

UNIVERSIDAD DE INVESTIGACIÓN DE TECNOLOGÍA

EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: Anomaly Detection System in Video Surveillance

using Deep Learning Techniques

Trabajo de integración curricular presentado como requisito

para la obtención del título de Ingeniero en Tecnologías de la

Información

Autor:

Aguilera Jaramillo Mauricio Andres

Armijos Bustamante Daniel Alejandro

Tutor:

Lorena de los Ángeles Guachi, Ph.D.

Urcuquí, julio del 2020.

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Urcuquí, 20 de marzo de 2020
SECRETARÍA GENERAL

(Vicerrectorado Académico/Cancillería)
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES

CARRERA DE TECNOLOGÍAS DE LA INFORMACIÓN
ACTA DE DEFENSA No. UITEY-ITE-2020-00015-AD

A los 20 días del mes de marzo de 2020, a las 12:30 horas, de manera virtual mediante videoconferencia, y ante el Tribunal
Calificador, integrado por los docentes:

Presidente Tribunal de Defensa Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D.

Miembro No Tutor Dr. ARMAS ARCINIEGA, JULIO JOAQUIN , Ph.D.

Tutor Dra. GUACHI GUACHI, LORENA DE LOS ANGELES , Ph.D.

El(la) señor(ita) estudiante ARMIJOS BUSTAMANTE, DANIEL ALEJANDRO, con cédula de identidad No. 1105801466, de la
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES, de la Carrera de TECNOLOGÍAS DE LA INFORMACIÓN,
aprobada por el Consejo de Educación Superior (CES), mediante Resolución RPC-SO-43-No.496-2014, realiza a través de
videoconferencia, la sustentación de su trabajo de titulación denominado: ANOMALY DETECTION SYSTEM IN VIDEO
SURVEILLANCE USING DEEP LEARNING TECHNIQUES., previa a la obtención del título de INGENIERO/A EN
TECNOLOGÍAS DE LA INFORMACIÓN.

El citado trabajo de titulación, fue debidamente aprobado por el(los) docente(s):

Tutor Dra. GUACHI GUACHI, LORENA DE LOS ANGELES , Ph.D.

Y recibió las observaciones de los otros miembros del Tribunal Calificador, las mismas que han sido incorporadas por el(la)
estudiante.

Previamente cumplidos los requisitos legales y reglamentarios, el trabajo de titulación fue sustentado por el(la) estudiante y
examinado por los miembros del Tribunal Calificador. Escuchada la sustentación del trabajo de titulación a través de
videoconferencia, que integró la exposición de el(la) estudiante sobre el contenido de la misma y las preguntas formuladas
por los miembros del Tribunal, se califica la sustentación del trabajo de titulación con las siguientes calificaciones:

Tipo Docente Calificación
Tutor Dra. GUACHI GUACHI, LORENA DE LOS

ANGELES , Ph.D.
10,0

Miembro Tribunal De Defensa Dr. ARMAS ARCINIEGA, JULIO JOAQUIN , Ph.D. 9,5

Presidente Tribunal De Defensa Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D. 9,0

Lo que da un promedio de: 9.5 (Nueve punto Cinco), sobre 10 (diez), equivalente a: APROBADO

Para constancia de lo actuado, firman los miembros del Tribunal Calificador, el/la estudiante y el/la secretario ad-hoc.

ARMIJOS BUSTAMANTE, DANIEL ALEJANDRO
Estudiante

Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D.
Presidente Tribunal de Defensa

Dra. GUACHI GUACHI, LORENA DE LOS ANGELES , Ph.D.
Tutor

Firmado Digitalmente por: LORENA DE LOS
ANGELES GUACHI GUACHI
Hora oficial Ecuador: 15/04/2020 14:45

Firmado electrónicamente por:

FREDY ENRIQUE
CUENCA LUCERO

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Dr. ARMAS ARCINIEGA, JULIO JOAQUIN , Ph.D.
Miembro No Tutor

TORRES MONTALVÁN, TATIANA BEATRIZ
Secretario Ad-hoc

Firmado electrónicamente por:

JULIO JOAQUIN
ARMAS
ARCINIEGA

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Urcuquí, 20 de marzo de 2020
SECRETARÍA GENERAL

(Vicerrectorado Académico/Cancillería)
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES

CARRERA DE TECNOLOGÍAS DE LA INFORMACIÓN
ACTA DE DEFENSA No. UITEY-ITE-2020-00016-AD

A los 20 días del mes de marzo de 2020, a las 12:30 horas, de manera virtual mediante videoconferencia, y ante el Tribunal
Calificador, integrado por los docentes:

Presidente Tribunal de Defensa Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D.

Miembro No Tutor Dr. ARMAS ARCINIEGA, JULIO JOAQUIN , Ph.D.

Tutor Dra. GUACHI GUACHI, LORENA DE LOS ANGELES , Ph.D.

El(la) señor(ita) estudiante AGUILERA JARAMILLO, MAURICIO ANDRES, con cédula de identidad No. 0704482223, de la
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES, de la Carrera de TECNOLOGÍAS DE LA INFORMACIÓN,
aprobada por el Consejo de Educación Superior (CES), mediante Resolución RPC-SO-43-No.496-2014, realiza a través de
videoconferencia, la sustentación de su trabajo de titulación denominado: ANOMALY DETECTION SYSTEM IN VIDEO
SURVEILLANCE USING DEEP LEARNING TECHNIQUES., previa a la obtención del título de INGENIERO/A EN
TECNOLOGÍAS DE LA INFORMACIÓN.

El citado trabajo de titulación, fue debidamente aprobado por el(los) docente(s):

Tutor Dra. GUACHI GUACHI, LORENA DE LOS ANGELES , Ph.D.

Y recibió las observaciones de los otros miembros del Tribunal Calificador, las mismas que han sido incorporadas por el(la)
estudiante.

Previamente cumplidos los requisitos legales y reglamentarios, el trabajo de titulación fue sustentado por el(la) estudiante y
examinado por los miembros del Tribunal Calificador. Escuchada la sustentación del trabajo de titulación a través de
videoconferencia, que integró la exposición de el(la) estudiante sobre el contenido de la misma y las preguntas formuladas
por los miembros del Tribunal, se califica la sustentación del trabajo de titulación con las siguientes calificaciones:

Tipo Docente Calificación
Miembro Tribunal De Defensa Dr. ARMAS ARCINIEGA, JULIO JOAQUIN , Ph.D. 9,5

Presidente Tribunal De Defensa Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D. 9,0

Tutor Dra. GUACHI GUACHI, LORENA DE LOS
ANGELES , Ph.D.

10,0

Lo que da un promedio de: 9.5 (Nueve punto Cinco), sobre 10 (diez), equivalente a: APROBADO

Para constancia de lo actuado, firman los miembros del Tribunal Calificador, el/la estudiante y el/la secretario ad-hoc.

AGUILERA JARAMILLO, MAURICIO ANDRES
Estudiante

Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D.
Presidente Tribunal de Defensa

Dra. GUACHI GUACHI, LORENA DE LOS ANGELES , Ph.D.
Tutor

Firmado Digitalmente por: LORENA DE LOS ANGELES GUACHI GUACHI
Hora oficial Ecuador: 12/06/2020 16:40

Firmado electrónicamente por:

FREDY ENRIQUE
CUENCA LUCERO

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Dr. ARMAS ARCINIEGA, JULIO JOAQUIN , Ph.D.
Miembro No Tutor

TORRES MONTALVÁN, TATIANA BEATRIZ
Secretario Ad-hoc

Firmado electrónicamente por:

JULIO JOAQUIN
ARMAS
ARCINIEGA

Autoría

Yo, Mauricio Andrés Aguilera Jaramillo, con cédula de identidad 0704482223, declaro
que las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones
y conceptualizaciones expuestas en el presente trabajo; así cómo, los procedimientos y her
ramientas utilizadas en la investigación, son de absoluta responsabilidad de el/la autor(a)
del trabajo de integración curricular. Así mismo, me acojo a los reglamentos internos de
la Universidad de Investigación de Tecnología Experimental Yachay.

Urcuquí, Julio 2020.

CI: 0704482223

Autorización de publicación

Yo, Mauricio Andrés Aguilera Jaramillo, con cédula de identidad 0704482223, cedo a
la Universidad de Tecnología Experimental Yachay, los derechos de publicación de la pre
sente obra, sin que deba haber un reconocimiento económico por este concepto. Declaro
además que el texto del presente trabajo de titulación no podrá ser cedido a ninguna
empresa editorial para su publicación u otros fines, sin contar previamente con la autor
ización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este
trabajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto
en el Art . 144 de la Ley Orgánica de Educación Superior.

Urcuquí, Julio 2020.

CI: 0704482223

Dedication

This thesis is dedicated to my parents Leslie and Mauricio who with their love, patience
and effort have allowed me to fulfill one more dream, thanks for instilling in me the

example of effort and courage, not to fear adversity because you are always with me. To
my friends, for supporting me when I need them most, for extending their hand in

difficult times and for the love given every day, really thank you, I will always carry
them in my heart. To all those who did not believe in me, to those who expected my

failure at every step I took, to all those who bet that I give up halfway, to all who
assumed that I would not succeed. Finally I want to dedicate this thesis to Naomi, the

source of my motivation, who as nobody managed to bring out the worst and the best of
me. Thank you for being the one who formed a large part of my being. Thank you for
being that strong woman who is not afraid of anything. - Mauricio Aguilera Jaramillo

First of all, I dedicate this project to my parents, Lorena Bustamante and Carlos
Armijos. With their inconditional love and support they knew how to guide me from the
beginning until I completed this great challenge. I dedicate it also to my brother Manuel,
and sister Sof́ıa, and specially to my nieces Isabela Valentina, all of them have played a
crucial role to define the kind of person I am today. Also, I want to dedicate this Thesis
to my aunt Rebeca Bustamante and their family, I have always been treated as a member
of them, and I will always be grateful for all the affection they have given me. I dedicate

this project to all of my friends, to the new ones I had the opportunity to meet in
Yachay, the ones who live in Loja, and to the glorious apartment H 3-2. It is difficult to
name all of the amazing people that life has presented to me, but I’m definitely sure they
are a reason to keep me motivated throughout my existence here. Finally, I dedicate this

project to all the great professors at Yachay Tech from whom I had the opportunity to
learn. Without their commitment and that of the students, nothing about this dream of

what Yachay is would would have been possible. - Daniel Armijos Bustamante

III

Resumen

En el campo del análisis de videovigilancia, la detección de anomaĺıas es una tarea esencial para
garantizar la protección pública durante la detección de tramos que tienden a contener even-
tos inusuales como robos, asaltos, peleas, entre otros. Recientemente, Las Redes Neuronales
Convolucionales (CNN en inglés), una categoŕıa basada en técnicas de aprendizaje profundo
(Deep Learning), ha mostrado un gran progreso en las tareas de visión por computadora, con
aplicaciones relacionadas con la clasificación / reconocimiento de imágenes y videos, y más es-
pećıficamente para tareas de detección de anomaĺıas. Sin embargo, no han sido capaces de
manejar la precisión en escenarios reales debido a la presencia de ruido, contexto / situaciones
espećıficas, variabilidad de cómo se definen los diferentes eventos, datos limitados para fines de
entrenamiento, altos recursos computacionales necesarios para responder en tiempo real, entre
otros. Este trabajo explora dos arquitecturas de CNN de clasificación de video sobresalientes
para analizar su estructura, su capacidad para ejecutarse en escenarios en tiempo real y la
capacidad de clasificar adecuadamente los cuadros de video en eventos normales y anormales.
Tales anomaĺıas incluyen abuso, arresto y asalto. También se presenta una nueva arquitectura
de CNN, llamada Frankensnet, centrada en la clasificación de anomaĺıas del cuadro de video.
Frankensnet tiene como objetivo tomar la caracteŕıstica estructural de las CNN exploradas, te-
niendo en cuenta la precisión lograda, la capacidad de detección en tiempo real y el tiempo de
entrenamiento. Los experimentos se realizan en referencia al conjunto de datos UCF-Crime.
Como resultados preliminares, este documento proporciona un punto de vista para seleccionar
arquitecturas CNN para la identificación de anomaĺıas, considerando la precisión, aśı como
el tiempo de entrenamiento y ejecución. Además, FrankensNet demostró ser adecuado para
escenarios que requieren una alta precisión. Sin embargo, entrenar la arquitectura toma aproxi-
madamente el doble de tiempo que las arquitecturas exploradas. Finalmente, se proporciona un
programa de escritorio para probar el rendimiento de cada arquitectura CNN en escenarios en
tiempo real con tareas de detección de anomaĺıas.

Palabras clave: Clasificación de video, visión por computadora, detección de
anomaĺıas, redes neuronales convolucionales.

IV

Abstract

In the field of video surveillance analysis, anomaly detection is an essential task to en-
sure public protection throughout detecting frames which tend to contain unusual events
such as robberies, assaults, fights, among others. Recently, Convolutional Neural Network
(CNN), a category of deep learning techniques, have shown great progress in computer
vision tasks, with applications related to both image and video classification / recognition,
and more specifically for anomaly detection tasks. Nonetheless, they fail to handle accu-
racy in real-scenarios due to the presence of noise, specific context/situations, variability
of how different events are defined, limited data for training purposes, high computa-
tional resources required to respond on real-time, among others. This work explores two
outstanding video classification CNNs architectures to analyze their structucture, their
capability to run in real-time scenarios, and the ability to properly classify video frames
into normal and abnormal events. Such abnormal anomalies include abuse, arrest, and as-
sault. It also introduces a new CNN achitecture, called Frankensnet, focused on anomaly
classification from video frame. Frankensnet aims to take the structural characteristic
of the explored CNNs, taking into account the accuracy achieved, caoability of detec-
tion in real time and training time. Experiments are performed referring to UCF-Crime
dataset. As the preliminary results, this paper provides a point-of-view to select CNN
architectures for anomaly identification, considering accuracy as well as training and exe-
cution time. Moreover, FrankensNet demonstrated to be suitable for scenarios requiring a
high accuracy. Nevertheless, training the architecture takes approximately twice as much
time as the explored architectures. Finally, a desktop program is also provided to test
the performance of each CNN architecture on real-time scenarios with tasks of anomaly
detection.

Keywords: Video Classification, Computer Vision, Anomaly Detection, Con-
volutional Neural Networks.

V

Contents

1 Introduction 6
1.1 Problem Statement . 8
1.2 Justification . 8
1.3 Contribution . 9
1.4 Thesis overview . 9
1.5 Objectives . 10

1.5.1 General Objective . 10
1.5.2 Specific Objectives . 10

2 Theoretical Framework of Video Classification 11
2.1 Video Classification Challenges . 11
2.2 Video Classification Applications . 12
2.3 Deep Learning Approaches for Video Classification: State-of-the-art 14

2.3.1 Autoencoder . 14
2.3.2 Recurrent Neural Networks (RNNs) 15
2.3.3 Convolutional Neural Networks (CNNs) 16

2.4 Theoretical Foundation of CNNs . 17
2.4.1 Hyperparameters . 19
2.4.2 Major concerns . 20

2.5 CNNs Models for Video Classification . 20
2.5.1 Performance Criteria . 20
2.5.2 CNN Models . 22
2.5.3 Inception V-3 [1] . 25
2.5.4 Residual Network (ResNet) [2] . 27
2.5.5 Convolutional 3D Network (C3D) [3] 28
2.5.6 DenseNet [4] . 28

3 Methodology for Designing an Anomaly Detection System using CNNs 30
3.1 Analysis . 31

3.1.1 Performance Criteria to Build the New Model for Video Classification 31
3.1.2 Hardware and Software Tools . 31

3.1.2.1 Software Resources . 31
3.1.2.2 Hardware Resources: . 33

3.2 Design and Implementation . 33

1

School of Mathematical and Computational Sciences YACHAY TECH

3.2.1 New Approach: FrankensNet . 33
3.2.1.1 Definition of FrankensNet Architecture 33
3.2.1.2 Advantages and Disadvantages 35

3.2.2 Implementation of CNNs Models 35
3.3 Data Preparation . 36

3.3.1 Dataset . 36
3.3.2 Pre-processing . 37

3.4 Parameter Settings . 40
3.5 Training . 40
3.6 Validation . 41
3.7 Implementation of a Graphical UI for an Anomaly Detection Prototype . . 41

4 Experimental Setup 42
4.1 Training Implementation . 42
4.2 Validation Implementation . 42
4.3 Metrics . 43
4.4 Data Preparation: . 44

4.4.1 Data Augmentation: . 44
4.4.1.1 Rotate: . 44
4.4.1.2 Crop: . 45

4.4.2 Data Pre-processing: . 45
4.4.2.1 Contrast Limited Adaptive Histogram Equalization 45
4.4.2.2 Median Filter & Unsharp Masking 45

4.5 Experiments . 45
4.5.1 Experiment 1: Inception V-3 Settings 45
4.5.2 Experiment 2: ResNet-50 Settings 46
4.5.3 Experiment 3: FrankensNet Settings 46
4.5.4 Experiment 4: Training Time / Execution Time 47
4.5.5 Experiment 5: FP/FN rate, TP/TN rate 47

5 Results 48
5.1 Experiments . 48

5.1.1 Experiment 1: Inception-V3 . 48
5.1.2 Experiment 2: ResNet-50 . 50
5.1.3 Experiment 3: FrankensNet . 52
5.1.4 Experiment 4: Training Time / Execution Time 55
5.1.5 Experiment 5: FP/FN rate, TP/TN rate 56

5.2 Additional Results . 57
5.2.1 Overall results . 57
5.2.2 A Graphical UI for an Anomaly Detection Prototype 59

6 Conclusions and Future work 62
6.1 Conclusions . 62
6.2 Future Work . 63

Information Technology Engineer 2 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

6.3 Glossary . 64

References 67

Appendices 71

A DataSets 73
A.1 Common Datasets Used for Image & Video Classification 73

B Algorithm Codes 74
B.1 Thesis Web Page . 74
B.2 FrankensNet Implementation Code . 74
B.3 Training Code . 78
B.4 Rotate Operation Code . 80
B.5 Crop Operation Code . 80
B.6 Contrast Limited Adaptive Histogram Equalization Code 80
B.7 Median Filter & Unsharp Masking . 81

Information Technology Engineer 3 Final Grade Project

List of Figures

2.1 CNN General Architecure . 17
2.2 Convolutional and Pooling Layers . 18
2.3 Architectures 1 . 23
2.4 Architectures 2 . 24
2.5 Inception Module A [5] . 25
2.6 Inception Module B [1] . 26
2.7 Inception Module C [1] . 26
2.8 Auxiliary & Main Classifiers [1] . 27
2.9 Residual Block. [2] . 27
2.10 DenseNet Architecture [4] . 29

3.1 General Block Diagram . 30
3.2 FrankensNet Architecture . 34
3.3 UCF-Crime Dataset Categories [6] . 36
3.4 Data Augmentation operation on UCF-Crime dataset [6] 38
3.5 CLAHE example on UCF-Crime dataset [6] 39
3.6 Medial Filter example on UCF-Crime dataset [6] 39
3.7 Unsharp Masking Example on UCF-Crime dataset [6] 40

5.1 Minimum Accuracy. Parameters: LR=0.001 ; BS=100 49
5.2 Maximum Accuracy. Parameters: LR=0.00001 ; BS=100 50
5.3 Minimum Accuracy. Parameters: LR=0.000001 ; BS=100 51
5.4 Maximum Accuracy. Parameters: LR=0.00001 ; BS=100 52
5.5 Minimum Accuracy. Parameters: LR=0.00001 ; BS=100 53
5.6 Maximum Accuracy. Parameters: LR=0.001 ; BS=200 54
5.7 Results of learning rate experiments 1, 2, 3 54
5.8 Results of batch size experiments 1, 2, 3 55
5.9 Model’s Accuracy: Epoch 0 . 57
5.10 Model’s Accuracy: Epoch 1 . 58
5.11 Model’s Loss: Epoch 0 . 58
5.12 Model’s Loss: Epoch 1 . 59
5.13 ROC curve . 60
5.14 Anomalous Detection options . 60
5.15 Anomalous Detection in real time . 61

4

List of Tables

2.1 Results on the number of layers and computational complexity of Network
Architectures . 22

5.1 Experiments performed on Inception-V3 with three different Learning Rates 48
5.2 Experiments performed on Inception-V3 with three different Batch Sizes . 48
5.3 Experiments performed on ResNet-50 with three different Learning Rates . 50
5.4 Experiments performed on ResNet-50 with three different Batch Sizes . . . 51
5.5 Experiments performed on FrankensNet with three different Learning Rates 52
5.6 Experiments performed on FrankensNet with three different Batch Sizes . . 53
5.7 Model’s Training Time . 55
5.8 Models predictions . 56
5.9 Classification Rates . 56

5

Chapter 1

Introduction

Video classification is an actual computer vision problem that was presented with the
purpose of being able to automatize this type of classification tasks. Given the fact that
the problem is considerably recent, there still exist quite a lot of gaps left to be discovered.
Nevertheless, its applications are becoming largely varied, starting from only detecting
the type of sports or daily activity that is happening on the scene, to actual health and
security problems, just to name a few [7].

In the last years, different approaches have been introduced for image/video frame clas-
sification, they range from background modeling ones (model the background to detect
characteristic objects) such as background subtraction, to those that analyse entire im-
age/video frame applying specialized detectors for car, pedestrian, etc. such as Artificial
neural network, Deep learning, Machine Learning classifiers, among others. However, it
is a challenging task due to general image classification factors related to the illumination
changes and shadows, low-resolution images, noise presence, low quality images, real-time
performance requirements and even the same image data management to applications
in real-world (such as video surveillance systems focused on understanding image/video
sequences to assign them semantically meaningful anomaly categories) [8].

When research began to be conducted mainly focused in video classification, different
solutions for the same target appeared. For example, the introduction of 3D convolutional
neural networks applied to Human Action Recognition [9]. This kind of CNN was used to
extract features from each action and to later predict them. Such actions are divided into
3 classes: cell to ear, object put, and pointing. Another approach is presented to work
with action sports classification tasks, based on three main aspects: feature extraction,
dictionary learning and lastly classification [10]. Finally, there are also big companies
that are interested in this new field, Google introduced a different approach, based once
again on convolutional [7] neural networks to work with YouTube-8M dataset, containing
8 million videos with 4800 different classes, like sports, activities, animals, foods, prod-
ucts, tourist attractions,games, and many more [7].

Additionally, when referring to video classification, there is a subgroup based on

6

School of Mathematical and Computational Sciences YACHAY TECH

anomaly detection tasks. The definition of an anomaly depends on the context of in-
terest. Nevertheless, anomaly is related with the existence of events that are considered
as irregular, sudden or unanticipated. A combination of deep learning techniques based on
machine learning and neural networks (Support Vector Machines, Autoencoders, LSTM)
[11] were introduced to detect anomalies. In this case, anomalies are considered as any-
thing different than pedestrians walking on the sidewalk (bikes, skateboards, etc). More-
over, a group of researchers proposed to learn anomalies by exploiting both normal and
anomalous videos. In their approach, they consider normal and anomalous videos as bags
and video segments as instances in multiple instance learning (MIL), and automatically
learn a deep anomaly ranking model that predicts high anomaly scores for anomalous
video segments [8]. For them, an anomaly consists of crime activities, such as fighting,
robbery, shooting, etc.

The increase in computer performance and modern high-speed technologies have pro-
vided a wide range of effective and efficient solutions for security systems, where video
sequences is an affordable method for data gathering. In many countries have been im-
plemented different security services in order to face delinquency, sometimes by the gov-
ernment itself. Such services commonly merge diverse emergency services provided by
fire departments, armed forces, national police, etc. It is an interesting fact because even
though surveillance cameras have taken an important role as a part of such services to
ensure the safety of citizens, crimes are usually not adequately reduced [12]. Nevertheless,
these cameras have a capability of working on a 24/7 basis and are also able to capture all
the information contained in the scene. In this sense, due to the growth of image/video
data collected from surveillance cameras, automated video analysis has become necessary
in order to detect automatically abnormal events [8].

This work proposes FrankensNet, a network capable of detecting anomaly activities
from surveillance camera videos. This solution is compared against two existing archi-
tectures: ResNet-50 [2] and Inception V-3 [1]. Each model is trained separately with the
UCF-crime dataset, [6], containing a total of 128 hours of video recordings and 1900 real-
world surveillance videos of 13 different anomalous events and normal activities captured
by surveillance cameras [8]. Due to limited computational resources, he abnormal class
is composed of three main anomalies obtained from video surveillance which corresponds
to: acts of abuse, arrests, and arson.

Experimental results, based mainly on the models accuracy, training time, and exe-
cution time show that FrankensNet and ResNet-50 are the best options when accuracy is
of primary importance. Those networks were able to reach an accuracy superior to 90%,
while InceptionV-3 was not able to surpass this value. Nevertheless, InceptionV-3 stands
out as the winner on training time, being able to perform such process on the shortest
time. In addition, a desktop application system is also proposed, where each trained
model can be tested to perform classification tasks in real time. Models and program
implementation were all made on Python programming language.

Information Technology Engineer 7 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

This chapter provides an introduction to the current work, the problem statement,
justification, the outline of the contribution and a brief overview of the organization of
this work.

1.1 Problem Statement

One of the major challenges in Artificial Intelligence (AI) is the capability to interpret a
given sequence of images or videos to adequately identify and recognize patterns as well
as classify scenes from pixel analysis. In the last decade, automatic scene understanding
has been widely researched to provide methods that allow to immediately recognize and
classify the meaning of the scene and the global structure similar to how human scene
understanding is done. Particularly, in video surveillance the ability to understand a
scene relies on finding the reliable description and classification on frames, which define
an anomaly scene (thefts, robberies, acts of vandalism, etc) [8].

Although several works have been introduced to image and video classification, deter-
mining the most appropriate deep learning model for anomaly detection on real scenarios
is still a challenge in vision system. It is attributed to factors as: accuracy, execution in
real-time, determination of the most optimal method, reduction of computational com-
plexity, adaptation the algorithm to specific application, etc. Moreover, depending on
the application, some of them may require real-time execution and resource optimization.
Particularly, the difficulties in video classification are also related to their high dimen-
sional structure and the non-local temporal variations across frames [3].

1.2 Justification

The aim of video anomaly detection is to recognize unusual events, actions and/or op-
erations that are harmful to personal or public security. The automated and precise
identification of anomalies may prevent potential accidents or crowd disasters, such as
thefts, robberies, acts of vandalism, etc. Many existing methods support the statement
that there is no current method that efficiently works for all application scenarios. Even
with human assistance, the anomaly detection may fail in real scenarios with unknown
anomalies, dynamic backgrounds, illumination changes, and in almost all cases, due to
huge amount of data to be analyzed on real-time

Recently, deep learning techniques have become increasingly popular and have been
applied to a variety of tasks such as leaf disease classification and detection, cancer diag-
nosis, anomaly detection, among others. They have demonstrated outperform traditional
methods. However, it is difficult to determine the adequate method for specific applica-
tion. Therefore, this work presents an evaluation of some deep learning models to provide
a point-of-view to select the most appropriate model for anomaly classification, regarding
to accuracy and precision in terms of false or true detection in real time, computational

Information Technology Engineer 8 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

time, among others. Furthermore, the models evaluation allows to identify the best deep
learning characteristic that can be taken to create a more robust model for anomaly de-
tection. In this sense, it provides the chance to develop deeper studies on social security
or even commercial fields. In addition, data used to evaluate the performance of each
model is provided for free by the University of North Carolina at Charlotte. This data
is used solely for the purpose of research required by the project. It does not have an
income acquirement whatsoever.

1.3 Contribution

The contributions of this project are:

• Develop an appropriate methodology to evaluate a set of deep learning models
to provide a point-of-view on how deep learning architectures work for anomaly
detection, in terms of precision, accuracy, training time, and execution time.

• Introduce a new deep neural network approach, which will be able to learn and
classify scenes with anomalies from surveillance cameras.

• Compare the performance between each of the models in order to determine the
optimal candidate for anomaly detection tasks.

• Develop a graphic user interface, which will display the image capture information
in real time, with its classification information.

1.4 Thesis overview

This work is divided into 7 main Chapters which are named as follows: Introduction,
Theoretical Framework of Video Classification, Methodology for designing an Anomaly
detection System using CNNs, Design and Implementation, Experimental Setup, Results,
and Conclusions.

Chapter 1 states the problem statement of the project, along with its justification, con-
tribution, and general and specifics objectives.

Chapter 2 starts with a brief analysis made on video classification, what are its challenges
and applications on given works or researches. In addition, a set of previous works given
on deep learning approaches are presented.The last sections in this chapter will be fo-
cused on the theoretical foundations of Convolutional Neural Networks, and a couple of
architectures used for video classification.

Chapter 3 contains the methodology used in this research, from the models which have
been chosen to implement and evaluate on future experiments.

Information Technology Engineer 9 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Chapter 3.2 starts with a new model definition named FrankensNet, and how it was
developed. Also, the data preparation, referred to the dataset, parameter settings, etc.
are mentioned briefly in this chapter.
Chapter 4 contains the configurations that each one of the experiments will have. In
addition, the metrics established to test an architecture performance are also presented.

Chapter 5 contains the results and discussion performed on each one of the experiments
defined.
In Chapter 6, the conclusions obtained from this work are presented. Also, future works
that can improve the proposed methodology and help to establish open issues are specified.

1.5 Objectives

1.5.1 General Objective

To develop a method capable of classifying anomalous scenes with high accuracy in video
surveillance by using deep learning.

1.5.2 Specific Objectives

• To implement and explore the two most outstanding deep learning models for the
classification of images and videos, in terms of precision, accuracy, training and
execution time.

• To design and implement a new deep learning architecture for video classification
taking the best characteristic of explored methods.

• To determine the performance of the proposed approach with respect to the two most
outstanding deep learning architectures in terms of precision, accuracy, training and
execution time.

• To implement a computational software system for video classification, using the
trained model of the proposed deep learning architecture.

Information Technology Engineer 10 Final Grade Project

Chapter 2

Theoretical Framework of Video
Classification

In this chapter, video classification fundamentals is presented. Firstly, common concepts
related with image and video classification are stated. Next, an overview of its applica-
tions, challenges, major concerns and accuracy metrics are also described. Then, several
video classification approaches based on different deep learning techniques are presented.
Finally, convolutional neural networks fundamentals will be depicted. After that, the
hardware and software used to implement these different deep learning techniques will be
presented.

2.1 Video Classification Challenges

In video image classification, fixed camera, constant illumination, a single environment,
etc. are required conditions to obtain high accuracy as possible.
Nevertheless, it is not possible in real-life. Therefore, a video classification approach
should face the following challenges under real-life environments:

• Noise: It might be introduced in the image due to a poor quality image source,
during transmission from the source to the further processing, or caused by envi-
ronmental factors such as wind, fog, sun-rays, and clouds.

• Different Environments: Given the fact that videos are obtained from video
surveillance cameras, there is going to be many changes in the time of the day, on
indoor and outdoor environments, sometimes with an static or moving camera, etc.

• Camera Resolution: Since not all video surveillance cameras have the same reso-
lution at the moment of recording, different resolutions might appear on the videos
gathered.

• Network Architecture Design: Considering that for videos, it is necessary to
capture spatiotemporal information, the options to design an architecture with such
capabilities become expensive to evaluate.

11

School of Mathematical and Computational Sciences YACHAY TECH

• Number of Classes: Due to the fact that there exist different activities or actions
which can be considered as an specific class according to the needs.

• Capturing the Context of the Scene: As videos usually involve capturing spa-
tial temporal features across frames. On some cases, information may vary in terms
of camera movement, light changes, etc.

• Data Management: Depending on the type of videos which are being sought,
they often become difficult to collect, annotate and store.

In the next sections some video classification approaches are presented. They have
provided good accuracy for exiting applications in security sector. Nevertheless, its em-
ployments go beyond security only, this due to the fact that they also have presented
good results on other topics, such as health, sports, and even daily activities, etc.

2.2 Video Classification Applications

Video classification is not limited to security applications. They are often used in the
following computer vision applications.

• Action Recognition: Where human actions, such as: walking, playing the guitar,
playing sports, etc. are identified in each frame of a certain scene [13]. It refers to
the identification of different actions happening in a given scene.

The Computer Science Department, located at Stanford University implemented a
CNN model that is evaluated on large scale video classification using the Sports
1-M Youtube dataset containing 487 classes, such as Aquatic Sports, Team Sports,
Winter Sports, etc. As it is one of the first works carried out in this field, its accu-
racy, even surpassing older techniques, is not so formidable by reaching a value of
63.9% [13].

Another research is presented by Ji Shuiwang et al. on the IEEE. Here, they in-
troduced a novel 3D CNN model for action recognition using the TRECVID 2008
dataset. Such dataset consists of 49 hour videos collected from London Gatwick
Airport with three different classes [9], such as talking on the phone, pointing with
the finger, and dropping objects. Its accuracy in this tasks is considerably higher,
achieving an average of 78.24%.

Finally, Luvizon et al. presents a new framework designed for human action recog-
nition from skeleton sequences. This due to recent technologies that provide the
skeletal representation of human body extracted in real time [14]. They performed
the evaluation on three different datasets: MSR-Action3D, the UTKinectAction3D,
and the Florence 3D Actions dataset, with clasees such as throwing an object, wav-
ing hands, jumping, etc. It accuracy exceeded 90%, reaching an average of 91.3%

Information Technology Engineer 12 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

among all datasets.

• Object Detection: It consists of keeping track of moving or static objects ap-
pearing on the scene at an specific frame, one by one.

A contribution made by the IEEE organization presents an approach based on a new
spatio-temporal test and dichromatic reflection model [15], this allows the model to
react accordingly for both the sun and the sky illuminations. This research did
not use a public dataset. Instead, they collected a set of videos consisting of two
classes: Vehicles, and people. The main feature of such model is its robustness when
working with illumination changes at any time of the day.

A group of researchers from John Marshall’s College and the University of Mines-
sota implemented a CNN along with a Single Shot Detector Architecture for a real
time analysis of blood borne pathogens in Microscopy [16]. For this task, they used
a Dark field microscopy dataset, containing only two classes: Malaria and Syphilis.
It proved to be an effective technique of detection in real time but without an ac-
ceptable accuracy, achieving a maximum value of 43% on average.

Cheng et al. proposed a novel approach based on a CNN model for advancing the
performance of object detection. This is achieved by introducing and learning a
new rotation invariant layer on the basis of the existing CNN architectures [17].
The architecture is trained and tested on the VHR optical remote sensing image
dataset, containing ten object categories, such as airplane, ship, storage tank, base-
ball diamond, tennis court, etc. The accuracy achieved by this approach in average
is of 72.63%.

• Anomaly Detection: Its definition depends on the context but it can be referred
to crime detection or unusual activities [8],[18],[19],[11].

Sultani & Mubarak propose to learn anomalies by exploiting both normal and
anomalous videos. In their approach, they consider normal and anomalous videos as
bags and video segments as instances in multiple instance learning (MIL), and auto-
matically learn a deep anomaly ranking model that predicts high anomaly scores for
anomalous video segments [8]. In this research, the UCF-crime dataset was used. It
consists of 1900 real world surveillance videos with 13 different anomalies, such as
fighting, burglary, road accidents, etc. Although its capacity to work in real time is
good, the accuracy achieved did not met the expectations, reaching a 75%.

Ribeiro et al. presented a method based on Convolutionan Autoencoder (CAE) [18],
both the encoder and decoder part is conformed by three convolutional layers, and

Information Technology Engineer 13 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

two pooling layers to detect anomalies in three different scenarios obtained from the
3 datasets, since it captures the 2D structure in image sequences during the learn-
ing process. They used a CAE in the anomaly detection context, by applying the
reconstruction error of each frame as an anomaly score. For their research, three
different datasets were used based on pedestrian walkaway surveillance cameras:
UCSD pedestrian dataset (including two subsets, Ped1 and Ped2) , and Avenue
dataset. On average, the accuracy obtained by this architecture reached a total of
73.20%.

Khaleghi & Shahram propose a new method based on deep learning techniques for
anomaly detection in video surveillance cameras with the use of the UCSD dataset
for experimentation. This dataset is related to the pedestrian walkaway surveil-
lance camera, any objects other than people are identified as anomaly, such as the
appearance of a bicycle or a car in the scene [11]. The accuracy obtained by this
architecture showed a great improvement, reaching a total of 86%.

Sabokrou et al. introduces a paper where they present an efficient method for detec-
tion and localization of anomalies in crowded scenes using fully convolutional neural
networks with the use of UCSD Ped2 dataset and Subway Benchmarks dataset [19].
The UCSD dataset contains a set of videos obtained from a given surveillance cam-
era showing pedestrians walking. Here, anything different from a pedestrian will be
considered as an anomaly (The presence of different objects, such as bicycles, car,
skateboards, etc). On the other side, the Subway dataset contains a set of videos
obtained from video surveillance cameras placed on subway stations. The accuracy
obtained by this model in detection tasks is the greatest of them all, achieving a
final value of 90.20%

2.3 Deep Learning Approaches for Video Classifica-

tion: State-of-the-art

2.3.1 Autoencoder

Autoencoders are simple learning circuits which their objective consist on transform its
inputs into its outputs with the least possible amount of distortion [20]. In general, this
type of network is composed of two main parts:

• Encoder: It is referred to section of the network which compresses the input into a
latent space representation. This latent space contains a compressed representation
of the data.

• Decoder: It consists of the second section of the network, after the latent space
representation. Its objective is to reconstruct the input from the previous represen-
tation.

Information Technology Engineer 14 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

The autoencoder can then be described with the equation which appears on 2.1

g(f(x)) = x̃ (2.1)

Where f(x) consists on the function given by the encoder, while g(f(x)) becomes the
function of the decoder, and x̃ is expected to be as close as the original input x.

In the simplest case, assuming that the autoencoder contains only one hidden layer,
as it was mentioned earlier, the encoder starge takes the input x and maps it to z (latent
space representation), with the following equation:

z = σ(Wx+ b) (2.2)

Here, σ corresponds to an activation function. W is a weight matrix and b is a bias
vector. Both of these variables are initialized at random, and then updated continu-
ously during training through backpropagation. Then, the decoder stage maps z to a
reconstruction x̃ which is of the same shape as x in the following way:

x̃ = σ′(W ′z + b′) (2.3)

Autoencoders have been used widely in different video classification tasks. For example
in anomaly detection, where autoencoders are used as a form to identify normal cubic
patches [21] on the UCSD dataset [22] by performing the same task as i the case of the
previous two techniques, or a convolutional autoencoder to perform feature extraction on
videos [18].

2.3.2 Recurrent Neural Networks (RNNs)

It is a type of artificial neural network where the output obtained from last step is being
fed as input to the present step. RNNs differ from feedforward architectures in a way that
they do not only operate on an input space but also on an internal state space (a mark
of the information that already has been handled by the network) [23].

RNNs can be derived from differential equations. First, let ~s(t) correspond to the
value of the d-dimensional state signal vector, and lets consider the following differential
equation, which describes the evolution of the state signal as a function of time, t:

d~s(t)

dt
= ~f(t) + ~φ (2.4)

On equation 2.4, ~f(t) represents a d-dimensional vector-valued function of time, and
~φ is a constant d-dimensional vector.

Now, ~f(t) can be represented as the following canonical form:

~f(t) = ~h(~s(t), ~x(t)) (2.5)

Information Technology Engineer 15 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Here, ~x(t) is the d-dimensional input signal vector, and ~h(~s(t), ~x(t)) corresponds to a
vector-valued function of vector-valued arguments [24]. In the end, the final equation can
be defined as:

d~s(t)

dt
= ~h(~s(t), ~x(t)) + ~φ (2.6)

One of the main characteristics of RNNs is that they are capable of remembering the
past and its decisions are being determined by what it has learnt from such past. In
other terms, it means that the outputs are influenced not just by weights being applied
on inputs like a common neural network, but also by a hidden state vector that represents
the context based on prior inputs/outputs.

Such network capabilities have become of great help when working with classification
tasks. As it is the case for detecting anomalies, where the main architecture is composed of
a convolutional neural network and an LSTM and the end of it to perform the classification
part [8] with the [6]. In this case, anomalies are no longer considered as something different
than people walking on the sidewalk. Instead, an anomaly is now considered as a crime,
for example: arrest, assault, arson, abuse, etc. And a normal situation occurs when there
is not happening a danger situation on the scene.

2.3.3 Convolutional Neural Networks (CNNs)

CNNs are analogous to traditional artificial neural networks in a way that they are com-
prised of neurons that self-optimise through learning. Nonetheless, the main difference
between them is that CNNs are mostly used in the field of pattern recognition within
images [25].

Traditional CNNs are comprised primarily of three types of layers: convolutional, pool-
ing and fully-connected layers. Each layer performs a specific function, and there exist
also other factors that are considered of great importance, such as the hyperparameters,
or the stride and padding used at an specific layer to transfer information [26].

Subsequently with the success of CNNs in some real world application such as medical
diagnosis [27], traffic sign [28], forest fire [29], and face detection [30], just to name a few.
It is also providing exciting solutions with good accuracy for image and video classification
to, as it is in the case of the INLSVR challenge [31], action recognition [32], or even sports
recognition [33]. However, they are still been widely investigated to handle challenges
mainly related to real time performance requirements to applications in real scenarios
such as anomaly identification / detection. Thus, with the aim to explore how a CNN
works, all of CNN terms are going to be explained more deeply on the following section.

Information Technology Engineer 16 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

2.4 Theoretical Foundation of CNNs

A CNN is a type of artificial neural network that uses convolutional layers to filter inputs
for obtaining useful information for the network such as edges [34], shapes [35], among
others. This type of multi-layer network is widely used to recognize visual patterns such
as characters, symbols, figures, etc. from pixel images [36]. A CNN commonly is com-
pounded of many kind of repeating layers and activation functions such as convolutional
layer, ReLu, Pooling and Fully Connected layer, as is shown in 2.1. The most common
layers and functions will be described in the following:

Figure 2.1: CNN General Architecure

Input Layer: This layer contains image data represented by a three dimensional
matrix. Image data needs to convert it into a single column of dimension width x height
x number of channels.

Convolutional Layer: This layer uses convolutional filters often called kernels, with
a defined size, that will go over the entire input data, and perform a convolution operation,
which is defined by equation 2.7:

(fk)ij = (Wk ∗ x)ij + bk (2.7)

The filter slides over the input matrix with a stride S. This process is done to learn
and detect patterns from the previous layers. x represents the input data, wkadbk are the
weight and the bias, respectively. The result is a feature map.

Pooling Layer: Also referred to as a down-sampling layer, it is used to reduce the
spatial dimensions, but not depth on a CNN. Among the main features it appears that
by having less spatial information the architecture gains computational performance. In
addition, less spatial information also means less parameters, so less chance to over-fit.
In general, the pooling layer:

• Receives a volume of size P1xA1xI1

Information Technology Engineer 17 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• Two hyperparameters are required: their spatial extent K and the stride J

• Returns a volume of size P2xA2xI2 where:

–
P2 = (P1 −K)/J + 1 (2.8)

–
A2 = (A1 −K)/J + 1 (2.9)

–
I2 = I1 (2.10)

Figure 2.2: Convolutional and Pooling Layers

In Fig. 2.2. one can observe what happens on both convolutional and pooling layers.
First, the filter of size 3x3 is being convolved across the width and height of the of the
input volume which is usually an image, and computes the equation 2.7 between the en-
tries of the filter and the input. Then, the pooling section appears to down sample the
information, and it does it through the equations 2.8, 2.9 and 2.10. It is important to
denote how the matrix size is being reduced on each layer. This depends on the size of
the kernel and the stride established on each step.

Activation Function: It normally goes after the pooling layer or the fully connected
layer. Its objective is to apply a non-linear transfer function to encode patterns through
transformations. The most common activation functions are sigmoid, a logistic function
with continuous values which has two asymptotes and an easy to obtain derivative [37],
hyperbolic tangent, easily defined as the ratio between the hyperbolic sine and the cosine
functions, commonly used for recognition tasks [38], and Rectified Linear Units (ReLU),
a linear function that its purpose is to transmit the input as the output if and only if it
the value entering is positive, else it will have a zero value [39]. ReLU is given by equation
2.11.

f(z) = max(0, x) (2.11)

Information Technology Engineer 18 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Fully-Connected Layer: A fully connected layer is a function of Rm to Rn. In this
type of layer, each neuron is connected to each of the previous layer, and each connection
has its own weight. The input to the FC layer corresponds to the output of the last
pooling or convolutional layer. Each one of the FC layers perform the calculations based
on a specific activation function.

Its importance relies on the fact that FC layers very useful at the moment of learning
the different features presented by either the pooling or convolutional layers. Also, it
plays a crucial role at the classification stage.

Output Layer: It is the final layer in the network, also being a fully connected one.
This layers contains the activation function which is used to obtain the probabilities of the
given input belonging to a particular class with its corresponding label, and the output
neurons.

2.4.1 Hyperparameters

For training purposes, the number and diversity of hyperparameters such as batch size,
learning rate, number of epoch and number of layers are quite specific to each model.
Nevertheless, there exist a few of them that should always be taking into account with
the aim to improve CNN performance.

• Learning Rate: This hyperparameter is in charge to quantify the learning progress
of a model in such a way that will be used to optimize its capacity. It is also
considered as the most important one due to the fact it affects the training time
and the accuracy of a neural network. For instance, a learning rate which is too
large or too small can take many training time if is not in an adequate range. The
best accuracy is obtained by set a learning rate of 0.05 [40].

• Batch Size: This hyperparameter defines the number of training samples to work
before updating the model parameters. Its size must be more than or equal to
one and less than or equal to the training dataset size. It has an effect on the
resource requirements of the training process, speed and number of iterations in a
not so trivial way. An evaluation was carried out about the performance of CNNs,
specifically LeNet and a generic CNN with seven convolutional layers, by different
batch size from 16 to 1024 by numbers to the power of two and from 50 to 250 by
numbers with a difference of 50 between each one. Batch size demonstrated to have
a great effect on accuracy. So, the higher size means greater accuracy. However, it
brings a big challenge related to the computational cost [41] .

• Number of Epochs: Is the number of iterations that the CNN will work through
the whole dataset. It can be set between one and infinity, stop it using other criteria

Information Technology Engineer 19 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

besides a fixed number of epochs, such as a change or lack of change in model error
over time. Actually, there exists a technique called Early Stopping to determine
when to stop training an specific model. For instance, by using a combination of
the validation error and the training error to stop the model when the error is over
than a specific threshold [42].

• Number of Layers: In practice its something usual that a three-Layer-Neural-
Network-architecture will outperform a 2-layer one. Nevertheless going deeper rarely
helps much more. A big exception to this is the type of architectures that are used
in this project, CNN, where the deeper they are, the better they perform (In most
cases) [43].

• Convolution Kernel Width: As it was mentioned earlier, another very important
hyperparameter in CNN corresponds to the convolution kernel width because it
influences the number of parameters in a model which, as a matter of fact, influences
its capacity. The kernel size can be changed across the network. However, a common
size predefined corresponds to a 3x3. Here, the stride and padding play a crucial
role to determine the size of the output image.

2.4.2 Major concerns

There exist different factors which can be considered to determine how good a method or
architecture for video classification is. These factors which are taken into consideration
represent a crucial role when designing a network architecture, specially when it comes to
working with videos. In addition, these issues have become greatly followed by numerous
researchers in previous and current investigations in order to improve them. Referring to
the main factors there are the following:

• Computational Complexity: It refers to the number of operations needed by a
network architecture and it depends on the number and types of layers being used.

• Computational Speed: Highly related to the computational complexity. In sum-
mary, the greater the number of operations required by the network architecture,
the slower will become its computational speed when training a model.

• Accuracy: It is also a crucial factor to determine if an architecture can be a feasible
solution in terms of true and false detection.

2.5 CNNs Models for Video Classification

2.5.1 Performance Criteria

From literature, the most relevant CNNs models are characterized based on the following
criteria:

Information Technology Engineer 20 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• Accuracy: It is crucial for this project to work with CNNs where its accuracy
capability stands out. This because of detection and classification tasks. Inception
V-3 demonstrates that it is one of the best networks in terms of accuracy, by achiev-
ing a top-5 error of 3.58% [1]. On the other side, ResNet appears also as a great
candidate, due to the fact that its top-5 error on the ILSVRC rate was 3.57% [2].
Currently, both networks are able to surpass human-level performance in terms of
image classification. In addition, C3D also acts as a candidate, because this net-
work, is capable to work with a stack of images (videos), instead of just one. For
this reason, it can not be directly compared with the previous ones, because they
work with images only. Nevertheless, C3D’s accuracy on anomaly detection task
also outperforms the rest ones [8], therefore, it is also selected as a candidate to be
explored.

• Size (depth) of the Network: In general, the greater the number of layers
of a network, the greater will be its depth. This selection criteria is useful at the
moment of determining other aspects related to the network’s computational time/-
complexity. Candidates showed the following results: Inception V-3 [1] contains a
total of 48 layers in total, a value that do not differ widely with the number of layers
of ResNet-50 [2], as the name says, it contains a total of 50 layers. Nevertheless,
when C3D [3] network appears, its number of layers reduced at least 3 times when
compared with the previous ones, containing only 15 layers in total.

• Computational Complexity: Estimating the computational complexity be-
comes very important when determining if a network can be trained on an specific
computer. Actually, computation in deep neural networks is dominated by multiply-
adds in Fully Connected and Convolutional Layers. Nevertheless, the number of
floating points operations per second (FLOPs) and parameters of a network must
be estimated to obtain the computational complexity. At this point, based on previ-
ous criteria analysis, it can be observed that there exists a notable similarity between
Inception V-3 [1] and Resnet-50 [2] in terms of accuracy and number of layers. Nev-
ertheless, based on the number of FLOPs of each network, it can be observed that
the first candidate holds a total of 6 billion, while the second candidate requires
only 3.8 billion. These values surely looks enormous, but lets consider that previous
networks have been used only for image classification. Now, C3D outstands both
Inception V-3 and ResNet-50 in this aspect, having a total of 38.5 billion [3] FLOPs.

• Capability to work with Average Computational Resources: It is important
to determine, particularly for real scenarios, if a CNN is going to be able to function
adequately on a desktop computer or laptop. Based on the computational complex-
ity on the previous criteria, it is obtained that Inception V-3 [1] & ResNet contains
almost the same number of parameters, being 24 million for the first candidate, and
25.6 million [2] for the second one. In addition, even though C3D has a total of
72.9 million parameters, almost three times greater than the previous networks [8],
it was selected because in terms of video classification, its number of parameters is

Information Technology Engineer 21 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

considerably lower.

Network N Layers N Parameters Flops Common Application
GoogLeNet [5] 27 6.7977x106 1.5x109 Image Classification

C3D 15 72.9x106 38.5x109 Video Classification
Inception V-3 [1] 48 24x106 6x109 Image Classification

ResNet-18 [2] 18 11.8x106 1.8x109 Image Classification
ResNet-34 [2] 34 21.2x106 3.6x109 Image Classification

ResNet-50 [2] 50 25.6x106 3.8x109 Image Classification
ResNet-101 [2] 101 44.7x106 7.6x109 Image Classification
ResNet-152 [2] 152 60.2x106 11.3x109 Image Classification

DenseNet-121 [4] 121 27.2x106 4x109 Image Classification

Table 2.1: Results on the number of layers and computational complexity of Network
Architectures

Table 2.1 summarizes CNNs analysis mainly applied to image and video classification
tasks in terms of layers, parameters and Flops [5], [2], [8]. Based on the above mention
criteria and information, this work selected Inception V-3, ResNet-50, C3D and DenseNet
models to be studied in order to take the best characteristics to propose a new approach
for video classification.

2.5.2 CNN Models

The main structure of the selected CNNs is illustrated in Fig. 2.3 and Fig 2.4.

Information Technology Engineer 22 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

(a) Inception-V3 (b) DenseNet

Figure 2.3: Architectures 1

Information Technology Engineer 23 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

(a) ResNet-50 (b) C3D

Figure 2.4: Architectures 2

Information Technology Engineer 24 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

It can be seen that the most distinctive characteristic of each CNN architecture goes
as follows:

• Inception V-3 [1] contains a set of different inception modules, grid size reduction
and an auxiliary classifier.

• ResNet-50 [2] main feature is the implementation of Residual Blocks all over the
network.

• C3D [3] contains [8] a set of 3-Dimensional convolutional layers, something that
none of the previous networks has.

This types of networks are some the most commonly used architectures for video clas-
sification tasks, due to the fact that each one of them have been used and demonstrated
a good performance in classification and object detection tasks withing images.

2.5.3 Inception V-3 [1]

It is an enhanced version of its predecessor GoogleNet [5]. Inception V-3 is characterized
by size changes of the convolutional layers of the inception module as is presented in Fig.
2.3(a). It contains three specialized modules: A, B, and C depicted in Fig. 2.5, 2.6, and
2.7, respectively. Module A replaces its convolutional layers of 5×5with two ones of 3×3
ones as is shown in Fig. 2.5. Module B takes each 3 × 3 convolution of the Inception
Module A Fig. 2.5 to replace them with 1 × n convolution follow by a n× 1 convolution.
Author in [5] demonstrated that a value of n to 7 allows to reach good results. Module C
takes each 3 × 3 convolution output of the Inception Module A Fig. 2.5 to expand them
by 1 × 3 and 3 × 1 in a parallel way.

Figure 2.5: Inception Module A [5]

Information Technology Engineer 25 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 2.6: Inception Module B [1]

Figure 2.7: Inception Module C [1]

In addition, there are two types of classifiers on this network. Both of them can be
found on Fig. 2.8 On the left side is the Auxiliary classifier which is used to regularize
the weights of the intermediate layers until the first ones, on the other side is the Main
classifier that is in charge of classification.

Information Technology Engineer 26 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 2.8: Auxiliary & Main Classifiers [1]

2.5.4 Residual Network (ResNet) [2]

The ResNet layers are explicitly formulated as learning residual functions with reference
to the layer inputs, instead of learning unreferenced functions. Its depth varies between
18 and 152 convolutional layers. ResNet introduces shortcut connections that bypass a
signal from one layer to the next. Such connections pass through the gradient flows of
networks from later layers to early layers, and ease the training of very deep networks.
Residual Block illustrated in Fig. 2.9 allows the connection to bypass a signal from the
top of the block to the tail. Currently, ResNets consists of multiple residual blocks as is
shown in Fig. 2.4(a).

Figure 2.9: Residual Block. [2]

Information Technology Engineer 27 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

2.5.5 Convolutional 3D Network (C3D) [3]

It is well suited for spatio-temporal feature learning. C3D has the ability to model tem-
poral information in a better way due to the 3D pooling operations and convolution it
uses as is shown in Fig.2.4(b). 3D convolution mainly preserves the temporal information
of the input signals that result in an output volume.

Its common structure consists of 5 convolution layers, each one followed by a pooling
layer, and then 2 fully-connected layers and a softmax loss layer to predict action labels.
The number of filters for the convolution layers often are 64, 128, 256, 256 and 256, re-
spectively. All the filters often called convolution kernels have a size d that represents its
temporal depth. All convolutional layers are applied with the appropriate padding and
a stride of 1. Then, all pooling layers are max pooling with a kernel size of 2x2x2 (with
exception of the first layer that has a size of 1x2x2) with a stride of 1, so the reduction
factor is 8. Normally, both fully connected networks have 2048 outputs, and the initial
rate is 0.0003 that is divided by 10 after 4 epochs.

Fig. 2.4(b) presents an homogeneous setting with convolution kernels of 3x3x3. With
this kernel, the training of the network and its deepness depends on the computation
affordability and the machine memory limit. The network consists of 8 convolutional
layers, 5 pooling layers, 2 fully connected layers and a softmax output layer represented
as ’classifier’. All the convolutional filters used in the network are 3x3x3 with a stride
1x1x1. The pooling layers are with a stride 2x2x2, except the first that has a size of 1x2x2
and a stride of 1x2x2, with the objective of preserving early information. As a result of
each fully connected network, there are 4096 output units.

2.5.6 DenseNet [4]

A promising solution for overcoming the ResNet performance in several aspects. In this
sense, DenseNet [4] has several advantages such as the reduction of the vanishing-gradient
problem, increasing feature propagation, feature reuse and reduction of parameters num-
ber. There are different versions of DenseNet which differs by the numbers of layer as is
shown in Fig. 2.10. The main structure of any DenseNet version (see Fig. 2.3(b)) consists
on a Convolution layer and a MaxPolling layer followed by a sequence of 4 Dense Blocks
(see Fig. 2.10(a)) with a Transition Block (see Fig. 2.10(c)) between each one, ending
with a FC layer with softmax activation as the main classifier.

Information Technology Engineer 28 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

(a) Dense Block (b) BottleNeck Block (c) Transition Block

Figure 2.10: DenseNet Architecture [4]

Particularly, DenseNet [4] takes the following characteristic:
On Dense Block (Fig. 2.10(a)), each n layer obtains additional information from all

the n− 1 previous layers and gives its feature maps to all following layers. Each n layer
passes by the Bottleneck Block (Fig. 2.10(b)) and its results is concatenate with the same
n layer in order to obtain the next n+ 1 layers.

Between each Dense Block there is a Transition Block (Fig. 2.10(b)) which is respon-
sible for the compression of feature maps. If the output of a Dense Block is of size m,
the transition layer generates an output of size θm, where 0 < θ ≤ 1 is the compression
factor. For this architecture, a value of θ = 0.5 is used, as in [4].

Information Technology Engineer 29 Final Grade Project

Chapter 3

Methodology for Designing an
Anomaly Detection System using
CNNs

The established methodology for designing an anomaly detection approach is depicted in
Fig. 3.1. It starts with a preliminary analysis mainly to identify the most relevant CNN
models and their distinctive characteristic that influence to performance results. The next
stages are named as: Design and implementation (Selected and Proposed CNNs models),
Data Preparation, Parameter Settings, Training, Validation and Implementation of a UI
Prototype.

Figure 3.1: General Block Diagram

30

School of Mathematical and Computational Sciences YACHAY TECH

3.1 Analysis

On this stage, the main factors to take into account at the moment of design a network
architecture are defined. Then, the selection of hardware and software tools is done. The
final step is to establish the selection of the optimal models for video classification for
future implementation and comparison with respect to the new proposed model.

3.1.1 Performance Criteria to Build the New Model for Video
Classification

First and foremost, this project is expected to obtain a model that is able to perform
video classification tasks, specifically anomaly detection in real time. In addition, it is
important that the model can be trained with average computational resources. Having
said this, the crucial points to take into account to design such model are the following:

• High Accuracy: The model to be designed must meet this requirement. A good
accuracy will allow the model to work with anomaly detection tasks, where the
errors given at the moment of classification must be minimal.

• Average Computational Cost: This research project does not count with
high computational resources, meaning that the model must be able to perform
the training process on a machine with average resources found on the technology
market nowadays. The specifications can be found on 3.1.2.2.

• Response in Real Time: It is not only necessary that the accuracy must be
high. In addition, the designed model must be capable of responding in real time,
so that a future system could be implemented using such model.

As it was explored earlier in this project, two CNNs have been selected in order to be
implemented and tested. Such networks corresponds to Inception V-3 [1] and ResNet-50
[2], this because of all the points gathered on section 2.5.1 where it was demonstrated
that these networks meet appropriately the requirements established.

3.1.2 Hardware and Software Tools

For training, implementation and validation purposes the following tools have been se-
lected, also considering the computational resources available, and the accessible docu-
mentation of each one of them:

3.1.2.1 Software Resources

• Tensorflow [44]: It is an open source software library released in 2015 by Google
to facilitate the way of work of developers and researchers at the moment of training
deep learning models. It has the following pros and cons:

Information Technology Engineer 31 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

– (+) All of its functions can be modified if needed.

– (+) Can be used on the most known Operative Systems: Windows, Linux, and
MacOS.

– (-) It does not support AMD GPUs. Only works with Nvidia at the moment
of working with the GPUs, instead of CPUs.

• Keras [45]: An open source neural network library capable of running on top of
tensorflow, Microsoft Cognitive Toolkit, and Theano. Designed to a fast immersion
on deep neural networks. It has the following pros and cons:

– (+) Keras models can be easily deployed on many platforms: iOS, Android,
Windows, Google Cloud, Raspberry Pi, etc.

– (+) Keras supports multiple backend engines (not only tensorflow) and thus,
does not press the user into a single ecosystem.

– (-) As it is in the case of tensorflow, keras also does not support AMD GPUs
for distributed training.

• Python 3.7: It is an interpreted, interactive, and object-oriented programming
language. this programming language fuse modules, exceptions, dynamic typing,
very high level dynamic data types, and classes. It has the following pros and cons:

– (+) It holds an extensive support base thanks to the fact that it is open source
and community developed.

– (+) Nowadays, there exist a great amount of automation, data mining, and big
data platforms that rely on Python. A clear example is tensorflow and keras.

– (-) It is not a good choice for memory intensive tasks. This is because of the
flexibility of the data-types which Python offers.

• OpenCV [46]: It is a python library designed specifically to work with computer
vision tasks. It is commonly used to perform data pre-processing tasks. It is actually
a wrapper based on the original C++ library. It has the following pros and cons:

– (+) Since it is based on C/C++, its algorithms can be executed through the
GPU of the computer, making it faster.

– (+) The library was designed to work effectively with a low computer ram
usage.

– (-) Due to the fact that this version of OpenCV is written in python. It does
not provide the same ease of use when compared with other programming
languages (MATLAB).

• Pygame [47]: An open source python library created to develop multimedia
applications. Its programming language simplicity is what allows to work together
with the any of libraries that can be needed. It has the following pros and cons:

Information Technology Engineer 32 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

– (+) It requires less assembly than other libraries at the moment of start devel-
oping programs or applications.

– (+) As it is developed in Python, it can work all together with all types of
libraries, either for computer vision or artificial intelligence, etc.

– (-) Pygame with python is not the easiest library/language to distribute apps.
Python is also not necessarily very high performance, meaning that it wont
work on many platforms directly.

3.1.2.2 Hardware Resources:

Based on the premise that this work is an exploratory study with research purposes.
Training and Validation use available hardware resources, so those tasks are performed
on a laptop computer with the following specs:

• Intel Core i7 8th Generation.

• Nvidia MX 150 Max Q

• Ubuntu 18.04 Operative System

• 16 GB Ram

3.2 Design and Implementation

In this stage, firstly, the proposed CNN model is designed. Then, all of the coding part
takes place. Once the best network options were explored on previous chapter, next step
is to implement each one of them, based on the selected frameworks/libraries, in terms
of programming. This means that, by the end of this stage, all of the networks have
been correctly created and will be ready to start working with different experiments for
improvement purposes.

3.2.1 New Approach: FrankensNet

FankensNet is the proposed CNN architecture for video frame classification. It aims to
unite the advantages of the best networks studied previously and ones from DenseNet [4],
a logical extension of ResNet, that will be explained in the current section.

3.2.1.1 Definition of FrankensNet Architecture

In order to keep the advantages of DenseNet [4] (see Fig. 2.10), the layers responsible
for feature-extraction were maintained and the classification layers were changed by new
modules that will be explained below:

Information Technology Engineer 33 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

(a) FrankensNet (b) Bifurcation Block (c) Main CLassifier

Figure 3.2: FrankensNet Architecture

All the constructions related to inception models [1], [5], [48] use modules which per-
form a combination of several convolution with different sizes in order to obtain varied
spatial information, with this idea, the research project proposes a module that will pro-
cess the feature maps of the previous layer in different ways in order to obtain different
types of information.

At this point it is important to find a way to process and reduce the large amount of
information obtained by Dense Blocks (Fig. 2.10(a)) on previous layers, for this reason the
best option to choose is the Inception Blocks that meet these characteristics, several ways
of obtaining spatial information and dimension reduction, specifically Inception Modules
B (Fig. 2.6) and C (Fig. 2.7) according to [1] using these factorizations do not work well
in the first layers.

Bifurcation Block 3.2(b) consists of 4 branches, 3 of which are divided into 3 groups,
m Inception Modules B, one MaxPooling, and n Inception Modules C, respectively. The
values of m and n depend on the branch. In practice, branch 1 has m = 4 and n = 2,
branch 2 has m = 3 and n = 3, and branch 3 has m = 2 and n = 4. Branch 4 consists of

Information Technology Engineer 34 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

two 3 × 3 convolutions this because the four outputs must have the same dimensions to
be able to concatenate them.

On Main Classifier 3.2(c), a max pooling and an average pooling are performed in order
to extract the most important features and in a smoothest way. Its result is concatenated
and flattened to be passed to a FC with ReLu activation, and Dropout the 0.3 to then
pass to a FC with Softmax activation which will be the output layer.

3.2.1.2 Advantages and Disadvantages

FrankensNet has the following improvements and deficiencies:

• (+) It takes advantage of the qualities of the Densenet by obtaining and re-using as
much information as possible on the first layers [4].

• (+) It uses Inception Modules in order to better process information with different
spatial information. Thus, it reduces dimensionality of information through different
pooling sections [1].

• (-) It requires a greater number of parameters to train. When compared with
Inception V-3 [1] and ResNet-50 [2], it quadruple the value.

• (-) It needs more computational resources to function properly [2].

3.2.2 Implementation of CNNs Models

Here are presented the steps needed to implement the explored and proposed CNN models
using software tools established in Section 3.1.2 bases.

• Identify the different types of layers that the architecture must contain. For example,
convolutional, fully connected, max pooling, etc.

• It must be taken into consideration that a layer parameter might differ in an specific
section of the architecture, for example the kernel sizes, padding values, among
others.

• Next, it is necessary to establish the structure, this means how layers are going to
be ordered all along the network. A great example can be seen on Fig. 3.2.

• In some cases, as it is with Inception V-3 [1] and ResNet-50 [2], it can be of great
help to define specific blocks according to the requirements of each network. They
are often created with the purpose of improving the organization when implementing
the network, and through this, optimizing time.

• Finally, it is possible to achieve the network implementation successfully.

The implemented code of all the models are available in B.1. Nevertheless, the script
used to create FrankensNet can be found in this project on the appendix section B.2.

Information Technology Engineer 35 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

3.3 Data Preparation

3.3.1 Dataset

According to the anomalies established with detection purposes, UCF-Crime Dataset [6]
is used. On Appendix section A.1, it can be seen that this is actually the only dataset
containing this type of videos with its different crime classes, and even more, containing
that amount of information.

The main features of this video surveillance dataset are the following:

• It contains 13 classes in total: Abuse, Arrest, Arson, Assault, Road Accident, Bur-
glary, Explosion, Fighting, Robbery, Shooting, Stealing, Shoplifting, and Vandalism.
Fig. 3.3 shows some video frames belonging to each class.

• In total, it consists of 1900 real-world surveillance videos, all obtained on different
environments and places, and each one containing an specific realistic anomaly.

• This leads to a total of 128 hours of videos.

• If all of the dataset is downloaded, it is required a total of 100 GB of storage capacity.
This is due to the great amount of videos gathered.

Figure 3.3: UCF-Crime Dataset Categories [6]

Information Technology Engineer 36 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

3.3.2 Pre-processing

Before entering the images into the network for training purposes, a set of pre-processing
operations are applied to them in order to obtain cleaner information. For example, by
removing noise from images or to sharpen its edges.

For this project, three different techniques have been applied to identify each scene,
enhance images, and augment data, as explained below:

• Data Labelling: Prior to any computer vision pre-processing task, it is decisive
to make the annotations of each video in order to differentiate the abnormal scenes
from the normal ones. For this, it is necessary to manually describe the parts of
each video containing an anomaly. Then, the remaining parts of the video are used
to fulfill the normal scenes information.

• Data Augmentation: It allows to enlarge the variety of data available to train an
specific model, without really gathering new information. After using this technique,
it is expected that the accuracy of the network will be enhanced. For this project,
only 2 operations will be passed down:

– Rotate: The image is being rotated about its center by an specified number
of degrees.

– Crop: This operation consists on removing unwanted areas on the image and
stay only with the important area.

Information Technology Engineer 37 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

(a) Original Image (b) Zoomed Image

(c) Left Rotated Image (d) Right Rotated Image

Figure 3.4: Data Augmentation operation on UCF-Crime dataset [6]

• Contrast Limited Adaptive Histogram Equalization (CLAHE): Commonly
used to improve contrast in images. This is achieved by elongating the most fre-
quent intensity values. This technique is used in the first step in order to grant
areas of lower local contrast to achieve a higher contrast overall and to avoid over
amplification related to noise.

Information Technology Engineer 38 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

(a) Original Image (b) Image with CLAHE

Figure 3.5: CLAHE example on UCF-Crime dataset [6]

• Median Filter: It is a digital filtering technique, used to remove noise from
an image or signal. Explicitly, the median filter works by replacing a pixel by the
median of all pixels in a given neighborhood. One of the main advantages of using
this filter as the second step, is that it keeps the edges while removing noise from
the image.

(a) Original Image (b) Image with Median Filter

Figure 3.6: Medial Filter example on UCF-Crime dataset [6]

• Unsharp Masking: It is an image processing technique used to sharpen images.
This is done by obtaining first, the Laplacian of the image, which corresponds to the
second derivative, and later removing the previous Laplacian obtained from the orig-
inal image. This is the third and final step because it enhances the edges, along with

Information Technology Engineer 39 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

the median filter, in order to improve information obtained from videosurveillance
cameras.

(a) Original Image (b) Image with Unsharp Masking

Figure 3.7: Unsharp Masking Example on UCF-Crime dataset [6]

3.4 Parameter Settings

This stage determines which are the hyperparameter values that best fit the network to
improve its accuracy and thus, its effectiveness, such as learning rate and batch size. The
main definition and importance of each hyperparameter is already established on sub-
section 2.4.1. Nevertheless, it is important to remark once again that determining the
optimum values of the hyperparameters is crucial, because only this way, the greatest
possible accuracy will be achieved by each network for anomalies detection. The hyper-
parameters are adjusted by experimental tests described in section 4.5.

3.5 Training

Once it is established which are the best hyperparameters for each architecture, along
with data handling processes in terms of data augmentation and pre-processing tasks on
previous stage. Here, network’s training process starts. This means that they will learn
how to solve tasks which have been assigned to them (in this case, anomaly detection)
and then being tested to calculate its performance.

The training implemented code for FrankensNet is described in section 4.1 and the
corresponding code of all the explored CNN models are available at B.1 .

Information Technology Engineer 40 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

3.6 Validation

This part contains the implemented code to determine the precision and accuracy of each
network. Furthermore, tests are analysed based on metrics settled in section 4.3, e.g
training time, false positive rate, true negative rate, etc. In the end, all of the information
gathered from different tests is stored for subsequent analysis purposes.

When the training phase is done, each model contains the weights learned during the
training. In order to use the model trained it is indispensable to make an script which
must be able to load the weights of the model, and an specific video to start with detection
tasks.

Due to the study presented on section 2.5.1, FrankensNet Model will be compared with
Inception V-3 [1] and ResNet-50 [1], which have been implemented and executed similar
sequences of the new proposed model. The validation implemented code for FrankensNet
is described in section 4.2 and the corresponding code of all the explored CNN models
are available at B.1.

3.7 Implementation of a Graphical UI for an Anomaly

Detection Prototype

In order to provide a tool available to use trained CNNs models, this work implements a
user interface for anomaly detection in real scenarios. To run the user interface prototype
it is required the following:

• A computer which has installed Python 3.7 on it.

• OpenCV, Keras, Tensorflow and Pygame libraries.

• Video surveillance footage have to be stored on the computer.

• All of the weights obtained from training process must be saved on the computer.

Information Technology Engineer 41 Final Grade Project

Chapter 4

Experimental Setup

In this chapter, training and validation implementation, as well as the metrics and the
applied tests to explore the performance of Inception V-3 [1], ResNet-50 [2], and Franken-
sNet (proposed approach) are described.

4.1 Training Implementation

Here are presented the steps needed to train a network:

• Establish the following parameters: directories where train and validation images
are located, batch size, height and width of the images, dropout, number of epochs,
and learning rate.

• Generate train and validation data. This step is needed to create an input that is
accepted by an specific model.

• Establish the behaviours that will be occurring on this process. For example, to
save information of accuracy and loss from each epoch, plot figures at the end of
the training, etc.

• Finally, establish where is going to be stored the trained model for future tasks.

The script used to train a model can be found on B.3

4.2 Validation Implementation

Once the model has been trained, by following the steps specified on previous section, it
is time to qualify the network in terms of the metrics established on section 4.3.

Each model validation is performed in the following way:

• Determining training time of the network, already given one the training process
concluded.

42

School of Mathematical and Computational Sciences YACHAY TECH

• Obtaining the network’s final accuracy, loss, validation accuracy and validation loss
during training process.

• Retrieve false positive, false negative, true positive and true negative rate. Taking
in consideration this:

– False positive: When an anomaly is not happening on the scene, but the
model consider it as one.

– False negative: When an anomaly is happening on the scene, but the model
does not detect it.

– True positive: When an anomaly is happening on the scene, and the model
does actually consider it as one.

– True negative: When an anomaly is not happening on the scene, and the
model does not detect one.

• Establishing if the network is able to perform detection tasks in real time.

The corresponding validation code of all the explored CNN models are available at
B.1, they are not presented here because of its size.

4.3 Metrics

To establish a performance comparison among these 3 different architectures designed for
video classification, the metrics established corresponds to the following:

• Training time: This metrics is very useful because it will allow to understand the
time it takes a given network to start working properly.

• False positive, False negative: Given the fact that an alarm system is being
sought, knowing the different rate (When something that it is not an anomaly is
considered as an anomaly, a fake detection, etc) will determine if the network can
be used for this task.

False Positive rate:
FP

FP + TN
(4.1)

False Negative rate:
FN

FN + TP
(4.2)

• True positive, True negative: They allow to understand when the network is
detecting anomalies and the cases when an anomaly appears on the scene but the
network is not able to detect it, respectively.

True Positive rate (TPR):
TP

TP + FP
(4.3)

Information Technology Engineer 43 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

True Negative rate (TNR):

TN

TN + FN
(4.4)

• Accuracy: It corresponds to the fraction of the correct predictions over the total
number of predictions. It is calculated with the following formula:

TP + TN

TP + TN + FP + FN
(4.5)

• ROC curve: Based on the values obtained previously, this will allow to determine
the performance of a classification model at all classification thresholds. It is rep-
resented by two parameters: TPR and FPR. It illustrates how much a model can
distinguish between classes.

4.4 Data Preparation:

Dataset used corresponds to a 20 % total of the UCF-Crime dataset [6] described in
section A.1. In this project, the number of anomalies was reduced to only 3 categories:
abuse, arrest, and assault. This decision has been made mainly for two reasons:

• Optimization of resources: The computer on which all the experiments are
going to be performed (mentioned on section 3.1.2.2) has to be able to work effec-
tively with all of the information collected for the network and its operations. If
more categories were used, it would not be possible to perform the experiments as
expected and lead to errors related to the lack of memory or space in the computer.

• Low accuracy avoidance: Only the three more similar anomalies were chosen
in order to avoid the network to over-learn very specific cases of anomalies and
work in an environment with more general information instead. For this reason,
categories like road accidents or explosions were ignored, so that there is not so
much variability of information. This is intended to gain network accuracy.

4.4.1 Data Augmentation:

4.4.1.1 Rotate:

In this case, the number of degrees corresponds to a value of 4 degrees to the left and
4 degrees to the right. The reason of choosing these values is because it is not sought
to alter the original image too much and still make it look as it is being obtained from
videosurveillance cameras. The function, created on python with the use of OpenCV
library can be seen on B.4.

Information Technology Engineer 44 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

4.4.1.2 Crop:

Prior to anything, the image size is of 224x224 pixels. The parameters used for this
operation were: y1=10, y2=210, x1=10, and x2=210. These parameters were selected
because main information is located on areas near the center of the image in most cases.
Once again, the function, created on python with the use of OpenCV library is on B.5.

4.4.2 Data Pre-processing:

4.4.2.1 Contrast Limited Adaptive Histogram Equalization

Here, the gridsize was established to a value of 8 (already set by default). This parameter
refers to the size of rectangular tiles in which original image is going to be divided, in this
case tiles of 8x8. The code used to perform this task can be found on B.6.

4.4.2.2 Median Filter & Unsharp Masking

Parameters used here correspond to: sigma=0.5, and strength=0.8. Sigma value helps to
control the action of the median filter, while strength adjust the amount of the second
derivative of the image that is required to be added or removed. Both parameters were
established by default. The code used to perform both tasks is located on B.7.

4.5 Experiments

To establish the best parameters settings, a set of experiments were performed on each
of the networks using prepared dataset, focused mainly on testing different values for the
learning rate and batch size to choose the best option. In addition, based on the metrics
given on section 4.3, the rest of the experiments will allow to analyze the performance of
each model. For example, determining a networks training time, accuracy and precision,
etc.

4.5.1 Experiment 1: Inception V-3 Settings

First part of the experiment is to select the best learning rate value for the network.
In this case, 3 different values will be selected for the learning rate: 0.001, 0.0001, and
0.00001. Those values are close to those set by default [1]. Thus, the network will have
the following parameters established:

• Batch Size: 100.

• Height and Width of the image: 224. These values were used in order to reduce
training time and the total of operations to be performed.

• Number of Epochs: 3. It is advisable to perform the experiment with an smaller
number of epochs than in the final training.

Information Technology Engineer 45 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• Dropout: 0.5. A value set by default for the network in order to prevent CNNs from
overfitting.

• Total number of Images used: 80000. Not all of the images are necessary in this
part of the experiment. For this reason, the number was reduced by a third of the
total.

Once the best learning rate is selected, next step is to find the best value for Batch
Size. Again, 3 experiments will be performed by using the following Batch Sizes : 100,
200, 300. Those values were also selected because they are close to the ones by default.

4.5.2 Experiment 2: ResNet-50 Settings

In the first place, the purpose of the experiment is to select the best learning rate value for
the network. In this case, 3 different values will be selected for the learning rate: 0.0001,
0.00001, and 0.000001. It can be seen that these values differ a little from the ones used
on Inception V-3 experiments, this is because such values were selected taking as reference
the the ones used on [1] . In addition, those values are close to the ones set by default for
the network [2]. Thus, the network will have the following parameters established:

• Batch Size: 100

• Height and Width of the image: 224. These values were used in order to reduce
training time and the total of operations to be performed.

• Number of Epochs: 3. This experiment should not be executed to perform all
epochs. It is given only to fine tune parameters.

• Dropout: 0.5. A value set by default for the network in order to prevent CNNs from
overfitting.

• Total number of Images used: 80000. The number of images was reduced by a third
of the total to avoid excessive training time for this experiment.

Once the best learning rate is selected, next step to proceed is to find the best value
for Batch Size. Again, 3 experiments will me performed by using the following Batch
Sizes : 100, 200, 300. As with the learning rate, those values are similar to the ones set
by default for the network.

4.5.3 Experiment 3: FrankensNet Settings

Quite similar to the first two experiments, the best learning rate value for the network is
being sought first. In this case, 3 different values will be selected for the learning rate:
0.001, 0.0001, and 0.00001. Once again, it can be seen that these values are similar to the
ones used on Inception V-3 experiments, and given the fact that the network is actually
using the best features of each model, those learning rates were chosen. Thus, the network
will have the following parameters established:

Information Technology Engineer 46 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• Batch Size: 100

• Height and Width of the image: 224. As in the previous experiments, to reduce
training time and the total of operations to be performed.

• Number of Epochs: 3.

• Dropout: 0.5. Set by default for the network in order to prevent CNNs from over-
fitting.

• Total number of Images used: 80000. To fine tune the parameters it is not necessary
to use the complete set of images.

Once the best learning rate is selected, next step to proceed is to find the best value
for Batch Size. Again, 3 experiments will me performed by using the following Batch
Sizes : 100, 150, 200. the values were chosen by taking into account the ones used for
Inception V-3 and ResNet-50.

4.5.4 Experiment 4: Training Time / Execution Time

This experiment determines the time it takes a single network to completely finish the
training process, as it is explained on section 4.1. The number of images that are going
to be used in this part is of 250.000 in total. In addition, its execution time will also be
tested, given the fact that the model should be able to perform classification in real time
to work alongside with the desktop program.

4.5.5 Experiment 5: FP/FN rate, TP/TN rate

This experiment performs the calculations to obtain values of False Positive, False Neg-
ative, True Positive, and True Negative Rates. The experiment is done in the following
steps:

• From a set of videos, each one is going to be decompressed into a stack of images
to later predict its class with the network.

• Once the model have made the prediction, its correctness is verified automatically,
and a value of 1 will be added to the corresponding type, based on if the prediction
was correct or incorrect.

Information Technology Engineer 47 Final Grade Project

Chapter 5

Results

Here, the results of all the experiments described in section 4.5, one by one, are presented
through tables and figures statistical measured based on metrics defined in section 4.3 .

5.1 Experiments

Given the fact that for this research project, 5 experiments were performed, their results
are presented in the posterior subsections.

5.1.1 Experiment 1: Inception-V3

Table 5.1 denotes the results obtained when performing three experiments, each one with
a different learning rate. This allows to determine which value used for the learning rate
will fit better to improve accuracy of the network.

Learning Rate 0.001 0.0001 0.00001
Inception-V3 Accuracy 57.59% 79.43% 80.27%

Table 5.1: Experiments performed on Inception-V3 with three different Learning Rates

First, it can be seen that the lowest accuracy value was obtained with a learning rate
of 0.001. Thus, the maximum accuracy value was achieved with a learning rate of 0.00001.
Nevertheless, not everything is good because the lower the learning rate, the greater will
be training time. However, given the fact that this work is looking for the best accuracy
(due to anomaly detection tasks), the smallest learning rate value was selected. Next step
is to determine which batch size, along with the learning rate already settled, is the best.

Batch Size
(with LR of 0.00001)

100 200 300

Inception-V3 Accuracy 80.27% 79.88% 79.41%

Table 5.2: Experiments performed on Inception-V3 with three different Batch Sizes

48

School of Mathematical and Computational Sciences YACHAY TECH

Now, based on Table 5.2, it can be observed that the minimum accuracy was obtained
with a batch size of 300. This is understandable because in practice, the greater the batch
size, the lower will be the accuracy. For this reason, when using a batch size of 100, the
maximum accuracy was achieved. Of course, this value is not that distant from the one
obtained with a batch size of 200. Similar to the learning rate, the smaller the batch size,
the longer will be training process.

Figure 5.1: Minimum Accuracy. Parameters: LR=0.001 ; BS=100

On Fig. 5.1 can be observed how accuracy changes through each step in an epoch
until the minimum is obtained. The main aspect that can be denoted here is how volatile
are these changes, meaning that they do not necessarily follow a pattern.

Information Technology Engineer 49 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.2: Maximum Accuracy. Parameters: LR=0.00001 ; BS=100

Finally, as it can be seen on Fig. 5.2, it shows how accuracy values changed through
each of the 3 epochs. Above all, on the first epoch can be seen how values begin to
stabilize after the first steps on an smaller range (60% - 90%). Nevertheless, on epoch
2 and 3, range keeps diminishing until staying between 70% -90% and this explains why
the maximum value of accuracy was 89%.

5.1.2 Experiment 2: ResNet-50

As it can be seen on Table 5.3, a set of 3 experiments were tested on the network using
different learning rate values. Here, it can be observed that the minimum accuracy is
obtained with a learning rate of 0.000001. With this learning rate, the network was not
able to learn adequately. On the other side, the maximum accuracy is achieved with a
learning rate of 0.00001. It is important to remark that this learning rate value is the
same winner as in the case of Inception V-3. Additionally, the maximum accuracy does
not differ too much from the second winner, but as the maximum accuracy is being sought
for the network, although training time will be longer, learning rate of 0.00001 is selected.

Learning Rate 0.0001 0.00001 0.000001
ResNet-50 Accuracy 89.46% 90.38% 83.77%

Table 5.3: Experiments performed on ResNet-50 with three different Learning Rates

Next experiment is focused on the batch size. In this case, based on the best learning
rate value obtained from previous experiment (0.00001), different batch size values were
tested in order to choose the advantageously option.

Information Technology Engineer 50 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Batch Size
(with LR of 0.00001)

100 200 300

ResNet-50 Accuracy 90.38% 89.89% 89.43%

Table 5.4: Experiments performed on ResNet-50 with three different Batch Sizes

Once again, as it can be seen on Table 5.4, results are quite more interesting. Each
accuracy obtained on the second part of the experiment is considerably good and none
of them differ too much between them. Nevertheless, only when using a batch size of
100, accuracy exceeded 90%, becoming the winner on this experiment. In addition, when
using this batch size, training time lasts longer, but computational memory resources are
reduced. Having said that, a batch size of 100 and learning rate of 0.00001 are the best
options for our detection requirements.

Figure 5.3: Minimum Accuracy. Parameters: LR=0.000001 ; BS=100

On Fig. 5.3 appears how accuracy changed on each epoch using the parameters that
obtained the minimum value. Nevertheless, unlike the case of Inception V-3, this time
accuracy shows a more common behaviour, meaning that values augment progressively
and not just at random. This implies that the network has a more robust architecture
to work with this types of information, referring to the residual block that allows the
network to transfer more information on the learning process.

In the end, Fig. 5.4 shows how the model using the optimum parameters achieved the
maximum accuracy after 3 epochs. Very similar to the previous case, on the first epoch
happens the biggest changes. Finally, on epoch 2 and 3 accuracy begins to stabilize into
an smaller range of values until the maximum was obtained.

Information Technology Engineer 51 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.4: Maximum Accuracy. Parameters: LR=0.00001 ; BS=100

5.1.3 Experiment 3: FrankensNet

Based on Table 5.5, in the same way that the two previous cases were made, it can be seen
that 3 experiments were performed first, each one with a different learning rate. Now,
referring to the results obtained in this part, the minimum accuracy was achieved when
using a learning rate of 0.00001. This happens to be a good result because, since this
learning rate had the worst accuracy, it was not taken into account for the final training,
thus training time gets reduced. On the other side, the maximum accuracy was obtained
with a learning rate of 0.001, also being a good result because, being this learning rate
the smaller of 3, it had the best capability to learn more appropriately, and the difference
of accuracy achieved is quite great when compared with the minimum value.

Learning Rate 0.001 0.0001 0.00001
FrankensNet Accuracy 89.97% 89.03% 83.68%

Table 5.5: Experiments performed on FrankensNet with three different Learning Rates

From previous step, it was established that a learning rate of 0.001 happens to be
the best option, in terms of accuracy, for our model. Now, on the second part of the
experiment, the best batch size value for the model is being needed, of course also based
on accuracy.

Very similar to the previous cases, it can be observed on Table 5.6 that three more
experiments were performed. This time, all of them with the same learning rate of 0.001,
but each one of them with a different batch size. Here, all the different values of accuracy
obtained are very close to each other. Now, the minimum accuracy is achieved with a
batch size of 100. This is a behaviour that was not expected because, as it could be

Information Technology Engineer 52 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Batch Size
(with LR of 0.001)

100 150 200

FrankensNet Accuracy 89.97% 90.23% 90.73%

Table 5.6: Experiments performed on FrankensNet with three different Batch Sizes

observed that both batch size winners on Inception V-3 [1] and ResNet-50 [2] correspond
to 100 (the smaller of 3). Nevertheless, with FrankensNet is different, the greatest batch
size obtained the best accuracy. On two cases, accuracy exceeded 90% and the lowest
accuracy was also very close to this value.

Figure 5.5: Minimum Accuracy. Parameters: LR=0.00001 ; BS=100

Fig. 5.5 shows how accuracy behaved throughout the entire experiment when the min-
imum value was achieved. These values are much more stable than the ones obtained in
the case of Inception V-3 with the worst accuracy. Notwithstanding, the greatest changes
happens only on the first epoch, on epoch 1 and 2, accuracy keeps augmenting but in a
much smaller percentage.

Finally, on Fig. 5.6 can be observed the behaviour of accuracy on the experiment that
obtained the maximum value in a total of three epochs. As in the worst accuracy case,
values change widely only on first epoch. From here on, accuracy begins to stabilize in
an smaller range of values. Nevertheless, on the last epoch of the experiment, there was
a great descent on the first steps until accuracy started to improve again.

Information Technology Engineer 53 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.6: Maximum Accuracy. Parameters: LR=0.001 ; BS=200

In summary, gathering all the results obtained from the first three experiments on
each model, the following bar charts are presented, the first one focused on the learning
rate, and the second one on the batch size.

Figure 5.7: Results of learning rate experiments 1, 2, 3

Fig. 5.7 denotes the accuracy obtained by Inception V-3, ResNet-50 and FrankensNet

Information Technology Engineer 54 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

on each test related to the learning rate. In general, it is observed that the lowest ac-
curacy value was obtained by Inception V-3 on the first experiment, while the greatest
value achieved was given by the ResNet-50 model.

Figure 5.8: Results of batch size experiments 1, 2, 3

Then, on Fig. 5.8 appears now the accuracy obtained on the second part of the
experiments, which is based on the batch size. Once again, the loser in this case was
Inception V-3, achieving a maximum accuracy on test 1 with a 80.27%, but still, it is far
away from the winner and the second place, where ResNet-50 surpassed a 90% accuracy,
followed by FrankensNet very close to it with a 89.97%.

5.1.4 Experiment 4: Training Time / Execution Time

Training time allows to understand how much time does it take a network to learn properly
how to solve a given task. This of course, in terms of accuracy

Model Training Time Execution Time Final Accuracy
Inception V-3 1 day, 13:48:22 0.155579 84%
ResNet-50 2 days, 3:02:27 0.086877 91%
FrankensNet 5 days, 2:17:52 0.236781 92%

Table 5.7: Model’s Training Time

Based on Table 5.7, it can be seen that Inception V-3 is the winner in terms of training
time. Nevertheless, its accuracy is also the lowest one obtained among all models. On

Information Technology Engineer 55 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

the other side, ResNet-50 and FrankensNet achieved almost the same accuracy after two
epochs, but with the difference that the time it took to train FrankensNet model doubles
the time used for ResNet-50. This fact is important because depending on whether if the
best accuracy is being wanted, or just to choose the model that takes less time to train,
different options exist.

Now, based on the same table, the column of Execution Time can also be seen. It
shows how much time it takes a network to classify a single frame. Here, ResNet-50 [2]
becomes the absolute winner at the moment of classifying a frame in the shortest time,
with only 0.08 seconds. The worst case scenario occurs with FrankensNet, taking the
model almost three times than the one required by the winner. This is due to the fact
that FrankensNet contains more layers, and therefore more operations to be performed,
until all the information is gathered to obtain the final model. Inception V-3 [1] is at an
intermediate point between the two models, using in average 0.16 seconds to classify a
single frame.

5.1.5 Experiment 5: FP/FN rate, TP/TN rate

On table 5.8 can be observed all the values obtained from each model to test its effi-
ciency. From a total of 61.012 frames used for this experiment, it seems that ResNet-50
[2] overcomes Inception V-3 and FrankensNet, in terms of True Positive results, and also
achieving the lowest False Positive value.

Model Inception V-3 ResNet-50 FrankensNet
True Positive 6578 14188 7691
False Positive 6391 3771 6043
True Negative 23061 26615 28367
False Negative 24982 16438 18911

Table 5.8: Models predictions

From the previous results obtained, and now based on the metrics used on section 4.3,
the Table 5.9 shows the rates obtained from each classification type.

Model Inception V-3 ResNet-50 FrankensNet
TPR 50% 79% 56%
FPR 50% 21% 44%
TNR 48% 68% 60%
FNR 52% 32% 40%

Table 5.9: Classification Rates

Here, it can be seen that ResNet-50 is the winner, achieving a 79% value of accuracy
on True Positive and a 68% on True Negative. The worst case occurs on Inception V-3,

Information Technology Engineer 56 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

where it seems that the network is guessing the result with a a value that is near or equal
to 50%. Finally, not too far away from Inception V-3 classification accuracy, FrankensNet
appears, where its True Positive rate slightly increases, but on the True Negative clearly
overcomes the worst case by reaching a 60% on correct classification.

5.2 Additional Results

5.2.1 Overall results

First, lets analyze how accuracy behaved until reaching its top value on each model.

Figure 5.9: Model’s Accuracy: Epoch 0

On Fig. 5.9 can be observed the model’s accuracy on the first epoch. Something
very interesting here is how unstable are Inception V-3 (green) accuracy changes when
compared to ResNet-50 and FrankensNet. It clearly looks from the beginning how the
last two models accuracy starts to stabilize and reducing its range of values, something
that does not occur with Inception V-3 at any point given.

Then, on Fig. 5.10 this work shows the results obtained on accuracy on the final
epoch. In this case, once again Inception V-3 appears not to have too much control on
those accuracy changes, they are still too volatile. Nevertheless, FrankensNet and ResNet
seem to still grow in an small course, but they both have their values stabilized without
too many abrupt changes.

Now, lets focus on the loss obtained by each model. In practice, loss is expected to
be minimized during the training of a given model. Here, the lower the loss value is, the

Information Technology Engineer 57 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.10: Model’s Accuracy: Epoch 1

Figure 5.11: Model’s Loss: Epoch 0

closer will be our predictions to true labels.

On this part, Fig. 5.12 shows the different Loss values obtained throughout the first
epoch. It appears that the three models start from a point in common. Nonetheless, while
the steps continue to increase, it starts to be noticed a big difference between Inception
V-3 and the other models, and a slight difference between ResNet-50 and FrankensNet,
but with better results.

Information Technology Engineer 58 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.12: Model’s Loss: Epoch 1

Finally, on the last epoch which can be seen on Fig. 5.12, it looks how Loss values
are also stabilizing on a given range of values. The most important aspect here is how
ResNet-50 and FrankensNet are still winning the race in terms of loss, achieving the lowest
values when compared to Inception. This means that the predictions are expected to be
highly accurate.

ROC curve allows to graphically represent sensibility (TPR) and specificity (FPR) of
a binary classifier. with the values already obtained on section 5.1.5. ROC curve can be
graphed.

Fig. 5.13 represents each model’s ROC curve. It can be seen that ResNet-50 is the
optimum choice to perform this task. Such results are very interesting, because ResNet-
50 and FrankensNet achieved almost the same accuracy when training an specific model.
Nevertheless, ROC curve shows the low predictive capacity of FrankensNet caused by the
data size.

5.2.2 A Graphical UI for an Anomaly Detection Prototype

This part covers the development of a desktop program (written in python). The purpose
of the program is to provide a user interface to test how each model works with anomaly
detection tasks in real time. It works as follows:

Information Technology Engineer 59 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.13: ROC curve

Figure 5.14: Anomalous Detection options

Fig. 5.14 illustrates the first window showed to the user. Here, the user can select the
model to perform the anomaly detection, and also select if he wants to test a whole set
of videos already established or select only one.

Information Technology Engineer 60 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.15: Anomalous Detection in real time

Once the model or models have been selected along with the videos to work with, a
new window will appear. As it can be seen on Fig. 5.15, on top left screen’s side appears
the video scene to be classified. On the right appears the prediction values which each
model achieves for anomalous and normal scenes. Finally, on left bottom are presented
the different values obtained from each model referred to True Positive, True Negative,
False Positive and False Negative. Here, it is important to mention that when only one
model is being used to classify, it can be done in real time. Nevertheless, when more than
1 model is being used at the same time, the real-time detection feature will be lost.

In addition, a google site is developed with the complete information of this degree thesis.
The information of this website is described in the appendix B.1.

Information Technology Engineer 61 Final Grade Project

Chapter 6

Conclusions and Future work

6.1 Conclusions

In general terms, this chapter presents a summary of every step needed to fulfill this work,
starting from the literature review, followed by the implementation of different models,
and finally the experiments done for improvement and evaluation purposes. At the end,
this works shows an overall conclusion and future work in this area of interest.

• In the last decades, several deep learning approaches have been presented for video
classification because of its successful reached in object recognition, image classi-
fication, pattern recognition, among others. However, those techniques still face
some challenges in video classification due to a set of factors, such as capturing the
spatial-temporal information adequately.

• After literature review, Inception V-3 [1], and ResNet-50 [2] were selected, later to
be compared against our proposed FrankensNet. Such models were selected under a
comparison study of accuracy, depth (number of layers) and number of parameters
of each one. Its implementation was done by using 3 different tools: Python, Keras,
and Tensorflow. The last 2 corresponds actually to Python deep learning libraries.
Both of these libraries does not require too much time to invest on learning how
to the, instead they were quite user friendly and uncomplicated to understand.
All the networks were implemented using Python programming Language and its
libraries. Due to the facilities that the libraries offer, there were no great difficulties
to correctly define each model on its construction.

• A CNN requires a wide range of data to be trained and in many cases the data for
specific applications are not available or if it exists, it does not contains labels. This
problems become very time consuming. Particularly, for this project, the dataset
used was carefully picked in order to adapt for anomaly detection application. In
addition, it was augmented, improved, and labelled with the purpose of building a
dataset appropriate for this work.

62

School of Mathematical and Computational Sciences YACHAY TECH

• CNN models have not been created with general purpose applications. Therefore,
their parameters must be adjusted to work adequately with an specific task. In
this case, for anomaly detection application, after tunning parameters, Inception
V-3 demonstrated to be the model that requires the less amount of time when
completing the given number of epochs in the shortest period. Behind Inception
V-3 also appeared ResNet-50, almost doubling its training time when compared to
the winner in terms of training time, but with the difference that its accuracy was
considerably improved, surpassing 90%. In addition, the new model proposed in
this research project (FrankensNet), happens to be the winner when testing the
accuracy achieved, surpassing very closely to ResNet-50. Nevertheless, its training
time was the longest between models.

• Besides, a program to provide a graphic user interface, created on python, was
presented. Each trained model can be loaded into the program to start with video
classification tasks. In addition, the option to select a specific video is also present
in the program. Due to the fact that the program only uses python, It can be used
on a different operating system than Ubuntu.

6.2 Future Work

In terms of accuracy, each network could be tested with many more learning rate and
batch size values. Due to limited computational resources, there was not the capability of
performing more of these experiments in order to improve accuracy. If in the future, such
resources are enlarged, it would be of great help to check if accuracy keeps increasing as
more tests related to parameter settings are performed.

In terms of the dataset used for this research project, it could be a great option to
work with a dataset containing information of videosurveillance cameras, but located in
Ecuador. This could result in obtaining a functional model and anomaly detection sys-
tem with the capability to work with Ecuadorian environments, referring to places of the
country itself. Thus, this would be of great help for different Government security systems.

Information Technology Engineer 63 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

6.3 Glossary

Here is presented a group of terms which are going to be found along the project.

• Classification: It is the set of categories (sub-populations) where a new observa-
tion belongs, on the basis of a training set of data containing observations.

• Convolutional Kernel: It consists of a small numerical matrix, mostly used in
image processing for blurring, sharpening, embossing, edge detection, etc.

• Convolutional Layer: It uses convolutional kernels in order to extract features
from input data through an activation map of that kernel.

• Convolutional Neural Network: It is a class of deep neural networks, in various
cases is applied to analyzing visual imagery.

• CPU: It is known as the central processing unit, it is the computer component
that is responsible for interpreting and executing most of the commands from the
computer’s hardware and software.

• Dataset: It is a collection of related sets of information that is composed of
separated elements but can be manipulated as a unit by a computer.

• Deep Learning: It is a subset of machine learning in artificial intelligence that
has networks capable of learning unsupervised from data that ins unstructured or
unlabeled.

• Deep Neural Network: It is a neural network with more than two layers.

• Feature Extraction: It is the generation of derived values coming from an
initial dataset, intended to be informative to facilitate the subsequent learning and
generalization steps.

• Feature Map: It is a matrix, or a set of matrices used for the mapping of where
a certain kind of feature is found on the image which can be considered of interest
for the Network.

• Gaussian Mixture Model: It is a probabilistic model that assumes all the data
points are generated from a mixture of a finite number of Gaussian distributions
with unknown parameters.

• Graphics processing unit (GPU): It is a computer chip that performs rapid
mathematical calculations, primarily for the purpose of rendering images. Also
widely use for deep learning purposes.

• FLOPS: Floating point operations per second, it is a measure of computer per-
formance, useful in fields of scientific computations that require floating-point cal-
culations.

Information Technology Engineer 64 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• ILSVRC: ImageNet Large Scale Visual Recognition Competition. There is a
competition every year.

• Hyperarameters: They are model-specific properties that are fixed before the
network model starts to train.

• Localization: It consists of finding/detecting where the object of interest is and
draw a box around it.

• One Class SVM: It is an unsupervised algorithm based on deep learning ap-
proaches which is commonly used for classification tasks.

• Output Layer: It refers to the final layer of the network which produces given
outputs for the program for future interpretation.

• Optimization: It is a process to find an alternative with the most cost effective or
highest achievable performance under the given constraints, by maximizing desired
factors and minimizing undesired ones.

• Over-Fit: A modeling error which occurs when a function is too closely fit to a
limited set of data points.

• Parameter: The parameters of a neural network are typically the weights of the
connections. In this case, these parameters are learned during the training stage.

• Post-processing: Term used for quality improvement image processing methods.

• Pre-processing: It refers to the transformations applied to input data before
feeding it to the algorithm. It is a technique used to convert the raw data into a
clean data set.

• Stride: It corresponds to the number of steps that the filter will move each time
on a given direction.

• Testing dataset: It is a dataset independent of the training dataset that follows
the same probability distribution as the training dataset to validation purposes.

• Training dataset: It is a sample dataset used for learning purposes to fit the
parameters (e.g., weights) of, for example, a classifier.

• Validation dataset: It is a dataset of examples used to tune the hyperparameters
(i.e. the architecture) of a classifier.

Information Technology Engineer 65 Final Grade Project

References

[1] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-
ception architecture for computer vision,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 2818–2826.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[3] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotempo-
ral features with 3d convolutional networks,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 4489–4497.

[4] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4700–4708.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[6] “Ucf-crime dataset (real-world anomalies detection in videos),” https://webpages.
uncc.edu/cchen62/dataset.html, Jun. 2019.

[7] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, and
S. Vijayanarasimhan, “Youtube-8m: A large-scale video classification benchmark,”
arXiv preprint arXiv:1609.08675, 2016.

[8] W. Sultani, C. Chen, and M. Shah, “Real-world anomaly detection in surveillance
videos,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 6479–6488.

[9] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human
action recognition,” IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 1, pp. 221–231, 2012.

[10] K. Soomro and A. R. Zamir, “Action recognition in realistic sports videos,” in Com-
puter vision in sports. Springer, 2014, pp. 181–208.

67

School of Mathematical and Computational Sciences YACHAY TECH

[11] A. Khaleghi and M. S. Moin, “Improved anomaly detection in surveillance videos
based on a deep learning method,” in 2018 8th Conference of AI & Robotics and
10th RoboCup Iranopen International Symposium (IRANOPEN). IEEE, 2018, pp.
73–81.

[12] D. A. Jenks and J. R. Fuller, Global Crime and Justice. Routledge, 2016.

[13] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-
scale video classification with convolutional neural networks,” in The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2014.

[14] D. C. Luvizon, H. Tabia, and D. Picard, “Learning features combination for human
action recognition from skeleton sequences,” Pattern Recognition Letters, vol. 99, pp.
13–20, 2017.

[15] S. Nadimi and B. Bhanu, “Physical models for moving shadow and object detection
in video,” IEEE transactions on pattern analysis and machine intelligence, vol. 26,
no. 8, pp. 1079–1087, 2004.

[16] D. Fleury and A. Fleury, “Implementation of regional-cnn and ssd machine learning
object detection architectures for the real time analysis of blood borne pathogens in
dark field microscopy,” MDPI AG, 2018.

[17] G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convolutional neural
networks for object detection in vhr optical remote sensing images,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 54, no. 12, pp. 7405–7415, 2016.

[18] M. Ribeiro, A. E. Lazzaretti, and H. S. Lopes, “A study of deep convolutional auto-
encoders for anomaly detection in videos,” Pattern Recognition Letters, vol. 105, pp.
13–22, 2018.

[19] M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed, and R. Klette, “Deep-anomaly:
Fully convolutional neural network for fast anomaly detection in crowded scenes,”
Computer Vision and Image Understanding, vol. 172, pp. 88–97, 2018.

[20] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in Proceed-
ings of ICML workshop on unsupervised and transfer learning, 2012, pp. 37–49.

[21] M. Sabokrou, M. Fayyaz, M. Fathy, and R. Klette, “Deep-cascade: Cascading 3d
deep neural networks for fast anomaly detection and localization in crowded scenes,”
IEEE Transactions on Image Processing, vol. 26, no. 4, pp. 1992–2004, 2017.

[22] “Ucsd pedestrian dataset,” http://visal.cs.cityu.edu.hk/downloads/ucsdpeds-vids/,
Jul. 2019.

[23] M. Bodén, “A guide to recurrent neural networks and backpropagation,” 12 2001.

[24] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-term
memory (lstm) network,” arXiv preprint arXiv:1808.03314, 2018.

Information Technology Engineer 68 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

[25] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” ArXiv
e-prints, 11 2015.

[26] S. Albawi, T. Abed Mohammed, and S. ALZAWI, “Understanding of a convolutional
neural network,” 08 2017.

[27] P. Arena, A. Basile, M. Bucolo, and L. Fortuna, “Image processing for medical
diagnosis using cnn,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 497, no. 1,
pp. 174–178, 2003.

[28] A. Shustanov and P. Yakimov, “Cnn design for real-time traffic sign recognition,”
Procedia engineering, vol. 201, pp. 718–725, 2017.

[29] Q. Zhang, J. Xu, L. Xu, and H. Guo, “Deep convolutional neural networks for forest
fire detection,” in 2016 International Forum on Management, Education and Infor-
mation Technology Application. Atlantis Press, 2016.

[30] H. Jiang and E. Learned-Miller, “Face detection with the faster r-cnn,” in 2017
12th IEEE International Conference on Automatic Face & Gesture Recognition (FG
2017). IEEE, 2017, pp. 650–657.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition chal-
lenge,” International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[32] M. Ravanbakhsh, H. Mousavi, M. Rastegari, V. Murino, and L. S. Davis, “Action
recognition with image based cnn features,” arXiv preprint arXiv:1512.03980, 2015.

[33] M. Jian, S. Zhang, L. Wu, S. Zhang, X. Wang, and Y. He, “Deep key frame extraction
for sport training,” Neurocomputing, vol. 328, pp. 147–156, 2019.

[34] X. Yan, J. Han, and R. Afshar, “Clospan: Mining: Closed sequential patterns in
large datasets,” in Proceedings of the 2003 SIAM international conference on data
mining. SIAM, 2003, pp. 166–177.

[35] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[36] G. Lorena, G. Robinson, P. Stefania, C. Pasquale, B. Fabiano, and M. Franco, “Au-
tomatic microstructural classification with convolutional neural network,” in Confer-
ence on Information Technologies and Communication of Ecuador. Springer, 2018,
pp. 170–181.

[37] A. Iliev, N. Kyurkchiev, and S. Markov, “On the approximation of the step function
by some sigmoid functions,” Mathematics and Computers in Simulation, vol. 133,
pp. 223–234, 2017.

Information Technology Engineer 69 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

[38] B. Karlik and A. V. Olgac, “Performance analysis of various activation functions in
generalized mlp architectures of neural networks,” International Journal of Artificial
Intelligence and Expert Systems, vol. 1, no. 4, pp. 111–122, 2011.

[39] K. Hara, D. Saito, and H. Shouno, “Analysis of function of rectified linear unit
used in deep learning,” in 2015 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2015, pp. 1–8.

[40] T. Wilson, D Martinez, “The need for small learning rates on large problems,” in
IJCNN’01. International Joint Conference on Neural Networks. IEEE, 2001, pp.
115–119.

[41] P. M. Radiuk, “Impact of training set batch size on the performance of convolutional
neural networks for diverse datasets,” Information Technology and Management Sci-
ence, vol. 20, pp. 20–24, 2017.

[42] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of the Trade,
this book is an outgrowth of a 1996 NIPS workshop. Springer, 1998, pp. 55–69.

[43] H. N. Mhaskar and T. Poggio, “Deep vs. shallow networks: An approximation theory
perspective,” Analysis and Applications, vol. 14, no. 06, pp. 829–848, 2016.

[44] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[45] F. Chollet et al., “Keras,” https://keras.io, 2015.

[46] Itseez, “Open source computer vision library,” https://github.com/itseez/opencv,
2015.

[47] P. Shinners, “Pygame,” http://pygame.org/, 2011.

[48] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet
and the impact of residual connections on learning,” in Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[49] “Imagenet dataset,” http://www.image-net.org/index, Jun. 2019.

[50] “Avenue dataset for abnormal event detection,” http://www.cse.cuhk.edu.hk/leojia/
projects/detectabnormal/dataset.html, Jun. 2019.

Information Technology Engineer 70 Final Grade Project

Appendices

71

Appendix A

DataSets

A.1 Common Datasets Used for Image & Video Clas-

sification

Most of the existing Video Classification approaches pretrain and test their models using
the following datasets:

• ImageNet Dataset [49]: ImageNet is an image dataset constructed with approx-
imately 14197122 images belonging to nouns of the WordNet such as tree frog,
banded gecko, agama, green lizard, sea snake, diamondback, tarantula, ptarmigan,
African grey, etc.

• UCSD Pedestrian Dataset [22]: It contains video of pedestrians walkways on
University of California San Diego (UCSD), taken from a stationary camera. This
dataset consist on two main groups:

– UCSD Ped1: This dataset consists on clips of groups of people walking to-
wards and away from the camera.

– UCSD Ped2: It contains scenes with people walking in a parallel way to the
camera plane.

• Avenue Dataset [50]: It contains 16 training and 21 testing videos captured in
The Chinese University of Hong Kong (CUHK) campus avenue with 30652 (15328
training, 15324 testing) frames in total.

• Subway Benchmarks Dataset [19]: It contains two sequences recorded at the
entrance and exit of a subway station with a duration of 96 minutes and 43 minutes
respectively.

• UCF-Crime Dataset [6]: It consists of 1900 real-world surveillance videos with
13 different anomalies, such as fighting, burglary, road accidents, assault, and so on.
This dataset provides different environments form where extract information.

73

Appendix B

Algorithm Codes

B.1 Thesis Web Page

The whole work of this thesis is already uploaded in a web site for free access. It contains
the full thesis, code of the anomaly detection system, training and validation scripts,
results and other sources as articles and videos. The web site was developed in Google
Sites and belongs to my tutor Lorena Guachi. This research work can be accessed at the
following link.

https://sites.google.com/site/degreethesislorenaguachi/2020-anomaly-detection-system-
using-deep-learning-techniques

B.2 FrankensNet Implementation Code

1

2 from __future__ import absolute_import

3 from __future__ import division

4 from __future__ import print_function

5

6 import os

7 from keras.applications.densenet import DenseNet201

8 from keras import layers

9 from keras import backend

10 from keras import models

11 from keras.regularizers import l2

12 from keras.applications import imagenet_utils

13

14

15

16 HEIGHT , WIDTH = 224, 224

17

18

74

School of Mathematical and Computational Sciences YACHAY TECH

19 # --------------INCEPTIONV3 --------------

20 def conv2d_bn(x,

21 filters ,

22 num_row ,

23 num_col ,

24 padding=’same’,

25 strides =(1, 1),

26 name=None):

27 """ Utility function to apply conv + BN.

28

29 # Returns

30 Output tensor after applying

31 ‘Conv2D ‘ and ‘BatchNormalization ‘.

32 """

33 if name is not None:

34 bn_name = name + ’_bn’

35 conv_name = name + ’_conv’

36 else:

37 bn_name = None

38 conv_name = None

39 if backend.image_data_format () == ’channels_first ’:

40 bn_axis = 1

41 else:

42 bn_axis = 3

43 x = layers.Conv2D(

44 filters , (num_row , num_col),

45 strides=strides ,

46 padding=padding ,

47 use_bias=False ,

48 name=conv_name)(x)

49 x = layers.BatchNormalization(axis=bn_axis ,

50 scale=False ,

51 name=bn_name)(x)

52 x = layers.Activation(’relu’, name=name)(x)

53 return x

54

55 def InceptionModel_B(x, i):

56 branch1x1 = conv2d_bn(x, 192, 1, 1)

57 branch7x7 = conv2d_bn(x, 128, 1, 1)

58 branch7x7 = conv2d_bn(branch7x7 , 128, 1, 7)

59 branch7x7 = conv2d_bn(branch7x7 , 192, 7, 1)

60 branch7x7dbl = conv2d_bn(x, 128, 1, 1)

61 branch7x7dbl = conv2d_bn(branch7x7dbl , 128, 7, 1)

62 branch7x7dbl = conv2d_bn(branch7x7dbl , 128, 1, 7)

Information Technology Engineer 75 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

63 branch7x7dbl = conv2d_bn(branch7x7dbl , 128, 7, 1)

64 branch7x7dbl = conv2d_bn(branch7x7dbl , 192, 1, 7)

65 branch_pool =

66 layers.AveragePooling2D ((3, 3),

67 strides =(1, 1),

68 padding=’same’)(x)

69 branch_pool = conv2d_bn(branch_pool , 192, 1, 1)

70 x = layers.concatenate(

71 [branch1x1 , branch7x7 , branch7x7dbl ,

72 branch_pool],

73 axis=3,

74 name=’mixed_b_ ’ + str(9 + i))

75 return x

76

77 def InceptionModel_C(x, i):

78 branch1x1 = conv2d_bn(x, 320, 1, 1)

79 branch3x3 = conv2d_bn(x, 384, 1, 1)

80 branch3x3_1 = conv2d_bn(branch3x3 , 384, 1, 3)

81 branch3x3_2 = conv2d_bn(branch3x3 , 384, 3, 1)

82 branch3x3 = layers.concatenate(

83 [branch3x3_1 , branch3x3_2],

84 axis=3,

85 name=’mixed9_ ’ + str(i))

86 branch3x3dbl = conv2d_bn(x, 448, 1, 1)

87 branch3x3dbl = conv2d_bn(branch3x3dbl , 384, 3, 3)

88 branch3x3dbl_1 = conv2d_bn(branch3x3dbl , 384, 1, 3)

89 branch3x3dbl_2 = conv2d_bn(branch3x3dbl , 384, 3, 1)

90 branch3x3dbl = layers.concatenate(

91 [branch3x3dbl_1 ,

92 branch3x3dbl_2], axis =3)

93 branch_pool = layers.AveragePooling2D(

94 (3, 3), strides =(1, 1),

95 padding=’same’)(x)

96 branch_pool = conv2d_bn(branch_pool , 192, 1, 1)

97 x = layers.concatenate(

98 [branch1x1 , branch3x3 , branch3x3dbl ,

99 branch_pool],

100 axis=3,

101 name=’mixed_c_ ’ + str(9 + i))

102 return x

103

104 def FrankensNet(input_shape=None , classes =2):

105

106 dense_model = DenseNet201(

Information Technology Engineer 76 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

107 include_top=False , weights=’imagenet ’,

108 input_shape=input_shape)

109 for layer in dense_model.layers:

110 layer.trainable = False

111 x = dense_model.output

112

113 branch_1 =InceptionModel_B(x, 1)

114 branch_1 =InceptionModel_B(branch_1 , 2)

115 branch_1 =InceptionModel_B(branch_1 , 3)

116 branch_1 =InceptionModel_B(branch_1 , 4)

117 branch_1 =layers.MaxPooling2D(name=’max_pool_1 ’)(branch_1)

118 branch_1 =InceptionModel_C(branch_1 , 1)

119 branch_1 =InceptionModel_C(branch_1 , 2)

120

121 branch_2 =InceptionModel_B(x, 5)

122 branch_2 =InceptionModel_B(branch_2 , 6)

123 branch_2 =InceptionModel_B(branch_2 , 7)

124 branch_2 =layers.MaxPooling2D(name=’max_pool_2 ’)(branch_2)

125 branch_2 =InceptionModel_C(branch_2 , 3)

126 branch_2 =InceptionModel_C(branch_2 , 4)

127 branch_2 =InceptionModel_C(branch_2 , 5)

128

129 x1 = layers.Conv2D (256 ,3)(x)

130 x1 = layers.Conv2D (256 ,3)(x1)

131

132

133 branch_3 =InceptionModel_B(x, 8)

134 branch_3 =InceptionModel_B(branch_3 , 9)

135 branch_3 =layers.MaxPooling2D(name=’max_pool_3 ’)(branch_3)

136 branch_3 =InceptionModel_C(branch_3 , 6)

137 branch_3 =InceptionModel_C(branch_3 , 7)

138 branch_3 =InceptionModel_C(branch_3 , 8)

139 branch_3 =InceptionModel_C(branch_3 , 9)

140

141 branches1 = layers.Concatenate ()([branch_1 ,

142 branch_2 , branch_3 ,x1])

143

144

145

146 x3 = layers.MaxPooling2D(name=’max_pool_6 ’)(branches1)

147 x2 = layers.AveragePooling2D(name=’apf’)(branches1)

148 x = layers.Concatenate ()([x2 , x3])

149 x = layers.Flatten ()(x)

150

Information Technology Engineer 77 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

151 x = layers.Dense (1024, activation=’relu’, name=’fc1’)(x)

152 x = layers.Dropout (0.5)(x)

153

154 predictions = layers.Dense(2, activation=’softmax ’,

155 name=’predictions ’)(x)

156

157 model = models.Model(inputs=dense_model.input , outputs =[

158 predictions], name=’frankensnet ’)

159

160 return model

B.3 Training Code

1

2 ### Parameters Values ###

3

4 TRAIN_DIR = Train Paths

5 VALIDATION_DIR = Validation Paths

6 BATCH_SIZE = #According to needed

7 HEIGHT = 224

8 WIDTH = 224

9 NUM_EPOCHS = 5 # In general

10 class_list = [" anomalous", "normal "]

11 FC_LAYERS = [2048 ,1000]

12 dropout = 0.5

13 LEARNING_RATE = #According to needed

14

15 ### Function to save models information ###

16

17 def GuardarEpocas(history , model_name):

18 try:

19 acc = history.history[’accuracy ’]

20 except:

21 acc = history.history[’acc’]

22 try:

23 val_acc = history.history[’val_accuracy ’]

24 except:

25 val_acc = history.history[’val_acc ’]

26 loss = history.history[’loss’]

27 val_loss = history.history[’val_loss ’]

28 print(filepath_epoch)

29 file =

Information Technology Engineer 78 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

30 open(f"{ filepath_epoch }/{ model_name}_{datetime.now ()}. txt"

31 , "w")

32 for a, va , l, vl in zip(acc , val_acc , loss , val_loss):

33 print(a, va, l, vl)

34 file.write((str(a)+"\t"+str(va)+"\t"+str(l)

35 +"\t"+str(vl)+"\n"))

36 file.close()

37

38 ### Train and Validation Data Generator ###

39

40 train_datagen = ImageDataGenerator(

41 preprocessing_function=preprocess_input ,

42 rotation_range =90,

43 horizontal_flip=True ,

44 vertical_flip=True

45)

46

47 validation_datagen = ImageDataGenerator(

48 preprocessing_function=preprocess_input ,

49 rotation_range =90,

50 horizontal_flip=True ,

51 vertical_flip=True

52)

53

54 train_generator =

55 train_datagen.flow_from_directory(TRAIN_DIR ,

56 target_size =(

57 HEIGHT , WIDTH),

58 batch_size=BATCH_SIZE)

59 validation_generator =

60 validation_datagen.flow_from_directory(VALIDATION_DIR ,

61 target_size =(

62 HEIGHT , WIDTH),

63 batch_size=BATCH_SIZE)

64

65 ### Training start with fine tuned model ###

66

67 history = finetune_model.fit_generator(

68 train_generator ,

69 epochs=NUM_EPOCHS ,

70 workers=8,

71 steps_per_epoch=num_train_images // BATCH_SIZE ,

72 shuffle=True , callbacks=callbacks_list ,

73 validation_data=validation_generator ,

Information Technology Engineer 79 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

74 validation_steps=num_validation_images // BATCH_SIZE

75)

76 GuardarEpocas(history , "Models Name")

B.4 Rotate Operation Code

1

2 def rotate(self , image , angle=90, scale =1.0):

3 if angle < 0 and False:

4 angle = 360 + angle

5

6 w = image.shape [1]

7 h = image.shape [0]

8 # rotate matrix

9 M = cv2.getRotationMatrix2D ((w/2, h/2), angle , scale)

10 # rotate

11 image = cv2.warpAffine(image , M, (w, h))

12 return image

B.5 Crop Operation Code

1

2 def crop_image(self , image , y1=0, y2=223, x1=0, x2 =223):

3 # print(image.shape)

4 image = image[y1:y2, x1:x2]

5 # print(image.shape)

6 image = cv2.resize(image , (224, 224))

7 # print(image.shape)

8 return image

B.6 Contrast Limited Adaptive Histogram Equaliza-

tion Code

1 def CLAHE(self , img , gridsize =8):

2

3 lab = cv2.cvtColor(img , cv2.COLOR_BGR2LAB)

4

5 lab_planes = cv2.split(lab)

6

Information Technology Engineer 80 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

7 clahe = cv2.createCLAHE(

8 clipLimit =2.0, tileGridSize =(gridsize , gridsize))

9

10 lab_planes [0] = clahe.apply(lab_planes [0])

11

12 lab = cv2.merge(lab_planes)

13

14 return cv2.cvtColor(lab , cv2.COLOR_LAB2BGR)

B.7 Median Filter & Unsharp Masking

1

2 def sharpen_image(self , img , sigma , strength):

3 # Image Median filtering

4 img_mf = median_filter(img , sigma)

5

6 # Laplacial Calculation

7 lap = cv2.Laplacian(img_mf , cv2.CV_64F)

8

9 # Sharpen the Image

10 sharp = img -strength*lap

11

12 # Saturate Pixels

13

14 sharp[sharp > 255] = 255

15 sharp[sharp < 0] = 0

16

17 return sharp

Information Technology Engineer 81 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer 82 Final Grade Project

	38533be319720040f09fd582039864deae614da08ba9f52914991cff125f06de.pdf
	38533be319720040f09fd582039864deae614da08ba9f52914991cff125f06de.pdf
	07b8f9829a0fd5b9d16634b827ee04bd59f4b97ff9b8a80d2e0d88c029666f41.pdf
	07b8f9829a0fd5b9d16634b827ee04bd59f4b97ff9b8a80d2e0d88c029666f41.pdf
	07b8f9829a0fd5b9d16634b827ee04bd59f4b97ff9b8a80d2e0d88c029666f41.pdf
	07b8f9829a0fd5b9d16634b827ee04bd59f4b97ff9b8a80d2e0d88c029666f41.pdf
	07b8f9829a0fd5b9d16634b827ee04bd59f4b97ff9b8a80d2e0d88c029666f41.pdf
	07b8f9829a0fd5b9d16634b827ee04bd59f4b97ff9b8a80d2e0d88c029666f41.pdf
	07b8f9829a0fd5b9d16634b827ee04bd59f4b97ff9b8a80d2e0d88c029666f41.pdf

