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Abstract
El desarrollo de la electrónica molecular requiere la efectiva manipulación de una molécula sobre su sustrato, y

también una manipulación precisa a escala atómica1. En el siguiente trabajo se estudiará la interfaz de CaF2/Si(100)
que actualmente es usada para la manipulación electrónica de moléculas a escala nanométrica. Esta interfaz ha sido
construida experimentalmente hasta cierto régimen de recubrimiento2,3. Desafortunadamente, hasta donde sabemos,
una descripción acertada de la formación en forma de franjas de la interfaz de CaF2/Si(100) sigue sin resolverse3.
Para resolver este inconveniente proponemos un estudio teórico de esta interfaz usando la teoría del funcional de
la densidad (Density funtional Theory, DFT) para obtener la configuración electrónica y estructura atómica más
probable de la interfaz. Las aproximaciones de gradiente generalizado tienden a fallar al describir las energías de
cohesión entre las capas de este tipo de sistemas. Para simularlos adecuadamente es necesario tomar en cuenta
las interacciones débiles de van der Waals que surgen entre el CaF2 y la superficie de Si(100). En este trabajo se
emplearán fucionales de densidad que usen van der Waals4 para investigar la configuración y energías de varias
interfaces. Además sus respectivas energías, imágenes de STM simuladas de las estructuras con más estabilidad
serán generadas y comparadas directamente con experimentos.

Palabras clave: DFT, vdW-DF, optb86-vdW, VASP, STM.
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Abstract
Molecular electronics development requires the effective electronic isolation of a given molecule with the

substrate as well as a precise atomic manipulation1. In this work, we study the CaF2/Si(100) interface that it is
currently used for electronic manipulation of molecules at the nanoscale. This interface has been already grown
experimentally for certain coverage regime2,3. Unfortunately, to the best of our knowledge, an accurate description
of the stripe formation of CaF2/Si(100) interface remains unsolved3. In order to solve this problem, we propose a
theoretical study of this interface using density-functional theory (DFT) to obtain the electronic structure and the
most likely atomic configurations of the interface. The generalized gradient approximation functionals tend to fail
when describing the correct cohesive energies between the layers in this kind of systems. To accurately simulate
such systems it is needed to take into account the weak van der Waals interactions arising between the CaF2 and the
Si(100) surface. In this work, we will use a van der Waals density functional (vdW-DF) approach4. Employing this
functional, we investigate the configuration and energetics of several interfaces, the simulated scanning tunneling
microscopy (STM) images of the most stable interfaces will be generated and compared directly with the experiment.

Keywords: DFT, vdW-DF, optb86-vdW, VASP, STM.
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Chapter 1

Introduction

Human technology development is limited by the quality and physicochemical properties of materials. Along our
early ancient history, human ages have been mainly described by the materials we dominated: Stone Age, starting
with the control of fire and just limited to the craft of stone tools; Copper Age, the point in which we discovered
metalworking, letting us to harness the ability to smelt and design a wider range of tools; Bronze Age, where alloys
were understood, hence promoting the features of their currently available metals; and later, the Iron Age, marking
a big jump of technological progress linked to the discovery of iron smelting processes and carbon steel production.
Mass production of steel-made weapons and tools determine this time epoch, due to the mechanical superiority
agains other metals, such as bronze. Also, there was a technological boost motivated by the objective of further
improving the quality of the steel alloys. Then, many improved and complex designs for furnaces for iron and steel
metalworking were designed along this age, many focused on better regulating the carbon-iron ratio and removal of
impurities5.

Slightly greater strength vs other tools and weapons was decisive at those times, sharper scythes would allow
farmers to cut through more hay without getting exhausted too quickly, and harder weapons would become critical
against less developed technologies. Even a those times, nanotechnology became a game changer in the steel alloys
fields. Damascus steel is a great example of how nanostructures greatly improve the physical and mechanical
properties of materials. The ancient exact process of Damascus steel metalworking is not known yet, remaining as a
mystery of how it was achievable with the technology at that time. It is speculated that the formation of nanotubes
within the steel alloy is related to an special process of carburizing reactions involving the burned biomass in the
furnaces6. Even though modern steel alloys outperform the features of Damascus swords, for those times there were
very famous because of their strength. But the process of how and why was not figured out until the early years of
this millenium, the now known presence of carbon nanowires, nanotubes and iron carbide compounds within the
alloy7.

If the exact structure would be have known, it could have boosted further the technological advancements relating
that type of material. Nowadays, the science and technology development gives us powerful tools to manipulate
and understand the structure of materials as never before. In this context, the research on fields of materials science
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2 1.1. PROBLEM STATEMENT

really shape the future technological developments by giving us more powerful and efficient materials to construct
with. The optimal way for deducing materials features would be a bottom-up technique, and this can be done by
solving the atomic structure of the materials.

The studied interface in this thesis has been subject of active research within the scientific community in the
last decades due to its interesting properties and potential applications to the development of molecular electronics,
multiple solid state devices, and even soft-error free memory storing devices8. Specially due to its easiness and
feasibility of industrial production: high quality silicon layer preparation is a well known and developed process
in nowadays semiconductors industry, and also, high purity epitaxially grown CaF2 layers on top of silicon wafers
are relatively easy to achieve via Chemical Vapor Deposition (CVD)2, Molecular Beam Epitaxy (MBE)9 and many
other experimental techniques, (specially on top of the Si(111) surfaces).

Nevertheless, the studies of the formation of CaF2 ultra-thin layers on top of Si(100) surface is still not well
understood. High quality epitaxial films of CaF2 are found to be good candidates for the design of this kind of novel
microelectronic and optoelectronic devices10 for using it as a barrier layer in field-effect transistors and resonant
tunneling diodes8, with a band gap large enough to isolate the electronic interactions coming out from the silicon
layers in the ultra-thin film growth on top of them.

1.1 Problem Statement
Optical microscope methods do not have enough magnifying power to let us probe the atomic structure of materials.
Even by electron microscope techniques, the most powerful imaging techniques nowadays, getting clear information
about the atomic positions of a sample may be still challenging. Hence, for probing the spatial structure of surfaces
one can rely on techniques such as transmission electron microscope (TEM), serial-section electron microscope
(ssEM), scanning prove microscopy (SPM), electron energy loss spectroscopy (EELS), ion scattering spectroscopy
(ISS) and low energy electron diffraction (LEED), to name some of them11.

In this thesis, we will be focused on scanning tunneling microscope (STM) studies on CaF2/Si(100) interface.
Given the working principles of such type of measurement, the collected information from the sample will give us
information about the spatial distribution of the occupied/unoccupied electronic states of the sample, but not details
about the exact positions of the atoms at the interface. Considering current technology, it is experimentally very
challenging to get the exact positions of atoms in a surface sample. The data obtained from multiple experimental
approaches should be processed and analyzed to get an approximate picture of the exact positions of the atoms.
Computational studies have become very handy by allowing a reverse method of solution for this kind of research
problems. With this approach, the objective of this study is to propose possible atomic configurations and predict
the STM images. Density-functional theory plays a major role by giving us a set of tools for performing such
computational studies. Previously reported studies reconstructed similar wetting layer topographies as the the
experimental data demonstrated, but it did not take into account for the van der Waals interactions that may
contribute to the physisorbed species interactions.



CHAPTER 1. INTRODUCTION 3

1.1.1 Exact atomic structure of CaF2/Si(100) stripe interface

The exact atomic structure of the CaF2/Si(100) stripe interface remains to be unsolved3. Despite the formation
mechanism of the CaF2/Si(111) is well reported, the mechanisms of the formation process at the nanoscale of the
wetting layer over the Si(100) are not fully understood12, but many different possible chemical etching reactions
involving CaF2 acting on top of pure Si surfaces are proposed in the literature2. It has been found that the interface
morphologies strongly deppend on the surface orientation ({100} or {111}) and temperature of the epitaxial growth
process10. This is mostly caused by the higher energies of formation of the calcium difluorite CaF2 crystal on
the (100) direction rather than in (111). Therefore, the coverage is found to be less uniform versus the Si(111)
surface10. Nevertheless, the multiple combinations in which the reactions may occur and also the different sites of
chemisorption and physisorption of the molecular CaF2 motivate us from resolving the exact atomic structure of the
interface.

The experimentally obtained low temperature STM images at different voltages give us an approximate picture of
the surface atomic structure and its topography. Depending on the negative or positive voltages of operation, one can
probe the spatial distribution of the occupied and unnoccupied electronic states, respectively. But still, exact atomic
positions cannot be resolved precisely because the spacial distribution of orbitals are the ones being measured, not
the position of the nuclei at the interface. It is here where DFT can play a key role in solving with high accuracy the
actual position of the atoms constituting the interface.

1.2 General and Specific Objectives
The overall objective of this work is to perform a computational study of the atomic and electronic structure of
the CaF2/Si(100) interface using DFT. To take in account for the van der Waals interactions that may arise from
the physisorbed species at the surface, van der Waals density functional (vdW-DF) will be used; this will improve
the predictions calculations reported in the scientific literature. For investigating the atomic structure, we aim to
calculate the most stable configuration of the observed periodic 3 × 4 supercell of the wetting layer arising from
the first steps of deposition of CaF2 of the studied interface. Then, to calculate constant-current mode of the STM
images at different voltages and compare them with experimental data. Finally, to compute line-scans of the surface
topography for comparing the computed structure with respect to the experiment. The same approach is repeated
in order to find an accurate atomic description of the CaF2 stripe-like structures found to form on top of the initial
wetting layers.

1.3 Outline
This work is split into five main chapters, giving detail of the performed calculations and the physical/mathematical
principles behind them. The first chapter, this Introduction, briefly described the relevance and active research behind
the unsolved atomic structure of the CaF2/Si(100) interface and how it is expected to have interesting properties for
the design of new molecular electronics technologies.
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The second one, Theoretical Background, illustrates the DFT theory and how it is constructed from the
Hohenberg-Kohn theorem and Kohn-Sham equations. Also it will explain some of the approximations applied
over the computational process in order for us to be able to converge to an estimate and, at the same time, reliable
answer.

The third chapter is the Methodology, where we review the properties of the studied structures and give details
about the calculation and choice of the optimal parameters used to perform the computational simulations.

The Results and Discussion chapter will address the analysis of the computed STM images and scrutiny of the
obtained electronic structure of the interface.

And finally, in the Conclusions and Outlook chapter we will wrap up the results and deepen into the discussion
for giving an insight of the further research needed on this topic.



Chapter 2

Theoretical Background

2.1 Schrödinger equation for many body systems
In order to understand the underlying physics of the simulations we are performing, we should remember that all
the physical properties of solids are given by their electronic structure13. Electrons are half integer spin particles, so
their statistical properties are given by the Fermi-Dirac distribution, and its motion inside materials are governed by
the laws of quantum mechanics.

The Schrödinger equation, equation 2.1, describes the motion of a quantum mechanical particle

Ĥψ = Êψ (2.1)

where its Hamiltonian H = T̂ + V̂ which details the system and contains information about the potential V̂
(deppending on the nature of the system) and kinetic (T̂ = − ~

2

2m∇
2) energy of it14. The energy operator is given by

Ê = i~∂/∂t, so eqn. 2.1 becomes: [
−
~2

2m
∇2 + V̂

]
ψ (r, t) = Êψ (r, t) = i~

∂

∂t
ψ (r, t) (2.2)

The wavefunction depends in the vector r, where the coordinates for electrons are represented by a lowercase ~ri,
nuclei with an uppercase ~RI , being the the indices i ∈ [1,N], I ∈ [1,M] for the number electrons and nuclei in our
system.

r =

{(
−→r 1, s1,

)
, . . . ,

(
−→r N , sN

)
;
(
−→
R 1, s1

)
, , . . . ,

(
−→
R M , sM

)}
(2.3)

From the set of wavefuntions and eigenvalues of this differential equation all physical observables can be
addressed and computed15. This linear partial differential equation can be separated into its temporal part using the
energy eigenvalue E of the equation 2.4. The form of the separated solutions is described by the following infinite
linear combination:

5
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ψ (r, t) =

∞∑
i=0

ciψi (r) e−iEit/~ (2.4)

The ground state configuration (lowest energy state) of the system will be given by ψ0(r) and the simultaneous
probability of finding electron 1, electron 2... and electron N at position ~r1, ~r2, ~rN respectively can be computed
from: |ψ0 (r)|2 16.

Since we are dealing with many atoms system, the potential operator V̂ is composed of the following interactions:
electron-electron V̂e−e, electron-nuclei Ve−n, and nuclei-nuclei interactions V̂n−n.

V̂ = V̂e−e + V̂e−n + V̂n−n (2.5)

= +
1
2

∑
i, j

e2

4πε0

1∣∣∣ri − r j

∣∣∣ (2.6)

−
1
2

∑
i,I

e2

4πε0

Zi

|ri − RI |
(2.7)

+
1
2

∑
I,J

e2

4πε0

ZIZJ

|RI − RJ |
(2.8)

(2.9)

Therefore, using those expressions for the potential and kinetic energies, the full Schrödinger equation becomes:

−∑
i

~2

2me
∇2

i −
∑

I

~2

2MI
∇2

I +
1
2

∑
i, j

e2

4πε0

1∣∣∣ri − r j

∣∣∣ − 1
2

∑
i,I

e2

4πε0

Zi

|ri − RI |
+

1
2

∑
I,J

e2

4πε0

ZIZJ

|RI − RJ |

ψ (r, t) = Etotalψ(r, t)

(2.10)

2.2 Solid state physics approximations
Solving exactly the Schrödinger equation 2.4 for a system with higher complexity than the hydrogen atom is
impossible due to the increasing amount of electronic coordinates and the many-body nature of the problem13.

Therefore, multiple approximations and conventions may be used to address the problem of solving this many-
body equation17 and getting information about the wavefunctions composing the particles inside the studied solid.
Considerations such as: the high nuclei-electron mass ratio, use of periodic solutions due to the periodic boundary
conditions in regular solids, finding symmetries, setting cutoff limits to the infinite sums, and using perturbation
theory can also greatly boost the speed of the calculations and considerably reduce the computational hurdle.
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2.2.1 The Born-Oppenheimer approximation

Considering the time scaling of the interactions and motion of the nuclei in the lattice versus the electrons moving
around them, the events relating the atomic nucleus occur in longer times than those relating the electrons. This
is due to the fact the mass of the proton is three order of magnitude heavier than the electrons18. Therefore their
interactions may be decoupled via the adiabatic theorem of quantum mechanics. The adiabatic approximation will
keep the instantaneous ground state positions of the electrons while as the nuclei move. Therefore, the energy
minimization process for the electronic part can be solved simultaneously, along with the motion of the nuclei in the
lattice19.

Considering the Schrödinger equation with nuclear coordinates given by ~Ri and electronic positions by ~r, being
s the index running through the coupled atomic wavefunctions and i the indices of the nuclei, then we can write:

Ĥψs

(
~r, ~R

)
= Esψs

(
~r, ~R

)
(2.11)

The degrees of freedom can be decoupled into the electronic wavefunctions of each atom, given by ψi, and
the electron-nuclear states, described as χsi. Those coupled states deppend on the positions of the atoms and are
coefficients of the pure electronic wavefunctions.

ψs

(
~r, ~R

)
=

∑
i

χsi

(
~R
)
ψi

(
~r
)
, (2.12)

For getting analytical expressions for the electron-nuclear states, we can combine equations 2.11 and 2.12,
integrate them with respect to the electronic coordinates to obtain:−1

2

∑
j

∇2
j/M j

 + Ei

(
~R
)
− Es

 χsi

(
~R
)

= −
∑

i′
Cii′χsi

(
~R
)

(2.13)

Where the coefficient is given by Cii′ = Aii′ + Bii′ , and the terms are given by:

Aii′
(
~R
)

=
∑

J

1
M j

〈
ψi (R) |∇J |ψi′

(
~R
)〉
∇ j , Bii′

(
~R
)

=
∑

J

1
2M j

〈
ψi (R) |∇2

J |ψi′
(
~R
)〉

(2.14)

The adiabatic approximation comes here, where we ignore the Cii′ off-diagonal terms in order to assume the
electrons do not move with respect of the motion of the nucleus. Even though the electronic ψi(~r) wavefunctions
get a change in energy, the electrons remain in the same state, and there is no energy transfer between the electronic
degrees of freedom, as equation 2.13 just deppends on nuclear coordinates ~R20.

2.2.2 Crystal lattice periodicity

A crystalline structure, ideally, displays perfect periodicity over all spatial coordinates in a microscopic scale21. By
applying a proper translation given by multiples of the lattice constant describing the crystal over a coordinate in one
specific direction, returns the same structure, given its periodic boundary conditions. Mathematically, this can be
written as follows:
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f (r + T (n1, n2, n3, . . .)) = f (r) (2.15)

~T
(
~n
)
≡ T (n1n2 . . .) = n1~a1 + n2~a2 + . . . (2.16)

With the index i = 1, . . . d running up to a spatial dimension d and the vector ~n = (n1, n2, n, . . . nd) containing
indices relating the number of periodic translations applied over each direction i with lattice vector ~ai. In reciprocal
space, the reciprocal vectors are given by the expression and related with the Kroenecker delta δi j (valued 1 if i = j,
0 otherwise):

~bi =
2π

Ωcel1

(
~a j × ~ak

)
εi jk , ~ai × ~b j = 2πδi j (2.17)

Given the periodicity of the function at equation 2.15, a Fourier transformation may be applied for wavevectors
~q defined in reciprocal space. The construction of expressions for Fourier components becomes simplier if we
constrain the number of components to be limited to a finite discrete value enclosed inside the whole crystal volume
Ωcrystal containing Ncells = {Ni} = N1 × N2 × ..., where Ni describe the number of cells along each dimension.

ei~qN1~a1 = ei~qN2~a2 = . . . = 1 (2.18)

Hence, by considering the boundary conditions to have Born-Von Karmen constraints19 (equation 2.18), leading
to the consideration of periodicity of wavevectors. The Fourier transform is then given by:

f
(
~q
)

=
1

Ωcrystal

∫
Ωcrystal

d~r f
(
~r
)

ei~q·~r (2.19)

=
1

Nce11

∑
n1,n2...

ei~q~T (n1,n2...) 1
Ωcell

∫
Ωcell

d~r f
(
~r
)

ei~q~r (2.20)

From the last expression we can observe that the sum over lattice points is obtained by the non-zero outcome of
the dot product ~q · ~T (~n), and because the translation had the real space lattice vectors as basis we can obserbe that
~q ·~ai = 2πn where n ∈ Z. The reciprocal lattice vector with non-zero f (~r) Fourier transform is for ~q = ~G. This vector
can be written as follows:

~G (m1,m2 . . .) = m1~b1 + m2~b2 + . . . , mi ∈ Z (2.21)

Also, the Fourier transform for each vector ~G will be given in terms of the cell volume:

f
(
~q
)

=
1

Ωcell

∫
Ωcell

d~r f
(
~r
)

ei ~G·~r (2.22)
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2.2.2.1 Bloch’s theorem

Due to the fact that the lattice is composed of atomic nuclei spaning the same Coulombic potential, with periodicity
related to the lattice vectors, this potential may be expanded in Fourier space like this:

V
(
~r
)

=
∑

G

VGei~K·~r , VG =
1

Ωce11
V(~r)e−i~K·~rdr (2.23)

This periodicity, togheter with the Born-von Karman conditions depicted on equation 2.18 implies periodic
behavior under this ~q wavevector. Therefore, the wavefunctions may be expressed like this:

ψ (r) =
∑

q

cqei~q·~r (2.24)

Taking this considerations into account, the Schrödinger equation (eqn. 2.4) can be written in reciprocal space
as follows:

− ~2m
∇2 +

∑
~G

V ~Gei ~G·~r − E

∑
~q

c~qei~q·~r = 0 (2.25)

∑
~q

(
h2q2

2m
− E

)
c~qei~q·~r+

∑
~G,~q

V ~Gc~qei( ~G+~q)·~r = 0 (2.26)

∑
~q

(
h2q2

2m
− E

)
c~qei~q·~r+

∑
~G,~q− ~G

V ~Gc~q− ~Gei( ~G+~q− ~G)·~r = 0 (2.27)

→
∑
~q

ei~q·~r

∑
~q

(
h2q2

2m
− E

)
c~q +

∑
~G

V ~Gc~q− ~G

 = 0 (2.28)

This final expression is represented in the next line, where all the coefficients in the sum involving the reciprocal
vectors ~q must vanish, and after a change in indices we get:(

h
2m

(~k − ~G)2 − E
)

C~k· ~G +
∑
~G′

V ~G′− ~GC ~G− ~G′ = 0 (2.29)

The interpretation of this expression is that for any wavevector ~k, only the ones that differ from it by ~G will hold
the last vanishing condition with respect to the periodic potential expansion. Therefore, our wavefunctions, as long
as the potential exhibits periodic behavior, can be written as:

ψk(~r) =
∑
~G

ei~k− ~G)·~r = ei~k·~r
∑
~G

c~k− ~Gei ~G·~r (2.30)
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ψk
(
~r
)

= ei~k·~run,k
(
~r
)

, ψn,~k = ψn,(~k+~K) (2.31)

The wavefunction in this representation is also known as Bloch Wave, and despite they do not explicitly give an
analytical solution to ψ(~r), it tell us that for this kind of systems, the solutions can be represented by plane waves with
amplitude un,k(~r) deppending on the shape of the potential. For any given value of k there is an infinite ammount
of solutions for the periodic function un,k representing the lattice. Hence, the quantum number n is also required to
fully describe the state of the Bloch Wave.

2.2.2.2 Plane wave expansion

From the reciprocal space form of Schrödigner (eqn. 2.29), we can observe that by solving it, the solution will
deppend on the wavevector ~k, then we can solve it for each value of ~k independently. The solution, that can be
expressed as a Bloch Wave (as 2.31) has the property of having periodic amplitude(eqn. 2.32)13.

uk
(
~r + n1~a1 + n2~a2 + . . .

)
= Uk

(
~r
)

(2.32)

This periodicity implies that this function can be expanded as an infinite sum of plane waves deppending on all
possible values of ~G vectors satisfiying ~G · ~a = 2πn, with n ∈ Z and ~a being a real space vector. The expansion is
depicted in the next equation:

uk
(
~r
)

=
∑
~G

c ~Gei ~G·~r (2.33)

Now, combining equation 2.31 and 2.34 leads to the next definition. We can observe the expression to tell us that
for any specific solution of ~k, we have to solve this infinite summation involving all the possible values of ~G.

→ ψk
(
~r
)

=
∑

G

c~k+ ~Gei
(
~k+ ~G

)
·~r (2.34)

In order to make it computationally achievable, the sum has to be truncated. We can note, that the kinetic energy
(2.35) of this solutions will be proportional to the wavevector of each plane wave in the summation. Therefore, since
we are interested on ground state properties in our system, the lower kinetic energies will give us more physically
relevant information than higher ones.

Ekin =
~2

2m
|~k + ~G|2 (2.35)

2.2.3 Pseudopotentials

By using pseudopotentials, one might greatly reduce the computation of individual electrons of the inner shells. The
method is commonly used also in atomic physics and neutron scattering problems. The pseudopotential construction
consists of replacing the highly complicated expressions of the Coulombic interactions by a simplier effective
potential containing the overall charge interaction effects of the inner electron shells plus the atomic nucleus22.
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For calculating scattering amplitudes from an spherically symmetric potential, the phase shift of the sctattered
wave is required to get information about the cross-section and other properties of the wavefunction far from the
scattering region15. Hence, the phase shift becomes a very important quantity to understand the behavior under
scattering events. The potential strength is directly proportional to the phase shift the wave gets. By constructing a
proper pseudopotential, a more accurate description of the scattering event is obtained under a wider energy range19.

The usage of pseudopotentials in solid state physics applications started with the work of Hellman, who con-
structed effective potentials to study scattering events of the valence electrons with the ionic components in a metallic
lattice23. He developed this construction while formulating a theory of binding for metallic materials24. Few years
later, there was found that equations describing behavior of valence electrons can be achieved via weak effective
potentials, and a great set of sp-bonded metals and semiconductors was acurately described using a few empirical
coefficients25. More accurate and reliable pseudopotential methods were developed since then, first by getting a
wider range of materials reliably described for specific problems like crystal phase stabilities26. Later on, more
problems were getting solved, such as conserving the norm of the obtained wavefunctions27, improving the ’softness’
(separating the resulting wavefunction into an overall smooth part plus a rapidly oscillating part around the ion cores)
of the pseudopotentials28, and reduced computational costs29. Nowadays, there is a plenty of pseudopotentials
widely available to be used into the different DFT rountines inside the multiple simulation codes available.

2.2.4 The Projector Augmented Wave (PAW) method

Some ’soft’ or ’ultrasoft’ pseudopotentials still have a disadvantadge at the moment of restoring the true valence
wavefunction. This reason motivated the work of Blöchl30 to construct a method for accurately partitioning the
electron wavefunctions to avoid this problems. He proposed to calculate the all-electron wavefunction for every
electron, not only the valence ones as in the usual pseudopotential method in order to have access to the complete
wavefunction. Later, combines the computational advantadge of the Vanderbilt31 ultrasoft pseudopotentials in such
a way that not so many plane waves are needed to fill up the expansion describing the wavefunction of the valence
electrons.

The electronic wavefunctions are split into three terms:

ϕ = ϕ̃ν + χν − χ̃ν (2.36)

The first term ϕ̃ perfectly matches the wavefunction outside the atomic core region. The second function χν is
exact inside this mentioned region (highly oscillatory near the core) and slowly decays to zero outside of it, and
finally χ̃ν is equal to the smooth and highly localized parts of the ϕ̃ and matched the χν part outside the core regions.
Therefore, this last term cancels out all the non-physical waves used in the method. This procedure allows us to
calculate the total electronic energy by parts, and thus letting us have all-electron solutions easily32. A complete
routine for this method is implemented on VASP.
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2.3 Principles of Density Functional Theory
By applying the later mentioned approximations, we can get rid from the ion-ion interactions and the nuclei kinetic
energies. Then, equation 2.37 becomes simpler:−∑

i

~2

2me
∇2

i +
1
2

∑
i, j

e2

4πε0

1∣∣∣ri − r j

∣∣∣ − 1
2

∑
i,I

e2

4πε0

Zi

|ri − RI |

ψ (r, t) = Etotalψ(r, t) (2.37)

The many-body problem is then considered as a one-body problem by stablishing an electron density cloud,
composed of the electrons moving along the material. The cloud is given by the probability of finding a particle at a
position r:

ρ(~r) = 〈ψ(r)|ψ(r)〉 (2.38)

Now, assuming that the expected value of the total energy obtained from the Hamiltonian is only dependent on
the electron density, we may write:

ETotal[ρ] = 〈ψ|T + Ve−e + Vext |ψ〉

= F[ρ] + 〈ψ|Vext |ψ〉

= F[ρ] +

∫
ρVext d3~r

(2.39)

wherewe define a universal functional F[ρ] that contains all the electron interaction and energies: kinetic, Coulombic,
and exchange − correlation energies, and can be written as:

F[ρ] = T [ρ] + Ve−e[ρ] (2.40)

= T [ρ] + VC[ρ] + Exc[ρ] (2.41)

= −
~2

2me
〈ψ| ∇2 |ψ〉 +

1
2

∫ ∫
ρ(~r)ρ(~r′)

|~r − ~r′|
+ Exc[ρ] (2.42)

This shows that the nature of the new energies depends on the applied universal functional.

2.3.1 The Hohenberg-Kohn theorem

The assumption stipulated before that stated the total energy of a many-body electronic system can be expressed
as a functional of the electron density (eq. 2.38) is known as Hohenbeg-Kohn theorem. This theorem is based on
the following considerations: First, the ground state of the electronic density ρgs is uniquely given by the potential
generated by the nuclei in the lattice Vn−e; second, there is a one-to-one correspondence to the expression of the
external potential applied Vn−e and the many-body electronic wavefunction Ψ involved; and lastly, the total energy
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E is uniquely described by a state describing the latter wavefunction Ψ. Therefore, by following the sequential logic
of these arguments

ρ→ Vn−e → Ψ→ E (2.43)

we can infer that the total energy must be a functional of the density: E = F[ρ]. This theorem may be easily proven
by reductio ab absurdum considering the existence of two different external potentials: Vext and V

′

ext. The procedure
goes as follows:

Two different Schrödinger equations can be stated, where distinct energies will result from the different potentials.

(T + V
′

ext + V)ψ0 = E′ψ0 (T + Vext + V)ψ0 = Eψ0 (2.44)

As they are acting over the same ground state ψ0, summing both equations leads to:

(V
′

ext − Vext)ψ0 = (E′ − E)ψ0 (2.45)

Leading to a contradiction because for this equation to hold the potentials have to be equal Vext = Vext, but
from the initial assumption this cannot be. Therefore, the ground state density is unique given an specific external
potential.

2.3.2 Kohn-Sham equations

The Hohenberg−Kohn theorem33 ensures the existence of a universal functional, but does not tell us anything about
how to construct it. Also, it states that the external potential (lattice of the solid) is unique for a given ground-state
electron density.

The full Hamiltonian of the interaction (eq. 2.37) strictly depends on the charge density alone; thus, it now
becomes:

N∑
i=1

[
−
~2

2me
∇2

i +
e2ρ(~ri)
|~ri − ~r j|

∣∣∣∣∣
j,i

]
−

N∑
α=1

Zαρ(~ri)

|~ri − ~Rα|
+ Vxc(~ri)

 = εiψ(~ri) (2.46)

Now, the most important property of an electronic ground state density is its energy, which may be calculated by
variational calculus34:

Egs = min
ψ
〈ψ| Ĥ |ψ〉 (2.47)

Also, we can minimize the universal functional in equation (2.40) such that the obtained wave function is consistent
with a charge density ρ, as follows:

F[ρ] = min
ψ→ρ
〈ψ|T + Ve−e |ψ〉

=
〈
ψ
ρ
min

∣∣∣ T + Ve−e
∣∣∣ψρmin

〉 (2.48)

Since the ground state of the system will be the configuration with minimal energy, considering the equation (2.39),
we have the following relation:

ETotal[ρ] ≥ Egs[ρ]

〈ψ|Vext |ψ〉 + F[ρ] ≥ Egs
(2.49)
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In general, the expectation value of Vext will not change by choosing either basis ψ or ψgs. Therefore:〈
ψ
ρ
min

∣∣∣ T + Ve−e
∣∣∣ψρmin

〉
≥

〈
ψgs

∣∣∣ T + Ve−e
∣∣∣ψgs

〉
(2.50)

but after the minimization, the obtained energy of the system will correspond to the ground state. Then, the latter
expression is only true for: 〈

ψ
ρ
min

∣∣∣ T + Ve−e
∣∣∣ψρmin

〉
=

〈
ψgs

∣∣∣ T + Ve−e
∣∣∣ψgs

〉
(2.51)

Therefore, this ensures us that, after iterations, we converge to the ground-state energy:

Egs =

∫
ρgs(~r)Vext(~r) d3~r +

〈
ψgs

∣∣∣ T + Ve−e
∣∣∣ψgs

〉
=

〈
ψgs

∣∣∣ Vext
∣∣∣ψgs

〉
+ F[ρgs].

(2.52)

To obtain the correct energies, we have to use calculus of variations to minimize the charge density. We will denote
a small Functional Variation with δ. Therefore, we will look for extreme values of the charge density:∫

δρ(~r)d3~r = 0 (2.53)

Hence, considering the total energy expression in equation 2.39, we want to minimize it to approach the ground-state
energies:

ETotal = Vn−e[ρ] + Ve−e[ρ]

+ T [ρ] + Exc[ρ] ≥ Egs[ρ]

=

∫
ρgs(~r)Vn−e(~r) d3~r

+

∫ ∫
ρ(~r)ρ(~r′)

|~r − ~r′|
d3~rd3~r′

+ T [ρ] + Exc[ρ]

(2.54)

Applying variations to the energy functional:

δETotal =

∫
δρ

Vn−e +

∫
ρ(~r′)

|~r − ~r′|
d3~r′

+
T [ρ]
δρ

∣∣∣∣∣
ρ=ρgs

+
Exc[ρ]
δρ

∣∣∣∣∣
ρ=ρgs

]
d3~r = 0

(2.55)

In order to wrap up some terms, we can define an external potential and an extra effective potential associated with
the exchange-correlation energy:

Vxc(~r) =
Exc[ρ]
δρ

∣∣∣∣∣
ρ=ρgs

(2.56)

Veff(~r) = Vn−e +
Exc[ρ]
δρ

∣∣∣∣∣
ρ=ρgs

+

∫
ρgs(~r′)

|~r − ~r′|
d3~r′ + Vxc(~r) (2.57)
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Thus, equation (2.55) becomes:

δETotal =

∫
δρ

[
T [ρ]
δρ

∣∣∣∣∣
ρ=ρgs

+ Veff(~r) − ε
]

d3~r = 0 (2.58)

where ε represents a Lagrange multiplier that contains the constraint of particle conservation for the minimization
process35. Finally, the whole problem can be reduced to solve the following one-particle equation that contains all
the many-body interactions wrapped up into an effective potential, as previously defined. This is the Kohn-Sham
equation: (

−
~2

2m
∇2 + Veff − E j

)
φ j(~r) = 0 (2.59)

ρgs(r) =

N∑
j=1

|φ j(~r)|2 (2.60)

This set of equations is self-consistent36 and can be iterated over and over again starting from a homogeneous electron
gas or an inhomogeneous one33, depending on the ansatz applied over the system. After the first set of solutions and
eigenenergies are obtained, a new electron density is calculated from the previously calculated wave functions until
energy convergence is achieved.

To accelerate the calculations, the wave functions are expanded under a Fourier series, depending on the boundary
conditions of the problem (a periodic lattice would allow us to consider Bloch waves37) and are cut off up to an
arbitrary energy value so that convergence is unaffected13.) Also, extra symmetry points are obtained within the first
Brillouin Zone to reduce the wave function calculation complexity38.

2.3.3 The Exchange and Correlation Functionals

The second Hohenberg-Kohn theorem ensures the existance of a functional that accurately describes the ground state
electronic density of a given system33, but it does not give us directives about its form and how to construct it.

2.3.3.1 The Local Density Approximation (LDA)

Multiple approaches to get the exchange-correlation energy exist nowadays, one of the simplest ones involve obtaining
energies from an homogeneous electron gas of relative high density (same as considering the kinetic energy of the
gas to be higher than the potential energy acting over it). The functional form of LDA goes as follows:

ELDA
xc =

∫
ρgs

(
~r
)

Exc

[
ρgs

(
~r
)]

d~r (2.61)

The LDA functional becomes exact just for the case of an homogeneous electron gas, for example: electrons
standing in vacuum affected by an homogeneous potential to neutralize the overall charge over space. The energies
are easily calculated due to the fact the Kohn-Sham eigenfunctions come out simply from Slater determinants of the
plane waves involved39.This method is not very accurate since most of the analyzed systems present inhomogeneities
in tis electronic gas clouds. Therefore, gradient corrections may be performed (see next subsection). In general,
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for getting the total energy quantum Monte-Carlo methods are used to determine the random cloud interactions that
contribute to the correlation energies Ec[ρ(~r)].

In this context, the expression for the total energy can be given as:

ET = Vn−e + VH + Ve−e + T +

∫
d3~rρ

{
Ex

[
ρ(~r)

]
+ Ec

}
(2.62)

Where VH is the Hartee energy asociated to the energies obtained from solving the Schrödinger equation by
considering weak electron-electron interactions, and therefore solutions in the form of one-electron wavefunctions
to compose an Slater determinant for describing the many-body wavefunction40. Although the LDA functional has
this poor assumptions it has been demonstrated remarkable results through multiple calculations. The main reason
for that is the achievement of holes obeying the summation rules for particular hamiltonians41. Therefore, even
though arbitrary approximations are imposed, holes still satisfy the contraints of the sum rules. Besides, since its
exchange-correlation energy contains only the spherical average of holes, their detailed shape have no effect to the
overall result. Another important thing to consider about LDA is the fact that it is known to underestimate the value
of the band gap of materials42.

2.3.3.2 The Generalized Gradient Approximation(GGA)

The first thing to improve from the LDA functional is the deppendance on a perfectly homogeneous gas to be exact.
Hence, in the GGA functional, the gradient of the electronic density is considered. At the early beginnings of
the construction of this LDA ’improvements’, the proposed "Gradient Expansion Approximation" methods did not
make a great improvement over the LDA functional. Despite of this time considering the gradient in the fucntional
expression and getting known values for its first order expansions, the sum rules became violated along other
constraints43. Mainly due to the problem that charge densities in some real materials are very inhomogeneous,
leading to very high gradient magnitudes. Those magnitudes cause the expansions blow up and return worse results,
even than LDA.

Later on, the GGA was proposed to modify this large gradients in such a way this large magnitudes are not a
problem anymore. The expression for the GGA functional is expressed as:

EGGA
xc

[
ρ
(
~r
)]

= ELDA
xc + α

∣∣∣∣∣∣∇ρ
(
~r
)

ρ4/3

∣∣∣∣∣∣ (2.63)

The extra factor that scales the exchange-correlation energy of the LDA functional is also called enchancement
factor Fx(s).

Fx (s) = 1 + s = 1 +

(
1

2(3π2)1/3

)
|∇ρ|

ρ4/3 (2.64)

2.3.3.3 The optb86-vdW functional

The motivation of studying biomolecules, such as DNA, where electronic dispersion effects become important
pushed theoretical DFT research towards the development of a functional capable of taking into account the non-
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local interactions present in such systems. At first, van der Waals effects were succesfully implemented and got
qualitative good results just for layered structures44. Later on, further research lead to the development of a
more sophisticated functional deppending on a kernel with parameters relying on the local and gradient density.
This functionals were able to correct the exchange-correlation energies regardless of the geometry of the studied
material45.

The achieved results from the generalized geometry van derWaals functional were not reliable enough as they did
not fullfil chemical accuracy for important biomolecules (set S22 of dimers). Thus, different exchange functionals
were re-tuned in order to optimize the binding energies of those molecules46, giving birth to the optb86-vdW
functional47.

The form of the expression for the energy in vdW-DF is given by:

Exc = EGGA
x + ELDA

c + Enl
c (2.65)

The GGA exchange part is computed from the revPBE density functional, the LDA part again fromMonte-Carlo
methods, and a non-local term Enl

c containing all the correlation interaction effects. The non-local term is computed
by using a double space integration from a response function model describing the random electronic densities
interactions48, allowing an improvement over the former methods. This non-locality is49 found to become more
important with transition metals with complete d shell, as such effects become significant against the GGA exchange
energies. Further parameter optimization lead to the development of the optb86-vdW functional49. It has shown
improved results for metals, ionic compounds and metals, hence opening the path towards new research and more
accurate values for lattice constants, bulk moduli and atomization energies.

2.4 Electron Microscopy
In the seventeenth century, thanks to the simultaneous parallel work of Robert Hooke and Antoni von Leeuwenoek,
humanity discovered the existence of microbes ( or animalcules as von Leeuwenhoek himself coined them)50.
Despite of the low magnifying power of their first prototypes of about 25-fold to 200-fold, they were able to report
the first images of protozoa, bacteria and microfungus. Since then, the development of more powerful microscopic
techniques has become a cornerstone to scientific research, allowing us to probe the world at small scales. Later,
in the decade of 1929, the nuclear physicist Leo Szilard would propose the construction of a microscope that may
use electrons instead of light beams to probe samples in order to improve the currently available resolution. It is
until 1931 when Ernest Ruska, together with Max Knoll, build the first transmission electron microscope (TEM)
with a magnifying power of 17.3-fold. Ruska and Knoll, were conscious about the fact that optical microscopy
has a limit because of the wavelength of light used51; they simply hoped for electrons to have a low dimensions
compared with light waves. As engineers, they were not aware of the current developments of de Broglie matter
waves, even most physicists at that time were not neither. Later, after Ruska got to know about the de Broglie
equation, he became motivated again to continue using electrons as they display a de Broglie wavelength about five
orders of magnitude shorter than light waves. Two years later, Ruska successfully improved his design being able
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to first surpass the optical microscope attainable resolution. After the end of the Second World War, the production
of electron microscopes became very profitable for the industry and its use also widely increased in the scientific
research. In the year of 1986, Ruska was awarded with the Nobel Prize in physics for its prototype schematics,
together with Gerd Binnig and Heinrich Rohrer for the development of Scanning Tunneling Microscopy (STM)52.

2.4.1 Scanning Tunneling Microscopy

During the early 1980s, at IBM Laboratories in Zurich, Switzerland, G. Binning and H. Rohrer developed the
principles behind nowadays STM technology. While trying to measure the distribution of tunneling current between
a superconducting surface and a metallic tip with a separation distance of about 1 nm, for analyzing semiconducting
properties, they realized the tremendous potential resolution attainable with this technique. Their achievement of
getting atomic resolution by using the tunneling effect over samples with electrical conductivity opened the path of
STM development and its consequences triggered the advancement of fields like nanotechnology. This technique
lead to the possibility of probing the electronic density of states of materials with respect to the measured tunneling
current I by changing the voltage V applied over the tip and the sample. Of course, the spatial resolution also depends
on the sharpness of the tip apex. In an ideal case, having a one-atom tip within an stable tip basis is required. Since
the electron wavefunctions of the tip depend on the atomic species used on it it is fundamental to keep control over
this, otherwise it may affect the overall measurements53.

Figure 2.1: Diagram describing the basic working principle of an STM device. Adapted from Ref. 53

2.4.1.1 Line-scan STM mode

The STM device measures the absolute value of the current passing through the tip-sample interface. Also, due to
the exponential decrease of the tunneling effect by increasing the distance, it is possible to measure slight changes
in separation between the top-most atomic orbitals and the tip by just measuring the tunneling current. Therefore,
by laterally scanning the surface of the sample, adjusting the tip height in such a way the tunneling current keeps
constant, one can probe the topography of the sample. By considering a one-dimensional barrier composed of
a vacuum-metal interface we can give an approximate form to the tunneling current present in a typical STM
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construction, also assuming a constant density of states at the tip is constant with respect to the electron energies and
elastic interactions we can write the tunneling probability, I54:

I ≈
4πe
~
|M|2 ρt (0)

∫ 0

−eV
ρs (ε) dε (2.66)

Where the ρs(ε) function represents the Local Density of States at energy ε. By considering the fact that it is not
possible to probe and get absoulte heights of the topographies of the sample because it changes given the applied
VBIAS, a naïve approach would be to chose a contour of current charge density. Nevertheless, equation 2.67 suggests
that this current is given by the charge density below the Fermi level, where V is the applied bias voltage.

This current intensity Slightly changing the separation of the tip from the specimen, for example from 1 nm to 0.1
nm one can achieve total change in tunneling current of about one order of magnitude. Therefore, atomic resolution
can be accomplished in the z direction, and also a lateral resolution up to 0.2 nm is achievable. The resulting spatial
profile is a topological image of the sample, see Fig. 2.2.

Figure 2.2: Microscopic view of the tip interaction with the protruding orbitals of the surface of the sample. Adapted
from Ref. 54

2.4.1.2 Density of States

From solid state physics theory55, the Density of States (DoS) represents the number of electronic states contained
within an energy range, where a high DoS value for an specific energy level means that many states are availiable
for electrons to occupy.

Equation 2.67 suggests that by keeping a constant tip-sample distance at an specific point in a xy-plane perpen-
dicular to the probe, and setting a negative bias voltage, the current becomes exact the following expression:

I = I0

∫ 0

−eV
ρs (ε) dε (2.67)
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Therefore, by stablishing such conditions and varying the bias voltage V on the probe it is possible to measure
the integral of the density of states around −eV energy units below the Fermi level. And deppending on the sign of
the applied voltage, positive or negative, one can measure the tunnelling electrons of the unoccupied states (tip to
sample electrons) and occupied (from sample to tip) ones respectively.

2.5 Simulation Software
In this section, the software used and its main characteristics are detailed and discussed. Among the most popular
codes available for performing DFT are GAUSSIAN and VASP. GAUSSIAN is one of the most oldest and widely
used DFT codes, with its theoretical background being born with the work of John Pople56.

Therefore, the most important code used in the development of this thesis was VASP, which contains the plane
wave DFT algorithms needed to perform our calculations. Then, some additional resources are used in parallel, such
as visualization tools and atomic manipulation applications to handle the input and output files coming out from the
VASP code or performing other extra calculations over our structures.

2.5.1 VASP: Vienna Ab initio Simulation Package

After the great discovery of a self-consistent procedure to calculate the ground state properties of many-body
systems by Walter Kohn36, early DFT codes started being developed by considering different procedures to make it
computationally feasible57. The first DFT code development was lead by John Pople, in which he proposed the usage
of a Gaussian-like basis sets to compute molecular orbitals58. This procedures became available in the GAUSSIAN
code, very popular among theoretical chemists to calculate properties for complex molecules. But, a solid-state code
for materials science was needed, and VASP became a reliable code. The VASP package applies psudpotentials to
carry on plane-wave calculations over periodic solid systems. As in all DFT codes, the Kohn-Sham equations are
solved in a self consistent manner expanding the orbitals as a combination of functions coming out from an specific
chosen basis set. The VASP code implements plane waves (PW ) basis set, which in practice offers the following
two advantages59:

• Good control of the convergence coming out from the chosen basis set: Usually, the PW method offers good
convergence and accuracy versus other basis sets. Very large basis sets (something that is computationally
expensive) have to be used in order to match up PW calculations60. The phrase "PW accuracy" is now popular
among nowadays DFT scientists

• The process of evaluation of forces and stress acting on our system can be easily calculated by applying the
Hellmann-Feynman theorem61. Something that allows further molecular dynamics calculations.

Additionally, since the properties of materials depends mainly on the valence electrons, VASP simplify the
problem by replacing the core electrons by the projector augmentedwavemethod (PAW)30, the results are comparable
to an all-electron code calculations.
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Many other sophisticated (but computationally expensive to perform) exchange correlation functionals are avail-
iable inside the VASP code. Such as post-DFT corrections like RPA, GW many-body perturbation theory and many
other hybrid functionals to further correct the total energies involved in the case of study.

Given the fact that just solving the Kohn-Sham equations do not complete the set of tools needed for top-level
materials research, VASP has multiple routines to further calculate properties of solid-state structures such as:
vibrational modes spectra computation, mechanical properties prediction, phase transformation activation energies,
magnetic properties and so on. In conclusion, VASP constitutes a reliable tool, with a good mixture of genetic
algorithms for studying crystalline and surface structures62.

2.5.2 ASE: Atomic Simulation Environment

An object-oriented open-source python code with multiple tools for visualization, set up, and analysis of atomistic
calculations, regardless of the DFT code used to get the data. It was initially designed because of the big need
of a tool allowing an intuitive approach to manipulate the input and output files of the multiple available DFT
codes63. In early 1990s, almost all the computational physics applications were coded in FORTRAN or C, and a
good background programming skill were required to handle those applications, and even more to modify them.
Those were the pioneering times for Object-Oriented Programming (OOP), and, despite of its multiple advantages,
it was not very popular among computational physicists. The potential use of OOP into physics coding would lead
to a more intuitive way to manipulate parameters and analyze data coming out from calculations, without the need
of having to do unnecessary coding. So, there were proposals trying to make programming inside the field of
computational physics more easy to implement. For example, Dubois presented a programmable architecture with a
run-time database manager with a set of commonly used data structures and functions for the user to just invoke them
directly without constructing them from scratch. Also, he added an interpreter software for parsing input, letting
the user to execute commands easily64. By considering multiple of this proposals to improve scientific coding in
the DFT community, the first version of ASE was born65 by implementing OOP into the input/output data from
DFT codes. Therefore, by using of python classes one can easily grasp that such a class would store variables and
methods specific to their class type. For example, the class "Atoms" can have "get positions" as a method to extract
the coordinates in a python list; or objects like "Calculator" may contain properties related to the DFT parameters of
the simulation code. Then, ASE works as a great front-end to perform tasks regardless of the DFT code. The most
used feature in the development of this thesis was the Graphical User Interface (GUI) to read the atomistic positions
of the input/output files from VASP.

2.6 The CaF2/Si(100) interface
To clearly depict the interface of interest, we have to break it down into the details of each of its constituents. The
silicon surface properties and how it is related to its bulk form is described, then the known properties of them.
Later, a description of the CaF2 compound is presented and the process in which the ultra-thin layers of it are grown
into a pure Si(100) surface via the Chemical Vapor Deposition (CVD) method.
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2.6.1 The Si(100) surface

Silicon, on its mineral forms, makes up to 90% of the Earth’s compounds, and it is also found on relatively high
abundances on other rocky planets of our solar system. On Earth, it is the second most abundant element (making
up to 28% of its mass) of its crust after Oxygen66.

Bulk silicon was first detailed by Lavoisier in 1787, where he described it as an oxide formed together with
another chemical element67. Then, were Gay-Lussac and Thénard who first synthesized impure amorphous silicon
by reacting silicon tetrafluoride over heated an isolated sample of metallic potassium68, but they did not recognize
it as a new element. Later, in 1823 Berzelius, using the same methodology as Gay-Lussac and Thénard, further
purified the remaining brownish powder by washing it and identified the product as a new element, silicon69.

Just recently, in the end and early 20th century the semiconductors industry began to rise, mainly based on
germanium and galena crystals to build radio crystal detectors, Chandra Bose in 1901 would fill a U.S patent
detailing his galena crystal rectifier70. Silicon radio crystals were not used as much as germanium ones because the
latter demonstrated a higher carrier mobility, until Atalla in 1959 found a way of surface passivation by thermally
oxidizing the silicon crystal forming SiO2

71. This lead to higher electrical conductivity because now the surface
dangling bonds would not trap electrons, allowing the electron flux to easily reach the semiconducting bulk silicon
inside the crystal72.

Due to its paramount importance for the semiconductors industry, silicon surfaces analysis has been a increasingly
active topic for materials science research. Specially, the interface SiO2/Si(100) because of its importance for the
construction of films for CMOS transistor technologies72. Over the last 20 years, the Si(100) surface has been deeply
studied under experimental and theoretical frameworks73. The first microscope details of the atomic structure of
this material was discovered by Schiler and Farnsworth74 where they reported the existence of a 2 × 1 and proposed
a periodic structure based on the formation of tilted silicon dimers. Later on, Wolkow75 would be the first scientist
to achieve a direct observation of the tilted silicon dimers on the Si(100) surface using a variable-temperature STM
imaging in ultra high vacuum.

Experimentally, in order to construct a surface from the bulk silicon chemical etching procedures are applied
to get wafers. Those products are then outgassed at Ultra High Vacuum (UHV) at 850 K for some hours and later
flashing them at 1200 K for a few seconds76. After the cleavage of the bulk silicon across the (100) plane, some
dangling bonds will remain in the top of the surface. The Si crystal structure has a face center cubic (fcc) lattice,
then Si(100) surface is equivalent to the Si(001) direction.

Ideally, the fcc diamond-like structure of Si can be cleaved along the (100) Miller plane, leading to a 1×1 surface
symmetry (see Fig. 2.3(a)). But, those dangling bonds are observed to reconstruct the surface geometry to achieve a
lower energetic configuration. Hence, the dangling silicon bonds connect each other and lead to the observation of
a 2 × 1 periodicity77 (see Fig. 2.3(b)).
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Figure 2.3: Geometries of the reconstruction of the surface after the cleavage through the (100) direction. a) clean
cut immediately after the cleavage, b) p(2× 2) buckled dimer configuration, c) p(4× 2) buckled dimer configuration.
Adapted from Ref. 78.

Moreover, not just parallel dimer formation with respect to the surface do form, but also asymmetric dimer (AD)
formation are observed to occur. The dimerization of those silicon atoms lead to a reduction of the dangling bonds
of the cleaved surface by half. The AD formation further decreases the surface free energy, therefore it represents
the ground state configuration of the Si(100) (Fig. 2.3(c)). The asymmetry of the dimers is produced by a change of
height of one silicon atom with respect to the other. Charge transfer occurs from the upper dimer to the lower one,
filling the dangling bond of it at the expense of the former one78. Therefore, along the Si(100) surface parallel dimer
rows get formed, but the orientation of the ADs is not uniform and they are not static.

The STM images taken at room temperature display just a time average of the switching between orientation
of their asymmetries. The asymmetry of the silicon dimers on the surface is also known of buckling. Along the
dimer rows of the surface, ’in-phase’ orientation of the buckled dimers lead to a p(2 × 2) configuration (Fig. 2.3b)
and ’out-of-phase’ buckling constitute a p(4 × 2) geometry (Fig. 2.3c). Despite the p(4 × 2) is the most stable
configuration, the difference in energies between those two buckling types is found to be less than 0.01 eV per dimer,
then, historically, it went outside the computational accuracy to find the most stable configuration11.

2.6.2 Electronic and structural properties of fcc Si and Si(100).

The experimental values describing the bulk structure of fcc silicon are already deeply studied and well known79.
The remarkable property is its low energy band gap (1.11 eV at room temperature and 1.17 at 0 K80), allows it to
be used for constructing semiconducting devices. It may be doped (electron donors/acceptors) using elements with
different electronic configuration to get n-doped silicon or p-type silicon. The Fermi level and availability of charge
carriers change as depicted in figure 2.4. Some of the bulk main properties are listed in Table 2.6.2.



24 2.6. THE CAF2/SI(100) INTERFACE

Figure 2.4: Band gap displayed by different silicon semiconductor types. a) pure silicon, b) n-doped silicon, c)
p-doped silicon. Adapted from Ref. 79

Parameter Physical value
Compatible acceptors Al, B, Ga
Compatible donors Sb, As, P
Atomic density 5.02 × 1022 atoms/cm3

Bulk modulus 95-105 GPa
Crystal structure Diamond cubic

Energy gap 1.12 eV
Space group Fd3m Å
Silicon radius 1.18 Å
Lattice constant 5.42981 Å

Table 2.1: Some values detailing the properties of bulk silicon at room temperature79

Considering the Si(100) surface, the electronic structure around the valence band maximum(VBM) is given by
the spatial disposition of the dangling bonds, and hence important values such as the energy band gap strongly depend
on the arrangement of those bonds. Given the fact that multiple doping, temperature and defect configurations vary
from one experimental setup to another, a relatively large range of values have been reported in the literature for
the Fermi energy, specially with respect to the occupied surface state belonging to the topmost silicon atom of the
buckling dimers82. The minimum indirect band gap for the c(4 × 2) reported by STM experiments is 0.9 eV83, and
some GW quasiparticle calculations published by Northup84 are also consistent with this value. This gap is mainly
attributed to the bandwidth of the surface states of the buckling dimers: the π1,2 and π∗1,2 occupied and unoccupied
states, respectively11. For the symmetric dimer configuration those π bonding and π∗ antibonding states overlap, and
thus the surface becomes metallic.
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Figure 2.5: Band structure diagram displaying the dimer surface states computed by Low11. In circles the points
calculated using tight-binding calculations, in squares experimental values. Adapted from Ref.11

2.6.3 Chemical Vapor Deposition of CaF2 on Si(100)

CaF2, or fluorite in its mineral form, is a crystal composed of ions of fluorine in simple cubic configuration, with
calcium cations in the middle of the cubic sites of them. This compound is transparent to visible electromagnetic
radiation and presents electronic optical absorption in the ultraviolet and lattice optical absorption in the infrared
range85. Due to the presence of f-centers in the ionic lattice, the minerals of CaF2 usually look colored, even tough
the perfectly packed crystalline structure is transparent to visible spectra. The industrial use of this compound is
wide: it is the main source of hydrofluoric acid86, used for as cleaning chemical agent in metal smelting processes87,
has dental applications for enamel reconstruction and caries inhibition88, The silicon-on-insulator (SOI), as we
discussed before, demonstrate powerful features and potential applications to the design of epitaxial gate dielectrics,
3D integrated circuits mechanisms89, and even the fabrication of logic and memory circuits immune to errors caused
by α-particles popping out from high-energy cosmic rays events coming from outer space while interacting with
the air molecules in our planet’s atmosphere90. From the experimental point of view, the interface of CaF2/Si(100)
is generated by employing the Chemical Vapor Deposition (CVD) method. Hence, CaF2 is obtained from fluorite
crystals by evaporating them employing a graphite effusion cell. The temperature of this cell is kept around 1330 K
during the evaporation process, and, for cooling down the crucible, water is used in order to optimize the temperature
control2. The flux of the vapor containing the CaF2 molecules is directed towards the silicon surface. The silicon
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surface to be used is chosen to have a relatively low number of defects, therefore it is analyzed inside the STM. For
the epitaxial growth process, the bare Si(100) surface is then heated up to 1000 K using Joule heating. Due to
the very close lattice match ( 0.6% difference) between the lattice constants of CaF22 and silicon crystal, and their
similar fcc crystalline structure; the epitaxial growth is favorable for any direction91.

The unit cell remaining after the deposition is expected to have at least one silicon dimer removed in an etching
process.2. The chemical etching reaction mechanism for the first stage of CaF2 deposition92, because of the etched
dimer, can be explained by the formation of SiF2 species. But previous to the formation of this compound, the silicon
surface requires to have a passivated silicon dimer, that can be explained by the initial reaction:

2 Si + CaF2 → Ca + 2 SiF,

but for etching completely the silicon dimer, at least 4 fluorine atoms will be needed, and thus 2 CaF2 molecules.
Therefore the next reaction is proposed2:

2 Si + 2 CaF2 → Ca + 2 SiF + CaF2 → 2 Ca + 2 SiF2



Chapter 3

Methodology

In this section, the methodology is separated according to the followed construction sequence of the different
supercells used for the simulations. The process of interface construction and structural relaxation is described,
together with the steps for retrieving the converged parameters to be used for the DFT calculations. Core electrons
are described with PAW potentials for Ca, F, H and Si atoms with the following configuration: Ca: [Ne] 3s2 3p6 4s2,
F: [1s2] 2s2 2p5, H: 1s2 and Si [Ne] 3s2 3p2; where the core electron configurations are within square brackets.

First, the convergence parameters such as cutoff energy and numbers in the k-point mesh, from the initial bulk
structure are computed. Selecting the appropriate cutoff energy will ensure that the number of plane waves to
simulate the material is large enough for keeping consistent results. After that, looking for the optimal cell volume is
important for computing the total energies of our unit cell near the optimal value, and fit them to an EOS. This will
allow us to extract important properties like the optimal crystal structure and the bulk modulus. Later, by having all
the values optimized, the surface is constructed by repeating the unit cell accordingly and cleaving it into the desired
direction.

Once the surface periodic supercell is appropriately constructed, different supercell sizes are chosen in order
to have a proper surface reconstruction and reproduce the experimentally observed behavior. Subsequently, the
first stage of CaF2 deposition is set up and relaxed for later analysis of its electronic structure. Due to the slight
degeneracy of the multiple possible combinations for the wetting layer configurations, the STM image simulations
are used to distinguish them properly.

The following step is to reconstruct the atomic configuration of the stripe-like structures observed to form on
top of the wetting layer3. Again, multiple configurations are selected as candidates and evaluated in function of the
produced STM simulations. The proper structure to find has to present a non-zero band gap and similar STM image
for demonstrating the accuracy of our proposed model.

27
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3.1 Structural relaxation

3.1.1 Optimal parameters for bulk silicon crystal

The unit cell of the silicon crystal is well-known and can be found in multiple databases. The initial coordinates
and lattice parameters are chosen close to the experimentally values in the scientific literature. The used unit cell of
silicon is shown in Fig. 3.1 and was retrieved from Materials Project 93.

Figure 3.1: Crystal structure of fcc silicon used as initial input for our calculations. a) and b) display the unit cell
with fcc diamond structure. c) Primitive cell of fcc silicon crystal, notice that the cell has two atoms. The black lines
delimit the size of the cell and the Si atoms are represented by yellow spheres.

In order to find the optimal parameters, convergence tests are applied over the initial structure. First, the total
energies of the structure for different values of cutoff energy are computed and compared until a convergency of 1<
meV/atom is found, as shown in Fig. 3.2.

Figure 3.2: Convergency of the cutoff energy with respect to the total energies of the bulk structure; we observe
convergency from Ecut = 400 eV.

Once the cutoff energy is stablished Ecut = 400 eV, a finite number of plane waves can be used to accurately
describe the periodic wavefunctions of our material. After that, we can proceed to calculate the number of k-points
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to use in the calculations. The converged values can be observed to start to have a change in less than 1 meV/atom
for a 9 × 9 × 9 k-points mesh that is equivalent to a separation ∆k of 0.035 Å−1 in the reciprocal space. The k-points
grid is calculated using the Γ-centered Monkhorst-Pack method38, implemented in VASP code.

Figure 3.3: Convergence of the total energy with respect to the N × N × N k-points grid; convergency is achieved
from N = 9 and above.

After this convergency parameters are found, we can accurately find the optimal lattice constant of the bulk
silicon structure. For this task, we fit the different values of the total energies obtained with respect to different lattice
spacing values. The equation used for fitting this values is the equation of state (EOS) of Birch-Murnaghan94, by
considering the bulk modulus to be linearly related to a finite strain applied over a solid with respect to pressure95.
Our EOS goes as follows:
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Where the total energy depends on the volume V , and E0,V0, B0, B
′

0 are the ground state energy, optimal volume,
bulk modulus and the derivative of the bulk modulus respectively.

In order to fit the equation 3.1, we have to set it into the form:

E(V) = αV−2 + βV−4/3 + γV−2/3 + δ (3.2)

Hence, starting from the equation 3.1 we proceed to expand its terms:
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Now, by further collecting the terms of similar order in V we find:
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Figure 3.4: EOS for bulk Si, the red points are the computed optb86-vdW for a range of volumes and the blue line
is the fitted EOS according to Eq. 3.1.

Therefore, the coefficients calculated after fitting the function with our computed data points are obtained and
sumarized in Table 3.1.1.

Table 3.1: Values found after fitting the 3rd order EOS of Birch-Murnaghan94

Coefficient Fitting Value Coefficient Fitting Value

α = −
9B0V3

0
4 9560.71 Å6 keV β =

63B0V7/3
0

8 1214.32 Å4 keV
γ = 9

16 B0V5/3
0

(
−16 + B

′

0

)
-411.264 Å2/3 eV δ = E0 −

9
16 B0V0B

′

0 +
27B0V0

8 11.6997 eV

The fitted function now can be used to extract the bulk modulus, which is simply obtained from the relation
expressed on equation 3.5 by considering the fact that the change in energy is given by dE = −PdV .

B0 = −V
∂P
∂V

= V
∂2E
∂V2

∣∣∣∣∣∣
V→V0

(3.5)

The outcome of the vdW-DF calculations for the optimal structure of fcc-Si is summarized in Table 3.2.
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Table 3.2: vdW-DF computed crystallographic data for optimal primitive cell of fcc-Si; here u, v and w are in
fractional coordinates

Property Calculated (optb86-vdW)
Space group Fm3̄m
a = b = c (Å) 3.857
α = β = γ (◦) 60
Volume (Å3) 40.588

B0(GPa) 91.63
Sites u v w
Si 0.0 0.0 0.0

3.1.2 Si(100)-(1 × 1) and Si(100)-(2 × 1) surfaces

Starting from the optimized bulk crystal, the Si(100) surface is constructed. The unit cell of fcc-Si is cleaved by a
(100) plane and repeated along the normal direction of the surface to get 8 atom layer thick; the Si atoms at bottom of
the slab are passivated with H. The slabs are built with a 15 Å vacuum thickness to neglect the interactions between
images along the z direction due to the periodic boundary conditions of the DFT VASP calculation. Finally, the Si-H
bottom layer are frozen during relaxations to emulate the crystal structure of pristine fcc-Si. The schematic of the
surface is depicted in Figure 3.5.

Figure 3.5: Atomic configuration of the Si(100) 2 × 1 surface (a) unrelaxed and (b) after relaxation. The slab has
a 15 Åvacuum thickness along the z axis. The Si (H) atoms are represented by yellow (white) spheres and the box
delimits the size of the supercell.

In order to include the buckling effect of the topmost silicon atoms that in nature appear after the cleaving of
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the surface as demonstrated experimentally77, a surface of 2× 1 is constructed and manipulated manually to allow a
quicker relaxation. As described in the theoretical background, the topmost silicon atoms are moved closed to each
other. Then, when its intermediate distance is enough for establishing a bond, one silicon is moved up, (towards
+z direction) and the other one down (−z direction). Finally, a slight twist in the [1̄00] direction will leave the
silicon atoms near the asymmetric dimer configuration. Then, the DFT calculation will draw the dimer spatial
configuration towards its ground state configuration. The energy difference between dimer configuration is around
0.01 eV, therefore our convergence parameters are good enough to get an accurate result78.

3.1.3 The CaF2/Si(100) interface

For reconstructing the observed pattern on the STM images of the CaF2/Si(100) interface, our supercell has to be
repeated accordingly considering the observed motifs and buckling effect on the topmost silicon dimers. These
details are important to correctly simulate the surface electronic structure.

Considering the fact that at least one silicon dimer is etched from the Si(100) 2 × 1 cell2, for getting the wetting
layer—the first stage of CaF2 deposition—we use a 3 × 2 supercell where three Si dimers have to be considered.
Consequently, by the proposed chemical etching reactions occurring on the surface during the CVD, the structure
of the wetting layer is set as shown in Figure A.3. One dimer gets chemically bonded to fluorine atoms, the etched
dimer vacancy allows the deposition of the calcium atom, and this leaves the new 3× 2 supercell with one free dimer
(cf. Figure A.3 (c,d))

Figure 3.6: The diagram displays the proposed geometry of the interface. a) Si(100) 3×2 supercell; b) CaF2/Si(100)
overall view; c) Top view; the topmost silicon layer and CaF2 is highlighted; d) Side view from the x direction
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3.1.3.1 The wetting layer

Once the initial stage of deposition is prepared, to checkwhat configuration resembles in a better way the experimental
STM images, we have to consider a 3 × 4 surface supercell. This is due to the appearance of interspersed reversed
3 × 2 structures. Two settings can be distinguished, 3 × 4 ’in-phase’ configuration, composed of two parallel 3 × 2
constructions; and a 3 × 4 ’out-of-phase’, made of two antiparallel 3 × 2 cells. The experimental STM@7K image
of the wetting layer by Chiaravalloti et al.2 is shown in figure 3.7.

Figure 3.7: The experimentally measured STM image of the interface of interest. The 3× 4 ’in-phase’ configuration
is enclosed in green color, the 3 × 4 ’out-of-phase’ one in blue. a) Bias voltage of -1 V, occupied states. b) Bias
voltage of +1 V, unoccupied states. Adapted from Ref.2.

Interface nomenclature: As we have discussed, multiple interface atomic configurations can be associated
to the pattern observed by STM experiment (cf. Fig. 3.7). Therefore, a clear nomenclature has to be specified
to distinguish between the different possible arrangements of the ions in our interface supercell. All the possible
combinations are shown in Figure 3.8.
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Figure 3.8: Proposed wetting layer atomic structures that may explain the experimental STM images as displayed in
Fig. 3.7. The size of the surface supercell have approximately the same size that corresponds to a 3 × 4 supercell.

3.1.3.2 The stripe structure

The experimental STM image of the stripe structure is displayed in Fig. 3.9, it includes the WL and the bare Si(100)
surface.

Figure 3.9: Occupied state STM topography of Si(100) with deposited CaF2 (a) forming stripes, wetting layer and
Ca adatoms. (b) High atomic resolution of the stripe atomic structure oriented along the y axis, notice the dented
formation oriented along the x direction; the red box delimits the 3× 4 supercell. These STM images were generated
with VBIAS = −2.5V and tunneling current of 41 pA. Adapted from Ref. 2
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Inspired on the experimental finding of Fig. 3.9, the next step is to get an accurate description of the stripe
structure of the ultra-thin CaF2/Si(100) interface. We need to reconstruct the epitaxial crystalline growth layer of
the compound on top of the initial wetting layer of CaF2/Si(100). The proposed stripe structure resembles a crystal
of CaF2 growing in its [1̄11] direction along the parallel free space in between silicon dimer rows. Two proposed
configurations a-s1 and a-s2, based on the a-type structure (Fig. 3.8(a)); are displayed in the Figures 3.10 and 3.11,
respectively.

Figure 3.10: Atomic configuration of the proposed stripe model a-s1 based in the wetting layer model a-type from
Fig. 3.8.
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Figure 3.11: Atomic configuration of the proposed stripe model a-s2. This configuration can be clearly distinguished
by the missing Si of one dimer row. This choice of construction is further discussed in the next chapter.



Chapter 4

Results & Discussion

The results of this thesis are divided into: the description of the electronic structure (DOS and PDOS) of the computed
interfaces, and computed STM images of the previously optimized atomic configurations along the performed line-
scans simulations for getting information about the topography of the interface. Then, the different computed results
will be discussed, giving detail about the arguments in support of how and why we decided to select the achieved
configurations as the ones we might find in the real experiment.

The convergency parameters and physically relevant values are summarized in Table 4

Table 4.1: optb86-vdW predicted structural and mechanical properties for bulk fcc-Si versus available experimental
data.

Parameter Calculated value(optb86-vdW) Experimental Value
Lattice constant 5.455 Å 5.429 Å81

Bulk Modulus 91.63 GPa 95-105 GPa81

α=β=γ 90◦ 90◦

Cell volume 162.351 Å3 160.015 Å3 79

4.1 Electronic structure
The electronic structure will be analyzed by taking a look to the computed density of states (DOS) of the structures.
Also, the partial density of states(PDOS) will give us information about how the different atomic species contribute
to the overall electronic behavior of the material. With this data, we can compute important properties such as the
band gap, from where we can tell if the material presents a band gap as observed experimentally.

37
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4.1.1 Bulk silicon

The calculated DOS of the bulk silicon structure clearly suggests a semiconductor behavior. The zero along the x
axis is set with respect to the Fermi level (Figure 4.1). The experimentally measured band gap of bulk silicon at 0
K is 1.17 eV81, hence the error of the optb86-vdW functional is around around 43%, a typical limitation of DFT
methods96.
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Figure 4.1: optb86-vdW computed DOS for optimal fcc-Si. We can observe a band gap of 0.55 eV

4.1.2 Si(100) 1 × 1, 2 × 1 and 2 × 2 surfaces

Taking in consideration the arguments of section 2.6.1, the correct electronic behavior of the Si(100) surface has to
consider a 2 × 2 surface cell. By chosing this construction, a silicon buckled dimer will cause a band gap opening
which will lower the total energy of the structure.

In figure 4.2 we can observe this expected semiconductor behavior of the Si(100) 2× 1 and 2× 2 surfaces, being
the last the most stable. The main difference is the presence of metallic behavior of the 1 × 1 structure versus the
small band gap of the 2× 2 system. This due to a buckled dimer formation in 2× 2 surface, it lowers the total energy
with a bandgap opening of 0.206 eV (cf. Fig. 4.2 (c)).
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Figure 4.2: optb86-vdW computed DoS for (a) the Si(100) 1 × 1 surface, the lack of band gap suggest metallic
behavior. (b) Si(100) 2× 1 surface DoS (c) the Si(100) 2× 2 surface displaying a bandgap opening of 0.206 eV. The
graph is zoomed around the Fermi level for allowing a better visualization.

4.1.3 The CaF2/Si(100) 3 × 2 wetting layer

First we consider the CaF2/Si(100) 3 × 2 WL according to Ref.2. In that work, the atomic structure of the observed
WL was solved with the CaF2/Si(100) 3 × 2 (cf. Fig.6 in Ref.2). If that structure is repeated along y axis we get the
CaF2/Si(100) 3 × 4 a-type supercell as displayed in Fig. 3.8. The computed electronic structure for CaF2/Si(100)
3× 2 WL is displayed in Fig. A.3. We computed the PDOS for each sublayer. The WL shows a tiny electronic states
below the Fermi level EF. On the conduction band, at EF, we observe only Ca-3p states closing the bandgap of the
pristine Si(100). The L1 layers, composed of the buckling dimer, is separated into two layers: L1a and L1b, those
contain the topmost and downshifted dimer respectively. We can observe that the downshifted silicon atom gives a
bigger contribution to states near the Fermi energy on the conduction band. As we go deeper into the bulk along z,
the PDOS become closer to the bulk structure as expected.
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Figure 4.3: optb86-vdW computed PDOS by layers of the CaF2/Si(100) 3 × 2 structure, (a) side view in the x
direction is shown (b) PDOS for each layer.
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4.1.3.1 STM simulation

After getting our fully relaxed structure and a DOS that replicates the already reported results for the atomic and
electronic structure of the WL in Ref. 2. The computed STM images and line scans for our computed CaF2/Si(100)
3 × 2 interface are displayed in Fig. 4.4. Certainly, the CaF2/Si(100) 3 × 4 type-a reproduces the same images as we
expected. For the corresponding images for type-b, -c and -d, please refer to Appendix A.

+1 V B

B B’
B’

a)

b)

c) e)

d)

Figure 4.4: STM images for unoccupied states, theory versus experiment. (a) Line scans along BB’ showing
the computed (blue line) and experimental ( red line); the black dotted line represents the reported simulation by
Chiaravalloti et al. 2 . (b) Experimental STM of WL (VBIAS = +2V) versus the simulated STM (VBIAS = +2V);
the red rectangle delimits the 3 × 2 supercell. (c) Experimental unoccupied states STM image of the CaF2/Si(100)
interface where WL and bare Si(100) are visible. (d) Simulated STM image expanded along x and y directions that
replicates the area enclosed by the white rectangle in (c). (e) Close-up of simulated STM image in (b). Calcium,
Fluorine and Silicon atoms are colored in green, gray and yellow spheres, respectively. Experimental images are
adapted from Ref. 2.

In Fig. 4.4(a), the line-scans are obtained from the simulated STM images for he CaF2/Si(100) 3x2 supercell
displayed in Fig. 4.4(b) and (d). From the line-scan simulation we can clearly observe a better improvement on the
predicted corrugation considering previous PBE simulations as reported by Chiaravalloti et al. 2 . Considering the
STM images in Fig 4.4, the brightest sites of the image are related to the Ca-3p states that protrude into the vacuum
while the secondary bright sites are related to the location of the surface Si-dimer due to their Si-2p states. Finally,
the darkest sites are located in between the Si-F and the surface Si-dimer site (cf., Fig. 4.4(e)). To stress the good
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prediction of the computed structure, notice the WL island of CaF2/Si(100) enclosed by the white rectangle of the
experimental image in Fig. 4.4(c) that is satisfactorily reproduced in the computed STM image in Fig. 4.4(d).

The same analysis is performed for negative bias voltages (occupied states) STM images as displayed in Figure
4.5. The simulated line-scan got also improved versus the previously reported study2 (Figure 4.5(a)), this result
strength the reliability of the model as well as the vdW-DF applied. The experimental STM image for the occupied
states is nicely reproduced by our simulation (cf. Figure 4.5(b)). The brightest sites of the STM are located above
the Si-dimer, mainly due to their protruding 2pz orbitals remaining after the dimerization. The silicon atom in the
bulk is bonded to 4 neighboring, but in the dimer, the silicon atoms have only 3 bonds, then the extra dangling
bond protrudes in the z direction (for a clearer description, refer to figure 2.3). The secondary bright sites are
located around the Ca and Si-F region and related to a contribution of Ca-3p + F-2py + Si-3p states. Finally, the
darkest site is located between the Ca and the nearest Si-dimer (See Figure 4.5(e) for high definition image). In
addition, Figure 4.5(c) and (d) shows a nice agreement between experiment and theory. These results complement
the results for unoccupied states STM and suggest the improvements of the optb86-vdW functional over the former
PBE simulations when applied to the CaF2/Si(100) interfaces.
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Figure 4.5: STM images for occupied states, theory versus experiment. (a) Line scans along AA’ showing the
computed (blue line) and experimental ( red line); the black dotted line represents the reported simulation by
Chiaravalloti et al. 2 . (b) Experimental STM of WL (VBIAS = −1.5V) versus the simulated STM (VBIAS = −1V); the
red rectangle delimits the 3×2 supercell. (c) Experimental occupied states STM image of the CaF2/Si(100) interface
where WL and bare Si(100) are visible. (d) Simulated STM image expanded along x and y directions that replicates
the area enclosed by the white rectangle in (c). (e) Close-up of simulated STM image in (b). Calcium, Fluorine and
Silicon atoms are colored in green, gray and yellow spheres, respectively. Experimental images are adapted from
Ref. 2
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Contrary to the previous STM measurement, the calcium ion on top of the etched silicon dimer demonstrates a
shorter amount of occupied states, thus those zones are less shiny. The silicon dimers present the highest brightness,
mainly due to their protruding pz orbitals remaining after the dimerization. The silicon atom in the bulk is bonded
to 4 neighboring, but in the dimer, the silicon atoms have just 3 bonds, then the extra dangling bond protrudes in the
z direction (for a clearer description, refer to figure 2.3).

4.1.4 The CaF2/Si(100) 3 × 4 wetting layer

Despite the detailed description of the WL atomic structure by the work of Chiaravalloti et al. 2 , we noticed that
their experimental STM images not only 3 × 2 structures are observed—as highlighted by the white rectangle in
Figures 4.4c and 4.5c; but also inverted 3 × 4 reconstructions highlighted by the green rectangle in Fig. 4.6(b) and
(d). The parallel formations outside the patched regions in the experimental STM image are patterns related to the
bare Si(100). It can be noted that in Figure 4.6(d), the dimers are described by bright spots, thus outside the WL
islands, bare silicon is observed. Among the 3 × 4 structures proposed (Fig. 3.8), the d-type was the structure that
reproduces best the inverted patterns appearing on the experimental STM images for the WL. The STM calculations
are observed to reproduce qualitatively the same motiffs observed in the real material, see Fig. 4.6.

Figure 4.6: STM images where out-of-phase 3×4 pattern is discussed. (a) Computed unoccupied state STM image of
the d-type structure, VBIAS = +1V. (b) Experimental unoccupied state STM image, VBIAS = +2V, the green rectangle
highlight the ’out-of-phase’ pattern. (c) Computed occupied state STM image of d-type structure (VBIAS = −1V)
versus the (d) experimental occupied state STM image, VBIAS = −1.5V; in this case, the blue rectangle highlight the
’out-of-phase’ pattern. All the experimental STM images are adapted from Ref. 2.

4.1.5 Solving the stripe structure

Considering the satisfactory results of either the a-type and d-type structure structures that best describe the ob-
served STM images, we proceed to consider the formation of the stripe structure reported in Ref. 3. Since both
theoretical structures are basically the flip of the Si-F units, we guessed that a-type has all the principal features
needed as the starting structure. In the work of Chiaravalloti et al. 3 , they observed the stripe configuration to
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have a linear atomic formation perpendicular to the silicon dimer rows. Then, as we discussed before, the Ca and
F atoms were organized in a similar manner as if they recrystallized along the [111] direction of a typical CaF2 crystal.

Before we describe the proposed interfaces for solving the stripe structure, we have to bear in mind two main
features: i. The stripe has to be symmetrical only along the y direction within the 3 × 4 supercell; this reasoning is
based on the experimental STM image displayed in Fig. 3.9 that shows a 3 × 2 reconstruction. ii. The measured
scanning tunneling spectroscopy (STS) probed on the stripe region report the system to have bigger bandgap than
the bare Si(100)3 as displayed in Fig. 4.7, then our proposed structure should present wider bandgap in comparison
to the bandgap of pristine Si(100). Following that reasoning, we propose two likely interfaces: the S1 (Fig. 4.8(a))
and the S2 (Fig. 4.9(a)) structures; the results of the simulations are described in the following sections.

Figure 4.7: Experimental STS signal dI/dV for the bare Si(100) (black line), and the stripe structure (blue line).
This experiment shows the bandgap of the different systems studied here. Adapted from Ref. 3.

The computed results of total energies depicted in the table 4.1.5 cannot be used to distinguish the most stable
configuration, given the very small energy differences. The total energies per atom (a,b,c,d -type structures have
122 atoms each) differ in less than 1 meV, which accordingly to our convergence parameters criteria, go beyond our
employed computational precision.
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Table 4.2: Computed total energies for the a,b,c,d -types. Also, the difference in height of the specific structural
units with respect to the Si dimer ∆z is detailed.

a-type b-type c-type d-type
Computed total Energy -617.6885 eV -617.7228 eV -617.7103 eV -617.7170 eV

-5.06302 (eV/atom) -5.06330 (eV/atom) -5.06319 (eV/atom) -5.06325 (eV/atom)
Si-F ∆z (w.r.t. Si atom) +0.488 Å +0.408 Å +0.488 Å +0.468 Å

Ca ∆z +0.502 Å +0.625 Å +0.612 Å +0.593 Å

4.1.5.1 The S1 stripe structure

Before we proceed to describe the results for the S1 structure, it is important to mention that we tried to explore
different metastable configurations of this structure by manipulating the Si-dimer "by hands" and allowing full
relaxation. For all the atempts performed, in all the cases the final relaxed structure was the one displayed in Fig.
4.8(a). The computed electronic structure of the fully relaxed S1 structure is displayed in Fig. 4.8. The S1 system
does not reproduce the expected band gap as reported by Chiaravalloti et al. 2 (cf. Figs 4.8(b-c) and Fig. 4.7), the
system present a metallic state. Interestingly, the simulated STM image for the occupied state shows close similarities
with the experiment.
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Figure 4.8: Computed atomic and electronic structure for S1 stripe model, (a) Relaxed atomic structure, (b) Total
DOS of slab, (c) PDOS for each layer and (d) Simulated unoccupied STM image for VBIAS = −1V.

4.1.5.2 The S2 stripe structure

By analyzing what atomic species contribute to the apparition of states around the Fermi energy of the S1 structure
(Fig. 4.8), the contributions are observed to come from the Si-2px+ 2pz orbitals of the silicon dimers at the surface.
In order to get rid of those levels, one silicon atom is removed from the dimer, assuming it can be also be etched
during the deposition process of CaF2. After constructing and relaxing that S2 structure, depicted on Figure 4.9(a),
a band gap opening of 0.88 eV appears. Therefore, the missing silicon atom on the prevoiusly formed dimer causes
the remaining Si-2px+ 2pz protruding orbitals to become more energetic (with respect to the S1 configuration), thus
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shifting those unnocupied states towards the conduction band and opening widening the gap. Taking a look at the
simulated STM images for negative bias, dark areas around the remaining single silicon atom can be observed,
suggesting absences of occupied states over those species. By the other hand, the brightest zones appear to be around
the CaF2 crystalline stripe formation, thus meaning abundant occupied states under the Fermi Level of the material.
The chemically bonded fluorine atoms do not present many states at those energies too, but the weak signal comming
out from this zones reconstruct the dented structure observed in the experiment (check fig. 4.10).

Figure 4.9: Computed atomic and electronic structure for S2 stripemodel, (a) Relaxed atomic structure and Simulated
unoccupied STM image for VBIAS = −1V, (b) Total DOS of slab, (c) PDOS for each layer, notice the bandgap opening
of 0.88 eV.
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Table 4.1.5.2 summarizes the calculated band gaps from the proposed models and compares it to the experimental
STS results. It is important to bear in mind that our DFT calculations have limitations in predicting the actual values
of the bandgap but it is important to stress that at least the computed values keep the experimental trend, i.e., the
bandgap of the stripe is bigger than the bare Si(100) in accordance with the experiment.

Table 4.3: Comparison between the computed versus experimental band gaps as reported in Ref. 3.
Bare Si(100) CaF2/Si(100) stripe Egap,stripe/Egap,bare

optb86-vdW 0.206 eV 0.878 eV ∼3
Experiment 1.3 eV 3.8 eV ∼4

4.1.5.3 S2 model that solve the observed stripe topology

After computing the STM images for both structures S1 and S2, it can be noted that those structures show similar
STM pattern. Therefore, analyzing the electronic structure via their PDOS became the ultimate criteria for choosing
an accurate answer to the problem of the atomic structure of the CaF2/Si(100) stripe formation.

A summary of the computed occupied states STM images of proposed stripe configurations versus the corre-
sponding experimental STM image are displayed in Figure 4.10(a-b). For the structure S1, the silicon dimers are
observed to contribute more to occupied states, and the CaF2 linear layer to form the parallel stripe structures (Fig.
4.10(c)). On the other hand, the S2 structure—that has semiconductor character in agreement with the experiment—
demonstrates brighter zones along the CaF2 columns and the dented pattern is given by the Si-F dimers generating
a pattern that resembles better the experimental STM.

Figure 4.10: The simulated occupied state STM images for the (a) S1 and (b) S2 are compared directly to (c) the
experimental STM.



Chapter 5

Conclusions & Outlook

In this work, we have performed a DFT calculation within the vdW-DF approximation in order to solve the atomic
and electronic structure of the CaF2/Si(100) interface.

In the first stage we calculated the wetting layer of this interface. Different configurations for the 3×2 and 3×4
wetting layer reconstructions were proposed, relaxed and analyzed. From the computed electronic structure, we
simulated the STM images of the considered geometries. The results shows that 3×4 a-(aligned) and d-(reversed)
types demonstrated to resemble the observed patterns of the experimental measurements. Moreover, the line-scans
for measuring the surface topology depicted a qualitatively accurate description of the experimental data for the
wetting layer geometries.

Considering the nice agreement between our vdW-DF calculations with the experimental data on the wetting
layer, the ’stripe’-like structures were constructed. The systems were fully relaxed and their atomic and eletronic
structure were computed including the simulation of the corresponding STM images. At this stage, our proposed
stripe-like structures exhibited similar STM patterns between each other and the experimemt. However, the actual
structure that explains the experiment should also present a bandgap opening as observed on the STS experiments.
Taking this in consideration, we can compare the computed PDOS with the STS. The a-s2 structure depicted in the
figure 4.9 presented a non-zero band gap vs. the metallic a-s1 stripe structure. Therefore, it is presented here as a
solution to the exact atomic description of the CaF2 stripe-like formation on top of Si(100) surfaces.

The electronic structure analysis has shown that the band gap values are still far away from the experimentally
measured ones, mainly due to the fact that semi-local DFT functionals tend to understimate this value96. Extra
adjustments have to be considered to get an accurate description of the band gap of the material.

The use of a functional with an adequate van der Waals kernel to describe the non-local dispersion interactions
was found to be very important in this kind of systems, specially due to the physisorbed atoms where this dispersion
becomes important. Thanks to this functional, we were able to reproduce and greatly improve previously reported
results in the scientific literature.
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Appendix A

Long Appendix 1 Heading

Figure A.1: PDOS by layers of the b-type structure, a side view in the x direction is shown, along with the PDoS of
each layer. The STM simulation presented here was calculated at VBIAS = −1V
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Figure A.2: Partial Density of States separated by layers of the c-type structure, a side view in the x direction is
shown, along with the PDoS of each layer. STM image at VBIAS = −1V
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Figure A.3: PDOS by layers of the d-type structure, different views are displayed for structure visualization. STM
image at VBIAS = −1V



Bibliography

[1] Colton, R. J. Nanoscale measurements and manipulation. Journal of Vacuum Science and Technology B:
Microelectronics and Nanometer Structures 2004, 22, 1609–1635.

[2] Chiaravalloti, F.; Dujardin, G.; Riedel, D.; Pinto, H. P.; Foster, A. S. Atomic-scale study of the adsorption of
calcium fluoride on Si(100) at low-coverage regime. Physical Review B - Condensed Matter and Materials
Physics 2011, 84, 1–7.

[3] Chiaravalloti, F.; Dujardin, G.; Riedel, D. Atomic scale control of hexaphenyl molecules manipulation along
functionalized ultra-thin insulating layer on the Si(1 0 0) surface at low temperature (9K). Journal of Physics
Condensed Matter 2015, 27, 1DUMY.

[4] Rydberg, H.; Dion, M.; Jacobson, N.; Schröder, E.; Hyldgaard, P.; Simak, S. I.; Langreth, D. C.; Lundqvist, B. I.
Van der waals density functional for layered structures. Physical Review Letters 2003, 91, 1–4.

[5] McClellan iii, J. E.; Dorn, H. Science and technology in world history: an introduction; JHU Press, 2015.

[6] Goodell, B.; Xie, X.; Qian, Y.; Daniel, G.; Peterson, M.; Jellison, J. Carbon nanotubes produced from natural
cellulosic materials. Journal of nanoscience and nanotechnology 2008, 8, 2472–2474.

[7] Reibold, M.; Paufler, P.; Levin, A.; Kochmann, W.; Pätzke, N.; Meyer, D. Carbon nanotubes in an ancient
Damascus sabre. Nature 2006, 444, 286–286.

[8] Vexler, M.; Illarionov, Y. Y.; Suturin, S.; Fedorov, V.; Sokolov, N. Tunneling of electrons with conservation of
the transverse wave vector in the Au/CaF 2/Si (111) system. Physics of the Solid State 2010, 52, 2357–2363.

[9] Rieger, D.; Himpsel, F.; Karlsson, U. O.; McFeely, F.; Morar, J.; Yarmoff, J. Electronic structure of the CaF
2/Si (111) interface. Physical Review B 1986, 34, 7295.

[10] Sokolov, N.; Suturin, S. MBE growth of calcium and cadmium fluoride nanostructures on silicon. Applied
surface science 2001, 175, 619–628.

[11] Low, K.; Ong, C. Electronic structure of the Si (100) c (4× 2) and p (2× 2) surfaces. Physical Review B 1994,
50, 5352.

55

http://dx.doi.org/10.1116/1.1760754
http://dx.doi.org/10.1116/1.1760754
http://dx.doi.org/10.1103/PhysRevB.84.155433
http://dx.doi.org/10.1103/PhysRevB.84.155433
http://dx.doi.org/10.1088/0953-8984/27/5/054006
http://dx.doi.org/10.1088/0953-8984/27/5/054006
http://dx.doi.org/10.1103/PhysRevLett.91.126402


56 BIBLIOGRAPHY

[12] Toton, D.; Lorenz, C. D.; Rompotis, N.; Martsinovich, N.; Kantorovich, L. Temperature control in molecular
dynamic simulations of non-equilibrium processes. Journal of Physics: Condensed Matter 2010, 22, 074205.

[13] David Scholl, Electronic Structure; 2012; pp 119–134.

[14] Schrödinger, E. An undulatory theory of the mechanics of atoms and molecules. Physical review 1926, 28,
1049.

[15] Griffiths, D. J.; Schroeter, D. F. Introduction to quantum mechanics; Cambridge University Press, 2018.

[16] Giustino, F.Materials modelling using density functional theory: properties and predictions; Oxford University
Press, 2014.

[17] Mattuck, R. D. A guide to Feynman diagrams in the many-body problem; Courier Corporation, 1992.

[18] Born, M.; Oppenheimer, R. Zur quantentheorie der molekeln. Annalen der physik 1927, 389, 457–484.

[19] Martin, R. M.; Martin, R. M. Electronic structure: basic theory and practical methods; Cambridge university
press, 2004.

[20] Born, M.; Huang, K. Dynamical theory of crystal lattices; Clarendon press, 1954.

[21] Aschroft, N.; Mermin, N. Solid State Physics. Thomson Learning. 1976.

[22] Heine, V.; Weaire, D. Solid State Physics, ed. H. Ehrenreich, F. Seitz and D. Turnbull. Academic Press, New
York 1970, 24, 249.

[23] Hellmann, H. A new approximation method in the problem of many electrons. The Journal of Chemical Physics
1935, 3, 61–61.

[24] Hellmann, H.; Kassatotschkin, W. Metallic binding according to the combined approximation procedure. The
Journal of Chemical Physics 1936, 4, 324–325.

[25] Harrison, W. A. Pseudopotentials in the Theory of Metals. 1966, 336 P. W. A. BENJAMIN, INC., NEW YORK
1966,

[26] Zunger, A.; Cohen, M. L. Density-functional pseudopotential approach to crystal phase stability and electronic
structure. Physical Review Letters 1978, 41, 53.

[27] Hamann, D.; Schlüter, M.; Chiang, C. Norm-conserving pseudopotentials. Physical Review Letters 1979, 43,
1494.

[28] Vanderbilt, D. Optimally smooth norm-conserving pseudopotentials. Physical Review B 1985, 32, 8412.

[29] Garrity, K. F.; Bennett, J. W.; Rabe, K. M.; Vanderbilt, D. Pseudopotentials for high-throughput DFT calcula-
tions. Computational Materials Science 2014, 81, 446–452.



BIBLIOGRAPHY 57

[30] Blöchl, P. E. Projector augmented-wave method. Physical review B 1994, 50, 17953.

[31] Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990,
41, 7892–7895.

[32] Kantorovich, L.Quantum theory of the solid state: an introduction; Springer Science & Business Media, 2004;
Vol. 136.

[33] Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Physical review 1964, 136, B864.

[34] Levy, M.; Nagy, Á. Variational density-functional theory for an individual excited state. Physical review letters
1999, 83, 4361.

[35] Bartolotti, L. J. Time-dependent Kohn-Sham density-functional theory. Physical Review A 1982, 26, 2243.

[36] Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Physical review
1965, 140, A1133.

[37] Bloch, F. Quantum mechanics of electrons in crystal lattices. Z. Phys 1928, 52, 555–600.

[38] Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Physical review B 1976, 13, 5188.

[39] Burke, K. The abc of dft. Department of Chemistry, University of California 2007, 40.

[40] Engel, E.; Dreizler, R. M. Density functional theory; Springer, 2013.

[41] Jones, R. O.; Gunnarsson, O. The density functional formalism, its applications and prospects. Reviews of
Modern Physics 1989, 61, 689.

[42] Umemoto, K.; Wentzcovitch, R. M.; Allen, P. B. Dissociation of MgSiO3 in the cores of gas giants and
terrestrial exoplanets. Science 2006, 311, 983–986.

[43] Herman, F.; Van Dyke, J. P.; Ortenburger, I. B. Improved statistical exchange approximation for inhomogeneous
many-electron systems. Physical Review Letters 1969, 22, 807.

[44] Rydberg, H.; Dion, M.; Jacobson, N.; Schröder, E.; Hyldgaard, P.; Simak, S.; Langreth, D. C.; Lundqvist, B. I.
Van der Waals density functional for layered structures. Physical review letters 2003, 91, 126402.

[45] Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for
general geometries. Physical review letters 2004, 92, 246401.

[46] Berland, K.; Cooper, V. R.; Lee, K.; Schröder, E.; Thonhauser, T.; Hyldgaard, P.; Lundqvist, B. I. van der Waals
forces in density functional theory: a review of the vdW-DF method. Reports on Progress in Physics 2015, 78,
066501.

http://dx.doi.org/10.1103/PhysRevB.41.7892


58 BIBLIOGRAPHY

[47] Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. Journal
of Physics: Condensed Matter 2009, 22, 022201.

[48] Vydrov, O. A.; Van Voorhis, T. Nonlocal van der Waals density functional made simple. Physical review letters
2009, 103, 063004.

[49] Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Physical Review
B 2011, 83, 195131.

[50] Gest, H. The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the
Royal Society. Notes and records of the Royal Society of London 2004, 58, 187–201.

[51] Ruska, E. The development of the electron microscope and of electron microscopy. Reviews of modern physics
1987, 59, 627.

[52] Amano, Y.; Díaz, L. Introducción a la microscopía electrónica. Principios, Aplicaciones. Guayaquil: Panamer-
icana 2012,

[53] Chen, C. J. Introduction to scanning tunneling microscopy; Oxford University Press on Demand, 1993; Vol. 4.

[54] Morita, S. Roadmap of scanning probe microscopy; Springer Science & Business Media, 2006.

[55] Harrison, W. Electronic structure and the properties of solids: the physics of the chemical bond; Dover Books
on Physics; Dover Publications, 1989.

[56] Hehre,W. J.; Stewart, R. F.; Pople, J. A. self-consistent molecular-orbital methods. i. use of gaussian expansions
of Slater-type atomic orbitals. The Journal of Chemical Physics 1969, 51, 2657–2664.

[57] Pople, J. A.; Binkley, J. S.; Seeger, R. Theoretical models incorporating electron correlation. International
Journal of Quantum Chemistry 1976, 10, 1–19.

[58] Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set
for correlated wave functions. The Journal of chemical physics 1980, 72, 650–654.

[59] Hafner, J. Materials simulations using VASP—a quantum perspective to materials science. Computer physics
communications 2007, 177, 6–13.

[60] Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The Perdew–Burke–Ernzerhof exchange-correlation functional
applied to the G2-1 test set using a plane-wave basis set. The Journal of chemical physics 2005, 122, 234102.

[61] Feynman, R. P. Forces in molecules. Physical review 1939, 56, 340.

[62] Deaven, D. M.; Ho, K.-M. Molecular geometry optimization with a genetic algorithm. Physical review letters
1995, 75, 288.



BIBLIOGRAPHY 59

[63] others„ et al.The atomic simulation environment—a Python library for workingwith atoms. Journal of Physics:
Condensed Matter 2017, 29, 273002.

[64] Dubois, P. F. Making applications programmable. Computers in Physics 1994, 8, 70–73.

[65] Bahn, S. R.; Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code.
Computing in Science & Engineering 2002, 4, 56–66.

[66] Cameron, A. G. Abundances of the elements in the solar system. Space Science Reviews 1973, 15, 121–146.

[67] de Lavoisier, A.; Cuchet, G. Traité élémentaire de chimie: présenté dans un ordre nouveau et d’après les dé-
couvertes modernes ...; Traité élémentaire de chimie: présenté dans un ordre nouveau et d’après les découvertes
modernes; Chez Cuchet, 1789.

[68] Gay-Lussac, J.; Thénard, L. Recherches physico-chimiques: faites sur la pile, sur la préparation chimique et
les propriétés du potassium et du sodium, sur la décomposition de l’acide boracique, sur les acides fluorique,
muriatique et muriatique oxigéné, sur l’action chimique de la lumière, sur l’analyse végétale et animale, etc;
Recherches physico-chimiques v. 1; Deterville, 1811.

[69] vetenskapsakademien, K. S. Kongl. vetenskaps academiens handlingar; Landmarks II: Journals v. 12; Lars
Salvius, 1824.

[70] Bose, J. C. Detector for electrical disturbances. 1904; US Patent 755,840.

[71] Black, L. E. New perspectives on surface passivation: Understanding the Si-Al2O3 interface; Springer, 2016.

[72] others„ et al. Silicon surfaces and formation of interfaces: basic science in the industrial world; World
Scientific, 2000.

[73] Riedel, D.; Lastapis, M.; Martin, M.; Dujardin, G. Influence of tip-surface interactions and surface defects on
Si (100) surface structures by low-temperature (5 K) scanning tunneling microscopy. Physical Review B 2004,
69, 121301.

[74] Schlier, R.; Farnsworth, H. Structure and adsorption characteristics of clean surfaces of germanium and silicon.
The Journal of Chemical Physics 1959, 30, 917–926.

[75] Wolkow, R. A. Direct observation of an increase in buckled dimers on Si (001) at low temperature. Physical
review letters 1992, 68, 2636.

[76] Luca, G.; Betti, M. G.; Carlo, M.; Shkrebtii, A.; Del Sole, R.; Cepek, C.; Goldoni, A.; Modesti, S. Dynamics
of the Si (100) surface. 1997,

[77] Chadi, D. Si (100) surfaces: Atomic and electronic structures. Journal of Vacuum Science and Technology
1979, 16, 1290–1296.



60 BIBLIOGRAPHY

[78] Pomyalov, A. Relaxation of the adsorption geometry of Sb and K on Si (001) surface induced by an electric
field. Physical Review B 1998, 57, 8989.

[79] Eranna, G. Crystal Growth and Evaluation of Silicon for VLSI and ULSI; CRC Press, 2014.

[80] Kittel, C. Introduction to Solid State Physics Global ed; Wiley: Hoboken, NJ, 2018.

[81] Batchelder, D.; Simmons, R. Lattice constants and thermal expansivities of silicon and of calcium fluoride
between 6 and 322 K. The Journal of Chemical Physics 1964, 41, 2324–2329.

[82] Kentsch, C.; Kutschera, M.; Weinelt, M.; Fauster, T.; Rohlfing, M. Electronic structure of Si (100) surfaces
studied by two-photon photoemission. Physical Review B 2001, 65, 035323.
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