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Abstract
The stellar evolution is a process through which a star changes along the time depending mainly of its mass.

In this context, there exists a condition known as the Buchdahl’s limit which describes the amount of mass that a
spherically compact object can have before undergoing into gravitational collapse. In other words, the Buchdahl’s
limit give us an idea about the minimum radius that delimits a star under certain conditions. This kind of systems
have been studied in terms of an extended version of the well known isotropic interior solutions, which corresponds
to the study of anisotropic solutions. Anisotropic sources can be included by means of the gravitational decoupling
using the Minimal Geometric Deformation method (MGD) to understand better the properties of this more realistic
stellar systems under different field conditions. With the gravitational decoupling byMGDwe can start from a simple
spherically symmetric gravitational source and add to it more and more complex gravitational sources, as long as the
spherical symmetry is preserved. The aim of the present project is to know whether the Buchdahl’s limit is modified
by applying the gravitational decoupling by MGD method to compact objects. To accomplish the purpose of this
research, the Tolman IV interior solution was studied where bounds and conditions over its parameters were applied
to let a plausible solution. It was found that MGD allows to map unstable isotropic solutions to anisotropic stable
configurations with extra packing of mass.

Keywords: MGD, Buchdahl’s-limit, Tolman IV, anisotropy, extra-packing.
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Resumen
La evolución estelar es un proceso a través del cual una estrella cambia a lo largo del tiempo, dependiendo
principalmente de su masa. En este contexto, existe una condición conocida como el límite de Buchdahl que
describe la cantidad de masa que puede tener un objeto esférico compacto antes de sufrir un colapso gravitacional.
En otras palabras, el límite de Buchdahl nos da una idea sobre el radio mínimo que delimita una estrella bajo
ciertas condiciones. Este tipo de sistemas se han estudiado en términos de una versión extendida de las conocidas
soluciones interiores isotrópicas, que corresponde al estudio de soluciones anisotrópicas. Las fuentes anisotrópicas
pueden incluirse mediante desacoplamiento gravitacional utilizando el método de deformación geométrica mínima
(MGD) para comprender mejor las propiedades de estos sistemas estelares mucho mÃąs realistas en diferentes
condiciones de campo. Con el desacoplamiento gravitacional de MGD podemos comenzar desde una fuente
gravitacional esférica simétrica simple y agregarle fuentes gravitacionales más complejas, siempre que se conserve
la simetría esférica. El objetivo del presente proyecto de investigación es saber si el límite de Buchdahl se modifica
aplicando el desacoplamiento gravitacional por el método MGD a objetos compactos. Para lograr el propósito de
esta investigación, se estudió la solución interior Tolman IV donde se aplicaron límites y condiciones sobre sus
parámetros para permitir una solución plausible. Se descubrió que MGD permite mapear soluciones isotrópicas
inestables a configuraciones estables anisotrópicas con masa adicional en sus configuraciones.

Palaras Clave: MGD, límite de Buchdahl, Tolman IV, anisotropía.
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Chapter 1

Introduction

The theory of General Relativity (GR) was proposed by Albert Einstein (1879-1955) in the early part of the 20th

century and is one of the most significant scientific advances of our time. GR postulates that gravitational effects may
be explained by the curvature of spacetime which is modeled by a four-dimensional pseudo-Riemannian manifold,
and that gravity should not be regarded as a force in the conventional sense1. Within the theory Einstein’s equations
were developed to provide a precise formulation of the relationship between spacetime geometry and the properties
of matter.

The study of relativistic stellar structure began with the discovery of the Schwarzschild’s exterior and interior
solutions2,3. For a long time the star interior was considered to bemade of perfect fluid, ı.e, equal radial and tangential
pressure (pr = pt = p). Regardingly, the work developed by Tolman4 about spherically symmetric and static fluid
spheres driven by an isotropic matter distribution, began a new stage to seek analytic solutions to Einstein’s field
equations describing exciting compact structures such as neutron stars, white dwarfs, etc, that provide information
to understand its behavior in the strong gravitational field regime.

Buchdahl’s studies5 have determined that for an isotropic matter distribution the ratio M/R can not exceed the
upper bound M/R ≤ 4/9. However, it is well known that celestial bodies are not necessarily made of isotropic matter.
This is supported by the theory developed by Ruderman6 in 1972, who described more realistic stellar models which
have anisotropic behavior (pr , pt) at least in certain very high density ranges (ρ > 1015g/cm3), where the nuclear
interactions must be treated in a relativistic framework.

Following this direction, Bowers and Liang7 reported the importance of locally anisotropic equations of state for
relativistic spheres. They found that the contributions coming from local anisotropies into the Tolman-Oppenheimer-
Volkoff (TOV) equation6,8 have Newtonian origin. Besides, they studied the impact of these anisotropies on the
surface gravitational red-shift z(r). To address this point they considered an incompressible fluid (energy-density
ρ =constant) and determined under this condition that if the fluid has an isotropic behavior the maximum z(r) is 4.77

1



2 1.1. PROBLEM STATEMENT

and if the material contains anisotropies, this value can be exceeded and even infinite. Although this is not a real
situation, this work was the departure point to understand how local anisotropies influence on the main properties
of astrophysical bodies. Nowadays, the study of high density objects has become a wide and active research branch
from the theoretical and observational point of view. The effects of the anisotropic matter distribution on the main
properties of compact objects in the arena of GR have been extensively studied.

1.1 Problem Statement
Assuming local isotropy when studying massive objects is really common. Nevertheless, it has been raised the need
of studying situations beyond the trivial cases, such as the interior of stellar structures with gravitational sources
more complex than the ideal perfect fluid9–21. Some models have been proposed in order to describe more realistic
stellar systems. They suggest that stellar matter may be anisotropic at least in certain density ranges6,22.

An anisotropy could be introduced by the existence of a solid core, by the presence of type P superfluid, or by other
physical phenomena23. Several works has been already introduced anisotropicmatter and it has been shown that some
propertiesmay differ drastically from the isotropic spheres7,24. The introduction of anisotropies in Einstein’s equation
leads to technical difficulties associated to the finding of analytical solutions. However, as we shall explain further,
a method to introduce anisotropies is the so called Minimal Geometric Deformation (MGD) method25–27, which is
a simple, systematic and direct approach to extend isotropic and physically accepted solutions to anisotropic domains.

Moreover, Buchdahl’s studies5 have determined that for an isotropic matter distribution the ratio M/R can not
exceed the upper bound M/R ≤ 4/9. However, celestial bodies are not necessarily made of isotropic matter. A study
made by Böhmer and Harko28 about the derivation of the corresponding upper bound for the mass-radius relation
for an anisotropic matter distribution, suggests that it is true that the Buchdahl’ s limit is modified when we introduce
an anisotropy to the system. This was shown in presence of a cosmological constant Λ.

The main concern of this project is to discover whether the introduction of anisotropies to the system through
MGD still leads to modification of the Buchdahl’s limit.

1.2 General and Specific Objectives
The general objective of this project is to study the modifications on the Buchdahl’s limit which can be induced by
the introduction of anisotropies through the MGDmethod. To reach this, first it is needed the study of the plausibility
conditions of anisotropic solutions given by the MGDmethod. Once that conditions are achieved, a specific solution
is considered which, in our case, corresponds to the extended case of the Tolman IV isotropic solution to anisotropic
domains by MGD. At the end, finding a condition of extra packing of mass will establish the modification on the
Buchdahl’s limit.



Chapter 2

Methodology

2.1 Einstein’s field equations
Einstein’s field equations, relate the geometry of spacetime with the distribution of matter within it. This equation
was first published by Einstein in 1915 in the form of a tensor equation29 relating the local spacetime curvature
(expressed by the Einstein tensor) with the local energy and momentum within that spacetime (given by the stress-
energy tensor)30. The Einstein’s field equations for General Relativity tells us how the curvature of spacetime reacts
to the presence of energy-momentum and are given by

Rµν −
1
2

Rgµν = kTµν, (2.1)

where k = −8πG
c4 .

At the left hand side we have the following components:

• Rµν is the Ricci tensor is defined as the contraction of the Riemann tensor Rλµρν as:

Rµν = gλρRλµρν = Rρ
µρν. (2.2)

The Riemann tensor, also called the curvature tensor, is defined in terms of the Christoffel symbols, namely
Γσλµ, and their derivatives as:

Rλ
µρν = ∂ρΓ

λ
µν − ∂νΓ

λ
µρ + ΓλσρΓ

σ
µν − ΓλσνΓ

σ
µρ. (2.3)

The Christoffel symbols are related to the partial derivatives of the metric tensor gµν as follows:

Γνλµ =
1
2

gνσ(∂µgσλ + ∂λgσµ − ∂σgµλ). (2.4)

3



4 2.1. EINSTEIN’S FIELD EQUATIONS

• R is the curvature scalar or Ricci scalar, which is defined as the contraction of the Ricci tensor as:

R = gµνRµν = Rµ
ν . (2.5)

At the right hand side we have the following elements:

• G is the Newton’s constant of gravitation.

• c is the speed of light.

• Tµν is the energy-momentum tensor, which is a generalization of the mass density and it is the source of the
gravitational field. For a perfect fluid it reads:

Tµν = (ρ + p)UµUν − pgµν, (2.6)

where ρ is the energy density∗

ρ = T 0
0 ,

p is the isotropic pressure which reads

p = −T 1
1 = −T 2

2 = −T 3
3 ,

and U is the fluid’s four velocity.

Einstein’s equations are second-order differential equations for the metric tensor field gµν. Since both sides of Ein-
stein's equation (2.1) are symmetric two-index tensors, there are ten independent equations for ten unknown functions
of the metric components to be determined: six components of gµν, three components of the four-vector velocity Uµ,
and the density of the matter ρ or its pressure p. As differential equations, the system is extremely complicated to
solve since the Ricci scalar and tensor are contractions of the Riemann tensor composed by derivatives and products
of the Christoffel symbols, which in turn involve the inverse metric and derivatives of the metric. Furthermore,
the energy-momentum tensor Tµν will generally involve the metric also and the equations are nonlinear, so that two
known solutions cannot be superposed to find a third one. It is therefore very difficult to solve Einstein’s equations,
so it is usually necessary to make some simplifying assumptions.

These equations were originally derived by assuming the following requirements:

• Field equations should be tensor equations in order to exhibit covariance because the choice of the reference
system is arbitrary and laws of nature must be formally the same for any coordinate system (x0, x1, x2, x3).

∗We are assuming signature (+ - - -) for the metric tensor
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• As any field equation of physics, they must be partial differential equations of, at most, second order in time
for the components of the metric tensor gµν, which are the functions to be determined.

• The spatial derivatives are of, at most, second order and the equations must be also linear in the highest
derivatives.

• They should reduce to the Poisson equation in the appropriate limit of the Newtonian theory

∇2φ = 4πGρ, (2.7)

in which φ is the potential of the gravitational field and ρ is the mass density of the source. The so called
"Newtonian limit" is obtained by assuming a weak and static field and that the velocities of the sources of the
latter are very small compared to the velocity of light c.

• The energy-momentum tensor Tµν should be the source of the gravitational field.

2.2 Classical solutions of Einstein’s equations

2.2.1 Schwarzschild’s exterior solution

As we saw, solving the field equations for gµν is not easy due to the high degree of nonlinearity of the equations. The
problem becomes easier if one looks for special solutions, for example those which involve symmetries and extra
constraints. In this sense, the first exact solution was obtained by K. Schwarzschild in 19162 by considering the
following assumptions:

• Static field.

• Spherically symmetric field.

• Empty spacetime.

• Asymptotically flat spacetime.

It means that Schwarzschild sought the metric tensor field representing the static spherically symmetric gravitational
field in the empty spacetime surrounding some massive spherical object like a star. This solution is valid only outside
the gravitating body. In other words, for a spherical body of radius R, the solution is valid for r > R. To describe
the gravitational field both inside and outside the gravitating body, the Schwarzschild’s solution must be matched
with some suitable interior solution at r = R, such as the interior Schwarzschild’s metric developed by himself
afterwards3. Schwarzschild also assumed that spacetime could be expressed by coordinates (t, r, θ, φ), where t was
a timelike coordinate, θ and φ were polar angles, and r was some radial coordinate1. He then postulated the line
element

ds2 = e2α(r)dt2 − e2β(r)dr2 − r2dΩ2, (2.8)



6 2.2. CLASSICAL SOLUTIONS OF EINSTEIN’S EQUATIONS

where dΩ = dθ2 + sin2 θdφ2, also α(r) and β(r) were unknown functions of r obtained by solving the field equations.
Let us now use gµν, obtained from the line element (2.8) as a trial solution for the empty spacetime field equations.
Let us begin by evaluating the corresponding non-zero Christoffel symbols, which are given by:

• Γt
tr = ∂rα,

• Γr
tt = e2(α−β)∂rα,

• Γr
rr = ∂rβ,

• Γr
θθ = −re−2β,

• Γr
φφ = −re−2β sin2 θ,

• Γθrθ = 1
r ,

• Γθφφ = − sin θ cos θ,

• Γ
φ
θφ = cot θ.

The coordinates were labeled according to x0 ≡ t, x1 ≡ r, x2 ≡ θ, x3 ≡ φ. After substitution of this coefficients on
the Riemann tensor it reads:

Rt
rtr = ∂rα∂rβ − ∂

2
rα − (∂rα)2, (2.9)

Rt
θtθ = −re−2β∂rα, (2.10)

Rt
φtφ = −re−2β sin2 θ∂rα, (2.11)

Rr
θrθ = re−2β∂rβ, (2.12)

Rr
φrφ = re−2β sin2 θ∂rβ, (2.13)

Rθ
φθφ = (1 − e−2β) sin2 θ. (2.14)

(2.15)

Then, taking the contraction yields to the Ricci tensor:

Rtt = e2(α−β)
[
∂2

rα + (∂rα)2 − ∂rα∂rβ +
2
r
∂rα

]
, (2.16)

Rrr = −∂2
rα − (∂rα)2 + ∂rα∂rβ +

2
r
∂rβ, (2.17)

Rθθ = e−2β [r(∂rβ − ∂rα) − 1
]
+ 1, (2.18)

Rφφ = sin2 θRθθ. (2.19)

(2.20)

Now, we would like to set this Ricci tensor equal to zero. Since Rtt and Rrr vanish independently, we can write:

0 = e2(α−β)Rtt + Rrr =
2
r

(∂rα + ∂rβ),
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which implies that α = −β.
Then, from Rθθ=0

e2α(2r∂rα + 1) = 1 =⇒ ∂r(re2α) = 1.

After solving it we obtain
e2α = 1 −

κ

r
, (2.21)

where the constant κ is given by:

κ = 2GM.

Finally, the Schwarzschild’s exterior solution for the empty spacetime outside a spherical body of mass M is:

ds2 =

(
1 −

2GM
r

)
dt2 −

(
1 −

2GM
r

)−1

dr2 − r2dΩ. (2.22)

It is worth to mention that the present work is about the study of the stellar interior (where the radius of the object is
greater than the event horizon) of a central massive object surrounded by an empty spacetime, so the Schwarzschild’s
exterior solution will be used to match the interior solution with its exterior and to ensure a radial pressure that
vanishes at the surface of the object. In other words, it will be used to fulfill the continuity of the first and second
fundamental form, conditions that will be discussed later.

2.2.2 Schwarzschild’s interior solution

In 1916, Schwarzschild found this solution3 months after he obtained the exterior solution in (2.22), to determine
the spherically gravitational field inside the matter. The approximation for a perfect fluid is used to describe the
energy-momentum tensor associated to matter

Tµν =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 (2.23)

So, we can construct a vector such that

UµUµ = −1 ⇐⇒ gµνUµUν = −1.,

where Uµ=(U0, 0, 0, 0) (zero for the spatial part), are the comoving coordinates.
Then,

gµνUµUν = g00U0U0 = −e2αU2
0 = −1.

Therefore,
U0 = eα =⇒ Uµ = (eα, 0, 0, 0) (2.24)
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Now, the energy-momentum tensor reads:

Ttt = (ρ + p)U0U0 + pg00 = ρe2α, (2.25)

Trr = pe2β, (2.26)

Tθθ = r2 p, (2.27)

Tφφ = r2 sin2 θp. (2.28)

Given that these objects transform as a tensor, they are invariant under a general coordinate transformation. So, we
need to solve:

1
r2 e−2β(2r∂rβ − 1 + e2β) = 8πGρ, (2.29)

1
r2 e−2β(2r∂rα + 1 − e2β) = 8πGp, (2.30)

e−2β
(
∂2

rα + (∂rα)2 − ∂rα∂rβ
)

+
1
r

(∂rα − ∂rβ) = 8πGp. (2.31)

We have four unknowns and three partial differential equations. So, we need extra information from an equation of
state (EOS). One of these EOS is the barotropic equation of state

p = p(ρ). (2.32)

Moreover, in order to match with Schwarzschild’s exterior solution, the structural form of the interior solution is
given by

e2β ≡
1

1 − 2Gm(r)
r

. (2.33)

It is important to mention that the total mass of the star and the mass function m(r) are related in the following way:

M =

∫ R

0
m(r)dr. (2.34)

Replacing (2.33) in the first Einstein’s field equation, we obtain that

dm
dr

= 4πr2ρ =⇒ m(r) = 4π
∫ r

0
ρ(r′)r′2dr′, (2.35)

which corresponds to the mass function in terms of the energy density ρ. Now, the total mass is given by

M = 4π
∫ R

0
ρ(r′)r′2dr′. (2.36)

In terms of the mass function, we obtain that

dα
dr

=
Gm(r) + 4πGr3 p

r [r − 2Gm(r)]
. (2.37)
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Then, we can use the conservation equation ∇µT µν=0, which holds

(ρ + p)
dα
dr

= −
dp
dr
, (2.38)

from where the Tolman-Oppenheimer-Volkoff (TOV) equation reads

dp
dr

=
−(ρ + p)

[
Gm(r) + 4πGr3 p

]
r [r − 2Gm(r)]

. (2.39)

Now, let us obtain an interior solution by considering the following simplest model for ρ=ρ0:

m(r) =

 4
3πr3ρ0 r < R,
4
3πR3ρ0 r > R.

Replacing m(r) in TOV equation (2.39), it becomes

p = ρ0

 (R
√

R − 2GM −
√

R3 − 2GMr2
√

R2 − 2GMr2 − 3R
√

R2 − 2GM

 . (2.40)

Now, from equation (2.37) we obtain:

eα =
3
2

(
1 −

2GM
R

)1/2

−
1
2

(
1 −

2GMr2

R3

)1/2

. (2.41)

And from equation (2.33) we get:
e2β =

1

1 − 2GMr2

R3

. (2.42)

Finally, replacing the obtained expressions (2.41) and (2.42) in the line element (2.8), we get the interior Schwarzschild’s
solution for an incompressible fluid, which reads:

ds2 =
1
4

3
√

1 −
2GM

R
−

√
1 −

2GMr2

R3

2

dt2 −

(
1 −

2GMr2

R3

)−1

dr2 − r2dΩ2. (2.43)

2.2.3 Tolman IV solution

Besides thewell knownSchwarzschild’s solutions, there are other explicit solutions of physical interest. In reference4,
Tolman found a method to obtain analytic interior solutions. The method consists in to consider geometrical
constraints to close the system. Solution IV (or Tolman IV solution) for perfect fluids, is the first original obtained
solution. For this study, let us recall the Schwarzschild-like coordinates for a static spherically symmetric metric in
the following way:

ds2 = eν(r)dt2 −
dr2

µ(r)
− r2dΩ. (2.44)

In this case the geometric constraint reads
eνν′

2r
= const.
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Then, the resulting solution is

eν = B2
(
1 +

r2

A2

)
, (2.45)

µ = e−λ =

(
1 − r2

C2

) (
1 + r2

A2

)
1 + 2r2

A2

, (2.46)

ρ =
3A4 + A2(3C2 + 7r2) + 2r2(C2 + 3r2)

k2C2(A2 + 2r2)2 , (2.47)

and
p =

C2 − A2 − 3r2

k2C2(A2 + 2r2)
. (2.48)

Here, A, B and C are constants of integration which are determined from the matching conditions between the above
interior solution and the exterior metric, in this case the Schwarzschild’s exterior solution. The matching conditions
are given by:

• Continuity of the first fundamental form at the surface of the star
∑

defined by r = R

[ds2]∑ = 0, (2.49)

where [F]∑ ≡ F(r → R+) − F(r → R−) ≡ F+
R − F−R , for any function F = F(r).

That states that an interior solutionmust be matched continuously to the exterior Schwarzschild solution (2.22),
namely

eν(R) = µ(R) = 1 −
2M
R
. (2.50)

• Continuity of the second fundamental form which says that the radial pressure must vanish at the surface

[Gµνrν]∑ = 0, (2.51)

where rµ is an unit radial vector.

From the above conditions we obtain that:

A2

R2 =
R − 3M0

M0
, (2.52)

B2 = 1 −
3M0

R
, (2.53)

C2

R2 =
R

M0
, (2.54)

where M0 is the total mass of the star.
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2.3 Physical plausibility conditions of interior solutions
In this section, we describe the conditions that the interior solutions for Einstein’s field equations might fulfill for a
suitable description of a physical system. Some of the conditions that are useful for the present work are described
below.

Matching conditions

This condition was previously discussed in last section (2.2.3) and it corresponds to the continuity of the first and
the second fundamental form.

Geometric and matter sector

On one hand, the metric potentials of a physically acceptable interior solution must be positive, finite and free of
singularities in the interior and centre by satisfying e−λ(0) = 1 and eν(0) = constant. On the other hand, conditions
on the matter sector state that the density and the pressures should be positive inside the star. Besides, they should
reach a maximum at the centre, so ρ′(0) = p′r(0) = p′t(0) = 0 and should decrease monotonously outwards, ρ′ 6 0, p′r
6 0, p′t 6 0.

Redshift condition

The interior redshift z is defined as z(r) = e−ν/2 − 1. Note that, given that ν is an increasing and positive function, the
redshift z should decrease as long as r increases. Additionally, the surface redshift is related with the compactness
parameter, u = M/R through

z(R) = (1 − u)−1/2 − 1. (2.55)

Energy conditions

• An interior solution must satisfy the dominant energy condition (DEC). This condition states that the speed of
energy flow of matter must be less than the speed of light for any observer, so in order to fulfill this requirement,
the matter content must satisfy

ρ > |pr |, (2.56)

ρ > |pt |. (2.57)

When the pressures are positive, DEC is equivalent to the weak energy condition (WEC). It is desirable that
even the strong energy condition (SEC) ρ > pr + 2pt is satisfied.
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• Causality condition, from which the radial and tangential speeds of sound should not overcome the speed of
light. The speeds of sound are defined as ν2

r = dpr/dρ and v2
t = dpt/dρ. Therefore the condition reads:

0 <
dpr

dρ
6 1 (2.58)

0 <
dpt

dρ
6 1. (2.59)

Adiabatic index

The adiabatic index Γ allows us to connect the relativistic structure of a spherical static object and the equation of
state of the interior fluid serving as a criterion of stability. It index is the ratio of two specific heats and should be
bigger than 4/3 for stability31–33. It is defined as

Γ =
ρ + pr

pr

dpr

dρ
>

4
3
. (2.60)

2.4 Minimal Geometric Deformation method
The Minimal Geometric Deformation method is a simple, systematic and direct approach to decouple gravitational
sources in general relativity25–27. It is useful when looking for new spherically symmetric solutions of Einstein’s
field equations. This method allows us to extend isotropic solutions to anisotropic domains as follows.
Let us consider the Einstein’s field equations (2.1)

Rµν −
1
2

Rgµν = kT (tot)
µν . (2.61)

Given a complex energy-momentum tensor T (tot)
µν , it can be decomposed into

T (tot)
µν = T (isotropic)

µν + αθµν, (2.62)

where T (isotropic)
µν is the 4-dimensional energy-momentum tensor of a perfect fluid, and θµν is the source that in general

produces anisotropies in self-gravitating systems. Besides, α is a coupling constant. Note that, since the Einstein
tensor is divergence free, the total energy-momentum tensor (2.62) must satisfy the conservation equation

∇νT (tot)µν = 0. (2.63)

Now, from Schwarzschild-like coordinates, the spherically symmetric metric reads

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2), (2.64)

where the metric functions ν = ν(r) and λ = λ(r) are functions of the radial coordinate only, ranging from r = 0
(the center of the star) to some r = R (the star surface). Then, from equation (2.64) as solution of Einstein’s field
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equations, we get

k2ρ̃ =
1
r2 + e−λ

(
λ′

r
−

1
r2

)
, (2.65)

k2 p̃r = −
1
r2 + e−λ

(
ν′

r
+

1
r2 +

)
, (2.66)

k2 p̃t =
1
4

e−λ
[
2ν′′ + ν′2 − ν′λ′ + 2

ν′ − λ′

r

]
, (2.67)

where primed quantities indicates derivation respect to the radial component. Moreover we have defined:

ρ̃ = ρ + αθ0
0, (2.68)

p̃r = p − αθ1
1, (2.69)

p̃t = p − αθ2
2, (2.70)

as effective quantities for density ρ̃, radial p̃r and tangential pressure p̃t. From here, we can notice that the
decomposition of the total energy-momentum tensor in equation (2.62) is just the separation of its components in
the matter sector.
Through the Minimal Geometric method (MGD), it is possible to obtain two set of equations: the perfect fluid
equations and the ones corresponding to the decoupler sector. This does not happen in other contexts due to the
non-linearity of the Einstein’s equations34. The method consists in to introduce a geometric deformation in the
metric functions, namely

ν = ξ + αg, (2.71)

e−λ = µ + α f , (2.72)

where g and f are called decoupling functions and α is a the same free parameter introduced before which controls
the deformation. Although it is possible to deform both components of the metric, for this particular case we will
consider g = 0 and f , 0. Now, we obtain the two sets of differential equations:
a) Perfect fluid equations
These are the Einstein’s field equations that describe an isotropic system with perfect fluid energy-momentum tensor
as source. Explicitly:

k2ρ =
1 − rµ′ − µ

r2 , (2.73)

k2 p =
rµν′ + µ − 1

r2 , (2.74)

k2 p =
µ′(rν′ + 2) + µ(2rν′′ + rν′2 + 2ν′)

4r
, (2.75)

with
∇µT (isotropic)µν = p′ −

ν′

2
(ρ + p) = 0. (2.76)
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b) Decoupler matter equations
The second set of equations are the quasi-Einstein’s field equations sourced by θµν is given by:

k2θ0
0 = −

r f ′ + f
r2 , (2.77)

k2θ1
1 = −

r f ν′ + f
r2 , (2.78)

k2θ2
2 = −

f ′(rν′ + 2) + f (2rν′′ + rν′2 + 2ν′)
4r

. (2.79)

Note that, whenever θ1
1,θ

2
2, it is induced a local anisotropy. Moreover, the conservation equation ∇νθµν = 0 explicitly

reads

(θ1
1)′ −

ν′

2
(θ0

0 − θ
1
1) −

2
r

(θ2
2 − θ

1
1) = 0, (2.80)

which is a linear combination of decoupler sector equations (2.77)-(2.79). Under these conditions, there is no
exchange of energy-momentum between the perfect fluid and the anisotropic source θµν, so their interaction is purely
gravitational35.

As it was mentioned before, MGD method can be used to extend isotropic solutions to anisotropic domains.
Given the metric functions ν, µ that solve the Einstein field equations (2.73)-(2.75) for a perfect fluid with ρ, p,
we can find the deformation function f (r) from equations (2.77)-(2.79) after choosing suitable conditions on the
anisotropic source θµν. Suppose that instead of solving the Einstein’s equations for perfect fluid, we simply choose
a known solution with physical relevance. Parameters such as constants in the metric functions, can be determined
from the matching conditions between the interior and exterior metric.

However, it is needed additional information to close the system through the decoupler matter equations (2.77)-
(2.79). For this, we can impose an equation of state for the source θµν or some physical restriction on f (r). In any
case they must lead to solutions that are physically acceptable. In this sense, we can establish mimic constraints for
pressure and density that lead the exterior solution to be compatible with the regular interior matter. A particular
case will be developed later using the modified Tolman IV solution as isotropic sector.

2.5 Buchdahl’s limit
Systems such as static and spherically symmetric compact stars that immersed in Schwarzschild vacuum are bounded
by the Buchdahl limit36–40. This bound states that the ratio between the mass and radius of any regular and
thermodynamically stable perfect fluid star must be:

2M
r

<
8
9
. (2.81)

This bound can be proved by using some conditions such as:
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• Regular and smooth metric functions in the stellar interior.

• Matching conditions at the boundary of the star where the spacetime is soothly matched to Schwarzschild’s
exterior.

• Thermodynamic stability, it means that the average density must be a decreasing function of the radial
coordinate.

• For an isotropic matter distribution the ratio M/R can not exceed the upper bound M/R ≤ 4/9 which
corresponds to a maximum gravitational surface red-shift of

z(r)max = 2. (2.82)

For a detailed derivation of the Buchdahl’s limit, please review APPENDIX A.





Chapter 3

Results & Discussion

3.1 Anisotropic interior solutions and Buchdahl’s limit in MGD context
As it is well known, the Buchdahl’s limit is modified when we introduce an anisotropy to the system. This was
shown by Böhmer and Harko28 in their derivation of the corresponding upper bound for the mass-radius relation
for an anisotropic matter distribution in presence of a cosmological constant Λ (APPENDIX B). They obtained the
general expression

2M
R
≤

(
1 −

8π
3
λR2

) 1 − 1
9

(1 − 2λ/〈ρ〉)2(
1 − 8π

3 λR2
)

(1 + f )2

 , (3.1)

being 〈ρ〉 the mean energy density and f is a function proportional to the anisotropy ∆ = pt − pr. This function f is
given by

f = 2
∆(R)
〈ρ〉


arcsin

(√
2Mχ(R)

R

)
√

2Mχ(R)
R

− 1

 , (3.2)

where χ stands for

χ(r) ≡ 1 +
4π
3

Λ
r3

m(r)
.

As we are interested in studying space-time without cosmological constant from now on we will set off Λ. Then the
upper bound (3.1) becomes

2u ≤ 1 −
1

9(1 + f )2 . (3.3)

Since we have eliminated Λ then χ(r) = 1 and f turns

17
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f =
R2∆(u)

3u
8π

 sin−1
(√

2u
)

√
2u

− 1

 . (3.4)

Note that f is a positive quantity. Otherwise, the condition∆ ≥ 0 could be violated. As a consequence, non–vanishing
values of f , equation (3.3) allows extra packing of mass in compact stellar structures. Second, from equation (3.4),
it is straightforward to show that the upper bound of the compactness parameter u, is defined by

u ≥
4
9
. (3.5)

So, our next task is to analyze for which values of compactness parameters in (3.5), our interior solution fulfills the
conditions of physical acceptability described in section 2.3. The Tolman IV anisotropic interior solution is studied
in the next section to discuss in detail how the local anisotropies introduced in the stellar interior by gravitational
decoupling through MGD approach contributes on the maximum mass-radius ratio value allowable for relativistic
anisotropic fluid spheres in GR.

3.1.1 Tolman IV solution: Anisotropic case

Let us choose a known solution with physical relevance, like the well-known Tolman IV solution ν, µ, ρ, p for perfect
fluids4, namely:

eν(r) = B2
(
1 +

r2

A2

)
, (3.6)

µ(r) =

(
1 − r2

C2

) (
1 + r2

A2

)
1 + 2r2

A2

, (3.7)

ρ(r) =
3A4 + A2(3C2 + 7r2) + 2r2(C2 + 3r2)

k2C2(A2 + 2r2)2 , (3.8)

p(r) =
C2 − A2 − 3r2

k2C2(A2 + 2r2)
. (3.9)

Now, thorough MGD and assuming the mimic constraint for the density, namely ρ = θ0
0, the above configuration

becomes an anisotropic solution. Then, the radial metric component reads

e−λ(r) = µ(r) + α f (r), (3.10)

where

f (r) = −
r2

(
A2 + C2 + r2

)
C2 (

A2 + 2r2) . (3.11)

Through this equation and the matching conditions, the compactness parameter u = M/R of the anisotropy and the
compactness parameter of the isotropic solution u0 = M0/R are related by

u = u0 +
α

2
R2

C2

(
A2 + C2 + R2

A2 + 2R2

)
, (3.12)
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and

B =

√√ 1

1 + R2

A2

 [1 − 2u0 − α
R2

C2

(
A2 + C2 + R2

A2 + 2R2

)]
. (3.13)

Moreover, the continuity of the second fundamental form yields

C =

√
(1 + α)

(
A2 + R2) (A2 + 3R2)(

A2 + R2) − α (
A2 + 3R2) . (3.14)

On the other hand, by using these metric functions, the effective isotropic radial pressure becomes

p̃r(r, α) = p(r) − α
(A2 + C2 + r2)(A2 + 3r2)
k2C2 (

A2 + r2) (A2 + 2r2) . (3.15)

Meanwhile, using the mimic constraint for density yields

ρ̃(r, α) = (1 + α)ρ(r). (3.16)

Therefore, the effective tangential pressure reads

p̃t(r, α) = p̃r(r, α) +
αr2

k2 (
A2 + r2)2 . (3.17)

With the anisotropy thus given by

∆(r, α) =
αr2

k2(A2 + r2)2 , (3.18)

from where α > 0 to ensure ∆ ≥ 0.
Considering equation (3.12) and solving it for A leads to

A =

√
α − 3u(1 + α) + 3u0(1 + α)
√

(u − u0)(1 + α)
. (3.19)

Since A appears naturally as a positive quantity in the equations (3.13) and (3.14), the expressions inside the square
root in both, numerator and denominator, must be positive. Starting from the numerator we impose that

α − 3u(1 + α) + 3u0(1 + α) > 0, (3.20)

in order to determine from (3.20) the following conditions that let α, u and u0 fulfill A > 0

u >
1
3

(1 + 3u0), (3.21)

and
α <

−3u + 3u0

−1 + 3u − 3u0
. (3.22)
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Moreover, from the denominator of equation (3.19), it is positive if

u > u0. (3.23)

Then, analyzing the expression for the compactness parameter

u = u0 +
α

2
R2

C2

(
A2 + C2 + R2

A2 + 2R2

)
, (3.24)

it is clear that for u0 = 4/9, the anisotropic solution acquire an extra packing in the sense that

u ≥
4
9
, (3.25)

due to the fact that the factor containing α is a positive quantity.

Our task now is to explore the space of parameters, and it become easier starting from the fact that the radial
pressure must decrease monotonously as long as the radius increases. Let us propose the following initial values
which fulfill this behavior: α = 0.19 and A = 1. Also we give an initial value for u0=0.39. This value was chosen
from the following interval (3.26) given by the condition in (3.22) which leads

0.112 < u0 < 0.392 (3.26)

Next, from the initial values of α, A and u0, we will be able to find the anisotropic compactness parameter u ≥ 4/9
which indicates the extra packing condition and fulfill the conditions of physical acceptability as well.

Replacing in equation (3.12) the initial values: α = 0.19, A = 1, u0 = 0.39 and the normalized radius R = 1, lead
to the value for the anisotropic compactness parameter u = 0.43. In this case, the obtained value does not correspond
to the condition for extra packing that we have established in (3.5).

To overcome the Buchdahl’s limit, we need to explore the space of parameters until reaching the maximum
extra packing of mass as possible. So we just need to increase the values for α keeping in mind that the physical
acceptability conditions and the limit for extra packing must be fulfilled. In other words, as long as the parameter α
is increased, we must check whether the values B, C still are real and positive, and the we must check the behavior
of the density, pressure, metric functions and adiabatic index.

In the first two columns of table (3.1), there are shown the values for α and its corresponding compactness
parameter u. We have considered α = 0.19 (our initial setting) and we kept increasing it until 0.69. We see that at
higher α values, the upper bound u < 1/2 was overgone.
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α u B C

0.19 0.43 0.26 2.77
0.29 0.45 0.23 3.5
0.39 0.46 0.20 5.03
0.49 0.47 0.17 17.26
0.50 Indeterminate - -

0.59 0.48 0.13 5.94 i
0.69 0.49 0.09 4.22 i
0.79 0.50 0.02 i 3.51 i

Table 3.1: Bounded parameters according plausibility conditions.

Until now, the parameters are bounded enough based on theminimum andmaximum bounds that the compactness
parameter u can have (quantities in red). At this point, the behavior of the physical quantities were checked and they
fulfill the required conditions graphically.

From this range of values we wanted to find the maximum compactness parameter in such a way that B and C
are positive quantities. As we can see in the third and fourth columns from table (3.1), real and positive values are
given from a maximum α = 0.49, just before the indetermination.

Now, we have discovered the values for a considerable extra packing, and the most important, that lead to physical
acceptability conditions which we can appreciate in the plots that we show in the next section.

3.1.2 Graphic Representation

Remember that the set of parameters obtained which bound our interior solution, in this case the anisotropic
like–Tolman IV solution, must fulfill the plausibility conditions in order to describe a system which is physically
acceptable. The appropriate way of discovering the behavior of our physical quantities is by representing them
graphically in terms of the parameters that were found.
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Figure 3.1: Increasing behavior of metric functions {eν, e−λ, µ}.

In figure 3.1 we show the behavior of the metric functions {eν, e−λ, µ} for u = 0.47, u0 = 0.39 and α = 0.49. Note that,
as expected, the functions are monotonously growing. Besides, e−λ(0) = µ(0) = 1. In this sense both the isotropic
and the anisotropic solutions satisfy the requirements demanded on interior solutions for the chosen set of parameters.

Matter sector quantities
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Figure 3.2: Decreasing behavior of density and pressures of the anisotropic solution.
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In figure 3.2, for the same values, u = 0.47, u0 = 0.39 and α = 0.49 it is shown the behavior of the density, and the
effective pressures of the anisotropic solution. Note that all the quantities shown in the profiles are monotonously
decreasing and reach their maximum value at the center of the star as expected. Besides, the radial pressure vanishes
a the surface of the star.

Redshift
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Figure 3.3: Redshift parameter z(r) for the isotropic and anisotropic Tolman IV interior solution.

In figure (3.3), we see that the redshift z0 corresponding to the isotropic solution (blue line), is less than 2, which
agrees with the condition defined in equation (2.82), section 2.5. However, in the extended anisotropic case, we see
that the redshift z (red line) is greater than 2. It makes sense, from the fact that the redshift parameter is related with
the compactness parameter as it is stated in equation (2.55). In other words, modification of the Buchdahl’s limit, of
course, lead the modification in the redshift condition, in our case that limit was overgone.

Dominant Energy Condition (DEC)

From the DEC described in equation (2.56) and (2.57), we obtain:
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Figure 3.4: DEC regarding the radial pressure. As expected, it lies between 0 and 1.
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Figure 3.5: DEC regarding the tangential pressure. As expected, it lies between 0 and 1.

In figures (3.4) and (3.5), we see that DEC is satisfied for the chosen parameters. The speed of energy flow of
matter is less than the speed of light, as expected.
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Strong Energy Condition (SEC)
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Figure 3.6: SEC condition ρ̃ > 2pt + pr is fulfilled.

Similarly, the requirement for SEC is satisfied since ρ is greater than 2pt + pr as expected.

Causality

Remember that this condition ensures that either radial and tangential sound velocities are less than the speed of
light, in our work we have:
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Figure 3.7: Sound velocity regarding to the radial pressure bounded between 0 and 1, as expected.
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Figure 3.8: Sound velocity regarding to the tangential pressure bounded between 0 an 1, as expected.

In fact, in both cases the sound velocity is positive and less than 1, so the requirement is fulfilled.

Adiabatic index

The last step consist in to check the stability of the solution bounded by the parameters that we have found by
calculating the adiabatic index as
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Figure 3.9: Adiabatic index showing stability for the anisotropic interior solution case (greater than 4/3).
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In figure 3.9, the adiabatic index reveals that for u = 0.47, we obtain a stable interior configuration from the
anisotropic solution. Remarkably, by turning-off α (namely, isotropic case) we lie in unstable configurations since
the index is below the bound 4/3.

As we have seen, the set of parameters chosen satisfy all the considered requirements for this study. It means that
the anisotropic Tolman IV interior solution by MGD, with parameters: u = 0.47, u0 = 0.39 and α = 0.49 describes
a physically accepted system.

Before concluding this section, we would like to emphasize that through the solution obtained here, we have
demonstrated that the MGD method does not only allow to extend isotropic solutions to anisotropic domains, but it
can be used to map a non acceptable solution as the Tolman IV for u0 = 0.39 to an anisotropic interior solution which
satisfies the required acceptability physical conditions and with extra packing of mass, in this case, an anisotropic
solution with u = 0.47.





Chapter 4

Conclusions & Outlook

The central objective of the present study was to found whether the Buchdahl’s limit is modified under the intro-
duction of local anisotropies by applying the Minimal Geometric Deformation method. This was done by using the
well known Tolman IV solution for spherically symmetric systems where through a deep analysis of the space of
parameters were performed. The parameters were given by the set of equations corresponding to the anisotropic
Tolman IV solution where constraints in the density ρ were considered.

The determination of the parameters were based on the conditions that an interior solution must fulfill in order
to be physically accepted. In fact, the plausibility requirements were held by showing graphically that the behavior
of the metric potentials, matter sector quantities, and energy conditions fit with theoretical expectations. Moreover,
graphically we can appreciate that the values that let us bound the parameters indicated extra packing of mass, which
is the required condition to conclude that indeed the Buchdahl’s limit is modified in the presence of anisotropies
induced by MGD.

Finally, the behavior of the adiabatic index demonstrates that MGD is a tool that does not only allow to extend
isotropic solutions to anisotropic domains, but let us to map unstable and non acceptable isotropic solutions to
anisotropic stable configurations with extra packing of mass. In addition, it could be interesting to match this results
with some model of neutron, boson or black stars, so it is open for further research.
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Appendix A

Buchdahl’s limit proof

The Buchdahl’s limit can be proved after establishing the metric and field equations.

Metric and equations
Consider a static spherical system with metric functions A(r) and B(r):

ds2 = A2dt2 − B2dr2 − r2dΩ2, (A.1)

or alternatively, A = eφ and B = (1 − 2m/r)−1/2 where φ(r) and m(r).
Then, the equation becomes:

ds2 = e2φdt2 −

(
1 −

2m
r

)−1

dr2 − r2dΩ2. (A.2)

With this metric the Newtonian limit is ensured, then φ(r) is the Newtonian potential.
The Einstein tensor for this metric is:

Gt
t = −

2m′

r2 , (A.3)

Gr
r = −

2m
r3 +

2
r

(
1 −

2m
r

)
φ′ =

1
r2

(
1
B2 − 1

)
+

1
B2

(
2
r

A′

A

)
, (A.4)

Gθ
θ = Gφ

φ =
1
B2

[
A′′

A
−

A′

A
B′

B
+

1
r

(
A′

A
−

B′

B

)]
. (A.5)

The four-velocity Uµ and acceleration aµ follows from Killing vector eφUµ as follows:

Uµ∂µ = e−φ∂t, Uµdxµ = eφdt, (A.6)

aµ = Uν∇νUµ = −∂µφ, (A.7)
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allows the energy-momentum tensor to be written as:

T µ
ν = ρUµUν − pγµν , γ

µ
ν = δ

µ
ν − UµUν, (A.8)

T t
t = ρ, T r

r = T θ
θ = T φ

φ = −p. (A.9)

Pressure isotropy implies:

A′′

A
−

A′

A
B′

B
−

1
r

A′

A
−

1
r

(
1
r

+
B′

B

)
+

B2

r2 = 0. (A.10)

Field equation Gt
t = −8πT t

t yields the mass-density relation:

dm
dr

= 4πr2ρ. (A.11)

In terms of B(r), this relation is written as:

1
B2

(
1
r2 −

2
r

B′

B

)
−

1
r2 = −8πρ. (A.12)

The equations of motion ∇νT µν = 0 can be written as:

Uµ[ρ̇ + (p + ρ)Uα
;α] + (p + ρ)aµ − γµν∇νp = 0. (A.13)

Since the fluid is static, the Uµ component vanishes, and the pressure gradient is:

p′ = −(p + ρ)φ′. (A.14)

The TOV equilibrium equation is:

p′ = −

( p + ρ

r2

) m + 4πr3 p
1 − 2m

r

 . (A.15)

Substituting for p′ in equation (A.14) provides:

φ′ =
m + 4πr3 p

r2
(
1 − 2m

r

) . (A.16)

Given ρ, one can integrate equation (A.11) for metric component m(r). Then given p, equation (A.16) yields the
second metric component. We will use these equations with graphs and inequalities to prove Buchdahl’ s theorem.
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Proof
1. In m(r), at m(0) = 0, the slope of the curve is positive since m′ = 4πr2ρ and ρ ≥ 0 everywhere, therefore the curve
is concave upwards from the origin, shaped as m ∼ r2+.
2. Consider F(r) ≡ 8πρ − 6m/r3. Near r = 0, F ≤ 0 :

F′ = 8πρ′ +
18m
r4 −

6m′

r3

= 8πρ′ +
18m
r4 −

6(4πr2ρ)
r3

= 8πρ′ +
3
r

(
6m
r3 − 8πρ

)
= 8πρ′ −

3F
r
.

Since ρ′ ≤ 0 (ρ is non-increasing outwards):

F′ ≤ −
3F
r

which implies

F ≤ 0 everywhere.

3. We use equation (A.12) to substitute for B′/B in the pressure isotropy equation, and obtain:

A′′

A
−

A′

A
B′

B
−

1
r

A′

A
−

1
r2 −

1
2r2 +

B2

2r2 − 4πρB2 +
B2

r2 = 0

Br
A

(
A′

Br

)′
−

3
2

B2

r2

(
1
B2 − 1

)
− 4πρB2 = 0

Using
1
B2 − 1 = −

2m
r
,

B2

2
= 4πρB2 − 3m

B2

r3 , (A.17)

the pressure isotropy equation becomes:

Br
A

(
A′

Br

)′
−

B2

2
F = 0(

A′

Br

)′
=

(AB
2r

)
F.

Since F ≤ 0 everywhere, and A > 0, B > 0, it follows that (A′/Br)′ ≤ 0. With B = (1− 2m/r)−1/2 the inequality can
be written: [

A′

r
(1 − 2m/r)1/2

]′
≤ 0 (A.18)
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Trapped surfaces are excluded, rb > 2M, and Bb ≡ B(rb) = (1 − 2M/rb)−1/2 > 0.
4. Recall F = 8πρ−6m/r3, rewritten as 2m/r3 = 8πρ/3−F/3. With ρ > 0, F < 0, and ρ and F decreasing outwards,
it follows that (8πρ − F)/3 decreases toward the boundary:

2m
r3 ≥

2M
r3

b

.

Thus:

2m
r

≥

(
r
rb

)2 (
2M
rb

)
(
1 −

2m
r

)1/2

≤

1 − (
r
rb

)2 (
2M
rb

)1/2

(
1 −

2m
r

)1/2

≥

1 − (
r
rb

)2 (
2M
rb

)1/2

(A.19)

5. From inequality (A.18) (A′/r)(1 − 2m/r)1/2 ≥ (A′b/rb)(1 − 2M/rb)1/2

Ab ≥

(
A′b

rbBb

) − r3
b

2M

 (1 − 2M
rb

)1/2

≥

(
A′brb

Bb

) (
−

rb

2M

) ( 1
Bb
− 1

)
Note −

rb

2M
=

1
B−2

b − 1

Ab ≥ (A′brb)
1 − Bb

1 − B2
b

 ≥ (A′brb)
1

1 + Bb
. (A.20)

6. To establish the value of A′brb, we start with equation (A.16) at the boundary

φ′b =
M

r2
b(1 − 2M/rb)

=
MB2

b

r2
b

.

We also know that A′/A = φ′ so that A′b = Abφ
′
b. Thus

A′b =
AbMB2

b

r2
b

.

At the vacuum Schwarzschild boundary Ab = 1/Bb. We have

A′brb =
2M

2Abrb
=

1 − A2
b

2Ab
.
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7. Inequality (A.20) becomes

Ab ≥
1 − A2

b

2Ab

(
1

1 + 1/Ab

)
≥

1 − A2
b

2(1 + Ab)
≥

1 − Ab

2

or

3Ab ≥ 1 ⇒ 9A2
b ≥ 1 ⇒ 9

(
1 −

2M
rb

)
≥ 1

2M
rb

≤
8
9
.





Appendix B

Buchdahl’s limit for anisotropic stars
derivation

The interior line element for for a static general relativistic spherically symmetric matter configuration is given by

ds2 = eνdt2 − eλdr2 − r2dΩ2. (B.1)

The Einstein’s equations for this metric read:

k2ρ̃ =
1
r2 − e−λ

(
1
r2 −

λ′

r

)
, (B.2)

k2 p̃r = −
1
r2 + e−λ

(
1
r2 +

ν′

r

)
, (B.3)

k2 p̃t =
e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
, (B.4)

where k = 8πG
c4 . Moreover, ρ̃ is the effective energy density, p̃r and p̃t are the radial and tangential effective pressures

respectively, and we have defined them as:

ρ̃ = ρ + αθ0
0, (B.5)

p̃r = p − αθ1
1, (B.6)

p̃t = p − αθ2
2. (B.7)

As it is shown in section 2.4, after applying the MGD we obtain two set of equations: the perfect fluid equations and
the ones corresponding to the decoupler sector.
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a) Perfect fluid equations

k2ρ =
1 − rµ′ − µ

r2 , (B.8)

k2 p =
rµν′ + µ − 1

r2 , (B.9)

k2 p =
µ′(rν′ + 2) + µ(2rν′′ + rν′2 + 2ν′)

4r
. (B.10)

b) Decoupler matter equations

k2θ0
0 = −

r f ′ + f
r2 , (B.11)

k2θ1
1 = −

r f ν′ + f
r2 , (B.12)

k2θ2
2 = −

f ′(rν′ + 2) + f (2rν′′ + rν′2 + 2ν′)
4r

. (B.13)

Since we are considering that the system has an anisotropic fluid distribution, the corresponding components of the
energy-momentum tensor are:

T 0
0 = ρ̃,

T 1
1 = − p̃r,

T 2
2 = T 3

3 = − p̃t.

Let us suppose that inside the system p̃r,p̃t, ∀r , 0, so we can define the anisotropy parameter as

∆ = p̃t − p̃r = α(θ1
1 − θ

2
2). (B.14)

The properties of an anisotropic compact object can be described by the following gravitational structure equations:
dm
dr

= 4πρ̃r2, (B.15)

dp̃r

dr
= −

(ρ + p̃r)[m + 4πr3 p̃r]
r2(1 − 2m

r )
+

2∆

r
, (B.16)

dν
dr

= −
2

ρ + p̃r

dp̃r

dr
+

4∆

r(ρ̃ + p̃r)
, (B.17)

where m = m(r) is the mass inside the radius r.
Derivation of the gravitational structure equations.

• To get equation (B.15), evaluating the radial metric function λ = − ln (1 − 2m
r ) into equation B.2 leads

8πρ̃ =
1
r2 −

(
1 −

2m
r

)  1
r2 +

2m
r2 −

2m′
r

r
(
1 − 2m

r

)  ,
and then solving for the first derivative of the mass with respect to the radius r, we get

m′ = 4πρ̃r2 ⇐⇒
dm
dr

= 4πρ̃r2. (B.18)
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• To get equation (B.16), solving equation (B.3) for ν′ leads

ν′ =
2m + 8πr3 p̃r

r2 − 2rm
, (B.19)

and taking its second derivative with respect to the radius r, we obtain

ν′′ =
1

r2(r − 2m)2

{
4m2 − 4m

[
r + 4πr3(2p̃r + r p̃′r)

]
+ 2r2

[
m′ + 4πr2( p̃r + 2p̃rm′ + r p̃′r)

]}
. (B.20)

Now, let us replace equations (B.19) and (B.20) into equation (B.4), then it reads

8πp̃t =
1

r2(r − 2m)

{
16π2r5 p̃2

r + mm′ + 4πr2 p̃r
[
−3m + r(2 + m′)

]
+ 4πr3(r − 2m) p̃′r

}
. (B.21)

Solving for p̃′r, and using the expression for the anisotropy in (B.14), we get

p̃′r = −
1

4πr3(r − 2m)

{
m

[
4πr2( p̃r + 4∆) + m′)

]
+ 4πr3

[
−2∆ + p̃r(4πr2 p̃r + m′)

]}
. (B.22)

Replacing the expression for m′ given by equation (B.15) it reads

p̃′r = −
1

r(r − 2m)

[
4πr3 p̃2

r − 2r∆ + 4πr3 p̃rρ̃ + m(p̃r + 4∆ + ρ̃)
]
. (B.23)

Finally, collecting terms and after some simplification steps we obtain

p̃′r = −
(m + 4πr3 p̃r)(p̃r + ρ̃)

r(r − 2m)
+

2∆

r
⇐⇒

dp̃r

dr
= −

(ρ + p̃r)(m + 4πr3 p̃r)
r2(1 − 2m

r )
+

2∆

r
. (B.24)

• To get the last structure equation (B.17), first let us define the anisotropy ∆. For this, solve the equation (B.3)
for p̃r, which gives us

p̃r =
−2m + r(r − 2m)ν′

8πr3 , (B.25)

and solve equation (B.4) for p̃t to lead

p̃t =
1

32πr3

[
(2 + rν′)

(
m(2 − 2rν′) + r(−2m′ + rν′)

)
+ 2r2(r − 2m)ν′′

]
. (B.26)

Now, replacing in equation (B.14) the anisotropy becomes

4m′ + r
[
32πr∆ + ν′(2 + 2m′ − rν′) − 2rν′′

]
+ m

[
−

12
r

+ 2ν′(−3 + rν′) + 4rν′′
]

= 0. (B.27)

Replacing the expression for ν′′, last expression becomes

4
r(r − 2m)

{
−4m2 + 4πr4 (

p̃r − 2∆ + 2 p̃rm′ + r p̃′r
)

+ m
[
r + 2rm′ − 8πr3 (

2 p̃r − 2∆ + r p̃′r
)]}

+r(r−2m)ν′2 = 2
(
r − 3 + rm′

)
ν′.

(B.28)
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Then, solving equation (B.3) for m which reads

m =
r2 (−8πr p̃r + ν′)

2 + 2rν′
. (B.29)

Replacing it in the previous expression (B.28), we get

r
[
8πr

(
−2∆ + r p̃′r

)
+

(
4πr2 p̃r + m′

)
ν′
]

= 0. (B.30)

Solving for ν′ and replacing m′ = 4πr2ρ̃

ν′ =
4∆ − 2r p̃′r
r p̃r + rρ̃

⇐⇒
dν
dr

= −
2

ρ + p̃r

dp̃r

dr
+

4∆

r(ρ̃ + p̃r)
. (B.31)

Using the equations of structure (B.15-B.17), let us show that ξ = eν/2>0, ∀r ∈ [0,R] obeys the equation

y
r

d
dr

(y
r
ξ

dr

)
=
ξ

r

(
d
dr

m
r3 +

8π∆

r

)
. (B.32)

First, let us start building the RHS of equation (B.32) by multiplying each side of the third equation of structure
(B.17) by ξ = eν/2. Redefining it as

2
dξ
dr

=

(
−

2
ρ + p̃r

dp̃r

dr
+

4∆

r(ρ̃ + p̃r)

)
ξ. (B.33)

Then, work this expression to reach formally the RHS as

y
r

d
dr

[
y
r

dξ
dr

]
=

y
r

d
dr

[
y
r

(
−

1
ρ + p̃r

dp̃r

dr
+

2∆

r(ρ̃ + p̃r)

)
ξ

]
(B.34)

Now, replacing the expression for dp̃r/dr, which is the second equation of structure (B.16), we obtain

y
r

d
dr

[
y
r

dξ
dr

]
=

y
r

d
dr

[
y
r

(
m + 4πr3 p̃r

r2 − 2rm

)
ξ

]
=

yξ
r4(r − 2m)2

{
y
[
4m2 + (r2 + 8πr4 p̃r)m′ + 4πr5 p̃′r − rm

(
3 + 8πr2(p̃r + r p̃′r)

)]
+ r(r − 2m)(m + 4πr3 p̃r)y′

}
+

y2ξ′r(r − 2m)(m + 4πr3 p̃r)
r4(r − 2m)2 . (B.35)

Replacing the expression for p̃′r:

y
r

d
dr

[
y
r

dξ
dr

]
=

y2ξ

r4(r − 2m)2

{
4m2 + 8πr4

[
∆ − 2πr2 p̃r( p̃r + ρ̃)

]
− rm[3 + 4πr2(3p̃r + 4∆ + ρ̃)] + r2(1 + 8πr2 p̃r)m′

}
×

yξ
r4(r − 2m)2

[
r(r − 2m)(m + 4πr3 p̃r)y′

]
+

y2ξ′r(r − 2m)(m + 4πr3 p̃r)
r4(r − 2m)2 .

Then let us solve equations (B.3) and (B.2) to get p̃r and ρ̃ respectively:

p̃r =
−2m + r2ν′ − 2rmν′

8πr3 , (B.36)

ρ̃ =
m′

4πr2 . (B.37)
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Replacing it in the last expression, we get

y
r

d
dr

[
y
r

dξ
dr

]
=

y
r4(r − 2m)2

ξ(r − 2m)
2

{
2y

(
−3m + 8πr3∆ + rm′

)
+ r

[
y(−m + rm′) + r(r − 2m)y′

]
ν′
}
. (B.38)

Using the definition of y(r) ≡ (1 − 2m/r)1/2, the last expression becomes

y
r

d
dr

[
y
r

dξ
dr

]
=

y
r4(r − 2m)2

[
ξ(r − 2m)y

(
−3m + 8πr3∆ + rm′

)]
.

Taking r4 as common factor

y
r

d
dr

[
y
r

dξ
dr

]
=

y
r4(r − 2m)2

[
ξ(r − 2m)yr4

(
−

3m
r4 +

8π∆

r
+

m′

r3

)]
.

Let us identify d
dr

m
r3 = −−3m

r4 + m′
r3 , then

y
r

d
dr

[
y
r

dξ
dr

]
=

y
r4(r − 2m)2 ξr

(
1 −

2m
r

)
yr4

[
d
dr

m
r3 +

8π∆

r

]
.

Finally, after some simplification steps using the definition for y(r)

y
r

d
dr

[
y
r

dξ
dr

]
=
ξ

r

[
d
dr

m
r3 +

8π∆

r

]
. (B.39)

Let us define a new function:

η(r) ≡ 8π
∫ r

0

r′

y(r′)

[∫ r′

0

∆(r′′)
y(r′′)

ζ(r′′)
r′′

dr′′
]

dr′, (B.40)

where ζ(r) is a new independent variable:

ζ(r) ≡
∫ r

0

r′

y(r′)
dr′.

Moreover, let us denote
ψ(r) ≡ ξ(r) − η(r).

Taking in account that ψ(0)>0, we find that
dψ
dξ
≤
ψ

η
, (B.41)

which after solving becomes

y(r)
r

− 8πr
y(r)

∫ r

0

e
ν(r′)

2 ∆ (r′)
y (r′) r′

dr′ +
1
2

e
ν(r)

2 ν′(r)

 ≤ e
ν(r)

2 − 8π
∫ r

0
r′

y(r′)

[∫ r′

0
e
ν(r′′)

2 ∆(r′′)
y(r′′)r′′ dr′′

]
dr′∫ r

0
r′

y(r′) dr′
. (B.42)

For stable stellar-type compact objects m/r3 does not increase outwards. Then, the following condition holds for all
the points of the star

m(r′)
r′
≥

m(r)
r

(
r′

r

2)
. (B.43)
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Then the anisotropy function (which decreases monotonically) holds the following condition

∆ (r′′) e
ν(r′′)

2

r′′
≥

∆ (r′) e
ν(r′)

2

r′
≥

∆(r)e
ν(r)

2

r
. (B.44)

The denominator of the RHS of equation (B.42) holds∫ r

0

r′

y (r′)
dr′ ≥

∫ r

0
r′

[
1 −

2m(r)
r3 (r′)2

]−1/2

dr′. (B.45)

Integrating and evaluating the limits of integration∫ r

0
r′

[
1 −

2m(r)
r3 (r′)2

]−1/2

dr′ =
r3

2m(r)
[
1 − y(r)

]
.

Now, let us do the same for the second term in bracket on the LHS of equation (B.42)∫ r

0

e
ν(r′)

2 ∆ (r′)
y (r′) r′

dr′ ≥
e
ν(r)

2 ∆(r)
r

∫ r

0

[
1 −

2m(r)
r3 (r′)2

]−1/2

dr′. (B.46)

Integrating: ∫ r

0

[
1 −

2m(r)
r3 (r′)2

]−1/2

dr′ = r
√

r
2m(r)

arcsin

√
2m(r)

r
. (B.47)

Then, the LHS becomes∫ r

0

e
ν(r′)

2 ∆ (r′)
y (r′) r′

dr′ ≥
e
ν(r)

2 ∆(r)
r

∫ r

0

[
1 −

2m(r)
r3 (r′)2

]−1/2

dr′ = e
ν(r)

2 ∆(r)
√

r
2m(r)

arcsin


√

2m(r)
r

. (B.48)

Now, let us repeat the process for the numerator of the RHS of the equation (B.42)∫ r

0

r′

y (r′)

∫ r′

0

e
ν(r′′)

2 ∆ (r′′)
y (r′′) r′′

dr′′
 dr′ ≥

∫ r

0
r
[
2m (r′)

r′

]−1/2 (
r′2
r2

) ∫ r′

0

e
ν(r′′)

2 ∆ (r′′)
y (r′′) r′′

dr′′
 dr′

=

∫ r

0

r′2
r

[
2m (r′)

r′

]−1/2 e
ν(r′)

2 ∆ (r′)
r′

[∫ r′

0

1
y (r′′)

dr′′
]

dr′

≥

∫ r

0
r′

[
2m (r′)

r′

]−1/2
e

ν(r′)
2 ∆ (r′)

r′

∫ r′

0

1
y (r′′)

dr′′
 dr′

≥

∫ r

0
r′

[
2m (r′)

r′

]−1/2
e

ν(r′)
2 ∆ (r′)

r′

∫ r′

0

[
1 −

2m (r′)
r′3

r′′2
]−1/2

dr′′
 dr′
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∫ r

0

r′

y (r′)

∫ r′

0

e
ν(r′′)

2 ∆ (r′′)
y (r′′) r′′

dr′′
 dr′ ≥

∫ r

0
r′

(
2m (r′)

r′

)−1/2
e

ν(r′)
2 ∆ (r′)

r′

 r′
√

r′

2m (r′)
arcsin


√

2m (r′)
r′

dr′

=

∫ r

0

r′2
y (r′)

e
ν(r′)

2 ∆ (r′)
r′


√

r′

2m (r′)
arcsin


√

2m (r′)
r′

dr′

≥
e
ν(r)

2 ∆(r)
r

∫ r

0
r′2

[
1 −

2m(r)
r3 r′2

]−1/2 (
2m(r)

r3 r′2
)1/2

arcsin

√2m(r)
r3 r′

dr′

=
e
ν(r)

2 ∆(r)
r

∫ r

0
r′2

 2m(r)
r3 r′2

1 − 2m(r)
r3 r′2

1/2

arcsin

√2m(r)
r3 r′

dr′

= e
ν(r)

2 ∆(r)r2
(

2m(r)
r

)−3/2 
√

2m(r)
r
− y(r) arcsin


√

2m(r)
r

 . (B.49)

Replacing the obtained results for each expression in the inequality (B.42), we get:

y(r)
r

− 8πr
y(r)

e
ν(r)

2 ∆(r)
√

r
2m(r)

arcsin


√

2m(r)
r

 +
1
2

e
ν(r)

2 ν′(r)

 ≤ e
ν(r)

2 − 8π
{
e
ν(r)

2 ∆(r)r2
(

2m(r)
r

)−3/2
[√

2m(r)
r − y(r) arcsin

(√
2m(r)

r

)]}
r3

2m(r) (1 − y(r))

Taking eν(r)/2 as common factor in both sides, and then eliminating it:

y(r)
r

− 8πr
y(r)

∆(r)
√

r
2m(r)

arcsin


√

2m(r)
r

 +
1
2
ν′(r)

 ≤ 1 − 8π∆(r)r2
(

2m(r)
r

)−3/2
[√

2m(r)
r − y(r) arcsin

(√
2m(r)

r

)]
r3

2m(r) [1 − y(r)]
(B.50)

Let us start working in the RHS of previous expression (B.50)

y
r

−8πr
y

∆

√
r

2m
arcsin


√

2m
r

 +
1
2
ν′

 ≤ 1
(1 − y)
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r3 − 8π∆

r2
(

2m
r

)−3/2
√

2m
r

r3

2m

+ 8π∆
r2

(
2m
r

)−3/2
y

r3

2m

arcsin


√

2m
r




−8π∆

√
r

2m
arcsin


√

2m
r

(1 − y) +
1
2

y
r
ν′(1 − y) ≤

2m
r3 − 8π∆ + 8π∆

( r
2m

)1/2
y arcsin


√

2m
r


−8π∆

√
r

2m
arcsin


√

2m
r

 +
1
2

y
r
ν′(1 − y) ≤

2m
r3 − 8π∆

1
2

y
r
ν′(1 − y) ≤

2m
r3 − 8π∆ + 8π∆

√
r

2m
arcsin


√

2m
r


1
2

y
r
ν′(1 − y) ≤

2m
r3 − 8π∆


arcsin

(√
2m
r

)
√

2m
r

− 1


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Now, let us work on the LHS of expression (B.50)

1 − (
1 −

2m
r

)1/2 1
2

y
r

(
−

2 p̃′r
p̃r + ρ̃

+
4∆

r p̃r + rρ̃

)
≤

2m
r3 + 8π∆


arcsin

(√
2m
r

)
√

2m
r

− 1

 , (B.51)

where
−

2 p̃′r
p̃r + ρ̃

+
4∆

r p̃r + rρ̃
=

2m + 8πr3 p̃r

r2 − 2rm1 − (
1 −

2m
r

)1/2 (1 − 2m
r

)1/2 m + 4πr3 p̃r

r3
(
1 − 2m

r

) ≤ 2m
r3 + 8π∆


arcsin

(√
2m
r

)
√

2m
r

− 1

 .
Finally, 1 − (

1 −
2m
r

)1/2 m + 4πr3 p̃r

r3
(
1 − 2m

r

)1/2 ≤
2m
r3 + 8π∆


arcsin

(√
2m
r

)
√

2m
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− 1

 . (B.52)

Equation (B.52) is valid for all r inside the star. It is independent of the anisotropy ∆ sign. Now, let us consider the
isotropic case where ∆=0 and the evaluated radius is r = R.1 − (

1 −
2M
R

)1/2 M + 4πR3 p̃r

R3
(
1 − 2M

R

)1/2 ≤
2M
R3

1(
1 − 2M

R

)1/2 ≤ 2

1 − (
1 −

2M
R

)1/2−1

1 −
(
1 − 2M

R

)1/2(
1 − 2M

R

)1/2 ≤ 2

1(
1 − 2M

R

)1/2 − 1 ≤ 2

1(
1 − 2M

R

)1/2 ≤ 3

1
3
≤

(
1 −

2M
R

)1/2

1
9
≤ 1 −

2M
R

2M
R

≤ 1 −
1
9

2M
R

≤
8
9
.
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Which corresponds to the well know Buchdahl’s limit.
Now, let us consider the case when ∆ , 0. So, let us start defining

f (M,R,∆) ≡
8πR3∆

3M


arcsin

(√
2M
R

)
√

2M
R

− 1

 =⇒ ∆ =
3M

8πR3

f arcsin
(√

2M
R

)
√

2M
R

− 1


. (B.53)

After evaluating ∆ in the expression (B.52), we obtain
(
1 −

√
1 − 2M

R

) (
M + 4πR3 p̃r(R)

)
√

1 − 2M
R R3

 ≤ 2M
R3 +

3 f M
R3 .

For simplicity, let us use u = 2M/R, which corresponds to the compactness parameter. Moreover, remember that
p̃r(R)= 0. (

1 −
√

1 − u
)

√
1 − u

≤ 2 + 3 f .

Then, solving for u last expression becomes

u = 1 −
1

9(1 + f )2 =⇒
2M
R

= 1 −
1

9(1 + f )2 , (B.54)

which corresponds to the restriction on the mass-radius ratio for compact anisotropic objects.
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