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Resumen

Las compañ́ıas de seguro estiman los modelos de riesgo para predecir la magnitud de los siniestros
y aśı poder determinar el valor de las primas que deben cobrar al asegurado con el objetivo
de evitar pérdidas en el futuro. La frecuencia de los siniestros y la severidad exigida a las
predicciones, involucra la consideración de muchos factores, tales como factores de regulación,
factores demográficos, factores geográficos, entre muchos otros. Además la experiencia y opinión
de los expertos en el área de seguros también deben de tomarse en cuenta. Bajo el paradigma
Bayesiano se tiene la ventaja de poder tomar en consideración todos estos factores. En este
sentido, el objetivo de este trabajo es proponer un modelo estad́ıstico jerárquico de riesgo,
bajo el contexto Bayesiano, para el número de siniestros en seguros clasificados por grupos de
edad, región de residencia y horizonte temporal del seguro. La predicción estará basada en la
información observada en el pasado, en las suposiciones a priori acerca de la población asegurada,
y en el número y frecuencia de los siniestros. El crecimiento de la población asegurada se basará
en un modelo de crecimiento exponencial generalizado (GEGM) que toma en cuenta los efectos
aleatorios de la edad, la región de residencia, y el horizonte temporal del seguro. Se asumirá
que la frecuencia de los siniestros, para cada grupo clasificado, sigue una distribución Gamma
mientras que el número de siniestros sigue una distribución Poisson compuesta. La estimación
de los parámetros del modelo se hará usando métodos de Monte Carlo por Cadenas de Markov
(MCMC), y se probará la efectividad del modelo ajustado. Posteriormente, se estimarán el valor
de las primas en base a las predicciones del modelo ajustado y al uso de dos medidas de riesgo
en conjuntos con diversos principios de primas.

Palabras clave: Compañ́ıas de seguro; Modelos de Riesgo; Modelo Jerárquico
Bayesiano; Métodos de Monte Carlo por Cadenas de Markov (MCMC); Principios
de primas
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Abstract

Insurance companies estimate the risk models to predict the magnitude of the claims and
thus be able to determine the premiums that must be paid to the insured in order to
avoid future losses. The frequency of the claims and the severity required for the predic-
tions involves the consideration of many factors, such as regulatory factors, demographic
factors, and geographical factors, among many others. In addition, the experience and
opinion of experts in the insurance area should also be taken into account. Under the
Bayesian paradigm there is the advantage of being able to take into account all of these
factors. In this sense, the objective of this project is to propose a hierarchical statistical
risk model, under the Bayesian context, for the number of insurance claims classified by
age groups, residence regions and temporary insurance horizon. The prediction will be
based on the information observed in the past, on the a priori assumptions about the
insured population, and on the number and frequency of claims. The growth of the in-
sured population will be based on a generalized exponential growth model (GEGM) that
takes into account the random effects of age, the region of residence, and the temporary
insurance horizon ([1],[2]). It will be assumed that the frequency of claims, for each classi-
fied group, follows a Gamma distribution while the number of claims follows a composite
Poisson distribution. The estimation of the parameters of the model will be done using
Markov Chain Monte Carlo (MCMC) methods. The effectiveness of the adjusted model
will then be tested. Subsequently, the value of the premiums will be estimated based on
the predictions of the adjusted model and the use of two risk measures in conjunction
with different premium principles.

Keywords: Insurance companies; Risk Models; Hierarchical Bayesian Model;
Markov Chain Monte Carlo (MCMC) methods; Premium Principles
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Chapter 1

Introduction

1.1 Justification

The goal of insurance companies is to produce profits and to generate premiums that
allow them to cover the losses due to expenses caused by various reasons depending on
the category of the insured item.

Insurance providers are facing challenges of increasing number of claims (frequency) and
the amount of each claim (severity) year after year. For insurance companies, it is fun-
damental to be able to foresee the evolution of claims and, consequently, to be able to
facilitate decision-making regarding the value that premiums should have.

The premium charged for an insurance contract for vehicles, health, housing, etc., is based
on, among other factors, the age of the person who is getting insured and his medical his-
tory, the amount of the deductible, and the insurance plan chosen [3]. Therefore, pricing
actuaries must use past information to develop probabilistic models that allow them to
model the most important uncertainties involved in the process of losses. For example,
in the development of a health insurance model there are several areas that will generate
uncertainty: care must be taken in the proper selection of people who do not have a
medical history of diseases, as well as solving the conflicting interests between the needs
of the doctor, the owner of the insurance policy and the insurance company, for example
whether in a service payment plan a doctor can order unnecessary diagnostic tests to
increase their income and at the same time be protected against lawsuits for malpractice.

Therefore, insurers must establish a statistical control model that allows for the reduc-
tion of unnecessary expenses [4]. Nevertheless, many actuarial models do not adequately
address uncertainties such as those that arise in the estimation of parameters [5].

Predictions of the frequency and severity of claims imply the consideration of many un-
certain factors such as demographic and geographic factors, regulation of healthcare, etc.
After years of experience, it is most likely that insurance experts have a deep understand-
ing in some, if not all, of these areas. Consequently, for these problems associated with

7
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uncertainty and the setting of premium values, the opinion of the experts must be con-
sidered and, in this sense, Bayesian statistics allows us to include this experience of the
experts through the preliminary information that is reflected in the choice of the a priori
distributions that each of the parameters will have, in addition to being able to include
all the information of the sector.

In this sense, the purpose of this paper is to develop a methodology, under the Bayesian
paradigm, allowing predictions to be made of the total future amounts of claims in order
to determine the rate of premiums using a Bayesian hierarchical structure.

The prediction of future claims is a key point in risk measurement for insurance providers.
According to Migon and Moura (2005), the total of claims is related to the insured pop-
ulation and the number of claims of that population during a given period of time. The
people insured in different age groups have different patterns in the frequency and severity
of the reported claims and therefore it is reasonable to classify the insured by age groups
with the idea of being able to predict the situation of claims in each unit of time, such
as by year. This research work proposes an extension of the model introduced by Migon
and Moura (2005) by introducing an additional category with the idea of being able to
describe the regions of residence of the insured. This spatial factor comes to represent the
combined random effect of many elements on the severity and frequency of claims, such as
the level of education, the ability to access medical services, the economic level, and even
weather conditions. Each of these elements can potentially influence the behavior of the
claims, so modeling each of these elements separately is redundant and unnecessary. In
this way, introducing a spatial factor that is independent of age classification is practically
feasible and understandable.

In Migon and Moura (2005) a generalized collective risk model was proposed under the
Bayesian paradigm to determine a health insurance premium. This premium was deter-
mined based on historical information about the number and volume of claims, and the
population at risk was classified according to age. The proposed model assumes that the
total amount of claims depends on the age and it also assumes that the a priori distribu-
tions are distributed hierarchically according to age.

Migon and Penna (2006) applied a similar methodology to two sets of real data and dis-
cussed the implementation of a collective risk model under Bayesian methodology with
stochastic simulation techniques. The value of the premium is given by the maximization
of the utility expected by the insurance company while assuming that the insured popu-
lation follows a non-linear growth model called the generalized exponential growth model
(GEGM) (Migon and Gamerman, 1993). This class of models allows for the processing
of data with non-negative and non-decreasing means.

Souza et al. (2009) proposed a method to predict population growth in small areas from
population census data. Given that the growth pattern of the population of a region
may be related to the level of development in the surrounding neighboring regions, these
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researchers proposed a hierarchical spatial model associated with hyperparameters. On
the other hand, [6] discussed the statistical methods under the Bayesian context for the
average number and size of claims. The value of the premium was calculated based on
the total size of claims, analyzing the frequency and size of the claims separately as it is
proposed in [7], assuming a spatial model of Poisson regression for the frequency of the
claims and a Gamma model for the average size of claims per insured. The regression
model for spatial data includes the random correlated spatial effects that describe the
underlying spatial dependence pattern. These spatial dependencies were modeled using
a Gaussian conditional autoregressive model (CAR) introduced by [8]. These CAR mod-
els are based on the assumption that adjacent regions share similar characteristics and
therefore have strong spatial dependencies.

As for the principles of premiums, these have been widely discussed in literature such as
Young (2004) and Goovaerts et al. (2010), among others. [9] describes three methods that
actuaries use to design premium principles and it lists the common principles of premiums
along with an analysis of the desired properties of these principles. On the other hand,
[10] and [11] consider the Value at Risk (VaR) and the Tail Value at Risk (TVaR) as the
approaches that allow to determine the premium, in addition they establish a detailed
discussion of their properties and applications.

1.2 Contribution

Given the importance of insurance companies having a risk measure, this paper proposes
to estimate the total number of claims in a specific category under a hierarchical Bayesian
structure in a given unit of time that takes into account the insured population, classified
according to age, adding a spatial factor that represents the region of residence. This
spatial factor comes to represent the combined random effect of different elements that
together characterize the frequency and severity of accidents, such as levels of education,
the ability to access medical services, socio-economic levels, and even meteorological con-
ditions.

Under the Bayesian paradigm, the Markov Chain Monte Carlo (MCMC) methods will
be used to estimate the parameters of the model from the distributions posterior to each
one of them, taking into account the a priori distributions which involve the experience
and knowledge of the experts, plus historical information on insurance in different areas.

Finally, once the prediction of the number of claims for a given unit of time is made,
it is proposed to calculate the value of the premiums using different premium principles
so that the value of the premium assigned to each insured can be obtained by diving the
total value of the premiums by the insured population.
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1.3 Thesis overview

This work is divided into seven main Chapters named as follows: Introduction, Objectives,
Theoretical Framework, Methodology, Simulation Studies and Model Fitting, Predictions
and Premium Determination, and Conclusions.
In section 1.1, the problem statement, the justification of this work are presented. Also,
the scientific contributions of this research is presented in section 1.2.
Chapter 2 states the general and specifics objectives of the project.
In chapter 3 a bibliographic review was carried out in order to obtain a solid theoretical
framework with the aim of proposing the desired model.
Chapter 4 establishes the collective risk model together with the spatial effect. After this,
the a priori distributions of each parameter involved in the model are presented. From
here, the likelihood of the data is calculated and consequently the posterior distributions
of the parameters are achieved.
On the other hand, chapter 5 presents the results of the model fitting and the simulation
studies.
In chapter 6 are presented: the Bayesian theory of the prediction algorithm, followed
by the predictive results for the numerical example presented in Chapter 5. Finally, it
demonstrates ways to determine the premium based on the claim amounts provided under
certain premium principles.
In Chapter 7, the conclusions obtained from this work are presented. Also, future works
that can improve the proposed methodology and help to establish open issues are men-
tioned.
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Chapter 2

Objectives

2.1 General Objective

To predict the total number of claims using a hierarchical Bayesian model as a risk measure
for insurance companies and to calculate the value of premiums under different principles.

2.2 Specific Objectives

The next specific objectives will be followed in order to achieve the main goal.

• Categorize the insured population by age classes in a specific unit of time. Add a
spatial factor corresponding to the region of residence that represents the combined
random effects of elements that influence the characterization of the claims.

• Implement a Markov Chain Monte Carlo (MCMC) algorithm that allows for the
estimation of each of the parameters of the proposed model using a priori knowledge,
given by the experts in the matter, and for the information provided by the historical
data of insurance companies in different items.

• Based on the number of estimated claims, calculate the value of the premiums
according to the different premium principles.
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Chapter 3

Theoretical Framework

3.1 The Collective Compound Risk Model

The collective risk model is well known and discussed intensively in the actuarial field.
Consider a portfolio of single-type policies. Let N be the total number of claims that
arise from a risk in a given period of time and Zj denote the amount of the j−th claim.
The total amount of claims is given by

X =
N∑
j=1

Zj, (3.1)

with X = 0 when N = 0. The main assumptions of this model are

• The amounts of individual claims Zj are identically distributed and random inde-
pendent positive variables.

• The total number of claims N is a random variable independent from the amounts
of claims Zj.

The advantage of the collective risk model is that the frequency and severity of the claim
can be modeled separately. For example, a general increase in the cost of medications
may affect the severity of the claim but have little influence on the frequency of the claim,
while the introduction of another line of business would increase the frequency of the
claim without altering much the severity of the claim. In addition, the measure of the
expected value (and variance) of the amount of the added claim can be decomposed by
measuring the average and the variance of the frequency and severity of the claim, that
is,

E(X) = E(E[X|N ]) =E(N)E(Z), (3.2)

V ar(X) = E(V [X|N ]) + V (E[X|N ]) = E(N)V (Z) + [E(Z)]2V (N). (3.3)

When N follows a Poisson distribution with parameter λ, it is said that in (3.1) X follows
a Poisson distribution composed with parameters λ and F , where F (x) = P (Z1 ≤ z)
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denotes the function for distributing individual amounts of claims. From (3.3) it follows
that in this case,

E(X) = λE(Z),

V ar(X) = λV (Z) + [E(Z)]2λ = λE(Z2)

It is worth mentioning that there are situations in which the total number of claims is
not independent of the amount of the claim. For example, patients with certain types of
diseases need special treatments that require frequent visits to the doctor and each visit
may take longer than an ordinary visit. As a result, the number of claims of such patients
increases as well as the amount of the claim for each visit. The original assumptions of
the collective risk model may not be appropriate in this circumstance.

3.2 The Compound Poisson Process

Let X1, X2, ..., Xn be random i.i.d. variables and let N be a random variable independent
of the Xn and whose possible values are all integers. Then, the variable

SN =
N∑
k=1

Xk

is a compound random variable.

To calculate the expected value and variance of SN , remember that the conditional ex-
pected value of X given Y = y is defined as

E(X|Y = y) =
∞∑
j=1

xjPX|Y (xj|y)

for the discrete case and

E(X|Y = y) =

∫ ∞
j=1

xjPX|Y (xj|y)dx

for the continuous case.

Then, E(g(x)) is a constant, but E(g(x)|Y = y) is a function of y, where y is a particular
value of the random variable Y . Furthermore, E(g(x)|Y ) is a random variable whose
average can be calculated. By the properties of the expected value and the probability
distributions of a random variable established in [12] we have the following propositions:

Proposition 1.

E(g(x)) = E(E(g(x)|Y )) (3.4)
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From this proposition it can be deduced that

E(X) = E(E(X|Y )) =

{∑∞
k=1E(X|Y = yk)PY (yk)∫∞

k=1
E(X|Y = yk)fY (y)dy

and also,
V ar(X) = E(E(X2|Y )) + [E(E(X|Y ))]2.

Now, if X1, X2, . . . are random i.i.d. variables, then it follows that

E(Xk) = E(X) ∀k = 1, 2, ...

V ar(Xk) = V ar(X)

and let N be a random variable independent of the Xk with values 1, 2, . . . , then by (3.4)
it follows that

E(SN) = E

 N∑
k=1

Xk


= E

E
 N∑

k=1

Xk|N




= E(N)E(X)

V ar(SN) = V ar

 N∑
k=1

Xk


= E(N)V ar(X) + V ar(N)(E(X))2

Let’s see the demonstration of the formulas

Proposition 2.

E(SN) = E

 N∑
k=1

Xk

 = E(N)E(X1) (3.5)

V ar(SN) = V ar

 N∑
k=1

Xk

 = E(N)V ar(X1) + V ar(N)(E(X))2 (3.6)

Demonstration.

E(SN) = E

 N∑
k=1

Xk

 =
N∑
k=1

E(Xk) = nE(X1)
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Now with N independent of the Xk’s, we can write

E

 N∑
k=1

Xk|N = n

 = E

 n∑
k=1

Xk

 = nE(X1)

or

E

 N∑
k=1

Xk|N

 = NE(X1)

Then, by proposition 1.

E(SN) = E

 N∑
k=1

Xk


= E

E
 N∑

k=1

Xk|N




= E(NE(X1))

= E(N)E(X1)

although to reach this result it is not necessary for the Xk’s to be independent among
themselves.

Moreover, with Xk being i.i.d.

V ar

 N∑
k=1

Xk|N = n

 = nV ar(X1)

⇒ V ar(SN |N) = V ar

 N∑
k=1

Xk|N

 = NV ar(X1)

Now with the help of the conditional variance

V ar(X|Y ) = E[(X − E(X|Y ))2|Y ]

= E[(X2 − 2XE(X|Y ) + (E(X|Y ))2)|Y ]

= E(X2|Y )− 2(E(X|Y ))2 + (E(X|Y ))2

= E(X2|Y )− (E(X|Y ))2
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Taking the expected value from both sides we get:

⇒ E(V ar(X|Y )) = E(E(X2|Y ))− E((E(X|Y ))2)

⇒ E(V ar(X|Y )) = E(X2)− E((E(X|Y ))2)

⇒ E(V ar(X|Y )) = V ar(X) + (E(X))2 − E((E(X|Y ))2)

⇒ E(V ar(X|Y )) = V ar(X) + (E(E(X|Y )))2 − E((E(X|Y ))2)

⇒ E(V ar(X|Y )) = V ar(X)− V ar(E(X|Y ))

Then, we get that

⇒ V ar(X) = E(V ar(X|Y )) + V ar(E(X|Y )) (3.7)

Now, using (3.7) in (3.6) we obtain:

V ar(SN) = E(V ar(SN |N)) + V ar(E(SN |N))

V ar

 N∑
k=1

Xk

 = E(NV ar(X1)) + V ar(NE(X1))

= E(N)V ar(X1) + (E(X1))
2V ar(N)

Now, consider that
{
N(t), t ≥ 0

}
is a Poisson process with a rate of λ and let X1, X2, ...

be a random i.i.d. variable independent of
{
N(t), t ≥ 0

}
, then the stochastic process{

Y (t), t ≥ 0
}

defined as

Y (t) =

N(t)∑
k=1

Xk ∀t ≥ 0

and

Y (t) = 0 si N(t) = 0

is called the compound Poisson process.

A Poisson process
{
N(t), t ≥ 0

}
only counts the number of events that occur in an interval

[0, t], while the process
{
Y (t), t ≥ 0

}
, for example, gives the length of phone calls that

occur in [0, t], or the number of people who are involved in a traffic accident in that
interval [0, t], etc. For this compound Poisson process it must be assumed that the Xk

are i.i.d. and so the two-dimensional stochastic process

(N(t), Y (t)), t ≥ 0

can be considered to retain all the information of interest.
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Now, using proposition 2:

E(Y (t)) = E(N(t))E(X1) = λtE(x1)

V ar(Y (t)) = E(N(t))V ar(X1) + V ar(N(t))(E(X1))
2

= λt(V ar(X1)) + λt(E(X1))
2

= λt(V ar(X1) + (E(X1))
2)

= λtE(X2
1 ))

We can also calculate the moment generating function (m.g.f.) of Y (t):
If M1(s) = MX1(s) = E(esX1) then

MY (t)(s) = E(esY (t)) = E(es(X1+...+XN(t)))

by proposition 1
= E(E(es(X1+...+XN(t))|N(t)))

by the definition of an expected value we have that

=
∞∑
n=0

E(es(X1+...+XN(t))) · P (N(t) = n)

=
∞∑
n=0

(MX1(s))
n · e

−λt(λt)n

n!

= e−λt
∞∑
n=0

(MX1(s)λt)
n

n!

= e−λteMX1
(s)λt

= eλt(MX1
(s)−1)

The formula of the m.g.f. allows for the deduction or demonstration of the formula of the
expected value for Y (t):

E(Y (t)) =
∂(MY (t)(s))

∂s

=
∂(eλt(MX1

(s)−1))

∂s
= λtM ′

X1
(s)eλt(MX1

(s)−1)|s=0

= MY (t)(0)λtM ′
X1

(0)

On the other hand, we have that

MY (t)(0) = eλt(MX1
(0)−1)

= e0 = 1

and
MX1(0) = E(e0X1) = 1
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Therefore, we get that

E(Y (t)) = λtM ′
X1

(0) = λtE(X1)

When X1 is a discrete random variable, with possible values 1, 2, ..., j, we can write

Y (t) =

j∑
i=1

iNi(t)

where Ni(t) is the number of the random variable Xk (associated with some random event)
that takes the values of i in the interval [0, t].

Proposition 3.
The stochastic process

{
Ni(t), t ≥ 0

}
is a Poisson process with rates λi = λp; for i =

1, 2, ..., j so then
{
Ni(t), t ≥ 0

}
is an independent Poisson process with rates λpX1(i) for

i = 1, 2, . . . , j.

This representation of the process
{
Y (t), t ≥ 0

}
can be generalized in the case where X1

is an arbitrary discrete random variable.

In the discrete case, the m.g.f. of the random variable Y (t) is

MY (t)(s) = E(esY (t))

= E(es(1N1(t)+...+jNj(t)))

= eλt
∑j
i=1[(e

si−1)pX1
(i)]

Since limt→∞N(t) = ∞, then by the central limit theorem we have the following propo-
sition.

Proposition 4.
For t large enough, we can write

Y (t) ≈ N(λtE(X1), λtE(X2
1 ))

Recall that a good approximation occurs when number of variables in the sum is ≥ 30, or
even a little less depending on the degree of asymmetry in the distribution of the random
variable X1 with respect to its average.

Finally, let
{
Y1(t), t ≥ 0

}
and

{
Y2(t), t ≥ 0

}
be two compound Poisson processes, defined

by

Y (t) =

Ni(t)∑
k=1

Xi,k ∀t ≥ 0 with Yi(t) = 0 if Ni(t) = 0

where
{
Ni(t), t ≥ 0

}
is a Poisson process with rate λi, i = 1, 2.
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We know that N(t) = N1(t) +N2(t), ∀t ≥ 0 is a Poisson process with rate

λ = λ1 + λ2

because N1(t) and N2(t) are independent Poisson processes.
Let Xk be the random variable associated to the k−th event of the process

{
N(t), t ≥ 0

}
,

then we can write

Xk =

{
X1,k, p = λ1

λ1+λ2

X2,k, 1− p

That is, Xk has the same distribution of X1,k with probability p or of X2,k with probability
1− p; therefore, we have that

P (Xk ≤ x) = P (X1,k ≤ x) · p+ P (X2,k ≤ x)(1− p)

Since the random variables X1, X2 are i.i.d. and independent of the Poisson process{
N(t), t ≥ 0

}
, then the process

{
Y (t), t ≥ 0

}
defined by

Y (t) = Y1(t) + Y2(t) t ≥ 0

is also a Poisson process.

3.3 Bayesian Inference

In recent years, the Bayesian methodology has caught the attention of researchers in
mathematics, statistics and actuarial sciences. One of the main merits of the Bayesian
framework is that it allows the introduction of previous beliefs, which eventually leads to
posterior beliefs. Therefore, the posterior beliefs of the random variable not only incor-
porate previous beliefs, but also the information that the data contains.

In this section, the fundamental Bayesian paradigm is presented. The most advanced
applications are discussed in the next section. See Klugman (1992) [13] for further dis-
cussion on Bayesian statistics in actuarial sciences.

Previous beliefs about the values for d parameters of interest θ = (θ1, θ2, ..., θd), d > 0 can
be expressed by the probability density function π(θ), representing our opinion about the
possible values of θ and the relative possibilities of being a true parameter. Suppose that
it is possible to obtain n observations, in other words, X = (x1, x2, . . . , xn) whose joint
density function is defined as f(X). Denote l(X|θ) as the likelihood function, π(θ,X) as
the joint density function of θ and X, and π(θ|X) as the posterior distribution, which
is the conditional probability distribution of the parameters given the observed data.
According to Bayes’ theorem, the posterior distribution can be expressed as

π(θ|X) =
π(θ,X)

f(X)
=
π(θ)l(X|θ)
f(X)

∝ π(θ)l(X|θ).
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Where the distribution π(θ|X) is proportional to the a priori density function times the
likelihood function, which summarizes the modified beliefs of the parameter according to
the observations. If the posterior distribution follows a known distribution (for example,
the Gamma distribution), it can be modeled or simulated with few difficulties. However, it
is actually quite common to find parameters with unrecognizable posterior distributions,
especially in models with a high dimension. One of the predominant methods is to use
Markov chain Monte Carlo (MCMC) as an approximation algorithm. In general terms,
a MCMC algorithm allows users to simulate samples of the posterior distribution when
direct generation is complicated or impossible. The most used MCMC algorithms are
Metropolis-Hastings and the Gibbs sampler. The Gibbs sampling algorithm, which is
a special case of Metropolis-Hastings, is a scheme based on successive generations of
complete conditional distributions, denoted as π(θi|θ−i, X), i = 1, 2, ..., d, where θ−i
represents every parameter in θ but θi. Further discussion can be found in Gamerman
(1997) [14].

3.4 Generalized Exponential Growth Model (GEGM)

Assume that the observations Yt are modeled through a probability distribution in the
exponential family with an average response function

µt = E[Yt|θt]

where θt is a vector of parameters. A broad class of exponential growth models is char-
acterized by the parameterization (a, b, γ, λ), and is defined as:

µt = [a+ beγt]1/λ

An important advantage of this approach is maintaining the measurements at the original
scale, making interpretation simpler. Some special and known cases in literature are:

1. Logistic: when λ = −1, µ−1t = a+ beγt

2. Gompertz : when λ = 0, (1) is defined as ln(µt) = a+ beγt

3. Modified Exponential : when λ = 1, µt = a+ beγt

The process of interest always has a non-negative, non-declining µt function.
Assume that πt, the size of the population in a time interval t, characterized by the
parameterization (a, b, γ, λ), is modeled by a probability distribution in the exponential
family with average µt, that is

πt ∼ Exp(µt)

with

µt = [a+ beγt]1/λ, t ≥ 0
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3.5 Diagnosis

There are many useful diagnoses to analyze the results of a chain, and since none of them
can guarantee that it works, Sinharay recommends that several of the many available
techniques be used. It is also necessary to guarantee the convergence of all the parameters
involved. In this project it is considered the following tests:

3.5.1 MCMC plots

For the basic monitoring of simulated chains, graphs reflecting their sequential behavior
are used. The following plots are generated for each parameter considered:

• Plot of the string values in the form of a time series: Better known as trace
plots, they are used to make sure that the a priori distributions are well calibrated
which is indicated by the parameters having sufficient state changes as the MCMC
algorithm runs.

• Plot of the estimated density from these values

• Autocorrelation plots: The autocorrelation plots obtained from the simulated
samples show that the samples can be effectively independent when observing the
behavior of autocorrelation of each of the simulated chains for each parameter. If a
slow zero decay is shown, it may be indicative of poor mixing, which may suggest
reparametrization or some other approximation.

3.5.2 Heidelberger and Welch convergence test

Once the simulated traces are obtained from the subsequent distribution of a param-
eter of interest; It is necessary to make a long-term convergence diagnosis to test the
null hypothesis that the simulated samples come from a stationary distribution. One of
these tests is the convergence diagnosis by Heidelberger and Welch (1983) which uses the
Cramer-Von-Mises statistic.

The test is applied successively, first to the entire chain, then, after discarding the first
10%, 20%. . . , of the chain until the null hypothesis is accepted, or 50% of the chain is
discarded. If the test fails, the seasonality is not met and indicates that a longer simula-
tion is necessary. If on the contrary the test passes, the number of burned tensions and
the number of iterations that a trace with stationary distribution maintains.
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Chapter 4

Methodology

4.1 Hierarchical Collective Risk Model

One of the main problems faced by the insurance industry is evaluating and determining
the optimal premium. The premium is normally evaluated based on past information in
terms of the severity of the claim, the frequency of the claim, and the information of the
insured.

Migon and Moura (2005) proposed a generalization of the collective risk model that takes
into account the evolution of the population at risk, described by a hierarchical growth
model. This model is based on parameters related to age and time, arguing that the evo-
lution of the population is affected both by the age group and by the time of measurement.

Later, spatial parameters were introduced into this structure. The demographic charac-
teristics can not be ignored when the population grows due to the fact that they signifi-
cantly influence the health insurance industry and, therefore, the tendency in the insured
population with respect to the demography should be considered when the severity and
frequency of the claims are modeled.

The basic collective risk model can be extended to incorporate factors of age, time and
region. Age is one of the important factors that influence the mortality and health status
of the insured. However, establishing premiums for each age is redundant since people
of similar ages (for example, the ages of 26 and 29 years) show similar mortality and
health conditions, given that everything else be the same. It is convenient for the health
insurance provider to classify the insured by age classes, denoted by

a = 1, 2, . . . , A

The insurer has full freedom in terms of age classification, as well as the number of ages
incorporated into each class. On the other hand, there is no restriction regarding the unit
of time, this could be annual, quarterly, monthly or personalized. Generally the frequency
of data collection can be a fair reflection of the unit of time.
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Migon and Moura (2005) work the collective risk model for a portfolio of policies classified
by age classes a = 1, ..., A an by time t = 1, ..., T . This model is extended considering
the region of residence of the insured as another category of classification, indicated as
i = 1, 2, ..., I. Then, (Nt,i,a, Xt,i,a) denote, respectively, the total number of claims and
the added quantity of claims produced by a policy portfolio in a given period of time
t = 1, 2, ..., T for an age class a in a region i.

The collective compound risk model, by Cramer and Lundberg, is given by

Xt,i,a =

Nt,i,a∑
j=1

Zt,i,a,j

with i = 1, .., , I, t = 1, ..., T and a = 1, ..., A, in the time interval (t− 1, t). Where Zt,i,a,j
is the amount of the j−th claim that occurred within the time interval (t, t − 1) for an
age class a in a region i.

The main assumptions in the Cramer and Lundberg process are:

1. The number of claims in the interval (t− 1, t) is a random variable denoted as Nt,a

2. For a fixed t, i, a with Nt,i,a = nt,i,a, the amount of the j−th claim Zt,i,a,j, j =
1, 2, ..., nt,i,a are identically distributed, random independent positive variables with
a finite average µa = E[Zt,i,a,j] and variance σ2

a = var(Zt,i,a,j) <∞

3. The time of claim occurs at random instances t1,a ≤ t2,a ≤ ... and the time be-
tween arrivals Tk,a = tk,i,a − tk−1,a are assumed to be identically and exponentially
distributed, random independent variables with a finite average E[Tk,a] = λ−1a .

Assuming that the sequences Tk and Zk are independent of each other and that the
conditions mentioned above are met [15], it follows that

Zt,i,a ∼ Gamma(κa, θa) with κa > 0, θa > 0 (4.1)

and
Nt,i,a ∼ Poiss(Mt,i,aλa) λa > 0 (4.2)

where Zt,i,a is the individual amount of the claim and Mt,i,a is the number of people in-
sured in a time t for an age class a in the region i, λa is the average number of claims
per individual per unit of time. Mt,i,a implies a constant population in the time interval
(t− 1, t) since the growth of the population is not modeled in this model.

Then, the sum of these Gamma is also a Gamma, that is

Xt,i,a|θa, κa, nt,i,a ∼ Gamm(nt,i,aκa, θa) with θa > 0, κa > a

In (4.1) we see that the individual claim Zt,i,a ∼ Gamma(κa, θa) is the only variable that
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depends on age in this model. An extension of the model is to see the feasibility of having
κ and θ also depend on time t and region i.

On the other hand, in (4.2), Mt,i,aλa represents the average number of claims made by the
insured population in age class a and the region i in time t. Given that for a certain age
class a and region i the insured population Mt,i,a varies over time, then the total number
of claims {

Xt,i,a, t = 1, ..., T, i = 1, ..., I, a = 1, ..., A
}

are not identically distributed.

It should be taken into account that insurance companies normally keep information of
the insured, such as the number, amount, and time of the claims made, as well as the age
and region of residence of the claimants. Therefore, the total amount of the claims X,
the total number of claims N , and the insured population M are assumed to be observed
and, therefore, are considered model entries.

4.2 Spatial Effect

According to the work of Migon and Gamerman (1993), the insured population can be
modeled by a GEGM. For illustrative purposes it is assumed that the insured population
follows a normal distribution

Mt,i,a ∼ N(µt,i,a, τ
−1) con τ > 0

with precision τ and average

µt,i,a = βa0 + Li + β1e
tβa2 (4.3)

where Li represents the spatial factor for the region i and βa0 , βa2 are parameters related to
age [14]. It’s important to mention that the age of the insured population is independent
of the information related to the region. The knowledge about age and demographic
characteristics should be taken into account in the a priori distributions. The parameters
related to age are specified as:

βa0 = β0 + ε0a with ε0a ∼ N(0, τ−1ε0
), τε0 > 0

βa2 = β2 + ε2a with ε2a ∼ N(0, τ−1ε2
), τε2 > 0

where τε0 and τε2 follow the Gamma distributions with known parameters. The age-
related factors βa0 and βa0 vary with age but show the same average. It is assumed that
hyperparameters follow normal distributions with different parameters, that is

β0 ∼ N(µ0, τ
−1
0 )

β1 ∼ N(µ1, τ
−1
1 )

β2 ∼ N(µ2, τ
−1
2 )
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where µ0, µ1, µ2, τ0, τ1, τ2 are unknown values.

The spatial factor, based on the work of Gschlöbl and Czado (2007), [16], is assumed to
follow a normal multivariate distribution, i.e.

L ∼ NMV (0, σ−1Q−1) (4.4)

where the (g, h)−th element of the spatial precision matrix is given by

Qgh =


1 + |η| ·mg, g = h
−η, g 6= h, g, h = 1, 2, ..., I
0, otherwise

(4.5)

The precision matrix describes three types of positions for the pair of regions g and h:

• If region g coincides with region h

g = h

• The two regions are neighboring and share a common border

g ∼ h

• The two regions do not share any common border

The amount mg denotes the number of regions neighboring the region g. Spatial effects
are adequately described by CAR prioris based on the work of Pettitt et al, (2002), [8].
The η is called the degree of spatial dependence. If η = 0, this indicates the independence
of the spatial effects and if η has a large value this signifies a strong spatial dependence.

To assign η its own priori it is known that a non-negative correlation is expected between
two regions

⇒ η ≥ 0

A Pareto distribution with parameters (1, 1) and density function

1

(1 + η)2

is selected in such a way that it takes large values for small values of η. (See Gschlöbl
and Czado (2007), [6])
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4.3 A Priori Distributions

Using improper prioris can cause computational problems such as the inability to obtain
posterior distributions. In this work the prioris were chosen in such a way that they are
their own but are relatively less informative, they are called reference prioris.

Some of the variables have already been assigned prioris based on practical knowledge
or experience. The remaining variables are assigned reference prioris since there is not
enough information.

λa ∼ Gamm(αλ, βλ)

θa ∼ Gamm(αθ, βθ)

κa ∼ Gamm(ακ, βκ)

These distributions are independent with αλ, βλ, αθ, βθ, ακ, βκ non-negative amounts.

1. Distributions that describe the value of the claims, the number of claims and the
insured population:

Xt,i,a ∼ Gamm(nt,i,aκa, θa), θa > 0, κa > 0,

Nt,i,a ∼ Poiss(Mt,i,aλa), λa > 0,

Mt,i,a ∼ N(µt,i,a, τ
−1),

where
µt,i,a = βa0 + Li + β1e

tβa2

2. Distributions that describe the age and the regions

θa ∼ Gamm(αθ, βθ),

κa ∼ Gamm(ακ, βκ),

λa ∼ Gamm(αλ, βλ),

βa0 = β0 + ε0a, with ε0a ∼ N(0, τ−1ε0
),

βa2 = β2 + ε2a, with ε2a ∼ N(0, τ−1ε2
),

L ∼ NMV (0, τ−1Q−1),

where

Qgh =


1 + |η| ·mg, g = h
−η, g 6= h, g, h = 1, 2, ..., I
0, otherwise

3. Distributions of the a priori hyperparameters

β0 ∼ N(µ0, τ
−1
0 )

β1 ∼ N(µ1, τ
−1
1 )

β2 ∼ N(µ2, τ
−1
2 )

f(η) =
1

(1 + η)2
, η > 0
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and ψ = (τ, σ, τε0 , τε2 , αθ, βθ, αλ, βλ, ακ, βκ) follow Gamma distributions with known
parameters

⇒ ψ ∼ Gamm(αψ, βψ)

where µ0, µ1, µ2, τ0, τ1, τ2, αψ, βψ are known values.

4.4 Posterior Distributions

It is assumed that κa = 1, where the amount of individual claim Zt,i,a,j is independent of
the time and the region of residence of the insured, i.e.

Za,j.

In addition, two adjacent regions, I = 2, will be considered. The simplified model explains
the implementation of the methodology and then, as an extension, it could be expanded
considering more than two adjacent regions.

Let Θ be the parameter vector and Dt = (X̃t, ñt, M̃t), t = 1, ..., T the available data.
Assuming independence in the time, age classes and geographical region, we have the
following likelihood function:

P (Θ|Dt) ∝
T∏
t=1

I∏
i=1

A∏
a=1

f(Xt,i,a, nt,i,a,Mt,i,a|Θ)

∝
T∏
t=1

I∏
i=1

A∏
a=1

f(Xt,i,a|θa, nt,i,a) · f(nt,i,a|λa,Mt,i,a) · f(Mt,i,a)

∝
T∏
t=1

I∏
i=1

A∏
a=1

[
θ
nt,i,a
a

Γ(nt,i,a)
X
n−1
t,i,a

t,i,a e
−Xt,i,aθa · (λaMt,i,a)

nt,i,a · e
−λaMt,i,a

nt,i,a!
·
√
τe−

τ
2
(Mt,i,a−µt,i,a)2

]

∝
T∏
t=1

I∏
i=1

A∏
a=1

(θaλa)
nt,i,a

X
n−1
t,i,a

t,i,a M
nt,i,a
t,i,a

Γ(nt,i,a)nt,i,a!

√
τ · e−(θaXt,i,a+λaMt,i,a+

τ
2
(Mt,i,a−µt,i,a)2)


Posterior Distribution for θa

For a single a we have that

P (θa|Θ−θa , Dt) ∝ P (Dt|Θ)P (θa)

∝

 T∏
t=1

I∏
i=1

[
θnt,i,aa e−θaXt,i,a

] · βαθθ
Γ(αθ)

θαθ−1a e−θaβθ

∝
T∏
t=1

I∏
i=1

θnt,i,a+αθ−1a · e−θa(Xt,i,a+βθ)

∝ θαθ+
∑T
t=1

∑I
i=1 nt,i,a−1

a · e−θa(
∑T
t=1

∑I
i=1Xt,i,a+βθ) for a = 1, 2, ..., A
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then

P (θa|Θ−θa , Dt) ∝ Gamm(αθ +
T∑
t=1

I∑
i=1

nt,i,a,

T∑
t=1

I∑
i=1

Xt,i,a + βθ) for a = 1, ..., A

Posterior Distribution for λa

P (λa|Θ−λa , Dt) ∝ P (Dt|Θ)P (λa)

∝
T∏
t=1

I∏
i=1

(
λnt,i,aa e−λaMt,i,a

)
· βαλλ

Γ(αλ)
λαλ−1a e−λaβλ

∝
T∏
t=1

I∏
i=1

λnt,i,a+αλ−1a · e−λa(Mt,i,a+βλ)

∝ λαλ+
∑T
t=1

∑I
i=1 nt,i,a−1

a · e−λa(
∑T
t=1

∑I
i=1Mt,i,a+βλ) for a = 1, 2, ..., A

then

P (λa|Θ−λa , Dt) ∝ Gamm(αλ +
T∑
t=1

I∑
i=1

nt,i,a,
T∑
t=1

I∑
i=1

Mt,i,a + βλ) for a = 1, ..., A

Posterior Distribution for β0

P (β0|Θ−β0 , Dt) ∝ P (Dt|Θ)P (β0)

∝

 T∏
t=1

I∏
i=1

A∏
a=1

e−
τ
2
(Mt,i,a−µt,i,a)2

 · √τ0√
2π
e−

τ0
2
(β0−µ0)2

∝

 T∏
t=1

I∏
i=1

A∏
a=1

e−
τ
2
(µ2t,i,a−2µt,i,aMt,i,a)

 · √τ0√
2π
e−

τ0
2
(β0−µ0)2

but we have that

µ2
t,i,a =

(
βa0 + Li + β1e

tβa2

)2
=
(
β0 + ε0a + Li + β1e

tβa2

)2
= β2

0 + 2
(
ε0a + Li + β1e

tβa2

)
+
(
ε0a + Li + β1e

tβa2

)2
furthermore,

2µt,i,aMt,i,a = 2
(
βa0 + Li + β1e

tβa2

)
·Mt,i,a

= 2
(
β0 + ε0a + Li + β1e

tβa2

)
·Mt,i,a

= 2β0Mt,i,a + 2
(
ε0a + Li + β1e

tβa2

)
Mt,i,a
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So, taking only what depends on β0, we obtain

P (β0|Θ−β0 , Dt) ∝
T∏
t=1

I∏
i=1

A∏
a=1

[
e
− τ

2

(
β2
0+2β0(ε0a+Li+β1etβa2 )−2β0Mt,i,a

)]
· e−

τ0
2
(β2

0−2µ0β0)

∝
T∏
t=1

I∏
i=1

A∏
a=1

[
e
− τ

2

(
β2
0−2β0(Mt,i,a−ε0a−Li−β1e

tβa2 )
)]
· e−

τ0
2
(β2

0−2µ0β0)

∝ e−
τ
2
TIAβ2

0+τβ0
∑T
t=1

∑I
i=1

∑A
a=1(Mt,i,a−ε0a−Li−β1e

tβa2 ) · e−
τ0
2
β2
0−τ0µ0β0

∝ e
− 1

2
(τTIA+τ0)β2

0+β0
(
τ0µ0+τ

∑T
t=1

∑I
i=1

∑A
a=1(Mt,i,a−ε0a−Li−β1e

tβa2 )
)

∝ e
− 1

2
(τTIA+τ0)

(
β2
0−2β0

(
τ0µ0+τ

∑T
t=1

∑I
i=1

∑A
a=1(Mt,i,a−ε0a−Li−β1e

tβa2 )
)
/(τTIA+τ0)

)

Completing the square in the exponent in β0 we obtain

∝ e

− 1
2
(τTIA+τ0)

β0− τ0µ0+τ∑Tt=1
∑I
i=1

∑A
a=1

(
Mt,i,a−ε

0
a−Li−β1e

tβa2

)
τTIA+τ0


2

then

P (β0|Θ−β0 , Dt) ∝ N

(
τ0µ0 + τ

∑T
t=1

∑I
i=1

∑A
a=1

(
Mt,i,a − ε0a − Li − β1etβa2

)
τTIA+ τ0

, (τTIA+ τ0)
−1

)

Posterior Distribution for β1

P (β1|Θ−β1 , Dt) ∝ P (Dt|Θ)P (β1)

∝

 T∏
t=1

I∏
i=1

A∏
a=1

e−
τ
2
(Mt,i,a−µt,i,a)2

 · √τ1√
2π
e−

τ1
2
(β1−µ1)2

∝

 T∏
t=1

I∏
i=1

A∏
a=1

e−
τ
2
(µ2t,i,a−2µt,i,aMt,i,a)

 · √τ1√
2π
e−

τ1
2
(β1−µ1)2

but we have that

µ2
t,i,a =

(
βa0 + Li + β1e

tβa2

)2
= (βa0 + Li)

2 + 2(βa0 + Li)β1e
tβa2 + β2

1e
2tβa2

furthermore,

2µt,i,aMt,i,a = 2
(
βa0 + Li + β1e

tβa2

)
·Mt,i,a

= 2(βa0 + Li)Mt,i,a + 2β1e
tβa2Mt,i,a
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Then, taking only what depends on β1, we obtain

P (β1|Θ−β1 , Dt) ∝

 T∏
t=1

I∏
i=1

A∏
a=1

e−
τ
2 (β2

1e
2tβa2+2(βa0+Li)β1e

tβa2−2β1etβa2Mt,i,a)

 · e− τ12 (β2
1−2µ1β1)

∝ e
− τIA

2 (
∑T
t=1 e

2tβa2 )β2
1

∏T
t=1

∏I
i=1

∏A
a=1 e

− τ
2 β1

(
2(βa0+Li)e

tβa2−2e
tβa2Mt,i,a

)
· e−

τ1
2
(β2

1−2µ1β1)

∝ e
− τ

2

[
β2
1(
∑T
t=1

∑I
i=1

∑A
a=1 e

etβa2 )−2β1(
∑T
t=1

∑I
i=1

∑A
a=1 e

tβa2Mt,i,a−
∑T
t=1

∑I
i=1

∑A
a=1(βa0+Li)e

tβa2 )
]
− τ1

2
β2
1+

τ1
2
2µ1β1

∝ e
β2
1(− τ2

∑T
t=1

∑I
i=1

∑A
a=1 e

2tβa2− τ1
2 )+2β1

(
τ
2 (
∑T
t=1

∑I
i=1

∑A
a=1(Mt,i,a−βa0−Li)e

tβa2 )+µ1τ1
2

)

∝ e
− 1

2

[
β2
1(τ1+τ

∑T
t=1

∑I
i=1

∑A
a=1 e

2tβa2 )−2β1(τ1µ1+τ
∑T
t=1

∑I
i=1

∑A
a=1(Mt,i,a−βa0−Li)e

tβa2 )
]

∝ e
− 1

2(τ1+τ
∑T
t=1

∑I
i=1

∑A
a=1 e

2tβa2 )
[
β2
1−2β1

τ1µ1+τ
∑T
t=1

∑I
i=1

∑A
a=1(Mt,i,a−βa0−Li)e

tβa2

τ1+τ
∑T
t=1

∑I
i=1

∑A
a=1 e

2tβa2

]

Completing the square in the exponent in β1 we obtain

∝ e
− 1

2(τ1+τ
∑T
t=1

∑I
i=1

∑A
a=1 e

2tβa2 )
(
β1−

τ1µ1+τ
∑T
t=1

∑I
i=1

∑A
a=1(Mt,i,a−βa0−Li)e

tβa2

τ1+τ
∑T
t=1

∑I
i=1

∑A
a=1 e

2tβa2

)2

in consequence

P (β1|Θ−β1 , Dt) ∝ N

(
τ1µ1 + τ

∑T
t=1

∑I
i=1

∑A
a=1(Mt,i,a − βa0 − Li)etβa2

τ1 + τ
∑T

t=1

∑I
i=1

∑A
a=1 e

2tβa2
,τ1 + τ

T∑
t=1

I∑
i=1

A∑
a=1

e2tβa2

−1

⇒ P (β1|Θ−β1 , Dt) ∝ N

(
τ1µ1 + τ

∑T
t=1

∑I
i=1

∑A
a=1(Mt,i,a − β0 − ε0a − Li)et(β2+ε

2
a)

τ1 + τ
∑T

t=1

∑I
i=1

∑A
a=1 e

2tβa2
,τ1 + τ

T∑
t=1

I∑
i=1

A∑
a=1

e2t(β2+ε
2
a)

−1

Posterior Distribution for ε0a

P (ε0a|Θ−ε0a , Dt) ∝ P (Dt|Θ)P (ε0a)

∝

 T∏
t=1

I∏
i=1

e−
τ
2
(Mt,i,a−µt,i,a)2

 · √τε0√
2π
e−

τε0
2

(ε0a)
2

∝

 T∏
t=1

I∏
i=1

e−
τ
2
(µ2t,i,a−2µt,i,aMt,i,a)

 · √τε0√
2π
e−

τε0
2

(ε0a)
2

for a = 1, ..., A
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but we have that

µ2
t,i,a =

(
βa0 + Li + β1e

tβa2

)2
= (β0 + ε0a + Li + β1e

tβa2 )

= (ε0a)
2 + 2ε0a(β0 + Li + β1e

tβa2 ) + (β0 + Li + β1e
tβa2 )2

furthermore,

2µt,i,aMt,i,a = 2Mt,i,a ·
(
βa0 + Li + β1e

tβa2

)
= 2Mt,i,a ·

(
β0 + ε0a + Li + β1e

tβa2

)
= 2Mt,i,aε

0
a + 2Mt,i,a

(
β0 + Li + β1e

tβa2

)
Then, taking only what depends on ε0a, we obtain

P (ε0a|Θ−ε0a , Dt) ∝

 T∏
t=1

I∏
i=1

e−
τ
2

[
(ε0a)

2 + 2ε0a

(
β0 + Li + β1e

tβa2

)
− 2Mt,i,aε

0
a

] · e− τε02 (ε0a)
2

∝ e
− τ

2

(
TI(ε0a)

2+2ε0a
∑T
t=1

∑I
i=1(β0+Li+β1e

tβa2 )−2ε0a
∑T
t=1

∑I
i=1Mt,i,a

)
− τε0

2
(ε0a)

2

∝ e−
1
2
(τTI+τε0 )(ε

0
a)

2−2ε0aτ
∑T
t=1

∑I
i=1(Mt,i,a−β0−Li−β1etβa2 )

∝ e

− 1
2
(τTI+τε0 )

(ε0a)2−2ε0a τ∑Tt=1
∑I
i=1

(
Mt,i,a−β0−Li−β1e

tβa2

)
(τTI+τε0 )


Completing the square in the exponent in ε0a we obtain

∝ e

− 1
2
(τTI+τε0 )

ε0a− τ
∑T
t=1

∑I
i=1

(
Mt,i,a−β0−Li−β1e

t(β2+ε
2
a)

)
(τTI+τε0 )


2

in consequence

P (ε0a|Θ−ε0a , Dt) ∝ N

τ
∑T

t=1

∑I
i=1

(
Mt,i,a − β0 − Li − β1et(β2+ε

2
a)
)

(τTI + τε0)
, (τTI + τε0)

−1


Posterior Distribution for β2

P (β2|Θ−β2 , Dt) ∝ P (Dt|Θ)P (β2)

∝

 T∏
t=1

I∏
i=1

A∏
a=1

e−
τ
2
(Mt,i,a−µt,i,a)2

 · √τ2√
2π
e−

τ2
2
(β2

2)
2

∝

 T∏
t=1

I∏
i=1

A∏
a=1

e−
τ
2
(µ2t,i,a−2µt,i,aMt,i,a)

 · e− τ22 (β2−µ2)2
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but we have that

µ2
t,i,a =

(
βa0 + Li + β1e

tβa2

)2
= (β0 + Li)

2 + 2(β0 + Li)β1e
tβa2 + β2

1e
2t(β2+ε2a)

furthermore,

2µt,i,aMt,i,a = 2Mt,i,a ·
(
βa0 + Li + β1e

t(β2+ε2a)
)

= 2Mt,i,a · (βa0 + Li) + 2β1Mt,i,ae
t(β2+ε2a)

Then, taking only what depends on β2, we obtain

P (β2|Θ−β2 , Dt) ∝

 T∏
t=1

I∏
i=1

A∏
a=1

e
− τ

2

(
β2
1e

2τ(β2+ε
2
a)+2(βa0+Li)β1e

tβ2+ε
2
a−2β1Mt,i,ae

t(β2+ε
2
a)

) · e− τ22 (β2
2−2β2µ2)

∝ e
− τ

2

∑T
t=1

∑I
i=1

∑A
a=1

(
β2
1

(
et(β2+ε

2
a)

)2

−2β1eβ2+ε
2
a (Mt,i,a−βa0−Li)

)− τ2
2
(β2

2−2β2µ2)

completing the square in the first term, we obtain

∝ e
− τ2

2
(β2

2−2β2µ2)−
τ
2

∑T
t=1

∑I
i=1

∑A
a=1

(
β1et(β2+ε

2
a)−(Mt,i,a−βa0−Li)

)2

therefore,

P (β2|Θ−β2 , Dt) ∝ e
− τ2

2
(β2

2−2β2µ2)−
τ
2

∑T
t=1

∑I
i=1

∑A
a=1

(
β1et(β2+ε

2
a)−(Mt,i,a−βa0−Li)

)2

which is not closed form.

Posterior Distribution for ε2a

P (ε2a|Θ−ε2a , Dt) ∝ P (Dt|Θ)P (ε2a)

∝

 T∏
t=1

I∏
i=1

e−
τ
2
(Mt,i,a−µt,i,a)2

 · √τε2√
2π
e−

τε2
2

(ε2a)
2

∝

 T∏
t=1

I∏
i=1

e−
τ
2
(µ2t,i,a−2µt,i,aMt,i,a)

 · √τε2√
2π
e−

τε2
2

(ε2a)
2

for a = 1, ..., A

but we have that

µ2
t,i,a =

(
βa0 + Li + β1e

tβa2

)2
= (β0 + Li)

2(β0 + Li)β1e
t(β2+ε2a) + β2

1e
2t(β2+ε2a)
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furthermore,

2µt,i,aMt,i,a = 2Mt,i,a ·
(
βa0 + Li + β1e

tβa2

)
= 2Mt,i,a · (βa0 + Li) + 2β1Mt,i,ae

t(β2+ε2a)

Then, taking only what depends on ε2a, we obtain

P (ε2a|Θ−ε2a , Dt) ∝

 T∏
t=1

I∏
i=1

e−
τ

2

(
β2
1e

2t(β2+ε2a) + 2(βa0 + Li)β1e
t(β2+ε2a) − 2β1Mt,i,ae

t(β2+ε2a)
)

e−
τε2
2

(ε2a)
2

∝ e
− τ

2

∑T
t=1

∑I
i=1

[
β2
1e

2t(β2+ε
2
a)−2β1et(β2+ε

2
a)(Mt,i,a−βa0−Li)

]
− τε2

2
(ε2a)

2

completing the square in the term of the summation, we obtain

∝ e
− τ

2

[∑T
t=1

∑I
i=1

(
β1et(β2+ε

2
a)−(Mt,i,a−βa0−Li)

)2
]
− τε2

2
(ε2a)

2

therefore

P (ε2a|Θ−ε2a , Dt) ∝ e
− τε2

2
(ε2a)

2− τ
2

∑T
t=1

∑I
i=1

(
β1et(β2+ε

2
a)−(Mt,i,a−βa0−Li)

)2

for a = 1, ..., A

which is not closed form.

Posterior Distribution for τ

P (τ |Θ−τ , Dt) ∝ P (Dt|Θ)P (τ)

∝

 T∏
t=1

I∏
i=1

A∏
a=1

(√
τe−

τ
2
(Mt,i,a−µt,i,a)2

) τατ−1e−βτ τ
∝ τ

1
2
TIAe−

τ
2

∑T
t=1

∑I
i=1

∑A
a=1(Mt,i,a−µt,i,a)2 · τατ−1e−βτ τ

∝ τ (
1
2
TIA+ατ )−1e−τ[

1
2

∑T
t=1

∑I
i=1

∑A
a=1(Mt,i,a−µt,i,a)2+βτ ]

therefore

P (τ |Θ−τ , Dt) ∝ Gamm

1

2
TIA+ ατ ,

1

2

T∑
t=1

I∑
i=1

A∑
a=1

(Mt,i,a − µt,i,a)2 + βτ
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Posterior Distribution for τε0

P (τε0u|Θ−τε0 , Dt) ∝ P (Dt|Θ)P (ε0|τε0)P (τε0)

∝

 T∏
t=1

I∏
i=1

A∏
a=1

(
e−

τ
2 (Mt,i,a−µt,i,a)

2
) A∏

a=1

[
τ 1/2ε0

e−
τε0
2

(ε00)
2
] α−1τε0
τε0

e−βτε0 τε0

∝ τ
A
2
ε0 e
− τε0

2

∑A
a=1(ε

0
a)

2

τ
ατε0−1
ε0 e−βτε0 τε0

∝ τ
(A2 +ατε0 )−1
ε0 e−(βτε0+

1
2

∑A
a=1(ε

0
a)

2)

therefore

P (τε0|Θ−τε0 , Dt) ∝ Gamm

A
2

+ ατε0 , βτε0 +
1

2

A∑
a=1

(ε0a)
2


Posterior Distribution for τε2

P (τε2u|Θ−τε2 , Dt) ∝ P (Dt|Θ)P (ε2a|τε2)P (τε2)

∝

 T∏
t=1

I∏
i=1

A∏
a=1

(
e−

τ
2 (Mt,i,a−µt,i,a)

2
) ·

 A∏
a=1

τ 1/2ε2
e−

τε2
2

(ε2a)
2

 · τατε2−1ε2 eβτε2 τε2

∝ τ
A
2
ε2 e
− τε2

2

∑A
a=1(ε

2
a)

2

τ
ατε2−1

ε2 e−βτε2 τε2

∝ τ
(A2 +ατε2 )−1
ε2 e−(βτε2+

1
2

∑A
a=1(ε

2
a)

2)τε2

therefore

P (τε2u|Θ−τε2 , Dt) ∝ Gamm

A
2

+ ατε2 , βτε2 +
1

2

A∑
a=1

(ε2a)
2


Posterior Distribution for αθ

P (αθ|Θ−αθ , Dt) ∝ P (Dt|Θ)P (αθ)

∝

 A∏
a=1

P (αθ|αθ)

 · P (αθ)

=

 A∏
a=1

[
θαθ−1a e−βθθaβαθθ

Γ(αθ)

]α
ααθ−1
θ e−βαθαθ

∝ Γ(αθ)
−AβAαθθ α

ααθ−1
θ e−βαθαθ

 A∏
a=1

θαθ−1a


which is not closed form.
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Posterior Distribution for αλ

P (αλ|Θ−αλ , Dt) ∝ P (Dt|Θ)P (αλ)

∝

 A∏
a=1

P (αλ|αλ)

 · P (αλ)

=

 A∏
a=1

[
λαλ−1a e−βλλaβαλλ

Γ(αλ)

]α
ααλ−1
λ e−βαλαλ

∝ Γ(αλ)
−AβAαλλ α

ααλ−1
λ e−βαλαλ

 A∏
a=1

λαλ−1a



which is not closed form.

Posterior Distribution for βθ

P (βθ|Θ−βθ , Dt) ∝ P (Dt|Θ)P (βθ)

∝

 A∏
a=1

P (θa|βθ)

 · P (βθ)

∝

 A∏
a=1

βαθθ e
−βθθa

 βαβθ−1θ e−ββθβθ

∝ βAαθθ e−βθ
∑A
a=1 θaβ

αβθ−1
θ e−βθββθ

∝ β
(Aαθ+αβθ )−1
θ e−βθ(ββθ+

∑A
a=1 θa)

therefore

P (βθ|Θ−βθ , Dt) ∝ Gamma

Aαθ + αβθ , ββθ +
A∑
a=1

θa
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Posterior Distribution for βλ

P (βλ|Θ−βλ , Dt) ∝ P (Dt|Θ)P (βλ)

∝

 A∏
a=1

P (λa|βλ)

 · P (βλ)

∝

 A∏
a=1

βαλλ e−βλλa

 βαβλ−1λ e−ββλβλ

∝ βAαλλ e−βλ
∑A
a=1 λaβ

αβλ−1
λ e−βλββλ

∝ β
(Aαλ+αβλ )−1
λ e−βλ(ββλ+

∑A
a=1 λa)

therefore

P (βλ|Θ−βλ , Dt) ∝ Gamma

Aαλ + αβλ , ββλ +
A∑
a=1

λa


For the spatial variable, we have to study mg neighboring regions, then the variance-

covariance matrix of the multivariate normal distribution is given by

σ−1 ·

(
1 + |η| ·mg −η
−η 1 + |η| ·mg

)−1
=

(
P S
S P

)

Then, (
P S
S P

)
=

σ−1

(1 + |η| ·mg)2 − η2
·

(
1 + |η| ·mg η

η 1 + |η| ·mg

)

Therefore, for P and S we have thatP = σ−1(1+|η|·mg)
(1+|η|·mg)2−η2

S = σ−1η
(1+|η|·mg)2−η2

Let’s assume that η > 0 and two neighboring regions, i.e. mg = 1. Then we have that P = σ−1(1+|η|·mg)
(1+|η|)2−η2 = σ−1(1+η)

1+2η+η2−η2 = σ−1(1+η)
1+2η

S = σ−1η
(1+|η|)2−η2 = σ−1η

1+2η
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Therefore, the correlation coefficient can be written as

ρ =
cov(x, y)√
var(x)var(y)

=
S

P

=

σ−1η
1+2η

σ−1(1+η)
1+2η

=
η

1 + η

Let’s see then the a posterior distribution for the parameters related to the regions (spatial
section)

Posterior distribution for Li

P (Li|Θ−Li , Dt) ∝ P (Dt|Θ)P (Li)

∝

 T∏
t=1

A∏
a=1

e−
τ
2
(Mt,i,a−µt,i,a)2

 · e− 1
2(1−ρ2)

(
L2
1

P2+
L2
2

P2−
2ρLiL2
P2

)

for i = 1, 2

∝

 T∏
t=1

A∏
a=1

e−
τ
2
(Mt,i,a−µt,i,a)2

 · e− 1

2P2(1−ρ2)(L2
1+L

2
2−2ρL1L2)

and it has a not closed form.

Posterior distribution for η

P (η|Θη, Dt) ∝ P (Dt|Θ)P (L|η)P (η)

∝ 1

P 2
√

1− ρ2e
− 1

2(1−ρ2)

(
L2
1+L

2
2−2ρL1L2

P2

)

=
1

(1 + η)2P
√

1− ρ2
e
− 1

2P2(1−ρ2)
(L2

1+L
2
2−2ρL1L2)

which is a not closed form.

Posterior distribution for σ

P (σ|Θ−σ, Dt) ∝ P (Dt|Θ)P (L|σ)P (σ)

∝ 1

P 2
σασ−1e−σβσe

− 1
2P2(1−ρ2)

(L2
1+L

2
2−2ρL1L2)

Mathematician 37 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

which is a not closed form.

4.5 Monte Carlo Inference

Up to this point the theoretical information necessary for the implementation of MCMC
has already been obtained. Given the history of severity and quantity of the claim and
the insured population, it is possible to analyze the implicit parameters from the data set
[17]. To improve the estimation of the parameters, the model considers the region and
the age class of the insured. It is used MCMC algorithms in order to simulate the desired
samples, specifically Metropolis-Hastings and Gibbs sampler are used. The Gibbs sam-
pler algorithm, which is a special case of Metropolis-Hastings, generate posterior samples
by sweeping through each variable (or block of variables) to sample from its conditional
distribution with the remaining variables fixed to their current values. The conditional
distributions are denoted as π(θi|θ−i, X), i = 1 : d, where θ−i represents all parameters in
Θ but θi. The Gibbs sampler algorithm is the following:

Step 1
Initialize θ(0) = {θ(0)1 , θ

(0)
2 , ..., θ

(0)
d }

Step 2
For iteration j = 1, 2, ... do

• Generate θ
(j)
1 from π(θ1|θ(j−1)2 , θ

(j−1)
2 , ..., θ

(j−1)
d , X)

• Generate θ
(j)
2 from π(θ2|θ(j−1)1 , θ

(j−1)
3 , ..., θ

(j−1)
d , X)

...

• Generate θ
(j)
d from π(θd|θ(j−1)1 , θ

(j−1)
2 , ..., θ

(j−1)
d−1 , X)

end for

The theory of MCMC guarantees that the stationary distribution of the samples genera
ted under the Gibbs sampler algorithm is the target joint posterior that we are interested
in [18].

On the other hand, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo
(MCMC) method for obtaining a sequence of random samples from a probability distri-
bution from which direct sampling is difficult. The Metropolis Algorithm for sampling
from a target distribution π, using transition kernel Q, consists of the following steps [19]:

Step 1:
Initialize θ(0) = {θ(0)1 , θ

(0)
2 , ..., θ

(0)
d }
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Step 2:
For iteration i = 1, 2... do

• Sample γ from Q(γ|θi). (Think of γ as a ”proposed” value for θi+1)

• Compute

A = min

(
1,
π(γ)Q(θi|γ)

π(θi)Q(γ|θi)

)
.

A is often called the “acceptance probabilty”.

• With probability A “accept” the proposed value, and set

θi+1 = γ

. Otherwise set
θi+1 = θi

end for
To implement these algorithms of the Gibbs and Metropolis-Hastings sampler in the
adjustment of the proposed model, free software environment R for statistical computing
and graphics will be used (www.r-project.org/).
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Chapter 5

Simulation Studies and Model
Fitting

As mentioned in the section of technical aspects of the project to carry out the simula-
tion of the Bayesian hierarchical model, it is necessary to enter data on the number, total
amount of insurance and region and age class of the insured. Insurance companies usually
have this information to modify parameters and predictions for future claims.

This chapter contains the predetermination certain parameters for the simulation of claims
data, followed by the model adjustment to see if it can capture the predetermined param-
eters.

5.1 Simulation Studies

This section presents the simulation of the history of insurance claims data, that is, the
severity and frequency of the claim, and finally the insured population data. The simula-
tion is carried out using the R packages actuar, random, coda, MASS, mvtnorm, corpcor,
among other complementary packages. This as long as the parameters are already prede-
termined (Dutang et al., 2008). In oder to execute the simulation, the determination of
the parameters is previously analyzed. The parameters are chosen primarily to test the
complexity of the proposed model. Without losing of generality, the main objective of this
section is to select values for the parameters in order to execute the model. In addition,
if you properly select the parameter value, it could hopefully contain important practical
meaning to help you understand the elements of the proposed model. To execute the
simulation, the determination of the parameters is previously analyzed. The parameters
are chosen primarily to test the complexity of the proposed model. The main objective
of this section is to select parameters’ values which have to be simple for the execution of
the model, without losing of generality. In addition, if the parameter values are properly
selected, it could hopefully contain important practical meaning to understand easily the
elements of the proposed model.

For the parameters one can apply practical knowledge or experience in the assumptions
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when claim frequency is considered. For example, in health insurance instance, the num-
ber of doctor’s visits for a type of medical treatment could be on average about 0.1 per
time unit for age class 20-30 (say, age class 2), increasing to about 0.4 for age class 40-50
(say, age class 4). Hence the insurance company could anticipate on average 10% of the
policyholders aged 20-30 as well as 40% of those aged 40-50 to report a claim [20]. Let’s
consider (4.2), λa in that expression contribute to the average claim frequency and rep-
resents the claim made per person per unit time. Therefore, one possible selection of the
value of this parameter is to set λ1 = 0.1 and λ3 = 0.4. For simplicity, but less likely in
reality, it is assumed that for all age group the claim frequency in the simulation is at the
same level, i.e., λa ∼ G(40, 200) for any a = 1, 2, ..., A. It means that 20% of the insured
population would report a claim for each age class, with standard deviation of 3.16% [20].
Under the assumption that the variation of the claim frequency is not excessively large it
has been selected intentionally a small value of the variance. If it is believed that there is
a large variation in the claim frequency other assumptions can be made.

Now, likewise let’s obtain the selection of the claim severity parameter. Let’s consider
again the two age classes 20-30 (age class 1) and 40-50 (age class 3). It can be assumed
that the average claim amount for members in age class 1 is small, say $15 per claim,
while that in age class 3 may be higher, say $30 per claim since policyholders in older
age groups tend to make larger claims than policyholders in younger age groups. Once
more, for simplicity and effectiveness of the model testing it is assumed that the average
claim amount is about $25 in all age classes. Let’s consider (4.1), given that κa = 1 for
a = 1, 2, ..., A and θa are assumed known. It remains to select the value of the parameter
θa. In the simulation, it is been considered that θa ∼ G(400, 10000) for any a = 1, 2, ..., A.
Again, this value has been selected to ensure a small variance. The selected values were
chosen in order to the model be easy to understand and the process is technically simple
to implement. As previously stated, these values have been chosen in such way that the
model be easy to understand and so that the simulation not difficult to implement.

On the other hand, three parameters must be estimated in order to simulate insured
population. In equation (4.3), mainly the value of βj, with j = 0, 1, 2, determine the
population mean. In the simulation it is assumed a quantitative criterion such that the
mean of insured population for a given age group and region is to be doubled in 20 time
units ([20]). At time 0 and 20 the average population are measured by E(µ0,i,a) ≈ β0 +β1
and E(µ20,i,a) ≈ β0 + β1e

20β2 , respectively. The measure represent estimates rather than
the true mean of µt,i,a which is indicated by the approximate sign. Also, the calculation
of the true mean is complicated due to the exponential terms and those calculations are
not required for effective simulations therefore are not necessary. One has freedom in
determining the initial population level and only need to ensure the population doubles
at time 20. The assumption adopted in this simulation is that the E(µ0,i,a) ≈ 70 and
E(µ20,i,a) ≈ 140 since it has been selected the population level in such way that at time
20 the population doubles. It can be seen that a small increase in the value β2 increment
the mean value of population exponentially then a small value for β2 is selected. By the
conditions previously stated let’s consider the values β0 = 59, β1 = 20 and β2 = 0.075. It
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is expected not to have much knowledge in terms of the values for the region parameters
L. For the spatial effects let’s consider equations (4.4) and (4.5), σ is randomly assumed
to follow a Gamma distribution with large mean and variance and ind order to assign
high probability to small values η follows a Pareto distribution with parameters 1 and 1.

So far, summarizing the assumptions mentioned above we have that:

• Claim Frecuency Parameters

– λa ∼ Gamma(40, 200) for any a = 1, 2, ..., 7

• Claim Severity Parameters

– κa = 1 for any a = 1, 2, ..., 7

– θa ∼ Gamma(400, 10000) for any a = 1, 2, ..., 7

• Population Parameters

– β0 = 50

– β1 = 20

– β2 = 0.075

– η ∼ Pareto(1, 1)

5.2 Model Fitting

5.2.1 Prior Elicitation

It is important to specify that the information used for the simulation process of data
shown in Appendix A, set of observed data, is not applied in the adjustment of the model
since in theory there is not much knowledge about the parameters of the data. It means
that, prior elicitation is the remaining step for the application of the model.

The general purpose of this chapter is to test whether the model can capture the pa-
rameters incorporated in the data set. In addition, selecting concentrated priori near the
true value of the parameters would not make sense when performing such an effective-
ness test, therefore, it makes more sense, for the purpose of the test, to choose as vague
background as possible.
Taking into account the above, consider the data of the insured population:

• For all age classes

– Average after 1 unit of time: 43 for region 1

– Average after 1 unit of time: 35 for region 2
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So, an assumption for the initial insured population may be β0 + β1 ≈ 39.

Similarly, after 20 units of time the mean increase to 62 and 55 for region 1 and 2
respectively. Therefore, the guess could be about 59, i.e., β0 + β1e

20β2 ≈ 59. Since two
equations are not enough to estimate 3 parameters, a no accuracy estimating about the
three parameters can be made. Let’s say that the values could be β0 ≈ 20, β1 ≈ 30 and
β2 ≈ 0.015. In order to indicate less confidence of the true value of β’s and allowing the
model to find the true value with great freedom it is assumed that the variance of the
distribution of β’s are large. Then, the priors are made as follows:

β0 ∼ N(20, 104)

β1 ∼ N(30, 104)

β2 ∼ N(0.015, 102)

For all other hyperparameters, the priors which contain little information are presented
as follows:

τ, αλ, βλ, αθ, βθ ∼ Gamma(0.001, 0.001),

τε0 ∼ Gamma(1, 10000),

τε2 ∼ Gamma(1, 100),

σ ∼ Gamma(1, 0.005),

η ∼ Pareto(1, 1).

The prior selected for τ, αλ, βλ, αθ, βθ are set with large variance; on the other hand τε0
and τε2 are set with small means in order to ε0a and ε2a have large variance. The prior of
η allows to take small values with high probability. Finally, prior of σ is set with large
mean and contributes towards region factor.

Now, let’s implement the model using R tool in order to obtain the posterior of the
parameters mentioned above. The results are shown in the next chapter.

5.3 Results

This section presents the adjustment of the proposed model using the simulated data clas-
sified by age group of the insured, region of residence of the insured and the time horizon
of the insurance, in order to study its trend and seasonality. In addition, to determining
the scale and shape behavior of the parameters involved in the model.

Using the Monte Carlo sequence methods, in particular, the Metropolis-Hastings algo-
rithm and the Gibbs sampler described in section 4.5, 50000 random samples were gen-
erated for each parameter from their respective posterior distributions, as explained in
chapter 4, involved in the collective compound risk model from their respective subse-
quent distribution.
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The algorithm used to implement the Gibbs sample and the simulation from the pre-
dictive model was coded in the statistical programming language R, version 1.1.453 (Free
Software); and the convergence analysis of the simulated traces was performed using the
Software (CODA) with R routine.

The early iterations are thrown away and the remaining samples are used for poste-
rior inference since in theory, after infinite many runs of the Markov chain the effect of
the initial values would vanish. However, it is practically inefficient and time-consuming
to reach infinitely many runs. Therefore, it is assumed that after several iterations, the
chain would reach its target distribution. Several simulations with different number of it-
erations were performed to compare the compilation time of the Gibbs sampler algorithm
as can be seen in the following table:

Processor: 1.6 GHz Intel Core i5
Memory: 4 GB 1600 MHz DDR3

Iterations
Time in seconds

User System Elapsed
100 0.786 0.185 1.544
1000 40.806 3.131 45.936
10000 4196.177 339.822 4861.823
Processor: Intel(R) Core(TM) i7-6700 CPU
Memory: 16GB

Iterations
Time in seconds

User System Elapsed
100 0.30 0.02 0.29
3300 340.6 0.23 341.2
50000 47849.56 88.72 47981.91

Table 5.1: Compilation time of the Gibbs sampler algorithm

In table 5.1, the user time is the CPU time charged for the execution of user instructions
of the calling process. The system time is the CPU time charged for execution by the
system on behalf of the calling process and the elapsed time is the time charged to the
CPU(s) for the expression. As shown in the table 5.1, the execution time of the algorithm
on a PC with an i7 processor and 16 GB of memory for 50,000 iterations was approxi-
mately 13 hours and 29 minutes.

The trace plot shows the sampled values of a parameter over time. This plot helps
to judge how quickly the MCMC procedure converges in distribution, that is, how quickly
it forgets its starting values. Also, the empirical density of each trace, in statistics known
as kernel density estimation (KDE), which is a non-parametric approach to estimate the
probability density function of a random variable. Kernel density estimation provides a
data smoothing solution based on a finite data sample [21]. The following figures show
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the trace and density plots of the major parameters used in the model where the plots on
the left of the figures represent the traces of the parameter while those on the right the
density or the parameter posterior distribution,

Figures 5.1 and 5.2 present the trace and posterior distribution of θ for a = 1, 2, 3, 4
and a = 5, 6, 7 respectively. The square parentheses in the graph titles indicate the age
groups. The vertical axis of the trace plot represents the value of each sample and the
horizontal axis represents the number of iterations. According to the graph, the means
of θa are centered near to 0.04 this do not differentiate by age groups. That is consistent
with the assumption of simulation process. However, each age class is subject to random
error variation and, therefore, the graphs for each age class are not exactly the same.

In figures 5.1 and 5.2, convergence is highlighted for each age class since each trace cycli-
cally alternates up and down and the average lines of the three traces overlap, which is a
strong indication of convergence. In the empirical density graphs of the trace, convergence
can also be appreciated, besides, the density of each age class is shown to be stabilized
almost symmetrically around the means after which they converge.

On the other hand, in figure 5.3 can be seen the θa’s autocorrelations, for a = 1, 2, ..., 7,
observed for each of the samples indicating that these generated traces effectively are an
independent sample.
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Figure 5.1: Trace plot and the posterior distribution of θ for a = 1, 2, 3, 4
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Figure 5.2: Trace plot and the posterior distribution of θ for a = 5, 6, 7

Figure 5.3: Autocorrelation of θ, for a = 1, .., 7

Trace, density and autocorrelation plots were generated for the parameters λa, βa0 , β1,
βa2 , εa0 , εa2 , αθ, βθ, αλ, βλ and Li, with a = 1, 2, ..., 7 and i = 1, 2, whose respective
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figures are shown below (from figure 5.4 to figure 5.27).

Like with θ, in each parameter, it is observed that each of them converges around a
value that is the posterior mean, as is also observed for the empirical density functions
of each trace, where the approximate symmetry of each of them around a central value
represents the posterior mean, confirming again that each chain has obtained convergence.
On the other hand, autocorrelation plots have shown that the considered parameters are
independent samples.

Also, it is clear from the output of both region parameters, L1 and L2, in figure 5.26,
that the mean values are centered at 2. The data is obtained under the assumption that
little information about the region is imposed. The output is consistent with such as-
sumptions. The density plot of these parameters is bumpy with several humps around
the mean value. This may be because the program continues the attempt to search for
potential values of L’s implied in the data. Again, for spatial factor Li, i = 1, 2, in figure
5.27 the independence of the parameter can be observed.

Figure 5.4: Trace plot and the posterior distribution of λ for a = 1, 2, 3, 4
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Figure 5.5: Trace plot and the posterior distribution of λ for a = 5, 6, 7

Figure 5.6: Autocorrelation of λ, for a = 1, .., 7
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Figure 5.7: Trace plot and the posterior distribution of β0 for a = 1, 2, 3, 4

Figure 5.8: Trace plot and the posterior distribution of β0 for a = 5, 6, 7
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Figure 5.9: Autocorrelation of β0, for a = 1, .., 7

Figure 5.10: Trace plot and the posterior distribution of β1
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Figure 5.11: Autocorrelation of β1

Figure 5.12: Trace plot and the posterior distribution of ε0 for a = 1, 2, 3, 4
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Figure 5.13: Trace plot and the posterior distribution of ε0 for a = 5, 6, 7

Figure 5.14: Autocorrelation of ε0, for a = 1, .., 7
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Figure 5.15: Trace plot and the posterior distribution of ε2 for a = 1, 2, 3, 4
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Figure 5.16: Trace plot and the posterior distribution of ε2 for a = 5, 6, 7

Figure 5.17: Autocorrelation of ε2, for a = 1, .., 7
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Figure 5.18: Trace plot and the posterior distribution of αθ

Figure 5.19: Autocorrelation of αθ

Figure 5.20: Trace plot and the posterior distribution of βθ
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Figure 5.21: Autocorrelation of βθ

Figure 5.22: Trace plot and the posterior distribution of αλ

Figure 5.23: Autocorrelation of αλ

Mathematician 57 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.24: Trace plot and the posterior distribution of βλ

Figure 5.25: Autocorrelation of βλ
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Figure 5.26: Trace plot and the posterior distribution of Li for i = 1, 2

Figure 5.27: Autocorrelation of Li for i = 1, 2
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Par. Mean SD
2.5%
Perc.

Median
97.5%
Perc.

Station.
Test

Halfwidth
Test

P-value

L1 2.1571 0.7929 0.6867 2.1244 3.7868 Passed Passed 0.0829
L2 2.1549 0.793 0.694 2.1243 3.8035 Passed Passed 0.8184
θ1 0.0392 0.0024 0.0346 0.0391 0.0439 Passed Passed 0.26
θ2 0.0389 0.0024 0.0345 0.039 0.0439 Passed Passed 0.46
θ3 0.0391 0.0024 0.0345 0.039 0.0438 Passed Passed 0.333
θ4 0.0396 0.0024 0.0345 0.039 0.0439 Passed Passed 0.323
θ5 0.0388 0.0024 0.0346 0.0391 0.0438 Passed Passed 0.978
θ6 0.0393 0.0024 0.0345 0.039 0.0438 Passed Passed 0.409
θ7 0.0398 0.0024 0.0346 0.039 0.0438 Passed Passed 0.517
λ1 0.1984 0.0346 0.1363 0.1967 0.2706 Passed Passed 0.5209
λ2 0.1982 0.0343 0.1358 0.1963 0.2704 Passed Passed 0.6615
λ3 0.1983 0.0343 0.1367 0.1964 0.2706 Passed Passed 0.0601
λ4 0.1983 0.0344 0.1363 0.1967 0.2701 Passed Passed 0.6865
λ5 0.1986 0.0346 0.1358 0.1967 0.2715 Passed Passed 0.8604
λ6 0.1984 0.0345 0.1361 0.1964 0.2715 Passed Passed 0.7659
λ7 0.1982 0.0346 0.1358 0.1962 0.2711 Passed Passed 0.3383
β10 51.2266 4.1978 43.0326 51.2199 59.4164 Passed Passed 0.366
β20 51.2216 4.2086 42.9885 51.2122 59.4634 Passed Passed 0.114
β30 51.2297 4.2017 43.0167 51.2166 59.4519 Passed Passed 0.739
β40 51.2364 4.2173 42.9202 51.2218 59.493 Passed Passed 0.388
β50 51.2232 4.1916 42.9841 51.2126 59.4474 Passed Passed 0.233
β60 51.2165 4.2059 42.9748 51.2125 59.4371 Passed Passed 0.218
β70 51.2265 4.2015 42.976 51.2233 59.476 Passed Passed 0.241
β12 2.9555 5.8578 -9.0123 4.3064 12.3846 Passed Passed 0.831
β22 2.9555 5.8578 -9.0123 4.3064 12.3846 Passed Passed 0.831
β32 2.9555 5.8578 -9.0123 4.3064 12.3846 Passed Passed 0.831
β42 2.9555 5.8578 -9.0123 4.3064 12.3846 Passed Passed 0.831
β52 2.9555 5.8578 -9.0123 4.3064 12.3846 Passed Passed 0.831
β62 2.9555 5.8578 -9.0123 4.3064 12.3846 Passed Passed 0.831
β72 2.9555 5.8578 -9.0123 4.3064 12.3846 Passed Passed 0.831
β0 50.0077 4 42.1858 50.0029 57.8717 Passed Passed 0.0832
β1 20.0063 4.9968 10.2338 20.0168 29.7967 Passed Passed 0.236
ε01 1.2189 1.3011 -1.3322 1.2156 3.7756 Passed Passed 0.0564
ε02 1.214 1.301 -1.3229 1.2142 3.76 Passed Passed 0.057
ε03 1.222 1.3024 -1.3158 1.2205 3.7715 Passed Passed 0.0515
ε04 1.2288 1.3045 -1.3149 1.2246 3.7806 Passed Passed 0.1227
ε05 1.2155 1.2961 -1.3157 1.2213 3.7756 Passed Passed 0.5356
ε06 1.2088 1.2988 -1.3187 1.2101 3.76 Passed Passed 0.2034
ε07 1.2188 1.2967 -1.3175 1.2219 3.7479 Passed Passed 0.1416
ε21 5.4847 2.9366 0.9596 5.1249 12.0573 Passed Passed 0.278
ε22 5.4847 2.9366 0.9596 5.1249 12.0573 Passed Passed 0.278
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Table 5.2 continued from previous page
ε23 5.4847 2.9366 0.9596 5.1249 12.0573 Passed Passed 0.278
ε24 5.4847 2.9366 0.9596 5.1249 12.0573 Passed Passed 0.278
ε25 5.4847 2.9366 0.9596 5.1249 12.0573 Passed Passed 0.278
ε26 5.4847 2.9366 0.9596 5.1249 12.0573 Passed Passed 0.278
ε27 5.4847 2.9366 0.9596 5.1249 12.0573 Passed Passed 0.278
τ 35.015 0.0043 34.9001 35.0157 35.1312 Passed Passed 0.854
τε0 0.4903 0.0021 0.3977 0.4888 0.5915 Passed Passed 0.668
τε2 0.1811 0.0033 0.0720 0.1815 0.2950 Passed Passed 0.347

Table 5.2: Statistical summary of major parameters

Finally, the statistics of posteriors are summarized in Table 5.2. This contains, the mean,
standard deviation, median, credible intervals for the parameters, stationary test with its
respective p-value and the Halfwidth Test, the latter is a convergence test. The two pa-
rameters of the region, L1 and L2, centered on approximately 2, which is consistent with
the fact that there is not enough information in terms of the effect of the region in this ex-
ample; βa0 a have averages around 50 and standard deviations equal to 4.2 approximately;
β1 is centered on approximately 20; β2a have average the same mean, approximately 2.9,
among all age classes; the claim frequency index, λa, reaches the highest values in the 1, 6
and 7 age groups, with average values exceeding 0.19; The severity of the claim, θa, does
not differ much between the age classes.
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Chapter 6

Predictions and Premium
Determination

It is of the utmost importance for insurers to know if retained premiums are plenty to
cover total losses. For this reason, the application of the values of the underlying param-
eters in the prediction of the insured population, number of claims and the total amount
of the claim for the next unit of time is of interest. The premium can be determined using
different premium principles once they can predict the total amount of the claim.

This chapter first contains the Bayesian theory of the prediction algorithm, followed
by the predictive results for the numerical example presented in Chapter 5. Finally,
it demonstrates ways to determine the premium based on the claim amounts provided
under certain premium principles.

6.1 Predictive Results

In order to perform the prediction in Bayesian inferences, the codamenu function was
used, which is a simple menu-based interface for the functions of the Coda package in the
R language. The values to be predicted and the data already simulated are treated as the
input values in the menu. The prediction is made based on the values of the parameters,
which are determined by the observed data. The general purpose is to determine the
prediction of the total claim amount for the next period of time. In order for insurers
to determine the premium based on their risk tolerance index measured, for example, by
standard deviation or Value at Risk (VaR), it is preferred to have a prediction distri-
bution. This model implemented under the Bayesian paradigm offers the advantage of
obtaining a posterior predictive distributions, which provide important information for
the experience qualification process.

This project presents only the prediction for a unit of time, which is based on data
from the last 20 units of time. The prediction of time 21 is presented in terms of the
insured population ( see figures 6.1, 6.2, 6.5 and 6.4), the total number of claims (see
figures 6.16,6.17, 6.18 and 6.19 ) and the total amount of claims (see figures 6.37, 6.38,
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6.39 and 6.40) are presented below.

Figure 6.1: Prediction of Insured Population for 21st Time Unit - Region 1 - Age classes
1, 2, 3 and 4
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Figure 6.2: Prediction of Insured Population for 21st Time Unit - Region 1 - Age classes
5, 6 and 7

The predicted Insured Population for the 21st time unit by all age classes in region 1
is shown in Figures 6.1 and 6.2. As in the previous chapter, the plot chart has 50,000
iterations for each age class. The domain of the planned insured population could take
any value that varies between 50 and 300. This prediction is presented in continuous
format with its respective probability density function. In addition, the convergence is
highlighted for each age class in both figures, since each trace cyclically alternates up and
down and the average lines of the three traces overlap.
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Figure 6.3: Insured Population with Prediction for all Age Groups - Region 1

Figure 6.4: Prediction of Insured Population for 21st Time Unit - Region 2 - Age classes
5, 6 and 7
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Figure 6.5: Prediction of Insured Population for 21st Time Unit - Region 2 - Age classes
1, 2, 3 and 4

Figure 6.3 shows a comparison of the average insured population among all age classes in
region 1. The points up to the unit of time 20 are the historical data of the average insured
population, while the triangles located in the unit of time 21 represent the expected
average value for this unit of time. The last 20 units of time data reveal an increasing
trend which is significantly higher than the value of the initial population. The predicted
average values are less than the previous unit of time for all age classes and tend to similar
values; If historical values are large, as shown in the previous unit of time, the predicted
average values tend to decrease. In general, the planned insured population reflects the
characteristics of population growth and, therefore, can be considered as a reasonable
estimate.

On the other hand, the traces and their respective probability density of the insured
population by each age class in region 2 are also shown in Figures 6.5 and 6.4. The
predicted insured population in region 2 is not very different from region 1. Therefore,
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the same analysis as in Figures 6.1 and 6.2 can be inferred.

Figure 6.6: Autocorrelation of Prediction of Insured Population for 21st Time Unit -
Region 1 and 2- All Age classes

Figure 6.7: Autocorrelation of Prediction of Insured Population for 21st Time Unit -
Region 2- All Age classes

Additionally, in Figure 6.6 can be seen the autocorrelation of Prediction of Insured Pop-
ulation for the 21st-time unit by all age classes for region 1 and age classes 1 and 2 for
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region 2. In addition, figure 6.7 contains the autocorrelation of Prediction of Insured Pop-
ulation for the 21st-time unit by age classes 3, 4, 5, 6 and 7 for region 2. In these figures
it can be seen that there is independence in each sample as it was effectively observed in
their respective traces.

Figure 6.8: Insured Population with Prediction for all Age Groups - Region 2

The comparison of the average insured population among all age classes in region 2 is
shown in Figure 6.8. Again, the triangles located in the unit of time 21 represent the
expected average value for this unit of time while the points up to the unit of time 20 are
the historical data of the average insured population. The tendency of the average insured
population in region 2 is similar to that of the region 1, therefore, the same analysis can
be applied to this Figure.

Figures 6.9, 6.10, 6.11, 6.12, 6.13, 6.14 and 6.15 present the comparison of predicted
insured population by region 1 and 2 in age class 1, 2, 3, 4, 5, 6 and 7 respectively. The
black triangles represent the average of the predicted value for the unit of time 21, while
the points in the first 20 units of time are historical data. It can be seen that the predicted
values by region in each age class do not differ much.
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Figure 6.9: Insured Population with Prediction for Region 1 and 2 - Age Group 1

Figure 6.10: Insured Population with Prediction for Region 1 and 2 - Age Group 2
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Figure 6.11: Insured Population with Prediction for Region 1 and 2 - Age Group 3

Figure 6.12: Insured Population with Prediction for Region 1 and 2 - Age Group 4
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Figure 6.13: Insured Population with Prediction for Region 1 and 2 - Age Group 5

Figure 6.14: Insured Population with Prediction for Region 1 and 2 - Age Group 6
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Figure 6.15: Insured Population with Prediction for Region 1 and 2 - Age Group 7
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Figure 6.16: Prediction of Number of Claims for 21st Time Unit - Region 1 - Age classes
1, 2, 3 and 4
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Figure 6.17: Prediction of Number of Claims for 21st Time Unit - Region 1 - Age classes
5, 6 and 7

The posterior prediction for the number of claims for the unit of time 21 in region 1 is
shown in Figures 6.16 and 6.17. Traces show strong evidence of convergence for each age
class. On the other hand, due to the number of claims is discrete with a small domain, the
density graphs are displayed discreetly. In these figures it can be seen that the distribution
for each age class has a symmetrical bell shape, but the average number of claims of the
1 age class differs greatly with the rest of the age classes since the average claims for the
1 age class is approximately 30, while in the other age classes the value is lower.
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Figure 6.18: Prediction of Number of Claims for 21st Time Unit - Region 2 - Age classes
1, 2, 3 and 4
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Figure 6.19: Prediction of Number of Claims for 21st Time Unit - Region 2 - Age classes
5, 6 and 7

In Figures 6.18 and 6.19 the posterior prediction for the number of claims for the unit of
time 21 in region 2 are shown. Again, there is strong evidence of convergence for each
age class by looking at the trace plots. The displayed density plots are shown discretely
obtaining a symmetrical bell shape. Since the average claims for the age classes 1 and 7
is greater or equal than 30 and the average number of claims of the the rest age classes is
clearly smaller.
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Figure 6.20: Autocorrelation of Prediction of Number of Claims for 21st Time Unit -
Region 1 and 2- All Age classes

Figure 6.21: Autocorrelation of Prediction of Number of Claims for 21st Time Unit -
Region 2- All Age classes

In addition, autocorrelation of prediction of number of claims for 21st-time Unit for region
1 by all age classes and for region 2 by age classes 1 and 2 is shown in Figure 6.20. On
the other hand, 6.21 contains the autocorrelation of prediction of number of claims for
21st time Unit for region 2 by age classes 3, 4, 5, 6 and 7. In both figures clearly exist
independence between the samples.
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Figure 6.22: Claim Number with Prediction for all Age Classes - Region 1

Figure 6.23: Claim Number with Prediction for all Age Classes - Region 2

On the other hand, the comparison of the average claim number among all age classes
in region 1 and 2 are shown in Figures 6.22 and 6.23 respectively. The black triangles
represent the average prediction value for 21-time unit in each age classes while the points
up to the unit of time 20 are the historical data of the average claim number. In both
regions the growth tendency is similar. The predicted values for age class 1 and 7 are
approximately one another, while the average values for the number of claims in the other
age classes are significantly lower. This makes perfect sense since the number of claims
of minors and adults, which are in age classes 1 and 7, is greater than that of people
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with intermediate age. In the same way, this is evidenced in real life, therefore the results
obtained make a lot of sense.

The comparison of predicted claim number by region 1 and 2 in each age class are shown
in Figures 6.24, 6.25, 6.26, 6.27, 6.28, 6.29 and 6.30. It can be seen that the predicted
values for each age class do not differ much between the two regions.

Figure 6.24: Claim Number with Prediction for Region 1 and 2 - Age Group 1

Figure 6.25: Claim Number with Prediction for Region 1 and 2 - Age Group 2

Figure 6.26: Claim Number with Prediction for Region 1 and 2 - Age Group 3
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Figure 6.27: Claim Number with Prediction for Region 1 and 2 - Age Group 4

Figure 6.28: Claim Number with Prediction for Region 1 and 2 - Age Group 5

Figure 6.29: Claim Number with Prediction for Region 1 and 2 - Age Group 6
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Figure 6.30: Claim Number with Prediction for Region 1 and 2 - Age Group 7

Figure 6.31: Claim Number with Prediction for Region 1 - Age Groups 1 and 7

Figure 6.32: Claim Number with Prediction for Region 2 - Age Groups 1 and 7

To more easily observe the discrepancies in the number of claims between the age groups,
specific groups of relevance are compared, such as age classes 1 and 7 since they have the
highest number of claims in both regions. First, the average of claims of groups 1 and
7 for regions 1 and 2 are compared in Figures 6.31 and 6.32 respectively. It should be
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taken into account that the number of claims for the age group 1 greatly increases from
the time unit 18 to 19 and decreases at the moment 20. Therefore, for a unit of time 21,
the average number of claims is expected to be in this range. The predictions in both
regions are following the trend of historical values and both prediction values are similar.

In Figures 6.33, 6.34, 6.35 and 6.36 both age groups 3 and 4 present the average predicted
values consistent with the existing trend of increase. For all age groups, the claims
numbers continue the general pattern increasing with minor corrections. Similarly, the
obvious difference between the age classes ((3 and 7) and (1 and 4)) can be observed.
Therefore, the expected average number of claims satisfies the knowledge gathered about
the frequency of claims since the predicted average values are consistent with the analysis
of the values of the λ’s parameters.

Figure 6.33: Claim Number with Prediction for Region 1 - Age Groups 3 and 7

Figure 6.34: Claim Number with Prediction for Region 2 - Age Groups 3 and 7
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Figure 6.35: Claim Number with Prediction for Region 1 - Age Groups 1 and 4

Figure 6.36: Claim Number with Prediction for Region 2 - Age Groups 1 and 4

From the insurers’ point of view, total claims amounts may be of greater interest. Finally,
the amounts of the claims, without considering the insurance deductible, indicate the
real responsibility of the claimants due to it directly affects how the insurers determine
the reserves for a corresponding period of time. Figures 6.37 and 6.38 show the result
obtained from the predicted claim amounts for all age classes in region 1. On the other
hand, Figures 6.39 and 6.40 show the predicted claim amounts for all age classes in region
2. The traces in all the figures mentioned above provide good evidence that the forecast
reaches a state of convergence. Due to the wide range of values for a claim amount,
the program automatically chooses to present continuous density functions with high
bandwidth. It means that the smooth effect imposed on the density curves is strong.
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Figure 6.37: Prediction of Total Claim Amount for 21st Time Unit - Region 1 - Age
classes 1, 2, 3 and 4

Mathematician 84 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.38: Prediction of Total Claim Amount for 21st Time Unit - Region 1 - Age
classes 5, 6 and 7
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Figure 6.39: Prediction of Total Claim Amount for 21st Time Unit - Region 2 - Age
classes 1, 2, 3 and 4
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Figure 6.40: Prediction of Total Claim Amount for 21st Time Unit - Region 2 - Age
classes 5, 6 and 7

Mathematician 87 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Figure 6.41: Autocorrelation of Prediction of Total Claim Amount for 21st Time Unit -
Region 1 and 2- All Age classes

Figure 6.42: Autocorrelation of Prediction of Total Claim Amount for 21st Time Unit -
Region 2- All Age classes

Like the previous cases, the predicted values for each age class in both regions form an
independent sample as indicated by each of the autocorrelation functions in Figures 6.41
and 6.42.
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Figure 6.43: Average Amount Per Claim with Prediction in Region 1 - All Age Groups

Figure 6.44: Average Amount Per Claim with Prediction in Region 2 - All Age Groups

Figures 6.43 and 6.44 present the severity of the average claim, which is calculated by
dividing the total predicted amounts for the corresponding number of claims for each unit
of time. The prediction calculated values are given for the unit of time 21 by all age
groups in region 1 and 2 respectively. As can be seen in these figures, for region 1 values
contain a great similarity to region 2.

From Figure 6.45 until Figure 6.51 the average severity of claim for age class 1 through
7 respectively is shown. The average severity of claim for group 1 varies substantially
for the first 11 units of time and then stabilizes thereafter. The expected average sever-
ity of claim for age group 1 reaches approximately $15. Age groups 2, 3 and 4 have a
similar pattern in the average severity of the claim with predicted values between $15
to $20. In general, the predictions They are consistent with the assumption of $20 per
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claim. Throughout time units, some age groups show a slight increase (or decrease) in
the severity of the average claim, and the variations are within reasonable ranges.

Figure 6.45: Claim Number with Prediction for Region 1 and 2 - Age Group 1

Figure 6.46: Average Amount Per Claim with Prediction for Region 1 and 2 - Age
Group 2

Figure 6.47: Average Amount Per Claim with Prediction for Region 1 and 2 - Age
Group 3
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Figure 6.48: Average Amount Per Claim with Prediction for Region 1 and 2 - Age
Group 4

Figure 6.49: Average Amount Per Claim with Prediction for Region 1 and 2 - Age
Group 5

Figure 6.50: Average Amount Per Claim with Prediction for Region 1 and 2 - Age
Group 6
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Figure 6.51: Average Amount Per Claim with Prediction for Region 1 and 2 - Age
Group 7

Datat,i,a Mean SD
2.5%
Perc.

Median
97.5%
Perc.

Stationarity
Halfwidth

Test
P-value

M21,1,1 144.08 200.29 247.76 140.73 553.9 Passed Passed 0.982
M21,1,2 144.09 200.29 248.57 140.81 553 Passed Passed 0.977
M21,1,3 144.08 200.3 248.55 140.74 553.95 Passed Passed 0.979
M21,1,4 144.05 200.3 248.65 140.8 553.12 Passed Passed 0.985
M21,1,5 144.08 200.26 248.37 140.78 552.44 Passed Passed 0.963
M21,1,6 144.08 200.29 248.53 140.87 553.71 Passed Passed 0.985
M21,1,7 144.03 200.3 249.13 140.82 552.25 Passed Passed 0.968
M21,2,1 150.83 200.81 233.74 148 554.78 Passed Passed 0.973
M21,2,2 150.84 200.81 235.21 147.97 555.08 Passed Passed 0.982
M21,2,3 150.84 200.8 234.87 147.79 554.81 Passed Passed 0.962
M21,2,4 150.81 200.77 234.49 147.84 555.12 Passed Passed 0.982
M21,2,5 150.83 200.78 234.65 147.88 555.55 Passed Passed 0.976
M21,2,6 150.84 200.79 234.89 147.95 555.17 Passed Passed 0.982
M21,2,7 150.79 200.78 234.26 147.7 554.79 Passed Passed 0.978
N21,1,1 36.9 11.54 34.94 36.90 38.88 Passed Passed 0.801
N21,1,2 23.6 11.44 21.65 23.60 25.56 Passed Passed 0.396
N21,1,3 24.37 11.52 22.40 24.37 26.35 Passed Passed 0.564
N21,1,4 21.88 11.47 19.91 21.87 23.84 Passed Passed 0.699
N21,1,5 24.92 11.51 22.95 24.37 26.88 Passed Passed 0.364
N21,1,6 23.83 11.46 21.87 21.87 25.79 Passed Passed 0.965
N21,1,7 33.85 11.49 31.88 24.92 35.81 Passed Passed 0.779
N21,2,1 32.4 11.63 30.44 23.83 34.37 Passed Passed 0.326
N21,2,2 24.87 11.52 22.90 33.86 26.84 Passed Passed 0.916
N21,2,3 25.46 11.6 23.49 32.40 27.42 Passed Passed 0.842
N21,2,4 22.89 11.55 20.96 24.87 24.87 Passed Passed 0.991
N21,2,5 27.97 11.59 26.01 25.46 29.93 Passed Passed 0.831
N21,2,6 24.62 11.56 22.65 22.89 26.58 Passed Passed 0.788
N21,2,7 36.85 11.5 34.89 36.85 38.80 Passed Passed 0.338
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Table 6.1 continued from previous page

Datat,i,a Mean SD
2.5%
Perc.

Median
97.5%
Perc.

Stationarity
Halfwidth

Test
P-value

X21,1,1 563.79 99.95 367.22 563.89 664.97 Passed Passed 0.722
X21,1,2 470.43 100.34 276.83 470.57 672.38 Passed Passed 0.3561
X21,1,3 475.06 99.97 280.68 474.69 795.70 Passed Passed 0.4817
X21,1,4 600.68 99.45 404.24 601.57 722.96 Passed Passed 0.2725
X21,1,5 525.81 100.28 328.83 525.56 616.75 Passed Passed 0.743
X21,1,6 468.61 100.01 273.10 468.76 666.00 Passed Passed 0.3898
X21,1,7 556.70 100.34 360.97 557.63 750.89 Passed Passed 0.4611
X21,2,1 516.47 100.04 318.60 516.82 710.95 Passed Passed 0.9018
X21,2,2 556.04 100 360.69 555.88 751.75 Passed Passed 0.1335
X21,2,3 583.00 100.01 387.59 583.12 777.85 Passed Passed 0.5545
X21,2,4 507.49 99.44 313.72 506.62 704.54 Passed Passed 0.0749
X21,2,5 592.31 100.61 393.49 592.33 789.72 Passed Passed 0.3298
X21,2,6 515.40 100.1 319.69 514.89 712.73 Passed Passed 0.0581
X21,2,7 575.63 100.33 377.68 573.23 770.17 Passed Passed 0.0913

Table 6.1: Predicted Insured Population, Claim Number and Total Claim Amount for
21st Time Unit

The statistical summary is presented in Table 6.1. The first column represents the type of
data with the subscripts in the order of time, region and age class. The other columns list
the mean, standard deviation, the quantile of 2.5%, the median, the quantile of 97.5%,
the stationarity test, the Halfwidth Test and the p-value of the predicted distribution.
Plotting the predicted values together with the historical insured population already give
us a better idea of whether the predictions were legitimate. Note that the number of
claims N across all age groups show lower standard deviations compared to the predicted
total claim amounts X and the predicted insured population M . It can be noted also
that the number of claims of age classes 1 and 7 in both regions is higher compared to
the rest of the classes. Finally, all the data parameters passed the test of stationarity and
convergence.

6.2 Premium Determination under Various Premium

Principles

This section present, based on the available information, several methods for calculating
premiums. Each method has its own characteristics and advantages. Some approaches
only require the mean and variance of the predicted variables, while others require more
details of the predictive distribution, such as percentiles. Some methods are more con-
servative, with a high premium scheme designed to meet extreme demands, while others
are moderate, which makes the products competitive in the market. Insurers are free to
choose the one that corresponds to their level of risk tolerance. For more information you
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can consult [22], [10], [23], [9] and [24], among others.

A premium principle, denoted as P , is a function assigning a real number to a ran-
dom variable. In this project the random variable is the predicted total claim amounts
(or the losses) for the coming time unit given the observations over the past 20 time units,
denoted as X|DT . We use X instead to represent the loss random variable in order to
simplify the notation for premium principle illustrations.

6.2.1 Net Premium Principle

Net premium is the expected present value of a policy’s benefits less the expected present
value of future premiums. The net premium calculation does not take into account future
expenses associated with maintaining the policy [25]. The net premium principle is one
of the commonly applied principles in the literature.

The premium would just to cover the claims only due to the risk which is eventually
eliminated after selling a great many identical and independently distributed policies.
This is the fundamental theory under this principle. Thus, the net premium principle is
defined as

P (X) = E(X)

The net premium in this project for each age group in both regions is simply the predicted
average of the total amount of the claim in unit of time 21 which is found in Table 6.1.
This principle requires the least amount of information from the planned subsequent
distribution with a practical calculation process. In reality, it is almost impossible to sell
infinite independent and identical policies. By not having to carry risks, premiums are
exposed to extreme events and fluctuations such as very large claims amounts. Therefore,
it is not recommended to apply the principle of net premium in practice, but treat it as
an estimated measure.

6.2.2 Expected Value Premium Principle

The value premium has become arguably as important as the equity premium in asset
allocation, investment management, capital budgeting, security analysis, and many other
applications. Most studies use average realized returns as the proxy for expected returns.
But average returns are noisy and do not necessarily converge to expected returns in finite
samples [26]. The expected value premium principle is often regarded as the extension of
the net premium principle, and it is expressed as

P (X) = (1 + ξ)E(X), ξ ≥ 0

where ξ is the loading factor. Note that if ξ = 0 then it is the same as the net premium
principle. Clearly, the premium under this principle is greater than the expected loss. The
difference between the expected loss and the premium can be referred to as the premium
burden that provides protection against unexpected losses. According to the literature if
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the charge is not applied, the ruin would eventually occur with certainty. Therefore, if ξ
has a great value this produces a large margin of protection.

6.2.3 Variance Premium Principle

The variance premium principle is another extension net premium principle. The premium
depends not only on the expected value but also the variance of the loss. Unlike the other
premium principles, the variance premium principle considers the the variability of the
loss. Note that if the more variability the loss then the premium will be higher. The
variance premium principle is proportional to the variance of the loss. It can be expressed
as

P (X) = E(X) + ωV (X), ω ≥ 0

Again, note that if ω = 0 then the variance premium principle is the same as the net
premium principle. The insurers have the freedom to determine the risk load based on
their risk tolerance, like the expected value premium principle. Since the variance and
the expectation have different units (the unit of the variance is the square of that of the
expectation), the interpretation of the empirical indication may contain ambiguity.

6.2.4 Standard Deviation Premium Principle

The standard deviation premium principle has the same structure as the variance premium
principle, with the variance replaced by the standard deviation of the loss. This principle
is expressed as

P (X) = E(X) + ν
√
V (X), ν ≥ 0

It takes the variability of the loss into the premium determination.
Summarising the different principles mentioned above, the net premium principle and
the expected premium principle require only the expected loss to calculate the premium
whereas the variance and standard deviation premium principles require expectation and
variance of the loss. Each premium principle has its properties and features. Some would
be better used as crude estimation while others can be seen as legitimate decision for the
premium. More information can be found in [27] and [28].

6.2.5 Value-at-Risk

Value at risk (VaR) is a statistic that measures and quantifies the level of financial risk
within a firm, portfolio or position over a specific time frame. This metric is most com-
monly used by investment and commercial banks to determine the extent and occurrence
ratio of potential losses in their institutional portfolios [29]. VaR was popularized dur-
ing the last ten or fifteen years, presenting applications on stocks, bonds, interest and
exchange rate forward contracts, and swaps. Confidence level α is required in order to
calculate VaR. Assume that the loss random variable X has the cumulative function
FX(z) = P (X ≤ z) then the VaR with confidence level α is defined as

V aRα(X) = min{z|FX(z) ≥ α}, α ∈ [0, 1],
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i.e., V aRα is a lowe α−percentile of the random variable X. For example, α can take
values of 90%, 95% and 98%. The VaR is essentially measuring the percentile of the loss
distribution function, providing a minimum value of the loss based on the confidence level.

6.2.6 Tail Value-at-Risk

The Tail Value-at-Risk, TVaR, of the loss random variable TV aRα is defined as the
expected outcome (loss), conditional on the loss exceeding the Value-at-Risk (VaR), of
the distribution [30]. Where the support of the distribution is continuous the VaR with
confidence level α is usually defined as

P (X ≤ −V aRα) = 1− α

Then the corresponding Tail Value-at-Risk would be defined as

TV aRα = − 1

1− α

∫ −V aRα
−∞

xf(x)dx

In this project to calculate the TVaR it is used the following expression

ˆTV aRα =
1

N(1− α)

N∑
j=Nα+1

X(j),

where N is the total sample size, X(j) is the jth smallest value (or jth order statistic) of
X and N(1− α) is assumed to be an integer.
The TVaR has become a very important risk measure in actuarial practice and financial
risk management. For further information you can read Hardy (2006), Sarykalin et al.
(2008) and Peng (2009).

6.2.7 Numerical Premium Analysis

It is not complicated to determine the premium according to the previously mentioned
principles since the predicted distributions on the total claim amounts are available. In
Tables 6.2 and 6.3, the premium for 21 unit time in regions 1 and 2 can be observed,
respectively, using the four premium principles and the V aR and TV aR risk measures.
The total premium in $ according to the net premium principle is the average amount
of total expected claim, as in the second column of Table 1. On the other hand, for the
expected premium principle, the variance premium principle and the standard deviation
premium principle, risk weights ξ = 0.2, ω = 0.012 and ν = 1.3 are assumed respec-
tively. High loads in risk weights provide stronger protection against the uncertainty of
the claim. Due to the high value of the variance, the premium principle under variance
is very sensitive to the value of ω and, therefore, it should take extra precautions when
applying this premium principle.

Since the total predicted distributions claims have approximately the form of a normal
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distribution the risk charge ν = 1.3, in the standard deviation premium principle, can
almost guarantee that the company will pay all claims with a probability of 97.5%. In
Figures 6.37, 6.38, 6.39 and 6.40, the predicted distributions are slightly correct (or posi-
tively) biased with a fat right tail. That means that the premium with charge risk ν = 1.3
can cover the total claims with a little less than the 97.5% probability. In fact, this is the
case, since according to the VaR measure with a confidence level of 97.5%, the premium
is slightly higher than the standard deviation premium principle for all age classes. Con-
ditioning the premium greater than V aR97.5%, TV aR97.5% grants even higher premiums.

The purpose of this section is to provide a perspective on determining the premium per
policyholder, with no intention to justify which is the best fit. Tables 6.4 and 6.5 show the
premium per policyholder for the next time unit in regions 1 and 2 respectively. Having
the total premium and total insured population available, the premium per policyholder
can be obtained by averaging premium over population with ease. A crude estimation
of the premium per policyholder is to use the premium under the net premium principle
over the mean predicted population for each age class. The premium per policyholder is
higher for age classes 1, 4 and 7 but generally between 3and6 which is consistent with the
assumptions in Chapter 5. It is assumed that for every time unit 20% of the population
would report claims, each worth about $25, which indicates that the average cost per
policyholder per time unit is about 20%$25 = $5. This premium determination does not
involve any weights and hence can only cover the average cost per policyholder.
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Chapter 7

Conclusions and Future work

In general term, this project has as its main objective the prediction of the total amount
of claims under a Bayesian hierarchical framework. The prediction of future claims plays
an important role in the measurement of risk for health insurance providers therefore it is
a primary issue. Migon and Moura (2005) ensure that the total claims are related to the
number of claims and the insured population during a certain period of time. Different
patterns are presented in the frequency and severity of the claim reported in different age
classes of the insured. For this reason, it is justifiable to classify the insured by age class
by predicting the status of the claim in each unit of time. The proposed model introduces
one more category, the spatial factor, to describe the regions of the insured’s residence.
This factor may represent the combined random effect of the elements that influence the
behavior of the claim, such as the ability to access the medical service, the level of wealth,
education and even climatic conditions. These elements can influence the behavior of the
claim. Therefore, it is accessible and understandable the introduction of a spatial factor
independent of the existing age classification.

To achieve the aim, first, the model proposed by Migon and Moura (2005) was modi-
fied by adding the spatial factor, arguing that the spatial factor, the age class and the
measurement time affect the average insured population. For subsequent estimates, given
prior knowledge of the parameters and historical information, an MCMC algorithm was
used. Also, the Gibbs and Metropolis-Hastings sampling algorithm were used since the
complete conditional distributions of the parameters are not in closed forms. A simula-
tion study was carried out on the insured population, the number of claims and the total
amount of claims, for 20-time units, 7 age groups and 2 regions to test if the model can
effectively detect the true value of the parameters, with some of the default parameter
values while others randomly simulated using R and relevant packages. Due to the pre-
viously imprecise propose, the subsequent distribution suggests at 50,000 iterations, the
traces show signs of convergence. Predictions are made for the unit of time 21, which
includes the insured population, the number of claims and the amounts of the claims af-
ter generating the values of true parameters. Finally, premiums can be calculated under
various premium principles, depending on the expected claim amounts. The premium to
be charged per policyholder can also be easily obtained by dividing the total premiums
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over the predicted insured population.

As future work, in order to achieve the purpose of investigating the effectiveness of the
predictions, the comparison of the simulated data with real data will be made, tested by
an insurance company in the country.
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ness Media, 1970.

[29] W. Kenton. (2019) Value at risk (var). [Online]. Available: investopedia.com/terms/
v/var.asp

[30] ——. (2020) Tail value-at-risk. [Online]. Available: http://www.nematrian.com/
TailValueAtRisk

Mathematician 104 Final Grade Project

https://stephens999.github.io/fiveMinuteStats/MH_intro.html
https://www.investopedia.com/terms/n/net-premium.asp
https://www.investopedia.com/terms/n/net-premium.asp
investopedia.com/terms/v/var.asp
investopedia.com/terms/v/var.asp
http://www.nematrian.com/TailValueAtRisk
http://www.nematrian.com/TailValueAtRisk


Appendices

105



Appendix A

Simulated Data

106



School of Mathematical and Computational Sciences YACHAY TECH
R

e
g
io

n
1

R
e
g
io

n
2

A
g
e

C
la

ss
A

g
e

C
la

ss
T

im
e

1
2

3
4

5
6

7
1

2
3

4
5

6
7

1
62

.9
82

.1
2

74
.8

64
.5

4
67

.9
8

81
.1

7
52

.4
3

80
.4

1
65

.2
3

67
.7

4
82

.3
6

66
.5

5
87

.2
4

67
.4

9
2

86
.3

8
77

.6
4

72
.2

5
63

.2
5

82
.3

9
79

.6
6

72
.8

93
.6

3
71

.5
9

89
.6

5
74

.7
3

67
.4

6
75

.3
8

81
.1

1
3

93
.0

8
83

.3
3

67
.7

73
.4

2
83

.9
2

57
.6

1
98

.0
2

89
.7

5
80

.8
7

77
.6

3
61

.6
5

99
.1

1
91

63
.7

1
4

96
.2

93
.2

4
80

.7
7

73
.7

8
84

.8
1

85
.6

4
69

.7
2

74
.0

8
76

.4
3

80
.8

7
71

.5
2

69
.1

4
76

.1
1

82
.7

7
5

69
.1

8
76

.1
5

63
.5

2
93

.7
4

68
.3

3
79

.7
7

85
.7

83
.9

8
95

.7
1

69
.9

5
88

.8
3

87
.7

4
56

.9
9

65
.8

6
6

80
.9

7
85

.4
2

74
.2

2
64

.2
5

84
.5

6
82

.4
6

86
.1

2
87

.2
7

72
.4

8
87

.0
4

80
.3

11
2.

46
73

.5
2

76
.7

5
7

81
.2

6
71

.2
6

61
.7

6
73

.3
6

72
.6

9
80

.7
9

68
.9

2
65

.5
3

74
.0

2
67

.1
9

81
.9

5
80

.8
2

82
.8

4
79

.3
7

8
88

.0
9

82
.6

1
95

.7
3

86
.6

8
85

.5
9

92
.0

9
94

.0
2

90
.9

4
86

.4
3

77
.8

94
.6

1
76

.6
7

96
.2

7
91

.1
4

9
91

.2
4

87
.9

80
.9

79
.3

3
85

.9
3

72
.3

2
77

.5
81

.1
6

84
.1

4
83

.7
7

82
.4

2
89

.5
7

76
.4

4
89

.7
5

1
0

83
.7

3
95

.3
1

10
6.

49
77

.9
9

97
.1

4
86

.8
8

91
.4

1
95

.5
6

91
.8

3
99

.3
4

97
.0

7
90

.2
9

90
.3

1
96

.0
6

1
1

13
2.

35
96

.7
6

10
1.

41
10

3.
9

96
.0

1
91

.2
1

96
.1

6
98

.5
1

95
.6

4
10

2.
58

10
5.

52
94

.0
6

83
.3

9
10

8.
16

1
2

89
.8

2
81

.8
91

.1
3

79
.6

4
93

.9
3

79
.7

8
91

.3
4

82
.7

3
86

.3
8

86
.4

1
80

.6
6

85
.8

5
74

.0
3

73
.6

3
1
3

10
3.

11
10

0.
32

11
0.

18
98

.9
10

1.
97

10
6.

19
85

.4
7

11
9.

87
10

2.
91

11
0.

17
10

7.
53

11
3.

12
11

6.
62

10
1.

02
1
4

12
2.

53
11

0.
91

12
0.

09
12

7.
79

12
3.

4
10

6.
69

11
0.

77
12

1.
39

12
1.

2
12

3.
37

12
1.

13
12

3.
11

11
8.

94
10

1.
3

1
5

17
2.

15
16

6.
14

14
9.

59
15

5.
68

13
7.

16
18

4.
66

16
2.

45
15

4.
29

18
5.

88
11

5.
04

15
4.

7
16

1.
7

17
4.

36
16

6.
59

1
6

12
6.

77
13

9.
16

13
9.

01
11

5.
16

12
7.

71
11

1.
28

10
3.

38
13

4.
61

10
3.

86
14

1.
56

13
9.

05
14

0.
83

11
3.

29
13

8.
88

1
7

11
6.

06
12

6.
26

12
3.

9
11

5.
56

11
3.

66
10

0.
91

11
2.

2
13

7.
96

11
6.

64
13

2.
07

11
4.

65
10

5
12

2
10

9.
63

1
8

14
6.

55
14

0.
76

13
1.

26
14

5.
68

14
1.

74
14

6.
64

14
6.

79
13

7.
01

13
4.

32
14

4.
73

15
0.

83
13

3.
49

13
8.

07
13

0.
45

1
9

17
7.

79
15

5.
3

13
6.

1
13

6.
41

14
5.

82
17

3.
29

15
0.

12
15

8.
5

15
4.

26
18

1.
32

16
6.

05
14

3.
98

16
0.

27
17

7.
65

2
0

12
9.

18
11

5.
93

13
2.

77
12

6.
24

11
4.

87
13

0.
14

12
4.

17
12

4.
84

11
2.

98
12

6.
57

12
4.

13
12

7.
9

12
9.

29
12

9.
91

T
ab

le
A

.1
:
µ
t,
i,
a

si
m

u
la

te
d

va
lu

es

Mathematician 107 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH
R

e
g
io

n
1

R
e
g
io

n
2

A
g
e

C
la

ss
A

g
e

C
la

ss
T

im
e

1
2

3
4

5
6

7
1

2
3

4
5

6
7

1
85

.4
3

11
4.

49
99

56
.7

8
65

.2
2

20
.6

4
62

.0
8

94
.5

3
11

8.
49

56
.5

7
37

.8
6.

61
63

.3
5

44
.7

8
2

86
.3

8
77

.6
6

72
.2

7
63

.2
7

82
.4

5
79

.6
5

72
.7

7
93

.6
5

71
.6

2
89

.6
4

74
.7

2
67

.4
5

75
.3

7
81

.1
3

3
93

.0
6

83
.3

1
67

.7
3

73
.4

5
83

.9
57

.6
3

98
.0

6
89

.6
8

80
.8

9
77

.6
1

61
.6

7
99

.1
1

90
.9

6
63

.6
5

4
96

.2
1

93
.2

7
80

.7
8

73
.8

4
84

.8
1

85
.6

5
69

.7
4

74
.0

8
76

.4
3

80
.8

6
71

.5
6

69
.1

7
76

.0
8

82
.7

9
5

69
.2

1
76

.1
7

63
.5

1
93

.7
9

68
.3

3
79

.7
7

85
.7

3
83

.9
5

95
.7

1
69

.9
6

88
.8

4
87

.7
6

57
.0

1
65

.9
6

81
.0

2
85

.4
5

74
.2

6
64

.2
1

84
.5

4
82

.4
5

86
.1

3
87

.3
72

.4
6

87
.0

4
80

.2
9

11
2.

42
73

.5
1

76
.7

5
7

81
.2

5
71

.2
9

61
.7

5
73

.3
8

72
.6

8
80

.7
8

68
.9

6
65

.5
4

74
.0

2
67

.2
4

81
.9

3
80

.8
3

82
.8

4
79

.3
7

8
88

.0
8

82
.6

1
95

.7
3

86
.6

7
85

.6
2

92
.1

2
94

.0
9

90
.9

6
86

.4
1

77
.8

94
.5

9
76

.6
5

96
.2

7
91

.1
5

9
91

.2
4

87
.9

2
80

.9
4

79
.3

6
85

.9
3

72
.2

7
77

.5
1

81
.1

7
84

.1
2

83
.7

3
82

.4
3

89
.5

5
76

.4
5

89
.7

8
1
0

83
.7

2
95

.3
1

10
6.

52
77

.9
6

97
.1

2
86

.8
4

91
.4

95
.5

6
91

.8
4

99
.3

97
.1

2
90

.2
6

90
.3

3
96

.0
2

1
1

13
2.

39
96

.8
1

10
1.

39
10

3.
89

96
.0

1
91

.2
96

.1
3

98
.5

1
95

.6
4

10
2.

57
10

5.
53

94
.0

6
83

.4
6

10
8.

16
1
2

89
.7

9
81

.8
2

91
.1

5
79

.6
5

93
.9

5
79

.7
6

91
.3

3
82

.7
7

86
.3

9
86

.4
3

80
.6

6
85

.9
74

.0
3

73
.6

3
1
3

10
3.

13
10

0.
29

11
0.

22
98

.8
9

10
1.

92
10

6.
21

85
.4

5
11

9.
85

10
2.

93
11

0.
12

10
7.

53
11

3.
09

11
6.

65
10

1.
04

1
4

12
2.

51
11

0.
91

12
0.

05
12

7.
77

12
3.

38
10

6.
7

11
0.

77
12

1.
42

12
1.

2
12

3.
34

12
1.

18
12

3.
11

11
8.

98
10

1.
3

1
5

17
2.

15
16

6.
11

14
9.

6
15

5.
65

13
7.

1
18

4.
65

16
2.

47
15

4.
3

18
5.

9
11

5.
02

15
4.

65
16

1.
69

17
4.

38
16

6.
57

1
6

12
6.

76
13

9.
16

13
9.

05
11

5.
19

12
7.

75
11

1.
28

10
3.

4
13

4.
59

10
3.

87
14

1.
51

13
9.

04
14

0.
83

11
3.

29
13

8.
82

1
7

11
6.

08
12

6.
28

12
3.

87
11

5.
6

11
3.

69
10

0.
87

11
2.

16
13

7.
99

11
6.

63
13

2.
06

11
4.

68
10

4.
98

12
2.

02
10

9.
58

1
8

14
6.

55
14

0.
76

13
1.

31
14

5.
7

14
1.

72
14

6.
6

14
6.

8
13

6.
97

13
4.

31
14

4.
73

15
0.

86
13

3.
48

13
8.

06
13

0.
46

1
9

17
7.

79
15

5.
32

13
6.

12
13

6.
44

14
5.

81
17

3.
35

15
0.

1
15

8.
47

15
4.

26
18

1.
32

16
6.

03
14

3.
99

16
0.

33
17

7.
66

2
0

12
9.

22
11

5.
92

13
2.

75
12

6.
22

11
4.

86
13

0.
12

12
4.

18
12

4.
79

11
3.

04
12

6.
56

12
4.

16
12

7.
9

12
9.

32
12

9.
87

T
ab

le
A

.2
:
M

t,
i,
a
,

S
im

u
la

te
d

In
su

re
d

P
op

u
la

ti
on

Mathematician 108 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Region 1 Region 2
Age Class Age Class

Time 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 15 34 19 11 16 4 12 20 26 10 5 1 12 9
2 18 20 8 7 11 16 17 18 12 17 10 12 15 18
3 16 17 16 16 22 13 30 18 9 22 11 35 22 20
4 18 21 20 10 22 22 10 5 13 11 7 14 9 14
5 10 10 12 25 10 10 16 18 15 18 22 28 7 16
6 21 18 9 16 10 15 20 10 16 19 22 25 17 10
7 20 7 10 16 15 9 13 18 7 18 14 17 13 18
8 13 9 18 15 24 18 10 11 19 14 11 10 15 13
9 11 11 12 14 20 16 10 17 12 13 15 16 12 15

10 11 17 37 12 25 20 15 19 13 19 19 22 25 27
11 27 30 13 21 16 22 24 14 19 10 17 18 12 21
12 24 26 17 22 26 20 7 14 22 23 23 21 16 18
13 20 13 23 18 21 16 22 25 33 14 14 30 17 21
14 24 17 35 18 15 37 23 21 17 17 23 24 33 19
15 35 22 22 30 48 30 28 38 35 20 19 43 28 27
16 34 17 31 16 15 15 25 22 16 30 23 26 11 43
17 15 19 19 17 13 24 16 23 29 29 25 16 18 21
18 32 20 33 25 18 33 35 23 19 28 33 15 16 21
19 40 49 33 28 41 43 29 35 36 48 23 37 24 38
20 29 27 18 24 17 22 11 26 23 17 22 17 21 27

Table A.3: Nt,i,a, Simulated Total Claim Frequency
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Appendix B

Algorithm Code

In this Section, the corresponding source code for Gibbs sampler algorithm is presented
below. The code was made on R language.

#LOADING LIBRARIES-------------------------------------------------

library( actuar )

library( random )

library( coda )

library( MASS )

library( mvtnorm )

library( corpcor )

library( coda )

library( R.utils )

#PARAMETERS MATRIX---------------------------------------------------

n=20

#METROPOLIS-HASTINGS-------------------------------------------------

#biased by the initial value

proposalfunction <- function( par1, par2 ){

dist <- rnorm( 1, par1, par2 )

prob_dist <- pnorm( 1, par1, par2 )

return( list( d = dist, p = prob_dist ) )

}

metropolis_hasting <- function( iterations, parameter, mu, sigma ){

chain <- matrix( 1, n )

chain[ 1 ] <- parameter[ 1 ]

for ( i in 2:iterations-1 ) {

proposal <- proposalfunction( mu, sigma )

probab <- min( 1, proposal$p / chain[ i-1 ] )
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if ( runif( 1 ) < probab ){

chain[ i+1 ] <- proposal$d

} else{

chain[ i+1 ] <- chain[ i ]

}

}

return(chain)

}

proposalfunction1 <- function( par1, par2 ){

dist <- rgamma( 1, par1, par2 )

prob_dist <- rgamma( 1, par1, par2 )

return( list( d = dist, p = prob_dist ) )

}

metropolis_hasting1 <- function( iterations, parameter, mu, sigma ){

chain <- matrix( 1, n )

chain[ 1 ] <- parameter[ 1 ]

for ( i in 2:iterations-1 ) {

proposal <- proposalfunction1( mu, sigma )

probab <- min( 1, proposal$p / chain[ i-1 ] )

if ( runif( 1 ) < probab ){

chain[ i+1 ] <- proposal$d

} else{

chain[ i+1 ] <- chain[ i ]

}

}

return(chain)

}

proposalfunction2 <- function( par1, par2 ){

dist <- rmvnorm( 1, par1, par2 )

return( list( d = dist ) )

}

metropolis_hasting2 <- function( iterations, alpha, beta ){

chain <- matrix( 0, T, I,T )

chain[ 1, ] <- L_matrix[ 1, ]

for ( i in 2:iterations-1 ) {

proposal <- proposalfunction2( alpha, beta)

probab <- min( 1, proposal$d / chain[i-1, 1], proposal$d / chain[i-1, 2] )

if ( runif( 1 ) < probab ){

chain[ i+1, ] <- proposal$d

} else{

chain[ i+1, ] <- chain[ i, ]

}
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#list( random_chain = chain )

}

return(chain)

}

proposalfunction3 <- function( par1, par2 ){

dist <- rnorm( 1, par1, par2 )

return( list( d = dist ) )

}

metropolis_hasting3 <- function( iterations, matrix, alpha, beta ){

chain <- matrix( 0, T, A )

chain[ 1, ] <- matrix[ 1, ]

for ( i in 2:iterations-1 ) {

proposal <- proposalfunction3( alpha, beta )

for (j in ncol( matrix ) ) {

probab <- min( 1, proposal$d / chain[ i-1, j ] )

if ( runif( 1 ) < probab ){

chain[ i+1, ] <- proposal$d

} else{

chain[ i+1, ] <- chain[ i, ]

}

}

}

return(chain)

}

#KNOWN VALUES-------------------------------------------------------

T = 20

I = 2

A = 7

mu_0 <- 1

mu_1 <- 0.1

mu_2 <- 0.5

tau_0 <- 0.98

tau_1 <- 0.45

tau_2 <- .65

#for tau

alpha_tau <- 400

beta_tau <- 10000

#for sigma

alpha_sigma <- 0.8

beta_sigma <- 3.8

#for tau_varepsilon_0
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alpha_tau_varepsilon_0 <- 100

beta_tau_varepsilon_0 <- 200

#for tau_varepsilon_2

alpha_tau_varepsilon_2 <- 50

beta_tau_varepsilon_2 <- 200

#for alpha_theta

alpha_alpha_theta <- 500

beta_alpha_theta <- 1.2

#for beta_theta

alpha_beta_theta <- 10000

beta_beta_theta <- 1.17

#for alpha_kappa

alpha_alpha_kappa <- 0.32

beta_alpha_kappa <- 0.13

#for beta_kappa

alpha_beta_kappa <- 0.32

beta_beta_kappa <- 0.13

#for alpha_lambda

alpha_alpha_lambda <- 120

beta_alpha_lambda <- 3

#for beta_lambda

alpha_beta_lambda <- 1200

beta_beta_lambda <- 7

#A PRIORI DISTRIBUTIONS-----------------------------------------------

Beta_kappa <- matrix( 1, n )

Beta_kappa[ 1 ] <- rgamma( 1, alpha_beta_kappa, beta_beta_kappa )

Alpha_kappa <- matrix( 1, n )

Alpha_kappa[ 1 ] <- rgamma( 1, alpha_alpha_kappa, beta_alpha_kappa )

Beta_lambda <- matrix( 1, n )

Beta_lambda[ 1 ] <- 200

Alpha_lambda <- matrix( 1, n )

Alpha_lambda[ 1 ] <- 40

Beta_theta <- matrix( 1, n )

Beta_theta[ 1 ] <- 10000

Alpha_theta <- matrix( 1, n )

Alpha_theta[ 1 ] <- 400

Tau_var0 <- matrix( 1, n )

Tau_var0[ 1 ] <- rgamma( 1, alpha_tau_varepsilon_0, beta_tau_varepsilon_0 )

Tau_var2 <- matrix( 1, n )

Tau_var2[ 1 ] <- rgamma( 1, alpha_tau_varepsilon_2, beta_tau_varepsilon_2 )

Sigma <- matrix( 1, n )

Sigma[ 1 ] <- rgamma( 1, alpha_sigma, beta_sigma )
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Tau <- matrix( 1, n )

Tau[ 1 ] <- rgamma( 1, alpha_tau, beta_tau )

Beta_2 <- matrix( 0, n )

Beta_2[ 1 ] <- 0.075

Beta_1 <- matrix( 1, n )

Beta_1[ 1 ] <- 20

Beta_0 <- matrix( 1, n )

Beta_0[ 1 ] <- 50

Eta <- rpareto( 1, 1, 1)

P <- ( Sigma[ 1 ]^{-1} * ( 1 + Eta ) )/( 1 + 2*Eta )

S <- ( Sigma[ 1 ]^{-1} * Eta )/( 1 + 2*Eta )

sigma_matrix <- matrix( c( P, S, S, P ), 2, 2,T)

cor_coeff <- S / P #Datos estan correlacionados rho = 0.2028092

#PRIORI

L_matrix <- matrix( 1, T, I )

L_matrix[ 1, ] <- rmvnorm( 1 , rep(0,2), Tau[ 1 ]^{-1} * solve(sigma_matrix) )

L_matrix[1,]

sigma <- matrix( c(1,-.6361739 ,-0.6361739 ,1),2,2,T)

mean <-as.vector(c(2,2))

L_post <- metropolis_hasting2( T, mean, sigma)

plot( L_post[ ,1 ], type = "l")

plot( L_post[ ,2 ], type = "l")

L_matrix <- L_post

Var_a2 <- matrix( 1, n, A )

Var_a2[ 1, ] <- rnorm( 1, 0, 1/ Tau_var2[ 1 ] )

Var_a0 <- matrix( 1, n, A )

Var_a0[ 1, ] <- rnorm( 1, 0, 1/ Tau_var0[ 1 ] )

Beta_a2 <- matrix( 1, n, A )

Beta_a2[ 1, ] <- Beta_2[ 1 ] + Var_a2[ 1, ]

Beta_a0 <- matrix( 1, n, A )

Beta_a0[ 1, ] <- Beta_0[ 1 ] + Var_a0[ 1, ]

Lambda <- matrix( 1, n, A )

Lambda[ 1, ] <- rgamma( 1, Alpha_lambda[ 1 ], Beta_lambda[ 1 ] )

Kappa <- matrix( 1, n, A )

Kappa[ 1, ] <- 1

Theta <- matrix( 1, n, A )

Theta[ 1, ] <- rgamma( 1, Alpha_theta, Beta_theta )

Mu <- matrix( 0, T, I*A )

Mu[ 1, 1:A ] <- Beta_a0[ 1 ] + L_matrix[ 1, 1 ] + Beta_1[ 1 ]

* exp( 1 * Beta_a2[ 1 ] )

Mu[ 1, (A+1):(I*A) ] <- Beta_a0[ 1 ] + L_matrix[ 1, 2 ] + Beta_1[ 1 ]
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* exp( 1 * Beta_a2[ 1 ] )

Mu[1,]

M <- matrix( 1, T, I*A )

for ( i in 1:ncol( Mu ) ) {

M[ 1, i ] <- rnorm( 1, Mu[ 1, i ], 1/Tau[ 1 ] )

}

M[1,]

N <- matrix( 1, T, I*A )

for ( i in 1:ncol( M ) ) {

N[ 1, i ] <- rpois( 1, M[ 1, i ] * Lambda[ 1, 1 ] )

}

N[1,]

X <- matrix( 0, T, I*A )

for ( i in 1:ncol( N ) ) {

X[ 1, i ] <- rgamma( 1, N[ 1, i ] * Kappa[ 1, 1 ], Theta[ 1, 1 ] )

}

X[1,]

#POSTERIOR--------------------------------------------------------------

Resta <- matrix( 1, T, I*A )

par1 <- matrix( 1, T )

system.time( for ( i in 2:n ) {

#THETA

for ( j in 1:ncol( Theta ) ) {

Theta[ i, j ] <- rgamma( 1, Alpha_theta[ i - 1 ] + sum( N[ i-1, j ] ),

sum( X[ i-1, j ] ) + Beta_theta[ i -1 ] )

}

#LAMBDA

for ( j in 1:ncol( Lambda ) ) {

Lambda[ i, j ] <- rgamma( 1, Alpha_lambda[ i - 1 ] + sum( N[ i-1, j ] ),

sum( M[ i-1, j ] ) + Beta_lambda[ i -1 ] )

}

#RESTA M-L

Resta[ i-1, 1:A ] <- M[ i-1, 1:A ] - L_matrix[ i-1, 1 ]

Resta[ i-1, (A+1):(I*A) ] <- M[ i-1, (A+1):(I*A) ] - L_matrix[ i-1, 2 ]

#VAR_a2

Var_a2 <- metropolis_hasting3( n, Var_a2, 0, 1 /sqrt( Tau ) - runif( n, 0, 1) )

#VAR_a0

for ( j in 1:ncol( Var_a0 ) ) {

Var_a0[ i, j ] <- rnorm( 1, ( Tau[ i-1 ] * sum( Resta[ i-1, ]

- Beta_0[ i-1 ] - Beta_1[ i-1 ]

* exp( i * ( Beta_2[ i-1 ]+ Var_a2[ i, j ] ) ) ) )/

( Tau[ i-1 ] * T * I + Tau_var0[ i-1 ] ),
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1/( Tau[ i-1 ] * T * I + Tau_var0[ i-1 ] ) )

}

#BETA_0

Beta_0[ i ] <- rnorm( 1, ( tau_0 * mu_0 + Tau[ i-1 ] * sum( Resta[ i-1, ]

- Var_a0[ i ] - Beta_1[ i-1 ] * exp( i

* Beta_a2[ i-1 ] ) ) )/( Tau[ i-1 ]

* T * I * A + tau_0 ), 1 / (Tau[ i-1 ] * T * I * A + tau_0 ) )

#BETA_1

Beta_1[ i ] <- rnorm( 1, ( tau_1 * mu_1 + Tau[ i-1 ] * sum( Resta[ i-1, ]

- Var_a0[ i ] - Beta_0[ i ] ) * exp( i * ( Beta_2[ i-1 ]

+ Var_a2[ i ] ) ) )/( Tau[ i-1 ] * exp( 2 * i

* Beta_a2[ i-1 ] ) + tau_1 ), 1 / ( Tau[ i-1 ]

* exp( 2 * i * ( Beta_2[ i-1 ] + Var_a2[ i ] ) ) + tau_1 ) )

#BETA_2

Beta_2 <- metropolis_hasting( 100, Beta_2, 0, 1/ sqrt( Tau ) +3/5 )

#BETA_a0

Beta_a0[ i, ] <- Beta_0[ i ] + Var_a0[ i, ]

#BETA_a2

Beta_a2[ i, ] <- Beta_2[ i ] + Var_a2[ i, ]

#RESTA M-Mu

Resta2 <- (M-Mu)^2

#TAU

Tau[ i ] <- rgamma( 1, 1/2 * T * I * A + alpha_tau, 1/2 * sum( Resta2[ i, ] )

+ beta_tau )

#TAU_var0

Tau_var0[ i ] <- rgamma( 1, A/2 + alpha_tau_varepsilon_0, beta_tau_varepsilon_0

+ 1/2 * sum( ( Var_a0[ i, ] )^2 ) )

#TAU_var2

Tau_var2[ i ] <- rgamma( 1, A/2 + alpha_tau_varepsilon_2, beta_tau_varepsilon_2

+ 1/2 * sum( ( Var_a2[ i, ] )^2 ) )

#ALPHA_THETA

Alpha_theta <- metropolis_hasting1( n, Alpha_theta, alpha_alpha_theta,

beta_alpha_theta )

#ALPHA_LAMBDA

Alpha_lambda <- metropolis_hasting1( n, Beta_theta, alpha_alpha_lambda,

beta_alpha_lambda )

#BETA_THETA

Beta_theta[ i ] <- rgamma( 1, A * Alpha_theta[ i ] + alpha_beta_theta,

beta_beta_theta + sum( Theta[ i ] ) )

#BETA_LAMBDA

Beta_lambda[ i ] <- rgamma( 1, A * Alpha_lambda[ i ] + alpha_beta_lambda,

beta_beta_lambda + sum( Lambda[ i ] ) )

}

)
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#FINAL MATRIXES------------------------------------------------------

Mu1 <- Mu[ , 1:A ]

Mu2 <- Mu[ , (A+1):ncol( Mu ) ]

for (i in 2:nrow(Mu) ) {

for (j in 1:ncol(Mu1 ) ) {

Mu1[ i, j ] <- Beta_a0[ i ] + L_matrix[ i, 1 ] + Beta_1[ i ]

* exp( -i * Beta_a2[ i ] )

Mu2[ i, j ] <- Beta_a0[ i ] + L_matrix[ i, 2 ] + Beta_1[ i ]

* exp(- i * Beta_a2[ i ] )

}

}

Mu <- cbind( Mu1, Mu2 )

Mu <- round(Mu,2)

write.csv( Mu, "Mu_matrix" )

for ( i in 2:nrow(M) ) {

for (j in 1:ncol(M)) {

M[ i, j ] <- rnorm( 1, Mu[ i, j ], 1/Tau[ i ] )

}

}

M <- round( M, 2)

N1 <- N[ , 1:A ]

N2 <- N[ , (A+1):ncol(N) ]

M1 <- M[ , 1:A ]

M2 <- M[ , (A+1):ncol(N) ]

for ( i in 2:nrow( N ) ) {

for ( j in 1:ncol( N1 ) ) {

N1[ i, j ] <- rpois( 1, M1[ i, j ] * Lambda[ i, ] )

N2[ i, j ] <- rpois( 1, M2[ i, j ] * Lambda[ i, ] )

}

}

N <- cbind( N1, N2 )

X1 <- X[ , 1:A ]

X2 <- X[ , (A+1):ncol(X) ]

for ( i in 2:nrow( X ) ) {

for ( j in 1:ncol( X1 ) ) {

X1[ i, j ] <- rgamma( 1, N1[ i, j ] * Kappa[ 1, 1 ], Theta[ i, j ] )

X2[ i, j ] <- rgamma( 1, N2[ i, j ] * Kappa[ 1, 1 ], Theta[ i, j ] )

}

}

X <- cbind( X1, X2 )

X <- round( X, 2 )
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