
UNIVERSIDAD DE INVESTIGACIÓN DE

TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: Classification of leaf diseases in plants
applying Deep Learning Techniques

Trabajo de integración curricular presentado como requisito para
la obtención del t́ıtulo de Ingeniero en Tecnoloǵıas de la

Información

Autor:

Giovanny Eduardo Caluña Chicaiza

Tutor:

Lorena de los Angeles Guachi, PhD

Urcuqúı, marzo de 2020

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Urcuquí, 20 de marzo de 2020
SECRETARÍA GENERAL

(Vicerrectorado Académico/Cancillería)
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES

CARRERA DE TECNOLOGÍAS DE LA INFORMACIÓN
ACTA DE DEFENSA No. UITEY-ITE-2020-00017-AD

A los 20 días del mes de marzo de 2020, a las 14:00 horas, de manera virtual mediante videoconferencia, y ante el Tribunal
Calificador, integrado por los docentes:

Presidente Tribunal de Defensa Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D.

Miembro No Tutor Dr. ARMAS ARCINIEGA, JULIO JOAQUIN , Ph.D.

Tutor Dra. GUACHI GUACHI, LORENA DE LOS ANGELES , Ph.D.

El(la) señor(ita) estudiante CALUÑA CHICAIZA, GIOVANNY EDUARDO, con cédula de identidad No. 1725053910, de la
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES, de la Carrera de TECNOLOGÍAS DE LA INFORMACIÓN,
aprobada por el Consejo de Educación Superior (CES), mediante Resolución RPC-SO-43-No.496-2014, realiza a través de
videoconferencia, la sustentación de su trabajo de titulación denominado: Classification of leaf diseases in plants applying
Deep Learning Techniques, previa a la obtención del título de INGENIERO/A EN TECNOLOGÍAS DE LA INFORMACIÓN.

El citado trabajo de titulación, fue debidamente aprobado por el(los) docente(s):

Tutor Dra. GUACHI GUACHI, LORENA DE LOS ANGELES , Ph.D.

Y recibió las observaciones de los otros miembros del Tribunal Calificador, las mismas que han sido incorporadas por el(la)
estudiante.

Previamente cumplidos los requisitos legales y reglamentarios, el trabajo de titulación fue sustentado por el(la) estudiante y
examinado por los miembros del Tribunal Calificador. Escuchada la sustentación del trabajo de titulación a través de
videoconferencia, que integró la exposición de el(la) estudiante sobre el contenido de la misma y las preguntas formuladas
por los miembros del Tribunal, se califica la sustentación del trabajo de titulación con las siguientes calificaciones:

Tipo Docente Calificación
Miembro Tribunal De Defensa Dr. ARMAS ARCINIEGA, JULIO JOAQUIN , Ph.D. 9,5

Tutor Dra. GUACHI GUACHI, LORENA DE LOS
ANGELES , Ph.D.

10,0

Presidente Tribunal De Defensa Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D. 9,5

Lo que da un promedio de: 9.7 (Nueve punto Siete), sobre 10 (diez), equivalente a: APROBADO

Para constancia de lo actuado, firman los miembros del Tribunal Calificador, el/la estudiante y el/la secretario ad-hoc.

CALUÑA CHICAIZA, GIOVANNY EDUARDO
Estudiante

Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D.
Presidente Tribunal de Defensa

Dra. GUACHI GUACHI, LORENA DE LOS ANGELES , Ph.D.
Tutor

Firmado Digitalmente por: LORENA DE LOS ANGELES GUACHI GUACHI
Hora oficial Ecuador: 12/06/2020 16:42

Firmado electrónicamente por:

FREDY ENRIQUE
CUENCA LUCERO

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Dr. ARMAS ARCINIEGA, JULIO JOAQUIN , Ph.D.
Miembro No Tutor

TORRES MONTALVÁN, TATIANA BEATRIZ
Secretario Ad-hoc

Firmado electrónicamente por:

JULIO JOAQUIN
ARMAS
ARCINIEGA

Dedication

“For my parents, for the huge effort made to provide me all the necessary resources to

complete my career. Also for the love and the unconditional support during every single

day of my university stage. For my siblings who were always encouraging me to never

give up. Last but not least, for Gabriela who was with me in my best and worst

moments.”

Giovanny Eduardo Caluña Chicaiza

VI

Acknowledgements

“Foremost, I would like to express my sincere gratitude to my advisor Prof. Lorena de

los Angeles Guachi for the continuous support during the elaboration of my thesis, for

her patience, dedication, advice, suggestions, motivation, and immense knowledge. Her

guidance helped me in all the time during the development of this thesis. Besides my

advisor, I would like to thank the rest of my thesis committee: Prof. Fredy Cuenca and

Prof. Julio Armas, for their valuable comments and suggestions. My sincere thanks also

go to Eng. Fabian Jimenez, for accepting me as an intern and transmitting me all the

knowledge about super computing, which was of great importance during the elaboration

of this thesis.”

Giovanny Eduardo Caluña Chicaiza

VII

Resumen

Una de las principales preocupaciones de los agricultores es la detección temprana de enfer-

medades en sus cultivos. Sin embargo, supervisar los cultivos extendidos manualmente por los

agricultores es una tarea extensa y tediosa. En relación con este objetivo y para proporcionar

una solución automática y eficiente, este trabajo se centra en el análisis y la búsqueda de un

método óptimo para la creación de un sistema automático informático que sea capaz de de-

tectar plagas y enfermedades en las hojas de las plantas mediante la clasificación automática

de imágenes. En este trabajo, se realizó una revisión del estado del arte de las técnicas para

la clasificación automática de enfermedades e imágenes de plantas en general. Después de la

revisión, se eligió el método más óptimo, el Aprendizaje Profundo (AP) y espećıficamente las

Redes Neuronales Convolucionales (RNC). Actualmente hay muchas arquitecturas de RNC y

sus variaciones disponibles, por lo que las más relevantes se seleccionaron después de un estudio

de comparación realizado entre los modelos de RNC más destacados en la literatura. Por lo

tanto, se obtuvieron cinco redes que destacan por su precisión, costo computacional, número de

capas y parámetros. Son Inception 3, GoogLeNet, ZFNet, ResNet 50 y ResNet 101. Las arqui-

tecturas seleccionadas fueron entrenadas y probadas con un conjunto de datos de 13k imágenes

de hojas sanas y no saludables obtenidas de Plant Village [1]. Para probar el comportamiento y

el rendimiento de los modelos en un entorno realista y, además, para ayudar al entrenamiento y

la precisión, se realizaron diferentes experimentos en el conjunto de datos, aśı como en los hiper-

parámetros de los modelos. Una vez que se llevaron a cabo los experimentos y se analizaron

y compararon los resultados, se obtuvo la RNC ZFnet como la opción más apropiada debido

a su eficiencia en términos de costo computacional y nivel de precisión. ZFnet alcanzó una

precisión del 91 % con los datos sin procesar y del 93 % después del preprocesamiento de datos

y el ajuste. En el tiempo de entrenamiento y despliegue, ZFnet pudo realizar 10 iteraciones de

entrenamiento en 2 segundos y desplegar 10 imágenes al mismo tiempo muy por debajo de los

VIII

School of Mathematical and Computational Sciences YACHAY TECH

otros modelos evaluados en este trabajo.

Palabras clave: Aprendizaje profundo (AP), redes neuronales convolucionales

(CNN), clasificación de imágenes, implementación, precisión, precisión, hiperparámetros,

datos en bruto, arquitectura.

Information Technology Engineer IX Final Grade Project

Abstract

One of the main concerns for farmers is the early detection of diseases in their crops. How-

ever, supervising extend crops manually by the farmers is an tedious and time-consuming

task. In connection with this aim and to provide an automatic an efficient solution, this

work focuses on the analysis and search for a most appropriated method for the creation

of an autonomous system that is capable of detecting pests and diseases in the leaves of

plants through automatic image classification. In this work, a review of the state-of-the-

art of techniques for the automatic classification of plant diseases and images in general

was carried out. After reviewing the state-of-the-art, five outstanding Deep Learning and

specifically the Convolutional Neural Networks (CNNs), was chosen. They stand out for

their accuracy, precision, computational cost, number of layers and parameters. They

are Inception 3, GoogLeNet, ZFNet, ResNet 50 & and ResNet 101. The selected archi-

tectures were trained and tested with a data set of 13k images of healthy and unhealthy

leaves obtained from Plant Village [1]. To test the behaviour and the performance of the

models against a realistic environment and, in addition, to help the training and accuracy,

different experiments were performed on the data set as well as on the hyper-parameters

of the models. Once the experiments were carried out and the results were analyzed and

compared, the CNN ZFnet was obtained as the most appropriate option due to its effi-

ciency in terms as computational cost and level of accuracy. ZFnet reached an accuracy

and precision of 91% with the raw data and 93% after the data pre-procesing and the fine

tune. In the training and deploying time, ZFnet was able to perform 10 train iterations in

2 seconds and deploy 10 images in the same time well below the other evaluated models

on this work.

X

School of Mathematical and Computational Sciences YACHAY TECH

Keywords: Deep Learning (DL), Convolutionary Neural Networks (CNN),

image classification, deploying, accuracy, precision, hyper-parameters, raw

data, architecture.

Information Technology Engineer XI Final Grade Project

Contents

1 Introduction 7

1.1 Problem Statement . 8

1.2 Scope of the Project . 9

1.3 Thesis overview . 9

2 Objectives 11

2.1 General Objective . 11

2.2 Specific Objectives . 11

3 Theoretical Framework of Deep Learning for Image Classification 12

3.1 Concepts . 13

3.2 Image classification . 14

3.2.1 Applications . 15

3.2.2 Challenges . 16

3.3 Deep Learning-based Techniques . 18

3.4 Convolutional Neural Networks (CNN): Theoretical Foundation 20

3.4.1 CNN Layers . 21

3.4.2 CNN Common Problems with CNNs 27

3.4.3 CNN Phases . 27

3.5 CNN Learning Frameworks . 29

4 Methodology 31

4.1 Models Selection . 32

1

School of Mathematical and Computational Sciences YACHAY TECH

4.1.1 ZFnet Achitecture . 34

4.1.2 GoogLeNet - Inception V1 . 34

4.1.3 GoogleNet-Inception V3 . 35

4.1.4 ResNet 50 & ResNet 101 . 36

4.2 Hardware & Software Selection . 37

4.2.1 Hardware tools . 37

4.2.2 Software tools . 38

4.3 Data Preparation . 39

4.3.1 Original Data Set . 39

4.4 Training & Tuning . 42

4.4.1 Definition of the CNN Model Structure 43

4.4.2 Tuning of the Training hyper-parameters 44

4.4.3 Training of the Model on the Supercomputer ‘Quinde I’ 47

4.5 Deployment . 48

5 Experimental Setup 49

5.1 Metrics . 49

5.2 Experiments . 51

5.2.1 Experiment 1: Training with Raw Data 52

5.2.2 Experiment 2: Training with Pre-processing 52

5.2.3 Experiment 3: Fine Tune Training 53

6 Results 55

6.1 Experiments . 55

6.1.1 Experiment 1: Training with raw data 55

6.1.2 Experiment 2: Training with pre-processing 60

6.1.3 Experiment 3: Fine Tune Hyper-parameters 63

6.1.4 Additional Results . 74

7 Conclusions and Future work 77

Information Technology Engineer 2 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

References 81

Appendices 90

A Algorithms Code 92

A.1 Caffe models . 92

A.2 Scripts . 92

A.2.1 Brightness and Contrast Variation Script 92

A.2.2 Data Augmentation Script . 93

A.2.3 LMDB Creation Script . 94

A.2.4 Quinde Script . 95

A.2.5 Deployment Script . 96

A.3 Graphic Interface . 99

Information Technology Engineer 3 Final Grade Project

List of Figures

3.1 Classification of images . 14

3.2 Representation of a relative location challenge [2] 17

3.3 A DL model example [3]. Depicted model shows a DL model to predict

ticket prices where the inputs are: the origin airport, destination airport,

date an airline followed by 5 hidden layers and one output which represents

the price predicted by the model. 18

3.4 Tendency in the use of Deep Learning Techniques, data from Google analytic 20

3.5 CNN Basic Architecture. Obtained from [4]. 21

3.6 Convolution representation . 22

3.7 Max Pooling Representation [5]. The polling is performed in a kernel of

2x2 and it is moving following a stride of 2 24

3.8 Traditional CNN architecture [6]. 24

3.9 A Inception module as is described in [7]. 25

3.10 A factorized Inception module as is described in [8]. 26

3.11 Residual module [9]. 26

3.12 CNN process stages . 28

3.13 CNN Deploy stages . 29

4.1 Methodology . 32

4.2 Top1 vs. operations, size α parameters. Obtained from [10]. 33

4.3 Samples from Plant Village [1] . 40

4.4 Learning Rate Effect. [11] . 45

4

School of Mathematical and Computational Sciences YACHAY TECH

6.1 Train Loss vs Iterations . 56

6.2 Test Accuracy vs Iterations . 57

6.3 Accuracy, Precision, Recall and F1 measures reached by the models. 58

6.4 Time during the training and deployment phases. 59

6.5 Training Loss vs Iterations . 61

6.6 Test Accuracy vs Iterations . 61

6.7 Accuracy, Precision, Recall and F1 measures reached by the models. 63

6.8 Inception V3: Training loss vs Iterations 64

6.9 Inception V3: Accuracy vs Iterations . 65

6.10 ResNet101: Training loss vs Iterations . 66

6.11 ResNet101: Accuracy vs Iterations . 67

6.12 ResNet50: Training loss vs Iterations . 68

6.13 ResNet50: Accuracy vs Iterations . 68

6.14 ZFNet: Training loss vs Iterations . 70

6.15 ZFNet: Accuracy vs Iterations . 70

6.16 GoogLeNet: Training loss vs Iterations . 71

6.17 GoogLeNet: Accuracy vs Iterations . 72

6.18 Performance measurement - ROC Curve for all models. 75

6.19 Screenshot of the graphic interface . 76

Information Technology Engineer 5 Final Grade Project

List of Tables

3.1 Properties of the most popular deep learning frameworks [12]. 30

3.2 Community involvements for some of the deep learning frameworks as of

02/08/2016 [12]. 30

4.1 Models Comparison Table . 33

4.2 ZFNet Architecture Details . 34

4.3 InceptionV1 Architecture Details . 35

4.4 InceptionV3 Architecture Details . 36

4.5 ResNet 50 and ResNet 101 Architecture Details 37

4.6 Hyperparameters CNNs. The values in boxes were changed for each model

and test performed meanwhile the rest values were conserved. 44

5.1 Confusion Matrix . 50

5.2 Brightness & Contrast values to perform the experiment. 52

5.3 Classes added to perform the experiment. 53

5.4 Hyper-parameter values for tuning process over ResNet 101. 54

5.5 Hyper-parameter values for tuning process over Inception V3 & ResNet 50. 54

5.6 Hyper-parameter values for tuning process over ZFNet & GoogLeNEt . . . 54

6.1 Fine tune results . 73

6

Chapter 1

Introduction

One of the major issues that affects farmers around the world are diseases in plants

produced by different pests, viruses, and insects, thereby has generated huge losses of

money [13]. The best way to relieve and combat this is timely detection. In almost

all real solutions, early detection is determined by human, an expensive and inefficient

solution. In this sense, detected or classified unhealthy leaves at an early stage can help

to mitigate or even avoid the effects produced by those pests.

On the other hand, in computer science, image classification is a computational task to

label pixels of a digital image into one of several classes. Although the image classification

has been developed since many years ago, there still some challenges because of the large

variety of computational techniques developed to classify images, the quantity and the

quality of the images used for train and deploy them and the performance reached under

different conditions as position, shadows, noise etc.

In the last years, image classification has had a significant boom because the great

advance in computer technologies and the large quantity of images storage on the internet

[14]. For this reason, image classification has been applied in different fields as in health

care, agriculture, sports, security, fire control etc. Specifically in agriculture, image clas-

sification has been used to solve different problems such as: to optimize production on

plantations by creating models to determine the right treatment plants for different crop

types and regions [15], identify missing vegetation from a crop field [16], detect locations

7

School of Mathematical and Computational Sciences YACHAY TECH

of weeds in images from cereal fields[17], detection of unhealthy regions on leaves plants

and their classification [18]. The main techniques used to perform these classification task

are Machine Learning and most recently Deep Learning [19].

The present work aims at tackling the unhealthy leaves from an automatic approach.

For this purpose, an state-of-the-art review from image classification based on deep learn-

ing techniques, is performed to obtain the most outstanding methods. The main measures

to be taken into account are accuracy, precision, training and deploying time. Then, with

the appropriate hardware and software tools, the selected five deep learning models are

implemented. To measure and compare the performance, the models are trained under

the same conditions divided in three different experiments called: raw data, pre-procesing

data, and the fine tune. Definitely, as final result, it obtains a single model with the

best performance and therefore the optimal method to create an automatic leaf classifier

computational system.

1.1 Problem Statement

Pests, plant diseases and herbs can be a serious threat to crops. According to [20] to avoid

these kinds of problems a regular inspection should be performed. However, controlling

all the plants day by day its an expensive, time-comsuming and tedious task. On another

hand, because of the high performance and great advantage presented by an automatic

image classification as is showed in [21], [22], [23], [24], [25], [26], [27], different algorithms

have been developed applying well know techniques such as Neural Networks, Support

Vector Machine (SVM), and Convolutional Neural Networks (CNNs) in Artificial Neural

Networks (ANN), Machine Learning (ML) and Deep Learning (DL), respectively.

The main problem of existing techniques, and particularly DL ones, is that they have

been developed according to general purposes as in the ILSVRC challenge [28], which is

aimed at classifying a large number of images in one thousand of classes. In this sense, the

models must be tested and fine-tuned with the available data and computational resources

in order to implement such techniques in a specific task as unhealthy leaves classification.

In DL domain, Convolutional Neural Networks (CNNs) have in fact demonstrated

Information Technology Engineer 8 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

great performance in the image classification field over well-known algorithms such as

SVM and ANN. Nevertheless, currently there exist a lot of CNNs models available. There-

fore, this work aims to explore the most outstanding CNN models by applying a specific

data set of healthy and unhealthy leaves available in Plant Village [1]. To increase the

performance achieved by each model, some variations and pre-processing operations fo-

cused on rotations, addition of random classes, and contrast improvement are applied to

the data.

1.2 Scope of the Project

Automatic systems provide faster solutions than human inspection to identify unhealthy

plant leaves. However, their execution in real scenarios depends on the percentage of

reached accuracy, computational requirements, and ease for implementation. This project

establishes characteristic metrics to select and compare outstanding DL methods applied

to image classification. Moreover, it concerns of selecting the most appropriate method

to classify leave images as ”healthy” or ”unhealthy”.

In addition, the developed methodology allows to know the open research challenges

on the pre-processing data and classification applied to automatic leave diseases classifica-

tion. All the selected methods are implemented and trained following different conditions

and varying their hyper-parameters. Besides, this work also implements an interactive

user interface using the trained models for leaf classification. It shows the prediction

performed by each model and the probabilities for each class (healthy and unhealthy).

Finally, obtained results provides a point-of-view to choose the method suitable to the

implementation expectations of accuracy, time and computational requirements.

1.3 Thesis overview

The rest of this work is organized as following: Chapter 3 has some important concepts

and theory related with image classification. It also has the image classification definition

its current applications and challenges, and a review from DL techniques applied to image

Information Technology Engineer 9 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

classification. For DL techniques, particularly CNNs, there is a detailed description of its

architecture, followed by a description of their different layers and phases. This chapter

ends with a description and comparison of the main frameworks to implement and train

CNNs. Chapter 4 contains a detailed explanation of the methodology followed in this

work, which includes: the criteria to select the most relevant CNN architectures, a brief

description of the selected architectures, the software and hardware resources employed

to perform this work. Afterwards, this chapter shows and describes the steps and scripts

used to prepare the data set. Finally, Chapter 4 has the a brief description of the files

needed to implement and deploy a CNN architecture as well as the hyper-parameters to

fine tune the model. Chapter 5 starts with the metrics employed to measure and compare

the models. It also has a broad description of all experiments and sub experiments to

perform this work. The Chapter 6 contends the detailed results from all the experiments

described in the Chapter 5 as well as a comprehensive analysis and a discussion of the

obtained results. The results are showed in tables and figures to a better understanding.

This works ends with Chapter 7, it contains the main points and issues face during the

elaboration of this work, conclusions and some recommendations.

Information Technology Engineer 10 Final Grade Project

Chapter 2

Objectives

2.1 General Objective

• To explore Deep Learning-based image classification methods for selecting the ap-

propriate method to automatic detection of healthy and unhealthy leaves.

2.2 Specific Objectives

• To select the most outstanding Deep Learning techniques for image classification

based on metrics as: accuracy, computational complexity, computational cost and

training time.

• To select the appropriate software and hardware for training and validation purposes

of the evaluated techniques.

• To implement, test and analyze the selected techniques in order to determine their

ability to correctly identify a leaf as unhealthy or healthy, considering metrics such

as: accuracy, recall, precision, F1 score, training (foreward-backward) and execution

time.

11

Chapter 3

Theoretical Framework of Deep

Learning for Image Classification

This chapter gives an overview theoretical foundations about image classification. In the

context of computational science, the following questions are answered:

• What is image classification?

• What are the fields application of image classification?

• What are the challenges presented on image classification?

• What are the developed techniques to image classification?

• What is the software available to implement CNNs?

To answer the mentioned questions, in this chapter the general image classification

approach is presented, starting with the definition of several important concepts, appli-

cations and challenges. Then, a brief state of the art of different image classification

techniques are presented. Next, the theoretical foundation of a CNN is stated describing

the layers and stages. Finally, the available software tools for CNN training purposes are

introduced.

12

School of Mathematical and Computational Sciences YACHAY TECH

3.1 Concepts

• Deep Learning (DL)

It relates to the field of ML-based algorithms, focusing on how neurons in the brain

work and applying a similar analogy to help machines learn by the use of Artificial

Neural Networks [29].

• Convolutional Neural Network (CNN)

In deep learning, a convolutional neural network (CNN, or ConvNet) is a class of

deep neural networks, most commonly applied to analyzing visual imagery [30].

• Max pooling

It is a sample-based discretization process. The objective is to down-sample an input

representation (image, hidden-layer output matrix, etc.), reducing its dimensionality

and allowing for assumptions to be made about features contained in the sub-regions

binned [30].

• Feature Map

A feature map is a matrix that contains the information of the image. If the image

has three channels (like a RGB image) then there is a feature map for each of the

three channels [31].

• Stride

It is a parameter in a CNN which controls how the filter moves around the input

map [31].

• Overfitting

Overfitting occurs when a network does a pretty good job learning data on the

training dataset but has a bad performance when using a different dataset.

Information Technology Engineer 13 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

3.2 Image classification

In computer science, the image classification process is a computational task to label all

pixels of a digital image into one of several classes as in Fig. 3.1 where the input are two

images from the class cat and dog respectively. They pass through a classifier and they

are labeled with their respective class. There are two types of image classification tasks

which are differentiated depending on the knowledge about the class of the dataset as

follows:

1. Unsupervised classification: It is performed when the outcome is based just

in the computational analysis of an input image without any provided information

about the classes. The user just can determine which technique will use and the

desired number of output classes.

2. Supervised classification: It is performed when a computational model is trained

using knowledge about class provided by the user. It is done usually labelling the

data (images) with the class to train the model. Also, the user has to give the

number of classes that an input image is classified into.

Figure 3.1: Classification of images

The image classification can be performed applying statistical decision rules in the

multispectral domain or logical decision rules in the spatial domain [32]. Multispectral

Information Technology Engineer 14 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

domain considers just the spectral information provided by the channels or image bands.

On the another hand, spatial domains uses their features as size, geometric shape, texture,

patterns of pixels or objects derived from analysis of close objects. The most common

techniques used to classify images such as ANN, ML classifiers and CNN use the spatial

domain to classify the images. In the following sections these techniques are explained as

well as their advantages and disadvantages.

3.2.1 Applications

Currently the image classification often also called image identification has already been

embedded in many fields as:

1. Health care: In health field, image classification is well suited to analyze x-ray

or magnetic resonance imaging results to identify diseases and assist to human

clinicians in the medical diagnosis such as melanoma [33] and breast cancer [34]

identification.

2. Agriculture: In agriculture field, image classification has been used to solve differ-

ent problems such as: to optimize production on plantations by creating models to

determine the right treatment plans for different crop types and regions [15], identify

missing vegetation from a crop field [16], detect locations of weeds in images from

cereal fields[17], classify health and unhealthy leafs plants [18] etc.

3. Sports: In the sports field, image classification has been used to: effectively handle

the huge sports video repositories in tasks as video summarizing, key-events selec-

tion, and to suppress the misclassification rates [35], predict goal-scoring opportu-

nities in soccer finding goal-scoring opportunities and ball possession [36], study the

effectiveness of a team’s set analyzed three seasons of English Premier League data

pieces[37], among others.

4. Security: In the field of private security, image classification helps to identify

security breaches of private locations extracting complex features from the images

Information Technology Engineer 15 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

as faces or bodies in order to increase the security and avoid fake alarms [38]. Also,

systems have been created to detect thefts in live video and alert to the owner [39].

5. Documents Processing: Image classification allows to analyze documents per-

forming a character and word recognition [40], [41] and constructs the representation

of a text [42] etc.

6. Face Recognition: Image classification is applied to identify and recognize faces

[43]. The faces can be classified by their expression happy, sad, angry etc. Also,

they can be classified analyzing their physical features as: gender, age [44] etc. In

social networks face recognition is used for automated image organization of large

data bases and visual websites [45].

7. Fire Control: Image classification allows to minimize the consequences caused by

fire. There are systems which differentiate scenes with fire and normal scenes from

images taken by cameras for instance: a security camera, camera on a drone etc. It

can be used to detect fire in an early stage to help the control entities as firefighters

[46].

There are many future applications to image classification as creating city guides, powering

self-driving cars, boosting augmented reality applications and gaming, organizing one’s

visual memory, teaching machines to see, empowering educators and students, improving

iris recognition and much more [45].

3.2.2 Challenges

Image classification should handle the following challenges under real-life environments.

1. Digital image noise: In digital images, noise refers to the visual distortion or

undesirable information added to images due to bad conditions during: acquisition,

digitization or transferring of the image. The noise can be seen as random speckles

on a smooth surface. Noise plays an important role on image classification because

an image can be misapprehend and then miss-classified due to its presence. For

Information Technology Engineer 16 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

example in [47], the authors said that the noise and shadows are the main factors

classification errors.

2. Rotations: An image classifier can be tricked performed rotations on the input

images. If the image classifier is not trained with enough different rotations of an

image it might classify images that are entirely equal as different classes.

3. Relative location: Usually, an image classifier only take care for elements in the

image and does not for their location [2]. For example in 3.2, an image classifier can

classify the image in the same class because both have the same elements as eyes,

mouth and nose.

4. Dataset size: Image classifiers need a lot of data to train and perform a right

image classification [48]. So get the enough amount of data is a important issue in

the image classification.

5. Computational resources: It is necessary a strong computational resource to

compute the huge among of data, currently the best option are GPUs [14].

6. Shadows: They are a variation of the light intensity on an scene produced by an

object which is interposed between the scene and the light source [49].

7. Illumination Changes: Commonly, sudden changes such as light on/off happen

often in indoor environments, while during the day, outdoor environments often can

experience gradual changes.

Figure 3.2: Representation of a relative location challenge [2]

Information Technology Engineer 17 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

3.3 Deep Learning-based Techniques

DL is a sub field of ML and can be described as a large neural network [50]. DL theoret-

ically appeared in 1980s, but they just recently has become popular. The main reasons

were the poor labeled dataset and the computing power for the time [51]. DL has been ap-

plied in many fields such as automated driving, aerospace and defense, medical research,

industrial automation, electronics and more [51]. Those techniques are called ’Deep’ be-

cause they are composed of many layers or also called hidden layers instead 2 or 3 as in

conventional ANN, as is shown in Fig. 3.3. A particular and very effective technique of

DL to classify images are the Convolutional Neural Networks (CNNs). They are deep

learning models introduced to persistently break down information with a homogeneous

structure (filters) [29]. CNNs are a set of multiple layers with different convolutional

filters of one or more dimensions to identify an input image based on its features. This is

accomplished for the building of a complete feature extraction model which is capable of

handling difficulties of conventional methods (ML and ANN) such as: improve the accu-

racy, work with very large amount of data and leave the dependence of domain expertise

[52]. Therefore, this work is based on CNNs architectures, so they are explained in detail

in the next section. DL models has many benefits, but they also has some limitations as

follows.

Figure 3.3: A DL model example [3]. Depicted model shows a DL model to predict ticket
prices where the inputs are: the origin airport, destination airport, date an airline followed
by 5 hidden layers and one output which represents the price predicted by the model.

Information Technology Engineer 18 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• Advantages:

– Automatic Feature extraction: In the case of CNN models, they are able

to extract all the features from a dataset from images and train the model

by themselves. The model mainly needs to know what class does each image

belongs from the train dataset. This ability is the best advantage against ML

models [29].

– Adaptivity: DL models have several architectures easily adaptable to new

problems [2].

– High Accuracy: A CNN with a huge train dataset can reach the highest level

of accuracy (with respect to traditional AI techniques) which even overcomes

the human capabilities.

• Disadvantages:

– Require high processing power: All DL models are composed by a lot of

layers where the data will be processed and to train the models usually it is

necessary to use robust machines with powerfull Graphical Processing Units

(GPUs) [53].

– Huge size of the dataset: As in machine learning to train a DL model with

a high level of accuracy, the model has to be trained with a large dataset [54].

In the field of image classification, particularly, CNN has become the most popular and

used technique because their high accuracy and the availability of different architectures.

CNNs have been applied in different fields such as health, to classify anomalies as breast

cancer in women [34], melanomas on the skin [55], [56], interstitial lung diseases [54]

performing the task with high accuracy even than a clinician. CNNs also have been

applied in the agriculture field to classify, specially, leaf diseases in different kind plants

[26], [57],[58]. CNNs have been implemented to classify hyper spectral images [59], [60].

In all cases, CNNs classifiers reached accuracies over 95% and have demonstrated better

performance than ML techniques.

Information Technology Engineer 19 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

3.4 Convolutional Neural Networks (CNN): Theo-

retical Foundation

In the last years DL techniques have had a great reception as is clearly showed in the

Fig.3.4. One of the most relevant is the CNN.

Figure 3.4: Tendency in the use of Deep Learning Techniques, data from Google analytic

A Convolutional Neural Network (CNN) is a Deep Learning algorithm which can take

in an input image, assign importance to various aspects/objects in the image and be able

to differentiate one from the other through the convolution operations with filters. CNNs

are widely applied in the field of computer vision because of the great advantages against

traditional methods such as ANN and ML. The main advantages against traditional meth-

ods are: fewer parameters, distortion tolerance, automatic feature extraction, work with

large amount of data and high accuracy. By the advantages mentioned before, they are

particularity appropriate to applications in which the data can be represented as a matrix.

For instance, an ANNs, working with a color image of 480x480 pixels, will generate 691

200 (=480x480x3) entry weights in the first layer, which will be very complex to manage

and compute. A CNN can decrease notably that number because it works with set of

pixels instead of individual ones. Their most common applications are: decoding facial

recognition, analyzing documents, understanding climate, advertising, among others [61].

Information Technology Engineer 20 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 3.5: CNN Basic Architecture. Obtained from [4].

A basic CNN has three types of layers: convolutional layer, pooling layer and a Fully

Connected (FC) layer. The Fig. 3.5 shows a basic CNN architecture adapted to image

classification. The CNN input is an image of MxMxR, where M is the height and width of

the image and R is the number of channels [31]. The input often is followed by a repeated

sequence of convolutional, pooling and fully connected layers. Fig. 3.5 shows the ouput

layer, which is modified depending on the application. For example: the outputs on image

classifications mean the probability to belong to some class and on object detection they

represent the position, dimensions and the class of a particular object.

3.4.1 CNN Layers

As it was mentioned already, a CNNs are a special kind of multi-layer neural networks,

specially designed to recognize features directly from images. The architecture of a CNN

defines how the different layers will be set up to an specific model. Also, through the time

scientists have developed new kind layers which have been added in their own models.

However, the most common architectures are formed by:

• Convolutional layer: This layer is the most important in a CNN, in fact, their

name comes from it. It consists of a set of filters to extract different features from

the input image. In mathematical terms convolution is defined by:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (3.1)

where I represents the image and K the filter also often called kernel as is shown

in Fig. 3.6. The subscripts m and n represent the dimensions of the filter typically

Information Technology Engineer 21 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

of 3x3, 5x5, 7x7 or 11x11. As it was mentioned the input (image) is composed by

ixjxr where r is the number of channels of the image, for instance in a color image

(RGB) the r will be 3. The filters are moved from the left up corner to the right

down corner applying the convolutional operation to create a featured map.

Figure 3.6: Convolution representation

The filter is moved depending on the assigned stride. The stride is the number of

pixels that the filter will move (one pixel in Fig. 3.6) to apply the next convolution.

The dimensions of the obtained feature map from a convolution can be calculated

with:

O =
(W −K + 2P)

S
+ 1 =

(7− 3 + 2.0)

1
+ 1 = 5 (3.2)

Where O is the dimensions (weight & length), W is the dimension of the input

(image), K is the filter size, S is the stride and P is the padding. The pad is the

number of columns and rows that are added to the input image in order to apply

the filter in the entire image and do not lose information because the size of the

filter.

Each convolutional layer uses a set of filters (not just one). The main purpose of

each filter is detect simple structures as borders, lines, squares, etc. and grouping

them to construct more complex shapes.

• Activation functions: In the convolution process many negative values are gener-

ated. These values are unuseful for the next layers and produce more computational

Information Technology Engineer 22 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

load. Therefore, after a convolutional layer, an activation function is applied. The

activation function sets to zero the negative values which helps to get a faster and

effective training. There are many functions used in DL, but the most common are:

1. Sigmoid [62]: This kind of functions are commonly used in ML for the logistic

regression.

f(x) = sigmoid(x) =
1

1 + e−x
(3.3)

2. ReLU [62]: A Rectified Linear Unit set the value to 0 if the input is less than

0, and raw otherwise. This function is the most used in the CNN and ANN

because its behaviour is closer to the biological neurons.

f(x) = max(x, 0) (3.4)

3. Softmax [62]: It is an activation function based on probability distribution.

This function set the values from 0 to 1 and the total sum always gives 1.

σ(Z)j =
ezj∑K
k=1 e

zk
forj = 1,, k (3.5)

where z is the input vector, j indexes the outputs

• Polling layers: It aims to reduce progressively the parameters sub sampling the

spatial size of its input in order to reduce the computational load. The polling

operation is a sliding operation similar to convolutional one. It has a kernel and a

stride as in Fig 3.7, but in this case the main features are selected and preserved

according the kind of polling applied. There are three different types of sub sampling

where the operation to select the pixel is the only difference between them. They

are the following:

1. Average-polling: It selects the average value of all the pixels from the batch.

2. Minimum-polling: It selects the minimum pixel value from the batch.

Information Technology Engineer 23 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

3. Maximum-polling: It is the most used in CNN [63]. The maximum pixel

value of the batch is selected as is shown in Fig.3.7.

Figure 3.7: Max Pooling Representation [5]. The polling is performed in a kernel of 2x2
and it is moving following a stride of 2

• Fully Connected layer (FC): It aims to take the values from the previous layer

and order them in a single vector of probabilities to dropout the class which the

input belongs to. For instance, in Fig. 3.8, the input is a bird, so after the convolu-

tions, some of the values in the input of the fully connected layer should have high

probabilities for the class bird and low for the rest [64].

Figure 3.8: Traditional CNN architecture [6].

• Inception Module: Through the deployment of CCNs, researchers realized that

by increasing the convolutional layers, accuracy of the CNN increases too. However,

a conventional convolutional layer already needed high computational resources, so

deeper models brought a computational cost problem. To mitigate that problem,

in [7] authors present the module Inception. It is a novelty method to apply the

Information Technology Engineer 24 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 3.9: A Inception module as is described in [7].

convolution operation using different size filters (see Fig. 3.9) in order to extract the

most different and relevant parameters to the training. The different map features

obtained are concatenated before the next layer. A significant change over this kind

of modules was proposed by [8]. They applied a factorization operation over the

inception modules by using large filters and dividing into two or more convolutions

with smaller filters (see Fig. 3.10). This structure aims to reduce the number of

parameters and keep the main features. Factorized inception module produced x12

lesser parameters than AlexNet [65] (one of the most common implemented archi-

tecture). For instance: a convolutional filter of 5x5 is replaced by two convolutional

filters of 3x3 (see 3.9 & 3.10) to produce a computational gain of 28%.

• Residual Module: Another important problem present to training a CNN, for

shallow and deep networks, is the vanish gradient [66]. By this reason, in [9],

the authors proposed reformulate the layers as learning residual functions (see Fig.

3.11):

H(X) = F (X)−X (3.6)

This reformulation was done based on that a shallow network has less training

error than the deeper counterpart. They proposed to construct the added layers as

Information Technology Engineer 25 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 3.10: A factorized Inception module as is described in [8].

Figure 3.11: Residual module [9].

Information Technology Engineer 26 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

identity maps (X). So, the residual modules helped to the deeper networks have an

error no greater than the shallow ones.

3.4.2 CNN Common Problems with CNNs

During the development of the CNNs there have been many problems. The most common

problems are: Over fitting, computational expense and the vanish gradient problem.

• Computational Expensive: Through the CNNs evolution, they became deeper

models thus they generate significantly more parameters and operations. Therefore,

to train and use deeper models usually is necessary high computational resources.

• Over fitting: This is the most common problem on ML models. It is produced

when models have problems to generalize patterns and instead the model recognizes

specific inputs.

• Vanish Gradient Problem:This is a particular problem presented on CNNs where

they applies gradient based methods (e.g. Back Propagation) to train the network

and the gradient of the loss function tends to zero making hard to train the network.

3.4.3 CNN Phases

The CNN implementation in real scenarios often has training and deployment phases.

Each one with particular purposes and tasks as follows:

1. Training stage: The CNN training usually performs four tasks: normalization,

feature extraction, classification, and validation, as is illustrated in Fig. 3.12.

Information Technology Engineer 27 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 3.12: CNN process stages

(a) Data Preparation: It is the process to normalize the input of the CNN. In

other words, the images are modified in order to attempt to the CNN archi-

tecture. For example, in the AlexNet architecture [67], the input must have a

dimensions of 227x227x3 where, as it was mentioned before, are: height, width

and the number of channels of the input images respectively. Even in some

architectures, It is necessary or at least recommended perform a pre-processing

of the images [58], in order to obtain a better feature extraction and accuracy.

(b) Feature Extraction: It is the process performed by the convolutional layers

and the activation functions were the most relevant features are extracted from

the input data.

(c) Classification: It is the process to alter the weights from the fully connected

layers applying the data obtained from the convolutional layers.

(d) Validation: Once some train iterations are performed, a validation is per-

formed. This process uses the validation set to check the accuracy reached by

the model and applies the back propagation.

2. Deploy: Once the model is trained, the predictions can be obtained providing an

input image that will pass through the stages depicted in Fig. 3.13.

• Data preparation: Usually it is necessary perform a resize in the input image

Information Technology Engineer 28 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

in order to attempt to the CNN architecture.

• Feature Extraction: It applies the convolution operations and the activation

functions to extract the features from the input.

• Classification: In deployment phase, the network used the learned weights

and compare them with the features extracted from the input. Finally the

model sets the obtained probabilities for all the classes.

Figure 3.13: CNN Deploy stages

3.5 CNN Learning Frameworks

Some frameworks have been developed to facilitate the training and implementation of

different DL algorithms and specially the CNNS. The most popular are: Caffe, Neon,

TensorFlow, Theano, and Torch [12]. All of the mentioned frameworks are Open source.

Authors in [12] presented a comparative study of them mainly based on the popularity in

the community, their properties and the implementation features applied to a particular

architecture to measure some parameters, such as gradient and forward time. The most

relevant information provided on that work is summarized in Table 3.2 & 3.1.

Information Technology Engineer 29 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Caffe Neon TensorFlow Theano Torch
Core C++ Python C++ Python Lua

Multi-threaded
CPU

Blas Only data loader XEigen
XBlas conv2D

limited OpenMP
XWidely used

GPU X Nvidia backend X X X

Multi-GPU only data parallel X Most Flexible
Experimental

version
X

Nvidia cuDNN X X X X
Quick deploy Easiest Supports Op-Tree X flexible X

Table 3.1: Properties of the most popular deep learning frameworks [12].

Caffe is one of the first frameworks to implement DL models and it is specialized in

tasks for artificial vision as image classification. Therefore, most models have already

been implemented in this framework. As showed in Table 3.2, Caffe counts as the large

support community in forums and webs. In Table 3.1 are all the main characteristics

of Caffe and popular frameworks. Training a DL model could take several hours, days

or even months. For this reason, the DL models usually are trained applying parallel

computing with GPUs. Caffe is written in C++ and therefore compatible with CUDA,

an important parallel computing platform developed by NVIDIA to take advantage of

their GPUs, which can be exploited to a faster training. Caffe also provides Python and

Matlab interfaces which makes an easier implementation, training and deployment the

models. Another fact is that Caffe is already installed in the Supercomputer ‘Quinde I’.

Measures Caffe Neon TensorFlow Theano Torch
Number of members in Google groups 4220 73 661 2827 1874
Number of contributors in Github 172 31 81 207 77

Table 3.2: Community involvements for some of the deep learning frameworks as of
02/08/2016 [12].

Information Technology Engineer 30 Final Grade Project

Chapter 4

Methodology

In this chapter the taken methodology to develop the comparison study among different

CNN architectures is described. The following questions are answered over the course of

this chapter:

• What were the parameters which were taken into account to select the models?

• What are the main features from the selected models?

• What data set was used for the comparison?

• What are the metrics used to measure the performance of the models?

• Which are the resources (hardware and software) used to perform the study?

In order to perform the comparison study, the process depicted in Fig.4.1 was performed.

The first stage consisted on establishing the criteria to select the most outstanding CNN

architectures. After, the selection and analysis of CNN models were performed (mod-

els selection). Then, the necessary tools of hardware and software are selected for the

study (HW and SW Selection). Next, the data set was prepared (data preparation).

Then, the models were trained, tuning their hyper-parameters to reach higher accuracy

(Training and Tuning). Finally, the models were implemented and tested to obtain their

performance with different metrics (deployment).

31

School of Mathematical and Computational Sciences YACHAY TECH

Methodology

5.-
Deployment

4.- Training
& Tuning

3.- Data
Preparation

2.- HW
& SW

Selection

1.- Models
Selection

Figure 4.1: Methodology

4.1 Models Selection

For leaf diseases classification purposes, this work aims to identify models with the follow-

ing criteria: a) high accuracy, b) low computational cost, c)low number of parameters and

d) capability to be implemented in equipment with moderate computational resources.

The data used to identify and select the models was extracted from comparative studies,

such as [10] and results published in the most famous image classification challenge [28].

Quantitative results in terms of accuracy level and the number of operations performed

in a forward step by the CNN are depicted in Fig.4.2. Also, the number of parameters

were included with the blob size of each model. It can be seen how a model with high

accuracy, low computational cost and low number of parameters remains closer to the

upper left corner and a small blob such as ENet [68], GoogLeNet [7] , ResNet 34 [9],

ResNet 18 [9], ResNet 50 [9], Inception V3 [8] & ResNet 101 [9], meanwhile a model with

low accuracy and number of operations as AlexNet remains in the bottom left corner and

Information Technology Engineer 32 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 4.2: Top1 vs. operations, size α parameters. Obtained from [10].

models with high accuracy and computational cost as: VGG 19 [65] and ResNet 152 [9]

remain in the right upper corner. AlexNet [69] has a high rate of falls because its low

accuracy and models as VGG 19 [65] requires high computational resources to be applied

in an effective way. From illustrated results, the selected models are: GoogLenet [7],

InceptionV3 [8], ResNet 50 [9] and ResNet 101 [9].

On the other hand, regarding to the simplicity and low computational cost, ZFNet

[31] was included in this work. It was characterized in image classification challenge [28]

for obtaining lower rates of error as is described in Table 4.1.

Number of Layers Techniques Top 1 Error % Top 5 Error %
ZFNet [31] 8 Normal Convolution 38.4 11.2
GoogleLenet [7] 22 Auxiliary Classifiers - 7.89
ResNet 50 [9] 50 Residual Mapping 20.74 5.25
ResNet 101 [9] 101 Residual Mapping 19.87 4.60

Inception V3 [8] 159
Factorizing Convolutions
Auxiliary Classifiers

17.3 3.5

Table 4.1: Models Comparison Table

The selected models are individually described in the following.

Information Technology Engineer 33 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Layer Details

Input 256x256

Layer 1
224 Conv, 7x7
Max polling

Layer 2
110 Conv, 5x5
Max polling

Layer 3
13 Conv, 3x3
13 Conv, 3x3

Layer 4
13 Conv, 3x3
Max polling

Layer 5
FC 4096 units
FC 4096 units

Table 4.2: ZFNet Architecture Details

4.1.1 ZFnet Achitecture

ZFnet [31] is a simple model composed by just 8 layers which are grouped and represented

by five ‘layers’ in Table 4.2. This architecture is characterized by having a max pooling

layer after each convolutional one. This architecture has decreasing filters starting with

a filter size of 7x7 as is showed in Table 4.2 in ‘Layer 1’. Also, ZFNet is known for being

an improved version of Alex Net [69], one of the most popular model.The main difference

falls in the dimensions of the convolution filters which were changed from 11x11 in Alex

Net [69] to 7x7 in ZFnet [31]. The change was performed based on the hypothesis that,

bigger filters loss more pixel information which can be conserved with the smaller ones.

This model uses the ReLu activation function described in Section 3.4.1 and the iterative

optimization of batch stochastic gradient descent.

4.1.2 GoogLeNet - Inception V1

GoogLenet [7] or Inception V1 marked a new state of the art for image classification

winning the ILSVRC 2014 [28]. It started to save computational resources with the use

of Inception Modules (described in Section 3.4.1)improving its use through the network.

Information Technology Engineer 34 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Layer Details

Input 224x224

Layer 1

112 Conv 7x7
Max Pool
56 Conv 3x3
Max Pool

Layer 2
Inception module } x2
Max pool

Layer 3
Inception module } x5
Max pool

Layer 4
Inception module } x2
Avg pool

Layer 5 FC

Table 4.3: InceptionV1 Architecture Details

Their design was based on the Hebbian principle, a theoretical type of cell activation

widely applied in computer science. It has 22 layers of deep, but it was summarized in 5

main layers. It starting with a size filter of 7x7 which are decreasing through the network.

They are followed by 9 inception modules as is described in the Table 4.3. GoogLenet

[7] take advantage of average pooling before the FC layer to save a lot of parameters and

improve the accuracy.

4.1.3 GoogleNet-Inception V3

GoogleNet-Inception V3 [8] is a improved version of previous version presented. By re-

thinking the inception architecture, computational efficiency and fewer parameters are

realized. With 42 layers deep, the computation cost is only about 2.5 higher than that

achieved by GoogLeNet[7], and much more efficient than that of VGGNet [65]. It be-

came the 1st Runner Up for image classification in ILSVRC 2015 [28].The most relevant

features of Inception V3 are the factorization technique applied trough the network and

the inceptions modules described in Section 3.4. The factorization is applied in order to

reduce the number of parameters keeping the network efficiency. Inception V3 starts with

Information Technology Engineer 35 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

small filters of 3x3 and keep them untill reach the inception modules as is described in

Table 4.4.

Layer Details

Input 299x299

Layer 1

229 Conv 3x3
149 Conv 3x3
147 Conv 3x3
Max Pool

Layer 2
73 Conv 3x3
71 Conv 3x3
35 Conv 3x3

Layer 3 see Fig. 3.9

Layer 4 see Fig. 3.10

Layer 5 see Fig. 3.9

Layer 6
Max Pool
FC
Softmax

Table 4.4: InceptionV3 Architecture Details

4.1.4 ResNet 50 & ResNet 101

The Residual Networks ResNet can have a very deep network of up to 152 layers by

learning the residual representation functions instead of learning the signal representation

directly. ResNet 101 and ResNet 50 [9] introduced skip connection (or shortcut connec-

tion) to fit two or more stacked layers in a desired residual mapping instead of hoping

that they directly fit. The shortcuts are a solution to the degradation problem (accuracy

saturation) generated in the convergence of deeper networks as ResNet. The shortcuts

show their effectiveness, improving the learning process in deeper networks as was men-

tioned in 3.4. ResNet becomes the Winner of ILSVRC 2015 [28] in image classification,

detection, and localization. The difference among these two networks is the number of

convolutional layers, ResNet 101 has twice layers than ResNet 50 as is described in Table

4.5.

Information Technology Engineer 36 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Layer Details ResNet 50 Details ResNet 101

Input 224x224 224x224

Layer 1
64 Conv 7x7
Max Pool

64 Conv 7x7
Max Pool

Layer 2
64 Conv 1x1
64 Conv 3x3
256 Conv 1x1

x3
64 Conv 1x1
64 Conv 3x3
256 Conv 1x1

x3

Layer 3
128 Conv 1x1
128 Conv 3x3
512 Conv 1x1

x4
128 Conv 1x1
128 Conv 3x3
512 Conv 1x1

x4

Layer 4
256 Conv 1x1
256 Conv 3x3
1024 Conv 1x1

x6
256 Conv 1x1
256 Conv 3x3
1024 Conv 1x1

x23

Layer 5
512 Conv 1x1
512 Conv 3x3
2048 Conv 1x1

x3
512 Conv 1x1
512 Conv 3x3
2048 Conv 1x1

x3

Layer 6
Avg Pool
1000 FC
Softmax

Avg Pool
1000 FC
Softmax

Table 4.5: ResNet 50 and ResNet 101 Architecture Details

4.2 Hardware & Software Selection

In this section the hardware and software tools required to perform this work are described.

It includes the computational resources, main libraries, and framework used to: prepare

the data, train the models and perform the experiments described in Chapter 5.

4.2.1 Hardware tools

• High-performance computing (HPC) supercomputer ‘Quinde I’: DL train-

ing is a challenging task due to the massive used data. For handling the exponen-

tially growing data demand for DL, high-performance computing (HPC) supercom-

puters are increasingly being used [70]. ‘Quinde I’ is a HPC supercomputer located

Information Technology Engineer 37 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

in Urcuqúı-Ecuador. 168 GPUs and high-speed interconnect network (infiniband)

are provided for high-performance data load and processing. It has 84 nodes, each

one with processor Power8 and two graphics cards Nvidia K80. The supercomputer

was used to train all of the models.

• Personal Computer: Trained models deployment was performed on personal

computer. It is a HP computer with Intel Core I7 and 16 GB RAM.

4.2.2 Software tools

• Caffe Framework: Caffe is a well-known and widely used DL framework for re-

search purposes that provides C, Matlab’s and python interfaces for implementation

of CNNs. Caffe is mainly intended for image deep-learning applications as was men-

tioned in Section 3.5. This framework was used to set and train the models regarding

the following relevant pros and cons.

– Pros:

∗ Good for image processing and feedforward networks.

∗ Good for finetuning existing networks.

∗ Train models without writing any code by using available interfaces.

∗ Python and matlab interfaces are pretty useful.

– Cons:

∗ Need to write C++ / CUDA for new GPU layers.

∗ Not extensible.

∗ No commercial support

∗ Slow deployment.

• Python 3.6.9: It is a preferred programming language widely used for teaching

and learning Machine learning. It was selected regarding the following reasons.

– Very useful and quick for obtaining experimental results and prototyping

Information Technology Engineer 38 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

– Easy to learn and read

– Great data handling capacity

– Useful and easy to couple with other languages and platforms

– Great availability of libraries for machine learning, neural networks, and ex-

ploratory data analysis

Python was used to create different scripts which were used to normalize and label

the data and run the trained models.

• Open CV: It is a computer vision library compatible with Python. It allows to

perform the brightness intensity in order to improve the quality of the data set ,

thus increasing the accuracy.

• Augmentor: It is another useful python library commonly used in ML and DL. It

performs different augmentation techniques as rotations, zooms, distortions, mirror,

crops and others over the data set in order to create a better real-world data set

and improve the accuracy in the models.

• GNU plot: It is an open source program to generate plots of different dimensions.

It was used to plot the results obtained from the tests on the models.

4.3 Data Preparation

4.3.1 Original Data Set

The original data set was obtained from Plant Village [1]. The size of the set was of 326

MB with 13,000 images between healthy and unhealthy leafs with a resolution of 256x256.

The data set was divided in : training (85%) , validation (10%) and test (5%) from the

original data set.

Information Technology Engineer 39 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

(a) Healthy Leaf (b) Healthy Leaf (c) Unhealthy Leaf (d) Unhealthy Leaf

Figure 4.3: Samples from Plant Village [1]

In order to prepare and improve the quality and quantity of the data set and avoid

problems, such as over fitting, data size ,shadows and illumination challenges, as described

in Section 3.2.2, the following operations were performed:

1. Pre-Processing (Brightness and Contrast Variation): This task is focused

on image enhancement using operations for Brightness and Contrast Variation. In

Digital image processing, brightness of an image is defined as the amount of energy

output by a source of light and the contrast can be explained as the difference be-

tween maximum and minimum pixel intensity in the image. Brightness and contrast

variations can enhance an image and help to extract some useful information from

images. In order to increase the data set, the original data was augmented applying

a variation on the bright and contrast of each image.

1 import cv2

2 image = cv2.imread(i)

3 alpha = 1.5 # Contrast control (1.0 -3.0)

4 beta = 0 # Brightness control (0 -100)

5 adjusted = cv2.convertScaleAbs(image ,alpha ,beta)

6 f.close ()

To perform the operation were varied the alpha and beta values which control the

contrast and the brightness to create a new output image. The range of those

values are [0.0-100.0] and [1.0-3.0], respectively. For this work, each image from the

Information Technology Engineer 40 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

original data set was adjusted applying two different changes: a) increase contrast

an brightness and b)decrease contrast and brightness.

2. Data Augmentation: The data set with the brightness and contrast augmentation

can be still poor to train a CNN on a real world application and to avoid problems,

such as over fitting and other problems, such as rotations, relative location, data set

size etc. (some of them were mentioned in Section 3.4), the data set was increased

applying the Augmentor library which perform different operations over the image

as was described in Section 4.2.2. Particularly, this work applied left and right

rotations, distortions,random zooms and flips. To perform it, the following function

was implemented:

1

2 def generateDataAugmented(pathSrc):

3 p=Augmentor.Pipeline(pathSrc)

4 p.rotate(probability =1,

5 max_left_rotation =5,

6 max_right_rotation =5)

7 p.random_distortion(probability =1,

8 grid_width =4, grid_height =4, magnitude =8)

9 p.flip_left_right(probability =0.5)

10 p.flip_top_bottom(probability =0.5)

11 p.zoom_random(probability =0.5, percentage_area =0.8)

12 p.flip_top_bottom(probability =0.5)

13 p.sample (35000)

The most relevant parameter in the function is the sample number (p.sample).

It is the final number of images after the data augmentation with originals and

the augmented images. For this work we set: 35,000 for training and 10,000 for

validation. The test set was not altered.

Information Technology Engineer 41 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

3. Data Labeling: To create an LMDB (an image format) all the images must be

labeled. We used two labels: healthy and unhealthy, which were encoded in the

names of the images after applying the following code:

1 #!/ bin/bash

2 cont=0

3 healthy='unhealthy_ '

4 name='_0'

5 for picture in ls *.JPG

6 do

7 newname=$healthy$cont$nombre

8 echo "renaming ... $picture"

9 echo "a $newname.jpg"

10 mv $picture $newname.JPG

11 ((cont=$cont +1))

12 done

4. LMDB creation: Caffe framework uses the LMDB format (an image format) to

take the images for training and validating the models. To create the LMDBs the

script described in A.2.3 was used. The script applies a Caffe function to create the

LMDBs. This script also allows resizing the images in order to fit the data to the

dimensions for each model.

4.4 Training & Tuning

Before predicting an image class, firstly, all CNN models need to be trained or a pre-

trained model needs to be loaded (Transfer learning). To not depend on pre-trained

models and validate the pre-processing contribution, this work train all models from

empty ones. To train a CNN model, it is necessary to perform the following two steps.

Information Technology Engineer 42 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

4.4.1 Definition of the CNN Model Structure

The architectures of each model must be described on a prototxt file (configuration file

to define the network for caffe framework). The head of file is dived in two phases: train

and test. The main parameter in these phases is the batch size (set of images to take

simultaneously in one iteration) which be different depending on the CNN architecture

and the features of hardware used to train them. After the phases, the model contain the

description for all layers of the architecture an example (one single layer) is described in

the following:

1 layer {

2 name: "conv1"

3 type: "Convolution"

4 bottom: "data"

5 top: "conv1"

6 param {

7 lr_mult: 1

8 decay_mult: 1

9 }

10 param {

11 lr_mult: 2

12 decay_mult: 0

13 }

14 convolution_param {

15 num_output: 96

16 kernel_size: 11

17 stride: 4

18 weight_filler {

19 type: "gaussian"

20 std: 0.01

21 }

Information Technology Engineer 43 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Hyper parameter Value

test iter 5

test interval 50
display 100
average loss 10

base lr 0.001
lr policy ‘step’
type ‘SDG’

stepsize 8000

gamma 0.96

max iter 10000
power 1.0
momentum 0.9
weight decay 0.0002
snapshot 2000
snapshot prefix ‘/snapshot’
solver mode GPU

Table 4.6: Hyperparameters CNNs. The values in boxes were changed for each model
and test performed meanwhile the rest values were conserved.

22 bias_filler {

23 type: "constant"

24 value: 0

25 }

26 }

27 }

The complete architecture description of all evaluated CNNs are presented in Section A.1.

4.4.2 Tuning of the Training hyper-parameters

Once the model is set in a prototxt file, it is need to tell Caffe how the net will be trained

by using the configuration file often called solver.prototxt. The hyper-parameters are

defined in the solver.prototxt as in Table 4.4.2. All these parameters must be set up

based on each application and model for improving accuracy and training time. In the

following the parameters will be described:

Information Technology Engineer 44 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• base lr: This parameter set up the start learning rate in the network. It is has a big

influence because each time that the weights of the model are updated the learning

rate control the change according the estimated error [71]. The Fig.4.4 shows the

influence of the learning rate on the loss through the training. It is defined as:

θ1 = θ1 − α
∂

∂θ1
J(θ1), (4.1)

Where θ1 is the new weight, α is the learning rate and J(θ1) is the gradient.

Figure 4.4: Learning Rate Effect. [11]

For this work, three different values will be tested on each model. These values

are highly recommended by [72] because they produce optimal results on different

models.

• lr policy: It indicates how the learning rate should change over the time. In caffe

the following options are available:

– ”step” : It updates the learning rate in the steps defined by the gamma

parameter.

– ”multistep”: It updates the learning rate at each specified stepvalue.

– ”fixed”: It keeps the learning rate all the time.

Information Technology Engineer 45 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

– ”exp”: The change in the learning rate is defined by: baselr ∗ gammaiter

– ”poly”: It follows a polynomial decay of the learning rate.

For this work, the lr policy was set to ”step”.

• gamma: This parameter set how much the learning rate should change every time

we reach the next ”step”. The gamma parameter in this work was set to 0.1.

• test iter: This parameter indicates how many test iterations should occur per test

interval. This value is a positive integer an can be approximated by:

test iter =
Number of Validation Images

Testing Batch Size
(4.2)

• stepvalue: This parameter indicates one of potentially many iteration counts that

we should move onto the next ”step” of training or refresh the lr. This value is a

positive integer. According to [73], the best values correspond to around 80% from

the maximum number of iterations.

• momentum: This parameter indicates how much of the previous weight will be

retained in the new calculation. This value is a real fraction.

• weight decay: This parameter indicates the factor of (regularization) penalization

of large weights. This value is a often a real fraction.

• solver mode: This parameter indicates which mode will be used in solving the

network.Options include:CPU,GPU

• max iter: This parameter indicates when the network should stop training. The

value is an integer indicate which iteration should be the last. An approximated

number can be calculated by:

max iter =
Number of Training Images

Training Batch Size
(4.3)

Information Technology Engineer 46 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• type: This parameter indicates the back propagation algorithm used to train the

network. This value is a quoted string. Options include:

– Stochastic Gradient Descent ”SGD”

– AdaDelta ”AdaDelta”

– Adaptive Gradient ”AdaGrad”

– Adam ”Adam”

– Nesterov’s Accelerated Gradient ”Nesterov”

– RMSprop ”RMSProp”

For this work, Stochastic Gradient Descent ”SGD” was selected.

• snapshot: This parameter indicates how often caffe should output a model and

solverstate. This value is a positive integer.

• snapshot prefix: This parameter indicates how a snapshot output’s model and

solverstate’s name should be prefixed. This value is a double quoted string.

• net: This parameter indicates the location of the network to be trained (path to

prototxt). This value is a double quoted string.

• display: This parameter indicates how often caffe should output results to the

screen. This value is a positive integer and specifies an iteration count.

4.4.3 Training of the Model on the Supercomputer ‘Quinde I’

After defining the model and the hyper-parameters, each model is trained by sending a

‘job’ to the LSF (Load Sharing Facility) service of Supercomputer ‘Quinde I’. It indicates

the model to be trained and the direction to all the required data. To send the job over

4 cores and 1 GPU the script described in A.2.4 was used. In the script is established

all the libraries used by Caffe. Last, the scripts executes the Caffe-train and set the

solver.prototxt file for each model.

Information Technology Engineer 47 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

4.5 Deployment

Once the model is trained, a caffemodel file is created. It contains the weights learned

during the training. To use the caffemodel obtained it is necessary a prototxt file whit

the net definiton (it is similar to net definition used to training) removing the phases of

training and test, and the last FC layers because FC ones are provided by the caffemodel

file. To be able to use the caffemodel and implement the CNN model to make prediction

on new unseen data, the python script described in A.2.5 was created. The python script

calls the mean image, the deploy model and the caffemodel to build a classifier.

Finally the script is run over the test set and a CSV file is created with the prediction

performed by the classifier.

Information Technology Engineer 48 Final Grade Project

Chapter 5

Experimental Setup

Python software routines have been on purpose implemented to train and evaluate selected

CNN models. Training script have been executed on supercomputer ‘Quinde I’, meanwhile

validations on new unseen data were performed on personal computer (see hardware tools

in 4.2.1). This chapter describes the metrics used to measure and compare the models.

Also, it contains description of the different tests performed over each model in order

to determine the most appropriate model for leaves image classification The following

questions will be answered in detail, with Section 5.1 focusing on the metrics used to

measure the performance of each model, and Section 5.2 the experiments performed in

this work.

• Which metrics were used to evaluate the models performance?

• Which hyper-parameters are the most influential?

• What experiments and sub-experiments were performed?

• What changes were performed over the raw data set?

5.1 Metrics

The classification performed by the trained models, was measured following parameters,

such as : Precision, F1 score, recall, training and deployment time. To describe some of

49

School of Mathematical and Computational Sciences YACHAY TECH

the metrics first it is necessary establish and describe a confusion matrix. In ML and AI a

confusion matrix (see Table 5.1) is a tool to see the performance of algorithms employed

on supervised learning. In the confusion matrix each column represents the number of

predictions of each class and the rows represents the instance in the real class. Over the

confusion matrix, the following metrics are measured:

Actual Positive Actual Negative

Predicted Positive
True Positive

(TP)
False Positive

(FP)

Predicted Negative
False Negative

(FN)
True Negative

(TN)

Table 5.1: Confusion Matrix

where TP corresponds to the healthy leafs correctly classified as healthy ones, TN

corresponds to unhealthy leafs correctly classified as unhealthy ones, FP corresponds to

classify healthy leaves as unhealthy ones and finally, one of the most relevant for this

work, FN which corresponds to unhealthy leaves classified as healthy ones.

• Accuracy: It is the most common metric to measure the performance of a model.

It is simple a ratio of all correctly predict instances to the total. It is natural to

think that a high accuracy means that the model is the best, but it is not entirely

true. In fact it is only true if the test set is symmetric and the FP and FN are

similar.

accuracy =
TP + TN

TP + FP + FN + TN
(5.1)

• Precision: It is the ratio of correctly predicted positive instances to the total

predicted positive instances. The question that this metric answer is of leaves that

labeled as healthy, how many actually are healthy? High precision relates to the

low false positive rate. Presicion is defined as:

precision =
TP

TP + FP
(5.2)

• Recall (Sensitivity): It is the ratio of correctly predicted positive instances to

Information Technology Engineer 50 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

the all instances in actual class. The question recall answers is: Of all the leafs that

truly are healthy, how many did the model labeled as healthy?

recall =
TP

TP + FN
(5.3)

• F1 Score: It is the Harmonic Mean between precision and recall. The range for

F1 Score is [0, 1]. This metric shows how precise a classifier is, as well as how

robust. Usually F1 score is more useful than accuracy. For instance, high precision,

but lower recall gives an extremely accuracy, but it then misses a large number of

instances that are difficult to classify. Mathematically, it can be expressed as:

F1 = 2.
recall.presicion

recall + presicion
(5.4)

• Training time: This metric measure the compute time during the training phase.

This metric was measured by the LSF service on the Supercomputer ‘Quinde I’ .

• Execution time: This metric states the compute time to set a prediction from

one to a N number of instances. It was measured with the clock function from the

operative system Ubuntu 18.04.

5.2 Experiments

In order to measure the performance of the models under different conditions, three

different experiments over all the models were performed. In the first one, the models were

tested without any augmentation over the original data. The second test was performed

implementing the data augmentation over the data set. Finally, a test affining the hyper-

parameters of each model were performed.

Information Technology Engineer 51 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

5.2.1 Experiment 1: Training with Raw Data

In this experiment the models were trained and deploying applying the original data

obtained from Plant Village [1] (13,000 RGB images of 256 x 256, among healthy and

unhealthy leaves). As was described in Section 4.1, all the models have different size as

input and for that reason a resizing has to be performed on the data set before training

phase. The resize was performed during the LMDB creation. In this experiment, the

hyper-parameters of the models described in Section 4.4.2 uses default values because

this parameters will fine tune in experiment 3.

5.2.2 Experiment 2: Training with Pre-processing

In order to avoid the over fitting because of the poor variation between the classes (health

and unhealthy leaves) and obtain a better real world data set, the following pre-processing

operations were done over the original data set and tested on the model ResNet 101.

ResNet 101 was chosen by the following reasons: a) it is one of the most deeper networks

in this work, and b) it is more prone to suffer over fitting with poor data variation as is

the case with this work.

• Brightness and Contrast Augmentation: In this sub experiment, the contrast

and brightness of the all images from the data set were varied creating new images.

The purpose is to determine the influence of different variations in the contrast

and brightness values shown in Table 5.2. For instance in the lit change, alter the

brightness to 80 and contrast to 1.5 generates a clearer picture, highlighting some

details. In the dark case, the assigned values create the effect of a shadow over the

image and hide some details that may are not relevant for the training.

Change Brightness Contrast
Lit 80 1.5

Dark 20 0.5

Table 5.2: Brightness & Contrast values to perform the experiment.

• Data augmentation: It is based on operations as rotations, zooms, distortions,

Information Technology Engineer 52 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

mirror, crops etc. (described in Section 4.3.1). They must be performed over the

original data set and tested on the model.

• Random classes: In this experiment, the data set was altered adding 6 random

classes as is described in Table 5.3 in order to add variation in the data set and to

disturb the weights from the FC layers during the training phase trying to avoid an

over fitting.

Classes Number of Images

Airplane 700
Brain 73

Chandelier 90
Turtle 80
Jaguar 170

Dog 125

Table 5.3: Classes added to perform the experiment.

• All changes: After measuring the effect and relevance produced by the previous

changes, a last experiment will be performed. It consisted in generate a bigger data

set applying all the pre-processing techniques mentioned before. We started from

the original data set applying a brightness and contrast variation. After that, the

random classes described in Table 5.3 were added. Finally, a data augmentation

over that data set was performed.

5.2.3 Experiment 3: Fine Tune Training

In this experiment, the hyper-parameters, such as base lr, step, test iter and max iteration

described in Section 4.4.2 are modified in order to find the optimal values for training each

model. The tested values are described in Tables 5.4, 5.5 and 5.6. In order to perform

this experiment, the data set with the high results obtained in experiment 2 was used in

order to obtain the best performance.

Information Technology Engineer 53 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Test # lr Test iteration Max iteration Step

1 0.1 500 3,500 2,800
2 0.1 700 50,000 40,000
3 0.01 500 3,500 2,800
4 0.01 700 50,000 40,000
5 0.001 500 3,500 2,800
6 0.001 700 50,000 40,000

Table 5.4: Hyper-parameter values for tuning process over ResNet 101.

Test # lr Test iteration Max iteration Step

1 0.1 313 2188 1750
2 0.1 500 50,000 40,000
3 0.01 313 2188 1750
4 0.01 500 50,000 40,000
5 0.001 313 2188 1750
6 0.001 500 50,000 40,000

Table 5.5: Hyper-parameter values for tuning process over Inception V3 & ResNet 50.

Test # lr Test iteration Max iteration Step

1 0.1 78 547 438
2 0.1 500 50,000 40,000
3 0.01 78 547 438
4 0.01 500 50,000 40,000
5 0.001 78 547 438
6 0.001 500 50,000 40,000

Table 5.6: Hyper-parameter values for tuning process over ZFNet & GoogLeNEt

Information Technology Engineer 54 Final Grade Project

Chapter 6

Results

This chapter describes the obtained results of each one of the experiments mentioned in

Section 5.2 through figures and tables to have a better visual appreciation. In this regard,

the figures have statistical measures based on the confusion matrix 5.1 obtained from the

deployment of the trained models.

6.1 Experiments

There are a total of 3 experiments in which their results are shown in the following

subsections.

6.1.1 Experiment 1: Training with raw data

The results obtained during the performance of this experiment are divided in 2 sections:

Training and Deployment. In the training section we show the results obtained during

the training time. Training loss, the error on the training set of data, and test accuracy,

the accuracy reached by the model at some iterations. In the deployment section, we

show the following metrics: accuracy, precision, recall, F1, training & deployment time

(see metrics definition in 5.1). These metrics are obtained after deploying the models over

the test set.

1. Training

55

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.1: Train Loss vs Iterations

Fig.6.1 shows the training loss over the first 10,000 iterations. It can be seen that

the models ResNet 50 and ResNet 101 have a similar behaviour because they have

similar architectures as is decribed in Section 4.1. A remarkable point is that a small

number of layers allows to ResNet 50 converges faster than ResNet 101. In the case of

GoogLeNet and Inception 3, which differ in a large number of layers and parameters,

have a faster convergence against the ResNet 50 -101. Its important highlight than

although Inception 3 has more layers, it converges a little faster than GoogLeNet

because the factorization technique applied in the model, which significantly reduces

the number of parameters generated in the training. On the other hand, ZFnet shows

a particular behaviour, it has a faster but unstable convergence. At 6k iterations

converges faster than all the models, but at 8k it seems far away to the convergence.

It can be attributed to the poor refining of the model. The model contains just 8

layers, but a lot of parameters which clearly affects the training.

Fig. 6.2 depicts the accuracy obtained during the tests performed in the training

time. Similar to results illustrated in Fig. 6.1, it is observed three different pat-

terns. a) ZFNet and Inception 3 obtains a high accuracy in the first 2k iterations

and keep it during all the training, it is attributed to the small number of layers

which conform ZFnet and the significant reduction of parameters of Inception V3,

performed by the factorization technique and the inception modules. b) ResNet 50

Information Technology Engineer 56 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.2: Test Accuracy vs Iterations

and ResNet 101 shows a similar and particular behaviour again. The models pre-

sented big changes in their accuracy in the first 6.5K iterations, generated while the

network gets an established training. After that, they started to establish a growth

pattern. That behaviour is caused by the large number of parameters produced by

the the layers through the network.

Another important fact is, although the convergence of ResNet 101 is slower than

ResNet 50, it reaches a 20% more of accuracy in the same number of iterations. It

is an effect produced by the number of parameters managed for a deeper network

which retards the convergence in the training, but acquires more specificity and

therefore a high accuracy. Finally, GoogLeNet although that the training converges

fastest its accuracy was the worst in this experiment. It is attributed to the low

number of parameters generated by the model which improves the convergence, but

does not assure a reliable accuracy.

2. Deployment

Information Technology Engineer 57 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.3: Accuracy, Precision, Recall and F1 measures reached by the models.

Fig.6.3 presents the obtained results of Accuracy, Precision, Recall and F1 measured

in the deployment phase over each model. It is necessary to point out again that the

measures obtained came from the original data set, formed by just two classes which

are slightly differentiated. In this experiment, ZFnet, the most shallows model,

reached the highest level of accuracy which is balanced with precision, Recall and

F1 measures. It is followed by Inception 3 which achieved great results, but the

lowest level in Recall showing that a deep model with few parameters fails more

labeling healthy leaves as unhealthy. Finally, ResNet 50 and ResNet 101 ,despite

its similarity , got completely different measures unlike the measures obtained in

the training time. ResNet 101 has the worst accuracy, precision and F1 measures.

The poor level of accuracy shows an important problem presented in deep models

trained with a unsuitable data set, over fitting. For instance, ResNet 101 always

said that the leaves were healthy. This is assured by ResNet 50, which presented

an improvement in all the measures, it is attributed to the less layers and therefore

less parameters managed by the model.

For timing evaluation, the time per iteration in training phase, and the time per

image prediction in deployment phase are illustrated in Fig.6.4. It is necessary stand

Information Technology Engineer 58 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.4: Time during the training and deployment phases.

out again the fact that the training was performed over the Supercomputer ‘Quinde

I’ and the deployment over a personal computer I7. However, Fig.6.4 clearly shows

a clear difference among the models, in both cases. For instance, Inception 3 spends

more time training the model, but it has a very short deployment time which is a

great advantage for the purpose of this work.

ResNet 50 and ResNet 101 spend less time training. However, the deployment

time is extremely large. ResNEt 101 takes four seconds to classify one single image

which is totally opposite to what this work is looking for. ResNet 50 decreases this

time according to the number of layers, half, however, it is still too long. GoogLeNet

presented a better performance, in both cases is lower than ResNets, but higher than

Inception V3 and ZFNet. ZFNet has the best time in the training and deployment

phase. It just take 2 seconds in 10 iterations which is extremely fast in the same

way ZFnet can classify 10 images in just 2 seconds an incredible advantage for this

Information Technology Engineer 59 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

work.

6.1.2 Experiment 2: Training with pre-processing

In the same way as in the experiment 1, the results are divided in two phases: Training and

Deployment. As was detailed in the Section 5.2, the experiment 2 has sub-experiments

which were consolidated in the following Figs. 6.6, 6.5 and 6.7 to a better interpretation.

Also, all the changes performed over the data set were tested over ResNet 101, the model

on which the raw data from experiment 1 mostly affects its performance.

1. Training:

Fig. 6.5 displays the influence of different pre-processing operations over the data set

described in Section 5.2, during the training time. It can be seen that adding ‘Lit’

or ‘Lit & Dark’ illumination changes over the data set does not alter the training

because they presented the same behaviour as was illustrated in Fig. 6.1. How-

ever, the convergence in both cases presented abrupt changes over the 3k and 6k

iterations. After that, they seem to converge constantly. On another hand, adding

random classes and apply the data augmentation seems to influence an almost equal

way to training. They present the same behaviour over all the iterations. It gives

an idea that data augmentation provides much more variation than an illumination

change. Finally, applying all the changes mentioned before, in one data set, affects

considerably the training convergence. Because the big variation produced by com-

bine all the changes, the model takes more time to converge also its behaviour looks

more unstable over the iterations. Fig. 6.6 shows the accuracy over the iterations

of the model with the changes performed over the data. In this case, a clearly ef-

fect is presented among ‘lit 1’ and ‘Lit- Dark‘ illumination change. Although they

seem converge to the same accuracy at 10,000, adding 2 illumination changes gives

a high accuracy in less iterations, which at first instance could be attributed an

over fitting due to the repetition of the images. A similar effect is produced by data

augmentation and adding random classes. Adding the random classes gives a higher

accuracy in the first 5k iterations, but after it, they present a similar accuracy over

Information Technology Engineer 60 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.5: Training Loss vs Iterations

Figure 6.6: Test Accuracy vs Iterations

Information Technology Engineer 61 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

the iterations. It is due to the greater variation in the data set which causes greater

alteration in the weights. However, after certain iterations, the model converges to

the same point since the original data set continues to have greater influence during

training. Finally, adding all changes, presented an abnormal behaviour in the accu-

racy. Although the accuracy improves over the iterations, it presented big changes

in short intervals. In some points it overcame the accuracy of the models and others

presented the worst performance. This is produced by a bigger and varied data set

which generate big changes on each test.

2. Deployment:

Deploying the trained models with the different variations and measuring their per-

formance, Fig 6.7 was obtained. It also contains, to see the effect of each variation,

the results obtained from the raw included at position 6. As is showed in Fig. 6.7,

the accuracy of the model decreases when the data was augmented with illumina-

tion changes. It can attributed to an over fitting due to the repetition of the same

image. It can be supported because the accuracy decreases more when two illumi-

nation changes are performed. On another hand, with the random classes added,

the accuracy performance diminish a 0.5 %. It was produced because although the

variation in the data set was increased, the difference among the two main classes

(healthy and unhealthy leaves) was still the same. In the case of data augmentation,

a notable increasing of the accuracy is performed because in this case new informa-

tion, relevant for the the main classes, was added avoiding the over fitting produced

in the previous cases. It can be affirmed because, in the last experiment when more

variation was added the accuracy of the model increased in a great percentage of

almost 20%.

In the precision measures happened something similar, the precision decreases with

illumination changes, increases a little with data augmentation and the added

classes, meanwhile the precision with all the changes got the best performance.

Information Technology Engineer 62 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.7: Accuracy, Precision, Recall and F1 measures reached by the models.

It is important to highlight that the precision is the most relevant measure in this

work because it establish the rate of false negative values. On another hand, with

measures as F1 and Recall the performance decreases in all the cases. In other

words, applying the variations hinders the model when it must identify healthy

leaves, however it improves when it have to identify diseased leaves.

6.1.3 Experiment 3: Fine Tune Hyper-parameters

As was demonstrated the positive impact of adding variations to the data set, the fine tune

experiment was developed using that altered data set, called all changes in the previous

experiment. To a better visualization and interpretation of the obtained results, they are

sub plotted in two sets: the first contains the tests 1,3,5 and the second the 2,4 and 6.

Also, as in the previous experiments, the results are divided in: Training and Deployment

phase detailed in following.

1. Training:

In Fig. 6.8 are showed the training loss from all tests, performed on Inception 3,

separated in two graphics. In both cases, the training loss followed two patterns,

one slower and two faster. A high base lr of 0.1 slows down the training from the

beginning and produces a bigger training loss even in a large number of iterations,

so that choose a right base lr is a key point in the training phase. On another hand,

when the learning rate decreases in the next orders of magnitude (0.01, 0.001) the

Information Technology Engineer 63 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.8: Inception V3: Training loss vs Iterations

training loss is almost the same, faster and constant. Inception 3 showed be very

susceptible to high learning rates or, in other words, fast changes and stable with

low base lr values. It may attributed to depth of the model and the poor parameters

generated because the factorization technique and the Inception modules. Another

interesting fact showed is the maximum number of iterations, clearly, the model

needs more iterations than the described in Eq. 4.3.

In the Fig. 6.9 is showed the accuracy of Inception 3 reached on training from all

tests. The reached accuracy is too high, as can be seen in the tests 1,3,5, related with

the number of iterations. In this case as before, the performance of Inception 3 with

a high base lr is less even in a large number of iterations. Fig. 6.9 showed a zoom

close to the 40,000 iterations and there a constant accuracy can be appreciated.

Although the high number of iterations the accuracy reached with a high base lr

is lesser than the obtained on test 4 and 6. It ensures the impact of training an

Inception 3 model with a wrong base lr.

Information Technology Engineer 64 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.9: Inception V3: Accuracy vs Iterations

In Fig. 6.10 is showed the training loss from all the test performed on ResNet 101.

The Fig. 6.10 showed the particular behaviour of ResNet 101, because of a high

base lr slows down the training and a very small lr slows down the training too, but

in less quantity. ResNet 101, a deep model, showed its susceptibility to the base lr

in the first iterations as well as in a large range of them. Also, although a small

base lr from test 6 showed a high training loss, it converges to the same point of

test 4 (the best for this model), but in more iterations which is also translated in

spending more time in training phase. On another hand, a high base lr from test

2 is much slower and converges in a upper point. These behaviour is attributed to

fast changes in a deep model with large number of parameters differentiated from

Inception 3.

In Fig. 6.11 are showed the accuracy reached by all the tests performed on the

models. The patter produced by the base lr showed in the training loss, is also

maintained in the accuracy. The accuracy of ResNet decreases with a high base lr

Information Technology Engineer 65 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.10: ResNet101: Training loss vs Iterations

and also decreases with a very high base lr. In short range, the accuracy presented

abrupt changes in the first 2.7k iterations, but after that they look constant. They

differ over 10%, a very significant difference. In a wide range, It is possible to

appreciate, in a better way, the influence of the base lr. For instance, among 5k and

15k iterations a big is observed among the tests, where the accuracy of a ResNet

101 with a high base lr keeps constant and low and the others increase the accuracy

according the iterations. It showed the sensibility of the model with high base lr.

However, this difference decreases over 1.5%, in a large range of iterations (around

40,000) as can be appreciated in the zoom.

The training loss performed by ResNet 50 over all test is summarized in Fig. 6.11.

In this case, the ResNet 50 showed a behaviour similar to ResNet 101 and Inception

3. The training loss increases (gets worse) with a high base lr and also increase

with a very small one as ResNet 101, but to a lesser extent, resembling the behavior

of Inception 3. It is produced because ResNet 50 is a deep model, but less than

Information Technology Engineer 66 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.11: ResNet101: Accuracy vs Iterations

ResNet 101 and also manage more parameters than Inception 3 because it does not

use techniques to reduce the number of parameters. This effect can be balanced

in a wide range of iterations as can be observed in Fig. Fig. 6.11 over the 40,000

iterations, but again spending more time in the training phase. The accuracy of

ResNet 50 over all test is described in Fig. 6.13. The accuracy reflected in a better

way the influence of the base lr than the training loss. The Fig 6.13 showed a

considerable difference amoung the accuracy reached by the test with base lr of 0.1

and the test tests with smaller values. In a short range, the accuracy of the test 1

is lower and does change nothing. In an interval among 4k and 15k, the difference

is even more notable. However, after 20k iterations all the tests reached a close

accuracy 94%. It can be appreciated in the zoom over the 40,000 iterations, even in

some points the test 2 (with a high lr) reached a higher accuracy, which would not

necessarily indicate that it is better. ResNet 50 stated a behaviour similar, but no

equal to ResNet 101.

Information Technology Engineer 67 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.12: ResNet50: Training loss vs Iterations

Figure 6.13: ResNet50: Accuracy vs Iterations

Information Technology Engineer 68 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

In Fig. 6.14 is described the training loss behaviour of ZFNet over the different tests.

During the performance of experiment 3, ZFNet showed its high dependency on the

base lr. The training loss of ZFNet was infinite, when the learning rate is high as

in test 1 and 2. For this reason they can not be observed in the Fig. 6.14. This can

be produced because the model manage a large train and test batch size making

impossible correctly adjust the weights of the model in a faster way. On another

hand, when the learning rate decreases, but is not the adequate, the training loss

decreases and converges, but very slow. But, when the base lr is lower and adequate

for the model, the training loss decreases at an impressive rate. The sensibility the

ZFNet to the base lr can also be attributed to the simplicity of the model. ZFNet

is formed by few layers what make it unstable to large and fast changes.

Fig. 6.15 showed the accuracy reached by ZFNet during the training time. The

accuracy results of ZFNet reflects that the model can not be trained at all with a

large base lr, as was showed in Fig. 6.14. In Fig. 6.15 is showed that the accuracy

collapsed to zero in these cases (test 1 & 2). On another hand, when the lr decreases

in one and two orders of magnitude, the accuracy gets highly improved. A great

difference among these tests can be seem in the first 10,000 iterations, after that,

around the 40,000 iterations they have a small, but relevant difference (over 5%),

in this case unlike other models like ResNet 101, ZFNet does not reach the same

accuracy even in a large range of iterations. It remarks that ZFNet performance

depends on the correct choose of a base lr.

In Fig. 6.16 is showed the training loss and accuracy of googLeNet over the all

tests. Analyzing the results of GoogLeNet, the pattern formed by its behaviour

shows similar to ZFnet and Inception V3 because a high base lr affects training of

the model in a big proportion. In fact, it tends to infinite, as ZFNet, and it can not

be seen in the graph. As in ZFNet, this is attributed to the large size of the training

and test batch. Although GoogLenet is a more sophisticated model than ZFNet,

It also is not able to adjust the weights of the model in a faster way managing big

amount of data. On another hand, when the base lr decreases in different orders of

Information Technology Engineer 69 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.14: ZFNet: Training loss vs Iterations

Figure 6.15: ZFNet: Accuracy vs Iterations

Information Technology Engineer 70 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.16: GoogLeNet: Training loss vs Iterations

magnitude the difference in the patters of the training loss is very small, similar to

Inception V3. This behaviour has much sense because its architecture is similar to

Inception v3, but more robust. The training loss of GoogLeNet with an ‘optimal’

base lr (in this case 0.001) decreases fast almost as ZFnet.

In the same way as in training loss, the accuracy reached by GoogLeNet, in the case

of test 1 and 2 with a high base lr, falls down to zero and it can not be appreciated

in the graph. On another hand, when the base lr decreases under 0.01 the behaviour

is practically the same, even in the zoom over the 40,000 iterations the performance

reached by the test are very close as the Inception 3 behaviour explained before.

2. Deployment:

In this phase are showed the measures obtained after deploying the models in the dif-

ferent tests, the performance results obtained of these experiments are summarized

Information Technology Engineer 71 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.17: GoogLeNet: Accuracy vs Iterations

in Table 6.1.

GoogLeNet, as was described in the training phase, showed poor results with a high

base lr. For this reason, the measures obtained from the test 1 and 2 are very close

to zero in all the cases. The model showed a faster training because the performance

does not change significantly with a large increment in the number of iterations. It

is produced because the large train and test batch size of the model, which gives a

fast learning with an adequate base lr.

Inception V3 presented similar result in almost all tests (except test 1 & 6). This

model got high accuracy with different learning rates and few iterations which were

kept over many iterations. The most relevant fact is produced on test 6 (apparently

the optimal conditions for Inception 3) where the accuracy falls to its worst point

(under 50%). It is presumed to an over fitting because of the number of iterations.

ResNet 50 had an accuracy under 55 % in all the tests, a very low performance

against the other models. This fact is mostly attributed to the data set used to

Information Technology Engineer 72 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Model Test # Accuracy Precision Recall F1

GoogLeNet

1 0.48 0.50 0.006 0.01
2 0.48 0.50 0.006 0.01
3 0.80 0.77 0.94 0.84
4 0.87 0.83 0.95 0.89
5 0.77 0.94 0.63 0.75
6 0.81 0.76 0.96 0.85

Inception V3

1 0.55 0.54 0.89 0.67
2 0.77 0.78 0.79 0.79
3 0.71 0.77 0.64 0.70
4 0.74 0.96 0.51 0.67
5 0.73 0.82 0.62 0.71
6 0.48 0.50 0.006 0.01

ResNet 50

1 0.32 0.37 0.41 0.39
2 0.09 0.03 0.01 0.02
3 0.24 0.53 0.25 0.34
4 0.10 0.06 0.04 0.05
5 0.32 0.30 0.12 0.17
6 0.52 0.03 0.01 0.02

ResNet 101

1 0.44 0.42 0.21 0.28
2 0.79 0.94 0.65 0.77
3 0.48 0.50 0.006 0.01
4 0.81 0.94 0.68 0.78
5 0.52 0.52 1.00 0.69
6 0.86 0.84 0.91 0.87

ZFNet

1 0.48 0.50 0.006 0.01
2 0.48 0.50 0.006 0.01
3 0.52 0.52 0.99 0.69
4 0.52 0.52 0.99 0.68
5 0.83 0.83 0.89 0.86
6 0.93 0.91 0.97 0.94

Table 6.1: Fine tune results

Information Technology Engineer 73 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

the different tests (called all changes in experiment 2) because in all the variations

performed on the model, the accuracy obtained was poor.

ResNet 101 showed that although the the base lr change, the accuracy reached by

the model does not change significantly unless the iterations increases. This model

showed the best improvement on the performance against raw data experiment.

ZFNet does not work with high lr, in fact the training loss tends to infinite. This

is also reflected in the deployment phase, where the 4 first test presented a poor

performance in all the measures. However in the last two test, with a smaller base

lr, the accuracy and all the measures obtained increase in a significant percentage

(around 40%). It important highlight that this improvement happens in just few

iterations (test 5) reaching a 80% and increase a 10% after many other iterations

(test 6).

6.1.4 Additional Results

ROC Curve

In the Fig. 6.18 is showed the ROC curve (Specificity vs Sensitivity) formed by the per-

formance obtained by each model. For this work, Sensitivity measures the proportion

of actual positives that are correctly identified as such healthy leaves that are correctly

classified as healthy leaves whereas the specificity measures the proportion of actual nega-

tives that are correctly identified as such unhealthy leaves that are classified as unhealthy

leaves. In this sense, in Fig. 6.18 shows the high performance reached by the model

ZFNet in both cases. It is followed by ResNet 101, GoogLeNet, Inception 3 and ResNet

50 respectively. The ROC curve showed in Fig. 6.18 reaffirms the worst performance

described and explained before of ResNet 50.

A graphic user interface

As additional results, a graphic interface, developed in Python, was created in order to

replicate and use the five trained CNNs. The application has the option to load an image

Information Technology Engineer 74 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.18: Performance measurement - ROC Curve for all models.

(a leaf image) and predict if the leaf is health or unhelthy. Additionally, the interface

shows the probability to belong each class. In Fig.6.19 is a general view of the graphic

user interface once the predictions were done. The source code is available in A.3.

Information Technology Engineer 75 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.19: Screenshot of the graphic interface

Information Technology Engineer 76 Final Grade Project

Chapter 7

Conclusions and Future work

In general terms, the main goal of this work is evaluate and select the most appropriate

technique and model to implement an automatic leaf disease classifier. At a more technical

and specific level, the following conclusions were reached:

• Deep learning technique and later the models were selected after a state-of-the-

art revision of image classification works. The explored models used for this work

are: Inception V3, GoogLeNet, ResNet 101, ResNet 50 and ZFNet. The models

were selected under a comparison study of accuracy, forward time and number of

parameters and the top 1 and 5 error reached on the ILSVRC challenge [28] at

different years. The CNN models explored written in Caffe language were extracted

from a repository on GitHub. The scripts used to: prepare the data set, train the

models over the Supercomputer ‘Quinde I’ and deploy the models have been written

in Python 3.6.9. All of these models were adapted to be tested with the different

data sets used in this work.

• The models were trained and tested under the same computational conditions. To

determine the models performance with different data versions, three experiments

were done: Training with raw data, training with data pre-processing and training

with fine tune. To compare the models metrics as accuracy, precision, Recall, F1

, training and execution time were used. Moreover, it presents figures like box

plots where it is analyzed the training loss and accuracy over the training. In all the

77

https://github.com/SnailTyan/caffe-model-zoo

School of Mathematical and Computational Sciences YACHAY TECH

experiments, the CNN ZFNet proved be the best candidate for a leaf disease classifier

because its high accuracy (greater than 90%) under different conditions and its low

training and deploying time. However, Inception 3 also presents excellent results in

accuracy (around 90% in its best conditions), precision, recall, F1 and deployment

time in all the experiments. Its Achilles’s heel or main disadvantage is the training

time, Inception needs a lot of time to train the model and very susceptible with

the data pre-processing. The rest of the models as ResNet 50, ResNet101 and

GoogLenet showed a good performance on different metrics in experiment 1, but

they also presented shortcomings in the experiment 2 and 3.

• The performance of CNN models improved when applying techniques of pre-processing

on the data set as brightness and contrast variations, data augmentation, random

classes and all changes. ResNet 101 and GoogLeNet showed an relevant increasing

on their performance, meanwhile ResNet 50 and Inception 3 showed a decreasing

on the performance. ZFNet kept and increase its performance in less quantity than

ResNEet 101 and GoogLeNet.

• Prove the influence and the relevance of fine tune the hyper-parameters on the

models in the trainig phase as well as in the performance reached in the deployment

phase. In this work, the base lr as well as the max iter showed the big impact over

the models. Even in some cases as GoogLeNet, a bad base lr prevents the training

and therefore the deploying on the model.

• Finally, this work concludes and establishes ZFNet as an optimal model to develop

a Leaf Image classifier. It is based on the obtained values in the metrics as accuracy,

precision, training and deploying time from all the tests performed on this work.

As future work, it is proposed to implement, on real scenarios, the selected CNN ar-

chitecture exploring appropriate hardware and software requirements. Also, new CNN

alternatives to analyse input data from devices on real-time are going to be studied. In

addition, pre-processing task based on spectral filtering and techniques of image process-

ing will be explored to enhance images and reduce computational complexity, which can

Information Technology Engineer 78 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

be mainly applied to High Dimensional Images such as satellite images. Afterwards, it is

proposed compare the efficiency reached applying the transfer learning techniques. Fur-

thermore, leaves disease classification with selected CNN model are to be explored with

images extracted from different sources as drones, satellite and recorded videos in order

to asses the suitability for real application in Ecuador to identify diseases on leaves from

large crops such as bananas and potatoes.

Information Technology Engineer 79 Final Grade Project

References

[1] T. O. E. (2018) Plantvillage dataset. [Online]. Available: https://www.kaggle.com/

emmarex/plantdisease

[2] N. Feller. (2018) What are convolutional neural networks and deep

belief network weakness? [Online]. Available: https://www.quora.com/

What-are-the-current-problems-with-the-use-of-convolutional-neural-networks-CNN-for-vision.

[3] K. Cook. Know How Deep Learning Works? Here’s A Quick Guide For All Engineer.

(2019, august 29). [Online]. Available: https://www.houseofbots.com/news-detail/

11733-4-know-how-deep-learning-works-heres-a-quick-guide-for-all-engineer

[4] S. Puran. (2020) Will capsule neural network replace tradi-

tional neural networks? [Online]. Available: https://www.quora.com/

Will-Capsule-Neural-Network-replace-Traditional-Neural-Networks

[5] A. Kesarwani. What is max pooling in convolutional neural net-

works? (2019, august 29). [Online]. Available: https://www.quora.com/

What-is-max-pooling-in-convolutional-neural-networks

[6] missinglink. aii. A Beginner’s Guide To Understanding Convolutional Neural

Network. (2019, September 1st). [Online]. Available: https://adeshpande3.github.

io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

[7] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE

81

https://www.kaggle.com/emmarex/plantdisease
https://www.kaggle.com/emmarex/plantdisease
https://www.quora.com/What-are-the-current-problems-with-the-use-of-convolutional-neural-networks-CNN-for-vision.
https://www.quora.com/What-are-the-current-problems-with-the-use-of-convolutional-neural-networks-CNN-for-vision.
https://www.houseofbots.com/news-detail/11733-4-know-how-deep-learning-works-heres-a-quick-guide-for-all-engineer
https://www.houseofbots.com/news-detail/11733-4-know-how-deep-learning-works-heres-a-quick-guide-for-all-engineer
https://www.quora.com/Will-Capsule-Neural-Network-replace-Traditional-Neural-Networks
https://www.quora.com/Will-Capsule-Neural-Network-replace-Traditional-Neural-Networks
https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks
https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

School of Mathematical and Computational Sciences YACHAY TECH

Conference on Computer Vision and Pattern Recognition (CVPR), June 2015, pp.

1–9.

[8] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

inception architecture for computer vision,” CoRR, vol. abs/1512.00567. [Online].

Available: https://arxiv.org/abs/1512.00567

[9] H. Kaiming, Z. Xiangyu, R. Shaoqing, and S. Jian, “Deep residual learning

for image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:

http://arxiv.org/abs/1512.03385

[10] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural network

models for practical applications,” 05 2016.

[11] Z. H. (2018) Understanding learning rates and how it improves perfor-

mance in deep learning. [Online]. Available: https://towardsdatascience.com/

understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10

[12] A. Shatnawi, M. Al-Ayyoub, g. albdour, and R. Al-Qurran, “A comparative study

of open source deep learning frameworks,” 04 2018.

[13] S. Savary, A. Ficke, J.-N. Aubertot, and C. Hollier, “Crop losses due to diseases and

their implications for global food production losses and food security,” Food Security,

vol. 4, 12 2012.

[14] S. Lim. (2019) Gpu vs cpu deep learning: Training performance of convolutional

networks. [Online]. Available: https://phoenixnap.com/blog/gpu-deep-learning

[15] R. S. H. Sadiyah Abdullahi and F. Mahieddine, “Convolution neural network in

precision agriculture for plant image recognition and classification,” 08 2017, pp.

1–3.

[16] A. Kamilaris and F. X. Prenafeta-Boldú, “A review of the use of convolutional neural

networks in agriculture,” The Journal of Agricultural Science, vol. 156, no. 3, p.

312–322, 2018.

Information Technology Engineer 82 Final Grade Project

https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.03385
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://phoenixnap.com/blog/gpu-deep-learning

School of Mathematical and Computational Sciences YACHAY TECH

[17] M. S. L. M. Dyrmann, S. Skovsen and R. N. Jorgensen, “Using a fully convolutional

neural network for detecting locations of weeds in images from cereal fields,” 04 2018.

[18] S. Arivazhagan, S. Newlin, S. Ananthi, and V. Varthini, “Detec-

tion of unhealthy region of plant leaves and classification of plant

leaf diseases using texture features.” Agricultural Engineering Inter-

national: CIGR Journal, vol. 15, 2013. [Online]. Available: https:

//www.researchgate.net/publication/287577015 Detection of unhealthy region of

plant leaves and classification of plant leaf diseases using texture features

[19] M. Hrabia. (2020) Deep learning vs. machine learning. [Online]. Available:

https://towardsdatascience.com/deep-learning-vs-machine-learning-e0a9cb2f288

[20] H. H. Guides. (2019) Control de plagas y enfermedades de las plantas. [Online].

Available: https://es.hesperian.org/hhg/A Community Guide to Environmental

Health:Control de plagas y enfermedades de las plantas

[21] H. Bischof, W. Schneider, and A. Pinz, “Multispectral classification of

landsat-images using neural networks,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 30, pp. 482–490, 1992. [Online]. Available: https:

//ieeexplore.ieee.org/abstract/document/142926

[22] T. Rumpf, A.-K. Mahlein, U. Steiner, E.-C. Oerke, H.-W. Dehne, and L. Plümer,

“Early detection and classification of plant diseases with support vector machines

based on hyperspectral reflectance,” Computers and Electronics in Agriculture,

vol. 74, pp. 91–99, 10 2010.

[23] M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou,

“Lung pattern classification for interstitial lung diseases using a deep convolutional

neural network,” IEEE Transactions on Medical Imaging, vol. 35, pp. 1–1, 02 2016.

[24] D. Bhimrao Kadam, S. Gade, M. Uplane, and R. Prasad, “Neural network based

brain tumor detection using mr images,” Int. J. Comp. Sci. Communications, vol. 2,

pp. 325–31, 01 2011.

Information Technology Engineer 83 Final Grade Project

https://www.researchgate.net/publication/287577015_Detection_of_unhealthy_region_of_plant_leaves_and_classification_of_plant_leaf_diseases_using_texture_features
https://www.researchgate.net/publication/287577015_Detection_of_unhealthy_region_of_plant_leaves_and_classification_of_plant_leaf_diseases_using_texture_features
https://www.researchgate.net/publication/287577015_Detection_of_unhealthy_region_of_plant_leaves_and_classification_of_plant_leaf_diseases_using_texture_features
https://towardsdatascience.com/deep-learning-vs-machine-learning-e0a9cb2f288
https://es.hesperian.org/hhg/A_Community_Guide_to_Environmental_Health:Control_de_plagas_y_enfermedades_de_las_plantas
https://es.hesperian.org/hhg/A_Community_Guide_to_Environmental_Health:Control_de_plagas_y_enfermedades_de_las_plantas
https://ieeexplore.ieee.org/abstract/document/142926
https://ieeexplore.ieee.org/abstract/document/142926

School of Mathematical and Computational Sciences YACHAY TECH

[25] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural networks

for hyperspectral image classification,” Journal of Sensors, vol. 2015, pp. 1–12, 07

2015.

[26] M. A. A. Sladojevic, S.and Arsenovic, D. Culibrk, and S. D., “Deep neural

networks based recognition of plant diseases by leaf image classification,”

Computational Intelligence and Neuroscience, vol. 2016, p. 11, 2016. [Online].

Available: https://www.hindawi.com/journals/cin/2016/3289801/

[27] Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-h. Kim, S.-J. Kang, M. Choi, S. Lee, and

Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,”

Science Advances, vol. 3, p. e1700606, 08 2017.

[28] P. U. Stanford Vision Lab, Stanford University. (2016) Imagenet. [Online]. Available:

http://image-net.org/

[29] M. Manoj krishna, M. Neelima, H. Mane, and V. Matcha, “Image classification using

deep learning,” International Journal of Engineering and Technology, vol. 7, p. 614,

03 2018.

[30] S. Saha, “A comprehensive guide to convolutional neural networks—the

eli5 way,” 2018. [Online]. Available: https://towardsdatascience.com/

a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[31] M. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”

CoRR, vol. abs/1311.2901, 2013. [Online]. Available: http://arxiv.org/abs/1311.2901

[32] T. Kavzoglu, “Object-oriented random forest for high resolution land cover mapping

using quickbird-2 imagery,” Handbook of Neural Computation, 2017.

[33] Thinkstock. (2018) What is deep learning and how will it change

healthcare? [Online]. Available: https://healthitanalytics.com/features/

what-is-deep-learning-and-how-will-it-change-healthcare

Information Technology Engineer 84 Final Grade Project

https://www.hindawi.com/journals/cin/2016/3289801/
http://image-net.org/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
http://arxiv.org/abs/1311.2901
https://healthitanalytics.com/features/what-is-deep-learning-and-how-will-it-change-healthcare
https://healthitanalytics.com/features/what-is-deep-learning-and-how-will-it-change-healthcare

School of Mathematical and Computational Sciences YACHAY TECH

[34] B. Matheus and L. Lattari, “Convolutional neural networks for static and

dynamic breast infrared imaging classification.” pp. 174–181, 2018. [Online]. Avail-

able: https://www.researchgate.net/publication/330470461 Convolutional Neural

Networks for Static and Dynamic Breast Infrared Imaging Classification

[35] A. I. M. T. M. R. Minhas, A. Javed and Y. B. Joo, “Shot classification of field sports

videos using alexnet convolutional neural network,” Applied Sciences, vol. 9, p. 483,

01 2019.

[36] W. F. M. Wagenaar, E. Okafor and M. Wiering, “Using deep convolutional neural

networks to predict goal-scoring opportunities in soccer,” 02 2017.

[37] V. Holman, “Sports Analytics Models - Convolutional Neural Networks,”

accessed 2019-07-26. [Online]. Available: https://www.agilesportsanalytics.com/

sports-analytics-models-convolutional-neural-networks/

[38] G. R. Kotapalle and S. Kotni, “Security using image processing and deep convo-

lutional neural networks,” in 2018 IEEE International Conference on Innovative

Research and Development (ICIRD), May 2018, pp. 1–6.

[39] N. Dahringer, “Electricity theft detection using machine learning,” 08 2017.

[40] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional neural

networks applied to visual document analysis,” in Seventh International Conference

on Document Analysis and Recognition, 2003. Proceedings., Aug 2003, pp. 958–963.

[41] K. Chellapilla, S. Puri, and P. Y. Simard, “High performance convolutional neural

networks for document processing,” 2006.

[42] K. L. S. Lai, L. Xu and J. Zhao, “Recurrent convolutional neural networks for text

classification,” in Proceedings of the Twenty-Ninth AAAI Conference on Artificial

Intelligence, ser. AAAI’15. AAAI Press, 2015, pp. 2267–2273. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2886521.2886636

Information Technology Engineer 85 Final Grade Project

https://www.researchgate.net/publication/330470461_Convolutional_Neural_Networks_for_Static_and_Dynamic_Breast_Infrared_Imaging_Classification
https://www.researchgate.net/publication/330470461_Convolutional_Neural_Networks_for_Static_and_Dynamic_Breast_Infrared_Imaging_Classification
https://www.agilesportsanalytics.com/sports-analytics-models-convolutional-neural-networks/
https://www.agilesportsanalytics.com/sports-analytics-models-convolutional-neural-networks/
http://dl.acm.org/citation.cfm?id=2886521.2886636

School of Mathematical and Computational Sciences YACHAY TECH

[43] S. Lawrence, C. L. Giles, Ah Chung Tsoi, and A. D. Back, “Face recognition: a

convolutional neural-network approach,” IEEE Transactions on Neural Networks,

vol. 8, no. 1, pp. 98–113, Jan 1997.

[44] R. Ranjan, S. Sankaranarayanan, C. D. Castillo, and R. Chellappa, “An all-in-one

convolutional neural network for face analysis,” in 2017 12th IEEE International

Conference on Automatic Face Gesture Recognition (FG 2017), May 2017, pp. 17–

24.

[45] R. Golemanova. (2019) 7 image recognition applications of the future. [Online].

Available: https://imagga.com/blog/7-image-recognition-uses-of-the-future/

[46] J. A. K. Muhammad and S. Baik, “Early fire detection using convolutional neural

networks during surveillance for effective disaster management,” Neurocomputing, 12

2017.

[47] X. Gigandet, M. B. Cuadra, A. Pointet, L. Cammoun, R. Caloz, and J. . Thiran,

“Region-based satellite image classification: method and validation,” in IEEE Inter-

national Conference on Image Processing 2005, vol. 3, Sep. 2005, pp. III–832.

[48] P. Shrivastava. (2019) Challenges in deep learning. [Online]. Available: https:

//hackernoon.com/challenges-in-deep-learning-57bbf6e73bb

[49] Photokonnexion. Definition: Shadow. (2019, September 19th). [Online]. Available:

https://www.photokonnexion.com/definition-shadow/

[50] J. Brownlee. (2016) Deep learning and artificial neural networks. [Online]. Available:

https://machinelearningmastery.com/what-is-deep-learning/

[51] MATLAB. What Is Deep Learning?: How It Works, Techniques and Applications.

(2019, august 29). [Online]. Available: https://www.mathworks.com/discovery/

deep-learning.html

Information Technology Engineer 86 Final Grade Project

https://imagga.com/blog/7-image-recognition-uses-of-the-future/
https://hackernoon.com/challenges-in-deep-learning-57bbf6e73bb
https://hackernoon.com/challenges-in-deep-learning-57bbf6e73bb
https://www.photokonnexion.com/definition-shadow/
https://machinelearningmastery.com/what-is-deep-learning/
https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/discovery/deep-learning.html

School of Mathematical and Computational Sciences YACHAY TECH

[52] S. Mahapatra. (2019) Why deep learning over traditional ma-

chine learning? [Online]. Available: https://towardsdatascience.com/

why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063

[53] MissingLink.ai. (2019) Neural networks for image recogni-

tion: Methods, best practices, applications - missinglink.ai.

[Online]. Available: https://missinglink.ai/guides/neural-network-concepts/

neural-networks-image-recognition-methods-best-practices-applications/

[54] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. F. Feng, and M. Chen, “Medical image

classification with convolutional neural network,” 2014 13th International Conference

on Control Automation Robotics and Vision, ICARCV 2014, pp. 844–848, 03 2015.

[55] A. Rezvantalab, H. Safigholi, and S. Karimijeshni, “Dermatologist level dermoscopy

skin cancer classification using different deep learning convolutional neural networks

algorithms,” 10 2018.

[56] H. Haenssle, C. Fink, R. Schneiderbauer, F. Toberer, T. Buhl, A. Blum, A. Kalloo,

A. Hassen, L. Thomas, A. Enk, and L. Uhlmann, “Man against machine: diag-

nostic performance of a deep learning convolutional neural network for dermoscopic

melanoma recognition in comparison to 58 dermatologists,” Annals of oncology :

official journal of the European Society for Medical Oncology, vol. 29, 05 2018.

[57] K. Zhang, Q. Wu, A. Liu, and X. Meng, “Can deep learning identify tomato leaf

disease?” Advances in Multimedia, vol. 2018, pp. 1–10, 09 2018.

[58] J. Amara, B. Bouaziz, and A. Algergawy, “A deep learning-based approach

for banana leaf diseases classification,” pp. 79–88, 2017. [Online]. Available:

http://btw2017.informatik.uni-stuttgart.de/slidesandpapers/E1-10/paper web.pdf

[59] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural networks

for hyperspectral image classification,” Journal of Sensors, vol. 2015, pp. 1–12, 07

2015.

Information Technology Engineer 87 Final Grade Project

https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063
https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063
https://missinglink.ai/guides/neural-network-concepts/neural-networks-image-recognition-methods-best-practices-applications/
https://missinglink.ai/guides/neural-network-concepts/neural-networks-image-recognition-methods-best-practices-applications/
http://btw2017.informatik.uni-stuttgart.de/slidesandpapers/E1-10/paper_web.pdf

School of Mathematical and Computational Sciences YACHAY TECH

[60] H. Lee and H. Kwon, “Going deeper with contextual cnn for hyperspectral image

classification,” IEEE Transactions on Image Processing, vol. 26, pp. 1–1, 07 2017.

[61] F. S. P. Ltd. 7 APPLICATIONS OF CONVOLUTIONAL NEURAL NETWORKS.

(2019, august 28). [Online]. Available: https://www.flatworldsolutions.com/

data-science/articles/7-applications-of-convolutional-neural-networks.php

[62] H. Sharma. Activation Functions : Sigmoid, ReLU, Leaky ReLU

and Softmax basics for Neural Networks and Deep Learning. (2019,

august 29). [Online]. Available: https://medium.com/@himanshuxd/

activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e

[63] J. Bagnato, “¿cómo funcionan las convolutional neural networks? visión por

ordenador,” 2018. [Online]. Available: http://www.aprendemachinelearning.com/

como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/

[64] missinglink. aii. Fully Connected Layers in Convolutional Neu-

ral Networks: The Complete Guide. (2019, august 29). [On-

line]. Available: https://missinglink.ai/guides/convolutional-neural-networks/

fully-connected-layers-convolutional-neural-networks-complete-guide/

[65] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv 1409.1556, 09 2014.

[66] F. Huang, J. Ash, J. Langford, and R. Schapire, “Learning deep resnet blocks se-

quentially using boosting theory,” 06 2017.

[67] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Neural Information Processing Systems, vol. 25, 01

2012.

[68] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neural network

architecture for real-time semantic segmentation,” 06 2016.

Information Technology Engineer 88 Final Grade Project

https://www.flatworldsolutions.com/data-science/articles/7-applications-of-convolutional-neural-networks.php
https://www.flatworldsolutions.com/data-science/articles/7-applications-of-convolutional-neural-networks.php
https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e
https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e
http://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
http://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
https://missinglink.ai/guides/convolutional-neural-networks/fully-connected-layers-convolutional-neural-networks-complete-guide/
https://missinglink.ai/guides/convolutional-neural-networks/fully-connected-layers-convolutional-neural-networks-complete-guide/

School of Mathematical and Computational Sciences YACHAY TECH

[69] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with

deep convolutional neural networks.” pp. 1097–1105, 2012. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2999134.2999257

[70] J. Han, L. Xu, M. M. Rafique, A. Butt, and S.-H. Lim, “A quantitative study of

deep learning training on heterogeneous supercomputers,” 09 2019, pp. 1–12.

[71] B. J. (2019) How to configure the learning rate when training deep

learning neural networks. [Online]. Available: https://machinelearningmastery.

com/learning-rate-for-deep-learning-neural-networks/

[72] J. Brownlee. (2020) Understand the impact of learning rate on neural

network performance. [Online]. Available: https://machinelearningmastery.com/

understand-the-dynamics-of-learning-rate-on-deep-learning-neural-network

[73] Silva, “Implementing YOLO Algorithm for Real Time Object Detection on Embed-

ded System,” November 2019.

Information Technology Engineer 89 Final Grade Project

http://dl.acm.org/citation.cfm?id=2999134.2999257
https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/
https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-network
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-network

Appendices

90

Appendix A

Algorithms Code

In this Section, the corresponding source codes for pre-processing the data set are pre-

sented. Also the source code for implement, train and deploy the different models on the

framework caffe used in this work.

A.1 Caffe models

The original models train-val.prototxt as well as the solver.prototxt are available in the

following repository. The modified models are available here.

A.2 Scripts

A.2.1 Brightness and Contrast Variation Script

1 import cv2

2

3 f= open("list1.txt","r")

4 f1=f.readlines ()

5 for i in f1:

6 image = cv2.imread(i)

7 alpha = 1.5 # Contrast control (1.0 -3.0)

92

https://drive.google.com/drive/folders/1qGuVDenFERiDvkd4jwIHxmlfNrw65vW0?usp=sharing
https://drive.google.com/drive/folders/1F9V1Yehf9ixB0fDeQdmgjch4_eI3r5oW?usp=sharing

School of Mathematical and Computational Sciences YACHAY TECH

8 beta = 0 # Brightness control (0 -100)

9 adjusted = cv2.convertScaleAbs(image ,alpha ,beta)

10 alpha = 0.5 # Contrast control (1.0 -3.0)

11 beta = 0 # Brightness control (0 -100)

12 adjusted2 = cv2.convertScaleAbs(image ,alpha ,beta)

13 alpha = 2.5 # Contrast control (1.0 -3.0)

14 beta = 0 # Brightness control (0 -100)

15 adjusted3 = cv2.convertScaleAbs(image ,alpha ,beta)

16 cv2.imwrite(i+'out.png', adjusted)

17 cv2.imwrite(i+'out1.png', adjusted2)

18 cv2.imwrite(i+'out2.png', adjusted3)

19 f.close ()

A.2.2 Data Augmentation Script

1 #! /usr/bin/python

2

3 import numpy as np

4 import cv2

5 import os

6 import glob

7 import Augmentor

8

9 '''

10 Path TRAIN

11 '''

12 pathTrainLeafs='/DataFinal/train '

13 pathValLeafs='/DataFinal/validation '

14

Information Technology Engineer 93 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

15 def generateDataAugmented(pathSrc):

16 p=Augmentor.Pipeline(pathSrc)

17 p.rotate(probability =1,

18 max_left_rotation =5,

19 max_right_rotation =5)

20 p.random_distortion(probability =1,

21 grid_width =4, grid_height =4, magnitude =8)

22 p.flip_left_right(probability =0.5)

23 p.flip_top_bottom(probability =0.5)

24 p.zoom_random(probability =0.5, percentage_area =0.8)

25 p.flip_top_bottom(probability =0.5)

26 p.sample (35000)

27

28 generateDataAugmented(pathTrainLeafs)

29 print ("Fin Aug train ")

30 generateDataAugmented(pathValLeafs)

31 print ("Fin Aug val")

A.2.3 LMDB Creation Script

1

2 #!/ usr/bin/env sh

3 set -e

4 EXAMPLE='/DataFinal '

5 DATA='/DataFinal '

6 TOOLS='/apps/caffe /1.0.0/ build/tools/convert_imageset '

7 TRAIN_DATA_ROOT='DataFinal/train/output '

8 VAL_DATA_ROOT='DataFinal/validation/output '

9

Information Technology Engineer 94 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

10 RESIZE_HEIGHT =256

11 RESIZE_WIDTH =256

12 RESIZE=true

13

14 echo "Creating train lmdb ..."

15

16 GLOG_logtostderr =0 $TOOLS \

17 --shuffle \

18 --resize_height=$RESIZE_HEIGHT \

19 --resize_width=$RESIZE_WIDTH \

20 $TRAIN_DATA_ROOT \

21 $DATA/train.txt \

22 $EXAMPLE/leaf_train_lmdb

23

24 echo "Creating val lmdb ..."

25

26 GLOG_logtostderr =0 $TOOLS/ \

27 --shuffle \

28 --resize_height=$RESIZE_HEIGHT \

29 --resize_width=$RESIZE_WIDTH \

30 $VAL_DATA_ROOT \

31 $DATA/val.txt \

32 $EXAMPLE/leaf_val_lmdb

33

34 echo "Done."

A.2.4 Quinde Script

1 #BSUB -e bench_n_fj.%J.err.log

Information Technology Engineer 95 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

2 #BSUB -o bench_n_fj.%J.out.log

3 #BSUB -J benchmark_n.job

4 #BSUB -cwd /home/gcaluna/tesis/ResNet101/test1

5 #BSUB -q normal

6 #BSUB -n 4

7

8 module purge

9 module load cuda /8.0.61

10 module load boost /1.53.0

11 module load gcc /5.4.0

12 module load hdf5 /1.10.0

13 module load caffe /1.0.0

14

15 cd /home/gcaluna/tesis/ResNet101/

16

17 /apps/caffe /1.0.0/ build/tools/caffe train --solver

18 /home/gcaluna/tesis/ResNet101/solver.prototxt -gpu 1 2>&1 | tee

19 /home/gcaluna/tesis/ResNet101/test1/model_ResNet101_try4.log

A.2.5 Deployment Script

1 #! /usr/bin/python3

2 import sys

3 import os

4 import glob

5 import cv2

6 import caffe

7 import numpy as np

8 from caffe.proto import caffe_pb2

Information Technology Engineer 96 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

9 caffe.set_mode_cpu ()

10 '''

11 Reading mean image , caffe model and its weights

12 '''

13 #Read mean image

14 mean_blob = caffe_pb2.BlobProto ()

15 with open('/mean.binaryproto ','rb') as f:

16 mean_blob.ParseFromString(f.read ())

17 mean_array = np.asarray(mean_blob.data , dtype=np.float32).

18 reshape(

19 (mean_blob.channels , mean_blob.height , mean_blob.width))

20 #Read model architecture and trained model 's weights

21 net = caffe.Net('/deploy.prototxt ',

22 '/CNN.caffemodel ',

23 caffe.TEST)

24 #Define image transformers

25 transformer = caffe.io.Transformer ({'data':

26 net.blobs['data'].data.shape })

27 transformer.set_mean('data', mean_array)

28 transformer.set_transpose('data', (2,0,1))

29 '''

30 Making predicitions

31 '''

32 #Reading image paths

33 test_img_paths = [img_path for img_path in glob.glob ("/* JPG")]

34 #Making predictions

35 test_ids = []

36 correct_label_ids = []

37 preds = []

Information Technology Engineer 97 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

38 for img_path in test_img_paths:

39 print ('reading ' + img_path + '...')

40 img = cv2.imread(img_path)

41 net.blobs['data'].data[] = transformer.preprocess('data',img)

42 out = net.forward ()

43 pred_probas = out['prob']

44 print ([img_path.split('/')[-1][: -4]])

45 test_ids = test_ids + [img_path.split('/')[-1][: -4]]

46 preds = preds + [pred_probas.argmax ()]

47 path , extension=img_path.split('.')

48 correct_label_ids=correct_label_ids + [path [-1][-1]]

49 print (img_path)

50 print ('Label: '+

51 getLabelTextByNumber(int(path [-1][-1])))

52 print ('Prediction: ' +

53 getLabelTextByNumber(pred_probas.argmax ()))

54 print ('-------')

55 with open ("/ prediction.csv","w") as f:

56 f.write("id,label , prediction\n")

57 for i in range(len(test_ids)):

58 f.write(str(test_ids[i])+" ,"+

59 str(correct_label_ids[i])+" ,"+

60 str(preds[i])+"\n")

61 f.close ()

All the source code of the scripts used to perform the data pre-processing and to imple-

ment, train and deploy the models are available here.

Information Technology Engineer 98 Final Grade Project

https://drive.google.com/drive/folders/12FwSbmugzN9-rnTHzY1khI_IDak9THRJ?usp=sharing

School of Mathematical and Computational Sciences YACHAY TECH

A.3 Graphic Interface

The source code of the graphic interface is available in the following site.

Information Technology Engineer 99 Final Grade Project

https://drive.google.com/drive/folders/1ZUz2MuElisIB1-mS1AEOEEzZ1JklZ-Ho?usp=sharing

	Introduction
	Problem Statement
	Scope of the Project
	Thesis overview

	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework of Deep Learning for Image Classification
	Concepts
	Image classification
	Applications
	Challenges

	Deep Learning-based Techniques
	Convolutional Neural Networks (CNN): Theoretical Foundation
	CNN Layers
	CNN Common Problems with CNNs
	CNN Phases

	CNN Learning Frameworks

	Methodology
	Models Selection
	 ZFnet Achitecture
	GoogLeNet - Inception V1
	GoogleNet-Inception V3
	ResNet 50 & ResNet 101

	Hardware & Software Selection
	Hardware tools
	Software tools

	Data Preparation
	Original Data Set

	Training & Tuning
	Definition of the CNN Model Structure
	Tuning of the Training hyper-parameters
	Training of the Model on the Supercomputer `Quinde I'

	Deployment

	Experimental Setup
	Metrics
	Experiments
	Experiment 1: Training with Raw Data
	Experiment 2: Training with Pre-processing
	Experiment 3: Fine Tune Training

	Results
	Experiments
	Experiment 1: Training with raw data
	Experiment 2: Training with pre-processing
	Experiment 3: Fine Tune Hyper-parameters
	Additional Results

	Conclusions and Future work
	References
	Appendices
	Algorithms Code
	Caffe models
	Scripts
	Brightness and Contrast Variation Script
	Data Augmentation Script
	LMDB Creation Script
	Quinde Script
	Deployment Script

	Graphic Interface

