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Abstract

The software Delta Chem works in the Computational Chemistry - Computational

Geometry interface to implement a new approach of porosity for highly symmetric

microporous materials. The proposed approach provides a double benefit. On one

hand, it takes advantage of the symmetry of these materials to carry out a geometric

approximation that significantly reduces the computational cost and the processing

time for adsorption sites determination. On the other hand, the new approach pro-

vides a more realistic modeling of the internal surface of the porosities. Delta Chem

performed a geometrical analysis of the structure of a microporous material using

only the information of its .xyz to determine the irreducible volume of the porosities

in the structure of a material. By construction, this region is representative of the

whole cavity so the computational effort in adsorption sites determination can be

concentrated in this region, using the critical points of the irreducible volume as can-

didates for the adsorption sites. Algebraic and Geometric operations like Delaunay

Triangulation, Wythoff Construction, the fundamental algebraic transformations

(Scaling, Translation, and Rotation), among others, are coordinately executed by

Delta Chem through the use of the four subprograms or routines: Legando, Kerno,

Mozaiko and Fragmento. Each of them is in charge of executing a wide variety

of tasks including the implementation of several Python libraries and the external

software PSD solve [1], to perform the following fundamental processes: To read

the input file provided by the user; determine porosity parameters: Center, size

and contributing atoms for each porosity type; to model the internal surface of the

porosities of the material and analyze their shapes; to find the polyhedron that best

fits the shape of the porosity and use it to generate the irreducible volume. The

approach has been tested for the determination of adsorption sites in MOF-5 using

the package Quantum Espresso for periodic DFT calculations.

The code of Delta Chem was written in Python3.6 and it is available at the

GitHub repository: https://github.com/jorgecastro316/Delta Chem-.git

Keywords:Microporous materials, polyhedrons, Delaunay Triangulation, Wythoff

Construction, adsorption sites,irreducible volume,PSD solve,Delta Chem



Resumen

El software Delta Chem funciona en la interfaz de Qúımica Computacional - Ge-

ometŕıa Computacional para implementar un nuevo enfoque de porosidad para ma-

teriales microporosos altamente simétricos. El enfoque propuesto proporciona un

doble beneficio. Por un lado, aprovecha la simetŕıa de estos materiales para llevar a

cabo una aproximación geométrica que reduce significativamente el costo computa-

cional y el tiempo de procesamiento para la determinación de los sitios de adsorción.

Por otro lado, el nuevo enfoque proporciona un modelado más realista de la superficie

interna de las porosidades. Delta Chem realizó un análisis geométrico de la estruc-

tura de un material microporoso utilizando solo la información de su .xyz para deter-

minar el volumen irreducible de las porosidades en la estructura de un material. Por

construcción, esta región es representativa de toda la cavidad, por lo que el esfuerzo

computacional en la determinación de los sitios de adsorción puede concentrarse en

esta región, utilizando los puntos cŕıticos del volumen irreducible como candidatos

para los sitios de adsorción. Por construcción, esta región es representativa de toda

la cavidad, por lo que el esfuerzo computacional en la determinación de los sitios de

adsorción puede concentrarse en esta región. Operaciones algebraicas y geométricas

como la triangulación de Delaunay, la construcción de Wythoff, las transformaciones

algebraicas fundamentales (Scaling,Translation,Rotation), entre otros, son ejecuta-

dos de manera coordinada por Delta Chem mediante el uso de los cuatro subpro-

gramas o rutinas: Legando, Kerno, Mozaiko y Fragmento. Cada uno de ellos está

a cargo de ejecutar una amplia variedad de tareas, incluida la implementación de

varias bibliotecas de Python y del software PSD solve [1], para lograr los siguientes

objetivos fundamentales: Leer el archivo de entrada proporcionado por el usuario;

determinar los parámetros de porosidad: centro, tamaño y átomos contribuyentes

para cada tipo de porosidad; modelar la superficie interna de las porosidades del

material y analizar sus formas para encontrar el poliedro que mejor se adapte a la

forma de la porosidad y usarlo para generar el volumen irreducible. El modelo de

’volumen irreducible’ fue puesto a prueba para determinar los sitios de adsorción en

MOF-5 utilizando el paquete Quantum Espresso para los cálculos de DFT.

El código de Delta Chem fue escrito en Python3.6 y está disponible en el repos-

itorio de GitHub: https://github.com/jorgecastro316/Delta Chem-

Palabras clave: Materiales microporosos, poliedros, triangulación de Delaunay,

construcción de Wythoff, sitios de adsorción, volumen irreducible, PSD solve, Delta

Chem
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Chapter 1

Introduction

Microporous Materials (also referred to as nanoporous by some authors) are those

that, as their name implies, have in their structure pores, channels or cavities. They

can be seen as 3D networks of atoms ordered so that they form arrays of uniformly-

sized cavities with molecular dimensions [2]. Their pores are well-defined structures

and their permanent porosity must be demonstrated by gas sorption isotherms [3].

For this reason, not all materials that have empty spaces in their structure can be

called ‘porous’ or ‘microporous’.

Well delimited, molecule-sized, empty spaces can result in useful structures for

applications in manipulating, separating, arranging and reacting molecules. Their

usefulness lies in the permanent porosity provided by their structural stability in

the absence of a guest1 [4]. The precision with which the shape and size of these

voids can be defined limits the control which can be exerted in their applications [3].

Inorganic Zeolites, Metal-Organic Frameworks(MOFs), Zeolitic Imidazolate Frame-

works(ZIFs) and Covalent Organic Frameworks(COFs) are representative categories

of these materials. The directionality of the bonds between their repetitive sub-

units allows the formation of highly symmetric pore cavities. Naturally occurrent

microporous materials, like many Zeolites, are widely used as catalysts in the petro-

chemical industry [5]. However, synthetically obtained microporous materials result

very attractive because it presents opportunities for the design of specific framework

geometries and the assembly of crystalline materials which have up to 91.1% of the

solid as the extra-framework volume, which can be rendered permanently porous,

with pore sizes of up to 28.8Å [3].

A wide variety of shapes and volumes can be designed or find in nature, but all

their structures share a common feature: a large surface area. The ordered arrays

of atoms lining the pore walls can be thought of as defining a surface internal to

the solid [3]. In these large surfaces, the adsorption phenomena become important.

Indeed, since their particular structure allows access to large internal surfaces and

cavities to a wide variety of molecules, important applications of these materials,

like gas separation and storage, lie on their adsorption properties.

1Solvent trapped inside the molecular framework that defines the cavity.
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During adsorption a molecule, or ion, called adsorbate present in a fluid bulk(gas

or liquid) is transferred and stuck on the surface of a solid known as adsorbent

[6]. Often, the reverse process, desorption, may be present; therefore, not only the

trapping of substances but also their release depends on these adsorption-desorption

processes. They can be driven by physical interactions or chemical bonds [7].

If the adsorbate adheres to the surface because of physical forces, the process is

called physical adsorption or physisorption. Physisorption involves Van Der Waals

interactions only, these are attractive forces due to weak electrostatic interactions

between the molecules of the adsorbate and the adsorbent. Chemical adsorption

or chemisorption occurs if the adsorbate is chemically bound to the adsorbent’s

surface. The forces participating in chemisorption are much stronger than those of

the physisorption, allowing the adsorbate to form a chemical bond with the structure

of the adsorbent [7].

Adsorption based technologies exploit the ability of certain solids to selectively

concentrate specific molecules in large quantities from solution or any bulk fluid [6].

Nowadays, adsorption of small molecules of gas or liquid is an important process for a

wide variety of applications that include separation of air pollutants [8] and removal

of volatile organic compounds, gas sensing, heterogeneous catalysis, wastewater

treatment and storage of logistically important gases like hydrogen and methane [6].

The development of mesoporous materials with structures characterized by a

high level of order during the 1990s motivated the emergence of experimental meth-

ods of structural characterization of the pores of a material based on adsorption

isotherms [9]. The precise location of the adsorption sites was achieved with new

characterization techniques such as Transmission Electron Microscopy (TEM) and

Neutron and/or X-ray Diffraction [10]. These high precision techniques encouraged

the discovery and creation of new nanomaterials with a wide range of novel appli-

cations. Therefore, the use and development of new theoretical and computational

methods for the adequate analysis of data to describe the process of adsorption in

the cavities of porous materials became necessary [10]. The methods of Computa-

tional Chemistry constitute important tools to investigate the adsorption of differ-

ent adsorbate molecules in porous materials. Density Functional Theory or simply

DFT stands out among other methods due to its compromise between data quality

and computational cost. In addition, strict treatment at the Quantum-Mechanical

level(QM) allows obtaining fundamental theoretical information about the system

analyzed and the nature of the adsorption process [10]. The disadvantage of DFT

(and basically every Ab Initio method) is that the computational cost scales as N2

where N is the number of atoms present in the periodic cell [9];considering that
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the number of atoms in analyzed porous material can easily exceed 400 atoms, the

computation time results really large, and can become even larger for adsorption

studies where the adsorbed molecules must be included.

Highly symmetric structures of porosities in many of these materials clearly re-

sembles the shape of uniform convex polyhedrons.This suggests that such symmetric

systems can be represented using some elements and characteristics of these solids.

The symmetry of a uniform polyhedron allows it to be wholly generated parting from

a minimal section of its volume referred to in this project as irreducible volume. In

this context, the present Capstone Project proposes a new approach of porosity

that makes use of the symmetrical shape of these materials to generate a minimal

representative region of the porosity, where high-level QM methods can be applied

rigorously for the determination of the adsorption sites. The idea is to determine

which uniform polyhedron (platonic or archimedean) that best resembles the shape

of the internal surface of a porosity and use this fittest polyhedron to generate the

Irreducible Volume. Then computational simulations of absorptive processes can

be carried out placing the adsorbate molecules in this minimal region only. The

reduction in the number of molecules used in the simulations of adsorption allows

the reduction of the computational time consumed, and more importantly, to get

all the QM effort focused in over a reduced region, right where it is needed. This

idea was originally proposed by Thibault Terencio [11].

The program has been tested to obtain the irreducible volumes of the following

materials: MOF-5,HKUST-1,UiO-66 and ZIF-8. They were chosen because they are

considered ‘benchmark’ or ‘prototypical’ materials and the knowledge obtained from

them is expected to apply to a broad range of microporous materials. Additionally,

the Irreducible Volume approach was proven by using the information provided

by Delta Chem in a simulation to determine the adsorption sites in MOF-5. The

software package Quantum Espresso was used for the QM calculations with DFT.

1.1 Preliminaries

1.1.1 Problem Statement

Computational studies of microporous material face two main problems. The

modeling of the internal surface of the porosities constitutes the first problem. The

current model uses the atoms of framework’s joints, usually the metals, as vertices

of a polyhedral representation of the pore cavities. However this model fails to rep-

resent the real internal surface of the materials where adsorption processes actually
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take place.

As mentioned above, the DFT method’s application is limited to systems with a

small number of atoms (if the processing time is considered as an important factor).

Given this situation, alternative methods and approaches have been proposed. The

utilization of force-field based Grand Canonical Monte Carlo (GCMC) simulations

have allowed a reasonable agreement with experimental data for some families of

MOFs [10] [12]. However, different conditions of temperature, adsorbate molecules

or families of materials may affect greatly the quality of the data, and the obtained

values may considerably deviate from what is expected experimentally [10]. Some

adjustments in the force field may produce a better agreement between the molecular

simulations and the experimental isotherms, but they don’t provide realistic adsorp-

tion mechanisms [10]. It is not convenient to completely ignore the QM methods

since their applications in studies of microporous materials have contributed to the

interpretation of experimental results and have led to predictions of properties even

on materials that haven’t been synthesized [10]. A desirable solution would be a

computational model that presents a reasonable balance between the number of

atoms in the model and computational cost, that could be transferable from one

type of system to another, [3], and provides an accurate representation adsorption

sites of small non-polarizable molecules at the interior of molecule-sized porosities.

1.1.2 Justification

In Ecuador, there has been little interaction between academia and the oil indus-

try sector controlled by the State-owned Petroecuador and PetroAmazonas. Any

of these companies have research and development departments [13]. This is worri-

some considering the transcendental importance of the oil industry in the country’s

economy. This lack of scientific research has led to the national oil industry to a

state where the crude oil treatment methods are almost rudimentary compared to

those of the main oil-producing countries. Only in the region, in 2016 Colombia,

an oil-exporting country with approximately one-fourth of Ecuador’s oil reserves

receives almost twice as much oil revenue per year than our country2. While colom-

bian ‘nanotechnology-based’ developments have shown great potential for increasing

the efficiency of different operations in the oil and gas industry, Ecuador imports

all of its catalysts [13]. The need to modernize the oil industry (and many other

industries in Ecuador) is obvious. Research in nanomaterials with direct application

2OPEC Annual Statistical Bulletin 2017: http://www.worldstopexports.com/worlds-top-oil-
exports-country/
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to improving the country’s productive matrix should be a priority for ecuadorian

government and academy. Computational Modeling is a powerful tool to provide

insight into molecular-level details of the underlying mechanisms that can guide

the current and future rational design and synthesis of microporous materials with

significantly improved adsorption capability. [3]. To make feasible the use of DFT

for adsorption studies in microporous materials, the irreducible volume approach is

proposed as an alternative method to obtain accurate results with the advantage of

requiring a minimum of adsorbate molecules, therefore reducing the computational

cost and processing time. This approach also offers a new geometrical interpretation

of the shape of the porosity that takes into account the atoms that directly con-

tribute to the internal surface of the porosity instead of just the metals, providing

a more realistic representation of the cavities in microporous materials. Since it is

not depending on the nature of the atoms but only on the spacial disposition of the

atomic spheres3 ,i.e the geometry of the system, this approach can be generalized

for different types of microporous materials.

1.1.3 Document Organization

The present document has been divided into seven chapters: Introduction, Ob-

jectives, Theoretical Framework, Methodology, Results and Discussion, Conclusion

and Perspectives.

Chapter 1 exposes briefly the scientific foundation of the project, then presents

the problem statement, the justification of the project and the organization of the

present document.

Chapter 2 shows the general and specific objectives of this research.

Chapter 3 presents the scientific base of the research. This is a brief review of

the geometrical and computational methods used in the elaboration of Delta Chem

and the State-of-the-Art on microporous materials and computational methods for

studies of absorptive processes.

Chapter 4 provides a deep insight to the functioning of Delta Chem.

Chapter 5 is dedicated to the evaluation of Delta Chem by a comparative analysis

of the positions provided by Delta Chem as candidates for adsorptions sites before

and after geometric optimization.

Finally, Chapter 7 shows the conclusions of this work and presents some sugges-

tions for enhancements in the accuracy of the program and future perspectives.

3Delta Chem treats the atoms geometrically as spheres with a given Van der Waals



Chapter 2

Objectives

2.1 General Objective

Propose a new approach of porosity for highly ordered microporous materials,

to accurately represent the internal surface of these materials and allow a rigorous

QM treatment to determine the position of their adsorption sites.

2.2 Specific Objectives

• Create a program written on Python that, given a .xyz file containing the

structure of a microporous material, determines the irreducible volumes of the

material’s pore cavities.

• Evaluate the irreducible volume approach by comparing the results for the

position of the adsorption sites obtained by Delta Chem against computational

results upon geometric optimization of the studied system.

12



Chapter 3

Theoretical Framework

This project is the result of the coordinated application of methods taken from

two different but slightly related disciplines: Computational Geometry and Com-

putational Chemistry. It is therefore convenient to divide the description of these

methods into two sections devoted to the geometrical and chemical components of

the project. This separation has the purpose of making easier for the reader to un-

derstand(and for the author to explain) the role that the geometrical and algebraic

operations below have in the complete work performed by Delta Chem. Let’s get

the theoretical bases required to do some geometry-based computational chemistry!

3.1 Geometrical Section

Most of this section is dedicated to describing the geometrical and algebraic

operations that are performed on geometrical objects called polygons and their ver-

tices. The most relevant operations, by its complexity, are Delaunay Triangulation,

Wythoff Construction, and Localization of the center of a porosity. Each of them

will be described in this section, but before we start to run, it is necessary to learn

how to walk. Prior to delving into the description of the aftermentioned operations

it is essential to insight the algebraic and geometrical operations that serve as gears

for the complex machinery behind the functioning of every algorithm in Delta Chem.

3.1.1 Linear Algebra Concepts and Methods: The Power of

the Matrix

Objects can be moved around in 3D space by manipulating their vertices, applying

over them operations known as Transformations. The vertices of the object can be

represented as vectors and the transformation is represented as a matrix. There are

three basic types of transformations: Scaling, Translation, and Rotation [14].

Scaling

A scaling transformation can be used to make objects bigger or smaller. Math-

ematically, this transformation scales the coordinates of an object with respect to

13



3.1. Geometrical Section 14

the origin by multiplying each object’s coordinate by a factor. It is represented by

a 4x4 matrix with entries in the diagonal only [14]. Applying the transformation to

the point P(u,v,w):

[
u v w 1

]

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 1

 =
[
au bv cw 1

]

Translation

Translation transformation moves an object by a certain amount determined by

a translation vector representing the coordinates of a destiny location. Mathemat-

ically, an object can be moved from an original position to another different by

adding the coordinates of the translation vector to the originals. [14]. It also can

be represented by a 4x4 matrix that has the translation movement put in the first

three positions of the last row while the rest of the matrix looks the same as the

identity matrix. Applying the transformation onto a point P(u,v,w):

[
u v w 1

]


1 0 0 0

0 1 0 0

0 0 1 0

Tx Ty Tz 1

 =
[
u+ Tx v + Ty w + Tz 1

]

Rotation

Rotation is a little bit more complicated than the past transformations since it

involves trigonometry. In general, it consist in moving an object around a given ro-

tation axis in an angle θ. Rotation can also be represented as a matrix but its entries

can vary depending on the angle and the axis of rotation. The rotations around the

coordinate axis for a given angle θ, are well identified and are the following for x,y

and z axis respectively [15]:
1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1



cosθ 0 sinθ 0

0 1 0 0

−sinθ 0 cosθ 0

0 0 0 1



cosθ sinθ 0 0

−sinθ cosθ 0 0

0 0 1 0

0 0 0 1


The rotation only around these three vertices may seem a little limiting, espe-

cially if more complex movements are required. However, these elementary rotation
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matrices used in combination with translation transformations allow rotating an

object around any axis and on an arbitrary angle. Of course, this general rotation

can be represented as a matrix, which is constructed with the method presented by

Kenneth Joy [15].

Figure 3.1: General Rotation

Suppose that an object on an arbitrary angle α must be rotated around a new

axis that passes trough an arbitrary point P (xp, yp, zp). This axis points in the

direction given by a vector t(xt, yt, zt), then:

1. The point P is relocated by translation T (−xp,−yp,−zp) to the origin (Figure

3.1a).

2. The direction vector is rotated about the y-axis on an angle θ = arctan(xt
zt

)

using a rotation matrix Ry,−θ, so that it coincides with the plane yz (Figure

3.1b).
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3. The vector is then rotated about x-axis on an angle φ = arctan

(
yt√
x2t+z

2
t

)
with Rx,φ so that it coincides with z-axis (Figure 3.1c).

4. The object is rotated about z-axis on the desired angle α with Rz,α (Figure

3.1d).

5. The first two procedures are reversed by using Rx,−φ and Ry,θ over the vector

(Figure 3.1e and (Figure 3.1f)).

6. Finally, the point P is translated back to its original position with T (xp, yp, zp)

(Figure 3.1g).

The total rotation matrix is the product of all the transformations used during

this procedure:

T (−xp,−yp,−zp)Ry,−θRx,φRz,αRx,−φRy,θT (xp, yp, zp)

Another useful transformation is the alignment of vectors, which implies rotating

a vector so that it has the same direction of an objective vector. To align a vector

a with a vector b the direction vector of the rotation is given by the cross product

of both vectors while the angle of rotation is given by their dot product.

Transformation matrices can multiply by each other, and the resulting matrix

represents the transformations that were encoded in the original matrices. In this

way, whole processes like the one shown in Figure 3.1 can be assembled. Transforma-

tion after transformations can be concatenated and combined by simply multiplying

matrices together, so that a single matrix can represent infinity unitary transforma-

tions. That is the real power of a matrix.

3.1.2 Delaunay Triangulation: A Universe of Triangles

Triangulation is the name given in Mathematics and Computer Graphics to the

geometric operation that, applied over a set of points distributed in a space region

of two or three dimensions, generates edges joining those points so that the created

edges don’t intersect. The Triangulation is said to be complete if there are no points

left to be joined [16]. Once the operation is completed, the set of points has been

divided into adjacent triangles for the 2D case and tetrahedrons for the 3D case.

That is the reason why this operation is denominated Triangulation. The surface

(perimeter) of the generated polytope(polygon) is known as the Convex Hull. The

tetrahedrons generated by the 3D Triangulation constitute a triangle faced polytope,

just as the triangles in 2D constitute a polygon.
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Delaunay Triangulation, named after the mathematician Boŕıs Nikolaevich De-

launay, is a special type of triangulation that generates a set of adjacent triangles

that are as equilateral as possible. This condition is achieved by imposing the fol-

lowing rule: No point must exist inside the circumcircle of any of the tetrahedrons

(or triangles) generated by the Triangulation [16].

The Convex Hulls of the 3D Delaunay Triangulations are widely used in computer

graphics to recreate surfaces [17] [18]. Hence, the best option to generate or recreate

a surface is always to divide into triangles. They are so good for this purpose because

triangles are the simplest polygons and, more importantly, any arrangement of three

vertices in 3D space will always be coplanar. Using higher-order shapes other than

triangles to recreate a surface, might result in degenerated faces that aren’t properly

represented because its vertices aren’t necessarily coplanar. Indeed, any 3D surface

in the universe is able to be approximated by fitting together triangles.

((a)) ((b))

((c))

Figure 3.2: (a) Cloud of 46 points in 3D . (b) 3D Convex Hull of the triangulation in c
(c)3D Delaunay triangulation of the cloud of points in a

Many algorithms have been developed to construct the Delaunay triangulation

and Convex Hull of a ·3D set of points [19] [20]. Among them, the Incremental
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Algorithm [21] [22] has been chosen because its implementation is the least compli-

cated. Its algorithm works iteratively and is indeed very simple. The process starts

by choosing randomly three points of the given set; by definition they are coplanar

and they are specifying the surface of two triangles, one on the front and one on the

back. The way to determine if a triangle is facing in or facing out is carefully choos-

ing the order in which the vertices are specified. By convention, if the orientation of

the vertices is anti-clockwise, the face is pointing outwards; if not, the face is going

inwards [16].

Once the double-faced triangle is defined, a fourth point is selected from the set;

if it is not coplanar with the triangle, it is chosen to form the first tetrahedron of

the 3D triangulation, i.e the initial convex hull H0. Then iteration begins:

1. For the ith iteration consider p = pi a point from the set, and Q = Hi−1 the

convex hull computed previous to the evaluation of pi.

2. Determine if p is in the convex hull (p ∈ Q). If that is the case, discard p.

Else, Q must be modified to include p. (See Figure 3.3)

Figure 3.3: Convex Hull H before (Hi−1) and after (Hi) adding point p

The volumes of the tetrahedrons that p forms with the faces of Q are used to

test whether p is outside or inside Q. The volume is a signed quantity that can be

calculated with the determinantal form of the volume for a tetrahedron with vertices

(a,b,c,d) [16]:

1

6

∣∣∣∣∣∣∣∣∣∣
ax ay az 1

bx by bz 1

cx cy cz 1

dx dy dz 1

∣∣∣∣∣∣∣∣∣∣
If p is inside the hull, all the tetrahedrons formed should present the same sign.

By convention, it has been chosen to be positive. Else, If p is not in Q, the latter is
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modified by adding tangent planes from p to Q. They delimit a cone with triangular

faces, each of whose apex is p and whose base is an edge e of Q [16](See Figure 3.3).

To determine the edges of the bases, first, the faces that are ‘visible’ from p must be

identified. The ‘visible faces’ are those which tetrahedrons form with p have strictly

negative-valued volumes. Then the edges e forming the bases are those that are

adjacent to two faces, one which is visible from p, and one which is not. Therefore,

they are on the border of the ‘visible’ region [16]. The Incremental Algorithm can

be summarized in the following diagram:

Figure 3.4: Incremental Algorithm for 3D Triangulation

3.1.3 Wythoff Construction: Spherical Trigonometry to make

it Interesting

Uniform regular polyhedrons are highly symmetrical 3D objects which faces are

regular polygons [16]. Their high symmetry provides them with an interesting char-

acteristic: Through a method known as Wythoff construction, named after Willem
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Figure 3.5: Spherical triangle PQR, surface defined by the intersection of the great circles
of a sphere.

Abraham Wythoff, the surface of a regular polyhedron can be completely generated

over the surface of any sphere, requiring only the information contained in a geo-

metrical object called Schwarz triangle. This is a spherical triangle,i.e, a portion

of the surface of a sphere delimited by the arcs of three sphere’s great circles(See

Figure 3.5). It is understood by large circles, those that cross the sphere exactly

through the center [23]. Of course, since it is no longer on a plane, the sum of the

internal angles of one of these triangles is necessarily greater than 180º or π radians.

This also means that flat trigonometry or ‘Euclidean’ no longer applies. Spherical

trigonometry has been in charge of providing the tools to study these geometric

objects, and the relationships created between the internal angles and the arcs that

make up the sides of these triangles are very useful for the elaboration of Wythoff

constructions. Operations of rotation and reflection applied over the Schwarz trian-

gle allow to obtain triangular partitions of the surface of the sphere with no gaps

and no overlaps. This condition is achieved by carefully choosing the angles of the

triangle. In effect, not every triangle meets this condition so not every spherical

triangle can be a Schwarz triangle. Take the Schwarz triangle of vertices P,Q and R.

Its angles can be expressed as π
p
,π
q
,π
r

radians, where p,q and r are integer numbers

that defines the angles at the given vertices.

If p,q, and r are integers between two and five, at least one of them is equal

to two and never two of them are five simultaneously, then the Schwarz triangle

turns into a Möbius triangle. This special Schwarz triangle, hereinafter referred

to as fundamental triangle, can be reflected through its edges to cover the surface
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of its sphere exactly once. The Wythoff construction consist in set a point called

the generator vertex, in the surface of the fundamental triangle and use the edges

of the triangle as mirrors to reflect the generator vertex. This operation eventu-

ally generates all the vertices of a polyhedron. Which polyhedron will be created

depends on the position of the generator vertex and the angles of its fundamental

triangle. Together, the fundamental triangle and the generator vertex constitutes

the generator triangle, which is characteristic of each polyhedron. For regular

polyhedrons, there exist a few allowed positions for the generator vertex so there is

a limited number of possible generator triangles.

Figure 3.6: Wythoffian constructions for the elemental triangle (4, 2, 3)

The information regarding the angles and the position of the vertex in the gener-

ator triangle is compactly represented by a Wythoff symbol. This symbol contains

three integers (p,q,r), and a straight bar | that represents the position of the gener-

ator vertex. In can be understood as follows:
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• If the bar is at the end of the symbol pqr|, the generator vertex is placed in

the incenter of the triangle.

• If the bar position is after the first number(counting from the left) p|qr, the

generator lies on the corner represented by the first number(that one before

the bar)

• Finally, if the bar is positioned between the second and third numbers pq|r,
the generator lies in the line formed by the two vertices whose angles are

represented by the numbers at both sides of the bar, at the point that bisects

the angle of the remaining vertex.

The Figure 3.6 shows all the possible Wythoffian constructions for the triangle

(4,2,3). The generator vertex is represented as a black dot.

3.1.4 A journey to the Center of a Porosity

The first step in the study of properties of practical interest in porous materials is

to determine the most basic and representative aspects of its structure: the number

of different porosities and their size. Computationally speaking, the usual method

of structural characterization of porosities is carried out using DFT-based methods

based on nitrogen or argon adsorption isotherms [9] [24]. However, these methods

make use of a simplified model of the pore cavity that does not take into account sev-

eral relevant structural factors such as internal cavity connectivity, material defects

and tortuosity of the structure [1]. Therefore, in the development of DeltaChem, an

alternative method has been chosen for the determination of porosity sizes, imple-

menting the PSD solve program created by Supriyo Bhattacharya [1]. In the paper

entitled “Fast Method for Computing Pore Size Distributions of Model Materials”,

the author defines porosity size distribution (PSD) as the statistical distribution of

the radius of the largest sphere that can be placed within a porosity. The radius of

this sphere must be such that it does not overlap with any of the Van der Waals

spheres of the atoms belonging to the porosity. In this way the determination of

PSD becomes a geometric optimization problem that consists in finding the largest

possible sphere that is surrounded by a set of points.
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Figure 3.7: Graphic representation of the largest enclosing sphere optimization problem [1]

Figure 3.7 shows the 2D representation of the geometry optimization problem for

maximum enclosed sphere. The radius R of the sphere is a function of the position

of the center of the porosity C; r is the radius of Van der Waals of the atoms that

surround the sphere1; Si represents the distance between the centers of the sphere

and the atom, i.e, the sum of the radii of the sphere and the corresponding atom:

R(C) = MIN(Si)− r

The larger sphere that can be enclosed by the porosity atoms is obtained by

maximizing the previous expression. The optimization problem can then be math-

ematically described as follows:

MAXIMIZE{R(C) = MIN(Si)− r}

This maximization is subject to the constraint dP−R ≤ 0 where dP is the distance

between the center of the sphere and a point P whose position is different from that of

the atoms that make up the porosity and is always within the structure to ensure that

the sphere is found at all times inside the pore cavity and not outside it. Although

the objective function to be maximized is linear, the constraint is an inequality, so

there is a problem of non-linear optimization. For its resolution, Battacharya has

implemented the SOLVOPT algorithm [25] in PSD solve. In general, the PSD solve

algorithm consists of selecting random P points within the structure and applying

the optimization process described above. The results for R(C) are sampled at

regular intervals over processing time to construct a cumulative histogram H(D)

1For simplicity of the illustration, the radius is shown as a fixed value for all the atoms, although
of course, it can vary from atom to atom
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(that is function of the sphere diameter). Finally, the PSD is obtained as the

negative derivative of the histogram function with respect to the diameter, that is:

PSD = −dH(D)

dD

((a)) ((b))

Figure 3.8: (a)Structure of MOF-5. (b)Pore size distribution obtained from PSD solve for
the structure given in (a)

The figure 3.8 shows the distribution of the porosity size obtained for the struc-

ture of the MOF-5. On it can be seen two peaks corresponding to the two types of

porosity present in this material.

Once the porosity sizes are obtained, the positions of their centers are deter-

mined. This process is described in detail in the Methodology section and constitutes

a fundamental link in the operation of the algorithm because it allows to determine

which atoms of the structure belong to each porosity. Said atomic organization is

used as input information for the Mozaiko subroutine to carry out the triangulation

procedures.

3.2 Chemical Section:

3.2.1 About MOFs and zeolites: Why microporous materi-

als are so cool?

Zeolites and metal-organic frameworks constitute wide and important categories

in microporous materials. Both have been extensively studied due to their potential

for important applications like catalysis [26], water treatment [27], drug delivery

[28],and even micro-machinery [29] to mention a few. Due to their unparalleled

capabilities and applications, zeolites and MOFs deserve an appropriate description.
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Zeolites

Zeolites are three-dimensional inorganic crystalline networks of silicates and alu-

minosilicates linked through oxygen atoms. These networks contain well-defined

channels and cavities [5]. Many types of Zeolites are naturally occurring so they are

known at least since 1756 when Axel Fredrik Cronstedt coined the term ‘zeolite’,

but some rudimentary applications maybe precede this date. It is only until the

40s of the last century that their properties as moisture adsorbents began to be

investigated. The molecular structure of these materials provided them with high

surface areas and molecule-sized pores [30]; properties that were used at first to

separate long-chain hydrocarbons according to their size, taking advantage of the

different channel and pore sizes in analcite and chabazite [30]. These capabilities

were enough for the oil industry giants Exxon Mobile and Union Carbide to focus

their attention on the studies of zeolites. In the late 70s, the chemical research

group of Union Carbide lead by Jule Rabo discovered that the internal surface of

these materials can act as a reaction channel whose activity and selectivity may be

enhanced by the introduction of active acidic or basic sites inside the pore cavity [5].

These discoveries allowed Exxon to put on sale the first commercial catalyst for oil

refining based on faujasites by 1964. Nowadays, 176 types of zeolite frameworks have

been indexed in the 6th edition of the Atlas of Zeolite Framework Types [31], and

72 additional codes have since been added to give a total of 248 Framework Type

Codes assigned to date according to the International Zeolite Association(IZA). And

their applications go far beyond the oil industry but of course it still representing

an important sector for industrial application of zeolites. Indeed, Zeolites consti-

tute the most used industrial heterogeneous catalysts with large-scale applications

in refining and petrochemistry [32]. However, the growing worldwide environmen-

tal pollution increased the interest in zeolites and their potential for environmental

catalysis 2 [32].

Metal-Organic Frameworks (MOFs)

The most representative and relevant category of microporous materials nowa-

days is that conformed by the metal-organic frameworks due to their wide range

of applications, cutting-edge capabilities and their great diversity in structures and

shapes. First MOFs were synthesized in the late 80s as results of zeolite-based

experiments whose objective was to create crystalline extended structures, similar

to those of zeolites, but based in coordination metal ions joined by organic linkers

2Catalytic elimination of gas, liquid, and solid-phase pollutants.



3.3. State-of-the-Art 26

containing active acidic sites [33]. The length of these organic linkers was though to

provide the material with permanent, well-defined porosities. In 1995, gas adsorp-

tion studies were performed on the first MOFs, these studies suggested the presence

of microporosities in those structures [34] [4] [33]. However, since the experiments

where carried out at high pressure (30 atm), they didn’t accomplish the gold stan-

dard for porosity determination: reversible gas adsorption isotherms using nitrogen

at 77 K. [34] [33]. Ironically, the same year the term metal-organic framework was

coined by Yaghi and Li to refer the structure with formula Cu(BIPY)1.5(NO3)
3 [35].

In absence of any definitive, proof of the existence of their porosities, most of MOFs

were seen by 90s chemists as ‘sculptures rather than useful materials’ [4]. It was not

until 1998 that researchers from Arizona State University, through a comprehensive

analysis that included synthesis, characterization with X-ray diffraction and Nitro-

gen adsorption isotherms at low pressures and temperatures, reported the creation of

rigid frameworks that maintain their structural integrity and porosity during anion-

exchange in MOF-2 [34]. These findings were fundamental for the ground-breaking

synthesis of MOF-5 by the same research group at ASU one year later. Its simple

three dimensional network with robust and well defined porosities, simple synthesis

process through rational design principles, and a very high surface area, took it

to be recognized as the most prominent example of a metal-organic framework by

experts of a wide range of scientific disciplines [4], and its discovery boosted the

popularity of MOFs to unsuspected levels. By end of 90s, MOFs had already cap-

tured the attention of the synthetic chemistry community in view of the possibility

of designing materials with a large surface, unparalleled for conventional inorganic

and organic porous materials [4]. During the first decade of this century more than

20,000 different MOFs were reported and studied [33]. This extensive range of re-

ported model materials is due to flexibility with which the metal secondary building

units (SBUs) and organic linkers can be varied to create open crystalline frameworks

with permanent porosity [33]. Nowadays, MOFs’ composition, chemical reactivity,

pore opening and size can be designed to achieve unprecedented applications.

3.3 State-of-the-Art

This section is devoted to the description of the novel materials that are used

along this project to illustrate, exemplify and test the job performed by Delta Chem.

It is also an opportunity to take a look at how computational tools coming from

3Triangular Cu based building units connected through 4,4-bipyridine
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disciplines other than chemistry are useful to accurately represent diverse chemical

systems and bring a solution to chemical problems. The aim is to highlight the utility

of the research in adsorption properties in these materials for the development of

industrial-scale applications, and illustrate the importance of this project.

3.3.1 Analyzed Microporous Materials

The materials used along this project are framed in the previously described

categories and they were selected to test the functioning of Delta Chem. The se-

lection was based in the number of the porosities, the shape of the pore cavity and

the importance of their applications. All of them present remarkable capabilities

that have made them objects of extensive study, industrial-scale production, and

application [33].

CuBTC or HKUST-1

This prototypal MOF was synthesized by researchers of Hong Kong University

of Science and Technology(HKUST) in 1999 [36]. Coincidently, the same year an-

other iconic microporous material, the MOF-5 was synthesized for the first time.

Cu-BTC or HKUST-1 is considered as ‘prototypal’ since a whole HKUST fam-

ily of MOFs has been created from its particular structure(Figure 3.9d) [4]. This

material presents the formula Cu3(BTC)2(H2O)3 [36] but can be dehydrated to ob-

tain the anhydrous Cu3(BTC)2. In this formula, BTC refers to the organic linker

benzene-1,3,5-tricarboxylate(Figure 3.9b). It is a triangular linker that joins three

Cu2(-COO)4 SBUs (Figure 3.9a). Each of these metal-containing units can joint with

four BTCs to form the paddlewheel core structure shown in Figure 3.9c. This lig-

and arrangement results in two coordinatively unsaturated Cu sites per paddlewheel

which polar molecules can interact with [37].This relatively big core structure allows

the formation of large porosities. The disposition of the aromatic rings produces the

formation of three different porosities on the HKUST-1 structure, two of comparable

size (pore diameter ≈ 14Å) and a smaller pore (pore diameter ≈ 10Å) [37]. Nitrogen

adsorption isotherms show that this MOF has approximately a BET surface area

of 1055m2g−1 [38]. This large surface area makes this material an attractive candi-

date for gas sensing and separation [37] [26] [38]. Of course, this value may seem a

little bit short compared with the values obtained for other families of MOFs [26],

however, it is several times higher than any naturally occurrent zeolite [39]. Its

structure is also well suited for heterogeneous catalysis where the presence of metal

centers for the stabilization of intermediates is convenient [37]. Their remarkable



3.3. State-of-the-Art 28

adsorption capabilities [38] makes them very useful for trapping of air and water pol-

lutants [40] [41]. Additionally, HKUST-1 has been proven to work as an antifungal

and offers the controlled release of biologically active copper ions [42].

Figure 3.9: HKUST-1 Structure: (a) Cu2(-COO)4 SBU, (b) (C9H3O6)
−3 BTC organic

linker, (c) Cu-containing core structure, (d) HKUST-1 unit cell used for Delta Chem
analysis

. Color code: Cu-Brown,O-Red,C-Black,H-White

MOF-5 or IRMOF-1

With a paper titled “Design and synthesis of an exceptionally stable and highly

porous metal-organic framework”, it is obvious that the creators of MOF-5, Li,

Eddaoudi, Keeffe, and Yaghi were pretty sure of how important their discovery was.

Of course, the most iconic MOF couldn’t be excluded from this list. It was so

ground-breaking because, before its creation, no other open framework had been

capable of supporting permanent porosity and avoid collapsing in the absence of

guest molecules, such as solvents [43]. It is constituted by Zn4O(-COO)6 SBUs

(Figure 3.10a), connected through BDC (benzene-1,4-dicarboxylate also known as

terephthalate or TBA)(Figure 3.10b). On each SBU, a central oxide is surrounded

by four Zn2+ ions. Every Zn2+ ion is tetrahedrally coordinated with the oxygens of

the six bridging carboxylate group [4] as shown in Figure (Figure 3.10c).



3.3. State-of-the-Art 29

Figure 3.10: MOF-5 Structure: (a) Zn4O(-COO)6 SBU, (b) (C8H4O4)
−2 BDC organic

linker, (c) Zn-containing core structure, (d) MOF-5 unit cell used for Delta Chem analysis

. Color code: Zn-Brown,O-Red,C-Black,H-White

The structure shown in Figure 3.10d presents two types of porosities: a large

cavity with a pore diameter of ∼ 15Å, and a small one of diameter ∼ 10Å [43] [4].

MOF-5 presents a surface area of 3800m2g−1 [26], the largest determined for a

material by the date of its discovery [33]. Its comparatively high surface area and

the large size of its pores made the MOF-5 quickly suggested for applications in

gas storage and sequestration [44] [45]. Additionally, MOF-5 has been proven as a

component of heterogeneous catalytic systems [46].

UiO-66

Potential applications of microporous materials like high gas storage requires

dense packing of the material powder under mechanical compression without col-

lapsing the pores [47]. Precisely the large pore cavities and surface areas of previously

described MOFs are the reasons of their weak thermal and mechanical stability [48].

This constitute a drawback for their use in industry-scale applications for gas stor-
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age. UiO-66 is a protypical MOF with Zirconium based SBUs that combines an

unprecedented mechanical stability with large pore sizes and surface areas. UiO-66

was synthesized for the first time at the University of Oslo in 2008.

Figure 3.11: UiO-66 Structure: (a)Zr6O4(OH)4 SBU, (b)(C8H4O4)
−2 BDC organic linker,

(c) Zr-containing core structure, (d)UiO-66 unit cell used for Delta Chem analysis

. Color code: Zr-Purple,O-Red,C-Black,H-White

UiO-66 SBU has the chemical formula Zr6O4(OH)4(Figure 3.11a) and is coodi-

nated with 12 organic linkers (DBC for UiO-66) [49](See Figure 3.11b and 3.11c).

The high coordination of Zr allows the creation of a highly dense network whose

increased number of connections provides high mechanical stability while the large

size of the SBUs allows the presence of large porosities [47]. This material presents

a BET surface area of 1180 − 1240m2g−1, and two different porosities of similar

size(pore diameter ≈ 14Å) [49].

ZIF-8

Zeolitic imidazolate frameworks, or simply called ZIFs, can be seen as MOFs

with zeolitic architectures, consisting of metal ions of zinc of copper coordinatively
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joined by four imidazolate rings (C3H3N2)
− just like Si and Al atoms in zeolites are

covalently joined by oxygens [17].

Figure 3.12: ZIF-8 Structure: (a) Imidazolate organic linker, (b) Zinc-coordinated core
structure, (c)ZIF-8 unit cell used for Delta Chem analysis. Color code: Zn-Brown,N-
Blue,C-Black,H-White

As could be expected, the hybrid structure of ZIFs provides these materials

with advantages from both, MOFs and zeolites. These advantages include large

surface areas, high crystallinities, abundant functionalities and remarkable thermal

and chemical stabilities [17] [50].

Among these materials, ZIF-8 (Figure 3.12 ) is highlighted due to its large (com-

pared with zeolites) pore diameter and surface area,∼ 11.6Å and 981.1m2g−1, re-

spectively [50] [51]. Due to its thermally and chemically stable properties and porous

structure, ZIF-8 is well suited for the application of carbon dioxide adsorption/sep-

aration [17]. The organic reactivity provided by the linkers results in useful for

catalysis applications. It has proven that ZIF-8 is an effective heterogeneous cat-

alyst for a wide variety of organic chemical reactions and processes [17] such as
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transesterification [52] and Friedel-Crafts acylation [53]. This material has been also

tested for possible drug delivery applications due to its pH-sensitive structure [54].

Precisely this latter characteristic opens the door for cutting-edge applications for

this material. A clear example is to use ZIF-8 as blocks to build metal–organic-

framework-based biomedical microrobots. These MOFBOTs can be directed with

magnetic fields and applied for controlled drug delivery [29].

3.3.2 About Geometry applied to Chemistry: Triangles and

Pores

Geometric methods and operations have been applied for the study of chemi-

cal structures and systems at least since the 17th Century. Geometrical objects

like polygons and polyhedrons have been used to represent and classify molecules

and/or materials according to their structures or their symmetry. Indeed, impor-

tant chemistry-related disciplines like crystallography have an important geometrical

background. It is not surprising that computational geometry also presents applica-

tions for chemical purposes. Some of the geometrical processes and operations that

were described in this chapter are already being used for the functioning and devel-

opment of computational chemistry methods and models. Computational geometry

provides molecular modelers with a powerful set of tools for solving a wide variety

of conformational problems [55].

Triangulations (specially Delaunay triangulation) can be used to reconstruct

curves and surfaces from sample points, resulting useful for analysis of surfaces of

chemical interests like interaction sites of proteins [56] [57] or structural character-

ization of colloidal films [58]. Triangulations even have been applied in analytical

chemistry as a local multivariate calibration method for analysis of near-infrared

(NIR) data [59].

Of course, triangles are not everything in geometry; spheres also have relevant

applications in computational chemistry to model solvent-accessible surface sur-

rounding a solute in solvated systems [60]. This application is currently used to

generate the molecule-containing cavities in COSMO and CPCM, two widely used

computational solvent models. Spherical trigonometry has been mentioned briefly in

studies regarding ‘flexocrystallography’, a proposal for a variant of crystallography

to deal with ‘soft matter’ chemical and biological structures like vesicles.

The concept of ‘irreducible volume’ of uniform polyhedrons has been applied

to analyze mechanical effects on symmetric materials, like uniaxial stress on band

structure and electron mobility of silicon [61]. However, the irreducible volume used

was obtained from the first Brillouin zone and it is calculated with programs for the
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finite symmetry groups [62].

Particularly, for microporous materials, spheres are used to define their pore

cavities. The generation of spheres can be coupled with statistical analysis and non-

linear optimization to obtain the pore size distribution (PSD) function for these

materials with reasonable accuracy, without requiring a DFT method [1]. Due

to the high symmetry of many of these materials, uniform polyhedrons are used to

model the geometry of cages, channels and building units. Indeed, some of them like

MOFs and ZIFs adopt structures so symmetrical that their design and construction

can be carried out schematically, entirely from a geometrical point of view, using

SBUs as if they were LEGO bricks, joined by geometrical bridges [63].

It is very important to note that, until the delivery of this capstone project, no

records have been found that establish the applications of triangulations in the study

of microporous materials or the surface of their porosities. And neither was method

for the direct determination of the positions of the centers of porosities in these

materials. References to the construction of Wythoff in chemical applications could

not be found. Interestingly, there is also no record of the use of this operation for

the construction of irreducible volumes although geometrically they are equivalent

to those obtained from the first Brillouin zone.

Finally, no previous studies of the use of irreducible volume in the determination

of adsorption sites in micropores have been found.



Chapter 4

Methodology

Just like in the last chapter, the Methodology will be explained in two parts

for a better description of the geometric and chemical components of the project.

The first section of this chapter is dedicated to exploring the work performed by

the program Delta Chem and describe the functioning of its routines. The second

section describes the computational set used to test the program’s performance in

determination of the adsorption sites in the materials described in the introduction.

4.1 From vectors to MOFs: Exploring Delta Chem.

In a very general way, Delta Chem is a set of algebraic and geometric operations

applied over a set of points distributed on a 3D space. These operations can be

as simple as a dot product or as complex as a triangulation. The positions of the

points are conveniently represented as vectors to allow their algebraic manipulation.

For the functioning of Delta Chem, these operations were organized into four main

routines. Each routine is a program itself and is in charge of performing one of the

following tasks:

• To read an input .xyz file and transform the information from the string format

of the text in the file to an adequate format for its processing in Delta Chem.

• To seek the existence of cavities within the cloud of points to determine their

sizes, the position of their centers and the atoms that are closer to their sur-

faces.

• Computing the convex hull of a given set of 3D points an analyze the shape

of the hull.

• To determine the regular polyhedron (platonic or archimedean) that best fits

the shape of a given convex hull and compute the irreducible volume of the

fittest polyhedron.

In Delta Chem, these tasks are executed sequentially so that the output of the

former task is the input of the next. However, if an appropriate input is used, the

34



4.1. From vectors to MOFs: Exploring Delta Chem. 35

routines can be implemented individually. Each routine is constituted by a set of al-

gorithms, some of them are proper of each routine but others are ‘external functions’

and can be used in more than one routine or independently. For all the algebraic

operations the Python library Numpy is used, so the position vectors are repre-

sented as Numpy arrays. In the following subsections, each of the aftermentioned

routines is described in the order in which they are executed by Delta Chem. For

the purposes of the present project, the cloud of points analyzed corresponds to the

atoms of a porous material. So that in some routines the cloud of points is treated

like a cloud of spheres of radii given by the Van der Waals radius of each atom. The

input of Delta Chem is a simple .xyz file containing the structure (atomic symbol

and Cartesian coordinates) of a microporous material. To illustrate this section, the

structures of the HKUST-1,UiO-66 and ZIF-8 were used.

4.1.1 Leganto: To understand Delta Chem is necessary to

know how to read

Leganto1 is the simplest and shortest of the four main routines, but its func-

tion is essential to put in motion the machinery of Delta Chem. It processes the

structural information provided directly by the user with the .xyz file; organizes the

data and convert it to a format adequate for the work of the subsequent routines.

Regular expressions, RE, constitute a programming language by themselves with

its own particular syntaxis. The RE constitute a very useful tool to find matches

of groups of characters in a text; they are made available in Python by the module

re. Leganto makes extensive use of these advanced search tools, so it can match

alphanumeric expressions, numbers, letters, metacharacters, whole sentences, and

even blank spaces according with the RE Python Manual2.

Following the expected structure of the .xyz file, Leganto skips the first two

lines of the file. Then matches all the lines that contain a letter at the beginning.

Of course, this selection matches all the lines of the file bellow the third line since

everyone begins with the atomic number. Each line is stored in a list as a string.

Iterating over this list, the numeric characters of the coordinates are separated from

the letters of the atomic symbol using the module re again. This process generates

two lists to store the two different data. The list containing the strings of the

coordinates is iterated to split the list into the blank spaces, generating arrays of

three strings corresponding to the cartesian coordinates of the atoms in the analyzed

1‘Leganto’ means ‘Reader’ in Esperanto
2Available at https://docs.python.org/3/howto/regex.html
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material. Each string is converted to float and organized in a list of arrays of three

elements. This information is conveniently organized in the form of a dictionary

named structure which keys are the cartesian coordinates previously obtained,

and which values are the corresponding atomic symbol.

The atoms in the the structure(and their coordinates) are then grouped accord-

ing with the element type. The dictionary grouped atoms is created using the

information in the list of atomic symbols, using them as keys. For the values, lists

with the coordinates of each atom belonging to a certain element are used. In

this way a dictionary containing the position of all the atoms in the structure but

organized in as many elements as are present in the material.

Another useful application of re is given to read the information regarding the

Van der Waals radii and assign these values to the atoms in the structure. The

information is obtained by reading the file ’radii list.dat’ included in the package of

Delta Chem that is also used by PSD solve. It is just a text file where each line

contains the atomic symbol and the Van der Waals radii in Angstroms. The module

re allows finding in the text the atomic symbols of the keys of grouped atoms,

stores each matching line, and separates the numerical information to use it as values

of the dictionary Vdw radii. This dictionary therefore contains the atomic symbols

of the elements in the structure and their Van der Waals radii. This structural

information is the base of the functioning of Delta Chem. The assignation of radii

allows to treat the system as a set of spheres which size and surface is define by their

corresponding Van der Waals radius instead of just a cloud of points. Therefore

this small routine sets the frontier between the geometry and the chemistry in this

project.

However, to analyze microporous materials the program also needs to know the

size of the porosities that it should look for. The radii of the porosities are obtained

by executing the program PSD solve. This is a C-written program but it can be

executed from a Python script through the module subprocess using the .xyz file

and ‘radii list.dat’ as inputs. The values for grid size and test particle size has been

set in 0.25 Å as suggested by Battacharya and Gubbins, and 1.2 Å respectively.

The output file of PSD solve, .dat, contains the Pore Size Distribution function

calculated by the program with the method discussed in 3.1.4. The function Poros-

ity Radius reads the .dat file and separates the information regarding the PSD and

the radii in different lists.

Once its job is done, Leganto returns the following information:

• The list coordinates. Contains the Cartesian coordinates of the analyzed

structure.
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• The list lst. This list contains other three list, each one corresponds to the

X,Y or Z coordinates of the atoms but separated to be used for plotting in

Matplotlib.

• The dictionaries structure,Vdw radii and grouped atoms.

• 1D array containing the PSD information

• List containing radii data provided by Porosity Radius

Leganto contributes to the development of Delta Chem by making manipulable

and graphically representable the structural information passed by the user. The

atomic representations shown in Figure 4.1 constitute the framework within which

all Delta Chem processes and operations are carried out.

Figure 4.1: Structures of HKUST-1(a),UiO-66(b) and ZIF-8(c), read and represented by
Leganto(and Matplotlib)

4.1.2 ’Kerno’: an unexpectedly (hard) journey to Find the

Center of the Porosities

The routine Kerno3 is in charge of determining the existence of porosities and

the position of their centers in a given material or a cloud of points. To perform this

task, Kerno requires the information of atomic positions and pore sizes provided by

Leganto.

With the function find peaks taken from the SciPy module signal, Kerno an-

alyzes the one-dimensional array that contains the information about the PSD to

determine which peaks are relevant, so they could be considered as representative

3‘Core’ in Esperanto
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Figure 4.2: PSD vs pore radius plots for (a)HKUST-1, (b)UiO-66 and (c)ZIF-8. The
different types of porosities present in a material coincide with the number of peaks in the
plots

of the types of porosities in the material. According with SciPy online documenta-

tion4, by default find peaks always finds all the peaks in the given data by simple

comparison between neighbors. However, for this project, a more refined selection

is required to separate the relevant peaks from this set of local maximums. The

desired subset is obtained by specifying the height and the prominence of the peak.

The former consider how strong is the signal generated by a possible type of porosity

while the latter is a measure of the independence of a peak defined as the vertical

distance between the peak and the lowest contour line [64].

These parameters have been set in 0.4 for both, height and prominence. These

values work well for all the materials used during this project and shown in this

chapter. The values of the probability density peaks in the selected subset are

used to fit the PSD with Gaussians using the function curve fit from SciPy module

optimize. PSD vs Pore Radius plots for HKUST-1,UiO-66 and ZIF-8 are shown

in Figure 4.2 with their corresponding gaussian fit. Delta Chem is suited to fit a

maximum of four peaks with a tetramodal gaussian, i.e, the program can recognize

4Availbale at: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find peaks.html
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up to four different types of porosity. This limit can be easily adapted to detect

n porosities but it wasn’t considered necessary for the materials analyzed in the

present project. The pore diameters are chosen as the values corresponding to the

maximums in the gaussian fit. The obtained values are just approximations so they

can differ from experimental values up to 5Å [1]; however, they constitute good

starting points for the following stages of the program. Provided with the structural

information and the size of the porosities, Kerno is ready to begin an unexpectedly

hard journey to achieve the main objective of the routine: To find the position of

the centers of the porosities.

This task consists basically of finding the position of the center of a sphere of

an arbitrary radius among a cloud of points so that no point of the cloud lies inside

the surface of the sphere. The size of the pore is already known from the analysis of

PDS solve data, so the challenge is to detect the empty spaces in the given structure

that match the radius of the spheres and find their centers. i.e, find a point that

doesn’t exist in a region where nothing exists.

For this reason, the first step in this process is to generate candidates to be the

centers. A reasonable way to generate initial guests is to find the midpoints of the

segments that can be formed between all the possible pairs of points in a given set.

For a case where the points are treated as spheres(or atoms) the midpoint between

two spheres of different sizes doesn’t lie in the center of the segment their centers

form and the calculation of the real position of the midpoint requires additional

calculations that greatly increases the processing time required. Therefore, only the

midpoints between spheres of the same radius (or atoms of the same element) are

considered by Kerno to form pairs and obtain midpoints. As expected, systems

with a considerable number of atoms present a huge number of initial candidates.

To avoid the unnecessary calculation of midpoints, the distance between the points

of each pair is taken into account. If this distance (taking into account the Van der

Waals radii) is lower than a lower bound or higher than an upper bound, the pair

is ignored from the subsequent calculations. For Delta Chem analysis, these values

has been set as

lower bound = smallest PSD radius − 1.2Å

upper bound = largest PSD radius + 1.2Å

. The tolerance value ±1.2Å5,as many others in this routine, must be included to

5Hydrogen Van der Waals radius
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Figure 4.3: Initial candidates for porosities centers in: (a)HKUST-1, (b)UiO-66, (c)ZIF-8.

take into account deviations from the real values of the pore radius since PDS solve

results are just approximations. Distances between atoms outside these bounds are

irrelevant since they obviously do not correspond nor are close to the position of the

center of a porosity. Only if the distance is between this range the midpoints are

calculated and stored in a list of candidates. Even with this restriction, the amount

of candidates still too far to be realistic: 79950 candidates for HKUST-1, 7182 for

UiO-66 and 5532 for ZIF-8. Kerno must be determine a single center per porosity

type, so the quantities of initial candidates may seem absurd or even useless at first

sight. However, the purpose of generating so many candidates is to populate the

empty spaces in the analyzed structures, and as can be seen in Figure 4.3, it works

very well.

A refinement process is necessary to eliminate the unlike candidates. Kerno

applies a series of ‘filters’ and operations over these midpoints. The goal is to find

the closest approximation to the real centers from the bulk of candidates.

Kerno’s First Filter: Pore Size

For this filter, Kerno first determines the closest atom for each candidate. The

distance between them is used to classify the candidates as follows:

1. For each type of porosity, its pore radius lenght is compared against the ’closest

atom distance’(henceforth CAD) of each candidate.

2. If the CAD ranges between the bounds defined as

lower bound = PSD radius− closest atom’s VdW radius

2

upper bound = PSD radius +
closest atom’s VdW radius

2
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Figure 4.4: Candidates after Filter 1 for: (a)HKUST-1, (b)UiO-66, (c)ZIF-8.

i.e CDA of the candidate is really close to the lenght of a pore radius, the

candidate represents a possible center for the given type of porosity and is

allowed to pass this filter.

This filter drastically reduces the number of candidates at least to a 13% of the

initial candidates: 11150 for HKUST-1, 198 for UiO-66 30 and for ZIF-8. Addi-

tionally, it allows the classification of candidates according to the porosity type.

The great amount of data analyzed and classified makes this filter, the most time

consuming process in Delta Chem execution. The effect of the first stage of refine-

ment can be clearly appreciated in Figure 4.4. Even after this filter, the number of

candidates remains too high to be useful, therefore further refinement is necessary.

Kerno’s Second Filter: Neighbourhoods of Candidates

A way to reduce the amount and obtain more accurate candidates consist of form

groups of ‘closest neighbors’ with the candidates. To perform this job Kerno calls

the recursive function grouping which does exactly what its name suggests. The

second filter process goes as follows:

1. Given a set of candidates to grouping, a random candidate is chosen to be the

center of a sphere with the radius of the corresponding porosity.

2. The distance of the selected candidate with all the remaining candidates is

calculated. Any other candidate lying inside the surface of the sphere is con-

sidered a neighbor of the former point.

3. A point belonging to a neighborhood cannot belong to any other so after a

point is assigned to a neighborhood it is eliminated from the main list of points

to won’t be considered again in the assignation.
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Figure 4.5: Neighbourhoods of Candidates created by Kerno through the function group-
ing. The structure used in the representation corresponds to the unit cell of MOF-5

4. Once all the possible neighborhoods are formed, their barycenters are calcu-

lated with the external function Barycenter which returns the position of the

barycenter as an array of coordinates (x,y,z).

5. The number of candidates per neighbourhood is determined.

Kerno makes use of grouping to repeat this operation with the new candidates

until every neighborhood is formed by a single point. A graphical representation

of this process is shown in Figure 4.5. This stage considerably reduces the number

of candidates, passing from thousands to a few dozens. However, it is not good

enough yet. A problem that arises from this process is that the candidates of a

small porosity can be occupying positions of the candidates of bigger cavities since

the smaller sphere can fit inside any of the others. To fix the problem of candidates

of different porosities coexisting in the same pore cavity, the following sub-process

is executed:

1. The distance between candidates of different porosities is measured.

2. If it results shorter than the pore radius of any of the pore cavities involved,

then both candidates are marked for a further analysis to determine which of

them actually belongs to the pore that both are occupying.

3. This analysis is straightforward: The distance to the closest atom for each

candidate is compared against the radius of the porosity of which they are

candidates. The selected candidate is the one that presents the minor differ-

ence.
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Figure 4.6: Candidates after Filter 2: (a)HKUST-1, (b)UiO-66, (c)ZIF-8

At the end of the second filter, the number of candidates has been reduced to

84 for HKUST-1, 5 for UiO-66 and 1 for ZIF-8. This can be appreciated in Figure.

It is expected since the number of atoms in the unit cell HKUST-1 used for the

calculation is much higher (1424) than that of UiO-66 and ZIF-8 unit cells (466 and

360 respectively). The effectiveness of both filters is undeniable, but the goal has

been set to obtain one center per porosity type. A final refinement is imperative

and as will be seen, the last candidates are the most difficult to eliminate.

Kerno’s Third Filter: Pores in the Shell

By definition, the sphere representing the pore cavity shouldn’t contain any point

(or sphere) inside its surface. However, since the candidates and the pore sizes are

just approximations based entirely on the geometry of the system, that condition is

not fulfilled by any of the candidates. The best option to advance in the process is

to find the candidate closest to the real center.

The logical step to continue the selection would be looking for the candidates in

which spheres contain the least number of points or spheres inside. However, this

strategy fails in structures like the MOF-5 in Figure 4.7a, that presents candidates

outside the pore cavity. Since they are surrounded by fewer atoms, the count inside

the surface of the yellow region will be lower than in the cyan sphere.

It shouldn’t be a problem since, by symmetry, the points outside would be equiv-

alent to those inside the pore cavities in the given structures. However, further cal-

culation in Delta Chem requires the knowledge of all the atoms directly surrounding

the center of the porosity; information that is incomplete if considering the can-

didates outside the pore cavities. One option is to use a bigger unit cell but the

computational cost required to include more atoms is too much to pay, so another

strategy is devised: to look instead for the candidates surrounded by the highest
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Figure 4.7: Special geometrical situations in the structures of (a)MOF-5 and (b)HKUST-1

number of spheres. This idea may seem a little bit countersensing but it works in

the following way:

1. For each candidate define a spherical shell of thickness ±1.2Å (The Van der

Waals radius of the Hydrogen atom) and a radius equal to that of the corre-

sponding porosity.

2. The candidates with more atoms inside this shell are considered for the next

stage.

The application of this strategy effectively eliminates false positives as expected.

The ‘shell technique’ is used instead of just counting atoms inside the surface of

a sphere to avoid the problem depicted in the Figure 4.7b, where the candidates

in the indigo region also have a lot of atoms inside its sphere, but they are not

evenly distributed around the shell as for the candidate in the crimson region. The

candidates that have advanced at this point of the selection process constituted less

than one percent of the original candidates. However, Delta Chem requires a single

center per porosity type, so a final cut is necessary.

For each candidate, if the difference between its CAD and the length of the

radius of the porosity results less than 1Å, the candidate passes this stage, else
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it is not considered for further stages. At the end of this filter, just a few atoms

(or maybe just one) are left. The winner is finally determined as the one which

CAD differs the less from the pore radius length. The atoms that contribute to the

shell of the winner candidate are selected to be the input data for the next routine.

These are the atoms that directly contribute to the internal surface of the cavity. In

this laborious, countersense but effective way, Kerno determines the position of the

centers of the pore cavities in a porous material and defines which atoms belong to

each porosity.

Figure 4.8: Final results provided by Kerno, includes centers of porosities, pore cavities’
spheres, and contributing atoms of each porosity for (a)UiO-66, (b)ZIF-8, (c)HKUST-1

The final work performed by Kerno can be visualized in Figure 4.8 The returned

information of this routine includes:

• A list containing the pore radii values

• A dictionary with the Cartesian coordinates of the centers as keys and the

coordinates of the atoms contributing to each porosity as values.
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4.1.3 Mozaiko: Modelling everything with Triangles

Mozaiko6 is the routine in charge of computing the Convex Hull of any set of

3D points, and perform and analysis of the shape of the triangulated surface of the

Convex Hull. To accomplish the first task, Mozaiko creates a ‘convex hull object’

with the class Convex Hull. This class is a translation to Python of the C-written

code of Joseph O’Rourke [16] that implements the incremental algorithm discussed

in Chapter3. Using the cartesian coordinates of a given set of points, the function

Convex Hull computes a 3D Delaunay triangulation and makes easily accessible

and modifiable information regarding connectivity between vertices to form edges

and faces. The ‘class’ format allows treating the triangulation as an object whose

elements can be easily accessed and manipulated. The method Export faces makes

available the organization of the faces of the created convex hull, i.e the coordinates

of each vertex in every triangle of the hull. Similar information can be obtained

with the method Export triangles that contains the indices of each vertex of

every triangle; these indices are assigned in the order that data is received in the

.xyz file. The coordinates in the faces correspond to the points used as input since

no transformation is applied during the triangulation process.

The implementation of this algorithm is not as straightforward as it may appears

by its description, and a relatively complex data structure is required to represent

vertices, edges, and faces. The function Convex Hull only deals with points, so in

their calculations, the information regarding the type of atoms or Van der Waals

radii is not required nor considered. In Delta Chem, Mozaiko controls the execution

of Convex Hull. It makes use of the information regarding the atoms contributing

to the porosity shape to use them as vertices for a triangulation. This generates

a ‘limiting mesh’ for the internal surface of the porosities in the studied materials.

The triangulations of the pore cavities for HKUST-1,UiO-66 and ZIF-8 are shown

in Figure 4.9, there their symmetrical conformation is highlighted. Only the convex

hull and not the whole triangulation is calculated here because only the surface

of the polytope generated is required to model the shape of the internal surface

of a pore cavity and because the convex hull is easier to handle than the whole

triangulation since the former only deals with triangles instead of tetrahedrons.The

triangles (indices) and faces (coordinates) are used in the next stage of Mozaiko’s

execution.

The triangulation is analyzed with the function Convex Hull Analysis which de-

termines the polygonal planes that can be formed with the triangles. This informa-

6‘Mosaic’ in Esperanto



4.1. From vectors to MOFs: Exploring Delta Chem. 47

Figure 4.9: Convex Hulls of pore cavities for the structures of (a)UiO-66, (b)ZIF-8,
(c)HKUST-1. Note the high symmetry of the resulting convex hulls.

tion is essential for further fitting with uniform polyhedrons. The strategy is simple:

to chose an arbitrary triangle of the hull and determine which other points lie in

the plane defined by the triangle; then determine the convex hull of the polygonal

plane and its area, store this information and continue to other triangle until all the

possible polygonal planes of the convex hull have been determined.

The work performed by Convex Hull Analysis goes as follows:

• A copy of the list triangles, obtained with Export triangles, is created.

• An iteration over this list takes one triangle and then a copy of triangles is

made again but the selected triangle is removed from this new list.

• The indices of the triangle are used to obtain its coordinates and are added to

a list called tetrahedron. Therefore, this list contains three elements initially.

The fourth point is added iteratively over a list containing the coordinates

of all the vertices of the triangulation except for those corresponding to the

triangle’s vertices. Once the fourth coordinate is added to it, the list is turned

into a numpy matrix to obtain the volume.

• To determine if a given point is coplanar to the points of the triangle, the
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fourth point passed to tetrahedron is used to generate a tetrahedron which

volume is calculated with the determinantal form of the tetrahedron volume.

If the volume is equal or is very close to zero, the tetrahedron results to be a

flat body with its four vertices lying on the same plane.

If the tetrahedron meets the after-mentioned requirements the vertex index is

added to the list of vertices of the plane defined by the triangle whose vertices are

already included in the in plane indices list. Once the iteration is over, all the

vertices belonging to the plane are used to determine which other triangle belongs

to the same plane by a simple comparison of indices. If all the indices of a triangle

are in the list of plane indices, that triangle is included in the in plane triangles list

and is removed from the main list so that it won’t be part of the calculation more

than once. The final list contains the indices and triangles of a plane, it is passed to

another list outside the main iteration. As consequences of this selection-deletion

process, the list formed has as many elements as polygonal planes can be formed

from the analyzed convex hull, and the smallest polygonal face that can be obtained

is a triangle.

For this project, the term ‘polygonalization’ is used henceforth to refer to the pro-

cess of classifying the surface of a triangulated polytope according with the largest

polygons that can be formed by coplanar triangles. The polygonalization process

consists in determining the convex hull of the points belonging to each of the previ-

ously determined planes, i.e, the vertices that define the perimeter of each polygonal

face of the polytope. It is not necessary to create a ‘convex hull object’ again since

all the triangles that conform to the polygonal face are already known from the

triangulation. According to O’Rourke [16], in the case of the plane triangulation,

a point is a vertex of the polygonal convex hull if it belongs to an edge that also

belongs to the hull. An edge belongs to the convex hull if and only if it belongs to a

single triangle in the triangulation. The list in plane triangles is used for this task.

It contains k lists of triangles, with k being the total number of polygonal faces of

the polytope. So, for each triangle in in plane triangle all the possible combinations

between the vertices of the triangle are computed. Of course, only three combina-

tions are possible, but this sub-process allows us to manipulate the triangle edge

by edge, represented by each pair in the combination. Each edge of the triangle is

evaluated looking for its presence in other triangles of the plane.

For each edge in the triangle, its both indices are compared against the indices of

each triangle in in plane triangles list. A counter is set in zero before the iteration

this list begins. If both indices are found in a given triangle the counter adds one.

At the end of the loop, if the counter is equal to one, that edge of the triangle



4.1. From vectors to MOFs: Exploring Delta Chem. 49

belongs to the convex hull of the plane. The process finalizes when every edge of

each triangle has been analyzed and the polygonal convex hull is totally conformed.

During the iteration over this list, the area of each triangle is calculated and summed

to determine the total area of each polygonal face. The area of one of these triangles

is calculated based on the rule of the parallelograms: The cross product of any pair

of vectors formed by the vertices of the triangle is calculated, then the norm of the

resultant vector is divided by two.

The planes obtained as result of the polygonalization Convex Hull Analysis are

show in Figure 4.10, for the three types of pores in HKUST-1, in Figure 4.11 for

both types present in UiO-66, and in Figure 4.12 for the single porosity in ZIF-

8. The symmetry of the limiting mesh is obvious at first sight. They are indeed

regular polyhedrons, but not all of them are uniform(platonic or archimedean). This

differentiation is performed in the final stage of Mozaiko’s execution, and is based

on the relation of the sides of the polygons that constitute the faces of the polytope.

The indices of the polygonal convex hull are used as keys for different dictionaries.

Since each list of indices represents a single face in the polytope, this is a good way

to relate the information of the faces of the polytope with other useful structure

information like the area of each plane.

Additionally the dictionary Hull polygons is created. It contains the faces of

the polytope as keys, but the values are strings that identify each polygonal face as

‘regular’, ‘semi-regular’, or ‘irregular’. Once the polygons of the polytope have been

identified, each one is evaluated to find its largest and shortest edges and obtain

the ratio min edge/max edge. If a face is a regular polygon this relation should

be close to 1. Mozaiko considers that a value bigger than 0.9 is also valid as has

been demonstrated by the analysis of the structures used for the illustration of this

chapter. If the radio value lies between 0.4 at 0.9, the face is semi-regular and if the

value is lower than 0.4 the face is irregular.

This information is used to classify the polytope’s general shape. For a given

3D convex hull, it is considered ‘Regular a’ if all its faces are regular polygons or

semi-regular polygons with an area of at least 80% of the maximum area found in

a plane of the hull. If regular and semi-regular polygons are present but the area of

the latter is less than the aftermentioned area percentage, the polytope is marked as

‘Regular b’ type. Consider cases like the octagonal face in the convex hull of the big

cavity of HKUST-1 (Figure 4.10c). It seems regular but the value of 0.76 marks it as

‘semi-regular’. The relaxation in the selection is included to take into account this

imprecision associated with the structure of the material. However, always taking

into consideration finding the best possible fit of the polytope shape, a ‘semi-regular’
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Figure 4.10: Polygonalizations of the convex hull of (a) Small porosity(radius∼ 2.382Å),(b)
Medium porosity(radius∼ 3.649Å,(c)Large porosity(radius∼ 5.873Å) in HKUST-1 struc-
ture
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Figure 4.11: Poligonalizations of the convex hull of (a)Small porosity(radius∼ 3.828Å)
(b)Large porosity(radius∼ 4.425Å) in UiO-66 structure

Figure 4.12: Poligonalization of the convex hull of the single porosity(radius∼ 5.773Å) in
ZIF-8 structure
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face is accepted only if it is the surface area of the polytope. This selection avoids

the detection of false positives with faces that could be characteristic of some other

type of polytope.

If Convex hull analysis detects that the polytope of a cavity meets the require-

ments to be considered regular, it stops the calculations over the convex hull and

returns the following elements:

• C hull v area, a dictionary containing arrays with the coordinates of each

vertex of the polygonal faces as keys, and the corresponding areas as values.

• C hull i area, a dictionary similar to the last one, but with the indices of the

vertices as keys instead of the coordinates.

• suggestions, a list of integers corresponding to the number of vertices of the

faces that Mozaiko considers must be present in the fittest polyhedron to

procure the best fitting of polytope shape.

• The number of faces of the polytope.

• The area of the largest polygonal face.

• The indices of this polygon, and the polytope type as a string.

This output is generic for every type of polytope. The difference lies in the

suggestions, the number of faces and areas returned. For the ‘regular’ case, the sug-

gestion corresponds to all the polygons present in the polytope. The number of faces

returned also corresponds to the total number of planes found in the triangulation.

However, the situation is not always that simple and the convex hull cannot

always be considered ‘regular’ . The presence of ‘irregular’ polygons is indicative of

two operations that may be present in the polytope and define the real shape of the

pore cavity. These operations may be Truncation and Expansion.

Truncation is the removal of partitions of solids talking outside a set of symmet-

rically placed planes [65]. This operation is easy to identify in the smallest polytope

of the MOF-5 shown in Figure 4.13. There, the irregular octahedron can be seen

as originated by removal of the triangular section from the corner of a square. In

3D, this sectioning is applied over a cube. Depending on the volume removed, this

process can generate solids as the truncated cube and the cuboctahedron.

Expansion,also known as Cantellation, is an operation where faces are separated

and moved radially apart. It is characterized by the formation of new facets at

separated elements [65]. The presence of irregular quadrilaterals and triangles may
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Figure 4.13: Example of Truncation in the small porosity (radius∼ 5.911Å) in MOF-5
structure

indicate the cantellation of the polytope. The small porosity of UiO-66 (Figure

4.11a), the biggest and the smallest porosities of HKUST-1 (Figure 4.10a and 4.10b).

The treatment given by Mozaiko is different for a ‘Truncated’ or ‘Cantellated’

polytope. The difference is based in the presence of irregular 7 quadrilaterals and

triangles. If they are present Mozaiko marks the polytope as ‘Cantellated’ else, it is

marked as ‘Truncated’. The suggestion list for the truncated case is composed by:

• The integer corresponding to the number of vertices in the convex hull of

the biggest regular polyhedron, passed always as the first element by Con-

vex hull analysis.

• The integer corresponding to the number of vertices in the biggest irregular

polygon.

• The same integer of the previous index but divided by two.

In this way the possible solids and faces that can be generated in the truncation

are taken in consideration to determine the fittest polyhedron. The number of faces

returned is the same of the polytope.

If a cantellation process is identified, the number of faces to be returned must

follow certain constraints:

• All the polygons that have the area of the biggest regular polygon of the

polytope contribute to the count of faces.

7‘Irregular’ refers to that the polygon doesn’t have all their sides equal, but they are still being
symmetrical.
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• The irregular quadrilaterals and triangles contribute if their area is meaningful,

i.e., it represents at least 80% of the area of the largest regular polyhedron.

• Other irregular polygons contribute to the count if their area corresponds to

that of the biggest irregular polyhedron.

Another characteristic that allows the identification of cantellations is the pres-

ence of small regular polyhedrons with more than four vertices like the hexagons in

the small polytope in the HKUST-1. These polygons always contribute to the num-

ber of faces. In a cantellation, two numbers of faces returned the first one accounts

for all the regular polyhedrons. The second one also accounts for the contributions

of irregular faces. In this way, an increased number of faces due to the cantellation

can also be considered to fit the polygon.

The suggestions for a cantellation also must obey some rules:

• The biggest regular polygon is always included as the first element.

• Quadrilaterals are included if they contribute to the number of faces.

• The biggest irregular polygon is included only if it corresponds to that of the

largest polygonal face in the hull.

Mozaiko offers a complete analysis of the surface delimited by a 3D convex

hull and provides the information necessary to reach the main goal of the project:

Find the irreducible volume of the pore cavities. Just like Convex Hull, Con-

vex hull analysis only requires the coordinates of the points. If a ‘convex hull object’

is passed as an argument, it can work independently.

4.1.4 Fragmento: Let’s find that Irreducible Volume

The last routine of Delta Chem pursuits the main objective of the program: To

calculate the irreducible volumes of the porosities in the studied material. Mozaiko

analyzed the polytope obtained from the triangulation and provided hints about the

shape of the internal surface of the pore. Fragmento8 makes use of this information to

orient the election of the polyhedron that best resembles the shape of the pore cavity.

The dictionary ‘polyhedron’ is used to access the information of the polyhedra that

will be tested to find the fittest. The keys of this dictionary are strings with the

name of the polyhedrons and the values are functions with the same name. For

each polyhedron, the function named after it contains the information necessary to

8‘Fragment’ in Esperanto
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build the polyhedron on the surface of a unitary sphere. This function is called with

the name of the polyhedron, passing arbitrary radius and center as an argument.

The former argument is used to scale the vertices of the polyhedron to be in the

sphere’s surface of an arbitrary radius, while the latter is used to translate them to

be centered about this point.

The volume and surface area of the polyhedron is also calculated inside each

function. The faces of the polyhedron are grouped by areas. The return values of

each of these functions is the following:

• Vertices and indices of the polyhedron

• Number of faces

• Volume and surface area

• Area of the largest face of the polyhedron

• A dictionary with the faces of the polyhedron, grouped by the areas of the

polygons that conforms it.

For a given porosity, the dictionary ‘polyhedron’ is iterated. For each solid se-

lected, the after mentioned parameters are obtained using the radius and center of

porosity as arguments. The process that follows each polyhedron to be selected or

rejected, differs if the polytope that is being analyzed was marked by Mozaiko as

‘Regular a’, ‘Regular b’, ‘Truncation’ or ‘Cantellation’.

If the analyzed polytope turns out to be going through a process of Cantellation,

the elimination process of the non-adequate polyhedrons is the following:

1. The selected polyhedron passes this filter if the number is equal to any of the

two possibilities passed by Mozaiko.

2. In the next filter, the selected polyhedron must present faces with the same

number of vertices of the biggest regular polygon of the polytope. This infor-

mation (the number of vertices) is always passed by Mozaiko as the first value

in the list ‘suggestions’. For the cantellation, the test polyhedron must also

present (if exist) the remaining suggestions too.

3. If a polyhedron fulfills these requirements it is added to the list of possible

candidates.

4. The fittest polyhedron is selected from this list by choosing that one in which

the biggest face area differs the least from the area of the biggest regular

polygon of the polytope.
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If the polytope is going through a truncation process only one number of faces is

passed by Mozaico. The selection rules are similar to those of the cantellation and

go as follows:

1. A test polyhedron passes the first filter only if it presents the same number of

faces specified by Mozaico.

2. To advance this stage the polyhedron must present faces with the same number

of vertices as the biggest regular polygon just like in the cantellation . The

difference is that the presence of faces corresponding to the other suggestions

(if exist) is optional.

3. The fittest polyhedron is finally defined in the same way as the cantellation.

If the polytope is Regular a or Regular b, the selection process is simplified. The

fittest polygon will have the same number of faces. The shape will be preserved and

no suggestions are necessary. The fittest polyhedron is the one that presents the

volume closest to that of the polytope. The results of the selection process gives a

single fittest polyhedron per porosity in a material and they are shown in Figure

4.14 for the HKUST-1 porosities, in Figure 4.15 for UiO-66 and in Figure 4.16 for

ZIF-8 pore cavity.

Alignment of the Fittest Polyhedrons

After being selected, the fittest polyhedron must be aligned so that it accurately

represents the shape of the pore cavity. The examples in the Figure 4.17 shows that

a misaligned polyhedron is not an appropriate representation of the cavity, and if

the fittest polyhedron is not aligned, neither will be its irreducible volume. The

alignment must be as general as possible and entirely based on the system. The

faces of the polyhedron must be oriented so that their disposition resembles those

of the faces of the polytope.

The first step in the alignment process is to orientate the biggest face of the

polyhedron parallel to the biggest face of the polytope. Both polyhedron and poly-

tope have many faces whose areas equals the maximum one found in them. Since

they are equivalent in uniform polyhedrons, one of them is chosen randomly.

Algebraically, the objective is to rotate the vector perpendicular to the face of

the polyhedron so that it points to the same direction of the vector perpendicular

to the face of the polytope. It implies a transformation, therefore a rotation matrix

is used for this alignment. The matrix is built to rotate an object an angle defined

by the dot product of these vectors, around an axis defined by their cross product.
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Figure 4.14: Fitting with regular uniform polyhedrons for (a) Small porosity (radius ∼
2.382Å),(b) Medium porosity (radius ∼ 3.649Å,(c) Large porosity (radius ∼ 5.873Å) in
HKUST-1 structure
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Figure 4.15: Fitting with regular uniform polyhedrons for (a) Small porosity(radius ∼
3.828Å),(b) Large porosity(radius ∼ 4.425Å)

Figure 4.16: Fitting with regular uniform polyhedrons for the single porosity(radius ∼
5.773Å) in ZIF-8 structure
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Figure 4.17: Fitting with regular uniform polyhedrons for the structures of (a) UiO-66,(b)
ZIF-8,(c) HKUST-1.Note the misalignment of some the polyhedrons.

Once the matrix is built, every position vector corresponding to the vertices

of the polyhedron is transformed with the matrix. It is called with the function

rotation matrix using the vector to be aligned as the first argument and the target

vector as the second.

As can be appreciated in the large pore cavity of UiO-66 in Figure 4.18a, the

small porosity of HKUST-1 (Figure 4.18c) and the pore cavity of ZIF-8 (Figure

4.18b), even after the application of the latter transformation some polyhedra are

still misaligned and often a second rotation is necessary to ensure the correct rotation

of the edges and the faces of the fittest polyhedrons. This new process requires the

construction of a second alignment matrix. However, depending on the type of

polytope, the second matrix building may requires different processes.

If the polytope is going through truncation or cantellation, the second rotation

matrix is built as follows :

1. The target vector is defined between the barycenter of the biggest irregular

polygon of the polytope and the midpoint of its largest edge .

2. The polyhedron direction vector (to be aligned) is defined from the barycenter

of the biggest face of the polyhedron to the midpoint of a side that connects

with a face with the same largest area. The aim is to orientate correctly the
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Figure 4.18: Fittest polyhedron after first alignment transformation for structures of (a)
UiO-66,(b) ZIF-8,(c) HKUST-1.

edges and model appropriately the “windows” of the structure. As before, the

rotation matrix is a structure with these two vectors.

This transformation works perfectly for the cantellation and truncation types

of polytopes. However, the regular polytopes present an unexpected problem for

the alignment and its symmetry turns into an inconvenience. A representative case

is the truncated cube in the small porosity of MOF-5 shown in Figure 4.19, whose

biggest face is an octagon. In this particular polyhedron, the octagonal face connects

with two types of polygons, triangles and other similar octagons. The last strategy

fails because depending on the number of distinct polygons in the polyhedron sur-

rounding the big ‘reference’ face, more than one midpoint may be associated with

nonequivalent rotations. In the case of the octahedron, two midpoints or two dif-

ferent vectors may be formed pointing to the triangular and octahedral faces. One

of them leads to the optimal alignment of the polyhedron and the other doesn’t

produce any change. The edge that should be aligned must be chosen in a way

applicable to different systems other than the MOF-5. Therefore, the election of the

correct polyhedron direction vector must depend on the structure of the pore cavity

and cannot be arbitrarily determined. This problem is not present in polyhedrons

like the cuboctahedron since the biggest polygonal face is surrounded by a single

type of polygon, all the midpoints are equivalent and the matrix for truncation and
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Figure 4.19: Example of alignment problem in regular polyhedrons: The cuboctahedron
in the small porosity of MOF-5 structure.

cantellation also works for it. For regular solids like the truncated cube, a generic

strategy to find the adequate direction vector was devised. The aim is to align all the

biggest faces of the polyhedron with those of the polygon. This is possible because

the number of faces is the same and they have the same shape, so if the biggest

faces are aligned, the whole polyhedron will also be.9

Multiple ‘targets’ are created to align the polyhedron. These targets are vectors

perpendicular to the biggest faces of the polytope. ‘Test’ vectors are created from

the vertices that conform to the edges of the polygon that connects with the faces

whose area is the closest to that of the biggest regular polygon of the polytope. The

strategy is to create multiple polyhedron direction vectors from the barycenter of the

biggest face of the polyhedron to each midpoint of the edges. One by one, they are

used to create a rotation matrix that is used to transform the test vectors. Then, the

direction of these vectors is compared against that of the targets. Multiple targets,

tests, and directions are handled by Fragmento as follows:

1. A previous test must be executed. For each of the test vectors, its cross product

is calculated with each target vector. The dot product between these vectors

should be zero if effectively the faces are oriented parallelly.

2. If every vector of the test group presents at least one dot product equal to

9It Applies only for Regular polytopes
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zero with the target vectors, the polyhedron is considered to be aligned and

the rotation matrix is only the identity matrix.

3. If it is not the case the polyhedron is not aligned. The list of directions vectors

of the polyhedron is iterated. For each vector in this list, a rotation matrix is

created to align the selected vector with the direction vector of the polytope.

The latter is defined from the barycenter of polytope’s biggest face to the

midpoint of any of its edges. The rotation transformation is then applied to

the test vectors.

4. Once again, the orientations of the test vectors are compared with those of

the targets. Only if all of them have dot products equal to zero is the align-

ment considered appropriate, the iteration stops and the rotation matrix that

provides this alignment is selected to align the fittest polyhedron.

Due to the symmetry of the regular polyhedrons this alignment is guaranteed to

occur. Of course not all directions need to be tested since many of them will lead

to equivalent rotations. This strategy works well for any regular polytope, indepen-

dently of the shape of the faces surrounding the largest polygon of the polyhedron.

It also makes the election of the midpoint to define the direction of the polytope

vector irrelevant, its only purpose is to provide a second vector to align with.

As designed, this process of alignment takes into account the particularities of the

internal surface of the porosity in varied chemical structures. It provides an aligned

fittest polyhedron that successfully resembles the shape of the cavities represented

by the polytope. At this point in the execution of Delta Chem, the data provided

by the user with the .xyz file has been completely analyzed. Important geometrical

and structural parameters (the number of porosities, their sizes, centers, and atoms

contributing to their surfaces) were determined by Kerno. Mozaik has made good use

of this information to define a ‘limiting mesh’ for the surface of each porosity using

their contributing atoms as the vertices of a 3D Delaunay Triangulation. The shape

of the ‘mesh’ polytope has been analyzed by the same routine to provide Fragmento

with the information necessary to determine and align the fittest polyhedron. Only

one task left, and Fragmento is ready to begin the last ride to find the Irreducible

Volume.

Reversed Wythoff Construction

As was mentioned in the Theoretical Framework, the information necessary to

construct the generator triangle of a convex, uniform polyhedron is contained in its
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Wythoff symbol. Fragmento uses a codification based in this symbol to call the func-

tion Irreducible Volume and built the generator element of the fittest polyhedron (or

any other uniform convex polyhedron since this function can work independently).

The dictionary ‘elemental triangles’ helps with this task. Its keys are strings with

the name of each platonic and archimedean polyhedron, while the values are func-

tions Irreducible Volume with lists that are characteristic for each polyhedron as

their arguments. These lists are conformed by:

• The three Wythoff numbers, p,q,r, of the elemental triangle as integers.

• A string ‘c’, ‘i’, or ‘s’ indicating the position of the generator vertex in a corner,

the incenter or a side of the elemental triangle respectively.

• The center and the radius of the circumscribed sphere (for Delta Chem pur-

poses, the center and radius of the analyzed porosity are used).

• If the generator is on a position other than the incenter, an integer 0,1 or 2 are

also included in the list to specify the corner or the side where the generator

lies.

Irreducible Volume is really just a wrapper of the real constructors. Its function

is to receive and analyze the information in the argument list to call the adequate

constructor. Depending on the position of the generator, three different constructor

functions can be called to create the generator triangle of the analyzed polyhedron.

A first good step is positioning one of the vertices on an arbitrary point of the

surface of the unitary sphere. For simplicity, the vertex P is located on (1,0,0). This

reference vertex also requires a reference side, so the side lR that passes through P

is conveniently positioned to be perpendicular to the x-axis, i.e the normal vector

defining the great circle that forms the side lR is (0,0,1). The trigonometric problem

is now to solve a spherical triangle with three angles and one known side. According

with the method shown by Zucker10, to find the remaining vectors, they must satisfy

certain requirements:

• The edge lQ contains P

• The dihedral angle formed by the planes with normals lQ and lR is p

• Q is a unit vector.

10Notes taken for the GitHub repository https://mzucker.github.io/2018/04/06/why-every-gfx-
cv-robotics-programmer-should-love-sympy.htmlfn:2
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The vertices Q and R can be represented as unitary vectors located at the in-

tersection of the planes. If the vectors of the sides are known, they can be used to

solve:

Q =
lPXlR
|lPXlR|

and R =
lQXlP
|lQXlP |

This strategy has been implemented by Mathew Zucker to program his amazing

Wythoff Explorer 11 and his solutions obtained with SymPy are used by Fragment

to determine the x,y,z values for the side vectors. This process is common for all

the constructors. The Figure 4.20 shows the elemental triangle (4,2,3) created with

this method.

Figure 4.20: Elemental Triangle (4,2,3)

Generator Vertex at the Incenter

If the generator is located at the incenter of the elemental triangle, the constructor

function Elemental Triangle Incentered is called. To obtain the generator vertex,

the incenter of the just created spherical triangle must be found. The Figure 4.21a

shows a graphical representation of the problem on a generalized triangle ABC. As

can be seen, the arcs OD, OE, and OF are all equal in length since all of them are

indeed radii of the incircle. They are also perpendicular to the incenter O.

11Wythoff explorer by Zucker can be found at https://www.shadertoy.com/view/Md3yRB
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Figure 4.21: Finding the incenter of a spherical triangle: Graphic Depiction

The task of finding the incenter is simplified considerably taking into account

that all the generator triangles in the Wythoff constructions are right triangles.

Since the triangle is a right one, the arcs AF and AE are also equal by construction.

The strategy is to move by rotation the vertex A to the positions F and E an then

move these new two points in the directions of OF and EF respectively. Both points

must coincide in the position of the incenter. To accomplish this task, the external

function general rotation is called. This function allows rotating any object on a

given angle, around an arbitrary axis centered at any point. The process performed

by general rotation consists of successive translations and rotations around the coor-

dinates axes as it has been discussed in the Theoretical Framework. The operation

to find the incenter goes as follows:

1. Take the spherical triangle from Figure 4.21, and set on it the vertices A,B,C

so that A lies on the right angled corner of this triangle.

2. Calculate the angular radius of the incircle with the formula:

tan(r) =

√
sin(s− a)sin(s− b)sin(s− c)

sin(s)
=

n

sin(s)
(4.1.1)

Where s is the half sum of the arcs s = (a+b+c)
2

. This formula has been taken

from the textbook A treatise in spherical trigonometry by John Casey [66].

3. Determine the angle associated with the radial angle through the formula [66]:

d = r∆Φ (4.1.2)



4.1. From vectors to MOFs: Exploring Delta Chem. 66

Where ‘d’ stand for the angular lenght of an arc of a sphere with radius ‘r’

that defines an angle ∆Φ.

4. Rotate the vertex A to reach the positions F and E by applying general rotation

with an angle ∆Φ, around the axis defined by the cross product AXB (or

AXC) centered at the origin of coordinates. (Figure 4.22a)

5. The new points located in the legs of the triangle (Shown as purple dots in

Figure 4.22b) are rotated again in the same angle but around the axis defined

by the opposite leg AXC (AXB), so that their intersect at the position of the

incenter.

Once the incenter is localized (Shown as a black spot in Figure 4.22b), the

partitions of the triangle must be generated. To form the small square shown

in Figure 4.22c it is just necessary to join the incenter with the two points of

the legs. To generate the last point for the partition, the vertex B is rotated

along the plane that defines the hypotenuse on an angle given by the arc BF.

Figure 4.22: Wythoff construction of the triangle (4,2,3), with the generator vertex local-
ized at the incenter (Part I)

The generator triangle that has been created doesn’t present the flat planes

typical of a polyhedron. Additionally, at the end of the construction the only

point of this triangle that should remains in the surface of the sphere is the

generator, as can be seen in the Wythoff Explorer of Zucker.

6. To create the planes, the generator vertex is rotated along the direction of

each partition in an angle of 2∆Φ. That is equivalent to reflect the generator

using the edges of the elemental triangle as mirror planes (Figure 4.23a). The

generator and its rotated counterparts define three different planes.
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7. The partitions of the triangle in the planes defined by the generators can be

obtained as the midpoints between the original generator vertex and its rotated

versions. They are shown as green dots in Figure 4.23b and 4.23c)

8. Once the new partitions are obtained, the vertices A, B, and C of the triangle

are orthogonally projected over the surface of the planes. (Purple dots Figure

4.23b and 4.23c )

9. The rotated counterparts of the generator vertex, and all the other points in

the surface of the sphere are deleted since they are not necessary anymore.

10. The planes corresponding to the faces of the polyhedron are created and rep-

resented in the generator triangle of Figure 4.23d.

The function Elemental Triangle Incentered returns a list with the cartesian co-

ordinates of all the relevant points calculated: the generator vertex, the projected

triangle vertices and the vertices of the partitions.

Generator Vertex on a Side

If the generator is located in one of the sides of the elemental triangle, its exact

position corresponds to the intersection of the side where it lies and the bisector

of the angle it opposes [67]. The general trigonometrical problem that this type

of triangles require to be solved is depicted in the Figure 4.24. There, a generic

spherical triangle ABC is partitioned by the arc BE cutting the angle at B. For this

specific situation this arc is the bisector of the angle, then the value φ is the half of

the angle at B, and the generator vertex lies at the position E. It is only necessary

to determine the length and angle of the arc b− θ. Since all the angles and arcs are

known, the value of b− θ can be calculated from the relation: [66]

tan(b− θ) = tan(a) cos(C) (4.1.3)

The values for a and b in the last relation can be found by solving the Napier’s

Analogies as a simple system of two equations with two unknowns [23]:

tan

(
a+ b

2

)
=

cos
(
A−B
2

)
cos
(
A+B
2

) tan
( c

2

)
(4.1.4)

tan

(
a− b

2

)
=

sin
(
A−B
2

)
sin
(
A+B
2

) tan
( c

2

)
(4.1.5)
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Figure 4.23: Whythoff construction of the triangle (4,2,3), with the generator vertex
localized at the incenter (Part II)

Figure 4.24: Finding the generator vertex on a side: Graphic depiction
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In this way, the generator vertex in any of the sides can be easily localized. For

these kind of triangles two situations may present. If the generator lies in one of the

legs, the partition will follow the perpendicular projection of the generator over the

hypotenuse and two planes are generated. On the other hand, if the generator lies

on the hypotenuse the partitions follow the directions of the perpendicular projec-

tions of the generator over the two legs defining three planes. For this reason, the

information about the position of the generator is also passed by the argument list.

To obtain the coordinates of the generator, the vertex specified as C in figure 4.24

is rotated with general rotation along the corresponding side (leg or hypotenuse) on

an angle defined by the just calculated b− θ (See Figure 4.25)

Figure 4.25: (a) The elemental triangle (4,2,3). (b) Generator vertex(black dot) positioned
on the hypotenuse (c) Generator vertex positioned in one of the legs of the elemental
triangle. Note that the configuration A,B,C of the triangles in (b) and (c) is adapted so
that the angle at B is bisected.

The partitions for this type of triangle are not obtained as straightforward as in

the ‘incentered’ case and each of the aftermentioned situations has its own process

for partitions’ construction.

The situation is a little bit less complex if the generator is on the hypotenuse.

The process followed to construct this triangles goes as follows:

1. The triangle in Figure 4.25b is ‘duplicated’ by moving the vertex B across

the generator like in Figure 4.26a. This can be done for this triangle since

the angle at B is cut exactly in the half. Therefore, this moving with general

rotation is equivalent to reflect the vertex B across the mirror lane defined by

the arc containing the generator vertex.

2. The arc between the generator and the vertex it opposes cuts the triangle in
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two smaller spherical right triangles. The problem of finding the projections

over the legs is reduced to repeat the same operation to find the generator

vertex but over the two smaller triangles. The projections for both triangles

are shown in Figure 4.26b as green or yellow dots for the original triangle and

the duplicated one respectively.

3. To define the planes of the generator triangle, the generator vertex is rotated

along the direction defined by itself and the points of the projections with an

angle of twice that of the arc between the generator vertex and the projections.

The rotated generator vertices are shown as black dots in Figure 4.26c.

Figure 4.26: Wythoff Construction of the triangle (4,2,3), with the generator vertex local-
ized at the Hypotenuse (Part I)

4. The partitions of the generator triangle are obtained as the midpoints of the

segments defined between generator vertices (See purple dots in Figure 4.27a)

5. The vertices of the elemental triangle are projected orthogonally over the sur-

face of the plane defined by the generator vertices(green dots Figure 4.27b).

Rotated generators are deleted since they are not necessary anymore.

6. The planes are constructed and the generator triangle is done (Figure 4.27c)
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Figure 4.27: Wythoff construction of the triangle (4,2,3), with the generator vertex local-
ized at the hypotenuse (Part II)

If the generator is on a leg, the process of construction is the following:

1. The triangle shown in Figure 4.25c is ‘duplicated’ just like in the previous case.

The difference is that the duplicated triangle shares a leg with the original one,

instead of the hypotenuse. (Figure 4.28a).

2. The arc BE is used to generate two smaller triangles ABE and BEC. The

obtuse triangle (ABE) contains the hypotenuse, so the problem of finding the

projection over the hypotenuse is reduced to repeating the process followed

to obtain the generator vertex originally, but in the small obtuse triangle

aforementioned. The projections are shown as green dots in Figure 4.28b.

Figure 4.28: Wythoff construction of the triangle (4,2,3), with the generator vertex local-
ized at one of the sides (Part I)

3. Three vertices are needed to define each plane of the generator triangle. For
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this purpose, the generator vertex is rotated along the arc it forms with the

projections. This process generates two rotated generator vertices. The third

one is generated by rotation of the generator vertex along the arc it forms with

the vertex C.(See Figure 4.28c)

4. Just like before, the partitions of the generator triangle are obtained as the

midpoints of each pair of generator vertices. (Purple dots in Figure 4.29a)

5. The vertices of the elemental triangle are projected over the surfaces of the

planes defined by the generator vertex and the partitions. The rotated gen-

erators are deleted (Figure 4.29b) and the generator triangle is done(Figure

4.29c)

Figure 4.29: Wythoff construction of the triangle (4,2,3), with the generator vertex local-
ized at one of the sides (Part II)

The number of points returned by Elemental Triangle Sided varies depending on

which side the generator vertex is positioned: if it is on the hypotenuse, six points

are returned corresponding to the generator, the two points of the partitions and

the three projected vertices. On the other hand, if the generator is on a leg, only

five points (the generator, the vertices and the partition) are returned.

Generator Vertex on a Corner

The last triangle is that whose generator is positioned in one of the corners. This

also may derive in two different constructions depending if the generator vertex is

at the reference12 corner(Figure 4.30b) or at any remaining corner (Figure 4.30c).

12Recall that the ‘reference’ is that whose angle is equal to π
2
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Figure 4.30: (a) The elemental triangle (4,2,3). (b) Generator vertex(black dot) positioned
on the reference corner. (c) Generator vertex positioned in In a corner other than the
reference. Note that the configuration A,B,C of the triangle in (b) is adapted so that the
angle at B is bisected just like in the previous generator triangles.

If the corner of the generator also corresponds to the reference corner, then a par-

tition exists along the perpendicular projection of the generator over the hypotenuse.

To built this triangle, the following process is necessary:

1. The projection is created straightforward using Napier’s Analogies (Equations

4.1.4 and 4.1.5) and the relations presented by Casey (Equations 4.1.2 and

4.1.3) just like in the ‘sided’ case.(Purple dot in Figure 4.31a)

2. The vertex P is moved through the generator vertex to create a ‘duplicated’

triangle in which the projection of the vertex is also found (Figure 4.31b).

3. The generator vertex is rotated along the arc it forms with the projections.

This process generates two rotated generator vertices. The third one is gen-

erated by rotation of the generator vertex along the arc with the projection

in the duplicated triangle, but in the opposite direction. (Look for the black

dots in Figure 4.31c)
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Figure 4.31: Wythoff Construction of the triangle (4,2,3), with the generator vertex local-
ized at reference corner (Part I)

4. As always, the partitions of the generator triangle are obtained as the mid-

points of the segments formed between the original generator vertex and its

rotated counterparts. They are represented as green dots in Figure 4.32a.

5. The vertices of the elemental triangle are projected over the surface of the

planes defined by the generator vertices. They can be seen as purple dots in

Figure 4.32a.

6. Rotated generators, duplicated projections and original vertices are deleted

(Figure 4.32b), the planes are created, and finally this generator triangle is

built(Figure 4.32c).

Figure 4.32: Wythoff Construction of the triangle (4,2,3), with the generator vertex local-
ized at reference corner (Part II)
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On the other hand, if the generator vertex is in any of the remaining corners

there are no partitions, just a whole triangle. The plane of this triangle requires the

presence of another two generators to be defined. The process of construction goes

as follows:

1. The triangle is duplicated by rotating the vertex Q (The reference corner)

along the bisector (Figure 4.33a).

2. To create the necessary generator vertices, the original one is rotated along the

arc defined by the generator and the reference corner, twice the angle defined

by this arc. The process is repeated using the duplicated reference corner

(Figure 4.33b).

3. The projections in the plane of the vertex Q and its duplicated are obtained

as the midpoints of the segments formed by the generator vertices (green dots

in Figure 4.33c).

Figure 4.33: Construction of the triangle (4,2,3), with the generator vertex localized at a
corner other than the reference (Part I)

4. The remaining vertex of the elemental triangle is projected over the plane

defined by the generator vertices and can be seen as the purple dot in Figure

4.34a

5. Duplicated points,original vertices and rotated generators are not necessary

anymore so they are deleted(Figure 4.34b). Finally the generator triangle is

created(Figure 4.33c).
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Figure 4.34: Construction of the triangle (4,2,3), with the generator vertex localized at a
corner other than the reference (Part II)

Like in the ‘sided’ case, a different quantity of points is returned depending on

the location of the generator vertex. Four points are returned if the generator is on

the corner of the reference vertex: the generator vertex, the point of the partition,

and the projected remaining two vertices. If it is on any other corner, only three

points are returned because there are no partitions.

The generator triangle created by any of the constructors has been designed

over the sphere of radius one centered at the origin of coordinates. With scaling and

translation, these vertices are adapted to a sphere of arbitrary radius and center.

The return values of any of the constructors is organized by Irreducible Volume. This

function returns a list of coordinates to Fragmento containing the relevant points of

the generator triangle adapted to the size of the porosity. The points provided to

Fragmento are aligned with the non-transformed version of the fittest polyhedron.

Therefore they must pass by the same transformations of the polyhedron in order

to be aligned with the polytope representing the porosity. Fortunately, since all

the rotation matrices used to align the fittest polyhedron are already known, the

transformation of the points to align the generator triangle is straightforward and

only requires to multiply each position vector by the matrix obtained as the product

of the rotation matrices used before.

Once these points are correctly aligned, the center of the porosity is added to

the set. Then, this set of points is used for the last triangulation with Convex Hull.

The polytope generated by this triangulation is the irreducible volume of the fittest

polyhedron(Figure4.35).

The final output is a .xyz file, with identical structural information of the input

file but with the coordinates of the points of the irreducible volume added as helium

atoms.
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It has been a long trip full of transformations, literally, but the main objective

of Delta Chem has been finally achieved with success.

Figure 4.35: Irreducible volumes obtained by Delta Chem for (a) HKUST-1, (b) UiO-66
and (c) ZIF-8
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4.2 Preliminary test of Delta Chem.

In this part, a preliminary calculation test is done using Density Functional The-

ory in the material MOF-5, which is a prototypical MOF for numerous studies. The

goal of this example is to encounter the possible adsorption sites for Helium inside

the porosity of MOF-5. The calculation were done using the Quantum Espresso

software with periodic DFT. The main idea is to compare the positions generated

by Delta Chem with the positions obtained at the end of the optimization process.

Due to the size of the systems (typically few hundred atoms for MOFs), a suitable

computational facility should be used. For these project, DFT calculations were run

in the supercomputer Quinde 1. Operational in Urcuqúı, Quinde 1 operates with

Linux operating system Red Hat Enterprise Linux Server release 7.2 (Maipo) little

endian. It has 1640 CPU cores, 84 computing nodes, 4992 GPU(cuda) cores per

node and 10.5 TB of RAM [68]. For periodic DFT calculations some considerations

should be made:

Method consideration:

DFT comes in different flavors with different levels of approximations of the

exchange-correlation term: LDA, GGA, meta-GGA and hybrid. The size of the

systems obtained in modeling microporous materials limits the usage of the best

DFT methods (meta-GGA or hybrid). Historically, the local density approximation

was the method of choice for making DFT calculations of materials. However, with

increasing calculating power, the GGA methods are now generally used. Among

the GGA methods, PBE functional has proven numerous times to be very efficient.

Another point to consider in that example is that it concerns the adsorption of

helium atoms which are expected to interact with the framework only through VdW

forces. One well-known shortcoming of DFT is the non-representation of dispersion

interactions, crucial when considering apolar adsorbents. Fortunately, this problem

was solved by Grimme which include dispersion interactions in an ad-hoc manner

[69]. The dispersion forces are included through a Lennard-Jones potential, similar

to the approach used in molecular mechanics inside the forcefields. The keyword

vdw corr = ‘DFT-D3’ is used in these calculations.

Size consideration:

The Cubic unit cell of MOF-5 used for Delta Chem analysis consists of 424

atoms(See Figure3.10d). As expected, this size of system is not suitable for using

the PBE functional in a practical manner. Fortunately, it is possible to reduce



4.2. Preliminary test of Delta Chem. 79

Figure 4.36: MOF-5 cluster used for DFT calculations with Quantum Espresso. Color
code: Zn-Brown,O-Red,C-Black,H-white

the size of the cell using symmetry to 106 atoms in the rhombohedric cell shown

in Figure 4.36. The replication of the primitive cell gives the same structure as

the cubic cell and can therefore be used to represent the total material. The only

important point is to exactly orient the structure used in Delta Chem based on the

smaller primitive cell.

Basis-set completeness consideration:

In molecular DFT calculation gaussian functions are used as basis-sets for repre-

senting the orbitals. In periodic calculations the plane waves are usually used. In a

structured material the potential is periodic and makes it natural to use plane waves

which are inherently periodic. Theoretically an infinite number of plane waves can

represent all little variation of the electronic structure. In order to limit the number

of plane waves taken into account a kinetic energy cut-off could be applied. Typi-

cally, the total energy is calculated for different cut-offs, then, the cut-off value in

taken when the total energy is constant. As only a preliminary test, we took a fairly

small value of 25 Ry controlled by the keyword ecutwfc.
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Structure consideration:

One question which always rise when doing this type of calculation is which

structure should be taken: a structure determined by XRD or a structure optimized

by the same DFT method. The two approaches can be used:

1. When using the XRD structure the coordinates of the porous structures should

be frozen (constrained optimization) or would otherwise move and cause a

displacement of the possible sites.

2. When using the DFT pre-optimized structure, the atoms constituting the

MOF could be let free of frozen.

The advantage of letting the atoms free during optimization is that structural

information can be obtained about the deformation of the MOF due to the pres-

ence of the adsorbent molecules. For this calculation we used the first approach

constraining the positions of the framework atoms.

Convergence consideration:

During the optimization process reaching the minimum is verified by two criteria,

the energy and the forces. At each step of the optimization these two values are

compared to the previous step and should be inferior to a criteria defined in the

input defined through the keywords etot conv thr = 0.000001 and forc conv thr

= 0.00001. In each optimization step, there are several SCF cycles done in order to

find the minimal electronic distribution corresponding to the new atom positions.

K-points consideration:

The K-points are sampling points in the Brillouin zone in order to evaluate elec-

tronic properties. The number of kpoints should be tested usually in increasing grids

in form 2*2*2, 3*3*3. . . When there are no more changes in the electronic structure

the number of K-points is considered accurate. In the particular case of the MOF-5,

the number of K-points influence was tested several times and concluded that one

K-point (at coordinates 0,0,0) is sufficient for evaluating properties accurately.
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Results and Discussion

Prior to Quantum Espresso calculations, Delta Chem was used to find the porosi-

ties shapes and the possible adsorption sites. Delta Chem, through the use of

PSD solve and Kerno correctly detected the presence of two type of porosities

(Figure 5.1a): the largest one with pore radius ∼ 9.574Å centered at the posi-

tion (25.832, 12.916, 12.916), and the smallest with pore radius ∼ 7.221Å centered

at (12.916, 12.916, 12.916). The routine Kerno also determined that a total of 96

atoms contribute to the internal surface of the first porosity while 24 contribute to

the second one. These results are graphically represented in Figure 5.1. Only one

minute of running PSD solve was necessary to obtain good first approximations of

the pore radii. Kerno is the most time consuming routine in Delta Chem, however

only took five minutes to complete their task and return the information necessary

to continue Delta Chem processes.

Figure 5.1: Kerno’s process results for MOF-5 structure, they include: Position of the
centers of porosities, atoms contributing to the internal surface of each pore cavity, and
sphere representing the pore cavities.

The work performed by Mozaiko can be appreciated in Figure 5.2; there, the

triangulations and poligonalizations of both porosities are shown. After these pro-

cesses, Mozaiko determined that the large polytope went by a cantellation process

while the small polytope experimented truncation. This information was used by

81
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Figure 5.2: Triangulation, Polygonalization and Fitting processes results for MOF-5 struc-
ture: (a) Small porosity, (b) Big porosity.

Fragmento to determine that the truncated cube is the polyhedron that best fits

the shape of the small porosity, while the cuboctahedron is the fittest polyhedron

for the large polytope. These polyhedrons were aligned and analyzed in order to

obtain the irreducible volume of the porosities. The results of this job, driven by

Fragmento, are shown in Figure 5.3.

Figure 5.3: Irreducible volumes of the porosities in MOF-5: (a) Side view,(b) Front view.
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The whole process of Delta Chem took seven minutes to be completed for MOF-

5 structure, conformed by 424 atoms. Seven points (corresponding to the relevant

points of the irreducible form), and also two points (corresponding the porosities

centers) were generated. For each possible site one different calculation should be

made. This points can be visualized in Figure 5.4.

Figure 5.4: Position of the relevant point provided by Delta Chem, around the cluster
model used for DFT calculations

Preliminary geometry optimization calculations using the convergence criteria

discussed in the previous section show that, for the system analyzed represented in

the Figure 5.4, six out of nine helium atoms used to represent the possible positions

of the adsorption sites did not move during optimization This is an indication that

their positions were effectively close to minimum energy. The points corresponding

to the centers of the porosities move as expected. Only one point failed to reach

convergence for reasons that are not clear after the calculation (probably a small

discontinuity). The observed displacements are very small for all cases. This effect

could be due to the weak interaction forces generated by the small size of the helium

atoms. The opposite case can be observed in the work of Thibault Terencio [11] in

which instead of using helium atoms, much larger acetone molecules have been

used; these generate greater interactions that make them move forcefully towards

the adsorption sites.
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Conclusions and Perspectives

The main objective of the present Capstone Project has been achieved: A new

approach for the geometric modeling of pore cavities in microporous materials has

been proposed. Unlike the traditional model that only considers the atoms at the

joints of the frameworks, this new approach has been constructed using the atoms

that directly contribute to form the internal surface of the porosities. In this way,

a more realistic representation of the particularities at the interior of the porosities

is provided. This model is useful for surface processes like adsorption in which the

proper modeling of the surface area of these materials is especially relevant. The

program Delta Chem has been created to implement this approach in highly sym-

metric microporous materials including MOFs, ZIFs, COFs, and Zeolites. A total

of 3016 Python’s code line has been necessary to successfully perform the following

tasks: Read the input file provided by the user to make the structural information

accessible for its processing in Delta Chem; determine the positions of the center of

each type of porosity and the atoms in the structure of the studied material that

contributes to them; use Delaunay Triangulation to create a limiting mesh for the

internal surface of the porosities; determine the regular uniform polyhedron that

best fits the shape of these surfaces; align the fittest polyhedrons and use a reversed

Wythoff Construction to build the irreducible volumes of the porosities.

This Irreducible Volume-based approach was successfully tested in MOF-5. The

geometrical optimization of the critical points provided by Delta Chem results in

positions that are very close to the energy minima. It shows that the implementation

of this method greatly simplifies the process of determining the position of adsorption

sites in microporous materials. Of course, a reduced number of adsorbate molecules

implies a decrease in the computational cost and processing time. At the moment

this approach has only been implemented for MOF-5 so further studies in different

materials are required, but it is promising. It is a local order method, it can be

applied for materials that are locally ordered but works as well for crystalline matter.

It could be used as the geometrical base for new methods like DFT using local

geometry and similar geometric approaches could be created to model the adsorbate

molecules.

Delta Chem is fast, indeed 20 minutes are necessary to wholly process the 1440
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atoms in HKUST-1 unit cell. It is generic since it is based entirely on the geometry

of the materials and not in the nature of the atoms, therefore the process can be

generalized for a wide variety of microporous materials. Additionally, the program

can be switched to generate the traditional geometrical model based in the atoms at

the joints of the framework, i.e Delta Chem is capable of generate two different geo-

metric approaches of porosity and perform similar further processes, like determine

the irreducible volumes, for both of them.

In general terms, Delta Chem works well... but it could be improved. The

polyhedron fitting is now limited to only eighteen polyhedrons, six platonic and

twelve archimedean. It works perfectly for regular pore cavities, but Truncations

and Cantellations could be better approximated analyzing the displacement of the

generator vertex in any of these processes. In this way the shape of the porosity

could be fitted exactly and the appropriate Irreducible Volume could be generated

instead of doing only an approximation of their shapes. The Wythoff construction

also allows generation of prisms, so the irreducible volume of channels could also be

obtained.

The diverse algorithms implemented and created to build up Delta Chem are

as interesting as the program itself. The final organization of Delta Chem allows

making use of almost any of these algorithms for purposes that are not necessarily

related to the objectives of this Project, but that requires the implementation of

some of the Delta Chem methods like Delaunay Triangulation, determination of

centers of porosities, Convex Hull analysis and polygonalization, General Rotation,

Alignment Rotation, Scaling and Translation transformations and Determination of

irreducible volumes of regular polyhedrons. Delta Chem and the Irreducible Volume

approach are the result of a highly interdisciplinary project work at the interface of

geometry,linear algebra and chemistry. They are a sample of how mathematics can

be used as a cure for chemical diseases.
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