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Acknowledgements

I wish to express my deepest gratitude to my family, who has supported me through all my life, to my friends
who have been my second family, and to my teachers, who have inspired me. Honestly, there are so many

people that I have to thank that a simple page will not be enough to write all their names

Joseph Ricardo González Núñez



Resumen

Los sistemas autónomos tienen varias aplicaciones como por ejemplo exploración espacial, tareas de ensamblaje, man-
tenimiento en el hogar, entre otras. Estos sistemas deben ser capaces de adaptarse a una gran variedad de tareas. Los
enfoques de aprendizaje por refuerzo y enfoques evolutivos son los mayores campos con caracteŕısticas adaptativas. El
algoritmo NEAT es una combinación de estos dos enfoques y por esta razón será usado en este trabajo con propósitos de
navegación autónoma, en conjunto con enfoques de reconocimiento de color. El algoritmo NEAT ha sido ampliamente
usado en aplicaciones de videojuegos y ambientes simulados. El trabajo presente tiene el objetivo de extender el uso
del algoritmo NEAT a aplicaciones de procesamiento de imágenes y aplicaciones robóticas; introduciendo un algoritmo
NEAT adaptado llamado NEAT auto tripulado para el reconocimiento de colores o NEAT-SDCR por sus siglas en
inglés. El objetivo principal del presente trabajo es descubrir si NEAT-SDCR se desempeña bien en entornos reales.
Para un primer enfoque, la tarea asignada es simple; un robot será entrenado para seguir objetos de color verde. El
entrenamiento será realizado en un ambiente simulado y luego será probado en un robot real. Las contribuciones de
este trabajo son implementar el sistema en un robot real, diseñar una función de aptitud para el problema y mejorar en
general el rendimiento del algoritmo NEAT mediante el uso de un nuevo método de reproducción y usando un enfoque
incremental.

Palabras clave: Sistemas autonomos, Aprendizaje por refuerzo, Enfoques evolutivos, NEAT



Abstract

Autonomous systems have many applications as space exploration, assembling tasks, and household mainte-
nance. These systems have to be able to adapt to a wide variety of tasks. Reinforcement learning approaches
and evolutionary approaches are two major fields with adaptability characteristics. The Evolutionary artificial
intelligence (NEAT) algorithm is a combination of these two approaches, and, for this reason, in this work,
it is used for autonomous navigation purposes in conjunction with color recognition approaches. The NEAT
algorithm has been widely used in video game applications and in simulated environments. The present work
attempts to extend the uses of the NEAT by using it in an image processing and robotic application introducing
an adapted NEAT algorithm, called NEAT for self-driving with color recognition (NEAT-SDCR). The main
aim of the present work is to discover if NEAT-SDCR, performs well in a real indoor environment. For a first
approach, the assigned task is simple; a robot is trained to follow green objects. The training is done in a
simulated environment; then it is tested in a real robot. The contributions of this work are the implementation
of this system in a real robot, the design of a fitness function for the problem, and the improvement in general
of the accuracy of the NEAT algorithm by the use of a new reproduction method and by using an incremental
approach.

Keywords: Autonomous system, Reinforcement learning, Evolutionary approach, NEAT
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Chapter 1

Introduction

An autonomous navigation system is able to make accurate decisions about navigation in order to reach its
target. In this sense, there are many works related to autonomous system as robot localization [1], control
of biped robots [2], [3], [4], control of quadrupedal robots [5], and control of underwater vehicles [6]. It is
also remarkable by its adaptability the algorithm NEAT proposed in [7], this algorithm has been mostly used
for games or robotics in simulated environments [8], [9], [10], [11]. The problem dealt with in this project is
the application of NEAT in a real mini-robot in indoor environments for autonomous navigation purposes in
conjunction with color recognition approaches. To the best of our knowledge, this is the first time that NEAT
is applied in such a scenario. The NEAT algorithm cannot be applied directly over this problem because of
problems as a lack of accuracy. For this reason, the present work proposes new modifications on NEAT to
adapt it to the problem of robotics and to improve its accuracy in general; the adapted new algorithm is called
NEAT-SDCR(NEAT for self-driving and color recognition). The dataset used in this work is generated using
an own algorithm, and the performance of the algorithm is measured considering metrics like accuracy, time,
and complexity(size) of the evolved network.

1.1 Problem statement

Cameras are becoming standard and affordable equipment for the robotic field. In particular, small and light
on-board cameras are often used as the primary sensors for information gathering about the robot environment.
Many Automatic visual navigation robots are based on image-navigation. These methods allow acquiring
information-rich image description for subsequent detection of regions of interest such as moving objects, peo-
ple, vehicles, geometric figures, color regions, etc.

Although NEAT algorithm has been applied to some problems, such as game playing and control systems
in virtual environments (controlling robots and vehicles), the application to real scenarios for autonomous
navigation has not been explored [7].

1.2 Justification

Self-driving robots, also often called autonomous robots, are desirable in fields as underwater exploration, op-
eration in urban environments, household maintenance, wastewater treatment, delivering goods and services,
among others, where image analysis has gained an important role with the emerging technologies and digital
devices which provide a useful way to acquire and use high quality and economical video cameras for under-
stand and detect a wide range of environments and objects such as people, vehicles, road signs on video/images
sequences automatically.

In recent years, the use of autonomous robots in real scenarios has received considerable attention. Therefore,
this work proposed a modified version of NEAT algorithm, called NEAT Applied to Self-driving Navigation
(NEAT-SDCR), to create a mini-robot with autonomous visual navigation in indoor environments. To achieve
this goal, NEAT-SDCR explores reproduction, population, and input rules to make navigation decisions based
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on color identification. In this sense, this work provides a chance for further explorations of evolutionary
algorithms or even industrial fields.

1.3 Contribution

This work intends to apply the NEAT algorithm to the autonomous visual navigation of a mini-robot. To
achieve this, the original NEAT algorithm is explored. Then, the Fitness function is adjusted to the color
recognition problem. Furthermore, reproduction, population, and input rules are explored and adapted to
reach high performance. In addition, for experiments in realistic scenarios, a mini-robot system is built. It is
compounded by an Arduino (for navigation purposes), a camera (to capture images), and a laptop (To execute
NEAT-SDCR, process images, and send commands to Arduino). Obtained results allow determining whether
NEAT-SDCR meets its efficiency expectations.

1.4 Thesis overview

This work is organized as follows. Section 2 describes the objectives of this work. Section 3 explains in detail
the original NEAT algorithm. Section 4 detailed the proposed modifications, and the hardware design of the
robot. Section 5 details the conditions under which the experiments were performed and the parameter settings.
Section 6 shows the results as a comparison of the original NEAT algorithm and the proposed modifications.
Section 7 explains the conclusions of the work and the future work derived from this.

Mathematician/Information Technology Engineer 12 Final Grade Project



Chapter 2

Objectives

2.1 General objective

To design and build an autonomous mini-robot system able to learn and react in presence of colored objects in
indoor environments by the use of evolutionary approaches.

2.2 Specific objectives

• To adapt the most outstanding evolutionary algorithm to make navigation decisions based on color recog-
nition. For this work purposes, only green color objects will be followed by the mini-robot; other colors
will be ignored.

• To design and build a mini-robot system capable of communicating with the computer to send images
and receive commands that allow it to navigate in an indoor environment.

• To evaluate the ability of the adapted evolutionary approach to make navigation decisions based on color
recognition in a real-scenario in terms of maximum direction.



Chapter 3

Theoretical framework of evolutionary
algorithms

The present work is closely related to computer vision, autonomous system, and robotics. Artificial intelligence
approaches are mostly used in these fields; however, this work explores the ability of evolutionary algorithms to
work for Autonomous Systems (ASs). The behavior of an AS can be represented as a function in which inputs
are obtained from sensors of the robot (stimulus), and outputs are the actions that this AS tacked as reactions
to this stimulus.

An AS is characterized by the ability to perceive, learn, and adapt to respond to the world around them;
in everyday situations, humans take for granted, is still a challenge. In this area of research, ASs-based nav-
igation involves observing the world around them by using computer vision algorithms, then processing the
collected data, and generating adequate responses. In recent years, there has been an increasing interest in
Artificial Intelligence (AI) approaches. These algorithms have been widely applied to many fields. For example,
robotic applications as controlling four-legged robots [8], robot localization [1], control of drones [12], soccer
player robots [13], controlling biped robots [2], [3], and cooperative robotics [11]. Video games applications as
real-time strategy [9], [10], and simulations [14], [15]. Computer vision applications as pedestrian detection [16],
recognition of passengers on motorcycles [17], hand-gestures detection [18], image segmentation [19], [20], and
background extraction [21], [22]. AI algorithms are characterized by their ability to generalize knowledge based
on information extracted from training data.

In this chapter, evolutionary algorithms for AS-based navigation are presented. Starting with some relevant
applications, challenges, and the main workflow of this kind of algorithms. Finally, some relevant applications
and theoretical foundations of the NeuroEvolution of Augmenting Topologies (NEAT) algorithm are described.
Evolutionary algorithms optimize its accuracy iteratively based on ideas of natural evolution; it means that
these algorithms need a way to know if the output is accurate or inaccurate in each iteration. In other words,
they need feedback to improve their performance.

3.1 Evolutionary approaches

Evolutionary approaches take part in the bigger field of bio-inspired algorithms. These methods use ideas
from nature to solve engineering problems, for example, ant colony algorithms [23], which are inspired by the
organization of real ants. Neural networks [24] that are inspired in the functioning of animal brains. Swarm
algorithms [25] based on the emergency properties of groups of animals as flocks of birds or shoal of fishes. Re-
searchers watch nature in order to find creative solutions and create new algorithms based on natural systems.
Evolutionary approaches are inspired by the evolution of species, which was proposed by Charles Darwin.

In the evolution of species, living beings have to be adapted to their environment in order to survive and
pass their genes to other generations. These living beings are different from each other because of mutations.
The environment selects the individuals with better characteristics, and consequently, these features become
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more frequent in future generations; in this way, species change over time. This process can be seen as an
optimization of the species to its environment.

Evolution is the force that is responsible for the variety of living beings existing today. Because of its
undisputed achievements in nature, researchers, as Stanley [7] and Siebel [26], have proposed to use concepts as
reproduction, mutation, and selection to create algorithms. These new algorithms are classified as evolutionary
approaches. One of the most promising evolutionary approaches is NEAT.

3.2 Evolutionary artificial intelligence algorithm (NEAT)

NEAT stands for Neuro Evolution of Augmented Topologies, it is a new kind of neural network algorithm
proposed by Stanley et al. [7]. This algorithm is used to evolve synaptic weights along with the structure of a
neural network.

3.2.1 Related work

Xu et al. [8] made a comparison between two evolutional algorithms called CMA-NeuroES and NEAT. They
tested those two algorithms in a simulation. The assigned task was increasing the speed of a four-legged robot.
This automaton has four joints, one in each leg. The inputs of the neural networks are the angles and the speeds
of every leg. The outputs are the desired angle. The fitness function is the displacement walked by the robot.
The work purpose was to discover if CMA-NeuroES and NEAT can evolve adequate topologies and weights to
increase the gait speed of the four-legged robot.

Olesen et al. [9] used the NEAT algorithm in the problem of Real-Time Strategy (RTS) in games. Authors
created an AS that is able to play against a human in the game Globulation 2(G2). G2 is a strategy game
whose objective is to manage an empire by controlling the gathering of resources, the creation of buildings, and
the training of troops. Additionally, G2 is focused on macro-management rather than micro-management, not
considering micro-management makes possible a better performance in NEAT because of the dimensionality
reduction.

Lowell et al. [10] compared two evolution methods NEAT and HyperNEAT. These algorithms were tested
in the keep-away soccer game. In this problem, keepers agents have to keep the ball while avoiding taker agents
to take the ball. The keeper agents have to decide when to hold the ball or pass it to another keeper. Keepaway
soccer game is a fractured problem; it means that the optimal decision is changing fastly as the state change.

Nitschke et al. [11] compared two evolution methods Collective Neuro-Evolution 2(CONE2) and NEAT in
performing a cooperative task. In this task, simulated robots have to move and join blocks of different types.
These blocks have to form a line on a specific order; the order rules are set up by the user at defining the
environment. The purpose of Nitschke is to identify if CONE2 and NEAT are able to evolve behavioral hetero-
geneity; this is, robots specialized in moving one type of block. Nitschke concludes that CONE2 outperforms
NEAT in evolving heterogeneity behavior.

3.2.2 NEAT algorithm

This section describes the original NEAT algorithm introduced by Stanley et al. in [7]. NEAT implements
three innovations, historical markings, speciation, and evolving from simpler. The first innovation is genetic
encoding through Tracking Genes; it is called Historical Markings; this makes it possible that crossover between
two networks parents produces offspring that preserves parent performance skills. The second innovation is
speciation to protect structural innovations from disappearing before being optimized; it is doing so by allowing
individuals to compete only inside their species. The third innovation is evolving a complex neural network
from the simpler possible to avoid over-complexity in networks. The simpler possible structure is input neurons
connected directly to output neurons. NEAT has been widely applied in the field of ASs in tasks as robotics
[8], real-time strategy games [9].

Mathematician/Information Technology Engineer 15 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

NEAT is composed of four steps: genetic representation and initialization, fitness evaluation, and selection
of the best individuals, sexual reproduction, mutations, and speciation, as is shown in Figure 3.1. The NEAT
algorithm is bio-inspired, which means that many ideas that NEAT uses are based on nature. For example,
natural selection, sexual reproduction, mutations, and combinations of genes are ideas from evolution theory.

Initial 
population

Fitness evaluation 
and 

Selection of the 
best individuals

Reproduction

Speciation Mutations
Generation = 

Max 
generations

Yes

No

Best 
solution

Figure 3.1: Stages of NEAT, this diagram is based on [7]

3.2.2.1 Genetic representation and initial population

Every neural network is represented using its genome g, which is a group of genes gen as can be seen in Figure 3.2

g = {gen1, gen2, gen3, . . . , gens}

Where s is the number of genes, and therefore the size of the genome. Every gene represents a connection
between two neurons in the neural network, and it is composed of five subfields.

gen = {input, output, weight, enable, innovation}

• input: is the identifier of the incoming neuron in the connection.

• output: is the identifier of the outgoing neuron in the connection.

• weight: is a float value representing the strength of the connection

• enable: is a boolean value that indicates if the connection is activated or not in the neural network.
Mutations could deactivate or activate a connection; this will be explained later.

• innovation:it is a global unique identifier for each connection.

The information of connections is explicitly written in the genomes. For this reason, this algorithm uses a direct
encoding. Algorithms with indirect encoding use a function to store the information of connections. Genomes
g are grouped in species sp, the criteria used to classify a genome in one of the species is explained later.
Parameter np is the number of genomes that are a member of that species.

sp = {g1, g2, g3, . . . , gnp}

All the different species together form the entire population pop of individuals (genomes). The parameter ns
is the number of living species in the population.

pop = {sp1, sp2, sp3, . . . , spns}

In order to start the algorithm, it is necessary to create the first population; this generation, unlike the others,
will not have parents. Stanley et al. proposed creating the minimal possible genomes, which means creating all
the possible connections between all the inputs and all the outputs.
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Figure 3.2: Diagram of genes, this diagram is based on [7]

3.2.2.2 Fitness evaluation and selection of the best individuals

Every genome in the population is a generator of solutions. The algorithm has to find suitable neural networks
to solve the posed problem; it means finding topologies that make the minimal possible error. For this reason,
the algorithm has to select the best individuals in each generation, to create more copies of them. This idea is
directly extracted from the concept of natural selection in evolution theory. Natural selection establishes that
only the best-adapted to its environment will survive and pass its genes to the next generations. In this case,
only the best typologies will create copies of themselves.

The fitness function is used to qualify the performance of genomes, the higher the value of fitness, the bet-
ter is the performance of the topology. The fitness function has to be specifically designed for the problem. The
reward row presented in this section will be used in this problem. A reward row can be calculated for each
of the images used in the training phase. The reward row has dimensions (1, j), and the original image has
dimensions (i, j). A reward row can be calculated using the following formula.

rj =

i∑
1

(gpij − rpij − bpij) (3.1)

• gpij is the green component of the pixel in the i row and the j column.

• rpij is the red component of the pixel in the i row and the j column.

• bpij is the blue component of the pixel in the i row and the j column.

• rj is the j element in the reward row.

The computation (gpij − rpij − bpij) can be understanding as to the intensity of the color green in the
pixel. Therefore, equation 3.1 adds the intensities of the i pixels in the j column to obtain the reward row.
The calculation used to obtain the direction of the mini-robot will be detailed in the section 4.3.1, particularly
equations 4.4, 4.8 are used to compute the rotation angle of the mini-robot. The speeds of the output layer of
the neural network will be used to compute the rotation angle, and that, in turn, will be used to compute the
fitness. That is because the direction will be pointing to an element of the reward row, and that element will
be the fitness of the current genome.
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In each generation, the algorithm will find the fitness associated with each genome. Then, genomes with
lower performance will be deleted. The percentage of the population that will be removed can be controlled
using a hyper-parameter called kill percentage.

3.2.2.3 Sexual reproduction

The algorithm NEAT uses sexual reproduction. In other words, it generates new individuals by combining two
previous existing individuals (two parents). The problem of combining two typologies of neural networks is
complicated because it implies coherently combining two graphs. It means finding common structures in graphs
to fuse them into one graph and keeping no-common structures of both graphs in a way that offspring improve
his performance. The NEAT algorithm creatively solves this problem using historical markings.

Each connection has a unique identifier, which is the subfield innovation explained in section 3.2.2.1. Ev-
ery time that a new connection appears as a result of a mutation, the algorithm assigns the number of a global
counter to it, and then the global counter is increased. This method is called historical marking. Multiples
genomes can have the same connection, and this will be reflected in the fact that they have an innovation
number in common. A gene could be spread in multiples genomes because these genomes are descendants of a
common ancestor.

When two genomes are going to be crossed, It is possible to know what structures their share by analyzing
what innovation numbers are common in their genomes. The common structures in the genomes are inherited
from any parent, while non-common structures are inherited from the more fitness parent. This process is
illustrated in Figure 3.3.

In this example subscripts are representing the innovation numbers in genes.

g1 = {gen3, gen4, gen5, gen7, gen11, gen12, gen14, gen15}

g2 = {gen2, gen3, gen5, gen7, gen8, gen9, gen12, gen14}

The intersection of g1 and g2 are common connections and can be inherited from any parent. It is important
to keep in mind that the subset g1 ∩ g2 of genes are present in both parents, but despite being the same genes,
they could have different information because of mutations. They could differ in the subfields weight and
enable.

g1 ∩ g2 = {gen3, gen5, gen7, gen12, gen14}

Non-common genes as g′1 for the genome 1 and g′2 for the genome 2 are inherited from the more fitness parent.

g′1 = g1 − (g1 ∩ g2) = {gen4, gen11, gen15}

g′2 = g2 − (g1 ∩ g2) = {gen2, gen8, gen9}

Then, the resulting genome will be gr

gr = (g1 ∩ g2) ∪ g∗

Where g∗ is g′1 or g′2, depending on who is the more fitness parent. When a new individual is born, it has a
random chance to develop mutations in his genome. The aim of the next section is explaining these mutations.
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Figure 3.3: Sexual reproduction, this diagram is based on [7]

3.2.2.4 Mutations

Each new genome has a random chance to born with mutations. These mutations are of three different types;
adding a connection, adding a node and changing the weight of the connections. The first two are structural
mutations; it means that they change the topology of the neural network. The third one does not change the
structure, but it changes the internal information of the genes.

• Mutation adding connections
The mutation of adding new connections works by randomly choosing two neurons and joining them using
a random weight, as can be seen in Figure 3.4.

new gen = {input, output, weight, enable, innovation}

input and output are two neurons chose randomly; the value of weight is also chosen randomly. The
enable field is set to true, showing that the new connection is active. The innovation field is set to
the global counter of the historical marking, and it will be the unique identifier of the new gene.

• Mutation adding neurons

The mutation of adding a new node works by randomly choosing a connection and adding a new neuron
in the center. This process generates two new connections, a connection which has as output the new
neuron, and a connection which has as input the new neuron. The weight of the first connection is set to
1, and the weight of the second connection is set to the weight of the original connection. The previous
connection does not disappear but gets disabled. The new genes get new numbers for the innovation field,
and they are different from each other. This process is illustrated in Figure 3.5, and in the example bellow.

The gene before the mutation looks like this.

previous gen = {input = in1,output = ou1,weight = w, enable = true, innovation = inno1}
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After the mutation there are three genes, the previous gene get disabled and two new genes.

previous gen = {input = in1,output = ou1,weight = w, enable = false, innovation = inno1}

new gen1 = {input = in1,output = new neuron,weight = 1, enable = true, innovation = inno2}

new gen2 = {input = new neuron,output = ou1,weight = w, enable = true, innovation = inno3}

• Mutation changing weights
This mutation can change the weight field or the enable field.
If the weight is mutated, the algorithm simply chose a new weight for the gene as in the example bellow.

gen = {input = in1,output = ou1,weight = w, enable = true, innovation = inno1}

gen = {input = in1,output = ou1,weight = new w, enable = true, innovation = inno1}

The mutation of the field enable works only on deactivated connections. If the enable field is setting to
false, then this mutation has a random chance to activate the connection again by setting the field to true.

gen = {input = in1,output = ou1,weight = w, enable = false, innovation = inno1}

gen = {input = in1,output = ou1,weight = w, enable = true, innovation = inno1}

This process is illustrated in Figure 3.6.
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Figure 3.4: Mutation add connection, this diagram is based on [7]
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Figure 3.6: Mutation enable, this diagram is based on [7]

3.2.2.5 Speciation

The structural mutations (mutation add connection and mutation add neuron) proposed in this algorithm
tend to decrease the fitness of the networks. This is a problem because lower fitness implies lower survival
probabilities. These new structures can be the key to future behavioral innovations. Nevertheless, they could
not survive. To solve this problem, Stanley et al. took an idea from nature, the concept of speciation. In nature,
species do not compete for resources globally, but instead, each species compete in his own locally ecological
niche. For this reason, NEAT algorithm groups various genomes in species.

sp = {g1, g2, g3, . . . , gnp}

Where sp is the species, gi are the genomes and np is the number of genomes in that species. In order
to know what is the species of a genome, it is necessary to have a mechanism to measure the distance or
the difference between two genomes. If two genomes have a greater distance, it means that they are poorly
correlated, and they belong to different species. If two genomes have a small distance, it means that they are
strongly correlated, and they belong to the same species. Historical markings are useful to measure the distance
between two genomes.

δ =
c1D

N
+ c2W

D = n(gi − (gi ∩ gj) + gj − (gi ∩ gj))

W =

c∑
k=1

|wik − wjk| c = n(gi ∩ gj)

In the above equation, δ is the distance between the species. D is the number of genomes that are non-
common, in other words, the number of elements of the set gi − (gi ∩ gj) + gj − (gi ∩ gj), where gi and gj
are the genomes of which the distance is being calculated. W is the average of the differences in the values
of the weights of the common connections (gi ∩ gj). c1 and c2 are coefficients to adjust the importance of
structural and weight differences. This distance δ is useful to classify the genomes in species.
In order to help genomes with structural innovations to survive, Stanley et al. proposed a correction to the
fitness function based on the δ parameter.

f
′

i =
fi∑n

j=1 sh(δ(i, j))

sh(δ(i, j)) =

{
1 if δ(i, j) < δt

0 if δ(i, j) > δt

In the above equation, f
′

i is the corrected fitness function. fi is the original fitness. δt is the distance threshold.
If the distance δ is lower than δt, the genomes belong to the same species. In the other hand, if distance δ is
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greater than δt, they belong to different species. In this way, the summation
∑n

j=1 sh(δ(i, j)) is equal to the
number of individuals in the current species. For this reason, if any species has many individuals, the corrected
fitness decreases, and structural innovations are protected; that is to say, new species have higher fitness.
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Chapter 4

Methodology

This chapter aims to describe the methodology used in this work. It is divided into the stages proposed in
Figure 4.1. The main stages are: 1) Data collection, 2) Design and implementation of the NEAT algorithm for
self-driving mini-robot by color recognition (NEAT-SDCR), 3) Design and assembly of the mini-robot system,
4) Implementation of mini-robot and computer communication, and 5) Training using the NEAT algorithm.
Results obtained to determine whether NEAT-SDCR meets its efficiency expectations in realistic scenarios in
indoor environments are covered in chapter 6.
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2
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3
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Figure 4.1: Diagram of methodology

4.1 Assumptions

To apply NEAT-SDCR algorithm on visual autonomous navigation of a mini-robot, this work considers the
following assumptions.

• The mini-robot is designed to navigate in indoor environments without illumination changes. It is better
if there are no obstacles in the path of the mini-robot since it has not been trained to avoid them if there
are obstacles in the path the mini-robot could get stuck.

• The mini-robot does not have a mechanism to sense depth in images, and this fact is evidenced in the
assumption made to get equation 4.8. This could cause that big-targets (green-objects) could seem little
because of the distance, and therefore these targets could lose importance for the mini-robot at making
decisions.
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• As mentioned in the section 4.3.1.2, the movement of the mini-robot is restricted over 2-dimensions (over
a surface); in other words, it cannot climb or fly. It is better if the land or the surface over which the
automaton is navigating is flat and not steep.

4.2 Data collection (Images)

This task is based on Data Generator procedure as is shown in Algorithm 1. It is used to create the dataset
of images. The resulting images are in the RGB color model because the camera of the mini-robot uses this
standard. The dimensions of these images can be adjusted by using the parameters height and length. The
parameter green probability can be adjusted to change the percentage of the color green in the image. The
procedure Data Generator is executed each time that a genome is tested, and the image is not stored; therefore,
the image is eliminated after being used. Figure 4.2 shows generated images of size (2x2), and Figure 4.3
shows generated images of size (4x4). This code creates images of the desired size by painting pixels randomly.
Nevertheless, the code ensures that there is at least one green pixel or one green region in the resulting image.

For creating an image, the Algorithm 1 picks a random value in the range from 0 to 1 for each pixel; if
this value is less than the threshold of green probability, the pixel will be green, if the value is greater than the
threshold, the pixel will not be green. In the case of non-green pixels, the code chooses random values from
0 to 255 for each color component. In the case of green pixels, the code picks values for red, green, and blue
components in such a way that red+ blue < green.

In the beginning, a set of images with objects of different colors was thought to be the training set. These
images were downloaded from the internet, and they contain objects like flowers, fruits, toys, or any object with
different colors. However, these images lost the green component at being resized; the change of the size of
the images is necessary to implement an incremental approach, as explained in the section 4.3.2.1. Figure 4.4
shows an example of this fact. For this reason, this work does not use any data set of images downloaded from
the internet; instead, this work uses images generated by the code 1. The loss of green color in the images is
an important problem because the navigation is based on this color; the mini-robot has to train to follow this
color.

Algorithm 1 NEAT-SDCR Data generator

1: procedure Data Generator
2: for i < height do
3: for j < length do
4: color ← rand(1).
5: if color < green probability then
6: green← rand(1) ∗ 255
7: red← rand(1) ∗ green
8: blue← rand(1) ∗ (green− red)
9: else

10: green← rand(1) ∗ 255
11: red← rand(1) ∗ 255
12: blue← rand(1) ∗ 255
13: end if
14: pixel(i)(j)(0)← red
15: pixel(i)(j)(1)← green
16: pixel(i)(j)(2)← blue
17: end for
18: end for
19: end procedure
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a) b) c)

Figure 4.2: Images generated by the Data Generator code size(2x2)

a) b) c)

Figure 4.3: Images generated by the Data Generator code size(4x4)

a) b)

c) d)

e) f)

Figure 4.4: Resizing images: b) is the result of resizing the image a) to a size of (4x4), d) is the result of resizing
the image c) to a size of (4x4), f) is the result of resizing the image e) to a size of (4x4)

4.3 Design and implementation of the proposed NEAT-SDCR algorithm

NEAT algorithm cannot be applied directly over the color recognition problem; it requires some modifications.
The aim of this section is to describe in detail the proposed modifications to the NEAT algorithm called NEAT-
SDCR (NEAT algorithm for self-driving mini-robot by color recognition). The changes are mainly focused on
the fitness function, reproduction, and incremental training approach.

The fitness function is different for each problem; for this reason, the problem of following colors requires
the design of a specific fitness function. This section is divided as follows: a) Design of the fitness function, and
b) Novel proposed changes regarding the original NEAT algorithm.

Mathematician/Information Technology Engineer 25 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

4.3.1 Design of the fitness function applied to color recognition

The procedure to calculate the fitness of each genome in the population is described in the following. As
explained in the subsection 3.2.2.2, the NEAT algorithm uses the fitness function to test the performance of
each genome(neural network) of the population. Genomes with higher fitness will have more offspring, and
consequently, their genes will spread over the population. In this way, the NEAT algorithm optimizes its
solutions; therefore, the design of the fitness function is a crucial step in the implementation of NEAT. In this
work, a neural network receives an image as input, and his fitness is measured by determining if the neural
network can turn in the direction of the higher green color intensity. The mini-robot has to decide which
movement to carry out based on the identified color. In this sense, this section describes how the outputs of the
neural network are related to the movement of the mini-robot, and how the movement is related to the fitness
function. There are two neurons in the output layer of all the networks. The values in these neurons determine
the movement and fitness of each genome. The process of this transformation is detailed in this section. The
necessary steps to model the motion and the fitness function of the self-driving mini-robot are a) choosing the
appropriate angle, and b) determining the goal object that is pointed by the mini-robot.

4.3.1.1 Choosing the appropriate angle

The mini-robot follows a target object (green) by changing its direction; in other words, it turns to go to the
target object. The difference in velocities of two wheels is what causes a rotation angle in the mini-robot. This
stage exploits the use of a network evolved by the modified NEAT algorithm. It receives the inputs images
tacked by the camera, while its output is compounded of two neurons v1 and v2 in the output layer of the neural
network. These are a pair of speeds for the left and the right wheels. Therefore, the network sees an image,
and it takes a decision represented as a pair of velocities v1 and v2. v1 is the velocity for the left-front wheel,
and v2 is the velocity for the right-front wheel v2. Back wheels do not have speeds, because the mathematical
model of the movement is easier in this way. Output speeds values range from 0 to 1, to get larger values, it
is necessary to multiply the velocities in the output layer v1 and v2 by a hyper-parameter called maximum
velocity vmax. By doing so, it is possible to restrict the maximum velocity of the car-robot and ranging the
velocity over a big range of predefined values.

Different speeds in wheels implies different covered distances d1 and d2, and this, in turn, will change the
initial direction with an α rotation angle, as shown in Figure 4.5. It can be demonstrated that α1 is equal to α
using Figure 4.5 and the laws of complementary angles, therefore the problem of finding the rotation angle α
can be reduced to the problem of finding α1. The distances covered by the left wheel and the right wheel can
be expressed as d1 = v1 ∗ treac and d2 = v2 ∗ treac, where treac is the time that the velocity is applied. It is
possible to use d1 and d2 to find the α angle because, these displacements are portions of two circumferences
centered in the same point as can be appreciated in Figure 4.5. The circumference of d1 has r as ratio and
the circumference of d2 has r + lcar as ratio, where lcar is the length of the car. These two relations are
represented in the equations 4.1 and 4.2.

α ∗ r = d1 (4.1)

α ∗ (r + lcar) = d2 (4.2)

solving r and finding the value of α in the equations 4.1 and 4.2.

r =
d1
α

r =
d2
α
− lcar

α =
d2 − d1
lcar

(4.3)
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the displacement is related with the velocity by the equation d = v ∗ t, using this fact in equation 4.3

α =
(v2 − v1) ∗ treac

lcar

where reaction time treac can be interpreted as the time which the velocity is applied over the mini-robot.
Finally it is necessary to multiply v1 and v2 by the max velocity vmax and also by minus 1 in order to make
right rotations positive angles and left rotations negative angles

α =
(v2 − v1) ∗ treac ∗ −vmax

lcar
(4.4)

the relation between the speeds in the wheels v1, v2 and the resulting angle α is given by equation 4.4. Reaction
time treac, max velocity vmax and the length of the car lcar are hyper-parameters that can be adjusted at the
beginning of the training process of the neural network.

original 

direction new 

direction 

r lcar
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d2

Car

Car
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α1=α

Figure 4.5: Rotation angle caused by the difference in the speeds of the left and the right wheels

4.3.1.2 Determining the target object

After choosing the appropriate angle, the next step is to know what object is being exactly pointed by the
mini-robot. The movement of the mini-robot is restricted by its automobile shape; in other words, it cannot
climb or go down or fly. It means that the mini-robot movement is limited in two dimensions (over a surface).
For this reason, we will represent each input image of size (i, j) (height, width) as a reward row with dimension
(1, j), that is to say, keeping the width j of the original image, as shown in Figure 4.6. In this reward row,
each element represents the corresponding jth column of the original image. If the angle α is pointing to a
specific element in the reward row, it means that the mini-robot is looking to all the i pixels presented in the
column of the original image associated with that element. The specific values of the reward row are giving by
equation 3.1,and they are described in detail in section 3.2.2.2; using this procedure, it is possible to handle the
motion and rotations of the mini-robot in a two-dimensional space.
Figure 4.6 represents the position of the robot and the position of the image captured from the camera; each
image is represented with its reward row, as we discussed earlier. The following steps are necessary to relate
the rotation angle and the pointed element in the reward row. From Figure 4.6 two triangles are obtained. One
triangle is related to the rotation angle α with the relative position p of the selected element from the center of
the image. The other triangle is associated with a maximum possible rotation angle αmax with the maximum
possible p that is to say j/2 the half of the image width. Equations 4.5 and 4.6 represent the relations between
both triangles.

tan(α) =
p

CA
(4.5)
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tan(αmax) =
j/2

CA
(4.6)

CA is equivalent to the distance from the mini-robot to the image. Solving CA and finding the value of p in
the equations 4.5 and 4.6.

CA =
p

tan(α)

CA =
j/2

tan(αmax)

p =
tan(α)

tan(αmax)
∗ (j/2) (4.7)

Equation 4.7 relates the rotation angle α with the relative position p, in order to represent the absolute position
instead of the relative position it is necessary add a half of the width of the original image to the equation 4.7.

p =
tan(α)

tan(αmax)
∗ (j/2) + (j/2) (4.8)

Finally, equation 4.8 relates the rotation angle α with the absolute position p that is to say the element
in the reward row that is being pointed by the rotation angle. Using the equation 4.8 and the reward row
created by the equation 3.1, it is possible to determine the fitness of each genome in the population. A strong
assumption is used in these computations; that is, all the images captured by the camera are at distance CA
from the mini-robot, the implications of this assumption were discussed in the section 4.1. The maximum
possible rotation αmax and the width image j are hyper-parameters that can be adjusted at the beginning of
the training process.
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Figure 4.6: Mini-robot pointing to green objects and representation of the reward row
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4.3.2 Novel changes explored on the original NEAT algorithm

These changes are focused on a) adjusting NEAT to self-driving navigation of a mini-robot by color recognition,
and b) increasing the performance of the algorithm.

4.3.2.1 Incremental training approach

Reinforcement learning algorithms are mostly used to solve video game problems as pong, breakout, or Pac-
man. In this kind of problem, the first step is reducing the initial dimensionality of the problem by giving
to the agent pre-processed information. It will decrease the number of inputs that the network has to deal
with. In image processing problems, there is a large number of inputs, for example, an image of size (640x480)
pixels with three channels, would have 921 600 (640x480x3) inputs. This large amount of inputs will require a
huge amount of connections to process the information. Some techniques can be applied to reduce the input
data in image processing as convolutive layers and pooling layers. Nevertheless, the aim of this work is finding
equivalent structures by the use of evolutional algorithms.

Because the NEAT algorithm is not well suited to deal with an enormous amount of input data, this work
proposes a new incremental approach to the training phase. First genomes will train with a reduced version of
the problem; it means, initial networks are trained to recognize the maximum intensity of green color in small
images of (2x2) pixels with three channels. When the task is entirely learned by a genome, multiples copies of
this network are grouped to solve the original problem in big images. This approach will reduce the excess load
in complexity and training time over the original NEAT algorithm [7].

4.3.2.2 Asexual reproduction instead of sexual reproduction

In the original NEAT algorithm, sexual reproduction is a phase with excessive load in terms of time. This is
because, when two genomes are going to be crossed, it is necessary to find common connections in both of the
parents. The complexity of such operation is O(nm), where n is the number of connections of one genome,
and m is the number of connections of the other genome. The complexity of this process is quadratic. The
crossover operation is made in each generation for every new genome, that is to say, it is a recurrent procedure.
Furthermore, the number of connections is increasing with each generation because of mutations; then, the time
needed for this operation is growing continuously. This fact, along with a large number of inputs, is the reason
why the original NEAT is not suitable for this problem.

Asexual reproduction is proposed as an alternative to reduce the excessive load of sexual reproduction because
the proposed method does not need a crossover operation. Asexual reproduction is based on the replication
of bacteria, archaea, plants, and fungi. These living beings can create new offspring from one single organism.
This organism copies its DNA to generate clones of itself. New offspring has mutations which makes them a
little bit different from their predecessor. It is easy to implement the asexual reproduction; it is necessary to
choose only one parent, copy all its genes, and add a mutation to the new genome. The complexity of asexual
reproduction is O(n), where n is the number of genes or connections of the parent. In asexual reproduction,
each gene is copied from the parent to the child, and it counts as a basic operation; n copies are necessary for
cloning the n connections of the parent. The complexity O(n) of asexual reproduction is clearly an advantage
compared to the complexity O(nm) of sexual reproduction.

4.3.2.3 Changes for improving the fitness in the population of genomes

• Bias and activation function:
The original paper [7] does not mention any specific activation function, but in this work, the ramp
function will be used. Figure 4.7 shows a graphic representation of the ramp function. The Equations
4.10 and 4.9 show how to calculate the output of every single neuron in the neural network. Where xj is
the output of the j neuron, wij is the weight between the neurons i and j, bj is the bias of the neuron
j, and sj is the synapsis of the neuron j. The inputs of the neural network are images, and the output is
calculated by using equations 4.10 and 4.9 repeatedly until reaching the neurons in the output layer.
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Figure 4.7: Ramp activation function

sj = (

n∑
i=1

xi · wij)− bj (4.9)

xj =


0 if sj < −0.5

1 if sj > 0.5

sj + 0.5 otherwise

(4.10)

• Multiple tests:
The fitness of all the networks in the population is measured in each generation. If every genome is tested
just one time, a genome could get a high fitness just by good luck and survive. The present work proves
each genome many times in order to minimize this effect. The number of tests can be adjusted using a
hyper-parameter called test numbers.

• Death sentence and age as reproductive parameter:
During the experiments of this work, it was observed that some genomes (networks) optimize their solu-
tion to the problem by always giving the same output, independently of what data is inputting. This kind
of behavior ensures good fitness, because most of the time, the answer is right or almost right, so these
genomes survive for many generations. However, this kind of conduct is useless, so in the proposed work,
if a genome answers the same solution to multiple tests, it will be deleted, independently of its fitness.
This is called a death sentence

In each generation, genomes have the chance to pass to the next generation without mutations, if they
have enough fitness. A genome which has survived for many generations must be good at doing the
assigned task because it has gotten a good fitness many times. For this reason, these old genomes should
have a higher reproductive chance. In the present work, each genome has a parameter called Age to show
the generations that the genome has survived. Genomes with more age have more chances to reproduce.

• Delete deactivated connections:
In the original NEAT algorithm, when a connection is split into two new ones (mutation add neuron), the
initial neural relation does not disappear, but it is deactivated. Later, mutations could turn the link on.
This fact generates unnecessary connections and excessive growth in the size of genomes. For this reason,
in this work, when a connection is split, it is deleted, and the new ones replace it.

4.4 Design and assembly of the proposed mini-robot system

The self-driving mini-robot system is illustrated in Figure 4.8. The Arduino is the central element exploited
to build the mini-robot. It sends the images took by the camera to the computer. The Arduino also receives
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commands as a pair of velocities (v1 and v2), as explained in the section 4.3.1.1, these speeds control the
movement of the mini-robot. The computer stores and execute the proposed NEAT-SDCR algorithm. It has
7GB of RAM, an i7-4500U processor, and 4 cores of 1,80GHz. The computer is connected to the mini-robot
via Bluetooth. As the auxiliary hardware, a camera is used to capture images and send them to the computer
as input to the NEAT-SDCR algorithm. The designed system is visible in Figure 4.9.

• To send images
• To receive commands 

Arduino 

• To receive images
• To save and execute Neat
• To send commands 

Computer 

• To capture images 

Camera 

Bluetooth

Figure 4.8: Top-level architecture of the proposed self-driving mini-robot system for indoor navigation.

Figure 4.9: Prototype

The hardware of the mini-robot, as well as the assembly process, is described in the following sections.
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4.4.1 Hardware design

The mini-robot was created using Arduino because it provides many services. Arduino sensors and actuators
are easy to integrate, and they are cheap. Furthermore, there is good documentation on the internet, and there
is a big community of developers. The main hardware components are shown in Figure 4.10, and they are also
detailed in the list below.

• wires male/male and wires male/female

• 2 resistors of 330 ohms, 2 resistors of 4.7 kilo-ohms, 2 resistors of 10 kilo-ohms.

• 2 transistors 2N2222A

• 2 Arduino tyre wheels

• 2 Arduino gear motors of 3v - 12v

• 2 batteries of 9v

• 1 module Bluetooth hc-05 of 4v - 6v

• 1 Arduino UNO

• 1 Camera ov7670 of resolution 640x480 VGA, voltage of 3v, maximum Zhen rate of 30fps.

The hardware of the mini-robot is designed to fulfill three important purposes; controlling the wheels,
controlling the Bluetooth module, and controlling the camera. The first purpose of the mini-robot hardware is
controlling the speeds of the wheels; these speeds control the movement of the mini-robot and its rotation angle.
The circuit diagram necessary to control the speeds of the wheels is detailed in Figure 4.11. The second purpose
of the mini-robot hardware is controlling the Bluetooth module; it is used to send images to the computer and
to receive commands from it. The circuit diagram necessary to control the Bluetooth module is detailed in
Figure 4.11.

The circuit diagram for controlling the speeds of the wheels and the circuit diagram for controlling the
Bluetooth module are fused because the wiring is not so complex. Nevertheless, the wiring needed to control
the camera is so complex, and for this reason, it will be represented in another figure. The third purpose of
the mini-robot hardware is controlling the camera; it is useful to get images inputs for the neural network.
The circuit diagram necessary to control the camera is detailed in Figure 4.12. The aim of the next section is
explaining the functioning of the circuits that control the movement to the robot.

4.4.2 Sending signals to gears motors to control movement

The speed v1 is sent to the left motor by the pin 3 of the Arduino board using 5v. This signal passes through
a resistor of 330 Ω to reduce the voltage in the base of the transistor. The transistor itself acts as a door for
voltage, a high voltage in its base will allow high pass voltage through the transistor. In this way, transistors
can work as amplifiers of voltage. The battery, the gear motor, and the transistor form a closed circuit. When a
high voltage is sent from the pin 3, the transistor allows passing more voltage through the circuit battery-motor,
this will increase the speed in the motor. In this way, the speed of the wheel is controlled by the amount of
voltage sent by pin 3. The operation of the right wheel is exactly the same, but using the pin 5.
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a) b) c)

d) e) f)

g) h) i)

Figure 4.10: a) Wires, b) resistors, c) transistors, d) Arduino tyre wheels, e) Arduino gear motors, f) batteries,
g) Arduino bluetooth module hc-05, h) Arduino UNO board, i) Arduino Camera ov7670
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a)

b)

Figure 4.11: a) Circuit diagram of the bluetooth and the wheels components, b) Pictorial circuit diagram of the
bluetooth and the wheels components
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Figure 4.12: a) Circuit diagram of the camera components, picture extracted from [27], b) Pictorial circuit
diagram of the camera components

4.5 Implementation of the mini-robot and computer communication

The aim of this section is to explain the communication process between the camera, the Arduino board, and
the computer. Figure 4.8 shows a schematic representation of this communication.
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4.5.1 Sending images from the camera to the arduino

The diagrams in Figure 4.12 shown how to connect the pins in the camera OV7670 to the pins in the Arduino
board. These connections allow image data to pass from the module 0V7670 to the Arduino board, and also,
they serve as a power supply for the module OV7670. Arduino is an open software community, and for this
reason, there are many tutorial codes for making a connection OV7670-Arduino on the internet; it is remarkable
the code presented in [28] that will be used for this work. The code itself acts as a software library; therefore,
there is no reason for explaining it in this work.

4.5.2 Sending image data and receiving commands (Mini-robot)

The mini-robot has to receive wireless signals from the computer by Bluetooth; these signals are in the form of a
pair of numbers (v1, v2). These are used to control the speed of the left wheel v1 and the right wheel v2. First,
it is necessary to configure the Bluetooth module using AT commands. The more critical parameters that have
to be set are the name, the password, and the role(server, master) of the Bluetooth module. The commands are:

1 AT + NAME = <name>
2 AT + PSWD = <password>
3 AT + ROLE = <1,0> //1 f o r master , 0 f o r s l a v e s

The first command is useful to set the name whereby other devices will recognize the Bluetooth module. The
second command is helpful to set the password that other devices will have to use in order to confirm the
connection with the Bluetooth module. The third command is used to set the role of the Bluetooth module;
this can be a server or master. The Bluetooth module is the server, and the master is the computer because it
starts the transmission of data.

The Bluetooth module has four pins. The first one has to be connected to 5v. The second one has to be
connected to the ground. The third one is the transmitter Bluetooth pin, so it has to be connected to an
Arduino pin set as the receiver. The fourth one is the receiver Bluetooth pin, so it has to be connected to an
Arduino pin set as the transmitter. The speeds (v1, v2) are receiver as a chain of UTF-8 strings. The Arduino
code will convert to integer these speeds.

4.5.3 Receiving image data and sending commands (Computer)

The computer has the role of receiving images from the mini-robot, executing the neural network developed
by the NEAT algorithm, and sending commands to the mini-robot. Bluetooth technology was used to perform
this communication; it is wireless. The library bluetooth-serial-port of Node.js was used to perform the com-
munication in the side of the computer; this library allows receiving data and sending back commands to the
mini-robot.
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Chapter 5

Experimental setup

This chapter has the aim of explaining the conditions under which the experiments presented in the section
6 were performed. All experiments use the same designed system described in section 4.4. The experiments
presented in the section 6 were carried on a computer with intel core i7-4500U processor, 7GB of RAM, and 4
cores of 1,80GHz, the code is not parallelized, so just one core was used. All the experiments were repeated 10
times.

5.1 Parameter settings

This section describes all the values of hyper-parameters of the NEAT-SDCR algorithm. These values were
used to perform all the experiments detailed in the chapter 6. Tables 5.1, 5.2, 5.3 shown a summary of the
parameter settings tuned to achieve high accuracy.

5.1.1 Hyper-parameters for mutations

As explained in the subsection 3.2.2.3, when a new genome is born, it has the probability of developing some
mutations. The parameter settings related to these mutations are explained in the list below and in the table
5.1.

• Chance mutation add node: It is the probability that a new genome(network) develops a new node(neuron)
in its genome because of a mutation. This parameter is set to 0.2, which means that 20% of the new
genomes will be born with a new neuron.

• Chance mutation add connection: It is the probability that a new genome develops a new connection in
its genome because of a mutation. This parameter is set to 0.3, which means that 30% of the new genomes
will be born with a new connection.

• Chance mutation change weight : It is the probability that a new genome changes the weights of its
connections because of a mutation. This parameter is set to 0.9, which means that 90% of the new
genomes will change its weights. This value has to be high because of two main reasons. The first reason
is that this parameter controls the optimization of the connection weights, and it is very important for
improving the accuracy of the model. The second reason is that, if the three possible mutations are not
present in the new genome, then, the new network will be a copy of his parent, to avoid that, one of
the mutations has to be present in the most cases. This mutation can change not only the weight of the
connections but also the bias and the activation values of the neurons.

• Variation weights: This hyper-parameter explains how much the weight of a connection can change because
of a mutation. It is set to 0.1, which means that after the mutation, the previous weight and the new
weight will have a difference of less than 0.1.

• Variation bias: This hyper-parameter explains how much a bias value can change because of a mutation.
It is set to 0.1, which means that after the mutation, the previous bias and the new bias will have a
difference of less than 0.1.
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• Variation activation: This hyper-parameter explains how much an activation value can change because of
a mutation. It is set to 0.1, which means that after the mutation, the previous activation value and the
new activation value will have a difference of less than 0.1.

5.1.2 General hyper-parameters

The next parameters are related to the mortality, the reproduction, and the test of the genomes, a summary of
these parameter settings is shown in the table 5.2.

• Population mortality: It is the percentage of the population that will be eliminated in each generation.
It is set to 0.75, which means that 75% percent of the population will die in each generation, and just
the 25% of the genomes with the best fitness will survive to the next generation; also, these survivors will
have offspring to replace the eliminated genomes.

• Age importance: As explained in the section 4.3.2.3, age importance contributes to the reproductive chance
of the genomes. A high age importance value will cause those ancient genomes will have more chance of
reproduction, and consequently, its genes will spread through the population. A low age importance will
cause that the algorithm does not consider the age of the genomes at assigning new offspring.

• Test numbers: It is the number of tests that are applied to each genome in order to get its accuracy. It
is set to 50, which means that each genome is tested 50 times in each generation. It is explained in more
detail in subsection 4.3.2.3.

• Green probability: The images used in the training stage are generated using the Procedure [1], the
parameter Green probability controls the percentage of the color green in the images generated by this
procedure. It is set to 0.7, which means that 70% of the image will be covered by some tone of green.

5.1.3 Hyper-parameters for the car

The following parameters are used to adjust the physical characteristics of the car(mini-robot), these parameters
are used in the equations 4.4 and 4.8 to model the movement of the mini-robot. A summary of these parameter
settings is shown in table 5.3.

• Max velocity: This value shows the maximum velocity that the mini-robot can reach, it is set to 10 cm/s.

• Reaction time: As explained in the section 4.3.1, reaction time shows the time that v1 and v2 speeds
have to be applied in order to obtain the rotation angle α in the car. It is set to 1 second which means
that the robot will take a new decision each second.

• Car length: It is the length of the car as explained in Figure 4.5, it is set to 10 cm.

• Max angle: As explained in Figure 4.6, the max angle parameter is related to the visibility of the camera,
it is set to 45◦

Hyper-parameters for mutations
chance
mutation
add node

chance mutation
add connection

chance
mutation
change
weight

variation
weights

variation
bias

variation
activation

0.2 0.3 0.9 0.1 0.1 0.1

Table 5.1: Hyper-parameters for mutations

General hyper-parameters
population
mortality

age importance test numbers green
probability

0.75 2 50 0.7

Table 5.2: General hyper-parameters
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Hyper-parameters for the car
max
velocity

reaction time car length max angle

10 1 10 45

Table 5.3: Hyper-parameters for the car

The hyper-parameters for mutation were adjusted in trial and error experiments, in general, all these pa-
rameters must have little values, with the exception of the hyper-parameter change mutation change weight.
This is because, in general, neural networks improve accuracy better by changing the weights of its connections
rather than by changing its topology [7]. For that reason, there have to be a few structural mutations and a
lot of mutations in the weights of the connections in order to improve the accuracy of networks. Therefore,
any small value in these parameters should work fine. Analyze how small these values have to be in order to
obtain the maximum benefit of NEAT is beyond the scope of this work. The hyper-parameters for the car were
adjusting by taking into account the physical characteristics of the mini-robot. The general hyper-parameters
were adjusted by trial and error experiments; the values used in this work are not tuned. Therefore, this could
be explored in future works.

5.2 Experiments

The following experiments are focusing on measuring the performance of the proposed changes on the NEAT-
SDCR algorithm. The first set of experiments 5.2.1 will compare the sexual reproduction method proposed in
the original NEAT algorithm [7] to the asexual reproduction method proposed in this work (NEAT-SDCR).
The second set of experiments 5.2.2 will test the performance of the reduction in the size of the images proposed
on (NEAT-SDCR) to reduce the dimensionality of the inputs of the problem. The original NEAT algorithm
[7] does not propose any modification to reduce the dimensionality in the inputs. The third set of experiments
5.2.3 will test the effect in the change of the number of population NEAT-SDCR algorithm. The results of these
experiments will be presented in the section 6

5.2.1 Sexual reproduction vs. asexual reproduction experiments

This set of experiments aims to measure and compare the performance of sexual reproduction and asexual
reproduction; these methods will be contrasted, taking into account factors as time, generations, accuracy, and
size of the networks. The asexual reproduction method was proposed in the section 4.3.2.2. An image size of
(2x2) pixels and a population of 500 neural networks were used in all the experiments of this set.

• Experiment 1: Sexual reproduction vs. Asexual reproduction compared in terms of generations
This experiment measures the increasing trend of accuracy throughout the generations. The max gener-
ations parameters were set to 300 because, after this generation, the accuracy does not improve largely.

• Experiment 2: Sexual reproduction vs. Asexual reproduction compared in terms of total time
This experiment measures the increasing trend of accuracy and the time needed to achieve that accuracy.
A maximum time of 250 seconds was imposed as a restriction.

• Experiment 3: Sexual reproduction vs. Asexual reproduction compared in terms of time per generation
This experiment measures the change in time needed per generation throughout the generations. The
max generations parameters was set to 300.

• Experiment 4: Sexual reproduction vs. Asexual reproduction compared in terms of size of the networks)
This experiment measures the average size of all the networks in the population throughout the generations.
The max generations parameters was set to 300.

5.2.2 Variation in the image size experiments

The aim of this set of experiments is to test the performance of the reduction in the dimensionality of the
problem; this approach was proposed in section 4.3.2.1. For this reason, the following two experiments will
test how the accuracy and the time per generation change as the size of the image changes. Five images sizes
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were taking into account, images of (2x2), images of (4x4), images of (10x10), images of (20x15), and images
of (40x30) pixels. Additionally, four generations were considered, generation 25, generation 50, generation 75,
and generation 100. The reason for taking four generations is that it will show how accuracy and time per
generation change as the generation changes. Asexual reproduction method and a population of 500 neural
networks were used in all the experiments of this set.

• Experiment 5: Variation in the image size tested in terms of accuracy
This experiment measures the change of accuracy when the model is used with images of different sizes.

• Experiment 6: Variation in the image size tested in terms of time per generation
This experiment measures the variation of the time needed per generation when the model is used with
images of different sizes.

5.2.3 Variation in the population experiments

The purpose of this set of experiments is testing the effect of the population over the accuracy and the time of
the model. Populations of size 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 neural networks were used in
all these experiments. Additionally, four generations were considered, generation 25, generation 50, generation
75, and generation 100. Asexual reproduction method and an image size of (2x2) pixels were used in all the
experiments of this set.

• Experiment 7: Variation in the population tested in terms of accuracy
This experiment measures the change in the accuracy of the model when it is started with different
population sizes.

• Experiment 8: Variation in the population tested in terms of time per generation
This experiment measures the change of the time needed per generation when the model is started with
different population sizes.
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Chapter 6

Results

This section is focused on test the performance of the NEAT-SDCR implementation based on seven measure-
ments, which are the method of reproduction, size of the image, initial population, generations, accuracy, time,
and size of the network. The first four measurements are important parameters, and the remaining three mea-
surements are the metrics of the NEAT-SDCR algorithm. These four parameters are important because the
accuracy of the model depends largely on the tuning of these parameters, and also they are closely related to
the modifications proposed in the section 4.3.2.

In the experiments of this chapter, many images are given to each genome (neural network), these networks
have to complete the assigned task in each image. As explained in section 4.3.1, the performance of every net-
work is measured by using equations 4.4 and 4.8 to determinate the column that is being pointed by the mini-car.
The higher the green intensity that is being pointed, the higher the fitness the network gets. All figures showed
the mean as a solid line, and the first standard deviation is represented as a colored shadow surrounding that line.

Parameters

• Method of reproduction: The original NEAT algorithm proposed by Stanley [7] uses sexual reproduction
to create new genomes. This work (NEAT-SDCR) proposes asexual reproduction as a better option
because of the speed of this method; the new method was explained in the subsection 4.3.2.2.

• Size of the image: The inputs of the neural networks presented in this work are images. The size of these
images is represented as (height x length). height and length are two hyper-parameters that are set at
the beginning of the algorithm.

• Initial population: This hyper-parameter defines the number of genomes existing in the population. This
value does not vary through the generations. As explained in the sections 3.2.2.2 and 3.2.2.3, a new
genome borns in the reproduction step to replace each dead genome. In this way, the population does not
change.

• Generations: A generation covers the steps of the testing of a population, the elimination of the worst
genomes, and the birth of the new generation, which is to say all the steps explained in the section 3.2.2.
As illustrated in the Picture 3.1, the NEAT-SDCR algorithm stops its execution when the number of
generations reaches the value adjusted in the max generations parameter.

Metrics

• Accuracy: The accuracy of the model can be calculated using the equation 6.1, where fi is the fitness
obtained by the neural network according to the process explained in section 4.3.1, f maxi is the max-
imum possible fitness, and t is the parameter test numbers explained in section 4.3.2.3 and set in Table
5.2. This measure represents the performance of a genome, and it could be 100% as maximum. There are
various genomes existing in the population in each generation; for this reason, there are many accuracy
values, one by each genome. Only the accuracy of the best genome will be taking into account for these
experiments.

ac =
100

t

t∑
i=1

fi
f maxi

(6.1)
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• Time: It can be accumulative time or time per generation. Accumulative time is measure since the start
of the algorithm; on the other hand, time per generation is measure since the start of the generation.
Figure 6.2 shows an accumulative time, and Figures 6.3, 6.6, and 6.8 show a time per generation. The
time in all the experiments is measured in seconds.

• Size of the network: Every genome is composed of various genes, as explained in the section 3.2.2.1. Each
gene is a connection between two neurons. The size of the network is equal to the number of genes in
the genome; that is to say, the number of connections. This metric is related to the complexity of the
algorithm because the more size the networks have, the more time is needed to process the data. There
are various genomes existing in the population in each generation; for this reason, there are many network
sizes, one by each genome. The average size of all the genomes in the population will be taking into
account for these experiments.

This work proposed two major modifications to the original NEAT algorithm [7]. These modifications are
explained in sections 4.3.2.1 and 4.3.2.2. This section is divided into three subsections. The purpose of the
first subsection is to measure the performance of the proposed asexual reproduction modification 4.3.2.2. The
purpose of the second section is to measure the performance of the proposed incremental training modification
4.3.2.1. The purpose of the third section is to measure the effect of the change in the initial population. All the
experiments presented in this section were repeated ten times.

6.1 Results of sexual vs. asexual reproduction

6.1.1 Experiment 1: Sexual reproduction vs. asexual reproduction compared in terms of
generations

Figure 6.1 shows that the accuracy of both methods is similar in terms of generation. Sexual reproduction is more
accurate at first fifty generations, but after that, asexual reproduction becomes more accurate. Nevertheless,
this difference is little significance, because the means are very close, and the standards deviation of both
methods are overlapped. This result is positive because it means that the proposed asexual reproduction does
not decrease the general accuracy of the method; on the contrary, asexual reproduction seems to be a little bit
more accurate than sexual reproduction. Figure 6.1 shows the generations but does not show the time needed
to achieve accuracy; for this reason, the next experiment considers time.
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Figure 6.1: Generation vs Accuracy
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6.1.2 Experiment 2: Sexual reproduction vs. asexual reproduction compared in terms of
total time

This experiment is similar to the previous one, but it considers time instead of generations. In doing so, Figure
6.2 shows that Asexual reproduction reaches higher accuracy values faster than sexual reproduction. Actually,
asexual reproduction reaches an accuracy of 97% in 75 seconds; on the other hand, sexual reproduction reaches
an accuracy of 96% in 225 seconds. This result is positive because it shows that the asexual reproduction method
is faster than sexual reproduction. This is not a surprise because, as discussed in the section 4.3.2.2, sexual
reproduction needs the crossing genomes operation. The complexity of such operation is quadratic, asexual
reproduction does not need a crossing operation, and that is why it is faster. Figures 6.1 and 6.2 show the same
data trend in the accuracy increasing, but they differ because generations do not last the same time, it will be
verifying in the next experiment.
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Figure 6.2: Time vs Accuracy

6.1.3 Experiment 3: Sexual reproduction vs. asexual reproduction compared in terms of
time per generation

Figure 6.3 shows that the time that each generation needs is constantly increasing in both methods. However,
the time needed for each generation is clearly higher in sexual reproduction than asexual, even if the standard
deviation of sexual reproduction is big. Furthermore, the needed time for sexual reproduction is increasing
much faster than asexual reproduction. This experiment shows that the asexual reproduction of NEAT-SDCR
is more efficient in terms of time. A reason for the inefficiency of sexual reproduction is the increase in the size
of networks; this will be discussed in the next experiment.

6.1.4 Experiment 4: Sexual reproduction vs. asexual reproduction compared in terms of
size of the networks

The size of the network is closely related to the time needed for each generation, because the more complex
the neural network is, the more time it takes to perform operations as testing or mutations in each generation.
Figure 6.4 shows that the size of networks tends to increase faster using sexual reproduction than asexual
reproduction. This is because sexual NEAT [7] combines the genome of both parents when they have the same
fitness, this process is explained in detail in the section 3.2.2.3, and this combination process increases the
network size of new generations largely. It is also remarkable the similarity between Figures 6.3 and 6.4; it
supports the idea that network size and time per generation is closely related.
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Figure 6.3: Generation vs Time per generation
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Figure 6.4: Generations vs size of the network

The four experiments presented in this section support the idea that asexual reproduction proposed in
this work (NEAT-SDCR) has better performance than sexual reproduction (NEAT [7]). It is because asexual
reproduction reaches higher values of accuracy faster than sexual reproduction. These experiments also support
the idea that the inefficiency of sexual reproduction is due to the complexity of crossing genome operation and
the fast increase in the size of networks that it causes.
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6.2 Results of variation in the image size

6.2.1 Experiment 5: Variation in the image size tested in terms of accuracy

Figure 6.5 shows that the accuracy of the model tends to decrease quickly in large image sizes. The graph looks
like a decreasing exponential function. Furthermore, the accuracy does not improve even as the generations
pass by. For example, in an image size of (40x30), the accuracy in all the generations is almost the same. It
means that it is useless to wait for many generations when the image size is large because the accuracy of the
model will not advance. Figure 6.5 shows the accuracy, but it does not show the time per generation, that is
the aim of the next experiment.
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Figure 6.5: Size of the image vs Accuracy

6.2.2 Experiment 6: Variation in the image size tested in terms of time per generation

Figure 6.6 shows that the time per generation is increasing linearly as the size increases. Figure 6.6 also shows
that the time needed is increasing by the pass of generations; in other words, the higher the generation is,
the more time is needed to complete a generation. This result is similar to the one showed in Figure 6.3. In
comparison, the time needed for the reduced version of the problem (2x2) is minimal compared to the time
needed for process images of (40x30) pixels.
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Figure 6.6: Size of the image vs Time per generation

These experiments show that the NEAT-SDCR algorithm applied to large images is very expensive in terms
of time (Figure 6.6). Furthermore, the invested time is useless because the accuracy of the model is poor, and it
does not improve through generations (Figure 6.6). The time needed is increasing linearly, but the accuracy is
decreasing exponentially. For this reason, the incremental training approach was proposed 4.3.2.1. The camera
of the mini-robot has a resolution of (640x480) pixels; it is much higher than the resolution of (40x30) showed
in these experiments. For this reason, applying the NEAT-SDCR algorithm directly over the images of the
camera will be impossible.

6.3 Results of change in population

The population parameter is very important in the NEAT-SDCR algorithm because of the more population
available, the more capacity of search the algorithm NEAT-SDCR has. Each genome in the population represents
a solution to the problem with a specific topology and weights. Then, if the population is big, a higher number
of topologies and weights can be explored. Higher populations should be related to higher values of fitness in
all the generations.

6.3.1 Experiment 7: Variation in the population tested in terms of accuracy

Figure 6.7 shows that in general, the accuracy tends to increase if the initial population is high. This rise in
the trend is clear even if the standard deviation of the Figure is high. This result indicates that it is worth to
have a bigger population because it will affect the accuracy of the model positively. The initial population also
affects the time needed for each generation, that is the objective of the next experiment.

6.3.2 Experiment 8: Variation in the population tested in terms of time per generation

Figure 6.8 shows that the higher the number of the population is, the more time is needed per generation. The
time needed grows up following a linear trend, so it does not increase so fast. Another remarkable fact in Figure
6.8 is that the four lines that represent generations are closer when the population is low, and they get away
when the population is high. It means that a high population causes that time per generation increases faster
as the generations pass by; in contrast, in low populations, the time needed per generation increases slowly as
the generations pass by.
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Figure 6.7: Population vs Accuracy

0.00

0.05

0.10

0.15

0.20

100 200 300 400 500
Population

T
im

e 
pe

r 
ge

ne
ra

tio
n 

(s
ec

on
ds

)

Generations
Generation 25
Generation 50
Generation 75
Generation 100

Variation in the initial population

Figure 6.8: Population vs Time

The experiments presented in this section show that a good way of increasing the accuracy of the algorithm
is to enlarge the population. Figure 6.7 shows that the accuracy will grow up largely and Figure 6.8 shows that
the time per generation will increase, but the extra time is not very much.
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Chapter 7

Conclusions and future work

This work aims to apply the NEAT algorithm to autonomous visual navigation of a mini-robot in conjunction
with color recognition. This work states the following conclusions:

• In previous works, NEAT algorithm has been successfully applied in video game applications [9] and in
simulated environments [8], [10], [11]. In these problems, the amount of input data is much smaller than in
image processing problems. Under conditions of large input data as the one presented in image processing,
the performance of the NEAT model decreases dramatically. This was proven in the experiments of the
section 6.2. Particularly, Figure 6.5 shows that the accuracy of the model decreases drastically, and Figure
6.6 demonstrates that the training time is constantly increasing.

• The reduction in the performance of NEAT explained in the last paragraph is due to processing large input
data that requires a very complex and large topology (neurons and connections) and further optimization
in the weights of the connections. This complexity is constantly increasing as the input data increases. In
the present work the camera OV7670 is used, and it has a definition of (480x640) pixels, the inputs of such
a picture is 480 x 640 x 3 = 921 600. For this reason, the NEAT algorithm cannot perform well on this
problem, even if the task is very simple as following green color objects. Therefore, the NEAT algorithm
cannot be applied directly over this problem; therefore the NEAT-SDCR algorithm is proposed. Also, It
is advisable to combine the NEAT algorithm with some convolutional approach in future works of image
processing.

• Another way of reducing the complexity of the problem is by using the approach proposed in section 4.3.2.1.
It is an incremental approach, and the aim is training the NEAT algorithm with a reduced version of the
problem, when the task is completely master, the resulting neural structure can be combined with many
copies of itself in order to solve the big problem. This approach was used in this work to control the
robot. The present work just covers the initial stage; it means training the network using reduced images.
The stage of network combination is not covered in this project, and it can be explored in future works.
The proposed incremental approach has some major drawbacks, for example, the combination could be a
non-trivial task, and there are problems where an incremental approach cannot be applied.

• The other major modification proposed in this work is based on asexual reproduction instead of sexual
reproduction. The experiments of the section 6.1 show that asexual reproduction is more efficient in
terms of training time than sexual reproduction. Particularly, Figure 6.3 shows that training time is much
less in asexual reproduction. It is because sexual reproduction needs a time-consuming operation for
crossing genomes; it is explained in detail in section 4.3.2.2. The other reason for the inefficiency of sexual
reproduction is that it causes unnecessary growth in the size of the networks, as confirmed in Figure 6.4.
Finally, the experiments of the section 6.3 show that a good way to enhance the accuracy of the NEAT
model is by increasing the initial population, this also raises the training time of the algorithm, but the
extra time is not so much.
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.1 Appendix 1.

This document, a presentation with this topic and the source code are available for
free on the website https://sites.google.com/site/degreethesislorenaguachi/
2020-joseph-gonzalez-self-driving-mini-robot-using-neat-algorithm, the code is also
available on gitgub on the link https://github.com/JosephGonzalez96/NEAT-SDCR.
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