered the spectral decomposition of B.

B = UDUT , Bui = diui (3.7)

where U = (u1, · · · ,um) y D = diag {d1, · · · , dm}. At least q of the eigenvalues di are

iqual to zero. Writes the eigenvalues in non-drecreasing order, 0 = d1 = d2 = · · · = dq <

dq+1 < dq+2 < · · · < dm. Energy matrix B has maximum rank m − q, and the vectors

of B are orthogonal to the columns of F , BF = 0 i.e. fTj ui = 0, para j = 1, · · · , q y

q + 1, · · · ,m.

Suppose that the observations taken at the chosen sites coincide with the i-th eigen-

vector of B, i = 1, · · · ,m. The Kriging predictor given in (3.4) is written as:

x̂(s)x=ut = f(s)TAui + σζ(s)TBui

= f(s)TAui + diσζ(s)Tui (3.8)

Any m-vector of x observations is the linear conbination UTx of ui, and the predictor

Kriging x̂(s) is the linear combination of UTx of the x̂(s)x=ui
in (3.8). Therefore x̂(s)

is the linear combination of trend fields fj(s) (j = 1, · · · , q) and the m − q main fields

σζ(s)Tui, (i = q + 1, · · · ,m) evaluated in s. These functions encompass the appearance

of all Kriging solutions with observations in the m given sites, and the specified trend

fields and covariances.

In practice the main r fields used in the KKF model may include either all r = m− q

or a subsetr < m− q of the main fields. So

p = q + r ≤ m

[29] notes, for thin plates splines, the association of small eigenvalues of the energy

matrix with large scalar variation.

Let {j1, · · · , jr} denote a subset of size r ≤ m−q of {q + 1, · · · ,m}. Then the average
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component in the observation equation of the KKF model has the form

µ(s, t) =

q∑
j=1

hj(s)αj(t) +
r∑

k=1

hq+k(s)αq+k(t) (3.9)

where

hj(s) = fj(s), j = 1, · · · , q (3.10)

hq+k(s) = σζ(s)Tujk , k = 1, · · · , r (3.11)

When the complement set of main fields is used with non-zero eigenvalues is using

r = m− q, then we write jk = q + k.

The Kriging predictor depends on the covariogram, the spatial pattern of the points

and the trend fields in the matrix F.

Therefore, for the KKF we need develop methods to determine a suitable set, possi-

bly optimal set of sites, while we choose and adjust an appropriate covariogram model

identifying an F matrix, and we choose all the subsets of main fields.

3.2 Specifying the temporal component

In this section, we consider several specifications of the temporary component of the

ST-GSS model. This we leads in some way to specify the transition matrix P of order

p× p of the system equations, so that, for particular options of the temporal component,

P can be fixed or it can have a bit parameters instead of the nominal set of p2 elements.

We can discuss two methods called autoregressive modeling and dynamic linear mod-

eling through an increased Holt-Winters model.

The multivariate configuration increase considerably the complexity of model specifi-

cation and selection, since in principle it can associate a univariate time series model in

each common field and take the additional cross-correlation terms.

In our applications, normally a single structure is repeated for each common field and

we take the cross-correlation terms to be zero.
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3.2.1 Autoregressive specification

The structured space state form of the autoregressive model includes structural zeros

in the parameter vector of the observation equation. These correspond to elements of the

state vector, which although they are essential for the update, they do not directly select

the effect of media component.

We write for each s,

x(s, t) = h†(s)Tα(t) + ε(s, t), (3.12)

where for an autoregressive model of order u, AR(u),

h†(s)T = (h1(s),0Tu−1, h2(s),0Tu−1, · · · , hq+r(s),0Tu−1) (3.13)

an (q + r)u vector, denoting by 0Tu−1 a row vector of (u− 1) zeros.

Note that the simplest AR(u) model would have a single vector of parameters, h†(s)T =

(h1(s),0Tu−1), length u. The different fields of zeros h1(s), · · · , hq+r(s) comprise q trend

fields and r main fields. The quantity p denotes the dimension of the state vector of the

GSS model, that is, the lengths of h†(s) and α(t), and p = (q + r)u.

From the equation (1.2), we say that there are p common fields that comprise q trend

fields, r main fields, and p0 = (q + r)(u− 1) null fields with p = q + r + p0.

The transition matrix P of state equation is a diagonal block p×p with (q+r) identical

blocks, every u× u and is written Qu:

P = blockdiag {Qu, · · · , Qu} (3.14)

where

Mathematician 29 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH



φp 1 0 0 · · · 0

φp−1 0 1 0 · · · 0

φp−2 0 0 1 · · · 0
...

...
...

...
. . .

...

φ2 0 0 0 · · · 1

φ1 0 0 0 · · · 0


(3.15)

when u = 1, the AR(1) model, then p0 = 0, Qu = [φ] and

P = diag {φ, · · · , φ} = φIq+r (3.16)

The transition matrix has a respective block diagonal form, this is not true when the

components associated with each common field follows different autoregressive models.

Then we can have, for example, when cuando u = 1,

P = diag
{
φ, · · · , φq+r

}
(3.17)

Note that this state-space form of the autoregressive model is not unique but is minimal

[16].

3.2.2 Dynamic linear model

An alternative model is one based on the dynamic linear model [12]. The simplest

dynamic linear model is the Holt-Winters model, based on slope and level. Consider the

ST-GSS model with h†(s) is equal to an AR (u = 2),

h†(s)T = (H1(s), 0, h2(s), 0, · · · , hq+r(s), 0). (3.18)

Matrix transition P is p× p, p = 2(q + r),

P = blockdiag {Q∗2, · · · , Q∗2} (3.19)
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where

Q∗2 =

1 1

0 1


This completely specifies the P matrix, reducing the number of parameters to be

estimated.

For the Holt-Winters model, we have

µ(s, t) = h1(s)α1(t) + h2(s)α3(t) + · · ·+ hj(s)α2j−1(t) + · · ·+ hq+r(s)αp−1(t) (3.20)

where each α1(t), α3(t), · · · , αp−1(t) follows a linear trajectory in the mean. Write

k2j−1 and k2j for the (2j − 1)′th and 2j′th rows of the innovation parameter matrix K.

Then

α2j−1(t) = α2j−1(t− 1) + α2j(t− 1) + k2j−1η(t)

α2j(t) = α2j(t− 1) + k2jη(t) (3.21)

that is α2j−1(t) the scalar multiplier of hj(s), increases by α2j−1(t − 1) each unit of

time up to stochastic innovations, with level α2j−1(1) at time t = 1.

An interesting alternative is to incorporate separate spatial fields for level hL(s) and

slope hS(s). With p = 3 common fields, includes a null field

h†(s)T = (hL(s), hS(s), 0)

α(t)T = (αL(t), αS(t), α′S(t))

and transition matrix 3× 3 given by

P =


1 0 0

0 1 1

0 0 1

 (3.22)
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The base spatial field is the random multiple αL(t) of hL(s), where αL(t) follows

Brownian motion centered at αL(1). The contribution from the slope is the random

multiple αS(t) of hS(s), where αS(t) follows its own scalar level plus slope model with

base value αS(1) and slope α′S(t).

This pattern can be repeated to include several sets of 3 state parameters, and fields

possibly related to trends and main fields. However, for the case above with p = 3, none

of the common fields hL(s) and hS(s) will be either a trend field or a main field, except in

very special cases. Effectively, the model can express hl(s) y hS(s) as a linear combination

of the trend and the main fields. The coefficients of the linear combinations are converted

into parameters in the observation equation. These fields are given by

h(s)T = (h1(s), h2(s), · · · , hq+r(s))

hL(s) = γTLh(s) (3.23)

hS(s) = γTSh(s) (3.24)

The mean field at time t can be written

µ(s, t) = h(s)Tα+(t)

where

α+(t) = αL(t)γL + αS(t)γS

Note that the above is essentially an ARIMA(0,2,2) model, a Holt-Winters model with

the additional term comprising the base level hL(s).

3.3 The Kalman filter recursion

Now suppose that we have observations in n sites, si, i = 1, · · · , n in T times, t =

1, · · · , T . Write the t-th observation vector as

xTt = (x(s1, t), · · · , x(sn, t)), (3.25)
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and collect these into the T × n matrix of observations denoted X with t′th row xTt .

Suppose that the n× p parameter matrix is

H =


hT (s1)

...

hT (sn)

 (3.26)

The observation equation is

xt = Hα(t) + ε(t) (3.27)

then the model in the space-state form is

xt = Hα(t− 1) + ε(t); (O.E) ε(t) ∼ N(0,Σε)

α(t) = Pα(t) +Kηt; (S.E) ηt ∼ N(0,Ση)

The KKF model includes spatial parameters in the covariogram model and temporal

parameters in the GSS model.

If the spatial parameters were known, maximum likelihood estimators may be obtained

of the temporal parameters using established Kalman terms.

Let at−1|t−1, at|t−1, y at|t the estimators of α(t− 1),α(t), y α(t) based on the observa-

tions available to times t− 1 and t respectively. Let Ct−1|t−1, Ct|t−1 y Ct|t the covariances

of at−1|t−1, at|t−1, and at|t respectively.

Given at−1|t−1 and Ct−1|t−1, and using the system equation (S.E) y observation equation

(O.E), we obtain the equations for the Kalman filter states.
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3.4 Maximum likelihood estimation

Let’s suppose

E(αt−1|x1:t−1) = at−1|t−1 (3.28)

V ar(αt−1|x1:t−1) = Ct−1|t−1 (3.29)

it known at t− 1 time. The optimal predictor of αt its associated mean squared error

at t− 1 time is given by

E(αt|x1:t−1) = at|t−1 y V ar(αt|x1:t−1) = Ct|t−1 (3.30)

The equation (3.30) is known as the prediction equation and is obtained as follows

E(αt|x1:t−1) = E(pαt−1 + kηt|x1:t−1)

= pE(αt−1|x1:t−1) +KE(ηt|x1:t−1)

= pat−1|t−1

= at|t−1

V ar(αt|x1:t−1) = V ar(pαt−1 + kηt|x1:t−1)

= pV ar(αt−1|x1:t−1)pT + V ar(kηt|x1:t−1)

= pCt−1|t−1p
T + kV ar(ηt|x1:t−1)KT

= PCt−1|t−1p
T + kΣηk

T

= Ct|t−1

E(xt|x1:t−1) = E(Hαt + εt|x1:t−1)

= HE(αt|x1:t−1) + E(εt|x1 : t− 1)

= Hat|t−1
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V ar(xt|x1:t−1) = V ar(Hαt + εt|x1:t−1)

= HV ar(αt|x1:t−1)HT + V ar(εt|x1:t−1)

= HCt|t−1H
T + Σε

Cov(αt, xt|x1:t−1) = Cov
{
αt, E(xt|αt)|x1:t−1

}
= Cov

{
αt, E(Hαt + εt|αt)|x1:t−1

}
= Cov

{
αt, Hαt|x1:t−1

}
= V ar(αt|x1:t−1)HT

= Ct|t−1H
T

Using the Bayes linear adjustment,

E(αt|x1:t−1) = E(αt|x1:t−1) + cov(αt, xt|x1:t−1)V ar−1(xt|x1:t−1)[xt − E(xt|x1:t−1)]

(3.31)

V ar(αt|x1:t) = V ar(αt|x1:t−1)− Cov(αt, xt|x1:t−1)V ar−1(xt|x1:t−1)CovT (αt, xt|x1:t−1)

(3.32)

We get optimal state estimator update equations xt, given information x1 : t =

(x1, · · · , xt) at time t, that is

at|t = at|t−1 + Ct|t−1H
T [HCt|t−1H

T + Σε]
−1[xt −Hat|t−1] (3.33)

Ct|t = Ct|t−1 − Ct|t−1HT (HCt|t−1H + Σε)
−1[Ct|t−1H

T ]T (3.34)

An initial estimator is required a0|0 and C0|0. Now an approach is described using

the EM algorithm following [30] and [31]. Suppose that the initial state a0|0 is taken

from a Gaussian distribution (µ0,Σ0), y εt y ηt are jointly Gaussian. The complete data

(a0|0,α(1), · · · ,α(T ),x1, · · · ,xT ) are considered, but of course, α(t) are not observed.

Suppose that the innovation parameter matrix K is equal to identity matrix, K = Ip.
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The likelihood of complete data can be written

P (α0, α1, · · · , αT , x1, · · · , xT ) =
T∏
t=1

1

|Σ0|
1
2

exp

{
−1

2
(a0|0 − µ0)

TΣ−1(a0|0 − µ0)

}
1

Σ
T
2
η

exp

{
−1

2
(αt − ραT−1)TΣ−1η (αt − ραt−1)

}
1

Σ
T
2
ε

exp

{
−1

2
(xt −Hαt)TΣ−1ε (xt −Hαt)

} (3.35)

Taking logarithm, we have left

lnL = ln(P (α0, α1, · · · , αT , x1, · · · , xT )) = −1

2
ln |Σ0| −

1

2
(a0|0 − µ0)

TΣ−1(a0|0 − µ0)

− T

2
ln |Ση| −

1

2

T∑
t=1

[
(αt − ραt−1)TΣ−1η (αt − ραt−1)

]
− T

2
ln |Σε| −

T∑
t=1

[
(xt −Hαt)TΣ−1ε (xt −Hαt)

]
(3.36)

Our objective is to maximize lnL with respect to µ0,Σ0, ρ,Ση and Σε. We apply the

EM algorithm conditionally with respect to the observed series x1, · · · , xT to maximize

(3.36), where αt is considered a lost data.

This result is proved in [17], it leads to a sequence of non-decreasing likelihoods. One

difficulty is that there is a simple compound term in (3.36) in µ0 and Σ0, so that both

cannot be estimated. Two alternatives are a) fix Σ0 and estimate µ0 b) consider µ0 as

fixed and set Σ0 = 0. This problem is discussed in [32] and was reorganized by [31]. The

estimate in the time domain then gives a estimates of the parameters ρ,Ση,Σε and the

states αt.

For the missing values, both at|t and Ct|t are computed using the t′th observation xt.

When xt have missing values we omit those rows in H and calculate at|t and Ct|t relying

on the non-missing data. An adjustment to the recursion formulas and the likelihood is

required. This is in line with the usual procedure about missing values in KF application

[18].
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3.5 Implementation of the algorithm

For implementation of the full algorithm is necessary estimate a set of common fields.

The objective in estimating the common fields is to capture as much as possible the spatial

variation at each site and through the sites, as a linear combination of the common fields.

These linear combinations or state vectors, are constrained by the ST-GSSS model, that

is, the KKF model.

Given the choice of common fields, we choose the structure of a temporal model,

possibly of a family of related temporal models, and proceed to estimate parameters for a

selected model. This also leads us to estimation of Σε, the observation error, summarized

most appropriately for spatial prediction as a spatial covariogram (or variogram).

For data x(s, t), s ∈ {s1, · · · , sn} , t ∈ {1, · · · , T}, given values of the temporal parame-

ters, θ, we can maximize lnL with respect to φ and given values of the spatial parameters,

φ, we can maximize lnL with respect to θ. This suggests an iterative two stage estimation

process.

Algorithm I

Step 1. Propose an n× P matrix H, by estimating a covariogram for Σζ from the data,

and combining columns containing values of q trend fields at the si together

with columns containing the first r = p − q principal fields uq+j , j = 1, · · · , r,

obtained from the generalized bending energy matrix B, with normative sites

s∗i = si, i = 1, · · · ,m = n.

Step 2. Estimate, using the Kalman filter in the EM algorithm, the parameters P,Σε,Ση

and the initial condition α(0) ∼ N(µ0,Σ0).

Step 3. Using the estimated parameters from the EM algorithm maximize the likelihood

with respect to the covariogram parameters.

Repeat Step 2 and Step 3 until convergence is achieved.

Algorithm II

Steps 1 and 2 are the same of algorithm I
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Step 3. Compute the covariance matrix Σζ by substituting the estimated parameters into

the formula for the covariance at time t for t large.

cov(X(t, s), X(t, s′)) =h(s)P tΣ0P
tTh(s′)T +

t−1∑
i=0

h(s)P iΣηP
iTh(s′)T+

cov(ε(s), ε(s′))

(3.37)

If the eigenvalues of P are less than unity, then the first term on the right of

(3.37) is negligible when t is large. Note that the two covariances in the formula

are respectively Σζ and Σε.

Step 4. Compute the H matrix using the new covariance structure.

Repeat Steps 2-4 until convergence is achieved. [2]
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Chapter 4

Data Description

We have already mentioned in Chapter 1 that our main interest is to model and analyse

the daily temperature, precipitation and humidity data in a study region in the north of

Ecuador.

Figure 4.1: A plot of 3 meteorological monitoring sites in the study region.

There are a large number of meteorological monitoring sites in Ecuador. However,

they have problems when the data is collected in the majority of those sites.For that

reason, A lot of missing data arises throw the recoleccion. In addition, there are time

intervals where we can find outliers. In this chapter we provide details regarding the
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procedures that we have adopted for data cleaning and editing so that the data can be

readily used for modelling purposes.

We obtain, after cleaning, 10958 data. One for day since January 1988 to December

2017 from 3 locations see Figure 4.1. In this chapter we also provide a summary statistics

and graphical displays to describe this large data set. This summary statistics will be

used in model based analysis in the next chapter.

Moreover, we have also obtained the forecasts of temperature, precipitation and hu-

midity on the study region. We present summaries of these forecasts and compare with

them of the observed data.

In our study we use the meteorological variables obtained from The National Insti-

tute for Meteorology and Hydrology (INAMHI). We provide the data processing and a

summary statistics of these meteorological variables.

4.1 Data Preparation, Editing and Cleaning

The INAMHI collects daily meteorological data of all Ecuador covering the 24 provinces.

We consider a part of the north Ecuador as our study region (see Figure 4.1), where we

finally have data from 3 sites.

In this work a daily study of the observed data is carried out. Additionally, in some

years there are a missing observations. Missing data were completed using the mean of the

respective month, for example, if the temperature data of February 5, 1990 was missing,

the mean of February is calculated and this value replaces the missing data.

4.2 Descriptive Statistics

In this section we discuss some summary statistics and graphical displays of the data

set we prepared in the previous section. Recall that we have daily data from 3 moni-

toring sites(= n) for 365 (= T) days in a year (January 1 to December 31) for 30 (= r)

years(1988 to 2017). Out of these 32874 (= nrT) possible daily observations per variable

(3 variables), hence we have 98622 daily observations, 1374 (i.e., 1.39%) are missing, 348
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possible monthly observations, and 30 possible yearly observations.

The Pichincha province contain a higher percentage (53%) of missing observations

compared to the other provinces. This is possibly because of human causes or to failures

in measuring equipment.

Province Min Mean Median Max sd
Pichincha 9.90 15.12 15.10 20.00 1.29
Imbabura 6.00 10.46 10.50 13.80 0.95

Carchi 7.30 12.35 12.30 17.50 1.14

Table 4.1: Summary statistics for daily maximum temperature in ◦C

We can observe from Table 4.1 that temperature varies from 6.00 ◦C in Imbabura to

20.00 ◦C in Pichincha. Addicionaly, Pichincha have a 15.12 ◦C and 15.10 ◦C of mean and

median respectively, it is higher than others provinces.

Province Min Mean Median Max sd
Pichincha 0.00 3.02 0.00 75.00 6.64
Imbabura 0.00 3.43 0.00 140.50 7.44

Carchi 0.00 2.74 0.40 103.50 5.57

Table 4.2: Summary statistics for daily maximum precipitation in mm

From Table 4.2 we can observe that precipitation varies from 0.00 mm in all province

to 140.50 mm in Imbabura. Moreover, Carchi have 2.74 mm of mean and 0.40 mm of

median, if compares with others provinces, Carchi have lowest mean and higher median.

Province Min Mean Median Max sd
Pichincha 35.00 70.33 72.00 97.00 10.31
Imbabura 48.00 87.61 89.00 99.00 6.16

Carchi 48.00 80.77 81.00 99.00 6.04

Table 4.3: Summary statistics for daily Relative Humidity in %

Table 4.3 shows the statistics for daily Relative Humedity, it varies from 35 % in

Pichincha to 99 % in Imbabura and Carchi. Also, Imbabura have 87.61 % and 89% of

mean and median respectively, it is higher than others provinces.

Tables 4.4, 4.5,and 4.6 shows the correlation between meteorological variables used in

this thesis.
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Temperature Precipitation Humidity
Temperature 1.00 -0.34 -0.68
Precipitation -0.34 1.00 0.41

Humidity -0.68 0.41 1.00

Table 4.4: Correlation matrix of daily variables of Pichincha

Temperature Precipitation Humidity
Temperature 1.00 -0.09 -0.36
Precipitation -0.09 1.00 0.26

Humidity -0.36 0.26 1.00

Table 4.5: Correlation matrix of daily variables of Imbabura

We observe in tables 4.4 and 4.5 that precipitation has a positive correlation with

relative humidity, whereas precipitation and relative humidity show negative correlation

with temperature.

Temperature Precipitation Humidity
Temperature 1.00 0.05 -0.27
Precipitation 0.05 1.00 0.23

Humidity -0.27 0.23 1.00

Table 4.6: Correlation matrix of daily variables of Carchi

Table 4.6 shows that temperature show negative correlation with relative humidity,

while precipitation has a positive correlation with temperature and relative humidity.The

box-plot of temperatures values by year are given in Figure 4.2. Here, we can observe

that on average the temperature in Pichincha (figure 4.2 (a)) is lowest in 1989 and 1999,

whereas it is highest in 2015. In figure 4.2 (b), we can observe that the temperature

average in Imbabura is lowest in 1999 and highest in 2016. Additionally, in figure 4.2 (c),

we can see that the temperature average in Carchi is lowest in 1989 and highest in 2015.
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Figure 4.2: Temperature box-plot: (a) Pichincha, (b) Imbabura, (c) Carchi.

Figure 4.3 shows the precipitation for different years. Here, we can observe that on

average precipitation in study region is similar for all years. Additionally, we can observe

a lot of outliers in these time period.
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Figure 4.3: Precipitation box-plot: (a) Pichincha, (b) Imbabura, (c) Carchi.

The box-plot (Figure 4.4) shows the relative humidity for different years. Here, we

can observe that on average the relative humidity in Pichincha (figure 4.4 (a)) is lowest in

2001 and 2002, whereas it is highest in 2011 and 2012. In figure 4.4 (b), we can observe
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that the relative humidity average in Imbabura is lowest in 1999 and highest in 2016.

Additionally, in figure 4.4 (c), we can see that the relative humidity average in Carchi is

lowest in 2004, 2005 and 2007, and highest from 1997 to 2000.
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Figure 4.4: Relative humidity box-plot: (a) Pichincha, (b) Imbabura, (c) Carchi.
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Figure 4.5: Box-plot of the three meteorological variables by provinces: (a) temperature
(◦C), (b) precipitation (mm), (c) humidity (%).

Figure 4.5 represents the box-plot of temperature (a), precipittion (b) and relative

humidity (c) of the different provinces within our study region of Ecuador. Pichincha
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have higher temperature levels and Imbabura lowest levels. The precipitation is similar in

all provinces. Finally, relarive humidity is lowest in Pichincha and highest in Imbabura.
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Chapter 5

Results

The data for this work were provided by the national institute of meteorology and hy-

drology (INAMHI). They comprise 10958 daily observations of temperature, precipitation

and humidity at 3 monitored sites in three provinces of the Republic of Ecuador (Carchi,

Imbabura and Pichincha). There are almost 30 years of readings for the period since 1st

January 1988 to 31th December 2017. We obtained semi-variograms for the spatial part

and interpolation. Also, filter data for temporal part of the three parameters under study

was performed. The results obtained are presented below.

5.1 Semi-Variograms

Semivariogram is a function that relates semivariance to the vector h known as lag,

which denotes the distance and direction of any pair of vectors.

The semivariogram of the data described above is shown in the Figure 5.1. For the

empirical semivariogram, constant trend was taken and the data were fitted with an

exponential model. The function adjustment allows to extract a series of parameters that

are going to be used for spatial interpolation (kriging) and that define the degree and scale

of spatial variation. These parameters are the range, nugget, and sill. The parameters

obtained are as follows:

The range is the distance at which the semi-variance ceases to increase, therefore, it
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Model: Exponential
Range: 0.00285
Sill: 1.98e−29

Nugget: 0
h: [1.25 1.75 2.75]

Table 5.1: Semi-variogram data

indicates the distance from which the samples are spatially independent of each other

[33]. In this case, the range is 0.00285 km, the points of our semivariogram are after

the range, therefore, all points are independent. In other words, as the distance of the

sampling points increases, there is no longer a relationship between them. Variance begins

to stabilize and sample values are not related to each other.

Figure 5.1: Semi-variogram of the study region.

Nugget is the variance not explained by the model, and it is calculated as the inter-

ception with the Y axis. It is also known as the variance error since the variance of two

points separated by 0 meters (the interception with the Y axis) should be zero . That is

why this variance is usually indicating variability at a lower scale than the one sampled.
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In addition, analytical or sampling errors also contribute to the appearance of error

variance. Nugget for our case is zero (see Table 5.1 and Figure 5.1). Note that in figure

5.1 the values for the experimental variogram appear to vary around a constant, from

an approximate distance of 0.0285 km (range). This constant value is identified as sill ,

which in this case is approximately 1.98e−29 semi-variance units.

5.2 Filter Data

The effect interpolation and filter data by KKF is closely related to the precision of

spatial field H, the fitted semi-variogram model reflects this precision. Since the semi-

variogram model did not fit properly, and the use of an inaccurate space field H will lead

to the filter divergence, a unitary matrix for H was used to perform the filtering and

interpolation of the data.

All computations were carried out in MATLAB on a Windows 10 system with a Core

I5 Intel processor with 2.27 GHz and 4 GB RAM memory. The computations related to

the ‘EM + Kalman filter’ in wich 20 iterations were performed, costed 743 (12.48 min)

seconds.

The original time series and interpolation effects of temperature for the 3 sites is

displayed in Figure 5.2. We could see that the interpolation performed for Pichincha and

Carchi provinces is better than Imbabura province.

In Figure 5.3 we can observe the original data time series of precipitation and their

interpolation effects for the 3 sites in study region. In this case, the Carchi Interpolation

is better than Pichincha and Imbabura interpolation. In addition, many outliers values

can be observed in all series.

Relative humidity time series with its original data and its interpolated data can be

seen in the Figure 5.4. In the year 2002, there is a sudden change in the time series for the

Imbabura province. The data interpolation is better in Imbabura and Carchi provinces

than Pichincha, this may be because in the Pichincha province there were more missing

data than other provinces.
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Figure 5.2: Temperature time series of study region: a)Pichincha, b)Imbabura, c)Carchi.
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Figure 5.3: Precipitation time series of study region: a)Pichincha, b)Imbabura, c)Carchi.
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Figure 5.4: Relative Humidity time series of study region: a)Pichincha, b)Imbabura,
c)Carchi.
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Province Min Mean Median Max SD
Pichincha 10.88 15.09 15.11 18.81 0.98
Imbabura 7.61 10.44 10.45 12.91 0.61

Carchi 8.62 12.33 12.34 15.24 0.79

Table 5.2: Summary statistics for daily maximum temperature in ◦C

Province Min Mean Median Max SD
Pichincha 0.00 1.49 0.59 22.20 2.07
Imbabura 0.00 1.79 0.67 33.83 2.38

Carchi 0.00 1.29 0.62 20.84 1.73

Table 5.3: Summary statistics for daily maximum precipitation in mm

Province Min Mean Median Max SD
Pichincha 28.06 70.23 71.04 88.15 6.95
Imbabura 43.74 87.48 88.23 99.13 4.85

Carchi 43.47 80.63 80.80 94.93 4.31

Table 5.4: Summary statistics for daily Relative Humidity in %

In Tables 5.2, 5.3 and 5.3 is presented a statistical summary of forecast data temper-

ature, precipitation and humidity

Province Temperature Precipitation Humidity
Pichincha 0.54 5.20 4.32
Imbabura 0.58 5.75 2.52

Carchi 0.53 4.42 2.94

Table 5.5: RMSE of 3 meteorological variables on study region

In Table 5.5, we can observe that the root mean square error (RMSE) between the

real data and the KKF data has a low error in the temperature variable compared to

the other variables studied. This is because there are outliers data in precipitation and

humidity time series that are not present in the temperature time series.

Additionally, humidity error in Pichincha is greater than Imbabura and Carchi. This

may be due to missing data, in Pichincha there were more missing data in humidity

variable than other provinces.
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5.3 Forecasting

Temperature, precipitation and humidity forecasting was made for the next 3 days.

We obtained the following results presented in the Table 5.6

Day 1 Day 2 Day 3

Pichincha
Temperature 14.53 14.55 14.55
Precipitation 6.64 3.39 1.73
Humidity 78.50 77.45 76.71

Imbabura
Temperature 10.19 10.14 10.10
Precipitation 7.56 3.88 1.98
Humidity 93.97 93.98 93.90

Carchi
Temperature 12.14 12.06 11.99
Precipitation 5.66 2.90 1.48
Humidity 87.46 87.09 86.80

Table 5.6: The forecast of next 3 days.

The results obtained in temperature and humidity forecast are similar for the 3 days.

On the other hand, the precipitation results decrease rapidly.
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Chapter 6

Conclusions and Future work

In this thesis we used Kriging and Kalman filter (KKF) to analyse and obtain long-

term trends in spatio-temporal data. With this in mind, we use spatio-temporal data

obtained from 3 meteorological station in 3 Ecuador provinces (Pichincha, Imbabura and

Carchi) for 30 years. As a part of this analysis, we have done editing and cleaning of the

raw meteorological data that they have been obtained from the INAMHI (see Chapter 4).

We model meteorological data using Kriging and Kalman filter. We had issues of choosing

appropriate semi-variogram modelling strategies for analysing spatial components because

of the semi-variogram model did not fit properly. Also, a unitary matrix for H was used

to perform the filtering and interpolation of the data. (see Chapter 5). Some conclusions

are as follows:

� There was a problem performing the semivariogram and therefore spatial fields could

not be obtained, this may have been due to the few available sites for this study

(only three). We must have more sites where the data is obtained.

� The semi-variogram model did not fit properly, a unitary matrix for H was used to

perform interpolation and filtering to obtend results. It can be seen that we have

very good results doing this way.

� An exploratory study was conducted to understand the data dynamics.

� A time space model was used to model time series of precipitation, humidity and
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temperature of some meteorological stations in Ecuador for obtaining satisfactory

results.

� The KKF algorithm was implemented to estimate the unknown states and param-

eters in the model.

� RMSE was used as a measure of goodness of fit to calibrate the KKF quality es-

timation. The greatest error was obtained for precipitation variable. One of the

reasons could be the data interval is greater than other variables (Min = 0 mm,

max = 140.50mm). Moreover, many outliers are present in the time series which

can affect the model.

In a future work, we hope to implement the model on more meteorological stations

around Ecuador to be able to estimate in a better way the semi-variogram in orden to

obtain good results in the spatial componet. Therefore, it could be possible to interpolate

the results to other points in space and make prediction maps. Additionally, we can give

more realistic filter and interpolation results. Other filters such as an extended Kalman

Filter or some variants of the particle filters also can be used to consider non-linear and

non-Gaussian cases.
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Appendix A

Algorithm Code

The algorithms in this section were obtained from [20]. Some changes were made to

adjust them to this work.

A.1 Spatial field algorithm

1 function H = SpatialFiled(x,y,S,proportion)

2

3 % Description:

4 % Compute Spatial Filed of Kriged Kalman Filter

5 % Input:

6 % x - array with longitude coordinates.

7 % y - array with latitude coordinates.

8 % S - Parameter of Semi -Variogram Value Fit

9 % Outout:

10 % H - Spatial Filed

11 %-----------------------------------------------------------%

12 % error checking

13 if size(y,1) ~= size(x,1)

14 error(’x and y must have the same number of rows!’);
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15 end

16 R = ComputeCov(S,x,y);

17

18 % trend field

19 F = feval(S.trendfun ,x,y);

20 q = size(F,2);

21 n = size(R,1);

22 InvR = eye(n)/R;

23 A = (F’*InvR*F)\F’*InvR;%Trend Desigen Matrix

24 B = InvR - InvR*F*A;%bending energy matrix

25 [U,E] = svd(B);%spectral decomposition of B

26 U=fliplr(U);E=fliplr(rot90(E));

27 e = diag(E);%eigen value

28

29 % dimensionality reduction

30 [e,ij] = sort(e,’ascend ’);

31 ij = n*repmat(ij ’-1,n,1)+ repmat ((1:n)’,1,n);

32 U = U(ij);

33 for i = 1:n

34 if((sum(e(1:i))/sum(e)) >= proportion)

35 p = i;

36 break;

37 end

38 end

39

40 % construct spatial filed

41 e = e(1:p,:);

42 E = repmat(e’,n,1);

43 U = U(:,1:p);
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44 H2 = (R*U);%principle fields

45 H2(:,1:q) = [];

46 H = [F,H2];

47

48 function R = ComputeCov(S,x,y,xi ,yi)

49 % Description:

50 % Compute covariance matrix according to Semi -Variogram

51 % function

52 % Input:

53 % S - Parameter ofSemi -Variogram function

54 % x,y - konwn point coordinates

55 % xi,yi - unkonwn point coordinates

56 % Output:

57 % R - covariance matrix

58 %-----------------------------------------------------------%

59 % check Input value

60 if nargin ==3

61 xi = x; yi = y;

62 elseif nargin == 5

63 else

64 error(’Number of Input Parameter are not correct!’);

65 end

66 if length(x) ~= length(y)

67 error(’x and y must have the same number of rows’);

68 end

69 N1 = length(x);%number of konwn point

70 N2 = length(xi);%number of unkonwn point

71

72 %compute covariance matrix
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73 mzmax = N1*N2;

74 ij = nan(mzmax ,2);

75 d = nan(mzmax ,1);

76 ll = 0;

77 for k=1:N1

78 ll = ll(end )+(1: N2);

79 ij(ll ,:) = [repmat(k,N2 ,1) (1:N2)’];

80 d(ll ,:) = sqrt(( repmat(x(k,1),N2 ,1) - xi).^2 +...

81 (repmat(y(k,1),N2 ,1) - yi ).^2);

82 end

83 r = zeros(mzmax ,1);

84

85 % range of Semi -Variogram function

86 if strcmp(S.model , ’spherical ’)

87 a = S.range;

88 elseif strcmp(S.model , ’exponential ’)

89 a = S.range;

90 elseif strcmp(S.model , ’gaussian ’)

91 a = S.range;

92 end

93 % a = S.range;

94 idx = d <= a;

95 b = [S.range ,S.sill];

96 r(idx) = feval(S.func ,b,a) - feval(S.func ,b,d(idx ));

97 R = sparse(ij(idx ,1),ij(idx ,2),r(idx),N1,N2);
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A.2 Variogram algorithm

1 function S = variog(x,y,trendfun ,nrbins ,maxdist)

2 % Description:

3 % variog calculates the data experimental variogram

4 % based variogram m-file

5 % Input:

6 % x - array with [longitude latitude] coordinates ,

7 % a m*2 matrix. m is number of dimensions site.

8 % y - GNSS series , a T*m matrix.T is number of dimensions

9 % time.

10 % trendfun - choosed trend function to remove data trend

11 % ,mostly used function is constant , linear etc.

12 % nrbins - number bins the distance should be grouped into

13 % (default = 20)

14 % maxdist - maximum distance for variogram calculation

15 % (default = maximum distance in the dataset / 2)

16 % Output:

17 % S - structure array with distance and gamma - vector

18 %-----------------------------------------------------------%

19 % error checking

20 if size(y,2) ~= size(x,1)

21 error(’x and y must have the same number of rows!’);

22 end

23

24 % change coordinate into normal distribution

25 x1 = x(: ,1); y1 = x(:,2);

26 mxlength = length(x1);

27 mx1 = mean(x1); sx1 = std(x1);

28 my1 = mean(y1); sy1 = std(y1);
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29 x1 = (x1 - repmat(mx1 ,mxlength ,1))./ repmat(sx1 ,mxlength ,1);

30 y1 = (y1 - repmat(my1 ,mxlength ,1))./ repmat(sy1 ,mxlength ,1);

31 x = [x1 ,y1];

32

33 if isempty(nrbins)

34 nrbins = 20;

35 end

36 if isempty(maxdist)

37 minx = min(x,[] ,1);

38 maxx = max(x,[] ,1);

39 maxdist = sqrt(sum((maxx -minx ).^2))/2;

40 end

41

42 % remove trend

43 T = size(y,1);

44 num_point = size(x,1);

45 res = nan(size(y));

46 for t=1:T

47 idex = any(isnan(y(t,:)’),2); %check NaN value

48 ytmp = y(t,:)’;%restore time t value

49 xtmp = x;

50 ytmp(idex ,:) = [];%delete NaN value

51 xtmp(idex ,:) = [];

52 F = feval(trendfun ,xtmp(:,1),xtmp (: ,2));%Trend Design

53 %Matrix

54 beta = (F’*F)\F’*ytmp;

55 delta = ytmp - F*beta;

56 res(t,~idex) = delta;

57 end
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58

59 % calculate the exp -variogram value

60 num = num_point *( num_point +1)/2;

61 d = nan(num ,1);%distance

62 val = nan(T,num);

63 ll = 0;

64 for k = 1: num_point

65 ll = ll(end )+(1: num_point+1-k);

66 dis = repmat(x(k,:), num_point+1-k,1) - x(k:num_point ,:);

67 d(ll ,:) = sqrt(dis (: ,1).^2 + dis (: ,2).^2);

68 val(:,ll) = (repmat(res(:,k),1,num_point+1-k)...

69 - res(:,k:num_point )).^2;

70 end

71

72 d(d>=maxdist ,:) = [];

73 val(:,d>= maxdist )=[];

74 edges = linspace(0,maxdist ,nrbins +1);

75 Sval = zeros(nrbins ,1);

76 Sd = zeros(nrbins ,1);

77 numcount = zeros(nrbins ,1);

78 for i=1: nrbins

79 semi_varig_tmp = val(:,d>edges(i)& d<=edges(i+1));

80 idex = isnan(semi_varig_tmp );

81 numcount(i,1) = sum(sum(~idex ));

82 semi_varig_tmp = semi_varig_tmp (:);

83 semi_varig_tmp(idex) = [];

84 std_semi_varig_tmp = std(semi_varig_tmp );

85 idex = abs(semi_varig_tmp )>3* std_semi_varig_tmp;

86 semi_varig_tmp(idex) = [];
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87 % semi_varig_tmp = sort(semi_varig_tmp );

88 % istart = ceil (0.3* length(semi_varig_tmp ));

89 % iend = ceil (0.8* length(semi_varig_tmp ));

90 % semi_varig_tmp (:,[1: istart iend:end]) = [];

91 Sval(i,1) = mean(semi_varig_tmp )/2;

92 Sd(i,1) = (edges(i)+edges(i+1))/2;

93 end

94 S.distance = Sd;

95 S.val = Sval;

96 S.num = numcount;

Mathematician 70 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

A.3 Expectation Maximization (EM) algorithm with

Kriged Kalman filter

1 function obs = EMEst_filter(Zt,Ht ,F,alpha0 ,P0,R,Q,iters ...

2 ,direction)

3 % Description:

4 % Expectation Maximization(EM) Algorithm with Kriged Kalman

5 % Filter to filter observed data and interpolate missing

6 % data

7 % Input:

8 % Zt - observed values , a n*m matrix , n is the length of

9 % observed time , m is the length of observed site.

10 % Ht - Spatial Filed of Kriged Kalman Filter or a unit

11 % matrix

12 % F - state transition matrix

13 % alpha0 - initial state vector of Kriged Kalman Filter

14 % P0 - covariance matrix of initial state vector

15 % R - observation noise covariance matrix

16 % Q - system state noise covariance matrix

17 % iters - EM Algorithm iteration number

18 % Output:

19 % obs - filtered and interpolated missing data

20 %-----------------------------------------------------------%

21 [n,m] = size(Zt);%size of observation matrix

22 p = size(Ht ,2);%dimension of spatial filed

23 if direction == 1

24 str_direciton = ’EM Temperature: ’;

25 elseif direction == 2

26 str_direciton = ’EM Precipitation: ’;
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27 elseif direction == 3

28 str_direciton = ’EM Humidity: ’;

29 else

30 error(’Error in the data!’);

31 end

32 obs = zeros(n,m);

33 for j=1: iters

34 alpha_t = alpha0;

35 Pt = P0;

36 A = zeros(p,p);

37 B = zeros(p,p);

38 C = zeros(p,p);

39 Rn = zeros(m,m);

40

41 str_process = sprintf(’the %dth Kalman Filter ,totally ...

42 %d/%d’,j,j,iters );

43 str = [str_direciton ,str_process ];

44 h = waitbar(0,str);

45 for i=1:n

46 if ~ishandle(h)

47 obs = [];

48 return;

49 end

50 waitbar(i/n,h);

51 %change missing value and design matrix into 0

52 II = any(isnan(Zt(i,:) ’),2);

53 Z = Zt(i,:)’; Z(II ,:)=0;

54 H = Ht; H(II ,:)=0;

55
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56 Rc = R;

57 II_F = ~II;

58 II = double(II);

59 II_F = double(II_F);

60 idex = II ’*II + II_F ’*II_F;

61 idex = ~( logical(idex ));

62 Rc(idex) = 0;

63

64 %Kalman Filter

65 alpha_ = F*alpha_t;%one -step forecast state value

66 P_ = F*Pt*F’ + Q;%covariance matrix of one -step

67 %forecast value

68 K = P_*H’/(H*P_*H’ + Rc);%gain matrix

69 alpha_t1 = alpha_ + K*(Z - H*alpha_ );%filtered state

70 %value

71 Pt1 = P_ - K*H*P_;%covariance matrix of filtered

72 % statevalue

73 Ptt1 = (eye(p) - K*H)*F*Pt;%covariance matrix between

74 %forecast filtered state value

75 obs(i,:) = (Ht*alpha_t1)’;

76

77 A = A + Pt + alpha_t*alpha_t ’;

78 B = B + Ptt1 + alpha_t1*alpha_t ’;

79 C = C + Pt1 + alpha_t1*alpha_t1 ’;

80

81 Rc = zeros(m,m);

82 II = double(II); II = II*II ’; II = logical(II);

83 Rc(II) = R(II);

84 Rn = Rn +...
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85 ((Z-H*alpha_t )*(Z-H*alpha_t )’+...

86 H*Pt*H’ + Rc)/n;

87

88 alpha_t = alpha_t1;

89 Pt = Pt1;

90 end

91 close(h)

92

93 %update new Kalman parameter

94 F = B/A;

95 Q = (C - F*B’)/n;

96 R = Rn;

97 end
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