

UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: Development of a Tropical Algebraic Geometry
package in the Haskell programming language

Autor:

Zhapa Camacho Fernando Patricio

Tutor:

Ph.D. Antón Castro Francesc

Urcuqúı, julio de 2020

Autoŕıa

Yo, Fernando Patricio Zhapa Camacho, con cédula de identidad 1104136138, decla-

ro que las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones

y conceptualizaciones expuestas en el presente trabajo; aśı como, los procedimientos y he-

rramientas utilizadas en la investigación, son de absoluta responsabilidad de el/la autor(a)

del trabajo de integración curricular. Aśı mismo, me acojo a los reglamentos internos de

la Universidad de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, julio 2020.

Fernando Patricio Zhapa Camacho

CI: 1104136138

Autorización de publicación

Yo, Fernando Patricio Zhapa Camacho, con cédula de identidad 1104136138, cedo

a la Universidad de Tecnoloǵıa Experimental Yachay, los derechos de publicación de la

presente obra, sin que deba haber un reconocimiento económico por este concepto. Declaro

además, que el texto del presente trabajo de titulación no podrá ser cedido a ninguna em-

presa editorial para su publicación u otros fines, sin contar previamente con la autorización

escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este tra-

bajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto en el

Art. 144 de la Ley Orgánica de Educación Superior.

Urcuqúı, julio 2020.

Fernando Patricio Zhapa Camacho

CI: 1104136138

Dedication

To my parents Carmita and Patricio, for teaching me the value of real freedom and re-

sponsibility. Their unconditional support and love had led me to this moment and place.

To Andrés, who no matter how old he is, he will always be my little brother.

To Evelyn, who is a special part of my life.

To Atuk, my son, that piece of life that has remembered me how it is to be a child and, at

the same time, has encouraged me to grow.

i

ii

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Dr. Francesc Antón

Castro, for introducing me to the field of computational algebraic geometry and accepting

to supervise this thesis project. The development of this work could not be possible without

his continuous support, help and availability and patience, as well as his guidance in the

development of the algorithms and encouragement of working in functional programming

languages. I would like to thank the members of my thesis committee, Drs. Juan Mayorga

and Fredy Cuenca, for their valuable comments and suggestions.

I would like to express my most sincere gratitude to my colleague Anthony Ramos for

his continuous support, comments and help during the development of this project. His

interest in my project was invaluable. Thanks to him, I knew about the Tropical Differential

Algebra Workshop, in which I could present my thesis. I would like to acknowledge my

colleague Darwin Tallana for his help in explanations of the mathematical concepts that

were hard for me to understand.

I would like to thank Drs. Alex Fink and Zeinab Toghani for helping me to attend the

Tropical Differential Algebra Workshop and present my thesis project. It was an enriching

experience that allowed me to understand tropical geometry better. I would like to thank

the people in the workshop who supported my project and helped me with all the doubts

that I had about tropical geometry. Mainly, I would like to express my gratitude to Dr.

Yue Ren for his valuable comments and suggestions about my thesis and his help in the

Polymake software that was used for comparison.

I would like to express my gratitude to Dr. Hiromi Ishii for his help in functional pro-

gramming and his availability to answer my questions. He explained to me the importance

of dependent typing and his work on the computational-algebra package was the base

for my package in terms of the polynomial data type.

iii

iv

Abstract

Tropical geometry is a growing area in mathematics because it has many applications

in optimization, enumerative algebra, and combinatorics. On the other hand, functional

programming has grown its popularity in recent years because its inherent properties like

pattern matching, algebraic data types, parametric polymorphism make it more suitable

than imperative programming for some purposes. Thus, although some packages exist for

tropical geometry computations, there is not any developed in a functional paradigm.

The main objective of this work is to develop a tropical geometry package implemented

in a functional paradigm by choosing the Haskell programming language. We start by de-

scribing the necessary mathematical background that we used to develop the package. This

background includes topics in tropical numbers, algebraic geometry, and polyhedral geom-

etry. After that, we describe the computational aspects such as the functional paradigm

properties, data types, functions and testing. Furthermore, we provide explanations of

the main algorithms used for the computation of tropical hypersurfaces, which is the main

result obtained in this project. Finally, we observed that the computation of n-dimensional

convex hull is required, and we proposed it as future work.

Keywords: tropical geometry, functional programming, tropical hypersurfaces

v

vi

Resumen

La geometŕıa tropical es un área creciente en matemática porque tiene muchas aplica-

ciones en optimización, álgebra enumerativa y combinatoria. Por otro lado, la programación

funcional ha aumentado su popularidad en los últimos años debido a que sus propiedades

como la búsqueda de patrones, los tipos de datos algebraicos y el polimorfismo paramétrico,

lo hacen más adecuado que la programación imperativa para ciertos fines. Por lo tanto, a

pesar del hecho de que existen algunas libeŕıas para cálculos en geometŕıa tropical, no hay

ninguna desarrollada bajo un paradigma funcional. El objetivo principal de este trabajo

es desarrollar un paquete de geometŕıa tropical implementado en un paradigma funcio-

nal eligiendo el lenguaje de programación Haskell. Para esto, comenzamos describiendo el

fundamento matemático necesario que utilizamos para desarrollar la libreŕıa. Entre los te-

mas revisados se incluyen: números tropicales, geometŕıa algebraica y geometŕıa poliédrica.

Asimismo, describimos los aspectos computacionales, como las propiedades del paradigma

funcional, los tipos de datos, las funciones y los casos de prueba. Además, proporcionamos

la explicacion de los principales algoritmos utilizados para el cálculo de las hipersuper-

ficies tropicales, el cual es el resultado principal obtenido en este proyecto. Finalmente,

mencionamos el posible trabajo futuro, en el cual se incluye principalemnte al cálculo del

envolvente convexo n-dimensional.

Palabras clave: geometŕıa tropical, programación funcional, hipersuperficies tropica-

les.

vii

viii

Índice general

Dedication i

Acknowledgments iii

Abstract v

Resumen vii

Índice general ix

Índice de cuadros xi

Índice de figuras xiii

1. Introduction 1

1.1. Problem statement . 1

1.2. Motivation . 2

1.3. Objectives . 2

1.4. Outline of research and development . 3

2. Theoretical framework 5

2.1. Mathematical background . 5

2.1.1. Tropical Arithmetic . 5

2.1.2. Tropical Polynomials . 8

2.1.3. Tropical Algebraic Geometry . 12

2.1.4. Polyhedral geometry . 18

2.2. Computational background . 20

2.2.1. Computational Geometry . 20

2.2.2. Functional Programming . 22

ix

2.3. Software Engineering Background . 23

3. Methodology 25

3.1. The Data Model . 25

3.1.1. Arithmetic data types . 25

3.1.2. Algebraic Data Types . 26

3.1.3. Geometric Data Types . 26

3.2. Algorithms . 27

3.2.1. Convex Hull algorithm . 27

3.2.2. Subdivision algorithm . 32

3.2.3. Tropical Hypersurface . 33

3.3. Software Engineering Aspects . 36

3.3.1. Dependencies . 36

3.3.2. File structure of the library . 37

3.3.3. Installation . 37

3.3.4. Tutorial . 38

4. Results 41

4.1. Test set . 41

4.2. Comparison with other software . 45

5. Discussion and Conclusions 47

5.1. Results analysis . 47

5.2. Conclusion . 48

5.3. Further work . 48

Appendices 50

References . 63

Bibliograf́ıa 65

x

Índice de cuadros

4.1. Vertices and rays for f1 . 42

4.2. Vertices and rays for f2 . 42

4.3. Vertices and rays for f3 . 43

4.4. Vertices and rays for f4 . 44

4.5. Vertices and rays for f5 . 44

4.6. Comparison between Polymake and our package for polynomials f1, ..., f8. . 45

xi

xii

Índice de figuras

2.1. Graph of the tropical polynomial p(x) = 5 ⊕ 1x ⊕ (−1)x2 = mı́n{5, x +

1, 2x− 1} and its roots. 9

2.2. Curve of the tropical line trop(l(x, y)) = x⊕ y ⊕ a 17

2.3. Representation of a tropical variety generated by two tropical lines 18

2.4. Polyhedral complex and polyhedral fan . 19

2.5. 1-skeleton of a polyhedral complex of dimension 2. 20

2.6. Example of a convex hull in R2 . 21

2.7. Lower face of polyhedra . 21

3.1. Representation of left and right turns . 28

3.2. Representation of Graham Scan algorithm. 29

3.3. Four points forming a tetrahedron. 29

3.4. Generating new facets from the horizon to a new point 30

3.5. Representation of a point, pi+1, that is coplanar to a face f . The new face

is an extension of f . 30

3.6. Twin edges that connect two facets. 31

3.7. Representation of a subdivision from a convex hull of dimension 3 into a

subdivided polygon of dimension 2. 33

3.8. Representation of the inner normal fan of a triangle. 34

3.9. Lower faces of the Newton polytope of g 35

3.10. Representation of the tropical hypersurface of g from the subdivision of a

triangle. 36

3.11. File structure of the package . 37

4.1. Tropical hypersurface for f1, trop(f1) . 42

4.2. Tropical hypersurface for f2, trop(f2) . 43

4.3. Tropical hypersurface for f3, trop(f3) . 43

4.4. Tropical hypersurface for f4, trop(f4) . 44

4.5. Tropical hypersurface for f5, trop(f5) . 44

xiii

4.6. Comparison between Polymake and our package for polynomials f1, ..., f8 . 46

xiv

Caṕıtulo 1

Introduction

1.1. Problem statement

Tropical arithmetic is defined over the semi-ring1 (R ∪ {∞},mı́n,+). Thus, summing

two tropical numbers means computing their minimum and multiplying them is equivalent

to compute their sum [1]. This area is relatively new and has applications in problems

such as shortest-path, assignment, linear optimization and topics in algebraic geometry.

Tropical arithmetic is a well-known field compared to tropical algebra or tropical geometry

due to its mathematical simplicity, which is given by the fact that tropical arithmetic is

limited to numbers and matrices, leaving outside most of the aspects of the tropical world.

The disciplines built on tropical arithmetic are tropical algebra and tropical geometry.

Research on these fields has been growing in the last years since the process of tropicalizing

classical algebra problems, when the tropicalization exists, makes them easier to deal with

[2]. Therefore, computational tools are starting to appear. However, there is not any package

implemented in a functional programming language.

Several packages and libraries have been developed until now. Sparse Tropical Algebra

[3] is a package developed for the R language, which subscribes to the imperative paradigm.

This package consists of an implementation of tropical linear algebra operations. BTAS [4]

is analogous of the BLAS library for tropical algebra. That is, BTAS is a parallel vector

library to perform matrix computations using CUDA. For the testing of the library, they

use the Floyd-Warshall algorithm, which is based on matrix multiplications to find the

shortest path in a graph. Gfan [5] goes further: it is a package for computing Gröbner

fans and tropical varieties written in C and C++. This package is more related to tropical

algebra and tropical geometry and has been embedded into Singular [6]. Another related

1A formal definition for semi-rings is given in Chapter 2 in Definition 3.

1

School of Mathematical and Computational Sciences YACHAY TECH

package is Polymake [7], which computes hypersurfaces in n dimensions using the Gfan

package.

The purpose of this research is to develop a package of tropical arithmetic, tropical

algebra and tropical geometry for scientists that need a computing tool in this area. The

language for the development is the functional programming language Haskell since it is

easy to represent mathematical concepts, and function composition is the base of the flow

of computations.

1.2. Motivation

In computer science, there exist two big groups of programming languages. The first

group consists of those languages that come from the development of the Turing machine,

and its computations are based on sequences of instructions: imperative languages. The se-

cond group is composed of those that come from the development of lambda calculus, and

its computations are based on function composition: functional languages. Even though

imperative languages are the most used in industry and academy, functional languages,

especially Haskell, have been growing their popularity and are being used by many com-

panies and institutions around the world [8]. To this end, many packages have started to

appear for programmers in different areas: games, GUI, data analysis, artificial intelligence

and computer algebra.

The latter hides a great feature; it turns out that the Haskell programming language

is based on category theory, which has eased the binding of mathematical concepts. One

example is the package algebra [9], which implements algebraic structures as data types

such as fields, groups or rings. From this package, some other packages of computer algebra

have been developed. One example is the computational-algebra package [10] that is

useful to compute Gröbner basis.

Tropical geometry is a growing area in mathematics. Computations are needed to be

done in some aspects, and packages are starting to appear. However, in functional langua-

ges, there is not any package of tropical geometry. Then, the motivation of this project is to

start a package of tropical geometry, which is a raising area in mathematics, in a functional

language like Haskell, which is a raising programming language in computer science.

1.3. Objectives

The objectives of the package developed in this project are:

Information Technology Engineer 2 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Implement the necessary data types to deal with tropical numbers, matrices and

polynomials.

Implement the necessary functions and class instances to make the data types behave

properly in terms of tropical operations.

Implement an algorithm to compute the tropical hypersurface of a polynomial.

1.4. Outline of research and development

In Chapter 2, we present the necessary theoretical aspects in terms of mathematics and

computer science. We go through concepts in algebra like polynomials rings or fields with a

valuation, concepts in algebraic geometry such as variety and ideal. Also, we review some

aspects of polyhedral geometry like polyhedral complex, cells, k-skeleton, k-face, which

are essential to deal with tropical polynomials and the tropicalization from the Laurent

polynomials.

The other part of the research, which is the computational part, is presented in Chapter

2 as well. We start by introducing what functional programming is and why we use the

Haskell programming language for this package. Since the final product of this research is

a package, we introduce some software engineering concepts like Test-Driven Development

(TDD) and package versioning.

Then, in Chapter 3, we first present the Algebraic Data Types used in the package.

We present the main implemented algorithms in order to compute the hypersurfaces of a

tropical polynomial: convex hull in 2 dimensions, convex hull in 3 dimensions, subdivision

and tropical hypersurface of a polynomial. Finally, we present the libraries of Haskell used

for the testing, the tools used for documentation, and where the package will be hosted.

In Chapter 4, we present the test examples performed in the package. We show the

results and the corresponding figures to help to a better understanding.

Finally, in Chapter 5, we refer to the limitations of the package and what further re-

search and development should focus on. We also remark the advantages of using functional

programming features like ADTs, dependent typing, laziness and immutability.

Information Technology Engineer 3 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer 4 Final Grade Project

Caṕıtulo 2

Theoretical framework

In this chapter, we introduce the necessary concepts. The chapter starts with the ne-

cessary mathematical background. Then, we introduce the computational background, and

then we finish with some concepts about software engineering that we used in the imple-

mentation of the code.

2.1. Mathematical background

In this section, we introduce the mathematical concepts that will be covered in the

package. As tropical algebra is a new area, some definitions are still under study using

classical algebra as a base to define properties for tropical algebra.

2.1.1. Tropical Arithmetic

Definition 1 (Binary or internal operation [11]) A binary or internal operation �

on a set A is the following mapping:

� : A×A → A

(x, y) 7→ x� y

Therefore, for each pair of elements a, b ∈ A, it corresponds a unique element a�b ∈ A

Definition 2 (Monoid [12]) A monoid (M,�) is a nonempty set M with a binary ope-

ration � that fulfills the following axioms:

5

School of Mathematical and Computational Sciences YACHAY TECH

(Associativity) ∀m,n, p ∈M : m� (n� p) = (m� n)� p

(Identity element) ∃e ∈M,∀m ∈M : m� e = e�m = m

In a monoid (M, ∗), if the operation ∗ commutes (i.e, ∀a, b ∈ M, a ∗ b = b ∗ a), then

M is called a commutative monoid.

Definition 3 (Semiring [12]) A semiring (R,⊕,⊗) is a nonempty set R on which the

additive and multiplicative operations are defined such that: (1) (R,⊕) is a commutati-

ve monoid with identity element 0, (2) (R,⊗) is a monoid with identity element 1, (3)

multiplication distributes over addition, and (4) the neutral element 0 is absorbing (i.e,

0× a = a× 0 = 0,∀a ∈ R).

Tropical arithmetic is defined over the semiring (R ∪ {∞},mı́n,+). Thus, the first

internal operation corresponds to compute the minimum and the second internal operation

is addition [1]. Here,

∀a ∈ R : mı́n(a,∞) = a

∀a ∈ R : a+∞ =∞

For all a, b ∈ R∪ {∞}, we denote a⊕ b = mı́n{a, b} and a⊗ b = a+ b. We can see that

the tropical semiring meets the four properties of a semiring since:

1. (R ∪ {∞},⊗) is a commutative monoid with identity element ∞:

(Associativity) For all a, b, c ∈ R ∪ {∞},

(a⊕ b)⊕ c = mı́n(mı́n(a, b), c)

= mı́n(a, b, c)

= mı́n(a,mı́n(b, c))

= a⊕ (b⊕ c).

(2.1)

(Commutativity) For all a, b ∈ R ∪ {∞},

a⊕ b = mı́n(a, b)

= mı́n(b, a)

= b⊕ a.

(2.2)

Information Technology Engineer 6 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

(Identity) For all a ∈ R ∪ {∞}, we have the identity element ∞, such that

a⊕∞ = mı́n(a,∞)

= a.
(2.3)

2. (R ∪ {∞},⊗) is a monoid with identity element 0:

(Associativity) For all a, b, c ∈ R ∪ {∞},

(a⊗ b)⊗ c = (a+ b) + c

= a+ b+ c

= a+ (b+ c)

= a⊗ (b⊗ c).

(2.4)

(Commutativity) For all a, b ∈ R ∪ {∞},

a⊗ b = a+ b

= b+ a

= b⊗ a.

(2.5)

(Identity) For all a ∈ R ∪ {∞}, we have the identity element 0, such that

a⊗ 0 = a+ 0

= a.
(2.6)

3. Multiplication distributes over addition. For all a, b, c ∈ R ∪ {∞},

a⊗ (b⊕ c) = a+ mı́n(b, c)

= mı́n(a+ b, a+ c)

= (a⊗ b)⊕ (a⊗ c).

(2.7)

4. The neutral element ∞ is absorbing: ∞⊗ a = a⊗∞ = a+∞ =∞,∀a ∈ R.

Information Technology Engineer 7 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

2.1.2. Tropical Polynomials

Based on classical polynomials, tropical polynomials in one variable have the form

p : R ∪ {∞} → R ∪ {∞} given by

p(x) = a0 ⊕ a1x⊕ a2x2 ⊕ · · · ⊕ anxn (2.8)

where each term aix
i means the tropical product ai⊗xi. Thus, p(x) is equivalent in classical

algebra to

mı́n{a0, x+ a1, 2x+ a2, . . . , nx+ an}, (2.9)

which is the minimum of n linear functions.

For the sake of illustration, let us represent the quadratic polynomial:

p(x) = a⊕ bx⊕ cx2 = mı́n{a, b+ x, c+ 2x} (2.10)

The points where the function has sharp edges anymore are considered as the roots of

the polynomial. In [1], it is shown that if b − a ≤ c − b, then the roots of the quadratic

polynomial are given by the set:

V (p) = {a− b, b− c}. (2.11)

Example 1 Consider the following tropical quadratic polynomial:

p(x) = 5⊕ 1x⊕ (−1)x2 = mı́n{5, x+ 1, 2x− 1}

In this polynomial a = 5, b = 1, c = −1. It can be seen that b − a = −4 and c − b = −2.

Therefore, we can say, recalling Equation 2.11 that the roots are:

V (p) = {2, 4}

In Figure 2.1 we can see the representation of this example.

In general, the set of roots of a polynomial p is called the hypersurface of p and is

denoted as V (p). When we deal with polynomials with a higher number of variables, the

computation of the hypersurface is not as simple as in the case of polynomials in one

Information Technology Engineer 8 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figura 2.1: Graph of the tropical polynomial p(x) = 5⊕1x⊕(−1)x2 = mı́n{5, x+1, 2x−1}
and its roots.

variable. To introduce the concept of tropical hypersurface more formally, let us define two

previous concepts: field and ring.

Definition 4 (Field [13]) A field (K,⊕,⊗) is a nonempty set K and two binary opera-

tions ⊕ and ⊗ defined on K for which the following conditions are satisfied:

i) (Associativity) For all a, b, c ∈ K,

(a⊕ b)⊕ c = a⊕ (b⊕ c),

(a⊗ b)⊗ c = a⊗ (b⊗ c).

ii) (Commutativity) For all a, b ∈ K,

a⊕ b = b⊕ a,

a⊗ b = b⊗ a.

iii) (Distributivity of ⊗ over ⊕) For all a, b, c ∈ K,

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

Information Technology Engineer 9 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

iv) (Identities) There are e, ẽ ∈ K such that a⊕ e = a⊗ ẽ = a,∀a ∈ K.

v) (Additive inverses) Given a ∈ K, there is b ∈ K such that a⊕ b = e.

vi) (Multiplicative inverses) Given a ∈ K, there is b ∈ K such that a⊗ b = ẽ.

Definition 5 (Ring [13]) A ring (R,⊕,⊗) is a nonempty set R and two binary opera-

tions ⊕ and ⊗ defined on R for which the following conditions are satisfied:

i) (Associativity) For all a, b, c ∈ R,

(a⊕ b)⊕ c = a⊕ (b⊕ c),

(a⊗ b)⊗ c = a⊗ (b⊗ c).

ii) (Commutativity) For all a, b ∈ R,

a⊕ b = b⊕ a,

a⊗ b = b⊗ a.

iii) (Distributivity of ⊗ over ⊕) For all a, b, c ∈ R,

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

iv) (Identities) There are e, ẽ ∈ R such that a⊕ e = a⊗ ẽ = a,∀a ∈ R.

v) (Additive inverses) Given a ∈ R, there is b ∈ R such that a⊕ b = e.

If a ring R happens to be commutative, then it is called a commutative ring.

The set of regular polynomials forms a ring. It is important to remark that the set

of regular polynomials does not form a field because the condition of the multiplicative

inverse is missing, e.g, the multiplicative inverse of the polynomial f(x) = x is 1
x
, which is

not a polynomial. We denote a polynomial ring as K[x1, ..., xn] where K is the field where

the coefficients of the monomials belong and x1, ..., xn are the variables considered in the

polynomial.

Information Technology Engineer 10 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Definition 6 (Tropical hypersurface [1]) Let us f ∈ K[x1, . . . , xn] be a regular poly-

nomial. The tropical hypersurface trop(V (f)) is the set

trop(V (f)) = {a ∈ Kn : such that the minimum in trop(f)(a) is achieved at least twice.}

(2.12)

Example 2 For this example, we use the concept of valuation that is introduced in the next

section. Consider the polynomial f ∈ Q[x], f = 32 + 2x+
1

2
x2. Its tropicalization using the

2-adic valuation is trop(f) = 5⊕ 1x⊕ (−1)x2 which can be expressed as in Example 1:

trop(f)(x) = mı́n{5, 1 + x,−1 + 2x}

. Notice that in Example 1 the polynomial p is the tropicalization of f in this example.

In Example 1 we say that the hypersurface of p is the set {2, 4}. According to the

Definition 6, the set trop(V (f)) = {2, 4} corresponds to the points in which the function

trop(f) gets its minimum at least twice. Let us see how this happens:

trop(f)(2) = mı́n{5, 1 + 2,−1 + 2 · 2}

= mı́n{5, 3, 3}

= 3

trop(f)(4) = mı́n{5, 1 + 4,−1 + 2 · 4}

= mı́n{5, 5, 8}

= 5

We can see that in trop(f)(2), the minimum is 3 and is achieved in two of the three

linear functions. The same thing happens in trop(f)(5) where the minimum is 5. If we test

other values, we can see that the minimum is only achieved one time, therefore they are

not roots, e.g:

Information Technology Engineer 11 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

trop(f)(0) = mı́n{5, 1 + 0,−1 + 2 · 0}

= mı́n{5, 1,−1}

= −1

2.1.3. Tropical Algebraic Geometry

We recall the definition in [13] of a variety in classical algebraic geometry:

Let K be a field and f1, . . . , fs be polynomials in K[x1, . . . , xn] such that fi : K → K,

then the set

V (f1, . . . , fs) =
{

(a1, . . . , an) ∈ Kn : fi (a1, . . . , an) = 0, for all 1 ≤ i ≤ s
}

is called the variety defined by f1, . . . , fs.

Thus, a variety is the set of points on which all the polynomials of the system vanish.

In general, s should be less than n to ensure a nonempty variety. Following this definition,

tropical varieties are formed through a process of tropicalization of a classical variety. In

[1], it is shown how to tropicalize a variety. For this purpose, some previous concepts

are necessary. The concepts described further in this subsection are taken from [1] unless

another reference is explicitly referred.

Definition 7 (Totally ordered set [14]) A set S is said to be totally ordered if there is

a binary relation ≤, called total order, that fulfills the following conditions:

i) (Transitivity) If there exist elements a, b, c ∈ S such that a ≤ b and b ≤ c, then a ≤ c.

ii) (Antisymmetry) If there exist a, b ∈ S such that a ≤ b and b ≤ a, then a = b.

iii) (Connexity) For all a, b ∈ S, a ≤ b or b ≤ a

Remark 1 In Definition 7, if only the first condition is fulfilled, S is called a preordered

set. If the first and second conditions are fulfilled S is called a partially ordered set.

Remark 2 A totally ordered group is a group equipped with a total order.

Definition 8 (Valuation [15]) Let us consider a ring R (not neccessarily commutative)

and Γ, a totally ordered group. We call valuation of R with values in Γ any application

val : R → Γ satisfying the following three conditions:

Information Technology Engineer 12 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

i) val(a) =∞ ⇔ a = 0,

ii) val(ab) = val(a) + val(b), ∀a, b ∈ R,

iii) val(a+ b) ≥ mı́n{val(a), val(b)}, ∀a, b ∈ R.

Remark 3 In general, we need to consider the valuation val with its restriction K∗ →

R ∪ {∞}.

Remark 4 Valuations are also defined for fields. Indeed, for tropical geometry, we use

valuations over fields such as Piuseux series and rational numbers. Every field K has the

trivial valuation val(a) = 0, ∀a ∈ K − {0}.

In the case of the Puiseux series, the valuation corresponds to the lowest exponent that

appears in the series.

Example 3 Let’s take a Puiseux series P with coefficients in the complex numbers. P has

the form:

P (t) = c1t
α1 + · · · cntαn ,

where ci are the coefficients and α1 < · · · < αn. Then

val(P) = α1 (2.13)

For the case of rational numbers, we use p-adic valuation. This is, given a prime number

p and an element q ∈ Q∗, we rewrite q as

q = pn
a

b
,

where a, b ∈ Z, p does not divide neither a nor b. Then,

val(q) = n (2.14)

Example 4 Consider a 2-adic valuation of the following numbers: 6, 8
3
, 1

4
. The valuations

Information Technology Engineer 13 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

are:

val(6) = 21 · 3 = 1,

val(8/3) = 23 · 1

3
= 3,

val(1/4) = 2−2 · 1 = −2.

It is important to say that the image of val is an additive subgroup1 Γval of the real

numbers R, called the value group of (R, val) [1]. It is also important to mention that

the valuation allows us to pass from classical arithmetic to tropical arithmetic, this will

help us in the future with the process of tropicalization of a classical variety.

The concept of valuation is essential to tropicalize a polynomial because it works on

the field or ring of coefficients. To tropicalize the monomials, we need to use the Laurent

polynomials because they allow negative exponents.

Definition 9 (Laurent polynomials) A Laurent polynomial is defined in the polynomial

ring K[x±11 , . . . , x±1n] and is of the form

f =
n∑
i=0

aix
αi1
1 · · · xαin

n αij ∈ Z. (2.15)

Example 5 An example of a Laurent polynomial can be the the following polynomial f ∈

R[x±1, y±1]:

f(x, y) = x+ y2 + x−1 − 4xy−1

The point here is that the polynomial accepts negative exponents for the variables.

With definitions 8 and 9 we can now go to the concept of tropicalization of a polynomial.

Definition 10 (Tropicalization) Let f =
n∑
i=0

aix
αi1
1 · · ·xαin

n belong to the polynomial ring

K[x1, . . . , xn], where K is a field with a non trivial valuation. The tropicalization of f ,

denoted as trop(f), is:

1This is because, according to ii in Definition 8, a valuation is a homomorphism from (R∗, ·) to (R ∪
{∞},+).

Information Technology Engineer 14 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

trop(f) = mı́n
0≤i≤n

{val(ai) + αi1x1 + · · ·+ αinxn.} (2.16)

Example 6 Let f ∈ R[x, y, z] be a polynomial given by the equation f = 4x2 +8y2−6xy+

2x+ 12y − 16. Let’s assume the 2-adic valuation for the field R. The tropicalization of f ,

denoted as trop(f), is showed in the following process:

f = 4x2 + 8y2 − 6xy + 2x+ 12y − 16

The coefficients are 4,8,−6,2,12,−16. Then, using the valuation showed in Equation

2.14, the valuations are:

val(4) = 22 · 1 = 2,

val(8) = 23 · 1 = 3,

val(−6) = 21 · (−3) = 1.

val(−2) = 21 · (−1) = 1.

val(12) = 22 · 3 = 2.

val(16) = 24 · 1 = 4.

which produce the following tropical polynomial:

trop(f) = mı́n{2 + 2x, 3 + 2y, 1 + x+ y, 1 + x, 2 + y, 4.}

trop(f) = (2⊗ x2)⊕ (3⊗ y2)⊕ (1⊗ x⊗ y)⊕ (1⊗ x)⊕ (2⊗ y)⊕ (4)
(2.17)

Example 7 Let g ∈ K[x, y] be a polynomial given by the equation g = 3tx2 + 5xy− 7ty2 +

8x − y + t2 where the field K is the field of Puiseux series, which consists on polynomials

over the variable t. The tropicalization of g, denotes as trop(g), is showed below:

g = 3tx2 + 5xy − 7ty2 + 8x− y + t2

The coefficients are 3t, 5,−7t, 8,−1, t2. Then, using the valuation showed in Equation

Information Technology Engineer 15 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

2.13, the valuations are:

val(3t) = 1

val(5) = 0

val(−7t) = 1

val(8) = 0

val(−1) = 0

val(t2) = 2

which produce the following tropical polynomial:

trop(g) = mı́n{val(3t) + 2x, val(5) + x+ y, val(−7t) + 2y,

val(8) + x, val(−1) + y, val(t2)}

trop(g) = mı́n{1 + 2x, x+ y, 1 + 2y, x, y, 2}

trop(g) = (1⊗ x2)⊕ (x⊗ y)⊕ (1⊗ y2)⊕ (x)⊕ (y)⊕ (2)

This kind of polynomials are used in Chapter 4 for showing the results.

To define a tropical variety, we use the tropicalization of a classical variety given by

an ideal I [16]. That is, given a variety V (I), its tropicalization is the intersection of the

tropicalizations of all the polynomials that generate the ideal I.

Definition 11 (Ideal [13]) A subset I ⊂ K[x1, ..., xn] is and ideal if the following condi-

tions are satisified:

i) 0 ∈ I

ii) For all f, g ∈ I, f + g ∈ I

iii) For all f ∈ I and for all h ∈ K[x1, ..., xn], fh ∈ I and hf ∈ I

Definition 12 (Tropical Variety) Let I be an ideal in K[x±1] and let X = V (I) be its

variety. The tropicalization trop(X) of the variety X is the intersection of all the tropical

hypersurfaces defined by Laurent polynomials in the ideal I:

Information Technology Engineer 16 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

trop(X) =
⋂
f∈I

trop(V (f)). (2.18)

However, Equation 2.18 does not always hold. More specifically, if it holds, then the set

{f1,fn} ∈ I is called a tropical basis for I. Thus, it is more precise to say that a finite

intersection of tropical hypersurfaces is a tropical prevariety.

To understand how a tropical variety or prevariety looks like, let us introduce a simple

tropical geometric construction: the tropical line. Consider the tropical line trop(l(x, y)) =

x⊕y⊕a. The tropical hypersurface trop(V (l)) is the set in which the minimum is achieved

at least twice. For the tropical line we have the following:

trop(l(x, y)) = mı́n{x, y, a}

which translates to the following systems of inequalities:

x = y ≤ a

x = a ≤ y

y = a ≤ x

(2.19)

The Equation 2.19 produces the curve seen in Figure 2.2. Using the concept of the

tropical line, we are going to show the tropical variety generated by two tropical lines.

Figura 2.2: Curve of the tropical line trop(l(x, y)) = x⊕ y ⊕ a

Information Technology Engineer 17 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Example 8 Consider the tropical lines l1 = x⊕y⊕0 and l2 = (2⊗x)⊕ (−1⊗y)⊕ (1). In

Figure 2.3 we can see a graphical representation of these tropical lines. The hypersurface

of l1 is the red tropical line. The hypersurface of l2 is the green tropical line. The variety/-

prevariety generated by the two lines is the single point (0,2). Therefore, we can say that

Equation 2.18 is fulfilled here:

trop(V (l1, l2)) = trop(V (l1)) ∩ trop(V (l2))

The decidability of whether trop(V (l1, l2)) is a variety or prevariety is out of the scope

of this work. Remember that trop(V (l1, l2)) would be a variety if the ideal generated by l1, l2

is a basis.

Figura 2.3: Representation of a tropical variety generated by two tropical lines

2.1.4. Polyhedral geometry

The principal objective of this work is to implement an algorithm to compute the

tropical hypersurface of a polynomial. Then, by intersecting hypersurfaces from several

polynomials of an ideal I, we can compute the tropical variety I. For this purpose, we

need to understand how to form the tropical curves. Then, in this section, the necessary

concepts about polyhedral geometry are introduced in order to explain the algorithms in

Information Technology Engineer 18 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

the methodology section. The definitions and concepts given in this section are taken from

[1] and [17].

Definition 13 (Polyhedral Complex) Let us consider a polyhedron P of Rn and let us

consider a face f of this polyhedron. Then, a polyhedral complex is a collection Σ of

polyhedra satisfying the following conditions:

i) If P ∈ Σ, then for all f ∈ P , f ∈ Σ,

ii) If P ∩Q = f, then f ∈ P ∧ f ∈ Q,∀f 6= ∅.

Definition 13 says that every face of a polyhedron that is in the polyhedral complex must

be a face in the complex. The next condition says that the intersection of two polyhedra

P ,Q can result into a non-empty face f, and that face must belong to P and Q
When we work with tropical polynomials, we deal with a particular case of a polyhedron,

a cone, and the collection of polyhedral cones forms a polyhedral fan. In Figure 2.4a, we

can see some polyhedra that are part of a polyhedral complex, and in Figure 2.4b, we can

see some cones that are part of a polyhedral fan.

(a) Polyhedra and polyhedral complex (b) Cones and polyhedral fan

Figura 2.4: Polyhedral complex and polyhedral fan

Definition 14 (Cells) The polyhedra in a polyhedral complex Σ are called the cells of Σ.

Information Technology Engineer 19 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Definition 15 (k-face) Given a polytope of dimension d. A k-face of a polyhedral com-

plex Σ is a polytope of dimension k ≤ d.

Remark 5 A 0-face is called a vertex, a 1-face is called an edge, a d − 1 face is called a

facet and a d− 2 face is called a ridge [17].

Definition 16 (k-skeleton) The k-skeleton of a polyhedral complex Σ of dimension d

are all the cells σ ∈ Σ such that dim(σ) ≤ k ≤ d.

Remark 6 A k-skeleton of a polytope is the union of its faces of dimensions k, k−1, . . . , 0

(See Figure 2.5).

Figura 2.5: 1-skeleton of a polyhedral complex of dimension 2.

2.2. Computational background

2.2.1. Computational Geometry

In [1], it is mentioned that a curve V (p) of a polynomial can be constructed as a

subdivision of the Newton polytope of p where the coefficients of p give that subdivision.

The subdivision is given by a projection π : Kn+1 → Kn of the lower faces of the polytope.

Thus, we need to define those concepts.

Definition 17 (Convex set/region) A set S ⊂ Rn is said to be convex if for all x, y ∈ S

it also contains the line segment [x, y] = {λx+ (1− λ)y : 0 ≤ λ ≤ 1}.

Information Technology Engineer 20 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Definition 18 (Convex hull) Given a set S = {x : x ∈ Rn}, the convex hull of S

denoted as conv(S) is the smallest convex region containing the set S.

In Figure 2.6, we can see an example of a convex hull in R2. The convex hull forms a

polygon since it is the set of lines that match the outermost points of a set S. The Newton

polytope gives the relation between convex hulls and tropical polynomials.

Figura 2.6: Example of a convex hull in R2

Definition 19 (Lower face) Given a polytope Σ ⊂ Kn+1 , its lower faces are those whose

inner normal vector v ∈ (Kn+1)∗ with last coordinate positive

In Figure 2.7, we can see an example of polyhedra in (x, y, z) that has only one lower

face, the one whose inner normal is positive in z. In this case, as we are in the 3-dimensional

case, having the last coordinate positive means that the inner normal points up in the z-

axis.

Figura 2.7: Lower face of polyhedra

Definition 20 (Newton polytope) Given a polynomial f ∈ K[x1, . . . , xn] such that f =
s∑
i=0

aix
αi1
1 · · ·xαin

n , the Newton polytope, denoted as New(f) is the set

New(f) = conv{(αi1, . . . , αin, val(ai)), 0 ≤ i ≤ s}. (2.20)

Information Technology Engineer 21 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

The Newton polytope of a polynomial is defined as the convex hull of the points whose

coordinates are the exponents of its monomials. For this reason, computing the convex hull

of a set S is one of the main algorithms that will be present in the package.

2.2.2. Functional Programming

We developed this package using a functional programming paradigm with the Haskell

programming language.

Functional programming is a programming paradigm based on lambda calculus that

performs the flow of computations as function compositions rather than sequences of ac-

tions in imperative programming. The fundamental concepts of functional programming

are immutability, functions that are first-class citizens, lazy evaluation, and no side effects

[18].

Immutability ensures the inexistence of side effects; this feature is called pure program-

ming since every function becomes pure in the sense that for every call of the function

with a set of arguments, the result will always be the same, like a mathematical function.

In imperative languages, side effects are produced by the change of state of variables that

are global or have outer scope than the functions that call them. That is why immutable

variables avoid the side effects of functions. Another consequence of immutable variables is

that every function becomes independent from each other. The importance of this is that

functions can be computed in parallel because the state of a function f does not affect the

state of a function g.

Lazy evaluation consists on the property of not performing every single computation at

once. Instead, computations are performed when needed. This feature is great because it

can speed the computations by not getting stuck in some parts of the code. To understand

laziness better, let us define the following infinite list using Haskell syntax: a = [1..].

Now imagine that we have a function that requires the first element of a using the function

head. Without laziness, the computation head a will never end since the program should

compute all the list first before asking for the first element. Indeed, the memory will fill

up because a is an infinite list. On the other hand, using laziness, the computation head

a gives the result immediately because the compiler does not care about the whole list a,

but it understands that it is only required the first element and computes only the first

element.

Finally, having functions as first-class citizens means that functions can be bound to

variables. Indeed, in Haskell, functions are treated as types by themselves. Functional

programming also supports high-order functions, which means that a function can receive

another function as an argument or return a function as output.

Information Technology Engineer 22 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

The Haskell Programming Language

Haskell is a functional programming language. Its main features are polymorphically

statically typing, laziness and pure functional programming. The language is named af-

ter Haskell Brooks Curry, whose work in mathematical logic serves as a foundation for

functional languages [19].

Haskell implements strong static typing, which is very useful when a program needs

type safety [18]. Particularly, for the tropical algebra package, it is vital to have a type-

safe system. One example could be operations between polynomials. One can define the

polynomial p1(x) = x and the polynomial p2(x, y) = x. With p1 and p2, one could not

perform any operation like sum or product because those polynomials belong to different

rings. That is why having a weak-typing system could produce mathematical errors while

performing computations.

Another property that is useful for algebraic operations is the concept of dependent

typing. This concept is used in the Tropical Algebra Package and also in [10] to check the

arity of polynomials. An example of why dependent typing is important is that, classically,

V (p1) = {0}, whereas V (p2) is the y-axis. However, dependent typing in Haskell is not a

primary feature, but it can be emulated.

Parametric polymorphism is also an essential feature in Haskell. This type of polymorp-

hism makes that the same function can be implemented for any type, rather that ad-hoc

polymorphism in which you need to overload a function for each type [20]. Let us consider

the reverse function, a function that takes a list and returns its reverse:

reverse :: [a] -> [a]

reverse [] = []

reverse (x:xs) = (reverse xs) ++ [x]

Notice that the function takes as a parameter a list of elements of type a. No matter

which type it is, the function only takes the elements and reorders them. The reverse

function is general and powerful because it is parametric polymorphic.

2.3. Software Engineering Background

As the end product of this project is a package, some software engineering aspects must

be considered. Testing, documentation, and versioning are the main aspects to take into

account to get a reliable and scalable product.

Information Technology Engineer 23 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Testing

Test-Driven Development (TDD) is a software engineering practice that consists of

designing tests before writing any code [21]. The purpose of this practice is to help the

programmer to write a more transparent, more concise and more robust code. It is possible

to obtain those features because the code is written based on the tests and not vice-versa.

Also, having tests for every unit of code makes debugging faster, since if a bug appears in

the code, the test structure finds it immediately and pinpoints its location [21].

TDD works very well in unit testing. Functional programming works as a composition

of functions, then using TDD on each of these functions ensures the correct functioning of

the software.

For the programmer, TDD improves the confidence and emotional stability of the code

writer [22]. Since the test accumulates, when the project grows, the programmer increases

its confidence over the behavior of the system. It does not happen in non-TDD approaches

since the confidence of the code may be decaying as the project grows.

Documentation and versioning

Hackage is a repository of Haskell projects. In this repository, the documentation is

generated using a powerful tool called Haddock [18]. Haddock works by checking every .hs

(the Haskell source file extension) file and generating a .html file with the structure of the

.hs file. For doing this, some special comments must be written in the .hs file. Some types

of comments are:

-- | comment: Works for commenting before the element.

-- ^comment: Works for commenting after the element.

{-| comment in several lines -} : Works for commenting a block of lines.

-- * comment: Works for defining an item in the table of contents of the .html file.

For the versioning, Hackage also provides policies. Those can be found on the Hackage

web page [23].

Information Technology Engineer 24 Final Grade Project

Caṕıtulo 3

Methodology

In this section, we explain the development of the package by showing the data model

of the system and explaining the main algorithms. From this point on, Haskell syntax is

used to show data types and functions.

3.1. The Data Model

For this work, we created the definition of the following data types that are classified

into three categories: arithmetic, algebraic and geometric.

3.1.1. Arithmetic data types

Tropical numbers: this data type works for tropical numbers that will conform the

coefficients of a tropical polynomial. The Tropical data type is polymorphic and

the parameter a stands for any data type. Furthermore, this data type admits Inf as

another value of the type, which emulates the set of the tropical semiring: R ∪ {∞}

data Tropical a = Tropical a | Inf

Tropical matrices: This data type works for tropical matrices. As well as de data

type for tropical numbers, tropical matrices are also polymorphic on the type a.

newtype TMatrix a = TMatrix [[a]]

In [1], it is shown how the multiplication, n − 1 times, of a n × n tropical matrix M

is equivalent to the Floyd-Warshall algorithm to compute the shortest path for all pair of

vertices. Then, the matrix M must be the adjacency matrix.

25

School of Mathematical and Computational Sciences YACHAY TECH

3.1.2. Algebraic Data Types

Monomials: This data type works for the definition of a monomial that depends on

the arity and the monomial order.

newtype Monomial ord n = Monomial {getMonomial :: Mon n}

Polynomials: This data type works for defining a polynomial as a map (or a dic-

tionary) in which there exist key-value pairs, where the monomial is the key and a

value of type k is the value. The parameter k is usually the data type Tropical Int,

but it can be any type that meets tropical requirements.

newtype Polynomial k ord n = Map Monomial k

3.1.3. Geometric Data Types

Points in K2: This data type stores the possible points on a 2-dimensional affine

space K2 on K. K is generally the field of real numbers or the ring of integers. In this

latter case, the points are conformed by integers of finite precision because we use this

data type in the computations of Newton polytopes, in which the variable exponents

give the coordinates. Remember that we work with integer numbers and not only

with natural numbers because we deal with Laurent polynomials (see Definition 9).

type Point2D = (Int, Int)

Points in K3: This data type has the same functionality as the previous one. The

only difference in that lies in the affine space K3. As well as Point2D, this data type

is used with finite-precision integers.

type Point3D = (Int, Int, Int)

Vertices: The Vertex data type is a wrapper of the data type Point3D. It is called

vertex because it represents a 0-face of a polytope.

newtype Vertex = Vertex {coordinates :: Point3D}}

Edges: The Edge data type represents a 1-face of a polyhedron and is conformed by

a pair of vertices,

newtype Edge = Edge {vertices :: (Vertex, Vertex)}}

Information Technology Engineer 26 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Facets: The Facet data type represents a n-1 face. In this case, a facet represents

a 2-face because we are dealing with polyhedra, which are polytopes of dimension 3.

A facet is conformed by a set of edges that must be ordered counterclockwise.

newtype Facet = Facet {edges :: [Edge]}}

Convex Hull: This datatype represents a convex hull of a set of points in K3. As

mentioned before for Point2D and Point3D, K can be the unitary ring of integers.

newtype ConvexHull = ConvexHull {facets :: [Facet]}}

Conflict Graph: This data type is used in the algorithm of computing the convex

hull in K3. It stores two maps or dictionaries.

The first dictionary has key-value pairs of a vertex and a list of facets. The list of

facets consists on those seen by the vertex when the vertex points to the convex hull.

The second dictionary has key-value pairs of a facet and a list of vertices. The list of

vertices consists on those vertices that see the facet when they point to the convex

hull.

This data structure helps to ask for information when computing the convex hull.

The idea of using a conflict graph is taken from [24].

data ConflictGraph = ConflictGraph{

verticesF :: MS.Map Vertex [Facet],

facetsV :: MS.Map Facet [Vertex]

}

3.2. Algorithms

3.2.1. Convex Hull algorithm

Two dimensional case

For the case of the two-dimensional convex hull, we selected the Graham scan algorithm

presented in [25], which takes a point p0 and orders the other points taking the polar angle

with respect to p0 and an axis. However, this requires changing to polar coordinates, which

can affect the exact computation. Thus, a variation of this algorithm is also presented in

[25], which computes the convex hull by dividing the set of points in two subsets. To achieve

Information Technology Engineer 27 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

this, the right-most point pr and the leftmost point pl are selected. A line m from pr to pl

is constructed, the points above this line will form the upper hull and the points below this

line will form the lower hull. To compute the upper hull, we take the points in the order of

the abscissae and select three points p1, p2, p3. If the internal angle ∠p1p2p3 is greater than

or equal than 180◦, then ∠p1p2p3 is called a “right turn”, otherwise is it a “left turn” (see

Figure 3.1). In case ∠p1p2p3 is a “left turn”, we can advance in the scanning with ∠p2p3p4,

otherwise p2 is dropped out from the convex hull and the checking is done for ∠p0p1p3.

Computationally, to determine whether a triple of points is a left or right turn, we can

compute the determinant of these points. More specifically, in the case of the upper hull,

we compute the determinant of points p1, p2, p3 as seen in equation 3.1.∣∣∣∣∣∣∣∣
p1 1

p2 1

p3 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
p1x p1y 1

p2x p2y 1

p3x p3y 1

∣∣∣∣∣∣∣∣ = a (3.1)

If the value a in equation 3.1 is less than or equal to 0, it is considered a left turn;

otherwise, it is considered a right turn.

For the case of the lower hull, we check for the value a ≥ 0 to be a left turn; otherwise,

it is a right turn.

Figura 3.1: Representation of left and right turns

Finally, the total convex hull is the union of the upper semi-hull and the lower semi-hull.

In Figure 3.2, we show a representation of the Graham Scan algorithm.

Three dimensional case

For the case of the three-dimensional convex hull, we chose the incremental algorithm

presented in [24].

Information Technology Engineer 28 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figura 3.2: Representation of Graham Scan algorithm.

The idea of this algorithm is easy to follow: take four points p1, p2, p3, p4 that are neither

colinear nor coplanar and form a tetrahedron (see Figure 3.3). That initial tetrahedron is

considered the convex hull at step 0 denoted as CH0. One thing to consider is that the

formation of the facets of the initial tetrahedron must take care of the ordering of their

vertices because they must be ordered counterclockwise.

Figura 3.3: Four points forming a tetrahedron.

Then, for a convex hull CHi take another point pi+1 and check whether it is inside or

outside CHi. If it is inside, drop it out from the convex hull. Otherwise, we need to look

for all the facets that are in front of the point pi+1. Facets in front of the point pi+1 are

only those that pi+1 sees when it looks at the polyhedron. If we look from the point pi+1

to the CHi, we can notice that there exists a horizon formed by the outer edge of each

facet in front of pi+1. The purpose is to construct a new facet from each edge that is in the

horizon to the pi+1 (see Figure 3.4). After constructing these new facets, we need to drop

the facets that remain inside the new convex hull CHi+1

It is important to notice that if the point pi+1 is coplanar to a face f that is not in

front of pi+1 (i.e., behind the horizon), then, the new facet from the edge that belongs to

f is an extension of it, and must be treated as that. Otherwise, we can get facets that are

divided by an edge (see Figure 3.5).

Information Technology Engineer 29 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figura 3.4: Generating new facets from the horizon to a new point

Figura 3.5: Representation of a point, pi+1, that is coplanar to a face f . The new face is
an extension of f

Now, once we presented the idea of the algorithm, we explain the algorithms used to

accomplish the incremental algorithm to compute the convex hull.

First, to check if a point pi+1 is inside the convex hull CHi, we have to compute, for

every facet fk if pi+1 is in front or behind fk. A point inside a polyhedron must be

behind all the facets composing that tetrahedron. If there is at least one facet for

which the point is not behind, then the point is outside the polyhedron. To compute

the behindness of a point concerning a facet, we need to have the vertices of the facet

ordered counterclockwise and we compute the determinant of three arbitrary points

p1, p2, p3 of the facet and the point pi+1, as in equation 3.2.

∣∣∣∣∣∣∣∣∣∣
p1 1

p2 1

p3 1

pi+1 1

∣∣∣∣∣∣∣∣∣∣
= a (3.2)

It is very similar to the criterion used in Graham scan for the two-dimensional case.

If a ≤ 0 then we say pi+1 is in front of the facet with vertices p1, p2, p3. Otherwise,

Information Technology Engineer 30 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

it is behind. Notice that a facet can have more than three vertices; in that case, we

can take only three vertices as long as they are ordered counterclockwise.

With this method, we can know if a point is inside or not of a polyhedron.

For every point pi+1 to be added to the convex hull CHi, we have to check for which

facets the point pi+1 is in front of. The list of those facets are denoted as F . Then,

we have to compute which in edges the facets in F are on the horizon. It is achieved

by flattening the list F into a list of edges E and taking out the edges that have a

twin in the list E .

Definition 21 (Twin Edges) Given and edge e1 of the form Edge (v1,v2), we

say that another vertex e2 is a twin of e1 if it is of the form Edge (v2,v1)

Twin edges occur because the points are ordered counterclockwise and an edge shared

by two facets is stored in a different order in each facet (see Figure 3.6). It is important

to note here that the edges of the horizon do not have twins, because their twins are

behind the horizon; therefore, they do not appear in the list of facets F that is in

front of pi+1

Figura 3.6: Twin edges that connect two facets.

Now, once the horizon has been found, the construction of the new facets is straight-

forward. As the horizon is a list of edges, and each edge is of the form Edge (v1, v2),

we only need to add the point pi+1 to the end of each edge and form new the facet.

That is, the new facet will have the vertices v1, v2, p1+1 ordered counterclockwise.

Information Technology Engineer 31 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

The only thing to take care of here is the case in which the new facet f is coplanar

to another facet g that is behind the horizon. In that case, it is necessary to find

the facet g and merge f and g. After all the new facets are generated, we have to

update the conflict graph. First, we have to delete the facets that are now inside the

polyhedron and drop their information from the registers of the remaining points

pi+2, pi+3, ..., pn. After that, we have to add the new facets to the ConflictGraph.

Then, we have to compute the points are in front of the new facets and add their

information in the registers of pi+2, pi+3, ..., pn.

Once we have done all those steps, we can add a new point and follow all the steps

again.

3.2.2. Subdivision algorithm

Given a convex hull CH ∈ K3, we perform a projection π : K3 → K2. This will produce

a polygon with internal subdivisions. The subdivision is given by the last coordinate of the

points in K3. The projection π is only performed to the lower faces (definition 19) of CH.

The subdivision algorithm is very similar to the computation of a Delaunay triangula-

tion; the only thing that changes is how the last coordinate of each point is formed. In a

Delaunay triangulation, the coordinates vector in R3 have the form (x, y, x2 + y2), which

defines a paraboloid, and in that way, the subdivision is going to form only triangles. In

this case, given a Laurent polynomial in K[x, y] of the form

f =
s∑
i=0

aix
αixyαiy αij ∈ Z, (3.3)

the coordinate vectors take the form (αix, αiy, val(ai)). This way of forming the coor-

dinates vectors does not ensure that the subdivision is made of triangles. Sturmfels and

Maclagan in [1] state that if each cell in the lattice area is a triangle of area equal to 1
2
,

then the subdivision is called unimodular and it will produce a smooth tropical curve.

Implementing the projection algorithm is not that hard. Given a convex hull CH, we

identify the inner normal of all the facets of it. Then we filter those facets whose inner

normals are positive. After that, we will have all the facets formed by vertices of the form

v1,v2,v3. To project each vertex, the following Haskell anonymous function was used:

\(v1,v2,_) -> (v1,v2)

That function takes a 3-tuple of three elements and returns a 2-tuple with the two first.

Notice that the symbol means that we do not care about the third value of the input

3-tuple.

Information Technology Engineer 32 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Then, applying the aforementioned function to the vertices of each edge of each lower

facet of CH will project a polyhedron into a polygon with subdivisions (see Figure 3.7).

Figura 3.7: Representation of a subdivision from a convex hull of dimension 3 into a sub-
divided polygon of dimension 2.

3.2.3. Tropical Hypersurface

The tropical hypersurface of a polynomial f is the k-skeleton of the dual of the sub-

division presented in the last section. To construct it, we must compute the inner normal

fan of each polygon, generally triangle, in the subdivision. In Figure 3.8, we can see how

this inner normal fan looks. To compute the inner normal vector of an edge of the form e1

= Edge (v1, v2) we have to take an adjacent edge of the form e2 = Edge (v2, v3). Then

we have to compute the dot product wN1 ·w2, where w1 = v1−v2, w2 = v3−v2 and wN1 is the

normal of w1. If that product is positive, then the normal of w1, which is also the normal

of e1 is wN1 ; otherwise, it is −wN1 . The following code is the Haskell function that computes

the inner normal of an edge. It takes three vertices: the first is the common vertex of both

edges, the second is the second vertex of the edge to compute the normal, and the third is

the second vertex of the adjacent edge. The result is a vector of the direction of the inner

normal.

innerNormal :: Point2D -> Point2D -> Point2D -> Point2D

innerNormal a@(x1,y1) b@(x2,y2) c@(x3,y3)

| dot > 0 = nab

Information Technology Engineer 33 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

| dot < 0 = (y1-y2,x2-x1)

where

ab = (x2-x1,y2-y1)

ac = (x3-x1,y3-y1)

nab = (y2-y1,x1-x2) -- (y,-x)

dot = (y2-y1)*(x3-x1) + (x1-x2)*(y3-y1)

Figura 3.8: Representation of the inner normal fan of a triangle.

As seen in the left side of Figure 3.8, a triangle of the subdivision is formed by three

vertices v1, v2, v3, coming from a monomial of the Laurent polynomial. Then, to know in

which point p the inner normals converge, we have to recover those three monomials and

solve the system that they form. Remember that a monomial of the form axαyβ becomes,

after tropicalization, into a+αx+βy. Then, having three monomials m1, m2, m3 produces

the system 3.4, whose solution is the intersection of the three inner normals of the triangle.

In Figure 3.8 we can see that from a polygon we pass to a normal fan. When this polygon

is a triangle, the edges of the produced fan forms a tropical line as seen in the right side

of the Figure 3.8. m1 = m3

m2 = m3

(3.4)

In the previous algorithm, we mentioned that if the subdivision is conformed by triangles

with area 1
2
, the tropical curve will be smooth. Then the hypersurface algorithm computes

tropical hypersurfaces assuming that the subdivision is unimodular [1]. That is, only if the

tropical curve is smooth. To extend the algorithm to treat non-smooth curves, we should

solve a system that is not n× n.

Information Technology Engineer 34 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Workflow of the tropical surface algorithm

In this part, we are going to show how the algorithm works for a certain polynomial.

Let us consider the polynomial g used in Example 7:

g = 3tx2 + 5xy − 7ty2 + 8x− y + t2

g is a polinomial in K[x, y] where K is the field of Puiseux series. In Example 7 we have

shown that the tropicalization of g is

trop(g) = (1⊗ x2)⊕ (x⊗ y)⊕ (1⊗ y2)⊕ (x)⊕ (y)⊕ (2) (3.5)

trop(g) = mı́n{1 + 2x, x+ y, 1 + 2y, x, y, 2} (3.6)

From Equation 3.5, we can define the Newton polytope of trop(g) as:

New(trop(g)) = conv{(2, 0, 1), (1, 1, 0), (0, 2, 1), (1, 0, 0), (0, 1, 0), (0, 0, 2)} (3.7)

The convex hull in Equation 3.7 has its graphical representation in Figure 3.9. We only

show the lower faces (red) because those are the ones that will be projected.

Figura 3.9: Lower faces of the Newton polytope of g

The projection of the lower faces of Figure 3.9 is showed in Figure 3.10a including its

dual. The dual is the collection of red segments. The tropical hypersurface of g is the dual

of the subdivision rotated 180◦ (See Figure 3.10b).

Information Technology Engineer 35 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

(a) Subdivision and its dual (b) Tropical hypersurface of g

Figura 3.10: Representation of the tropical hypersurface of g from the subdivision of a
triangle.

3.3. Software Engineering Aspects

3.3.1. Dependencies

The package has the following dependencies that are in Hackage [23]:

containers: This package is needed for those data types used to store data such as

trees, dictionaries, sets. For this project, we use a data type from this package called

Map, which is an ordered list whose elements are key-value pairs. We use the Map to

store the polynomials, where the monomial is the key, and the coefficient is the value.

semiring-simple: This package includes the classes to implement a data type that

behaves as a semiring. It is used for tropical numbers.

algebra: This package includes all the algebraic structures features like monoids,

rings or fields. We need it to make our data type behave as algebraic structures. One

example is that we can create a data type and define ring properties like two binary

operations, identity elements and distribution of product over addition.

singletons: This package is used for implementing polynomials as dependent data

types. When we say dependent, we refer dependent to arity. That is, we can define

a polynomial in two variables as Polynomial k ord 2, where k is the field of coeffi-

cients, ord is the monomial ordering and 2 is the arity. The interesting part is that

the parameter 2 is not seen as a value but as a data type instead. Dependent typing

provides several advantages that we will show further.

Information Technology Engineer 36 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

matrix: This package is used to implement tropical matrices and some algorithms

like the shortest path.

gloss: This package is used to make pictures of tropical curves in two variables using

OpenGL.

3.3.2. File structure of the library

The package has been distributed in a way that arithmetic, algebraic, geometric and

graphical things are separated. The following tree-diagram show the file structure:

Arithmetic

Matrix.hs

Numbers.hs

Geometry

ConvexHull2.hs

ConvexHull3.hs

Polyhedral.hs

Polytope.hs

Graphics

Drawings.hs

Polynomial

Hypersurface.hs

Monomial.hs

Prelude.hs

Figura 3.11: File structure of the package

The Arithmetic folder includes all the code to implement tropical numbers and tropical

matrices. The Geometry folder has the code for geometric algorithms like convex hull,

subdivisions, computation of the dual of a subdivision. The Graphics folder includes the

code for drawing tropical curves, and the Polynomial folder has the code to implement the

tropical polynomial data type.

3.3.3. Installation

To use this package as a dependency of another Haskell project, we strongly recommend

to have the project built with either Cabal [26] or Stack [27]. We assume that the reader

knows about the aforementioned build systems.

In the case of Cabal, you have to include the package name in the .cabal file in the

build-depends section.

Information Technology Engineer 37 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

For Stack users, besides adding the package name to the .cabal file, it must be also

added in the stack.yaml file in the extra-deps section.

In any option, the package will be downloaded from Hackage and bound to the project

when it is compiled.

3.3.4. Tutorial

The following tutorial will show how to define tropical numbers, matrices, polynomials

and the functionalities of them.

The following script called Numbers.hs shows the use of tropical numbers:

module Numbers where

a,b,c :: Tropical Int

a = Tropical 2

b = Tropical 3

c = Inf

main :: IO()

main = do

print $ show (a+b) -- prints "Tropical 2"

print $ show (a*b) -- prints "Tropical 5"

print $ show (a+c) -- prints "Tropical 2"

print $ show (a*c) -- prints "Inf"

The next script, called Matrix.hs, shows how to use tropical matrices:

Information Technology Engineer 38 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

module Matrix where

m1 :: TMatrix (Tropical Integer)

m1 = TMatrix

[

[0, 2, Inf, 3],

[1, 0, Inf, 4],

[8, Inf, 0, 1],

[4, 1, Inf, 0]

]

-- Consider m1 as an adjacency matrix of some graph.

shortestPath = foldr1 mmult $ replicate 3 m1 -- Here we do m1*m1*m1

main :: IO()

main = do

print $ show shortestPath

{-

Prints the following:

TMatrix {toList = [

[0,2,Inf,3],

[1,0,Inf,4],

[3,2,0,1],

[2,1,Inf,0]]

}

where each position (i,j) is the shortest path from the node i to

the node j. It is equivalent to the Floyd-Warshall algorithm.

-}

Information Technology Engineer 39 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Finally, the next script shows how to deal with tropical polynomials.

module Polynomial where

-- definition of the variables as polynomials. The Polynomial data

-- type has 3 type parameters:

-- coefficient type

-- monomial ordering of variables

-- number of variables

x, y :: Polynomial (Tropical Integer) Lex 2

x = variable 0

y = variable 1

f1,f2 :: Polynomial (Tropical Integer) Lex 2

f1 = 1*x^2 + x*y + 1*y^2 + x + y + 2

f2 = 3*x^2 + x*y + 3*y^2 + 1*x + 1*y + 0

main :: IO()

main = do

print $ show (f1 + f2)

-- prints 1X_0^2 + X_0X_1 + X_0 + 1X_1^2 + X_1 + 0

makeFig f1 -- will produce the tropical hypersurface

The last line in the previous code produces the tropical hypersurface seen in Figure

3.10b and also in Figure 4.1.

Information Technology Engineer 40 Final Grade Project

Caṕıtulo 4

Results

4.1. Test set

We have taken five polynomials taken from [1] to run our examples. The following

polynomials have variables x, y and their coefficients belong to the field of Puiseux series

that are polynomials in the variable t. Those polynomials are:

f1 = 3tx2 + 5xy − 7ty2 + 8x− y + t2

f2 = 3t3x2 + 5xy − 7t3y2 + 8tx− ty + 1

f3 = 5t3x3 + 7tx2y − 8txy2 + 9t3y3 + 8tx2 + 5xy − ty2 + 4tx+ 8ty + t3

f4 = 5x3 + 7x2y + 8xy2 + 9y3 + 8x2 + 5xy − y2 + 4x+ 8y + 1

f5 = 2xy−1 + 2y−1 + (−2)

And their respective tropicalizations:

trop(f1) = mı́n{2x+ 1, x+ y, 2y + 1, x, y, 2}

trop(f2) = mı́n{2x+ 3, x+ y, 2y + 3, x+ 1, y + 1, 0}

trop(f3) = mı́n{3x+3, 2x+y+1, x+2y+1, 3y+3, 2x+1, x+y, 2y+1, x+1, y+1, 3}

trop(f4) = mı́n{3x, 2x+ y, x+ 2y, 3y, 2x, x+ y, 2y, x, y, 0}

trop(f5) = mı́n{x− y + 2,−y + 2,−2}

41

School of Mathematical and Computational Sciences YACHAY TECH

For a clear example of how to tropicalize a polynomial, the tropicalization of f1 can be

found in the Example 7 of Chapter 2.

After we perform all the computations, we get our tropical curve defined as a set of ver-

tices and three emanating rays from each vertex. The representation of the emanating rays

is given by normalized vectors. We show the results for the five polynomials aforementioned

in the following tables and figures.

For f1:

Vertex Ray 1 Ray 2 Ray 3
(-1,0) (-1,-1) (0,1) (1,0)
(0,-1) (-1,-1) (0,1) (1,0)
(0,0) (-1,0) (0,-1) (1,1)
(2,2) (-1,-1) (0,1) (1,0)

Cuadro 4.1: Vertices and rays for f1

Figura 4.1: Tropical hypersurface for f1, trop(f1)

For f2:

Vertex Ray 1 Ray 2 Ray 3
(-2,1) (-1,-1) (0,1) (1,0)
(-1,1) (-1,0) (0,1) (1,-1)
(1,-2) (-1,-1) (0,1) (1,0)
(1,-1) (-1,1) (0,-1) (1,0)

Cuadro 4.2: Vertices and rays for f2

Information Technology Engineer 42 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figura 4.2: Tropical hypersurface for f2, trop(f2)

For f3:

Vertex Ray 1 Ray 2 Ray 3
(-2,0) (-1,-1) (0,1) (1,0)
(-1,-1) (-1,-1) (0,1) (1,0)
(-1,0) (-1,0) (0,-1) (1,1)
(0,-2) (-1,-1) (0,1) (1,0)
(0,-1) (-1,0) (0,-1) (1,1)
(0,1) (-1,-1) (0,1) (1,0)
(1,0) (-1,-1) (0,1) (1,0)
(1,1) (-1,0) (0,-1) (1,1)
(2,2) (-1,-1) (0,1) (1,0)

Cuadro 4.3: Vertices and rays for f3

Figura 4.3: Tropical hypersurface for f3, trop(f3)

Information Technology Engineer 43 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

For f4:

Vertex Ray 1 Ray 2 Ray 3
(0,0) (-1,-1) (0,1) (1,0)

Cuadro 4.4: Vertices and rays for f4

Figura 4.4: Tropical hypersurface for f4, trop(f4)

For f5:

Vertex Ray 1 Ray 2 Ray 3
(0,4) (-1,-1) (0,1) (1,0)

Cuadro 4.5: Vertices and rays for f5

Figura 4.5: Tropical hypersurface for f5, trop(f5)

Information Technology Engineer 44 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

4.2. Comparison with other software

As mentioned in Chapter 1, other software is capable of computing tropical hypersur-

faces. Those are Gfan [5] and Polymake [7]. Since Polymake embeds Gfan computations,

the comparison in performance is made with Polymake only.

The specification of the hardware where the algorithms were written was:

RAM: 16 Gb

Processor: Intel Core i7-8700K

Clock Speed: 3.70 GHz

Processors: 6 physical, 12 logical

We added the following three tropicalized polynomials to the previous five presented

previously: trop(f6), trop(f7) and trop(f8), which have degree 4,5 and 6, respectively.

trop(f6) = 6x4 ⊕ 4x3y ⊕ 3x2y2 ⊕ 4xy3 ⊕ 5y4 ⊕ 2x3 ⊕ x2y ⊕ 1xy2 ⊕ 4y3 ⊕ 2x2 ⊕ xy ⊕
3y2 ⊕ x⊕ 2y ⊕ 5

trop(f7) = 6x5 ⊕ 2x4y ⊕ 4x3y2 ⊕ x2y3 ⊕ 3xy4 ⊕ 8y5 ⊕ 6x4 ⊕ 4x3y ⊕ 3x2y2 ⊕ 4xy3 ⊕
5y4 ⊕ 2x3 ⊕ x2y ⊕ 1xy2 ⊕ 4y3 ⊕ 2x2 ⊕ xy ⊕ 3y2 ⊕ x⊕ 2y ⊕ 5

trop(f8) = 10x6⊕ 8x5y⊕ 6x4y2⊕ 6x3y3⊕ 4x2y4⊕ 6xy5⊕ 9y6⊕ 6x5⊕ 2x4y⊕ 4x3y2⊕
x2y3⊕ 3xy4⊕ 8y5⊕ 6x4⊕ 4x3y⊕ 3x2y2⊕ 4xy3⊕ 5y4⊕ 2x3⊕x2y⊕ 1xy2⊕ 4y3⊕ 2x2⊕
xy ⊕ 3y2 ⊕ x⊕ 2y ⊕ 10

The results are:

Polynomial Time Polymake (ms) Our time(ms)
f1 20 0,31
f2 20 0,28
f3 20 1,49
f4 20 0,10
f5 20 0,01
f6 20 4,03
f7 20 7,09
f8 20 17,64

Cuadro 4.6: Comparison between Polymake and our package for polynomials f1, ..., f8.

Information Technology Engineer 45 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

0,31 0,28
1,49

0,10 0,01

4,03

7,09

17,64

20 20 20 20 20 20 20 20

Polynomial

C
P

U
 T

im
e

(m
s)

0

5

10

15

20

f1 f2 f3 f4 f5 f6 f7 f8

Our package Polymake

Comparison between Polymake and our package

Figura 4.6: Comparison between Polymake and our package for polynomials f1, ..., f8

These benchmarks were performed with polynomials in two variables since we have not

generalized the algorithm for polynomials of an arbitrary number of variables.

Information Technology Engineer 46 Final Grade Project

Caṕıtulo 5

Discussion and Conclusions

5.1. Results analysis

We have tested the algorithm for five polynomials first and got their respective tropical

curves. We notice that the way we store the hypersurfaces is proper for plotting. As the

results are correct, we can say that the algorithm is working well. It is worth to say that

we have worked only with smooth polynomials (polynomials that produce a unimodular

triangulation). Thus, the behavior of the algorithm with non-smooth polynomials is not

known at this point.

In terms of speed, we can see in fig. 4.6 that our algorithm is faster than the one in

Polymake with polynomials with degree less or equal than 6. Notice that our computations

of the polynomial f8 are still faster than Polymake. For a polynomial of a higher degree, our

algorithm becomes slower. However, in some instances, polynomials with higher degrees

could be faster in our implementation. For that to happen, the Newton polytope of a

polynomial f should not use all the coordinates given by the monomials of f . That is,

some points should be inside the convex hull. That means that the computation of the

convex hull is reduced to fewer points, which makes the whole algorithm faster.

A possible explanation of the results could be that our package resolves the hypersurface

problem with only two variables, whereas Polymake works with n-dimensional polynomials.

That means that even for simple cases, Polymake could perform unnecessary computations.

However, when the problem gets bigger, Polymake turns to be faster, and those unnecessary

computations are no longer so. However, this is only a conjecture since we do not know

how exactly the Polymake or Gfan algorithm works.

47

School of Mathematical and Computational Sciences YACHAY TECH

5.2. Conclusion

The main objective of this package is to compute tropical hypersurfaces of polynomials

in two variables by computing its Newton polytope and subdividing it according to the

valuation of the coefficients. The use of Haskell as a programming language eased the

coding at the implementation of data types and functions in a recursive way.

However, many other features can be used from this package. One of these is the

usage of the tropical matrices to solve optimization problems such as shortest-path or

the assignment problem. They correspond to the tropical matrix product and tropical

determinant, respectively.

Furthermore, all the auxiliary functions used to implement the convex hull algorithm

can be used for geometrical purposes. There are functions to check coplanarity and coli-

nearity, to compute line segments, triangles, and tetrahedrons from a list of points. Indeed,

the convex hull algorithm can be used for other geometrical purposes like the Delaunay

triangulation.

The crucial fact about all the written algorithms is that they support arbitrary preci-

sion, which is a Haskell feature. It means that the propagation of errors caused by rounding

rational numbers is avoided. Then, the code is more robust in that aspect, only depending

on the capacity of the hardware.

Another advantage of Haskell is the existence of algebraic data types, which allows

defining data types more succinctly and precisely. The main example of this was the defi-

nition of tropical numbers: data Tropical a = Tropical a | Inf, which emulates the

field extension R∪{∞}. Dependent typing was also a feature that we took advantage of by

using it to ensure that polynomials of different arities do not ever operate between them.

Another advantage, in terms of code readability, is the fact that Haskell has pattern mat-

ching, which allows avoiding excessive if or switch statements that would be inevitable

in an imperative language.

This package offers a first glance at the combination of functional programming and

tropical geometry. We expect that this package can be maintained over time and serve as a

tool for scientists who need to compute tropical stuff and have or need to do it functionally.

5.3. Further work

Generalizing the algorithm for non-smooth tropical polynomials should be the next step.

For this, it must be noticed that any polygons, not only triangles, may form subdivision.

Then, the computation of the vertex and its emanating rays would change.

In terms of functionality, the package has some limitations. The main limitation is

Information Technology Engineer 48 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

related to working with polynomials in higher dimensions. Remember that to compute the

tropical hypersurface of a polynomial requires to go through its Newton polytope. However,

computing Newton polytopes of a polynomial of n variables requires the computation of

a convex hull in n + 1 variables. Then, as the package can compute convex hull up to 3

dimensions, we can only work with polynomials up to 2 variables. Further research and

development should focus on writing the algorithm for n-dimensional convex hull. In this

way, the package will work with polynomials in any number of variables.

As well as n-dimensional convex hull, further research and development should also

focus on the computation of tropical varieties. That topic requires to check concepts like

tropical ideals, tropical basis, and monomial ideals. We can be tempted to think that

the variety can be computed by intersecting tropical curves, but the thing is that the

intersection of hypersurfaces does not always give a variety but a prevariety. This is shown

in Lemma 3.7 in [28].

Further versions of the package may include computations that may need a higher

amount of resources like memory or processing capacity. In this case, parallelization will

be required, and we can take advantage of another great feature of functional languages.

Since functions are independent of each other, parallelization is relatively easy to perform.

That means that we do not have to take into account problems like shared variables.

Following this idea, for parallelization, we do not have to take care of changes in the state

of variables because variables are immutable.

Information Technology Engineer 49 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer 50 Final Grade Project

Appendices

51

School of Mathematical and Computational Sciences YACHAY TECH

Appendix A: Code

First of all, we will introduce briefly the Haskell color coding:

Color for defining data types

Color for naming data types and type classes

Color for declaring functions

Color for operators

Color for comments

Here we show the main parts of the written code. We will show data types first and

then the most important functions

Algebraic data types1

We start with the data type for tropical numbers:

-- Defintion of the tropical number data type

data Tropical a = Tropical {value :: a} | Inf

-- Definition of tropical sum betwwen numbers

(.+.) :: (Ord a) => Tropical a -> Tropical a -> Tropical a

(.+.) Inf t = t

(.+.) t Inf = t

(.+.) t1 t2 = Tropical $ (min `on` value) t1 t2

-- Definition of tropical product between numbers

(.*.) :: (Num a) => Tropical a -> Tropical a -> Tropical a

(.*.) t Inf = Inf

(.*.) Inf t = Inf

(.*.) t1 t2 = Tropical $ ((Prelude.+) `on` value) t1 t2

1Here, algebraic data types do not refer to the fact that data types are algebraic, but refer to data
types that represent algebraic objects.

Information Technology Engineer 53 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Now, data type for monomials:

type SNat (n :: Nat) = Sing n

type Sized' n a = DS.Sized Seq.Seq n a

type Mon n = Sized' n Int

-- Monomial is defined as an array of exponents but the array length

-- is treated as a type. That is the reason we need the three previous

-- lines.

newtype Monomial ord n = Monomial {getMonomial :: Mon n}

And for polynomials:

newtype Polynomial k ord n = Polynomial {

getTerms :: MS.Map (Monomial ord n) k

} deriving(Eq)

Geometric data types

Here we show the data types that are used in the geometric aspect of the algorithm.

We have points in 2D and 3D, vertices, edges, facets and the data for the conflict graph.

Information Technology Engineer 54 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

type Point2D = (Int, Int)

type Point3D = (Int, Int, Int)

newtype Vertex = Vertex {coordinates :: Point3D}

-- Edge as a pair of vertices. When constructing the initial

-- tetrahedron, the order of the vertices must be counterclockwise.

newtype Edge = Edge {vertices :: (Vertex, Vertex)}

-- Facet in this case is a 2-face. It is stored as a collection of

-- edges.

newtype Facet = Facet {edges :: [Edge]}

-- The convex hull of a set is the collection of all the facets

-- that conform that polyhedron.

newtype ConvexHull = ConvexHull {facets :: [Facet]}

-- | The conflict graph is a data structure that stores for each

-- point the list of facets that points views. And for every facet

-- the list of points that facet views.

data ConflictGraph = ConflictGraph {

verticesF :: MS.Map Vertex [Facet],

facetsV :: MS.Map Facet [Vertex]

}

Functions

Function to build an initial tetrahedron

Information Technology Engineer 55 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

computeTetrahedron :: [Point3D] -> Maybe [Point3D]

computeTetrahedron [] = Nothing

computeTetrahedron points

| isNothing triangle = Nothing

| isNothing nicePoint = Nothing

| otherwise = (++) <$> triangle <*> fmap return nicePoint

where

triangle = computeTriangle points

nicePoint = find (not . isCoplanar (fromJust triangle)) points

Function to compute the convex hull in 3D:

-- | Assume every point is different

convexHull3 :: [Point3D] -> Maybe ConvexHull

convexHull3 points

| length points < 4 = Just $ convexHull2In3 points

| isNothing tetraHedron = Just $ convexHull2In3 points

| otherwise = Just convexHull

where

convexHull = addPoints initialCH afterTetrahedron conflictGraph

conflictGraph = startConflictGraph initialCH afterTetrahedron

initialCH = (initializeCH . fromJust) tetraHedron

tetraHedron = computeTetrahedron points

afterTetrahedron = points \\ fromJust tetraHedron

Function to compute the projection of the convex hull

Information Technology Engineer 56 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

-- Computes the projection R^3 -> R^2 of a convex hull. The input is

-- a convex hull in R^3 and the output will be a regular subdivision

-- of the convex hull in R^2

projectionToR2 :: ConvexHull -> [[Point2D]]

projectionToR2 convexHull =

let lengthConvexHull = length $ facets convexHull in

if lengthConvexHull == 1 then

projected.triangles.facetsInPoints $ facets convexHull

else

projected.triangles.facetsInPoints $ lowerFaces

where

lowerFaces = filter isLowerFace $ facets convexHull

facetsInPoints = map fromFacet

triangles = filter (\points -> length points == 3)

projected = map (map project3To2)

Function to compute the sudivision of a regular triangulation. It is performed as a

composition of the convexhull function and the projection function:

subdivision :: (Integral k) => Polynomial k ord n -> [[Point2D]]

subdivision poly = (projectionToR2.fromJust.convexHull3) points

where

terms = MS.toList $ getTerms poly

monExps = DS.toList . getMonomial

toPoints (mon, coef) = let [a,b] = monExps mon

in (a, b, fromIntegral coef)

points = map toPoints terms

When we have the subdivision, we compute its dual and store as an array of pairs. Each

pair has a vertex and the direction of the rays emanating from them. Here is the function:

Information Technology Engineer 57 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

verticesNormals :: (IsMonomialOrder ord, Ord k, Integral k) =>

Polynomial k ord n -> MS.Map Point2D Normals

verticesNormals poly = MS.fromList $

map (findFanNVertex polyMap) triangles

where

polyMap = mapTermPoint poly

triangles = subdivision poly

However, for plotting purposes, we need the information stored as an array of line

segments, then we transform the vertices-normals structure in an array of line segments:

hypersurface :: (IsMonomialOrder ord, Ord k, Integral k) =>

Polynomial k ord n -> [(Point2D, Point2D)]

hypersurface poly = nub $ computeEdges

(convertMap neighbors pointTriangles) pointNormals

where

pointNormals = verticesNormals poly

neighbors = neighborTriangles

(map sort $ subdivision poly) MS.empty

pointTriangles = pointsWithTriangles poly

Information Technology Engineer 58 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Appendix B: Polymake script used for comparison

use Benchmark qw(:all);

use application 'tropical';

sub s_f1{

my $f1 = toTropicalPolynomial("min(2x+1, x+y, 2y+1, x+z, y+z, 2z+2)",

qw(z x y));

my $H1 = new Hypersurface<Min>(POLYNOMIAL=>$f1);

$H1->VERTICES;

}

sub s_f2{

my $f2 = toTropicalPolynomial("min(2x+3, x+y, 2y+3, x+1+z, y+1+z,2z)",

qw(z x y));

my $H2 = new Hypersurface<Min>(POLYNOMIAL=>$f2);

$H2->VERTICES;

}

sub s_f3{

my $f3 = toTropicalPolynomial("min(3x+3, 2x+y+1, x+2y+1, 3y+3, 2x+1+z,

x+y+z, 2y+1+z, x+1+2z, y+1+2z, 3z+3)", qw(z x y));

my $H3 = new Hypersurface<Min>(POLYNOMIAL=>$f3);

$H3->VERTICES;

}

sub s_f4{

my $f4 = toTropicalPolynomial("min(3x, 2x+y, x+2y, 3y, 2x+z, x+y+z,

2y+z, x+2z, y+2z, 3z)", qw(z x y));

my $H4 = new Hypersurface<Min>(POLYNOMIAL=>$f4);

$H4->VERTICES;

}

Information Technology Engineer 59 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

sub s_f5{

my $f5 = toTropicalPolynomial("min(x-y+2, -y+2+z, -2)", qw(z x y));

my $H5 = new Hypersurface<Min>(POLYNOMIAL=>$f5);

$H5->VERTICES;

}

sub s_f6{

my $f6 = toTropicalPolynomial("min(4x+6, 3x+y+4, 2x+2y+3, x+3y+4, 4y+5,

3x+2+z, 2x+y+z, x+2y+1+z, 3y+4+z, 2x+2+2z, x+y+2z, 2y+3+2z, x+3z, y+2+3z, 4z+5)", qw(z x y));

my $H6 = new Hypersurface<Min>(POLYNOMIAL=>$f6);

$H6->VERTICES;

}

sub s_f7{

my $f7 = toTropicalPolynomial("min(5x+6, 4x+y+2, 3x+2y+4, 2x+3y,

x+4y+3, 5y+8, 4x+6+z, 3x+y+4+z, 2x+2y+3+z, x+3y+4+z, 4y+5+z,

3x+2+2z, 2x+y+2z, x+2y+1+2z, 3y+4+2z, 2x+2+3z, x+y+3z,

2y+3+3z, x+4z, y+2+4z, 5z+5)", qw(z x y));

my $H7 = new Hypersurface<Min>(POLYNOMIAL=>$f7);

$H7->VERTICES;

}

sub s_f8{

my $f8 = toTropicalPolynomial("min(6x+10, 5x+y+8, 4x+2y+6, 3x+3y+6,

2x+4y+4, x+5y+6, 6y+9, 5x+6+z, 4x+y+2+z, 3x+2y+4+z, 2x+3y+z,

x+4y+3+z, 5y+8+z, 4x+6+2z, 3x+y+4+2z, 2x+2y+3+2z, x+3y+4+2z,

4y+5+2z, 3x+2+3z, 2x+y+3z, x+2y+1+3z, 3y+4+3z, 2x+2+4z,

x+y+4z, 2y+3+4z, x+5z, y+2+5z, 5z+10)", qw(z x y));

my $H8 = new Hypersurface<Min>(POLYNOMIAL=>$f8);

$H8->VERTICES;

}

sub myBenchmark{

my $t1=Benchmark::timeit(1,"s_f1");

Information Technology Engineer 60 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

print timestr($t1) . "\n";

my $t2=Benchmark::timeit(1,"s_f2");

print timestr($t2) . "\n";

my $t3=Benchmark::timeit(1,"s_f3");

print timestr($t3) . "\n";

my $t4=Benchmark::timeit(1,"s_f4");

print timestr($t4) . "\n";

my $t5=Benchmark::timeit(1,"s_f5");

print timestr($t5) . "\n";

my $t6=Benchmark::timeit(1,"s_f6");

print timestr($t6) . "\n";

my $t7=Benchmark::timeit(1,"s_f7");

print timestr($t7) . "\n";

my $t8=Benchmark::timeit(1,"s_f8");

print timestr($t8) . "\n";

}

Information Technology Engineer 61 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Appendix C: Upload to Hackage

The current package has already been put into the Hackage repository. This means that

any project in Haskell can import the tropical-geometry package in a standard way. The

link for getting to it is http://hackage.haskell.org/package/tropical-geometry.

We present in the following figure a screenshot of the front page of the package in

Hackage. This frontpage includes the following information:

A description of the package

A list of all the uploaded versions.

A list of the dependencies, each one with the bounds on their version.

It is not seen in the figure but the front page also includes the documentation gene-

rated for the package.

Information Technology Engineer 62 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer 63 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer 64 Final Grade Project

Bibliograf́ıa

[1] D. Maclagan and B. Sturmfels, Introduction to Tropical Geometry (Graduate Studies

in Mathematics). American Mathematical Society, 2015.

[2] G. Mikhalkin, “Tropical geometry and its applications,” 2006.

[3] H. Farooq, H. Z. U. Haq, M. K. Hanif, S. Javaid, and K.-H. Zimmermann, “R: Sparse

tropical algebra,” R Foundation for Statistical Computing, 2018. [Online]. Available:

https://CRAN.R-project.org/package=tropicalSparse

[4] A. Humayun, M. Asif, and M. K. Hanif, “BTAS: A library for tropical algebra,” CoRR,

vol. abs/1701.04733, 2017. [Online]. Available: http://arxiv.org/abs/1701.04733

[5] A. N. Jensen, “Gfan, a software system for Gröbner fans and tropical varieties,” Avai-

lable at http://home.imf.au.dk/jensen/software/gfan/gfan.html.

[6] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “Singular 4-1-2 — A com-

puter algebra system for polynomial computations,” http://www.singular.uni-kl.de,

2019.

[7] E. Gawrilow and M. Joswig, “polymake: a framework for analyzing convex polytopes,”

in Polytopes—combinatorics and computation (Oberwolfach, 1997), ser. DMV Sem.

Birkhäuser, Basel, 2000, vol. 29, pp. 43–73.

[8] HaskellWiki, “Haskell in industry,” 2019, onli-

ne; accessed 12-February-2020. [Online]. Available:

https://wiki.haskell.org/index.php?title=Haskell in industry&oldid=63179

[9] E. A. Kmett. algebra: Constructive abstract algebra. [Online]. Available:

http://hackage.haskell.org/package/algebra

[10] H. Ishii, “The computational-algebra package,” 2017. [Online]. Available:

http://hackage.haskell.org/package/computational-algebra

65

School of Mathematical and Computational Sciences YACHAY TECH

[11] C. C. Pinter, A Book of Abstract Algebra: Second Edition (Dover Books on Mathema-

tics). Dover Publications, 2010.

[12] J. S. Golan, Semirings and their Applications. Springer Netherlands, 1999. [Online].

Available: https://doi.org/10.1007/978-94-015-9333-5

[13] D. A. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms. Springer

International Publishing, 2015. [Online]. Available: https://doi.org/10.1007/978-3-

319-16721-3

[14] N. Bourbaki, Elements of Mathematics - Theory of Sets. Addison-Wesley, 1968.

[15] ——, Elements de Mathematique. Algebre commutative. Chapitres 5 à 7. Springer,

2006.

[16] D. Maclagan, “Introduction to tropical algebraic geometry,” 2012.

[17] G. M. Ziegler, Lectures on Polytopes. Springer New York, 1995. [Online]. Available:

https://doi.org/10.1007/978-1-4613-8431-1

[18] A. S. Mena, Beginning Haskell. Apress, 2014. [Online]. Available:

https://doi.org/10.1007/978-1-4302-6251-0

[19] (2018) Haskell: Introduction. [Online]. Available:

https://wiki.haskell.org/Introduction

[20] B. Milewski, Category Theory for Programmers. Blurb, Incorporated, 2018. [Online].

Available: https://books.google.com.ec/books?id=ZaP-swEACAAJ

[21] D. Astels, Test-Driven Development: A Practical Guide: A Practical Guide. Prentice

Hall, jul 2003.

[22] K. Beck, Test Driven Development: By Example. Addison-Wesley Professional, 2002.

[23] The Haskell Package Repository. [Online]. Available: http://hackage.haskell.org/

[24] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry.

Springer Berlin Heidelberg, 2008. [Online]. Available: https://doi.org/10.1007/978-3-

540-77974-2

[25] F. P. Preparata and M. I. Shamos, Computational Geometry. Springer New York,

1985. [Online]. Available: https://doi.org/10.1007/978-1-4612-1098-6

[26] “The Haskell Cabal: Overview.” [Online]. Available: https://www.haskell.org/cabal/

Information Technology Engineer 66 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

[27] “The Haskell Tool Stack.” [Online]. Available:

https://docs.haskellstack.org/en/stable/README/

[28] J. Richter-Gebert, B. Sturmfels, and T. Theobald, “First steps in tropical geometry,”

2003.

Information Technology Engineer 67 Final Grade Project

