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Abstract

In this work, we use the Landauer-Buttiker formula as implemented in the package

KWANT (Python library) for studying quantum transport in a DNA molecule based in

an analytical tight-binding Hamiltonian recently developed. In our simulation, we used a

Hamiltonian considering a kinetic term, a term for intrinsic Spin-Orbit (SO) interaction

related to the atomic SO coupling, and a Rashba interaction due to the electric dipoles

associated with hydrogen bonds between the bases of the double strand of DNA and we

tested the effect of magnetic and no-magnetic leads in the spin-selectivity of the molecule.

We obtained that in our model, the spin-orbit coupling associated with the molecule

can not be enough to explain the spin selectivity, however, in a system with presence of

ferromagnetic leads, enhance the spin selectivity when it is included, which could explain

the selectivity observed in similar experiments

Keywords: DNA, Spin selectivity, Intrinsic spin-orbit, Rashba interaction,

Tight-bindig model.
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Abstract

Resumen

En este trabajo, utilizamos la fórmula Landauer-Buttiker implementada en el paquete

KWANT (biblioteca de Python) para estudiar el transporte cuántico en una molécula de

ADN basada en un Hamiltoniano analítico de enlace fuerte recientemente desarrollado.

En nuestra simulación, utilizamos un hamiltoniano considerando un término cinético, un

término para la interacción intrínseca Spin-Orbit (SO) relacionada con el acoplamiento

atómico de SO, y una interacción Rashba debido a los dipolos eléctricos asociados con

enlaces de hidrógeno entre las bases del doble hebra de ADN y probamos el efecto de

cables magnéticos y no magnéticos en la selectividad de giro de la molécula. Obtuvimos

que en nuestro modelo, el acoplamiento espín-órbita asociado con la molécula no puede ser

suficiente para explicar la selectividad del espín, sin embargo, en un sistema con presencia

de cables ferromagnéticos, mejorar la selectividad del espín cuando se incluye, lo que

podría explicar la selectividad observada en experimentos similares.

Palabras clave: ADN, Selectividad de spin, Interacciones spin-orbita , In-

teracciones Rashba, Modelo de enlace fuerte.
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INTRODUCTION

When we talk about technology, related to data processing, it is always related to

the concept of transistors. Transistors are electronic devices that are capable of providing

an arbitrary output to a given input. That is, transistors are responsible for translating

human-generated outputs, such as sound, or to the electrical inputs that a computer

needs to operate.[1].The first transistors were built by combining semiconductor materials

to produce a nonlinear electrical response.From that moment, how to tune such a response

for different purposes was the main subject of research since the 50s, and it remains to

change and to innovate for different purposes until now.[2].

Transistors’ technology has evolved through various phases, in rough correspondence

with each decade after its invention. Through experiments seeking understanding and use

of surface physics in germanium, John Bardeen, Walter Brattain, and William Shockley

found the transistor effect and invented the point-contact transistor in 1947 [3]. These

transistors consisted of a block of germanium, a semiconductor, with two very closely

spaced gold contacts held against it by a spring. The surface layer of the germanium piece

of the transistor had an excess of electrons, so when an electrical signal travels through

the gold foil, it injected holes (points which lack electrons) creating a thin layer which

had a scarcity of electrons or well known as transistor (Figure 0.1 a.). As a result of this
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Introduction

success the Nobel Prize committee joined the contributions, and awarded the contributors

a single prize to the trio of scientist, Bardeen, Brattain, and Shockley pictured in Fig 0.1

b, opening the doors to a new era of the technology in which the use of transistors have

been the key to more advanced technology.[2].

Figure 0.1: a. The small dark rectangle on the formed metal support at lower left center

is polycrystalline germanium. The triangle impinging on it is an insulator with metal on

near and far surfaces. b. Inventors of the transistor John Bardeen, William Shockley, and

Walter Brattain (left to right) [3]

The first transistor, initially rustic and very primitive, has evolved over the years, the

of use of sensors that respond to a stimulus can be applied in many areas of science and

mainly being applied in technology. Sensitive, selective, miniaturized, light-weight, low-

power biosensing systems should be capable of providing information to the user wherever

and whenever it is needed. In a more visionary scenario, the more advanced transistors

constructed at nanometric scale for their application in systems, would provide the correct

information for specific cases, on which it is required [1]. To perform this kind of transistors

the aim is to be able to elaborate transistors at nanometric scale, look for their application

in technology, medicine, computers, and electronics.

An example of transistors developed nowadays is the Organic Field-Effect Transistors

2



Introduction

Figure 0.2: Picture of transparent and flexible OFETS. [4]

(OFET) sensors, highlighting the features that would make them ideal for POC (point of

contact) applications. As the electrochemical OFET sensing configurations have an ex-

tensive range of sensors will be focus are on electrolyte and back-gated OFETs biosensors.

In general OFET sensors use π-conjugated organic semiconductors as electronic materi-

als and are endowed with biological recognition capabilities by proper functionalization

or integration of bio-systems such as DNA strains, antibodies, enzymes and capturing

proteins in general. The advantages of these OFET over other sensing technologies, such

as electrochemical or optical-based ones, is the capability of delivering a response that is

label-free using a simple electronic read-out set-up that can be easily miniaturized by also

employing printed circuit technologies [1].

The revolutionary concept that is now turning into real prototypes, involves the con-

struction of electronic and opto-electronic functional devices (light-emitting diodes, photo-

voltaic cells, OFETs) and circuits by printing features on plastic or paper substrates using

dielectric, conducting, insulating and semiconducting inks. Plastic electronic systems are

3



Introduction

produced at very low-cost using printing equipment instead of ultraclean high-tech fab-

rication facilities. The emerging field of organic electronics is therefore motivated by the

possibility of mass-producing cheap and sustainable electronic devices and sensors. In Fig.

0.2 an example of inkjet printed, transparent OFETs on a flexible substrate, is featured

[4].

One of the interesting properties of these devices, very useful at the application level, is

their ferromagnetism, implying a strongly magnetic behavior, that is the strong attraction

of a material to a permanent magnet. The origin of this strong magnetism is the presence

of a spontaneous magnetization produced by a parallel alignment of spins. Also, there can

be an anti-parallel alignment of unequal spins resulting in a spontaneous magnetization.

Magnetic materials which are magnetized to some extent by a magnetic field. The use

of the alignment of spin have been used in many materials due to that once known the

magnetic orientation of a material many properties can be enhanced [5]. These materials

have been used for many years, however chiral organic molecules are opening new doors

as spin filters for applications in technology and computation [6].

Chiral are those that do not overlap onto their mirror image, such as the left hand

and the right hand, are said to be [7]. Because many biomolecules are chiral and many

biochemical reactions involve chiral molecules, much effort has been spent in the under-

standing of enantioselectivity in chemical transformations and in the study of the physical

chemical properties of these structures [8]. Several experiments have demonstrated that

the electron transmission yield through chiral molecules depends on the electron spin ori-

entation. Groundbreaking experiments have shown strong spin selectivity (60% in some

cases) in biological single molecules of DNA, photosystems, and bacteriorhodopsin, self-

assembled monolayers of DNA and chiral oligopeptides [9]. One of the most important

experimental results is the fact that spin selectivity is unequivocally linked to the chiral

nature of the molecules, since the lack of it kills any spin activity in low atomic weight

systems. This dependence of the selectivity with the chirality is known as Chiral-Induced

Spin Selectivity effect, or CISS effect. [10, 11, 12, 13]
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One of the first studies in spin selectivity are performed by Rikken and Raupauch,

in which they report the first use of static magnetic field to bias a chemical process in

favour of one of two mirror-images products (left or right handed eniantomer). Rikken and

Raupach used magneto-chiral dichroism, associated to the production of one enantiomer

in a photochemical reaction of the chiral Cr(III)tris-oxalato complex, which is unstable

in solution and spontaneously dissociates and re-associates. At equilibrium the right and

left handed enantiomers are at the same concentration. The dissociation of the chiral

complex is accelerated by the absorption of light, such that in the presence of an un-

polarized laser beam travelling parallel to a static magnetic field, a small excess of one

enantiomer is produced and maintained and, on reversing the magnetic field direction, an

equal concentration of the mirror-image enantiomer is obtained [8].

In more recent experiments, the CISS effect was experimentally studied in the tun-

nel effect energy regime by Zoutie Xie et al colaborators [14], through measurements of

conductance of double-stranded DNA molecules. In that experiment, the DNA molecules

Figure 0.3: Experimental setup. A self-assembled monolayer of dsDNA on the gold

nanoparticle is complementary to that SAM (self-assembled monolayer). The two strands

hybridize to form a nanoparticle-dsDNA-nickel complex [14].
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were deposited on a nickel substrate and attached at the other end to a gold nanoparticle,

such that a gold nanoparticle-dsDNA-nickel complex type system was formed (see Figure

0.3). The dsDNA oligomers are bound on one end to the nickel surface (bottom electrode)

while their outer ends are chemically bound to the gold nanoparticles (top electrode).

Geometric constraints dictate that underneath each of the gold nanoparticles no more

than two molecules can hybridize. A permanent magnet underneath the nickel substrate

controlled the magnetism, and hence the spin alignment in the nickel. A conductive AFM

was used to measure the current flowing between the nickel substrate through the DNA

to the gold nanoparticles [14].

Figure 0.4: Current versus voltage curves obtained for the 50, 40 and 26 base pair (bp)

long DNA oligomers absorbed on Ni. (a.) Current vs voltage for magnet pointing up

and down (b.) The average current obtained for the three oligomers studied when the

magnetic field is pointing up (red) or down (blue) [14]

The I-V curve measurement performed for different nickel magnetization are shown
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in Figure 0.4. for these constructs formed by 26, 40 and 50 base-pairs (bp) long dsDNA,

these magnet pointing up and down for each measurement as is observed in Figure 0.4

(part a.). The curves obtained are symmetrical, which means that regardless of the voltage

applied, the spin is always antiparallel to the direction of movement of the electrons. This

imply that while one spin is dominant in the transport when electrons are flowing away

from the Ni, the opposite spin is dominant for the electrons flowing from the tip of the

AFM toward the Ni. The symmetric structure also indicates that the magnetic field of the

permanent magnet does not affect the current flow through the DNA in a significant way,

but indeed affects only the spin alignment in the Ni substrate which is observed clearly

in figure 0.4 (part b.), which shows the average values for conductance as a function of

the applied voltage. Then, the dependence on the conductance of the molecule with the

direction of the applied magnetic field and with the length of the molecule is obtained

which is referred to a kind of spin filter in the DNA molecule.

In order to understand the experimental results obtained, many theoretical approaches

have been developed taking spin-orbit and chirality of the molecule as main factors present

in the structure. Solmar Varela et al Co-workers have developed a Tight-Binding (TB)

model describing spin filtering and chiral spin transport through DNA model. The TB

model incorporates both kinetic and intrinsic spin-orbit (ISO) contributions as well as

Rashba-type interactions coupled to an external electric field along the axis of the double

helix. The helical structure of the molecule renders the ISO first order in the interaction

strength (in the meV range) as in carbon nanotubes[9].

As expected, depending on the complexity of the molecule, analytical calculation can

become a difficult task. It is for this reason that the computational tool based on binding

models is used as a complement to help describe this type of models and connect the

theory with the experiments, which will allow in the future the application of these chiral

molecules in technological development in which the use of inorganic materials is arriving

to its limits. For this purpose, the use of KWANT (python library) focused on quantum

transport is a computational tool that will allow us to study the mechanism of transport

7



0.1. General and specific objectives Introduction

in this molecule through TB models.

0.1 General and specific objectives

Taking into account the considerations mentioned above it is proposed as a general ob-

jective the Study of the electron transport in a DNA model using KWANT to

obtain conductance values in the molecule. The specific objectives are:

1. Develop a simulation of DNA molecule using KWANT, a python library focused on

conductance.

2. Analyze the results obtained with the program for our tight-binding model with the

calculus proposed on 2016 by Solmar Volmar, Ph.D..

3. Demostrate the importance of computational tool in this kind of problems.

This thesis is organized into 2 chapters, conclusions, appendixes, and bibliography.

In Chapter 1 is introduced important concepts to understand the conduction of electron

in materials, from the beginning to the formalism used in KWANT. Then is described the

different interactions that can be present in the system and finally the DNA model used

to perform the simulation developed in this work. In Chapter 2 is shown some examples

and an easy introduction to KWANT using the simple tight-binding model in 1D and 2D

for visualize the resulting conductance and band structure, for explaining each one with

the other. Furthermore, we present results obtained with the DNA model using the spin-

orbit interactions and ferromagnetic lead, and by this way, explaining the conductance,

the band structure and the spin-selectivity present in the molecule. In appendix section

A are shown some codes used for the cases studied in Chapter 2. For the A.1 is shown the

codes used for a linear chain, in A.2 is shown the code used for a 2D system and finally

in A.3 is shown some parameters used for the development of the DNA model explained

in 2.2. Finally, thesis work is concluded pointing out the most important results that we

find using KWANT and closed with the Bibliography.
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CHAPTER 1

THEORETICAL FRAME

1.1 Quantum Transport

1.1.1 Drude’s model

Even in ancient times it was understood that certain substances (now known as metals)

were somehow different from other materials in the world. The defining characteristic of

a metal is that it conducts electricity. At some level the reason for this conduction boils

down to the fact that electrons are mobile in these materials.

J.J. Thomson’s 1896 discovery of the electron (“corpuscles of charge” that could be

pulled out of metal) raised the question of how these charge carriers might move within

the metal. In 1900 Paul Drude realized that he could apply Boltzmann’s kinetic theory

of gases to understanding electron motion within metals. This theory was remarkably

successful, providing a first understanding of metallic conduction. Furthermore, three

main assumptions were made:

1. Electrons have scattering time τ . The probability of scattering within a time interval

dt is dt/τ

9



1.1. Quantum Transport Chapter 1: Theoretical frame

2. One a scattering event occurs, it is assumed that the electron returns to zero-

momentum p = 0. This is true on average but not for every particle, so this is

a defect of the model.

3. In between scattering events, the electrons, which are charge −e particles, respond

to the externally applied electric field E and magnetic field B. [15]

The first two assumptions are exactly those made in the kinetic theory of gases. while

the third assumption is just a logical generalization to account for the fact that, unlike

gas molecules, electrons are charged and therefore they must respond to electromagnetic

fields [15].

Considering an electron with momentum p at time t and ask what momentum it will

have at time t+dt. There are two terms in the answer. There is a probability dt/τ that it

will scatter to momentum zero. If it does not scatter to momentum zero (with probability

1 − dt/τ) it simply accelerates as dictated by its usual equation of motions dp/dt = F.

Putting the two terms together we have:

〈p (t+ dt)〉 = (1− dt

τ
)(p(t) + Fdt), (1.1)

or keeping terms only to linear order in dt, and then rearranging it is obtained:

dp

dt
= F − p

τ
, (1.2)

where the force F on the electron is given by the Lorentz force:

F = −e(E + v×B).

In this last equation E and B have the same meaning given before, and v is the

velocity and e is the charge electron.

The scattering term −p/τ ca be associated with a drag force on the electron. Notice

that in the absence of any externally applied field the solution to the differential equation
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is just an exponentially decaying momentum

p(t) = pinitale
−t/τ ,

which is expected for particles that lose momentum by scattering [16].

1.1.2 Electron conductivity and Ohm’s law

Electrical conduction is a process by which an electron travels a certain distance experi-

encing a series of scattering events. Recent advances in technology have made it possible

to fabricate structures whose dimensions are much smaller obtaining a better conduction,

applicability and use in different devices [17]. Quantum Mechanics Principles provide the

tools which describe how this process is happening opening the doors to the new era of

nanodevices. The phenomena of conduction that present solid structures can be of many

kinds, from quantum characteristic to structural description. However in this case we are

going to be focused on quantum transport of electrons and its spin polarization.

Conductance is defined as electric current passing through a solid system. The con-

ductance (G) of a rectangular two-dimensional conductor is directly proportional to its

width (W ) and inversely proportional to its length (L) (Figure 1.1) [18]:

G = σ ∗W
L

, (1.3)

where, σ is the conductivity measured in ( S
cm2 ). As shown in the equation (1.3), the

conductance is directly proportional to sigma "σ" which is called conductivity and refers

to an intrinsic value for each material, which shows the measure of electrical charge or

heat can pass through a material, then at a higher value of "σ" the conductivity and the

conductance would be higher.

The momentum of a free electron is related to the wave vector by mv = ~k, where m

and v are the electron mass and velocity, respectively. In an electric field E and magnetic
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Figure 1.1: A conductor is switched between two contacts across which an external field

bias is applied.

field B, the force F on an electron of charge −e is −e[E + v×B], such that the Newton’s

second law of motion becomes:

F = m
dv

dt
= ~

dk

dt
= −e(E + v×B). (1.4)

As shown in Figure 1.2, the Fermi sphere which represents the available states in

the system, moves in k space at a uniform rate by a constant applied electric field. By

integration of 1.4 with B = 0 it is obtained:

k(t)− k(0) = −eEt/~. (1.5)

If the force F = −eE is applied at time t = 0 to an electron gas that fills the Fermi

sphere centered at the origin of k space, then at a latter time t the center of the sphere

will be displaced to :

δk = −eEt/~. (1.6)

Notice that the Fermi sphere is displaced as a whole because every electron is displaced

by the same δk.
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Figure 1.2: (a.) The Fermi sphere encloses the occupied electrons orbitals in k space in

the ground state of the electron gas. The net momentum is zero, because for every orbital

k there is an unoccupied orbital at -k. (b.) Under the influence of a constant force F

acting for a time interval t every orbital has its k vector increased by δk, this is equivalent

to a displacement of the whole Fermi sphere by δk [15].

Because of collision of electrons with impurities, lattice imperfections, and phonons,

the displacement of the sphere may be maintained in a steady state of the electric field.

If the collisions time is τ , the incremental velocity is vδk/m = −eEτ/m. If in a constant

electric field E there are n electrons with charge q = −e per unit of volume, the electric

current density is:

j = nqv = ne2τE

m
. (1.7)

The equation (1.7) is known as Ohm’s law. The electrical conductivity σ can be

written in term of j = σE, such that (1.7):

σ = ne2τ

m
, (1.8)
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and at the same way, the electrical resistivity ρ is defined as the reciprocal of the

conductivity:

ρ = m

ne2τ
. (1.9)

The time τ describes the free time during which the field acts on the carrier. Closely the

same result for the electrical conductivity is obtained for a classical (Maxwellian) gas of

electrons, as realized at low carrier concentration in many semiconductors problems [15].

Therefore, conductance is defined as the measurement of electrons passing through a

system. This conductance is related to the geometry of the system that is being applied

for its dimensions either by its length or width and the most important by the nature of

the material itself.

1.1.3 Characteristic lengths

A conductor usually shows ohmic behavior if its dimensions are much larger than certain

characteristics lengths: the de Broglie wavelength, the mean free and the phase-relaxation

length.

1.1.3.1 Wavelength (λ)

The relation between the Fermi wavenumber (kf ) and the density of states (ns) is given

by:

kf =
√

2πns. (1.10)

Then, the Fermi wavenumber (λf ) goes up as the square root of the electron density.

The corresponding wavelength goes down as the square root of the electron density down

as the square root of the electron density:
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λf = 2π/kf =
√

2π/ns. (1.11)

As an example, for an electron density of 5 × 1011/cm2, the Fermi wavelength is about

35 nm. At low temperatures the current density is carried mainly by electrons having

an energy close to the Fermi energy, so that the Fermi wavelength is the relevant length.

Other electrons with less kinetic energy have longer wavelengths but they do not contribute

to the conductance wavelengths [18].

1.1.3.2 Mean free Path (Lm)

An electron in a perfect crystal moves as if it were in vacuum but with a different mass.

Any deviation from perfect crystallinity, such as presence of impurities, lattice vibrations

(phonons) or other electrons lead to ’collisions’ that scatter the electron from one state to

another thereby changing its momentum. The momentum relaxation time τm is related

to the collision time τc by a relation of the form:

1
τm
⇒ 1

τc
αm,

where the factor αm (lying between 0 and 1) denotes the ’effectiveness’ of an individual

collision in destroying momentum.

The mean free path Lm, is the distance that an electron travels before its initial

momentum is destroyed, it is defined by:

Lm = vfτm, (1.12)

where τm is the momentum relaxation time, and vf is the Fermi velocity given by:

vf = ~kf
m

, (1.13)

which, using 1.11 can be written as:

vf = ~
m

√
2πns. (1.14)
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1.1.3.3 Phase-relaxation length (Lϕ)

Another characteristic length that should be considered is the phase-relaxation length. An

equation (or definition) for phase relaxation time ( τϕ ) can be written as:

1
τϕ
⇒ 1

τc
αϕ,

where the factor αϕ denotes the effectiveness of an individual collision in the destroying

phase. One way to visualize the destruction of phases in terms of a thought experiment

involving interference is for example supposed the case of a splitting a beam of electrons

into two paths and then recombine them as shown in Fig 1.3.

Figure 1.3: A conceptual interference experiment involving the splitting of a beam of

electrons and later recombining them. [18]

In a perfect crystal the two paths would be identical resulting in constructive interfer-

ence. By applying a magnetic field perpendicular to the plane containing the paths, one

can change their relative phase alternately from constructive to destructive. Now suppose

we are not in a perfect crystal but in a real one with collisions due to impurities, phonons

etc. It would expect the interference amplitude to be reduced by a factor exp[−τt/τϕ],

where τt is the transit time that the electron spends in each arm of the interferometer.
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1.1.4 Buttiker-Landauer formalism

Landauer formula describes a ballistic or quasi-ballistic conduction through a simple two-

dimensional configuration [17]. Let us consider a piece of a conductor stretched between

two large contact pads as is shown in Figure 1.1. To determine the conductance of this

semiconductor, taking as supposition that it presents impurities, Landauer allows to de-

termine the conductance by the following equation:

G =
(

2e2

h

)
MT (1.15)

where e, h, andM are the electron charge, the Planck’s constant and the number of modes,

respectively. The factor T represents the average of probability that an electron injected

at the end of the conductor will transmit to the other end . If the transmission probability

is the unit, we recover the correct expression for the resistance of a ballistic conductor

in which it is not present any scattering[18]. Now, considering a even more complicated

system like Figure 1.4, representig to a conductor connected to two large contacts by two

leads.

The leads are described as ballistics, a behavior as a metallic material (no scattering)

is assumed, and each one of them have M modes. As in the previous example, T is the

average probability of inject an electron inside the channel. As is supposed each electron

pass through the channel without reflection, they are called ’reflectionless’. Then, states in

the lead 1 are electrons coming from the left contact correspond to +kx, and hence these

states must have an electrochemical potential µ1, indicated in the Figure 1.4, similarly, it

is argued the same for the state −kx assuming a electrochemical potential µ2. Assuming

the ideal case (zero temperature), the current flow I+
1 and I+

2 will be proportional to the

voltage µ1 and µ2.

Then the influx of the electrons in the lead 1 is given by:
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Figure 1.4: A conductor having a transmission probability of T is connected to two large

contacts through two leads. [18]

I+
1 = (2e/h)M [µ1 − µ2]. (1.16)

The outflux from lead 2 is simply the influx at lead 1 times the transmission probability

T :

I+
2 = (2e/h)MT [µ1 − µ2]. (1.17)

The rest of the flux is reflected back to contact 1:

I−1 = (2e/h)M(1− T )[µ1 − µ2] (1.18)

Then, the net I current passing from one lead to another at any point of the device is

given by:

I = I+
1 − I−1 ≈ I+

2 = (2e/h)MT [µ1 − µ2]. (1.19)

Hence, from Landauer formalism that the conductance can be assumed as:
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G = I

(µ1 − µ2)|e| = 2e2

h
MT. (1.20)

The electron dynamics of a bulk material composed of large ensembles of particles can

be calculated by averaging over many microscopic configurations. Although the quantum

behavior of individual constituents of a macroscopic object are important over some lengths

scale, typically a few lattice spacing, they are usually not correlated across the whole object

[19]. As can be expected, in a system with no defects the conduction of electrons cross

the channel without any problem through it, however, in disordered systems the electrons

will be scattered by many factors, such as presence of impurities, loosing some electrons

which are traveling through channel. Then, if this disorder is high enough, it will lead

to interferences of the electronic wave function ψ(x) with itself, such that it is no longer

extended over the whole solid but is instead confined to a small part of the solid [20]. This

phenomenon is known as Anderson localization. Depending on the type of system studied

, three different quantum regimes can exist:

1. Ballistic: the canonical example is the point contact; impurity scattering can be

neglected, and electron scattering occurs only at boundaries.

2. Diffusive: conducting samples contain a significant amount of impurity atoms or

structural disorder. The strength and concentration of impurities leads to l ∼ 100

Å, which is the elastic scattering length, independent of temperature.

3. Localized: when the disorder is strong enough, a phenomena known as Anderson

localization take place.

To understand these regimes, in 1972 were proposed a highly successful theoretical ap-

proach to this disorder-induced made by Abrahams[20]. The starting point for his ap-

proach is the realization that there exists a sample-size (Ld) dependence of the conductance

is given by:

G = σLd−2 = g
e2

~
. (1.21)
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On the other hand, for strong disorder, the wave functions will be exponentially localized

with localization length λ and thus the conductance in a finite system will be:

g ∼ exp(−L
λ

). (1.22)

As is expected as numerical as in theory the relationship between the conductance and

the length is a exponential decay.

1.2 TIGHT BINDING

The tight binding or linear combination of atomic orbitals (LCAO) method is a semi-

empirical method that is primarily used to calculate the band structure and single-particle

Bloch states of a material. The semi-empirical tight binding method is simple and com-

putationally very fast. It therefore tends to be used in calculations of very large systems,

with more than around a few thousand atoms in the unit cell [21].

To understand how this method works, lets start with neutral separated atoms and

watch the changes in the atomic levels as the charge distribution of adjacent atoms overlap

when the atoms are brought together to form a crystal. Consider two hydrogen atoms, each

with an electron in the ground state. The wavefunctions ψA , ψB on the separated atoms

are shown in Figure 1.5, A). As the two atoms are brought together, their wavefunctions

overlap (see Figure 1.5, B). Considering the combination of both ψA ± ψB, then each

combination share an electron with two protons, but an electron in the state ψA +ψB will

have a somewhat lower energy than in the state ψA − ψB. In ψA + ψB the electron spend

part of the time in the region midway between the two protons, and in this region it is in

the attractive potential of both protons at once, thereby increasing the binding energy .

In ψA−ψB the probability density vanishes midway between the nuclei, an extra binding

does not appear.

As two atoms are brought together, two separated energy levels are formed for each

level of the isolated atom. For N atoms, N orbitals are formed for each orbital of the
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Figure 1.5: A. Schematic drawing of wavefunctions on two hydrogen atoms at large sep-

aration. B. Ground state wavefunctions at closer separation. C. Excited wavefunctions.

[15]

isolated atom, as is observed in Figure 1.6. As free electrons are brought together, the

Coulomb interaction between the atom cores and the electron splits the energy levels,

spreading them into bands. Each state of given quantum number of the free atom is

spread in the crystal into a band of energies. The width of the band is proportional to the

strength of the overlap interaction between neighboring atoms [15].

1.2.1 Tight binding approximation

Suppose that the ground state of an electron moving in the potential U(r) of an isolated

atom is ϕ(r), an s state. If the influence of one atom on another is small, we obtain an

approximate wavefunction for one electron in a whole crystal by taking

ψk(r) =
∑
j

Ckϕ(r − rj), (1.23)

where k is the wave vector of the electron and the sum is over all lattice points. The

assumptions made is that primitive basis contains one atom. This function has a Bloch

form, if Ck = N−1/2eik·r, which gives, for a crystal of N atoms, the following equation:

ψk(r) = N−1/2∑
j

exp(ik · r)ϕ(r − r) (1.24)
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Figure 1.6: The 1s band of a ring of 20 hydrogen atoms. The one-electron energies are

calculated in the tight-binding approximation. [15]

The first order-energy is calculated by getting the diagonal matrix elements of the

hamiltonian of the crystal, as the following:

〈k | H | k〉 = N−1∑


∑
m

exp[ik · (r − rm)]〈ϕm | H | ϕ〉, (1.25)

where ϕm ≡ ϕ(r − rm). Writing ρm = (r − r) we obtain:

〈k | H | k〉 =
∑
m

exp(−ik · ρm)
∫
dV ϕ∗(r − ρm)Hϕ(r). (1.26)

Neglecting all the integrals in equation (1.26) except for those on the same atom and those

between nearest neighbor connected by ρ, we write:∫
dV ϕ∗(r − ρm)Hϕ(r) = −α;

∫
dV ϕ∗(r − ρ)Hϕ(r) = −γ, (1.27)

and as the first-order energy (εk) is provided by 〈k | k〉 = 1, then is obtained that:

〈k | H | k〉 = −α− γ
∑


exp(−ik · ρm) = εk. (1.28)

The dependence of the overlap energy γ on the interatomic separation ρ can be evaluated

explicity for two hydrogen atoms in 1s state. In Rydberg energy units, Ry = me4/2~2,

the overlapping energy is given by:

γ(Ry) = 2(1 + ρ/a0)exp(−ρ/a0), (1.29)
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where a0 = ~2/me2. The overlap energy decreases exponentially with the separation.

1.3 KWANT software

Kwant is a free (open source) Python package for numerical calculations on tight-binding

models with a strong focus on quantum transport. It is designed to be flexible and easy

to use to solve scattering problems in a robust and highly efficient way. The tight-binding

method of modelling lies between the very accurate, expensive and fast but limited em-

pirical ab initio methods.

The tight-binding methods describe a vast variety of system and phenomena in quan-

tum physics such as:

1. Metals

2. Graphene

3. Topological Insulator

4. Quantum Hall Effect

5. Conductance

6. Superconductivity

7. Spintronics

8. Molecular electronics

9. Any combination of the above, and many other things

The definition of a physical system amount to writing a simple python program that

operates with physical parameters or concepts, such as lattices, shapes, symmetries, and

potentials. The form one writes the Hamiltonian for the systems in KWANT is very
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close to what one would write on a blackboard. In the tight-binding approximation, the

Hamiltonian can arise directly from an atomic description of a physical system, in which

the sites could correspond to atoms or molecules. In this sense, KWANT has two important

sections which allow us to describe the system and adopt it to different situations, these

are:

1. Scattering section in which it is defined what kind of imperfections the system has.

At the moment to define the system, for example, it could be a perfect system for

which any kind of impurities, vacancy or imperfections affect to the transport, to a

more realistic system for which the position of each atom in the structure could affect

the conductance. Also scattering section is defined as hopping, that is simply a tuple

of two of sites, which defines an edge of the graph that makes up a tight-binding

model.

2. Leads section that within the Landauer-Buttiker formalism these leads act as wave

guides leading plane waves into and out of the scattering region and correspond to

the contacts of a quantum transport experiment.

The implementation of different tight-binding models in KWANT opens a wide range

of possibilities to calculate in quantum transport or other branches. To visualize this con-

cept, we consider the simplest tight-binding model implemented in KWANT (for default)

that is related to a system with no impurities and in which the interactions are given

for the nearest neighbors in the system. The simplest Hamiltonian is given by the two

dimensional Schrödinger equation:

H = −~
2

2m (δ2
x + δ2

y) + V (y), (1.30)

with a hard-wall confinement V (y) in the y direction.

To be able to introduce this model into KWANT, the continuous Hamiltonia de-

scribed in 1.30 is discretized thus turning it into a tight-binding model. For simplicity, the
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hamiltonian is discretized on the sites of a square lattice with lattice constant a. Each site

with the integer lattice coordinates (i, j) has the real-space coordinates (x, y) = (ai, aj).

Introducing the discretized positional states as:

| i, j〉 =| ai, aj〉 =| x, y〉, (1.31)

the second-order differential operators can be expressed in the limit when a −→ 0 such as:

δ2
x = 1

x2

∑
i,j

(| i+ 1, j〉〈i, j || i, j〉〈i+ 1, j | −2 | i, j〉〈i, j |), (1.32)

as an equivalent for δ2
y . Substituting them in the Hamiltonian it is obtained:

H =
∑
i,j

[(V (ai, aj) + 4t) | i, j〉〈i, j | −t(| i+ 1, j〉〈i, j | + | i, j〉〈i+ 1, j |

+ | i, j + 1〉〈i, j | + | i, j〉〈i, j + 1 |)], (1.33)

with t = ~2/2ma2. For finite a, this discretized Hamiltonian approximates the continuous

one to any required accuracy. The approximation is good for all quantum states with a

wavelength considerably larger than a. The Hamiltonian derived in (1.33) describes almost

any system, either in 1D, 2D or 3D. This tight-binding model is the general Hamiltonian

implemented by KWANT to calculate transport in the simplest models (linear, square

and cubic). However, to implement the different tight-binding models with another kind

of interactions in more complicated systems make KWANT a useful computational tool

for quantum transport, allowing to simulate many physical and chemical experiments in

which the use of computational tools allows to determine if theoretical or experimental

approaches are working as the expected.

1.4 Atomic interactions

1.4.1 Atomic Spin-Orbit interaction

The Spin-Orbit (SO) interaction is the coupling between the spin of the electron and its

orbital motion around the nucleus. When an electron moves in the finite electric field of
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the nucleus, the SO interaction causes a shift in the atomic energy levels of the electron due

to the electromagnetic interaction between the spin of the electron and the electric field.

In the rest frame of the electron, there exist a magnetic field created by the interaction of

the angular momentum of the electron and the electric field of the nucleus [22].

The equation for the energy splitting (∆ξ) due to spin-orbit interaction was first de-

rived in 1926 by Llewellyn Thomas, using Bohr model of the hydrogen atom, Schrödinger

quantum mechanics, and relativistic kinematics. These results turned out to be com-

plete agreement with the predictions of Dirac relativistic quantum mechanics, which was

formulated

two years later (1928) [23]. The Thomas result may be written as:

∆ξ = g

4m2c2
dV (r)
rdr

s · L. (1.34)

Here, V (r) is the potential energy of the electron at distance r from the nucleus, and L is

the orbital angular momentum of the electron moves in a circular orbit of radius r with

velocity v in the presence of the electric field of the nucleus, according to Bohr classical

model.

The Hamiltonian for the coupling of the electron spin with an external magnetic field

is H = µs ·H. In the rest frame of an electron in orbit around a nucleus, an additional

magnetic field is present due to the electric field E generated by the charge of the proton

in its rest frame, in which the electrical potential of the nucleus is V (r) = Ze/r, so

E = Zer/r3 [6]. This electrical field is Lorentz transformed into a magnetic field in the

electron rest frame. The magnetic field Hadd in the moving frame of the electron is given

by:

Hadd = −v
c
× E = − p

mc
× E, (1.35)

That is, the magnetic field that results in the electron rest frame from the transformed

static electric field is given by equation (1.35). Using this magnetic field in the expression
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H = −µs ·H, resulting in the spin-orbit Hamiltonian by substituting the magnetic field

in equation (1.35) resulting in:

HSO = −µs ·Hadd/2. (1.36)

The factor of 1/2 is due to the fact that the rest frame of the electron is not an inertial

frame, hence, the Hamiltonian needs to be corrected to account for the fact that the

electron is an accelerating frame. An electric field with a component perpendicular to

the electron velocity causes an additional acceleration of the electron perpendicular to its

instantaneous velocity, leading to a curved electron trajectory moves in a rotating frame

of reference, and this provides additional electron precession is half the naive result. After

substituting (1.35) into (1.36) and using E(r) = Zer/r3, the following equation is:

HSO = µs ·
p
mc
× (Zer/r3)/2 = Ze2

2m2
ec

2r3
~
2σ · L, (1.37)

where µs = −gsµB(S/~) and L = r× p were used. This spin-orbit Hamiltonian is often

written in the form:

HSO = ξ(r)L · S
~2 , (1.38)

where ξ(r) = Ze2~2

2m2
ec

2r3 is the spin-orbit coefficient of the electron and it has units of energy

[6]. Spin–orbit coupling is important in many semiconductors. Consider an electron with

effective mass m∗ in a solid, subject to a potential V (r). The potential induces an electric

field E = rV/e which, in turn, generates SO coupling. The SO Hamiltonian is:

HSO = λ[rV · (p× σ) + (p× σ) · rV], (1.39)

where p = −i~r is the momentum operator, S = ~σ/2 is the spin operator and

λ = − ~
8(m∗)2c2 ,

is the spin-orbit strength. The magnitude of the SO coupling depends on the speed of

the electrons and the strength of the electric field acting on it, as well as on its effective

mass, m∗. Large SO interaction is obtained when the Bloch electrons move close to the
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nuclei with velocities that are close to relativistic, and for which the effective mass of the

electrons is small.

The potential experienced by an electron in a crystal includes the periodic crystal

part Vc(r) and an “external” potential Vext(r) due to imperfections and any other external

fields, V (r) = Vc(r) +Vext(r). Both parts affect to the SO coupling, since the electric field

in HSO is the gradient of the full potential. The single-particle Hamiltonian including SO

is

H = − ~2

2m∗ 5
2 +V (r) +HSO. (1.40)

It is useful to incorporate all the terms having the symmetry of the crystal into one term,

which includes the intrinsic (crystal field related) SO potential,

Hc ≡ −
~2

2m∗ 5
2 +Vc(r) + λ[rV · (p× σ) + (p× σ) · rV ]. (1.41)

Let us consider electrons in a cubic direct gap semiconductor, where the energy has a

minimum at the center of the Brillouin zone, k=0. Because the spin-orbit interaction is

even under time reversal, each level is at least two-fold degenerate (Kramers theorem). At

k=0, this is the only degeneracy. The two states corresponding to this degenerate level are

referred to as a Kramers doublet. We can write an effective Hamiltonian for the system

as

Heff = En(k) +Hint + λ[∆Vext(r) · (p× σ) + (p× σ) ·∆Vext(r)], (1.42)

where the spin-orbit energy due to the periodic potential is:

Hint ≡ µBh(k) · σ, (1.43)

with h(k) being the SO intrinsic field that depends on the details of the crystal structure,

h(k) has units of energy/magnetic- field, and is k-dependent. Note that the time-reversal

operation takes σ ⇒ −σ and k ⇒ −k. Hence h(k) ⇒ −h(−k), so that the intrinsic
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Hamiltonian Hint is time-reversal invariant. In crystals with inversion symmetry, where

h(k) = h(−k), the intrinsic spin-orbit field must vanish.

The intrinsic spin-orbit coupling h(k) defined through equation (1.43) is equivalent

to a local magnetic field related to the band structure. h(k) depends strongly on crystal

symmetry and is different for electrons and holes. It also depends on space dimension

d = 2 or d = 3. In a static situation, the particle magnetic moment tends to align along

h(k). When an electric field E = Ex̂ is applied, the vector k evolves in time according to

the semi classical equations k = eE/~, and consequently, the effective field h(k) evolves

according to h(k) = ∆kh(k)·eE/~. For weak electric fields, the adiabatic approximation is

justified. Then, the effective magnetic field h(k) varies slowly with time, and the electron

has enough time to adjust its spin to lie along h(k),there by undergoing spin precession

[6].

1.4.2 Rashba effect

In 1984, Bychkov and Rashba introduced a simple form of spin–orbit coupling to explain

the peculiarities of electron spin resonance in two-dimensional semiconductors [24]. Rashba

effect is a momentum-dependent splitting of spin in bulk crystal. In crystal that lack an

inversion centre, electronic energy bands are split by SO coupling. More specifically, in

non-centro symmetric zinc-blende or wurtzite semiconductors, bulk SO coupling becomes

odd in the electron’s momentum p, as originally realized by Dresselhaus and Rashba.

Dresselhaus was the first to notice that in zinc-blende III–V semiconductor compounds

lacking a centre of inversion, such as GaAs or InSb, the SO coupling close to the Γ point

adopts the form:

ĤD3 = (γ/~)
[
(p2
y − p2

z)p2
xσx + c.p.

]
, (1.44)

where c.p. denotes circular permutations of indices. Of course, additional symmetry

considerations in the band structure result in additional odd-in-p SO coupling terms. In
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the presence of strain along the (001) direction, the cubic Dresselhaus SO coupling given

in equation (1.44) reduces to the linear Dresselhaus SO coupling:

ĤR = (αR/~)(z× p) · σ, (1.45)

where αR is known as the Rashba parameter. In other words, in the solid state the

Dirac gap mc2 ≈ 0.5 MeV is replaced by the energy gap ∼ 1 eV between electrons and

holes, and αR/~ >> µBEz/mc. This convenient form, derived for 2D plane waves, is

only phenomenological and must be applied with precaution to realistic systems. Indeed,

theoretical investigations showed that the lack of inversion symmetry does not only create

an additional electric field Ez,but also distorts the electron wavefunction close to the

nuclei, where the plane-wave approximation is not valid [25].

The recent discovery of the Rashba effect in the two dimensional electron gas (2DEG)

systems such as perovskite surfaces and interfaces has led to the possibility of tuning its

properties by external electric fields. The study of the Rashba effect in 2DEGs is of

interest not just from a fundamental point of view, but also due to potential applications

in spintronics devices [24].

1.5 DNA MODEL

DNA was discovered by Watson and Crick in 1953 and since then its discover to our days

it has transformed the foundations of biology, chemistry, medicine and many others areas

related to them. DNA is a natural-occurring polymer that plays a central role in our life,

many unique properties of DNA have inspired a search for its non-biological applications.

DNA is an organic polymer of four different monomers where each monomer is composed

of a phosphate group, a single-ring sugar and one of four bases: Adenine (A) , Thymine

(T), Cytosine (C) and Guanine (G) (Figure 1.7). The bases are planar single or double

ring aromatic compounds. The monomers can form bonds between the sugar and the

phosphate and form into a long polymer or strand of DNA. The bases can also interact
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Figure 1.7: Structure of DNA

with each other through the formation of hydrogen bonds, specifically, A-T and G-C

pairing. An entire strand of DNA can form base-pairs with a complementary strand to

make double-stranded DNA [26].

The chirality of the sugars and the optimization of hydrogen bond angles leads to the

formation of a regular helical structure for DNA, with 10.4 base pairs per turn, the length

of hydrogen bond are approximately 3 Å which is larger than the typical covalent bond

that connects neighboring atoms in a base, which is about 1.3 - 1.5 Å. The turn of each

strand, in which contains the bases, which is called "pitch" is chose around 35.4 Å, and the

angle between two consecutive base pairs is 34.6°, according to the configuration B-DNA

[27].

The control of electron spin transport in molecular systems with chirality, like DNA,

has been receiving a lot of attention among different scientific communities mainly because

of possible applications in spintronics and for understanding of the spin effects in biological

systems.

From the discovering of the spin-conductance and spin-selectivity in chiral organic

molecule several approaches have been developed, analytical and numerical either in DNA

or thin chiral organic molecules [11, 12, 13, 28]. Research reports presented in[11] and [13]

assume that the spin-selectivity is given by the scattering of the free electrons and their

transport bound to the helix. This scattering potential contains a confining term and a

spin-orbit contribution that are responsible for the spin-dependent scattering of electrons,
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deriving the spin-orbit from the intrinsic atomic spin-orbit if the outer p orbitals of the

carbon atoms. In the other point of view [28], and [12] explain the spin-selective transport

of electrons through of helical shaped electrostatic potential, assuming two main factors to

explain for the selectivity of spin: modified Rashba-like spin-orbit interaction, reflecting

the helical symmetry of the system, and a weakly dispersive electronic band of the helical

system.

These theoretical approaches have shown the spin-selective transport of electrons

through two regimes: (i) free electrons scattering off the atomic orbital potentials and (ii)

electrons bound to move between atomic orbitals along the double helix in the molecular

electrostatic potential. All the proposals have to fix the spin orbit coupling strength in

order to fit the experimental results as they did not derive the effective values from a more

detailed model of the molecule.

In 2016, Varela and collaborators developed an analytical model of DNA to explain

the spin filtering and chiral spin transport in these molecules [9, 29]. In their work, they

consider a double-helix DNA type-structure in which each base is represented by a p-like

orbital projected perpendicular to it and bonded s and p orbitals on the molecular base

plane, representing a carbon atomic outer shell. Bases are paired forming a step on a

staircase and that are separated by a distance close to the double-helix diameter. Consid-

ering the atomic spin-orbit interaction and the Rashba effect on the electric dipoles of the

hydrogen bonding between the bases, they obtained an effective tight-binding Hamiltonian

to connect pz orbitals in neighboring sites labeled by ı and , given by :

H =
intra∑
〈ı〉

c†(tin + iλSOνısy + iλxRνısy)c +
inter∑
〈ı〉

c†ı t
outc, (1.46)

where νı = sgn( − ı), the sum intra is on the neighboring bases in the same helix and

the sum inter is on bases in different helices. The first term in each sum correspond to the

kinetic energy, and the following terms represent the greatest contribution in the intrinsic

spin-orbit and Rashba interactions due to the coupling between atomic SO and the electric
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field of hydrogen bonds, respectively. They estimated values for the interactions, such that

tin = tout = −10meV ; λSO = 0.671 meV and λxR = 3.6 to 20 meV.

In order to determine if the Hamiltonian developed in (1.46) explain successfully

the spin-selective transport of electrons in DNA, computational programs based on tight-

binding models are carried out, so in this way, compare with the experimental and conclude

if the theoretical approach of an intrinsic spin-orbit and its interactions are the responsible

for this filtering in this kind of molecules.
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CHAPTER 2

RESULTS

In order to study quantum transport in different systems, we must use KWANT

which is described in Section 1.2.1. This software will allow us to obtain conductance and

band structure which are the main parameters required to study the quantum transport

in different systems through tight-binding models.

2.1 Linear chains

2.1.1 1D case

For this case we want to simulate a linear chain of 30 atoms that represent the scattering

region using metallic leads. Linear chain is simulated with no presence of imperfection

or impurities within the system and leads behave as metallic, a ballistic system. The

tight-binding Hamiltonian is written as:

H = −~
2

2m δ2
x + V, (2.1)
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where V is the external potential. Assuming a linear chain growing in x direction,

then:

| i〉 =| ai〉 =| x〉, (2.2)

being a the lattice parameter. The second-order differential operators can be ex-

pressed in the limit a −→ 0 as:

δ2
x = 1

x2

∑
i

(| i+ 1〉〈i | + | i+ 1 | −2 | i〉〈i |). (2.3)

Substituting (2.3) in (2.1) we obtain the Hamiltonian:

H =
∑
i

[(V (ai) + 4t) | i〉〈i | −t(| i+ 1〉〈i | + | i〉〈i+ 1 | + | i〉〈i | + | i〉〈i |)] (2.4)

with

t = ~2

2ma2 .

The Hamiltonian obtained in (2.4) is a tight-binding Hamiltonian which represent the

interaction of an atom with its neighbors. This is the input Hamiltonian introduced in

KWANT code that can be seen in Appendix A.1.

The evaluated system, shown in the Figure 2.1, correspond to a linear chain of 30

atoms, represented by blue atoms, that are the scattering region, and red points, that

are the leads from which the electrons are being injected. The output obtained with

Hamiltonian used in equation 2.4 is sown in Figure 2.1 (B.) in which is observed that the

Fermi Energy versus the conductance exhibit a constant behavior. The behavior observed

seems to correspond to a ballistic (no resistant), which is explained for the size of the linear
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Figure 2.1: A. Representation of a linear chain of 30 atoms. B. Conductance for a linear

chain of 30 atoms (no impurities) as a function of the Fermi Energy. C. Band structure

of a linear chain of 30 atoms

chain. Finally, the band structure is shown in Figure 2.1 (C.), exhibits levels of energy

accepted for the system, that is, zero impurities. All energy range is accepted with no

band gap presented, proving that the conductance is confirmed using the band structure.

2.1.2 2D case

In this case, a 2D system, such as a quantum wire, is simulated assuming that electrons

injection into the system is by metallic leads. For this system, the transmission probability

and band structure are obtained in order to describe its characteristics.

The tight-binding Hamiltonian describing the system is given by:
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Figure 2.2: a. 2D system of 30 atoms length and 10 atoms of height. The blue points

correspond to the scattering region and red points are the leads.

H =
∑
i,j

[(V (ai, aj) + 4t) | i, j〉〈i, j | −t(| i+ 1, j〉〈i, j | + | i, j〉〈i+ 1, j |

+ | i, j + 1〉〈i, j | + | i, j〉〈i, j + 1 |)] (2.5)

with t = ~2/2ma2. The Hamiltonian derived in ( 2.5) is the input tight-binding model for

2D model to be introduced in KWANT (Appendix A.2).

A 2D system is performed in x and y directions considering a chain with 30 atoms

of length and 10 atoms of height (Figure 2.2). The conductance curve, and the band

structure are shown in Figure 2.3. The conductance quantized units are e2/h and its

value is determined by the number of occupied sub bands that increase with energy, each

stair observed is related to a sub band different yield to the conductance in the system.

Band structure represented in Figure 2.3 shows all the band related to each sub-band

present in the system. For each band there is a stair in conductance, it is argued to that

each band represent another available state to transport electrons within system. The

parabolic behavior showed in the band structure is as a consequence of that all the bands

are simulated as a metallic lead, which exhibit a band structure with no band gap or

disturbance present.
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Figure 2.3: The conductance and band structure for a 2D system.

2.1.3 Regimen of Transport

The example shown in the Section 2.1, that represented for a linear chain of 30 atoms, is

not enough to show the efficiency of KWANT to calculate transport phenomena. As is

suggested in equation (1.22) of Section 1.2, the relation between the conductivity and the

length, correspond to a decay exponential. In the previous Section 2.1.1, a representation

of a linear chain was made, however, to observe the dependence of the conductivity as a

function of the length it is necessary to perform an average of many linear chains. The

ensemble of particles can be made by the average of many microscopic configurations. So,

in this way, calculating the conductivity of a section positions will be the sum of all the

previous conductivities performed before. To show this concept, we have calculated the

conductivity of a linear chain from 30 atoms to 6000 atoms.

In Figure 2.4 (A) and (B) are shown plots of the conductivity versus the length of

the chain for numerical results obtained and that suggested by theory. As expected in

the calculus of an average of linear chain with the increasing of the length of the chain

the conductivity is going to decrease exponentially showing different regimen of transport,

from ballistic to diffusive and ending in Anderson localization, which is expected, and its
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behave seems to correspond to the exposed in the equation 1.22. Notice that the graph

performed for KWANT very similar to the suggested in the literature and shows that the

quantum transport in mesoscopic systems can be calculated computationally [18].

Figure 2.4: A. Graph of the conductivity versus length obtained in this work. B. Theo-

retical graph of the conductivity versus length [18].

The huge increase in computational power available for scientific purpose in the last

decades has led to a proliferation of computational methods. In the field of atomistic

modelling, computational facilities led to the development of schemes which retained the

essential quantum mechanical basis, but greatly reduced the computational time required

[17].

2.2 3D DNA MODEL

In this seccion, the behavior of the conductance and band structure for more complex

structure, DNA molecule is analyzed. To model the DNA, a doble helix structure is

considered, in which all the nitrogenous bases are represented as hard spheres, which have

same orbitals (π orbital), separated by a angle that depends on the number of base pair.
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The position vector for each base in a single helix is labeled with Ri, where i is the

label for the number of sites such that i = 1.....N , being N the total number of bases in

a single helix. The bases in the other helix are labeled by R′
i. Thus, the pair of labels Ri

and R′
i represent a pair at the site i. If b is the pitch of the molecule and ∆θ the angle

between two consecutives bases of the same helix, the vectors Ri and R
′
i can be written in

the form:

Ri = acos[ϕ+ (i− 1)∆θ]X̂ + asin[ϕ+ (i− 1)∆θ]Ŷ + (i− 1)∆θ
2π bẐ. (2.6)

The other helix R′
i is constructed with ϕ = 180◦. It indicates that both helix are dephased

by 180o from each other.

If N base pairs are considered, such that each turn N of the helix contains M base

pairs spaced by the angle ∆θ, the following relations are fulfilled:

N = N − 1
M − 1 (2.7)

∆θ = 2π
(M − 1) . (2.8)

Using the parameters mentioned before, the first simulation of DNA using KWANT was

performed, taking into account the following parameters:

• b (pitch) = 35.4 Å

• M (number of pairs) = 10

• ϕ = 180◦

• ∆θ = 40o,

All the parameters used are mentioned in the Section 1.5, and the angle is calculated

with equation 2.8, in addition, it was made considering the SO intrinsic coupling, a Rashba

effect and magnetic and no-magnetic leads.
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Figure 2.5: 3D DNA, leads DNA

The tight-binding model used for this simulation is the one indicated in the equation

(1.46) which is:

H =
intra∑
〈ı〉

c†(tin + iλSOνısy + iλxRνısy)c +
inter∑
〈ı〉

c†ı t
outc.

The 3D system simulating DNA is shown in the Figure 2.5. In this model each pair

is simulated by points of different color, and the red points are the leads. An idea of how

this positions and parameters are introduced into the program are given in the Appendix

A.3, showing some lines of code used to start to define some parameters mentioned before.

By using KWANT it is required to define the leads connected to the system under

study, which are the main donator of electrons in the structure depending in the number

of modes that the leads have. In other words, the greater the number of modes the greater

the availability of states that can be accepted by the structure. The leads considered in

this study have the same DNA form because the band structure or the state in which
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are available for transporting were needed to know. Furthermore, the DNA and leads are

oriented in z direction, that matches the direction of transport in [9].

2.2.1 No ferromagnetic leads, with and without SO interaction

In Figure 2.6, the band structure (left) and the conductance or transmittance (right) of the

DNA system are shown for the case in which no spin-orbit interaction and no ferromagnetic

lead has been taken into account. In the plots bands degenerated in spin can be seen, it

means, for each band (or line) there are two bands overlapping, one for each electron. For

the conductance plot, two regions are observed, one from −10 to 10 meV and the second

region represents the rest of the graph. The conductance associated with the first region

is double that for the second one, it can be explained according to the band structure

obtained. At a Fermi energy of −20 meV two bands are passing, one with positive Fermi

velocity (goes up) and other with negative Fermi velocity (goes down), then the band

which goes up gives the electrons are propagating to the right meanwhile the band which

goes down the electrons propagating to the left. However, in the first range (−10 to 10

meV) there are two bands with positive Fermi velocity (goes up), due to the degeneracy

of spin that provides the double of electrons contributing to the transport. This is clearly

shown in the graph of conductance. For the of no spin-interaction and no ferromagnetic

leads exists a degeneracy of the spin in the system and the study of this band give an

important characteristic of the system.

To visualize the spin-orbit interaction in the system, calculations different values for

terms associated with spin-orbit intrinsic and Rashba effect were carried out, with the

intention of understand how the intensity of these interactions acts inside the system.

Using this premise, 4 band structures have been evaluated to study how the intensities

of these interactions affect to the band structure, relating them later to the selectivity

of spin in DNA. In Figure 2.7 4 different band structure graphs for different spin-orbit

intensities are shown, for which there is no presence of a ferromagnetic lead. For a better

42



2.2. 3D DNA MODEL Chapter 2: Results

Figure 2.6: Band structure and conductance in DNA system. No spin-orbit interaction

and no-ferromagnetic leads are considered.

visualization of this case, the range of the graphs was enclosed between −10 to 10 meV

due to in this region there are more available states to study and explain the degeneration

of spin observed in the plot shown in the Figure 2.6.

The band structures were tested for different intensities of the SO interactions consid-

ered in the Hamiltonian and results are shown in the Figure 2.7. The graph A is related

to a system in which the spin is degenerated, it to say no spin-orbit and no ferromagnetic

lead. Due to that the bands are degenerated could not be expected any kind of spin se-

lectivity in this case because the spin up and down are travelling together. When the SO

interaction and the Rashba interaction were turn on, just one of them , it was observed

the splitting of the band structure, which is associated with the spin degeneration lack

(Fig.2.6, graph B and C, respectively). Although the SO intrinsic and Rashba interac-

tions are different in nature, the contribution to the effective Hamiltonian is similar, this

explains why the band structures shown in B and C look similar. However, if we turn

on both interactions (SO intrinsic and Rashba), for characteristic values of the contribu-

tions, it can be seen that the band structure presents a very different form compared with
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the case in which the interactions are considered separately (graph D in the Figure 2.7).

This behavior indicates that considering the interactions separately may not be enough to

obtain all the necessary information to describe the system.

Figure 2.7: Band structures for different spin orbit intensities. A. Band structures, no

SOC. B. Band structures, intrinsic SOC = 0.5 meV, Rashba = 0 meV. C. Band structures,

intrinsic SOC = 0 meV, Rashba = 0.5 meV. D. Band structures, intrinsic SOC = 0.671

meV, Rashba = 10.0meV

Also, calculations of the spin selectivity were carried out for each intensities of SO

interactions proposed previously as a function of the Fermi energy. The spin selectivity is a

measure of the fraction of electrons with one spin component versus the other component.

It is ranged from 0 to 1, where 1 means that the electrons is fully polarized (all spin

components are in the same direction) and 0 means that there is the same proportion of
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electrons with spin up versus spin down. The results are presented in the graphs shown

in the Figure 2.8.

Figure 2.8: Spin selectivity vs Energy for different spin orbit intensities. A. Spin selec-

tivity, no SOC. B. Spin selectivity, intrinsic SOC = 0.5 meV, Rashba = 0 meV. C. Spin

selectivity, intrinsic SOC = 0 meV, Rashba = 0.5 meV. D. Spin selectivity, intrinsic SOC

= 0.671 meV, Rashba = 10.0 meV

For all the graphs it was observed that, regardless of the magnitude of the interaction

SO no spin selectivity is observed. The magnitude of the selectivity is in the 10−15 order.

2.2.2 Ferromagnetic leads, with and without SO interaction

In the previous cases the electrons are injected as spin up and spin down equally, and once

passed through structure, spin up and spin down were detected, assuming a DNA system as

45



2.2. 3D DNA MODEL Chapter 2: Results

an isolated system. However, KWANT allows to modify the injection of electrons through

the use of ferromagnetic leads, injecting spin polarized electrons in both directions (up and

down), depending of the intensity of them. In this sense, it was used this to give a direction

either parallel or anti-parallel to the spin in the leads and to study the implication of the

leads in combination with the SO coupling for visualize the selectivity of spin.

Figure 2.9: Ferromagnetic lead, spin-selectivity vs energy . A. Lead onsite = 1 ,no spin-

orbit couling. B. Lead onsite= 1, intrinsic soc = 1 meV, Rashba= 10 meV. C. Lead onsite

= 30, intrinsic soc=1 meV, Rashab 10 meV.

In the Figure 2.9 the behavior for the spin selectivity versus Fermi Energy is repre-

sented. The graph A is essentially the selectivity of the spin due to the ferromagnetic

leads, because SO coupling in the DNA molecule is not present. If the SO interaction
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in the molecule is turned on (both intrinsic and Rashba interactions), spin selectivity is

observed. This coparision can be seen in the A and B graphs. On the 2.9 (B.) the presence

of a wave oscillating around 0 at y axis can be observed, so the direction of the polarization

of the spin depends on the Fermi energy.

Finally, for graph C of the Figure 2.9, high value of intensity applied on the lead

was used, which obviously generates a polarizability in one direction and presenting very

pronounced peak. This means that at large onsite values, the selectivity of the structure

depends entirely on the magnetization of the leads, and not on the SO interaction of the

molecular structure.

The result shown in the Figure 2.9 is important because it indicates that the SO

interaction of the molecule is reflected in spin selectivity only when connected to the

ferromagnetic type leads. In the most emblematic experiments, spin selectivity is measured

in systems in which at least one of the leads in the outer is magnetic.
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A simulation using KWANT code was carried out, considering a double helix molecule

of DNA with all the nitrogenous bases represented as hard-spheres and using a tight-

binding Hamiltonian derivated by Varela et al, [9, 29], including intrinsic SO interaction

and Rashba effect. From the tested simulations the conductance thought the molecule,

the band structure and the spin selectivity were obtained.

1D and 2D linear chains were simulated to corroborate the proper operation of the

KWANT code and to analyze its applications in theoretical model. The results obtained

for tested systems can be directly compared with those reported in the literature on the

general behavior of band structure and conductance. For these linear chains, the different

regimens of transport were analyzed, finding that the conductance exponentially decreases

when the length of the chain increases to very large values, and it grows very fast with the

length, when the length of the chain is small. This result is consistent with the expected

behavior according to the theory.

Once proved that the code worked successfully, the scattering region was replaced by

a DNA molecule, using tight-binding Hamiltonian proposed by Varela et al, and using

KWANT code the conductance of the system, the band structure, and the spin selectivity
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were obtained. As expected, if the SO interaction of the molecule is not considered, no

splitting is reflected in the levels of the band structure, since these levels are degenerated to

the two spin components. The presence of SO interaction and the use of no-ferromagnetic

lead indicate that both interactions (intrinsic SO and Rashba effectt) must necessarily be

simultaneously considered since the presence of both affect significantly the band struc-

ture, which is very different from the structures obtained for the interactions separately.

Of course, it should be considered that the magnitude of the interactions also plays an

important role and modifies the structure. However, the SO interactions are not enough

to evidence spin selectivity in the molecule.

In the other case, when ferromagnetic leadswere used to inject spin-polarized elec-

trons into the molecule, a coupling between the magnetization of the leads and the SO

interactions of the molecule was observed in the spectrum obtained for spin selectivity. In

fact, the spin selectivity associated with the scattering region was not observed when the

SO interaction of the molecule is turned off, even when the leads were ferromagnetic. This

result indicates that the nature of the leads can influence the spin selectivity measured in

the experiments.

The results obtained in this work are in accordance with those obtained from ex-

perimental measures of the spin current for different magnetizations of one of the leads

[14], and in which the magnitude of the current translated to spin selectivity can be in-

fluenced by leads. The computational code developed for this work can then be adjusted,

by conducting experiments where the nature of the leads and their influence on transport

is checked.

Finally, the use of the computational tools and package library as KWANT, allows

to calculate transport in complex molecules like DNA, obtaining interesting results which

can be used in the field of technological applications for the design of spintronic devices

with molecular structures.
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APPENDIX

A.1 Appendix 1

Code implemented to simulate and obtain the conductance for a linear chain of 30 atoms.

This code was used for the discussion in section 2.1.1.

1 import kwant

2 from matplotlib import pyplot

3

4 syst = kwant.Builder()

5 lat= kwant.lattice.chain()

6 L=30

7 a=1

8 t=1.0

9 #create scattering region

10 for i in range(L):

11 syst[lat(i)]= 0.0

12 if i>0:

13 syst[lat(i), lat(i-1)]= 1.0
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14

15 sym_left_lead = kwant.TranslationalSymmetry([a])

16 left_lead = kwant.Builder(sym_left_lead)

17 #onsite

18 left_lead[lat(0)]= 0

19 left_lead[lat(1),lat(0)]=-t

20 syst.attach_lead(left_lead)

21

22 sym_right_lead = kwant.TranslationalSymmetry([-a])

23 right_lead = kwant.Builder(sym_right_lead)

24 #onsite

25 right_lead[lat(0)]= 0

26 right_lead[lat(1),lat(0)]=-t

27 syst.attach_lead(right_lead)

28 #Plot

29 kwant.plot(syst)

30 syst=syst.finalized()

31

32 energies = []

33 data = []

34

35 for ie in range(100):

36 energy = ie * 0.01

37 # compute the scattering matrix at a given energy

38 smatrix = kwant.smatrix(syst, energy)

39 # compute the transmission probability from lead 0 to

40 # lead 1

41 energies.append(energy)

42 data.append(smatrix.transmission(1, 0))
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43

44 pyplot.figure()

45 pyplot.plot(energies, data)

46 pyplot.xlabel("energy [t]")

47 pyplot.ylabel("conductance [e^2/h]")

48 pyplot.ylim(0,2)

49 pyplot.show()
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A.2 Appendix 2

Code used to simulate and obtain the conductance for a 2D system of 30 atoms (length)

and 10 atoms (height). This code was used for the discussion in section 2.1.2.

1 import kwant

2 from matplotlib import pyplot

3

4 def make_system (a=1,t=1.0, W=10, L=30):

5 lat=kwant.lattice.square(a)

6 syst=kwant.Builder()

7 #Start with scattering region

8 syst[(lat(x, y) for x in range(L) for y in range(W))] = 4 * t

9

10 syst[lat.neighbors()]= -t

11 #start to construct the lead

12 #construct the left lead

13 lead = kwant.Builder(kwant.TranslationalSymmetry((-a, 0)))

14 lead[(lat(0, j) for j in range(W))] = 4 * t

15 lead[lat.neighbors()] = -t

16 #Construct the lead and use the reversed method

17 syst.attach_lead(lead)

18 syst.attach_lead(lead.reversed())

19

20 return syst

21

22 def plot_conductance(syst,energies):

23 #Compute conductance

24 data=[]
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25 for energy in energies:

26 smatrix = kwant.smatrix(syst, energy)

27 data.append(smatrix.transmission(1, 0))

28 pyplot.figure()

29 pyplot.plot(energies, data)

30 pyplot.xlabel("energy [t]")

31 pyplot.ylabel("conductance [e^2/h]")

32 pyplot.show()

33

34 def main():

35 syst = make_system()

36

37 # Check that the system looks as intended.

38 kwant.plot(syst)

39

40 # Finalize the system.

41 syst = syst.finalized()

42

43 # We should see conductance steps.

44 plot_conductance(syst, energies=[0.03 * i for i in range(100)])

45

46 if __name__ == '__main__':

47 main()
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A.3 Appendix 3

Code used for DNA simulation. This code show the use of "kwant.lattice.general" which is

a parameter used in KWANT to introduce any system no predetermined by the software.

In this code we show the position of base pairs and some parameters used to simulate this

molecule

1 import kwant

2 import tinyarray

3 from numpy import cos, sin, sqrt, pi, tanh

4

5 #h_id: helix id

6 # phi: angular phase between the helices

7 def PairPosition(n, rho,phi0, xmax):

8 r=np.linspace(0,1,n,endpoint=False);

9 phi = 2.0*pi*r + phi0

10 return np.transpose([rho*cos(phi), rho*sin(phi),xmax*r])

11

12 #Define ADN GEOMETRY

13 LAT = 1.0

14 RHO = 1.0*LAT;

15 XMAX= 35.4*LAT;

16 NUMPAIR=10;

17 sites_pos = np.array([ PairPosition(NUMPAIR,RHO, phi0, XMAX) for phi0 in

↪→ (0,pi) ]).reshape(2*NUMPAIR,3)

18 dna = kwant.lattice.general([(RHO,0,0),(0,RHO,0),(0,0,XMAX)],sites_pos,

↪→ norbs=2)

19 dna_sites = dna.sublattices;

20 Asites= dna_sites[:NUMPAIR];
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21 Bsites= dna_sites[NUMPAIR:];
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