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Abstract

Majorana  bound  states  (MBS)  are  topologically  protected  zero  energy  modes  with  exciting
properties to build a decoherence free quantum computer.  MBS appear for the first time in the
Kitaev’s  toy  model,  which  can  be  effectively  built  from  elementary  interactions.  In  2014,  an
experimental  setup  was  built  which  consisted  of  a  three  layer  zig-zag  Fe  nanowire,  which  is
ferromagnetic (FM), deposited on top of a Pb (110) superconducting (SC) surface where SC and
Rashba spin-orbit (SO) interactions are inherited by proximity effects. As expected, the experiment
showd clear  evidence  of  MBS localized  at  the  ends  of  the  wire.  However,  further  theoretical
analysis is required to understand and control the physical features of the excitations. In this work
we develop an analytical tight-binding model of the experimental setup using matrix partitioning
techniques. We describe the mobile electrons (π-band) of the nanowire including effectively the σ-
band, and the proximity induced SC and SO. The geometrical details of the setup are included
within the Slater-Koster  formalism,  and analytical  expressions  for  the  effective interactions  are
derived.  We  analyze  the  interplay  between  SC  and  FM  and  characterize  its  influence  on  the
topological phase by calculating the spectra and Pfaffian invariant. Finally, we determine optimal
experimental conditions for the appearance of MBS. 

Keywords: Ferromagnetism, superconductivity, Spin Orbit, Majorana.



Resumen

Los estados ligados  de Majorana  son estados de cero energía  con propiedades  que pueden ser
aplicadas para construir una computadora cuántica libre de errores. Aparecieron por primera vez en
el modelo de juguete Kitaev, el cual puede ser construido de manera efectiva usando interacciones
elementales. En el 2014, un dispositivo experimental que indicaba la presencia de estados ligados
de Majorana, fue construido. Consiste en un cable ferromagnético de átomos de hierro depositado
sobre una superficie (110) superconductora de plomo la cual presenta interacción de espín del tipo
Rashba.  Estas  interacciones  son  transferidas  al  cable  a  través  de  efectos  de  proximidad.  El
experimento indicó evidencia clara de estas partículas, sin embargo carecía de un análisi teórico que
permita entender la física del sistema. En este trabajo desarrollamos un modelo analítico de tight-
binding  correspondiente  al  dispositivo  experimental  utilizando  métodos  de  particionado  de
matrices. Describimos los electrones móviles del sistema (banda π), e incluimos de manera efectiva
los electrones internos (banda σ) y el efecto de proximidad. Los detalles geométricos son incluidos
usando el formalismo de Slater-Koster, y derivamos expresiones analíticas para las interacciones del
sistema. Analizamos la competencia entre la superconductividad y el ferromagnetismo, así como su
influencia  sobre  la  fase  topológical  del  sistema.  Finalmente,  determinamos  las  condiciones
experimentales óptimas para que existan los estados ligados de Majorana.

Palabras clave: Ferromagnetismo, superconductividad, Spin Orbit, Majorana.
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Chapter 1

Introduction

Majorana particles appeared for the first time in 1930 in the work of Ettore Majorana6. Majorana particles are
characterized by being its own antiparticles. The notion of antiparticle was suggested by Dirac in order to interpret
the negative energy solutions of his equation7, which were discovered soon after his prediction. The search for
Majorana particles continues in the realm of fundamental physics to this day. The neutrino was proposed to be a
Majorana particle, but there is no definite assessment for of this fact yet.

In the context of condensedmatter physics, Majorana bound states (MBS) can be built from elementary excitations
of a combination of materials8. Electrons and holes in a superconductor can be seen as a particle and antiparticle
pair. At zero energy, there is no difference between particles and holes, which reminds us the notion of a Majorana
particle. MBS appear bounded to a defect such as a domain wall or a vortex in a superconductor. MBS are
topologically protected states, so they are decoherence-free degrees of freedom as the edge states of graphene. MBS
have been proposed to be topological qubits in a topological quantum computer. Nowadays, the understanding and
development of a platform for MBS is an active research area for experimental and theorethical physicists9 10 2 11.

The initial proposals about Majorana particles were based on midgap excitations of p-wave superconductors.
Quasi particles with non-Abelian statistics found in the fractional quantumHall (FQH)were investigated12 as possible
candidates for MBS. In 2000, Alexei Kitaev proposed a toy model for a one dimensional system with MBS at the
end points13. It was simpler than previous ones in two or three dimensions. The Kitaev model describes a nanowire
deposited on top of a 3d superconductor. By proximity effects, superconductivity is induced on the nanowire. It is
a toy model since electron is considered spinless. Such spinless electrons can be built in a p-wave superconductor,
but is a really fragile state8. Since there are two ends to the Kitaev wire, MBS come in pairs. Such states lie in
the middle of the superconducting gap, and are degenerate. This subspace is called as a topologically protected
degenerate low-energy manifold. This means these particles are inmmune to local perturbations.

The Kitaev model is a simple and interesting way to describe the physics of MBS, particles that are exciting
candidates for quantum computation. Nevertheless, a more realistic proposal is necessary. Recent experimental
developments have attracted major interest on this topic14. In fact, Kane and Fu showed that a simple s-wave
superconductor in proximity to the surface of a strong topological insulator (TI) hosts MBS as edge states. These
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(a)

(b)

(c)

(d)

Figure 1.1: Some physical realizations of devices with MBS. (a) False-colour scanning electron micrograph of
device A. Image and caption taken from Zhang, et. al. (2018)1. (b) Schematics of device A. Image taken from
literature1. (c) Schematic of the proposal for Majorana quasiparticle realization and detection: a ferromagnetic
atomic chain is placed on the surface of strongly spin-orbit coupled superconductor and studied using scanning
tunneling microscopy. Image and caption taken from Nadj, et. al, (2015)2. (d) Model calculation of the local density
of states (LDOS) of the atomic chain embedded in a 2D superconductor. Image and caption taken from literature2.

MBS are localed at the edges of a 2D surface. This is important because it is much easier to use s-wave than p-wave
superconductivity. Spin-orbit (SO) interaction and magnetic fields are used to build an effective spinless system. In
Fig. 1.1 one can observe the main experimental realizations. A recent and novel proposal is based on semiconducting
nanowires, (a) and (b), in proximity to a superconductor9,15. This proposal is widely used nowadays because its
experimental achivements16–20. Other proposals rely on magnetic systems2,21, (c) and (d), that show interesting
properties such as robustness against disorder and highly localized end states22–25.

The concept of a topological qubit has gained relevance in the field of quantum computation. In fact, according
to C. Beenaker9 it represents a "fundamentally new way to store and manipulate quantum information". MBS’s can
be used to build qubit states, that is, a linear superposition of two quantum states which logically correspond to zero
and one. A qubit made of MBS is decohereence free since the operations that produce errors, such as a bit-flip,
cannot happen for a single MBS, but for paired MBS10. The topological protection is deeply related to the existence
of a non-zero gap for quasiparticle excitations9. Degenerate states in the middle of the gap, at zero energy, live in
a topologically protected subspace. The set of operations that can be applied to on these qubits corresponds to the
braid group14, which represents all the possible braiding operations, i.e. moving MBS around each other. However,
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such group cannot be used to build a universal quantum computer10. In any case, MBS offer the realization of a
decoherence-free quantum computing platform. Finally, the measurement process of a topological qubit can be done
by fusing the qubits together. MBS can be fused together and the resulting state can be measured. The result depends
on the transformations, braiding process, applied to the qubits.

The promising possibilities of MBS has caused a lot of theoretical and experimental research in this field. In
fact, there are several proposals to build a device that hosts MBS’s15. The nature of MBS is present as a signature in
the transport and thermodynamic properties of the device9. The presence of MBS can be experimentally confirmed
by the following measurements:

• Half-Integer Conductance Quantization: Tunneling spectroscopy can be used to probe the states of the system.
Resonant tunneling to the midgap states of the system shows a 2e2/h quantization of the conductance9.
This tunneling process produces a current that flows from non-interacting Fermi leads to the grounded
superconducting system with MBS’s26,27. The system is similar to the Half-Integer Quantum Hall Effect of
graphene28.

• Nonlocal Tunneling: The overlaping of the wavefunction of the MBS’s in the wire can produce nonlocal tun-
neling9 29. It is a conduction process that involves both MBS’s. It is not possible without these quasiparticles.
Then, it allows one to determine its presence.

• 4π-periodic Josepshon junction: The usual Joshepson effect30 acquires a new feature if there are MBS in the
system15. Since the presence of MBS opens a new channel for single electrons9 in the superconductor, that
only allows paired electrons (Cooper pairs), the periodicity of the system is affected. Such phenomena can be
detected31 32 and used to determine the presence of MBS’s. Several setups for this device have been developed.
Some experiments31–33 found a Joshepson effect happening at the surface of a 3D topological insulator.

In summary, MBS are quasiparticles with non-Abelian statistics that can be used as topological qubits. MBS are
topologically protected, that is, they are decoherence free degrees of freedom which are affected only by non-local
operations. The Kitaev model10 was the first one-dimensional system with MBS theoretically proposed. Further
developments14 were necessary to make realistic proposals of such toy model. The most studied realizations of MBS
are based on semiconductor heterostructures with strong SO, and magnetic systems are is a promising candidate for
new MBS platforms.

1.1 Problem Statement
A recent proposal describes a ferromagnetic atomic chain in proximity to and s-wave superconductor with strong
SO as a candidate for hosting MBS2,22. It describes a three-layer zigzag chain made of Fe atoms embeded into a
superconducting Pb (110) surface. Density Functional Theory (DFT) simulations2 based on the projector augmented
wave pseudopotential using the Viena Ab-Initio simulation package (VASP)34 show that this structure is the most
stable configuration of the system. However, no analytic solution of the microscopic model is given. It would allow
one to manipulate properties of MBS by changing the chain’s geometric configuration and study the stability of MBS



4 1.2. GENERAL AND SPECIFIC OBJECTIVES

in different configurations. The space of parameters of our system in the topological and trivial regime, which are
defined later, can be studied in a realistic set of parameters and compared with previous results.

1.2 General and Specific Objectives
• Based on the literature, develop a one-dimensional analytic tight binding model with MBS at the wire’s
endings.

– Starting from a geometrical description of the system, build all the interactions that are present in
state-of-the-art proposals using analytical methods.

• Determine the range of parameters that generate topological states that correspond to physical states in the
device.

– Analyze the nature of the eigenstates in a finite system with different parameter configurations.

• Based on the microscopic details of the problem, propose how to experimentally manipulate the proximity
induced interactions.

– Determine which microscopic parameters maximize a particular interaction.

– Determine how such parameters are related to the topological properties of the system.

In section 2 we describe the theorethical basis required to work on this problem understanding the undelying
physics. As a reference model for the TB development, we use Graphene. We use partitioning methods to discuss
SO effects of graphene. Finally, we discuss the Kitaev model. The required theory is detailed in the appendices.
After setting up the background, our model is introduced in section 3. Then, we build an effective Hamiltonian
which contains MBS as end modes. The topological character of the system and the MBS are analyzed. Finally, a
discussion is performed in order to understand the physics derived from our model and its relevance to the field.



Chapter 2

Methodology

2.1 Slater Koster Integrals
Solids are made of atoms, which are described approximately by hidrogenic wavefunctions and their interaction

is a perturbation. In quantum mechanical problems, one often calculate inner products, which are written in the
basis of hydrogenic wavefunctions, of the form 〈φA(r − RA j)|H|φB(r − RBi)〉, that can complicated to solve exactly.
Slater and Koster developed an approximation35 where the magnitude of such product depends on the overlap of the
wavefunctions in a given geometrical configuration. Considering only two-center interactions, the integrals became
a combination of overlaping parameters that depends on the director cosines defined in Fig. 2.2.

Considering the vector that connects the two atoms, R j − Ri, as the molecular axis, its overlap will be a
combination of σ, ±π and ±δ bonding (Fig. 2.3) depending on wavefunction overlap parallel and perpendicular
with respect to the bond axis. Slater Koster table capture the geometrical relations of the two center integrals. Such
formulas preserve the symmetry of the atomic wavefunctions, and reduce the number of parameters. Systems with
interesting geomtries, such as surfaces, atomic chains, or even a DNA molecule, can be analytically studied using
Slater-Koster parameters.

The overlapping parameters depends on the orbital basis and bonding between the atoms and can be observed
in Fig. 2.1. The σ bonding is the strongest part of a covalent bond where electrons are shared by two atoms.
The parameters that represent this interaction are: Vµνσ , where µ, ν can be a particular orbital s, p, or d. The π
bonding corresponds to the lateral overlap of orbitals. Their overlapping parameters are: Vµνπ corresponding with
the previous definition. A graphical representation of the π and σ bonding can be appreciated in Fig. 2.3.

The director cosines are shown in Fig. 2.2 and are defined as,

l = cosα, m = cos β, n = cos γ. (2.1)

5
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Figure 2.1: Sketch of a linear chain of artificial atoms with two possible states: pz and dxz orbitals. The parameter
Vppπ describes hopping between the neighboring p orbitals and Vpdπ between the p and dxz orbitals, where the π
bondings are represented by tunnels. Image and caption taken from the literature3.

Figure 2.2: Two dz2−r2 orbitals connected by a vector
(red) in the XYZ coordinate system. The angles with
respect to each axis are α, β and γ.

Figure 2.3: SK parameters of the σ and π bonding in
the dz2−r2 orbital. Frontal(blue) overlap corresponds
to σ sector. Lateral(red) overlap corresponds to π
sector. A bonding along a direction perpendicular to
σ and π corresponds to the δ bonding.



CHAPTER 2. METHODOLOGY 7

2.2 Tight Binding Model of Monolayer Graphene
The first TB model for a hexagonal honeycomb lattice of atoms was solved by Wallace36. He was describing the

electronic structure of graphite for a single layer of carbon atoms. It can be described using the TB method described
in section B. A low energy Dirac Hamiltonian can be derived in the vicinity of the Fermi level to describe electrons
in this material4,37. As will be derived, it hosts Dirac-like chiral massless fermions. This is a remarkable model
because it describes a relativistic disperssion relation in a condensed matter context. In spite of being described for
the first time in the 40’s. It was revived theoretically in 2016 with the Kane and Mele38 proposal of topological
insulators. Nowadays, it is an active area of research experimentally and theoretically39 28 40.

Consider the lattice is shown in Fig. 2.4. The atoms at each lattice point are carbon atoms. Carbon has six
electrons, two of them well bound to carbon. In this structure, three electrons in the orbitals |2s〉, |2px〉, |2py〉,
participate in the bonds between atoms. They represent the so called "σ-structure" of graphene. The remaining
electron is in the |2pz〉 orbital. It represents the so called "π-structure". Electron transport will be determined by the
dynamics of the unpaired electron in the |2pz〉 orbital. Therefore, we are interested in solving the π-subspace to a
very good approximation4. As a first approximation, we will ignore the σ-subspace. This model does not consider
σ − π interactions caused by fluctuations of the flat structure.

2.2.1 Geometrical Structure

To describe graphene as a honeycomb lattice of carbon atoms, let us start by describing its real space structure.
As is shown in Fig. 2.4, the AB atomic basis is the primitive cell that will be replicated periodically. The basis
vectors to traslate thus basis are given by,

a1 =
a
2

(ex +
√

3ey) a2 =
a
2

(ex −
√

3ey), (2.2)

where ex and ey are the unir vectors along x and y directions respectivelym and a is the lattice parameter shown in
Fig. 2.4. The representation in reciprocal space can be obtained by transforming41 the basis vectors. That is, they
mus obey ai · b j = 2πδi j. The basis vectors in reciprocal space are given by:

b1 =
2π
a

(ex +
1
√

3
ey), b2 =

2π
a

(ex −
1
√

3
ey). (2.3)

2.2.2 Reciprocal Space Representation

To obtain the reciprocal space Hamiltonian, we use Bloch’s theorem and address the generalized eigenvalue
problem for a non-orthogonal basis. The general formalism is developed in B. We want to know the disperssion
relation of this system. Then, we must solve Eq. B.11. We have to find the elements of H and S matrices. To obtain
H, see Eq. B.13 and Eq. B.15. They are givcen by,

H =

 επ −γo f (k)
−γo f ∗(k) επ

 , S =

 1 so f (k)
so f ∗(k 0

 (2.4)
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Figure 2.4: Geometrical structure of graphene taken from the book Graphene Nanoelectronics by McCann4.
Graphene lattice has two inequivalent atoms called A (white) and B (black). The area in gray represents the primitive
cell of graphene that contains a pair of atoms A and B. The lattice parameter is a. The nearest neighbor vectors that
connect A with the three closest B atoms are labeled δ.

The vectors δi connect the A atom to its 3 nearest neigbohr B atoms. They are indicated in Fig. 2.4. They are
given by:

δ1 =
a
√

3
ey, δ2 = −

a
2

ex −
a
√

3
ey, δ3 =

a
2

ex −
a
√

3
ey. (2.5)

Using TB theory, the Fourier components in reciprocal space with the same magnitude for |pz〉 orbitals are given by,

f (k) = eiaky/
√

3 + e−iakx/2e−iaky/2
√

3 + eiakx/2e−iaky/2
√

3,

where ki’s are the crystal momentum components. The expression can be rewritten as,

f (k) = eiaky/
√

3 + 2e−iaky/2
√

3 cos (akx/2) . (2.6)

This expression is used to build the H and S matrix of the TB theory as shown in Eq. 2.4. To solve the system we
have to use the generalized eigenvalue problem, detailed in the appendix B, which is,

det(H − S E) = 0, (2.7)

where E is the energy. Explicitly, it is given by,

det

 επ − E −(γ0 + Es0) f (k)
−(γ0 + Es0) f ∗(k) επ − E

 = 0. (2.8)
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Let us consider that the energy of the π orbitals is the reference energy of the system, i.e. επ = 0. The resulting
dissperssion relation is given by,

E2 − (Es0 + γ0)2| f (k)|2 = 0,

E±(1 ∓ s0) = ±γ0)| f (k)|,

E± = ±
γ0| f (k)|
1 ∓ s0

. (2.9)

The dissperssion relation in the first Brillouin zone is shown in Fig. 2.5. Clearly, there are two bands that correspond
to bound and mobile electrons. If one considers ky = 0, then one finds the disperssion relation shwon in Fig. 2.6
where one can find a band crossing at the K point. Also, if one observes closer (inset of Fig. 2.6) a linear structure
that corresponds to the so’called Dirac cones.

Figure 2.5: 3D spectrum of a graphene monolayer.
Electrons move along kx and ky within the first Bril-
louin zone.
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Figure 2.6: Cut of the graphene spectra along ky = 0.
At the point K two Dirac cones can be appreciated.
Inset: A zoom of the Dirac cone at K is shown.

2.2.3 Effective Hamiltonian at the K point

First, there are two inequivalent points in the first Brillouin zone labeled K±. They are described by,

K± = ±
1π
3a

ex. (2.10)

Replacing that point in Eq. 2.6, we have that,

f (K±) = e0 + e±i2π/3 + e∓i2π/3 = 0. (2.11)

At these points, there is no coupling between A and B sublattices because f (k) = 0. Then, there is a degeneracy
exactly at the K point. To describe the behaviour of fermions in the vicinity of the Fermi level, so we define a
momentum vector that is centered at K,

p = ~k ± ~K, |p| << 1. (2.12)



10 2.2. TIGHT BINDING MODEL OF MONOLAYER GRAPHENE

We expand Eq. 2.6 for p ≈ 0. Our expansion remains valid as long as we remain close to K±, and it is shown in
Fig. 2.6. That is, |p|a/~ << 1. Considering only linear terms in momentum,

f (p) = eiapy/
√

3 + 2e−iapy/2
√

3 cos
(

apx

2
±

2π
3

)
≈

(
1 +

apy
√

3

)
+ 2

(
1 −

apy
√

3

) −1
2
∓

a
√

3px

4

 ,
expanding the momentum to lowest order we find,

f (p) ≈ −

√
3a
2

(
±px + ipy

)
, (2.13)

then, the direct integral matrix reads,

H± =

√
3aγ0

2

 0 ±px − ipy

±px + ipy 0

 (2.14)

where γo is the overlap parameter. Immediately, we recognize that it can be rewritten in terms of the Pauli matrix in
sublattice space. Its eigenstates represent the relative amplitude of an electron at each atom of the sublattice. This
degree of freedom has the same form form that the 1/2-spin. Then, we call it a pseudospin. Written in this basis, the
Hamiltonian can be rewritten as,

H± = vσ̂ · n̂ (2.15)

where v =
√

3aγ0
2 , and σ̂ = (σx, σy, σz) are the usual Pauli matrices, and n̂ = (±px, py) is the momentum vector.

This is the Dirac hamiltonian for massless fermions that move at velocity ν. The disperssion relation is shown in the
inset of Fig. 2.6. The Dirac disperssion relation is,

E± = ±ν|p|. (2.16)

We call this the Dirac disperssion since it is linear with respect to momentum, as in the case of the Dirac equation.
The states that are describe by this model corresponds to the eigenvectors of Eq. B.13. It is straigforward to derive
that,

|ψ±〉 =
1
√

2

 1
±e±iφ

 eip·r. (2.17)

2.2.4 Chirality and Polarization

Since the Hamiltonian represents the energy of a system and is hermitian, it is conserved. Also, any operator that
commutes with the Hamiltonian represents a conserved quantity. It is equivalent to say that they have a common
set of eigenstates. From this fact, two important consequences are derived for graphene. Since H = hatσ · p, then,
H|ψ±〉 = ±|ψ±〉. It means that the projection of the spin onto the momentum is conserved and can only be ±1.
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Consider the polarization of the pseudospin as 〈σ〉 = (〈σx〉, 〈σy〉, 〈σz〉). Obtaining the expectation value of each
component using the states of Eq. 2.17, we obtain that,

〈σx〉 =
1
2

(
1 ±ei∓φ

)  0 1
1 0

  1
±e±iφ

 = cos(φ), (2.18)

〈σy〉 = sin(φ), (2.19)

〈σz〉 = 0, (2.20)

the phase of the state rotates the momentum by an angle φ. Consider an adiabatic transformation of the phase
φ = 0→ 2π along a closed contourn in the complex plane which is identical for both sublattices. The phase acquired
by the wavefunction after such transformation is of π. This is the so-called Berry phase42. It is reflects the rotation
of the pseudospin degree of freedom4.

Second, as long as the sublattice symmetry is mantained, i.e. no interactions that treats different A from B,
chirality is conserved. We are interesting in obtaining the probability of a scattering amplitude that depends on the
final angle. Considering φ = 0 as the direction of motion, the scattering amplitude is proportional to

w(φ) = |〈ψ±(φ)|ψ±(0)〉|2 = cos2(φ/2). (2.21)

For backscattering processes, φ = π, the scattering amplitude is zero. Backscattering is not allowed in graphene
because the direction of the momentum cannot be reversed without also changing the pseudospin. It is an important
concept when discussing anisotropic scattering at potential barriers in graphene and it is related to the topological
properties of the system.

Although we have described the behaviour of relativistic fermions in a graphene layer, there are plenty of effects
that we are ignoring. An example would be the Spin-Orbit(SO) interaction of the graphene. It arises from interactions
with electrons from the σ-sector. In fact, to solve this problem, we need to diagonalize the full Hamiltonian that
includes both σ and π subspaces. There are several ways to solve the full problem. In the next section we will discuss
one of them.

2.3 Matrix Perturbation Theory: The Band Folding Method
There are different ways to solve the general problem of quantum mechanics, i.e. the secular equation. One can
approach by directly finding the solution of the differential equation, or rather find a different represenations that
simplifies the problem. A different approach is obtained by direct substitution in an energy-dependent Hamiltonian.
Let us start by considering the time-independent Schrodinger equation,

HΨ = EΨ. (2.22)
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Let us consider that H describes two kinds of eigenstates α and β, which are weakly coupled to each other. Then,
the secular equation, in matrix form, can be written as, Hαα Hαβ

H†αβ Hββ

  vα
vβ

 = E

 vα
vβ

 , (2.23)

where Hαα and Hββ are the Hamiltonian of each kind of eigenstates, and Hαβ is their coupling. Also, the eigenvector
is Ψ = (vα vβ)T , where vα and vβ are the eigenvectors of each kind. It can be considered as a set of two coupled
equations for the eigenvalues and eigenvectors of the system,

Hααvα + Hαβvβ = Evα H†αβvα + Hββvβ = Evβ. (2.24)

From which, we can obtain vβ as,
vβ = (1E − Hββ)−1H†αβvα, (2.25)

by substitution, the equation for vα is,(
Hαα + Hαβ

(
1E − Hββ

)−1
H†αβ

)
vα = Evα. (2.26)

Then, we consider an expansion for the inverse matrix in the previous expression. For that, we assume that E << HBB,
then

1
E − Hββ

=
−1
Hββ

1
1 − E

Hββ

=
−1
Hββ

(
1 +

E
Hββ

+ . . .

)
(2.27)

After substitution in the previous expression and reordering terms, we obtain,(
Hαα − Hαβ

1
Hββ

H†αβ

)
vα =

1 + Hαβ
1

H2
ββ

H†αβ

 Eθ (2.28)

Let’s define S =
(
1 + Hαβ(H−1

ββ )2H†αβ
)
, and Φ = S 1/2vα. Then,

S −1/2
(
Hαα + Hαβ

(
1E − Hββ

)−1
H†αβ

)
S −1/2Φ = EΦ. (2.29)

The problem of the two subspaces has been reduced to an effective problem of a single subspace, where the second
subspace is included in the effective Hamiltonian in a perturbatively manner. That is,

He f f Φ = EΦ, (2.30)

where,
He f f = S −1/2

(
Hαα + Hαβ

(
1E − Hββ

)−1
H†αβ

)
S −1/2 (2.31)

This method has been widely used to study tight-binding Hamiltonians43. As an example in graphene, the
conduction occurs in the pi strucutre made of pz orbitals, but the spin orbit interaction occurs in the px and py

that correspond to the sigma structure. Such spin interactions can be included effectively using the band folding
formulation, as in the literature.



CHAPTER 2. METHODOLOGY 13

2.4 Spin Orbit in Graphene
Spin orbit in graphene was introduced by Kane and Mele through a symmetry argument38. The Slater Koster
approach, on the other hand, allows to derive the same term plus the microscopic coupling. Here we rederive the SI
coupling for graphene involving pz and d orbitals as found by Konschuh et al. Using the methods described in this
section, we want to address the problem of the SO splitting in graphene. Since the SO interaction does not connect
|pz〉 states directly, our previous model cannot describe this feature. To include SO interaction into the problem,
|d〉 orbitals are included for first order in the SO coupling. Particularly, {|zx〉, |yz〉}. Also, spin states are included
as ,{| ↑〉, | ↓〉. The SO interaction is discussed in Section A, and the SO matrix elements are derived for d-orbitals.
Recalling the matrix elements,

〈yz ↑ |HS O|zx ↑〉 = iλd, 〈yz ↓ |HS O|zx ↓〉 = −iλd, (2.32)

where λd is the magnitude of the SO coupling for d orbitals. The full Hamiltonian of the system includes
{|pz〉, |zx〉, |yz〉} as the orbital basis, the spin basis, and the sublattice basis. The problem can be rewritten as
Eq. E.1. That is,

H =

 Hpp Hpd

H†pd Hdd

 (2.33)

where the diagonal components corresponds to the pure Hamiltonian of the p and d subspaces respectively, and the
non diagonal terms represent the p − d coupling. We are interested in effectively describing the subspace Hpp. It
describes the conduction electrons while the Hdd subspace includes the SO interaction. Hdd is folded into Hpp to
create an effective model. First of all, we need to find a basis such that Hdd is diagonal44. Let,

|Ψ±〉 =
1
√

2
(| ↑〉 ± | ↓〉) (2.34)

|d±〉 =
1
√

2
(|yz〉 ± i|zx〉) (2.35)

The basis that we consider for the d-orbitals is given by the combinations of Eq. 2.34 and Eq. 2.35. That is,

|d1〉 = |Ψ−〉 ⊗ |d−〉 (2.36)

|d2〉 = |Ψ+〉 ⊗ |d+〉 (2.37)

|d3〉 = |Ψ+〉 ⊗ |d−〉 (2.38)

|d4〉 = |Ψ−〉 ⊗ |d+〉 (2.39)

We are going to use this basis to build the Hamiltonian matrix for the d orbitals, Hdd. Note that the HK accounts for
hopping interactions and self-energies while HS O accounts for spin interactions of Eq. 2.32. The Hamiltonian that
describes the system is the following:

H = HK + HS O (2.40)
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To build the Hamiltonian matrix we need to take the matrix elements in the given basis. We quote the results of
Boykin44, that is,

Hdd =


Ed − λd 0 0 0

0 Ed − λd 0 0
0 0 Ed + λd −2Udd

0 0 −2Udd Ed − λd

 (2.41)

where Ed is the energy of the d orbitals, abd Udd is the SK overlap between xz and yz orbitals. In the same manner,
the coupling matrix between p and d is,

Hpd =

 −iUpd −iUpd 0 0
−iUpd iUpd 0 0

 (2.42)

where Upd is the Slater Koster matrix element between d and p orbitals that are responsible for creating paths
involving SO interaction. We will use Eq. E.20 to obtain the effective diagonal subspace for the |pz〉 orbitals. The
effective subspace is,

Hpp =

Ep + h+ h−
h− Ep + h+

 (2.43)

where,

h± = −U2
pd

(
1

Ed + λd − Ep
±

1
Ed − λd − Ep

)
(2.44)

2.5 The Kitaev Model
Quantum computing represents a major and exciting topic of quantum physics that can be used to perform

incredibly faster some calculations. However, the nature of quantum states is very delicate and loss of phase
coherence due to inelastic processes (decoherence) can affect our system before the calculation finish. There are
several approaches to address the problem of decoherence, and a very interesting one is to use topologically protected
qubits inmmune to decoherence. In 2001 Alexei Kitaev proposed an alternative model for a one-dimensional system
of anyons10 that can be used to build a decoherence free quantum computer. The basic idea is that a fermionic site
can be represented as two Majorana sites. Quantum errors require the interaction between Majorana sites, which can
be avoided by controlling the parameters of the system. An isolated Majorana site is inmune to any kind of error13.
Essentialy, the idea behind the Majorana transformation is to divide each fermion in two parts6, as a complex number
can be separated in a real and complex part. In Fig. 2.7 (a) one can observe four fermionic sites, that are represented
as a domino to ilustrate the Majorana transformation. In this model there are the following interactions: i) on-site
chemical potential, ii) spinless superconducting pairing, and iii) hopping. By manipulating the parameters of the
system one brought the system into the trivial or the topological phase. The trivial phase is shown in the panel (b) of
Fig. 2.7 where the electrons are paired in the normal way, i.e. two majoranas correspond to the same fermionic site.
The topological phase is shown in the panel (c) of Fig. 2.7 where the majoranas are paired over different fermionic
site. At the ends, there are two halfs of a fermions that remain separated and localized.
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no unpaired Majoranas

unpaired Majorana modes

(a)

(b)

(c)

Figure 2.7: Graphical representation of MBS. Each domino represents two Majoranas γn. There are 4 electrons,
then 8 Majoranas. Image taken from the course Topology in Condensed Matter 5.

2.5.1 Majorana Operators

Fermions are constructed by creation and annihilation operators. Usually, c†nσ creates a single electron with spin
σ at site n. In the Majorana basis, an electronic site is divided in two Majorana sites, and there are two Majorana
operators for each fermionic site γn, γn+1. That is, for the j-th electron corresponds the 2j-1 and 2j Majorana sites.

γ2n−1σ = c†nσ + cnσ iγ2n = cnσ − c†nσ (n = 1, ...,N) (2.45)

γm = γ†m {γm, γn} = 2δm,n (m, n = 1, ..., 2N) (2.46)

2.5.2 Real Space Kitaev Model

Consider a nanowire deposited on top of a superconductor with an energy gap ∆. It has on-site chemical potential µ
and hopping interaction ω between sites. Superconductivity is inherited by proximity effect, from closeby orbitals.
Consider L >> 1, where L is the number of sites in the chain. Each site is either empty or occupied by a spinless
electron. The Hamiltonian reads,

HK =
∑

n

−ω
(
c†i ci+1 + c†i+1 fi

)
− µc†ncn + ∆c jc j+1 + ∆∗c†j+1c†j . (2.47)

The Hamiltonian is transformed according to the Majorana transformation shown previously in Sec. 2.5.1. Note that
the number of sites is doubled, as well as the dimension of the Hamiltonian. We do a change of basis to each term



16 2.5. THE KITAEV MODEL

as follows,

−ω
∑

i

(c†i ci+1 + c†i+1ci) = −
ω

4

∑
j

(γ2 j−1 − iγ2 j)(γ2 j+1 + iγ2 j+1) + (γ2 j+1 − iγ2 j+2)(γ2 j−1 + iγ2 j)

= −
ω

4
(γ2 j−1γ2 j+1 + γ2 j+1γ2 j−1 + 2i(γ2 j−1γ2 j+2 − γ2 jγ2 j+1) + γ2 jγ2 j+2 + γ2 j+2γ2 j)

= −i
ω

2

∑
j

(γ2 j−1γ2 j+2 − γ2 jγ2 j+1),

(2.48)

where we have used that {γn, γn+1} = 0. The term related to the chemical potential is transformed as follows,

−µ
∑

j

c†jc j = −
µ

4

∑
j

γ2 j−1γ2 j−1 + i(γ2 j−1γ2 j − γ2 jγ2 j−1) + γ2 jγ2 j

= −i
µ

2

∑
j

γ2 j−1γ2 j,
(2.49)

where we have used (γi)2 = 0. Finally, the superconducting term is transformed as follows,

∆
∑

j

c jc j+1 + ∆∗
∑

j

c†j+1c†j =
∆

4

∑
j

(γ2 j−1γ2 j+1 + i(γ2 j−1γ2 j+2 − γ2 jγ2 j+1) − γ2 j+2γ2 j)

+
∆∗

4

∑
j

(γ2 j−1γ2 j+1 − i(γ2 j−1γ2 j+2 − γ2 jγ2 j+1) − γ2 j+2γ2 j)

=
Im[∆]

2
(γ2 jγ2 j+2 + γ2 j−1γ2 j+1) + i

Re[∆]
2

(γ2 j−1γ2 j+2 + γ2 jγ2 j+1).

(2.50)

Setting ∆ to be real, and agruping terms, the Hamiltonian is written as,

HK =
i
2

∑
n

−µγ2n−1γ2n − (ω + ∆)γ2n−1γ2n+2 − (ω − ∆)γ2nγ2n+1. (2.51)

From this Hamiltonian, we can discuss the pairing of the Majorana particles. First of all, note that the majorana
operators always appear in pairs. It can pair sites corresponding to a single electron, or sites from different electrons.
For instance, let ∆ = ω = 0. The Hamiltonian takes the form,

HK = −i
µ

2

∑
n

c2n−1c2n (2.52)

This pairing correspond to a chain of atoms with µ chemical potential in each site. That is, MF’s are paired to
be isolated electrons. In other regime of parameters, the main contribution may come from terms such as c2nc2n+1

which paires sites belonging to different electrons. Consider ω = −∆ and µ = 0. Then the Hamiltonian reads,

HK = −i
N−1∑
n=1

∆γ2nγ2n+1. (2.53)

From this equation we see that the sum does not include the first and the last Majorana sites that are shown in Fig.
2.7 (c). They correspond to two unpaired MF’s at each end of the chain. They are included in the Hamiltonian
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as zero-energy degenerated states, while all the paired states are outside the gap. MF’s are good candidates for
TQC because perturbations smaller than the gap does not affect them13. In this sense, MF’s are robust against local
perturbations. The behaviour of the spectra is controlled by the strengh of the interactions of the system. In fact, the
system can be in a phase with trivial topology, and another phase with non-trivial topology as discussed previously.
The transition between these two regimes occurs when zero energy modes appear after a gap closing. The phases
are determined by the following relation:

Topological: − 2ω < µ < 2ω,

Trivial: µ > 2ω, µ < −2ω.
(2.54)

We choose parameters inside the topological phase to analyze the spectra and wavefunctions as shown in Fig. 2.8
and Fig. 2.9 respectively. There are two zero energy modes in the middle of the energy gap, and the wavefunctions
associated with these states are localized at the ends of the Kitaev wire.
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Figure 2.8: Calculated eigenvalues of the Kitaev
chain represent the energy of the lowest states. Two
zero energy modes can be observed at the end.
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Figure 2.9: Calculated wavefunctions of low-energy
states. (Red) Wavefunction of MBS localized at the
ends of the wire. (Blue) First mode of the chain.

The closing and reopening of the gap indicates where the phase transition occurs, i.e. |µ| = 2ω. At that point,
the energy gap becomes zero, and reopens with two zero energy modes as can be observed in Fig. 2.10.

Hamiltonian in the canonical quadratic form

The real space Kitaev Hamiltonian written in the Majorana basis. It can be written in the canonical quadratic
form given by,

H =
i
4

∑
l,m

γlAl,mγm A∗l,m = Al,m. (2.55)

where l and m are the index of the rows and colums. The Hamiltonian must be transformed to an anti-symmetric
matrix in the Majorana basis in order to be apply to study the topological properties of the system encoded in this
form.
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Figure 2.10: Calculated phase transition between trivial and topological phase for the Kitaev wire. Low energy
spectra is shown as a function of the chemical potential µ. The lowest level is shown in red, and it marks the
topological phase when it is at zero energy.

Considerations about particle-hole symmetry and topologically protected states

The Kitaev Hamiltonian can be written as a Bogoliuvov-de-Gennes Hamiltonian, which is of the form H =

CHBdGC† and C = (c1 c2 . . . cn c†1 . . . c†n)T is the vector of creation and annihilation operators. Writting
Eq. 2.47 in this form, one finds that,

HBdG = −
∑

n

µτzc†ncn −
∑

n

((
tτz + i∆τy

)
c†n+1cn + H.C.

)
, (2.56)

where τi’s corresponds to the Pauli matrices in particle-hole space. The BdG Hamiltonian acts on a new set of
states as HBdG |τ〉 = ±|τ〉, where |τ〉 represents particles and holes. Also, HBdG has particle-hole symmetry, that is
represented as,

PHBdGP
† = −HBdG, (2.57)

where P = τxK , and K is complex conjugation. It represents the correspondence between particles and holes, and
it manifests as a symmetric spectra around zero, i.e. holes have the same energy as particles but with a minus sign.
When there are zero energy modes in the spectra, it is forbiden to move a single MBS because it would violate
particle-hole symmetry. Regarding the set of τ matrices that describe particle-hole space, when there is also spin
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interactions, the interaction in both spaces is written as, for example,

τx ⊗ σx =

 0 1
1 0

 ⊗  0 1
1 0

 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (2.58)

2.5.3 Reciprocal Space Kitaev Hamiltonian

The dispersion relation of the Kitaev Model can be obtained by taking he Fourier transform of the real space
Hamiltonian, Eq. 2.47. Consider the fermionic operators written in a basis in k-space where the basis function are
orthonormal,

cn →
1
√

N

∑
k

eiknck

∑
n

ei(k−k′)n = Nδk,k′ (2.59)

Taking the transformation term by term,∑
n

−ω(c†i ci+1 + c†i+1ci) = −2ω
∑

k

cos(k)c†kck (2.60)

∑
n

−µc†ncn = −µ
∑

k

c†kck (2.61)

∑
n

∆(c jc j+1 + c†j+1c†j ) = i∆
∑

k

sin(k)(c†kc†
−k − c−kck) (2.62)

It only creates creates electron traveling in the same direction, or in opposite direction. That is, creates particles and
holes. We impose particle-hole symmetry,

− 2ω
∑

k

cos(k)c†kck = 2ω
∑

k

cos(k)c†
−kc−k (2.63)

− µ
∑

k

c†kck = µ
∑

k

c†
−kc−k (2.64)

and we use the particle-hole basis. In such representation, the Hamiltonian can be written as,

H =
∑

k

(
c†k c−k

)
HBdG(k)

 ck

c†
−k

 , (2.65)

where,

HBdG(k) =

 −(µ + 2ω cos(k)) 2i∆ sin(k)
−2i∆ sin(k) (µ + 2ω cos(k))

 , (2.66)

this expression can be rewritten in a compact notation using the set of τ matrices, that are similar to the spin Pauli
matrices but in particle-hole space as,

HBdG(k) = −(µ + 2ω cos(k))τz − 2∆ sin(k)τy. (2.67)
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The energy-momentum relation for particle and holes is given by solutions of the secular equation,

det(HK − E) = 0 (2.68)

Which yields the following relation consistent with the results of Kitaev10,

E± = ±

√
(µ + 2ω cos(k))2 + 4∆2 sin2(k). (2.69)

It is important to consider that one is assuming an infinite system, so there will be no zero energy states because the
system has no ends. Nonetheless, the topological or trivial phase manifests as an inversion of the bands that shows
a Dirac cone-like structure in the topological phase as shown in Fig. 2.11. In the trivial phase, such structure is
inverted, as shown in Fig. 2.12.
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Figure 2.11: Spectra of Kitaev disperssion relation
with parameters (eV): ∆ = 1, µ = 0.5 ω = 0.5. Al
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Figure 2.12: Spectra of Kitaev disperssion relation
with parameters (eV): ∆ = 1, µ = 1.5 ω = 0.5.

2.5.4 Linear Approximation of the Kitaev Hamiltonian

In the energy-momentum relation of the Kitaev model there is a band inversion that happens at the phase transition
point when the gap closes and can be observed in Fig. 2.11 and 2.12. In order to understand this transition, an
accurate approximation close to that point is derived. Consider k ≈ 0 in Eq. 2.69 and Eq. 2.67, then cos(k) ≈ 1 and
sin(k) ≈ k, that is,

E(k) ≈ ±
√

m2 + 4|∆|2k2, (2.70)

where m = µ + 2ω is the effective mass parameter. Such energy relation can be easy obtained from the following
Hamiltonian,

H = τz2|∆|k + τym. (2.71)

In the superconducting basis, the two solutions correspond for particle and hole states. The topological character of
the system is controlled by the mass function, m(x). If m(x) < 0 the system is in the topological phase. If m(x) > 0
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the system is in the trivial phase corresponding to Fig. 2.11 and 2.12 respectively. At m(x) = 0 there is a topological
phase transition. At this point, the Hamiltonian becomes a Dirac-like hamiltonian. We refer to it a Dirac-like since
it is linear in momentum. Considering v = 2|∆|, the effective Hamiltonian reads H = τzvk. The eigenstates have
energy E = ±vk. It corresponds to electrons and holes around k = 0 moving to the left or the right respectively.

2.5.5 Majorana Fermions at a Domain Wall

MBS’s occur at deffects, edges or domainswalls9,15. To describe such situation, consider the real space representation
of Eq. 2.71. To describe zero-energy modes, we know that the Schrodinger equation reads HΨ = 0. Then, one
rewrites H as,

∂

∂x
Ψ(x) = τx

1
v

m(x)Ψ(x) (2.72)

Consider a m such that has a phase transition at x = 0. Then, the system of equations reads,

∂xΨp(x) =
m(x)

v
Ψh(x), ∂xΨh(x) =

m(x)
v

Ψp(x), (2.73)

where the wavefunction is Ψ(x) = (Ψp(x)Ψh(x)), and Ψp/h corresponds to the wavefunction of the particle and hole
respectively. The solution is given by the eigenvectors of τx as,

Ψ(x) = exp
(
±

∫ x

0

m(x′)
v

dx′
)

(1 ± 1)T . (2.74)

One of the two solutions is normalizable, while the other diverges. We choose different mass functions that have one
or two phase transition points, and the resulting wavefunctions are shown in Fig. 2.13.
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Figure 2.13: Graphical representation of the computed wavefunctions at a domain wall for different mass functions
in the Kitaev model. Red and blue line: |Ψ(x)|2. Black dashed line: m(x). Blue region: m(x) < 0. Red region:
m(x) > 0. (a) m(x) = x. (b) m(x) = arctan(x). (c) m(x) = −x2 + 3.
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SUPERCONDUCTING SURFACE

2.6 Effective TB model of a ferromagnetic chain of atoms on top of a
superconducting surface

To address the experimental setup recently sugessted2 fromDFT calculations, and give insight into the microscopical
details of the proximity effect, we develope an analytical TB model of such system where MBS appear as zero energy
modes. We consider a two layer zig-zag atomic chain on top of a Pb (110) superconducting surface. The atomic
chain is periodic along the x-axis as shown in Fig. 2.14. The chain is ferromagnetic and the magnetization directions
follows the chain axis. The zig-zag structure generates an embedding of the lowestmost atom and the topmost atoms
are out of the surface. Two layers of Pb atoms are interacting with the Fe chain and producing different coupling for
each atom.

Figure 2.14: Lateral view of the atomic wire showing Fe (blue) atoms and the bonds (gray), on top of a Pb (orange)
surface.
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The description of the full system is given by the Hamiltonian shown in Eq. E.1. There are two structural
Hamiltonians that describe each atomic specie, and there is a kinetic coupling betweem them. The system includes
the following interactions: i) Kinetic interaction given by SK integrals. ii) Atomic SO interaction from Fe and Pb
atoms. iii) Ferromagnetic order along the chain axis for all d-orbitals. iv) s-wave superconductivity in the Pb surface.
The full Hamiltonian is given by,

H = HFe + HPb + HFe−Pb, (2.75)

where,

HFe = HFe
S K + HJ + HFe

S O, HPb = HPb
S K + HPb

S O + HS C (2.76)

HPb−Fe = HS K , HJ = J · σ = Jσx, (2.77)

where, HS O is the spin-orbit interaction, HS K is the Slater-Koster interaction of the chain, the surface, and
between them, and HS C is the surpeconducting effect. Ferromagnetic order is described as a Stoner term HJ where
J is the magnetization direction that in this case goes to the x-axis, and σ is the vector of Pauli matrices.

2.6.1 Unit Cell

The unit cell is the one show in Fig. 2.15. There are 8 atoms per unit cell. The three Fe (blue) atoms are labeled A,
B, and C. In principle, atom A is not connected directly to C to first order. The three Pb (orange) atoms are labeled
D, F, G, H and D’. The atom D’ is placed at y = 0, i.e. in the same plane as the atomic chain, while the other atoms
are aout of place and symmetric with respect to reflections around xz-plane. The chain axis is the x direction, and
inversion symmetry is broken at z = 0 by the Pb atoms.

2.6.2 Atomic basis and orbital structure

The atomic basis set that is used to describe this system includes d and p electrons to describe Fe and Pb, respectively.
The states of the system are described by hydrogenic wavefunctions shown in Table 2.1. In principle, there are 5
d-orbitals ×3 Fe atoms per unit cell plus 3 p-orbitals ×5 Pb atoms per unit cell, that is a 30 × 30 space without
including spin and particle-hole. The size of the full system of the unit cell matrix is 120 × 120, that is a very large
number to describe analytically. Then, we must find a minimal set of atomic orbitals and atoms that encondes the
most relevant physical features of the problem. For such purposes, we obtain the representation of all the atomic
orbitals involved and show it in Table 2.1. Furthermore, the SK interactions between the d-orbitals of the atomic
chain is shown in Table 2.3, and the SO interaction of d and p orbitals is shown in Table 2.2. Using this information
we are able to find a minimal basis set that describes the full system effectively.

It has been suggested that the appearance of MBS in this structure is caused by the strong hybridization between
atomic orbitals of Pb and Fe atoms. Also, previous models have considered that the most hybridized orbitals are
those from the π structure, while the σ structure remains smaller. As a first consideration, we choose the atomic
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Table 2.1: Orbital basis of p and d orbitals in the cartesian and shperical harmonic basis. These basis set is used
to describe the different atomic species of the system. Note that the d orbitals where relabed to lie around the x
direction, but SO matrix elements have not changed.

Cubic Spherical
s orbital |s〉 = 1

4π = |0, 0〉

p orbitals |px〉 =

√
3

4π
1
r x = 1

√
2
(|1,−1〉 − |1, 1〉)

|py〉 =

√
3

4π
1
r y = i

√
2
(|1,−1〉 + |1, 1〉)

|pz〉 =

√
3

4π
1
r z = |1, 0〉

d orbitals |dx2〉 =

√
5

16π
1
r2 (3x2 − r2) = |2, 0〉

|dxz〉 =

√
5

16π
1
r2 2
√

3xz = 1
√

2
(|2,−1〉 − |2, 1〉)

|dyx〉 =

√
5

16π
1
r2 2
√

3yx = i
√

2
(|2,−1〉 + |2, 1〉)

|dzy〉 =

√
5

16π
1
r2 2
√

3zy = i
√

2
(|2,−2〉 − |2, 2〉)

|dz2−y2〉 =

√
5

16π
1
r2 2
√

3(z2 − y2) = 1
√

2
(|2, 2〉 + |2,−2〉)

Table 2.2: Spin orbit interaction matrix elements for p and d orbitals. Here, ξp (ξd) is the magnitude of the SO
interaction between p (d) orbitals, and theσi operators are the spin Pauli matrices. Note that there is no SO interaction
between p and d orbitals.

|dx2〉 |dxz〉 |dyx〉 |dzy〉 |dz2−y2〉 |px〉 |py〉 |pz〉

|dx2〉 0 −i
√

3ξdσy i
√

3ξdσx 0 0 0 0 0
|dxz〉 i

√
3ξdσy 0 −iξdσz iξdσx −iξdσy 0 0 0

|dyx〉 −i
√

3ξdσx iξdσz 0 −iξdσy −iξdσx 0 0 0
|dzy〉 0 −iξdσx iξdσy 0 2iξdσz 0 0 0
|dz2−y2〉 0 iξdσy iξdσx −iξdσz 0 0 0 0
|px〉 0 0 0 0 0 0 −iξpσz iξpσy

|py〉 0 0 0 0 0 iξpσz 0 −iξpσx

|pz〉 0 0 0 0 0 −iξpσy iξpσx 0
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Figure 2.15: Unit cell of the ferromagnetic atomic chain. Two layers of Pb atoms are considered to interact at the
top of the surface. (a) Lateral view where the Fe atoms are called A, B and C. (b) Front view where all the five Pb
atoms can be observed. Pb atom D’ (gray) is behind Fe atom C.

Table 2.3: Slater Koster inteintegrals for d orbitals. Vertical and horizontal lines separate the subspace of d bands
σ, π and δ. Here Vddσ, Vddπ and Vddδ are the SK parameters that describe the strength of the bonding.

|dx2〉 |dxz〉 |dyx〉 |dzy〉 |dz2−y2〉

〈dx2 | 1
16 (6Vddδ + 12Vddπ + Vddσ) −

√
3

8 (Vddδ − 2Vddπ + Vddσ) 0 0 1
16 (3Vddδ − 4Vddπ + Vddσ)

〈dxz| −
√

3
8 (Vddδ − 2Vddπ + Vddσ) 1

2 (Vddπ + Vddδ) 0 0 − 3
8 (Vddδ − Vddσ)

〈dyx| 0 0 1
4 (3Vddσ + Vddδ) 1

2 (Vddπ − Vddδ) 0
〈dzy| 0 0 1

2 (Vddπ − Vddδ) 1
2 (Vddπ + Vddδ) 0

〈dz2−y2 | 1
16 (3Vddδ − 4Vddπ + Vddσ) − 3

8 (Vddδ − Vddσ) 0 0 1
16 (9Vddδ + 4Vddπ + 3Vddσ)

orbitals involved in a π bonding between the chain and the surface. Then, we are not interested in orbitals with
components along y direction since this directions is for a σ bonding. In any case, further considerations could
change this initial idea.

Atomic Basis for the Fe Ferromagnetic Chain

Electrons from d orbitals of Fe form three bands defined as,
σ : |x2〉

π : |xz〉, |xy〉
δ : |yz〉, |y2 − z2〉

(2.78)
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The σ band accounts for the innermost electrons of d-bands. The π and δ are spin degenerate bands, with conduction
electrons, because of rotational symmetry of the atomic chain around the x̂ axis. Degeneracy is lifted by SO and SK
interactions between the δ band with the other bands. In Table 2.3 and 2.2, one observes that dz2 is connected by both
interactions to the dxz. We consider that degeneracy is lifted due to these interactions, and it is necessary to include
all d-bands in a complete description of the system. In order to build a minimal model based on the geometrical
configuration shown in Fig. 2.15, we calculate all the SK integrals between d orbitals that are shown in Table 2.3
and study the atomic SO interaction between d orbitals shown in Table 2.2, and we note that the SO matrix elements
between the σ and δ bands are zero. Then, we choose the π band to be describe the system with inherited interactions
from σ and δ. Regarding the magnetic properties of the system, we assume that the ferromagnetic order of the chain
is directed along the x-axis and all orbitals contribute equally. This assumption is not prohibited from experimental
data. The relevant SK integrals from Table 2.3 are defined as,

Uxz = Eı, 
xz,xz = E ,ı

xz,xz = E ,k
xz,xz = Ek, 

xz,xz =
1
4

(Vddδ + 3Vddσ),

Ux2 = Eı, 

xz,x2 = −E ,ı

xz,x2 = −E ,k
xz,x2 = Ek, 

xz,x2 = −
1
8

√
3(Vddδ − 2Vddπ + Vddσ),

Uz2 = Eı, 

xz,z2 = −E ,ı

xz,z2 = −E ,k
xz,z2 = Ek, 

xz,z2 = −
3
8

(Vddδ − Vddσ),

(2.79)

where Vddσ, Vddπ and Vddδ are SK parameters for each band of the d-orbitals. In general, these expressions are a
function of the angle of the atomic chain θ, but for θ = π/4, as in Fig.2.14, they have this forms.

Atomic Basis for the Pb Superconducting Surface

In this model, we assume that the dominant tunneling processes are caused by Vpdπrather than Vpdσ. In Fig. 2.15
one can observe that the atom D’ has only a σ bond, while D and F have only π bonds. Then, we neglect the
interaction of the atom D’ and assume that the dominant contribution comes from the other 4 Pb atoms. All the
matrix elements of the SK interaction between dxz and p orbitals are shown in Table 2.6. Since py is orthogonal to
dxz their corresponding SK elements are zero. Then, it is only necessary to consider px and pz to describe the Pb
surface.

The SK elements shown in Table 2.6 are defined as,

Ux = Eı, 
x,xz = Vpdπ,

Uz = Eı, 
z,xz = Vpdπ.

(2.80)

where Vpdπ represents the degree of hybridization, and U′x = Ux. In general, these expression change for different
angles between the chain and the surface, but at θ = π/4 they are all equal. Also, in Fig. 2.17 (a) one observes
that the curves are identical by changing θ → −θ. We exploit this fact in order to describe different geometrical
configurations for the chain embeded in the surface. Since atoms G and H are closer to the Pb bulk, we assume that
they do not change their positions.
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Minimal Atomic Basis for the Full System

The minimal set of atoms and orbitals used to describe each atomic specie is, Fe : {|dxz〉, |dx2〉, |dz2〉} ⊗ {|A〉, |B〉, |C〉}
Pb : {|px〉, |pz〉} ⊗ {|D〉, |F〉}, |px〉 ⊗ {|G〉, |H〉}

(2.81)

where the kets |A〉 describe the each atom, in this case A.

2.6.3 Effective Single Orbital Chain

Let us start by bulding an effective single d orbital chain, where the σ structure is folded into the π structure to
include the spin interactions of the innermost electrons. The full Hamiltonian of the wire is shown in Table 2.4, and
shows that the only hopping processes that we consider are those purely of the π band, since we assume that these
are the moving electrons at the Fermi level.

Table 2.4: Matrix elements of the interaction between orbitals within the chain without ferromagnetic Stoner
interaction. Internal lines are used to separate the three bands π, σ and δ in that order.

|dxz〉A |dxz〉B |dxz〉C |dx2−r2〉A |dx2−r2〉B |dx2−r2〉C |dz2〉A |dz2〉B |dz2〉C

〈dxz|A εd Uxz 0 −i
√

3ξdσx −Ux2 0 iξdσx Uz2 0
〈dxz|B Uxz εd Uxz Ux2 −i

√
3ξdσx −Ux2 −Uz2 iξdσx Uz2

〈dxz|C 0 Uxz εd 0 Ux2 −i
√

3ξdσx 0 −Uz2 iξdσx

〈dx2−r2 |A i
√

3ξdσx Ux2 0 εd 0 0 0 0 0
〈dx2−r2 |B −Ux2 i

√
3ξdσx Ux2 0 εd 0 0 0 0

〈dz2 |C 0 −Ux2 i
√

3ξdσx 0 0 εd 0 0 0
〈dz2 |A −iξdσx −Uz2 0 0 0 0 εd 0 0
〈dx2−r2 |B Uz2 −iξdσx −Uz2 0 0 0 0 εd 0
〈dz2 |C 0 Uz2 −iξdσx 0 0 0 0 0 εd

In order to obtain an effective Hamiltonian using the BF method, we divide the Hamiltonian into two subspaces,
one that describes the π band, and the other space for the other two bands. In this manner, the Fe atoms are described
by the following Hamiltonian,

HFe =

 Hxz Txz

T †xz Hd

 + HJ (2.82)

where the diagonal components are the structural Hamiltonians of |dxz〉 and |dx2〉 and |dz2〉 orbitals, HJ = Jσx

is the Stoner interaction and J is the exchange interaction, and Txz is the connection matrix of the two spaces that
includes SK and SO terms taken from Eq. 2.79. All the matrix elements of HFe for the unit cell are written in Table
2.4.



28
2.6. EFFECTIVE TB MODEL OF A FERROMAGNETIC CHAIN OF ATOMS ON TOP OF A

SUPERCONDUCTING SURFACE

Using the band folding method, we define the effective system to be Hchain. Then, the effective Hamiltonian for
this system is given by,

Hchain =


ε′d + J′σx Uxz + i(ξFeσy + ξJσz) UAC

Uxz − iξFeσy ε′d + J′σx Uxz + iξFeσy

UAC Uxz − i(ξFeσy + ξJσz) ε′d + J′σx

 , (2.83)

where the effective effective interactions from Fe d orbitals are defined as,

ε′d = εd

1 − Ux2 + Uz2

ε2
d − J2

 , J′ = J
1 +

Ux2 + Uz2

ε2
d − J2

 , UAC = ε′ − ε + (J′ − J)σx, (2.84)

ξFe =
2(
√

3Ux2 + Uz2 )ξdεd

ε2
d − J2

, ξJ = −
2J(
√

3Ux2 + Uz2 )ξd

ε2
d − J2

. (2.85)

The internal interactions coming from the d-bands produces several effective interactions within the π band. First of
all, there is a shift of the energy and exchange interaction because due to corrections propotional to the SK coupling
and J. Second, there are two effective spin interactions, one from intrinsic SO between orbitals, and other involving
SO and ferromagnetic interactions. Third, there is an effective coupling between A and C atoms that depends on
the difference between normal and shifted energies. All of the corrections depend on the interference between SK
interactions. In this case, dx2 and dz2 effects interfere constructively. Furthermore, since the nature of BF expansion
is perturbatively, one must guarantee that εdπ and J are well separated in energy. Otherwise, Eq. 2.84 diverges.
From the denominators of Eq. 2.84, one observes that the exchange interaction , J, and the superconducting gap, ∆,
diverge when J ∼ επ and ∆ ∼ ξPb. We must guarantee that these quantities are well-separated in energy in order to
have valid results.

2.6.4 Proximity Induced Superconductivity and Rashba SO from Pb surface

The Pb surface is described by p orbitals and have two interactions, i.e. SC and RSO. On one hand, SC induces a
pairing between particles and holes of opposite spins. On the other hand, RSO occurs at the surface due to inversion
symmetry breaking and induces a rotation of spins. These two properties are inherited by proximity when the atomic
chain is deposited on the surface due to the high degree of hybridization between both structures represented as Vpdπ.

Rashba SO Pb Hamiltonian

Consider that the atoms of the surface are described by p orbitals and the SO interaction between them given in
Table 2.2. The Hamiltonian that describes the Pb surface without superconductivity is,

where εp is the energy of the bare p orbitals of the surface, and ξPb is the magnitude of the RSO. Note that there
is only two SO matrix elements since atoms G and H have only one orbital.
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Table 2.5: Slater Koster integrals for dxz and p orbitals for all the atoms in the unit cell except for D’. Also, for Pb
atoms only px and pz are considered. Since the symmetry of the unit cell (Fig. 2.15), all the SK integrals can be
expresses with two expressions Ux and Uz.

|px〉D |px〉F |px〉G |px〉H |pz〉D |pz〉F

〈px|D εp 0 0 0 iξpσy 0
〈px|F 0 εp 0 0 0 iξpσy

〈px|G 0 0 εp 0 0 0
〈px|H 0 0 0 εp 0 0
〈pz|D −iξpσy 0 0 0 εp 0
〈pz|F 0 −iξpσy 0 0 0 εp

Superconducting Pb Hamiltonian

SC has a s-wave character that accounts for a local pairing potential ∆ that does not depend on momentum. If one
wants to include superconductivity in a real space system, one must write down the BdG Hamiltonian of the system,
that is written as,

HPb =

 HPb ∆

∆ −H∗Pb

 = HPbτz + ∆τx, (2.86)

where the τ operators are the Pauli matrices in particle-hole space. We only consider on-site interactions and no
kinetic processes between sites. In the same manner, one can obtain the BdG Hamiltonian for the effective atomic
chain as,HFe = HFeτz.

Fe-Pb Coupling Matrix

The interactions that connect the surface and the atomic chain are encoded in, T , the connection matrix determined
by the details of the microscopic model from Fig. 2.14. Under the minimal set of atoms and orbitals, the full
connection matrix is given by Table 2.6 where there are 8 entries to T .

Table 2.6: Slater Koster integrals for dxz and p orbitals for all the atoms in the unit cell except for D’. Also, for Pb
atoms only px and pz are considered. Since the symmetry of the unit cell (Fig. 2.15), all the SK integrals can be
expresses with two expressions Ux and Uz.

|px〉D |px〉F |px〉G |px〉H |pz〉D |pz〉F

〈dxz|A Ux Ux 0 0 0 0
〈dxz|B 0 0 0 0 Uz Uz

〈dxz|C Ux Ux U′x U′x 0 0
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One can propose a simplification of Ts by assuming that the structure at the surface breaks the symmetry of
the bulk. Two alternatives are proposed in Fig. 2.16 that consider (a) a symmetric shift for both atoms that breaks
the interaction of atom C with D and F, and (b) an anti-symmetric shift that lifts D up and F goes down. The
corresponding coupling matrices are given in Eq. 2.87. This approximation only accounts for couplings in T , but
no for angular changes in the SK expressions of the corresponding atoms.

Figure 2.16: (a) Symmetry breaking process where two Pb atoms lift symmetrically. (b) Symmetry breaking process
where two Pb atoms lift anti-symmetrically.

Each modified strucutre has different coupling for atoms D and F with respect to the initial structure shown in
Table 2.6. Each situation is encoded within coupling matrices Ta and Tb given by,

Ta =


Ux 0 0 0 0 0
0 0 0 0 Uz Uz

0 Ux U′x U′x 0 0

 , Tb =


Ux Ux 0 0 0 0
0 0 0 0 Uz Uz

0 0 U′x U′x 0 0

 . (2.87)

We choose T = Tb to be the connectionmatrix of the problem since there is no reason a priori to have an antisymmetic
shift at the top of the surface. In this approximation we have that there is no coupling between atoms D and C, as for
F. Also, atom C is still superconducting since interacts with the following layer of the surface, i.e. G and H atoms.
Then, the full system reads,

H =

 HFeτz Tτz

T †τz HPbτz + ∆τx

 . (2.88)

Proximity Induced Hamiltonian

Using BF, one obtains an effective Hamiltonian that describes the full system given by,

H =


ε′dπ + ∆xτx + J′σx Uxz + i(ξPb + ξFe)σy + iξJσz UAC

Uxz − i(ξPb + ξFe)σy − iξJσz ε′d + ∆zτx + J′σx Uxz + iξFeσy + iξJσz

UAC Uxz − iσyξFe − iξJσz ε′d + ∆′xτx + J′σx

 , (2.89)
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where there a is a Rashba SO interaction coming from Pb surface, and a different SC gap at each Fe atom. The new
effective quantities are defined as,

ξPb =
ξpUxUz

ξ2
p − ∆2

, ∆x =
2∆U2

x

∆2 − ξ2
p
. (2.90)

Here the SC interactions, ∆i where i = x, z, x′ is the orbital labeleing that corresponds with the SK element Ui.

2.6.5 Effective 2 × 2 Hamiltonian

Finally, we apply BF for the last time to include the C atom effectively into the A and B atoms as a shift to the energy
and exchange interaction, εC and JC respectively, that breaks the symmetry between the two atomic sites. Let us
consider that Eq. 2.89 is written in the atom basis for A, B and C. Let us separate the first 2 × 2 space as hAB, the
lowest one as hC , and the connections as t. Then, the final effective Hamiltonian is given by,

H ≈ hAB − th−1
c t†, (2.91)

where the corrections are given by,

th−1
c t† =

ε′d − J′σx + τx∆
′
x

ε′d

(
ε′d + ∆′x

)
− J′2

 UAC

Uxz − i(ξFeσy + ξJσz)

 ( UAC Uxz + i(ξFeσy + ξJσz)
)
≈

 0 0
0 εC − JCσx

 .
(2.92)

Here we have obtained a 2 × 2 matrix that has components of the order U2
AC that is third and fourth order in SK and

SO interactions. We neglect this terms and obtain only a correction for the energy and exhange interaction of the B
atom. The resulting Hamiltonian is written as,

H ≈

 ε′d + ∆xτx + J′σx Uxz + i(ξ′σy + ξJσz)
Uxz − i(ξ′σy + ξJσz) ε′′d + ∆zτx + J′′σx

 . (2.93)

The corrected energy and exchange interaction are,

ε′′d = ε′d − εC = ε′d −
U2

xzεd

(ξ2
Pb − ∆2)

(
ε′d

2 − J′2
)

+ (2U′2x ∆J′ + U2
x(ξ2

Pb − ∆2))
,

J′′ = J′ − JC = J′ −
JU2

xz

(ξ2
Pb − ∆2)

(
ε′d

2 − J′2
)

+ (2U′2x ∆J′ + U2
x(ξ2

Pb − ∆2))
.

(2.94)

In the full expression we observe that second order corrections have poles at corrected energies resembing the
perturvative nature of BF method. The final effective Hamiltonian is for a 2×2 problem, that effectively includes the
C atom that is very deep in the superconductor. We are interested in the part of the chain that is not embeded because
we cannot access below the surface. On the contrary, several measurements can be done on the uppermost atoms of
the chain. Nonetheless, the presence of the C atom is relevant for discussing the geometrical structure of the system
and stability of zero-energy modes. If these corrections are ignored, one can describe a single layer zig-zag atomic
chain.
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2.6.6 Deformation Scheme

The geometrical nature of SK integrals allows us to explore different atomic chain structures proposed. Also, it
allows analyze how MBS are in different configuration. For the deformation scheme, we assume the following:

1. Pb atoms are fixed. The positions of Pb atoms do not change, but their relative angles to the atomic chain
modify when it is deformed.

2. Position of B Fe atoms is fixed. In this manner the length of the chain does not change significantly under
reasonable deformations. Then, the angle between B Fe atom with D or F Pb atoms is fixed to θB = π/4.

3. Positions of A and C Fe atoms change anti-symmetrically according to θ. In this manner, A atoms can go out
of the surface or closer to z = 0. The opposite case for C atoms that go deep in the surface or close to the zero.

We are interested in deformations of the atomic chain that do not altere the conmesurability of the lattice is
not changed. The previous assumptions guarantee that the angle of the chain varies in a reasonable range, i.e.
θ : [0.05π, 0.45π]. Then, we analyze the properties of the chain in different angular configurations. To describe such
system, let us define the angles θA and θC as the angle of the D atom to the A and from atom G to C respectively.
They are shown in Fig. 2.15. One can derive conditions for the evolution of the SK integrals given that come from
the movement of the Fe atoms in the different positions with respect to Pb atoms. They are given as,

Ux = Ux(θA), U′x = U′x(θC) = U′x(0.45π − θA). (2.95)
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Figure 2.17: (a) SK integrals of the atomic chain. (b) SK integrals that connect Pb to Fe from p-orbitals.

Under this scheme of deformations we are able to exploit the angular dependence of SK parameters. In Fig. 2.17
(a) and (b) one can observe the angular depende of the SK integrals. The overlaps for d-orbitals (a) have several
crossing with zero energy that will be very important to changes in effective interactions. The SK integral for the
|dxz〉 and |dz2〉 (black and purple curves) are zero zero when θ = 0, that is expected since in this configuration bonds
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are predominantly of σ kind. Consequently, |dx2〉 orbitals have a maximum at theta = 0. On the other hands, the
overlaps for p-orbitals (b) are symmetric under reflections at θ = π/4. It is important to note that local extremas will
be inherited by effective interactions.





Chapter 3

Results & Discussion

3.1 Effective Hamiltonian
The effective Hamiltonian can be written, from Eq. 2.93, as a BdG Hamiltonian written in the Nambu basis as,

H =

N∑
i=1

Ψ̂
†

i
[
−εiτz + ∆iτx + Jiσx

]
Ψ̂i +

N−1∑
i=1

Ψ̂
†

i+1

[
Uxz + i(ξσy + ξJσz)

]
τzΨ̂i + H.C., (3.1)

where the creation and annihilation operators are written as Ψ̂ = (Ψ†j,↑,Ψ
†

j,↓,Ψ j,↓,−Ψ j,↑), σ(τ) operators act on
spin(particle-hole) space, εi is the energy of the site i, Ji and ∆i are the exhange interaction and the SC gap at site i
that change between shifted and normal energies, Uxz is the hopping amplitude between pure |dxz〉 orbitals, and ξ is
the effective RSO interaction that includes effects from the chain and the surface.

Eq. 3.1 is similar to the one that was used to describe the so-called topological Rashba nanowire45 that is a
well known platform for MBS. The differences are: i) Different energy and exchange interaction, Eq. 2.94, between
succesive atomic sites. ii) Extra interaction coming from the interplay of ferromagnetic order and atomic SO. In
principle, this extra terms produce a gap between the two zero-energy states that breaks the symmetry of MBS. Since
the perturbative nature of this corrections, experimental techniques with high energy resolution are fundamental to
confirm our predictions.

3.2 Physical Parameters
The main result of this work is Eq. 3.1 from which we can extract information about the quasiparticle excitations
in real space, i.e. position space. Also, we can manipulate the experimental parameters in order to stabilize and
optimize Majorana excitations. We analyze the energy spectra, the wavefunctions, and the local density of states.
To do so, we require numerical values for the parameters of the system, which are obtained from previous works.
The parameters are listed in the following table: The following parameters are not listed: J and ∆. We analyze

35
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Table 3.1: SK parameters for d and p orbitals.

Parameter Value [eV] Parameter Value [eV]
Vddσ -0.670246 ξFe 0.0347

Vddπ 0.576046 ξPb 0.66548

Vddδ -0.144546 εd 1
Vpdπ -0.217046 εp 0

different regimes for these parameters, and we proposo variations from reported values due to limitations of this
model. The magnitude of the exchange interaction, J, must be at least of the same order than εd in order to Eq. 2.94
to converge. This is in agreement with computational and experimental data2, but the precise value is higher than
the ones that we used. This is in agreement with considerations about ferromagnetic order since it requires a large
exchange interaction. Similarly, the SC gap, ∆, is reported to be ∼ meV, but here we use larger values (100 times
larger) to have localized zero-energy states.

3.3 Real Space Signatures of MBS
The signatures of MBS can be observed in different properties of the real space Hamiltonian. Here we analyze the
low energy spectra of the system, the wavefunctions of low energy states, and the local density of states that can
be used to reproduce STM measurements. Furthermore, robustness against dissorder was found to be enhanced in
magnetic chains49 Using the deformation scheme discussed in section 2.6.6, we analyze the low energy spectra of
an atomic Fe chain of length L = 200 sites that corresponds to a chain of ∼ 60 nm using the Fe-Fe distance 0.34
nm50,51. In the low energy spectra, we find zero-energy states within a small energy range (>meV)50,51 that varies in
different angular configurations.

3.3.1 Effective Interactions

The effective interactions are given by the geomtrical configuration of the chain. The interplay between d and p
orbitals controls the magnitude of the Rashba SO and SC gap. In Fig. 3.1 one can observe the evolution of effective
quantities as θ changes. Energy and exchange interactions shifts (a) and (b) depend on SK integrals and can be
supressed around a certain geometry. The shifts caused by the exchange interactions (a) within d-orbitals are very
small around θ ∼ 0, 0.2, 05 in units of π, and they hava a local maximum for θ ∼ 0.4. On the other hand, the
magnitude of the shifts caused by the C atom (b) have a more complex structure than (a). One observes regions
where the interaction is small, and it grows at θ ∼ 0.25, 0. This also happens for angles ∼ 1/2. In Fig. 3.1 (c) and (d)
one observes the evolution of effective interactions. Rashba SO and SC gap (c) have an opposite behaviour around
θ ∼ 0.12 since the SO grows, while the SC gap is small. As expected, we find that the Rashba SO is zero when
the chain flat because there is no inversion symmetry breaking, and in the same condition the SC gap is maximum
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since all the atoms are in contact with the superconductor. The effective interaction produced by the interplay of the
magnetic order and atomic SO of Fe atom is shown in (d). We find that this interaction is supressed when θ ∼ 0.1325,
and grows for large angles. Furthermore, as J increases, ξJ decreases. Then, we expect the exchange interaction to
be large enought to supress this interaction that destroy MBS.

(a) (b)

(c) (d)

Figure 3.1: Effective interactions as a function θ. (a) Magnitude of energy shift in d-orbitals caused by magnetic
order. (b) Magnitude of energy shift in B atom due to BF of C atom. (c) Rashba SO and SC gap as a function of θ.
(d) Magnitude of SO-exchange interaction, ξJ , as a function of θ for different values of J.

The magnitude of the interactions change in different geometrical configurations and the magnitude in the choose
configurations is shown in Table 3.2.

3.3.2 Topological phase

To characterize the topological phase of the system one has to calculate a topological invariant quantity, the Pfaffian13,
from the reciprocal space Hamiltonian. Also, this phase is characterized by the presence of zero-energy states that
correspond to MBS. Here choose the second criteria to characterize the topological phase of the system. However,
we must stablish a criteria for the energy difference between the two lowests energy states because this difference
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Table 3.2: Calculated effective SO and SC interactions for two different angular configurations of the atomic chain
and for ∆ = 0.05 eV. Atomic and SK parameters were taken from Table 3.1.

Parameter θ = 0.09 θ = 0.1325 θ = 0.25
ξ 2 meV 8 meV 8 meV
ξJ 4 meV 4 µeV 29 meV
∆x 0.53 eV 0.15 eV 0.23 eV

changes due to energy shifts and SO-exchange effective interactions.

Angular dependence

θ

θ

Figure 3.2: Low energy spectra for an atomic chain of L = 200 sites with parameters from Table 3.1, and J = 1.5 eV.
The two lowests states are shown in red. The shaded gray region is considered the topological phase of the system
and the energy difference between the these two sattes is 0.005eV.

Let us start by calculating the low-energy spectra of the system as a function of the chain angle θ. In Fig. 3.2
one can observe that there are two states around zero energy. However, when one zooms in (Fig. 3.3) one finds
the following: i) Particle-hole symmetry was broken, ii) and the shift between them is irregular. This irregular
structure does not correspond to previous analyzed shifts such as the MBS oscillations caused by finite overlaps of
MBS wavefunctions. Furthermore, when one observes the wavefunctions corresponding to these states (Fig. 3.6
and 3.7), one finds that they are localized wavefunctions with no overlap. We argue that this structure appears due to
the interplay between the effective energy shifts and SO-exchange interaction, while the strong localization is due to
effective Rashba SO and SC gap. To support such idea, one observes that the shift is minimum for θ ∼ 0.1325 that
corresponds to the zero of the ξJ interaction. The small remaining shift arises due to energy differences between
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sites A and B. On the other hand, in the range θ : [0.2, 0.45] the dominant shift is the one produced from the C atom
because it corresponds to the region where it is maximum as shown in Fig. 3.1.
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Figure 3.3: Zoom of the zero-energy states in Fig. 3.2.

In this manner, we find that the angles where energy shift between zero-energy sates is small are θ ∼ [0.05, 0.2].
In this region the shift between the two atomic sites is small and the SO-exchange interaction dominates. We suspect
that these states are topologically protected MBS, but they could be Shiba states that are strongly spin polarized as
the ferromagnetic order50,52,53. This is possible since the effect of ξJσz causes shift between spin up and down states.
This SO-exchange interaction creates conduction channels for electrons rather than an effective field along z direction.
In any case, a confirmation of these assumptions can be obtained by calculating the Pfaffian and confirm that these
states are MBS or not. Here we choose two angular configurations that may host MBS given by θ = 0.1325π and
θ = 0.09π that are labeled 1 and 2 respectively.

Exchange Interaction

We explore the low-energy spectra as a function of the exchange interaction J, and find a topological phase as was
previously described in literature15,49,54 for MBS. First, in Fig. 3.4, we analyze the configuration 1, and we find a
clear zero energy gap where the criteria for the topological phase is an energy difference of the order∼ 10−7 eV. In this
configuration, we minimize the effect of the SO-exchange effective interaction as shown in Fig. 3.1 (d). Nonetheless,
precise values for J comming from DFT2 calculations (J = 2.4 eV) do not have zero-energy excitations. We find
such excitations for smaller values. In any case, the difference of our values can be explained from the approximation
order that we have used because it misses higher order corrections that stabilize this value around the realistic value.
On the other hand, a dimensionality argument can used to propose an smaller value for J since it is directly related
with the number of nearest neighbors. Also, most of DFT50,55 investigations about Fe systems stablish a range for
J between 2 and 3 eV. Then, the used values of J that have zero-energy states are based on reasonable assumptions
and lie very close to experimental measurements and computational simulations.

Nonetheless, the role of ξJ manifests immediatly after we move from θ ∼ 0.1325π. In Fig. 3.5 one observes
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Figure 3.4: Low-energy spectra a s function of J, angular configuration 1, and ∆=0.05 eV. Criteria for the shaded
region (topological phase) was 10−7 eV.

that the gap between zero-energy states is clearly noticeable in the range of meV. Then, we note that even when ξJ is
small it generates an effective shift destroying the nature of zero-energy states by a finite gap.
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Figure 3.5: Low-energy spectra a s function of J, angular configuration 2, and ∆=0.3 eV. Criteria for the shaded
region (topological phase) was 5 meV.

In conductance measurements of this system, one finds a clear peak around zero energy in the range on the meV.
Then, this interaction must vanish in order to support zero energy modes. Here we propose several mechanisms that
may account for the cancelation of this term. If one observes Table 2.2 and 2.3 one finds that there is a SO term
proportional to σz within d-orbitals of the π band. However, when θ = π/4 the coupling between these orbital is
zero, and then it is not included in the initial Hamiltonian Eq. 2.88. In angular configurations 1 and 2, this term is
non-zero, and then it competes with the SO-exchange interaction. Then, it is plausible to consider that this term is
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a representation of the internal effective processes of the system, but due to limitations of the model this term does
not vanish.

3.3.3 Wavefunctions of MBS

In spite of the energy shift between the two zero-energy modes, one can find localized wavefunctions corresponding
to these states. Here in Fig. 3.6 and 3.7 one observes that when the system is in the topological phase, there are
localized states at the ends of the wire. The localization length of these states is mainly characterized by the SC gap
as we can observe in both figures50. Nonetheless, the dependence of length of such states does not changes in a
linear fashion, but in a rather complicated way related with the divergences at the denominators of Eq. 2.90. Then,
we find that the value for the atomic SO coupling of Pb is strongly related to the localization length of MBS not
directly, but trough the effective quantities.
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Figure 3.6: Wavefunctions of the two lowests energy states in angular configuration 1, and J = 1.5 eV.

Also, we are able to explore the influence of θ on the properties of MBS such as the localization length. We find
that there is no major changes in this length for an smaller angle by observing Fig. 3.6 and 3.7. In fact, we note that
smaller angles will enhace the localization of MBS but for an small factor of ∼ 5 sites for θ = 0.05π that changes for
different values of ∆. We expect that an almost flat configuration will host localized MBS that may correspond to
experimental measurements.

In summary, we find that the localization length of MBS is controlled by the superconducting gap ∆, while
the Rashba SO, ξ, and the exchange interaction, J, control the oscillations within this length. The experimentally
measured SC gap for Pb atoms was found to be ∆exp = 1.52,50 meV, but we find no MBS for this value. Then, we
explore larger values for the SC gap. We are able to explore a reasonable range of values for several quantities, such
as ∆, since the nature of this model is a first order approximation coming from BF. Then, it is expected to have
significant differences between the experimental values and the ones that we use. Furthermore, these deviations do
not supress the validity of our model, since there are several processes and interactions that we are not considering
and are relevant for the realistic system.
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Figure 3.7: Wavefunctions of the two lowests energy states in angular configuration 2, and J = 1.8 eV.

3.3.4 Local Density of States

By solving Eq. 3.1, we obtain information about the spectra and the spatial distribution of states from their
wavefunctions. Then, we are able to reconstruct the local density of states (LDOS) that gives the amplitude of
probability at a given position and energy. This results have no temperature dependence. However, we do not have
access to all energies, but rather to the definite energies of the available states. This is not a problem out of the gap
since there is a continuum of energies that create each band, but inside the SC gap we can only access to two finite
values corresponding to the eigenenergies of the lowetst states. On the other hand, a full LDOS can reproduce the
energy width of states and include thermal broadening. For scuh reason, we set an energy width of 2 meV50,51 for
the lowest energy state that is in the range of current experimental techniques of STM with normal tips. If one uses
superconducting tips for STM the resolution is much precise ∼ µeV50.

In Fig. 3.8 one observes a 3D plot of the LDOS where the x and y axis represent energy and postion, and the z
axis represent the amplitude of the wavefunction. One observes that out of the gap there are delocalized excitations
(orange) that create the bands of ground state Cooper pairs and quasiparticle excitations. Inside the gap, one observes
a flat space where no states live, but close to zero energy, there are two states localized at the ends of the atomic
wire. This illustrative image shows the nature of MBS: they appear inside the SC gap as a consequence of the
topological properties of the system with a highly local character. In the Majorana representation, each of these
particles represents half a fermion that is left at the end of the wire due to the pairing between electrons as in the
SSH model (see Appendix D).

3.3.5 Experimental Signatures: STM measurements

Using the previous discussed considerations about the influen of ξJ , and setting the energy resolution to 2 meV, we
are able to construct the STM measurement at zero K for the zero energy states of the system and show them for
different range of values in Fig. ??. There was a lot of attention about STM measurement of zero-energy modes
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Figure 3.8: Illustrative image of the local density of states of an atomic chain of 100 sites of length. Axes in plane
represent position (atomic sites) and energy (eV), and vertical axis represents |Ψ|2. States out of the gao are orange,
while in gap states are yellow. Parameters used are within the topological regime, but without discussion purpouses.

recently. The most remarkable property is the high localization of zero-energy modes2 that has not been addressed
by current models25. According to recent measurements, the localization length of this states was found to be ∼ 1
nm. Here in Fig. ?? we show the STM prediction for four different configurations of parameters. In (a) and (b) we
use the angular configuration 1, and change the SC gap from ∆ = 0.3 and ∆ = 0.01 respectively. We find that the
larger the gap, the strongest the localization of zero-energy modes. If the gap decreases by an order of magnitude we
may expect oscillations of the LDOS, but no significant change in localization since it still decays very fast. In (b)
and (c) we show the angular configuration 2, and find similar proerties than in 1. We find that in this configuration the
localization of zero-energy modes is even higher than before. Then, one observes that the geometrical configuration
of the chain has a direct effect on the MBS properties such as the localization length. Remarkably, in (d) one find
that the localization length is ∼ 1 nm.





Chapter 4

Conclusions & Outlook

We have derived the physics for Marjorana bound states from a microscopic model in the tight binding Slater Koster
approach. The model is guided by experimentally feasible Fe low dimensional structure on a Pb superconducting
surface. This configuration allows to build a Kitaev-like model that incorporates superconducting correlations onto
a ferromagnetic system by proximity effects. The developed model os the first derivation of the Kitaev-like model
from an actual physical system. The great advantage of the developed model is that it allows to tune the parameters
of the experimental setup in order to achevie optimal Majorana excitations, such as manipulate the positions of the
atoms in the Fe chain using mechanical deformations.

The proximity effect was modeled as pure kinetic interaction between p and d orbitals, and the superconducting
correlations show s-wave superconductivity from band folding. There are two kinds of effective SO interactions that
interplay in the properties of the MBS. The SO from Fe and the SO from Pb are modified by the geometrical nature
of the structure. We have shown that the most importat SO contribution and proximity induced SC appear because
of the high degree of hibridization between p and d orbitals.

It is worth to consider if the missing orbitals would produce a significant differences between this model and
the real system. However, we have estimated that the interactions with the δ band will produce an effective spin
interaction proportional to σy, which will enhance the Rashba interaction, and another spin interaction proportional
to σz that is not relevant for this work. Nevertheless, considering only linear contribution of SK terms from the δ
band will only produce corrections to the energy and hopping terms. Therefore, the relevant physics of the Rashba
SO interaction between the chain and the surface, and the intrisic SO interaction from the σ subspace are well
described by our model.

An asymmetry between the two sites of the effective Hamiltonian makes imposible for the MBS to appear exactly
at zero energy. To solve this problem we rely on mechanical deformations of the atomic chain that change the angle
or length. Then, MBS appear at optimal structural conditions within the topological phase. This allows us to explore
different configurations that host MBS and compare their properties. The optimal geometrical configuration for the
atomic chain considers an angle of θ = 0.28π. It enhances the Rashba SO interaction and decreases the energy shift
and the intrinsic SO interaction. MBS in this geometrical configuration will be higly localized at the ends of the
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wire, and there will be an energy shift between them that is small compared with the superconducting gap.
The role of Rashba SO is to determine the localization length of MBS, which must be considered as an important

factor when determining the length of the wire. In principle, the intrinsic SO interaction does not affect MBS until
it reaches the same energy scale as the Rashba SO. For this system, a chain of L = 100 sites will host MBS has edge
states. For suficiently strong exchange interaction of Fe atoms, the topological phase is realizable.

This model can be further analyzed to obtain insight in the physics of MBS. There are several possibilities that
are not explored in deep in this work. First, this system represents a static setup where we analyze the states and
energies at equilibrium, but other features of MBS emerge in transport problems. In future works based on this
thesis, one expects to find a zero bias peak in the conductance, a property that is characteristic of MBS. Also, the
influence of other states can be analyzed in order to exclude signatures of Andreev bound states or Shiba states. The
formalism required to describe the transport properties is based on Green’s functions methods, but it is beyond the
scope of this work that is focused on an analytical microscopic tight binding model. There are different features
of the system that are not calculated or well described in this work. An analytic form for the MBS wavefunctions
is required in order to understand the role of intrinsic and Rashba SO in the problem. Also, the Bloch expansion
of the system is required to calculate the topological invariant of Majorana systems, the Pfaffian. Finally, different
geometrical configurations can host different species of MBS, and their origin in the Slater Koster interaction can
be studied. At this point we can propose different experimental setups where the atomic chain is manipulated by
different methods such as mechanical deformations. Also, one can explore if the topological phase of each stable
geometrical configuration produces changes and allow different values of J. Then, different species of topological
regimes could be found in feasible experimental conditions, and our predictions could be confirmed.

In summary, the Kitaev toy model was effectively obtained from a big physical system, and the parameters give
insight into the geometrical details. The proximity effect is studied as a function of the microscopic details and can
be manipulated by moving the system. A particular structure optimized for MBS is proposed and studied. It shows
the expected MBS highly localized at the wire ends. Further analysis are required for a complete understanding of
the electronic interactions and geometrical details in this model.



Appendix A

Spin Orbit Interaction

The Spin Orbit Interaction (SOI) is a relativistic quantum mechanical effect. It couples the spin of the electron to the
internal magnetic field of the nuclei. In the tight-binding context, it promotes transitions between spin eigenstates. In
other words, it flips the spin of the electron in a transition from one orbital to another. The SOI term is the following,

HS OI =
e

2m2
oc2 (∇V × p) · S

=
1
r
∂V
∂r

e
2m2

oc2 L · S

= λL · S

=
λ

2
(L+S − + L−S + + 2LzS z)

(A.1)

Where V is the electrostatic potential in radial coordinates, mo is the rest electron mass, e is the charge of the
electron, S and L are the spin and orbital angular momentum operators. The last expression is in terms of the
ladder operators. It can be used to compute the matrix elements between d-orbitals using the following eigenvalue
equations,

L±|lm〉 = ~
√

l(l + 1) − m(m ± 1)|lm ± 1〉 (A.2)

S±|lms〉 = ~
√

s(s + 1) − ms(ms ± 1)|sms ± 1〉 (A.3)

Lz|lm〉 = m~|lm〉 (A.4)

Sz|sms〉 = ms~|sms〉 (A.5)
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Since there are two electrons with opposite spin per orbital, we must include the space of spin eigenstates
|sms〉 = {| ↑〉, | ↓〉}. The new space of solutions is given by |lm〉⊗ |sms〉. Apply HS OI to the d-orbitals with spin yields,

HS OI |dxy ↑〉 = ξP
[(
|dyz〉 + i|dxz〉

)
| ↓〉 + i|dx2−y2〉| ↑〉

]
HS OI |dxy ↓〉 = ξP[(|dyz〉 + i|dxz〉)| ↑〉 − i|dx2−y2〉| ↓〉]

(A.6)

HS OI |dyz ↑〉 = ξP[(
√

3|dz2〉 + |dxy〉 + i|dx2−y2〉)| ↓〉 − |dxz〉| ↑〉]

HS OI |dyz ↓〉 = ξP[(
√

3|dz2〉 + |dxy〉 + i|dx2−y2〉)| ↑〉 + |dxz〉| ↓〉]
(A.7)

HS OI |dz2 ↑〉 = ξP
√

3(|dyz〉 − i|dxz〉)| ↓〉

HS OI |dz2 ↓〉 = ξP
√

3(|dyz〉 + i|dxz〉)| ↑〉
(A.8)

HS OI |dxz ↑〉 = ξP
[(√

3|dz2〉 + |dxy〉 − i|dx2−y2〉
)
| ↓〉 − |dyz〉| ↑〉

]
HS OI |dxz ↓〉 = ξP

[(√
3|dz2〉 + |dxy〉 − i|dx2−y2〉

)
| ↑〉 + |dyz〉| ↓〉

] (A.9)

HS OI |dx2−y2 ↑〉 = ξP
[(
|dyz〉 − i|dxz〉

)
| ↓〉 − |dxy〉| ↑〉

]
HS OI |dx2−y2 ↓〉 = ξP

[(
|dyz〉 − i|dxz〉

)
| ↑〉 + |dxy〉| ↓〉

] (A.10)

The SOI coupling between d orbitals can be obtained by calculating the matrix elements of HS OI . It is easy to see
that the diagonal elements are zero. That is, there are no spin transitions in the same orbital. The non-zero elements
are shown below,

〈dxy|HS OI |dx2−y2〉 = 2iσ̂zξP (A.11)

〈dyz|HS OI |dxz〉 = iσ̂zξP (A.12)

〈dxy|HS OI |dz2〉 = −i
√

3σ̂xξP (A.13)

〈dyz|HS OI |dx2−y2〉 = −iσ̂xξP (A.14)

〈dxz|HS OI |dx2−y2〉 = −iσ̂yξP (A.15)



Appendix B

Tight-Binding Method

This method allows to describe a traslational invariant system as a lattice. In the general case, consider n atomic
orbitals |φ j(r)〉 at each lattice point where j = 1, ..., n. Because of traslational symmetry, the system is invariant
under trasformations of r → r + Ri. Bloch theorem holds in this model. Then, the Bloch theorem allows us to
express the system in terms of Bloch functions |Φ(r,k) j〉. They are defined as:

|Φ(r,k) j〉 =
1
√

N

N∑
i=1

eik·R j,i |φ j(r − Ri, j)〉 (B.1)

where N is the number of unit cells in the system, r and k represent the real andmomentum space vectors respectively,
and Ri, j represents the j − th orbital in the i − th unit cell. Bloch functions Eq. B.1 are a set of basis functions that
can be used to write the general solution of the system as:

|Ψi(r,k)〉 =
∑

l

ci,l(k)|Φ j(r,k)〉 (B.2)

Let’s consider the Schrodinger equation in momentum space,

H(k)|Ψi(k)〉 = Ei(k)|Ψi(k)〉 (B.3)

Then, by taking the inner product with 〈Ψi(k)|, the energy is given by,

Ei(k) =
〈Ψi(k)|H(k)|Ψi(k)〉
〈Ψi(k)|Ψi(k)〉

(B.4)

Then, by substituting Eq. B.2, the energy becomes,

Ei(k) =
∑
l,m

c∗i,lci,m〈Φl(r,k)|H|Φm(r,k)〉

c∗i,lci,m〈Φl(r,k)|Φm(r,k)〉
(B.5)

Let’s define H and S as the transfer and direct matrices respectively. Their matrix elements are given as,

Hi j = 〈Φ j|H|Φi〉 S i j = 〈Φ j|Φi〉 (B.6)
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Then, the energy is given as,

E j(k) =
∑

i,l

c∗j,lc j,iHi,l

c∗j,lc j,iS i,l
(B.7)

Following a variational approach, we minimize the equation with respect to one of the parameters,

∂E j

∂c∗j,m
=

∑
l c j,lHm,l∑

i,l c∗j,lc j,iS i,l
−

∑
l c j,lS m,l

∑
i,l c∗j,lc j,iHi,l(∑

i,l c∗j,lc j,iS i,l

)2 = 0 (B.8)

Then, ∑
l

c j,lHm,l = E j

∑
l

c j,lS m,l (B.9)

Consider that there are j-bands in the system. Each one has its energy disperssion relation E j(k). Consider that
there are m-orbitals per lattice point. For two orbitals per unit cell, m = 1, 2, the system of equations can be written
in matrix form as: H11 H12

H21 H22

 c j1

c j2

 = E j

S 11 S 12

S 21 S 22

 c j1

c j2

 (B.10)

We have arrived to an effective Schrodinger equation, which can be written as,

HΨ j = E jS Ψ j (B.11)

The problem of solving the Schrodinger equation in a system with traslational invariance has reduced to obtaining
the components of H and S.

B.1 Direct Integral Matrix
Consider a system, as before, with two different orbitals per atom. The orbitals are labeled as A and B. The diagonal
terms of H are given by,

HAA =
1
N

N∑
i=1

N∑
j=1

eik·(Ri−R j)〈φA(r − R j)|H|φA(r − Ri)〉 (B.12)

HAA refers to the matrix element that connects A-orbitals. This sum counts the interaction of every A orbital, with
every other one of the same specie. For the diagonal terms, we assume that most of the interaction comes from the
same atom. Since the contribution of each atom is independent from one another, we sum up their contributions.
The diagonal terms correspond to the energy of the orbital.

HAA ≈
1
N

N∑
i=1

〈φA(r − Ri)|H|φA(r − Ri)|〉 =
1
N

N∑
i=1

ε = ε (B.13)

The non-diagonal terms represent the interaction between A and B orbitals. They are given by,

HAB =
1
N

N∑
i=1

N∑
j=1

eik·(RBi−RA j)〈φA(r − RA j)|H|φB(r − RBi)〉 (B.14)
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We assume the nearest neighboor approximation to first order. That is, the orbitals interact mainly with their first
nearest neighboors. The connection to each neighbor is given by the vectors δ j. The interaction with each neighbor
depends on the geometry of the system, then, it can be expressed using the Slater Koster parameters.

HAB ≈
1
N

N∑
i=1

∑
< j>

eiτ j E j
AB (B.15)

B.2 Overlap Integral Matrix
The diagonal terms of S are given by,

S AA =
1
N

N∑
i=1

N∑
j=1

eik·(Ri−R j)〈φA(r − R j)|φA(r − Ri)〉 (B.16)

Following the same approximation as for the Direct Integral Matrix,

S AA ≈
1
N

N∑
i=1

〈φA(r − Ri)|φA(r − Ri)|〉 =
1
N

N∑
i=1

= 1 (B.17)

If we consider that the orbitals are orthogonal, the non-diagonal terms of S will be zero. Assuming that they are
non-zero, in the nearest neighbor approximation, the Overlap Integral Matrix elements are given by,

S AB =
1
N

N∑
i=1

N∑
j=1

eik·(RBi−RA j)〈φA(r − RA j)|φB(r − RBi)〉 ≈
1
N

N∑
i=1

∑
< j>

eiτ j s0 (B.18)

Considering that the contribution of each atoms is independent from other atoms, we have that,

S AB = s0

∑
< j>

eiτ j (B.19)

Finally, the full problem of solving a traslational invariant system has reduced to obtaining an expression for Eq.
B.13, Eq. B.15, Eq. B.17 and Eq. B.19. It is important to remember that we are allowed to do this because of Bloch’s
theorem. Also, some approximations are involved that restrict us. Special attention should be taken to remain inside
the approximation validity range.





Appendix C

Theory of Superconductivity

It has been demonstrated that after cooling below some critical temperature, TC , some materials show zero static
electrical resistivity, and expulsion of themagnetic field56. In fact, superconducting systems are characterized by a gap
∆ that separates the ground states from the quasiparticle excited states57. A short review starts with the experimental
discovery of the Meissner effect58. From the theoretical approach, the most relevant phenomenologycal theory
came from London59. His ideas were leaded by the Bose-Einstein condensation phenomena which was discovered
by that time. He was able to relate a superfluid of fermions with the classical Drude picture. In fact, his theory
explained that a magnetic field decays exponentially inside a superconductor. However, microscopic insight was
required to fully understand superconductivity. An important contribution came from the mean field theory of phase
transition of Landau60. The Anderson-Higgs mechanism explained that the force carriers of the electromagnetic field
become massive inside a superconductor56,61 and thus the field decays. A definitive description of low-temperature
superconductors was proposed by Bardeen, Cooper and Schriffer in 195762. In this section we treat the equations of
BCS theory and discuss the most relevant facts of superconductivity. Furthermore, a brief discussion of p-wave and
s-wave pairing is included.

C.1 BCS Theory
The particles that contribute to the current in a superconductor are not electrons, but pairs of electrons called "Cooper
Pairs"62. Altough electrons are repulsive between each other, an attractive interaction can be effectively obtained
from electron-phonon interaction56. It is all about the time scales for the moving electrons and the vibrating cores.
The velocity of the cores depends on the Debye frequency, ωD, and in general, electrons are 102 times faster than
cores57. Such difference allows electrons to move in an effective attractive potential. A detailed derivation of the
attractive interaction made by electron-phonon interaction can be found in the lecture notes of Caster Timm about
superconductivity56.
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C.1.1 BCS Ground State

A Cooper pair is made up of two electrons that corresponds to states |k, ↑〉 and | − k, ↓〉. We define a Cooper pair
creation operator as,

P̂k = ĉ†k↑ĉ
†

−k↓ (C.1)

The ansatz proposed57 by Bardeen, Copper, and Schriffer is,

|ΨBCS 〉 = ΠkCkeαk P̂k |0〉 (C.2)

It is easy to see that, (P̂k)2 = 0, since it would be creating on occupied states. Then, we can expand Eq. C.2 as a
Taylor series up to first order. That is,

|ΨBCS 〉 = ΠkCk(1 + αkP̂k)|0〉 (C.3)

To determine the constants, normalization is imposed in the ground state as 〈ΨBCS |ΨBCS 〉. Directly, we obtain that,

1= |Ck|
2〈0|(1 + α∗kP̂†k)(1 + αkP̂k)|0〉 = |Ck|

2(1 + |αk|
2) (C.4)

Then,
|Ck| =

1√
1 + |αk|2

(C.5)

Let’s define,
uk =

1√
1 + |αk|2

vk =
αk√

1 + |αk|2
(C.6)

Finally, the BCS ground state can be written as,

|ΨBCS 〉 = Πk(uk + vkĉ†k↑ĉ
†

−k↓)|0〉 (C.7)

From Eq. C.7 we note that this state is different from the usual states in condensed matter. In fact, it only has paired
states of fermions. There are no single occupied of empty fermon states. Furthermore, the term (uk + vkĉ†k↑ĉ

†

−k↓)
accounts for all the possible combinations of filled or empty paired states. All this possibilities are encoded in a
single wavefunction as the BCS ground state.

C.1.2 BCS Ground State Energy

The BCS Hamiltonian is written as62,

HBCS =
∑
kσ

ξkc†kσckσ −
∑

k

∆∗kc−k↓ck↑ −
∑

k

∆kc†k↑c
†

−k↓ (C.8)

Where the pairing potential∆ depends on temperature. To diagonalize the BCSHamiltonianwe recall the Bogoliubov
transformations57. The new basis will be written in terms of new creation and annihilation operators, γk↑

γ†
−k↓

 =

u∗k −vk

v∗k uk

 [c†k ck
]

(C.9)
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The new operators {γk↑, γ
†

−k↓} are fermionic opertaros. That is, {γk↑, γ
†

k↑} = 1. From which follows that, |uk|
2 + |vk|

2 =

1. This transformation exactly diagonalizes the BCS Hamiltonian. For a full derivation we refer the reader to the
chapter 10 of Timm’s book56. That is,

HBCS =
∑
kσ

= Ekγ
†

kσγkσ (C.10)

where Ek =

√
ξ2

k + |∆|2 is the superconducting energy.

C.2 Bogoliuvob-de-Gennes Hamiltonian
The BCS Hamiltonian is valid in momentum space. That is, it represents the bulk of a superconducting system56,61.
Often there are interesting situations where the system is spatially dependent. For instance, consider Josephson
junctions30 or Andreev reflection processes. At this point, we introduce the BCS Ground State, Eq. C.7, as the
eigenstate of Eq. C.8. The resulting equation is in the first quantized form, that is, an eigenvalue equation,

HBCS |ΨBCS 〉 = EBCS |ΨBCS 〉 (C.11)

Note that the pairing terms in Eq. C.8 are bilinear in the creation and annihliation operators. That is, they act linearly
in each argument. Consider single particle excitations by defining a two-component spinor,

|Ψ〉 =

|Ψ1〉

|Ψ2〉

 =

 c†k,↑
c−k,↓

 |ΨBCS 〉 (C.12)

Consider the following conmmutators,

[HBCS , c
†

k′,↑] =
∑
kσ

ξkc†kσ[ckσ, c
†

k,↑] −
∑

k

∆∗kc−k↓[ck↑, c
†

k′,↑] −
∑

k

∆k[c†k↑c
†

−k↓, c
†

k′,↑]

[HBCS , c
†

k′,↑] =
∑
kσ

ξkc†kσδk,k′δσ,↑ −
∑

k

∆∗kc−k↓δk,k′

[HBCS , c
†

k,↑] = ξkc†k↑ − ∆∗kc−k↓ (C.13)

Also,
[HBCS , c−k′,↓] =

∑
kσ

ξkc†kσ[ckσ, c−k′,↓] −
∑

k

∆∗kc−k↓[ck↑, c−k′,↓] −
∑

k

∆k[c†k↑c
†

−k↓, c−k′,↓]

[HBCS , c−k′,↓] =
∑
kσ

ξkc†kσδk,k′δσ,↑ −
∑

k

∆∗kc−k↓δk,k′

[HBCS , c−k′,↓] = −ξkc†
−k↓ − ∆kc−k↓ (C.14)

Now, consider what is the result of applying the Hamiltonian to the state we defined in Eq. C.12
. It results in,

HBCS |Ψ〉 =

 HBCS c†k,↑
HBCS c−k,↓

 |ΨBCS 〉 (C.15)
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From the commutation relations derived in Eq. C.13 and Eq. C.14, we rewrite the previous equation as,

HBCS |Ψ〉 =

 ξkc†k↑ − ∆∗kc−k↓ + c†k,↑HBCS

−ξkc−k↓ − ∆kc†
−k↓ + c−k,↓HBCS

 |ΨBCS 〉 (C.16)

HBCS |Ψ〉 =

 (ξk + EBCS )|Ψ1〉 − ∆∗k|Ψ2〉

−∆k|Ψ1〉 + (EBCS − ξk)c†
−k↓|Ψ2〉

 (C.17)

At this point, we can define the Bogoliuvob-de-Gennes Hamiltonian considering that the reference energy EBCS = 0.
That is, excitations energy are measured with respect to the condesate energy,

HBdG(k) =

 ξk −∆∗k
−∆k −ξk

 (C.18)

The energy of the excitations are obtained by diagonalizing Eq. C.18. Energies are given by,

E±k = ±

√
ξ2

k + |∆k| (C.19)

To obtain the Real-Space Bogoliuvob de Gennes Hamiltonian, we Fourier transform Eq. C.18. It is written as,

HBdG(r) :=
1
N

∑
k

eik·rHBdG(k) =

 H0(r) −∆(r)
−∆∗(r) −H0(r)

 (C.20)

The diagonal contribution is the free Hamiltonian. Free represents that it is not superconducting, but is given by the
kinetic and potenial operators which are spatially dependent. It is given as,

H0(r) = −
~2

2m
∇2 − µ + V(r) (C.21)

The Schrodinger equation can be rewritten as,

HBdG(r)Ψ(r) = E(r) (C.22)



Appendix D

Topology in Condensed Matter: SSH
Model

The Su-Schrieffer-Hegger (SSH) model is a paradigmatic model of topological insulators (TI). It introduces the
foundations of a topological invariant quantity, and the treatement of the bulk and edge properties that will be
required latter. It was originally proposed to describe topological solitons in polyacetylene which is a linear polymer
(CH)x. The polyacetylene molecule has a periodic structure of single and double bonds between carbon atoms. It
can be represented as a periodic superlattice double-well potential with intra-cell and inter-cell hopping parameters.
The SSH Hamiltonian for a chain of L lattice sites for spinless fermions with intercell hopping t1 and intracell
hopping t2 can be written as,

H = −

L−1∑
jodd

(t1c†j+1c j + H.C.) −
L−2∑
jeven

(t2c†j+1c j + H.C.) (D.1)

Where c j are the usual annihilation operator with anticonmutation relations, and the hopping parameters are real.
We restrict our treatement to the single-particle basis by introducing an unit cell with two sublattices A and B. The
intercell hopping can be represented as |B, j〉 〈A, j|, and the intracell as |A, j + 1〉 〈B, j|. The Hamiltonian in this new
basis can be written as,

H = −

N∑
j=1

(|B, j〉 〈A, j| + H.C) −
N−1∑
j=1

(|A, j + 1〉 〈B, j| + H.C) (D.2)

D.1 Bulk Properties
The periodicity of the system implies that the Hamiltonian is invariant under traslations on the site space | j〉 → | j + l〉
where l is an integer times the lattice constant. The full Hamiltonian includes the site space, and the sublattice space.
Their states are defined as | j, ◦〉 = | j〉⊗ |◦〉. At this point we can introduce the concept of internal and external degrees
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of freedom. That is, | j〉 ∈ Hexternal and |◦〉 ∈ Hinternal. The external degree of freedom can be Fourier transformed
out,

|k〉 =
1
√

N

N∑
j=1

ei jk | j〉 where k =
2π
N
,

4π
N
, . . . , 2π. (D.3)

The inverse Fourier transform can be written as,

| j〉 =
1
√

N

2π
N ,

4π
N ,...∑
k

e−i jk |k〉 where j = 1, 2, . . . ,N. (D.4)

The orthonormality of the basis functions is written as,

N∑
j

e−(k−k′) j = Nδk,k′ . (D.5)

We substitute the previous expression the Hamiltonian. The Fourier transform of each term is given by,

N∑
j=1

| j〉 〈 j| =
1
N

N∑
j

∑
k,k′

e−(k−k′) j |k〉
〈
k′
∣∣∣

=
∑
k,k′

δk,k′ |k〉
〈
k′
∣∣∣ =

∑
k

|k〉 〈k| ,
(D.6)

N∑
j=1

| j + 1〉 〈 j| =
1
N

N∑
j

∑
k,k′

e−ik( j+1)eik′ j |k〉
〈
k′
∣∣∣

=
∑
k,k′

e−ikδk,k′ |k〉
〈
k′
∣∣∣ =

∑
k

e−ik |k〉 〈k|
(D.7)

Then, the Hamiltonian in the Fourier transform basis is written as,

H =
∑

k

|k〉 〈k| ⊗ [−(t1 + t2e−ik) |A〉 〈B| + H.C.] =
∑

k

|k〉 〈k| ⊗ HBloch(k). (D.8)

All the information of the internal degrees of freedom is contained inside the BlochHamiltonian HBloch(k). An ansatz,
based on the Bloch theorem, for the eigenstates is that |ψn(k)〉 = |k〉 ⊗ |un(k)〉 where |un(k)〉 = an(k) |A〉 + bn(k) |B〉 is
a Bloch function. Thus, the eigenvalue problem H |ψn〉 = En |ψn〉 can be written as HBloch |un(k)〉 = En(k) |un(k)〉. In
a matrix form, it can be expressed as,

HBloch =

 0 t1 + t2e−ik

t1 + t2eik 0

 . (D.9)

Its energy spectra is given by solving the secular equation and is given by,

E1,2(k) = ±

√
t2
1 + t2

2 + 2t1t2 cos(k) (D.10)
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D.2 Edge States
The bulk is characterized by a translational invariant symmetry, and the edges can be characterized in the thermody-
namic limit. To start, consider the fully dimerized limits. First, t1 = 1 and t2 = 0, which we call the trivial phase. In
this phase, the chain becomes a sequence of disconnected dimers.

Ĥ(|m, A〉 ± |m, B〉) = ±(|m, A〉 ± |m, B〉). (D.11)

The second case, t1 = 0 and t2 = 1, which we call topological. In this phase, the dimers of carbon atom are formed
between atoms from different unit cells. Each end of the chain remains unconnected and hosts a zero-energy state.

Ĥ(|m, A〉 ± |m + 1, B〉) = ±(|m, A〉 ± |m + 1, B〉). (D.12)

The ends of the chain are eigenstates of the Hamiltonian as,

Ĥ |1, A〉 = Ĥ |N, B〉 = 0. (D.13)





Appendix E

Effective Hamiltonians and Block
Diagonalization

An effective Hamiltonian allows us to obtain an approximate solution in a subspace of the full problem. It is solved
for certain subset of the eigenvalues and eigenvectors that are of our interest. Depending on the problem44, we
can neglect the second subspace, or consider its influence onto the first one. For instance, consider the model of
grapehene that we discussed in the Sec. 2.2. In that case, we restricted to one |pz〉 orbital per atom. Interestingly, the
physics of a Dirac-like Hamiltonian can be derived. However, there are far more interactions that can be included
into the model. For instance, there is a non-zero Spin Orbit interaction that our model cannot explain. Instead,
Kane and Mele propose an effective model that does include spin interactions38. Furthermore, the influence of the
d-orbitals describe an assymetry found at the K point63. The role of the block diagonalization methods is to include
the details of one subspace effectively into the interesting one. In the effective model, the |pz〉 states represent an
effective orbital that accounts for the extra interactions.

In general, effectiveHamiltonians can be divided into two subclasses: Energy-dependent and energy-independent.
Early developments of energy-dependent effective Hamiltonians were done by Lowdin64,65. On the other hand, the
energy-independent approach is used when there is degeneracy of the energy levels44. In this section we discuss
energy-independent partitioning techniques. We compare this with the early proposals of Lowdin, and use the
methodology to obtain the energies of the Spin Orbit interaction in a graphene monolayer.

E.0.1 Energy-Independent Partitioning Methods

To begin, let’s write in matrix notation the problem that we are describing. Let HAA and HBB block matrices that
represent the subspace A and B respectively. We are mainly interested in the subspace A, and we want to obtain an
effective Hamiltonian for A where B can be included as a correction up to an arbitrary order. The coupling between
these subspaces is given by HAB. We assume that the coupling between them is weak44. This problem can be written
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as,

H =

HAA HAB

H†AB HBB

 (E.1)

Our strategy is to diagonalize Eq. E.1 by considering a unitary transformation such that,

H′ = U†HU H′ =

HAA 0
0 HBB

 (E.2)

Let U = eS , where U and S are operators. To obtain a valid transformation, U must be unitary. Then,

1 = U † U = (eS )†eS = eS †eS = e−S eS = 1 (E.3)

As a consequence of the unitarity of U, we find that S must be anti-Hermitian. That is, S † = −S . Now, we have to
find a representation for S. It can be found in terms of the following infinite formula66,

e−LAeL = A + [A, L] +
1
2

[[A, L], L] + ... (E.4)

Let’s consider up to linear terms in the coupling. Then,

H′ = e−S HeS ≈ H + [H, S ] (E.5)

At this point, we consider the following representation for S in terms of M, which satisfies the anti-Hermiticity. In
any case, the problem now is to find a representation for the matrix M. This representation is, as we see, perturbative.

S =

 0 M
−M† 0

 (E.6)

We want to find Eq. E.5, so we find the conmmutators in that expression.

[H, S ] =

−HABM† − MH†AB HAAM − MHBB

M†HAA − HBBM† H†ABM + M†HAB

 (E.7)

The following equations are obtained,

H′AA = HAA − HABM† − MH†AB (E.8)

HAB + HAAM − MHBB = 0 (E.9)

Assuming that the inverse of HBB exists, from Eq. E.9 an expression for M can be derived. It is important to note
that the nature of this solution is perturbative. That is,

M = HAAH−1
BB + HAAMH−1

BB (E.10)

A feature of the Hamiltonian is that it should be invariant under diagonal shifts. Consider such shift for Eq. E.9 and
Eq. E.10. It reads,

HAB + (HAA + 1ν)M − M(HBB + 1ν) = 0 (E.11)
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M = (HAA + 1ν)(HBB + 1ν)−1 + (HAA + 1ν)M(HBB + 1ν)−1 (E.12)

It is clear that while the first equation is invariant under such shift, the latter one is not. In fact, by taking a perturbative
solution, we lose this symmetry. It is recovered only when we take the infinite sum of the corrections. Boykin44

propose a way to address this problem. It is based on the right choice for the basis functions. That is, choose a basis
set that "almost" diagonalize H. Then, the eigenvalue problem for each subspace is solved by,HAA 0

0 HBB

 v(α)
A

0

 = ε(A)
α

v(α)
A

0

 (E.13)

HAA 0
0 HBB

  0
v(β)

B

 = ε(B)
β

 0
v(β)

B

 (E.14)

The subspaces A and B are diagonal in this basis, that is,

[HAA]αα′ = ε(A)
α δαα′ (E.15)

[HBB]ββ′ = ε(B)
β δββ′ (E.16)

In order to calculate an effective Hamiltonian for the subspace A, we calculate the formula Eq. E.9. To do so,
and assuming Einstein summation convention, consider the following expressions

[HAAM]αβ = ε(A)
α δαα′Mα′β = ε(A)

α Mαβ (E.17)

[MHBB]αβ = ε(B)
β Mβα (E.18)

Then,
[HAB]αβ = (ε(B)

β − ε
(A)
α )[M]αβ

[M]αβ =
1

(ε(B)
β − ε

(A)
α )

[HAB]αβ (E.19)

The expression Eq. E.19 diverges when ε(B)
β = ε(A)

α ). In fact, they must be well-separated in energy for this expression
to be valid. If not, the two subsystems are strongly coupled and a series expansion fails. Furthermore, the expansion
can be considered up to an arbitrary order. Note that Eq. E.19 is linear in [HAB]αβ. The higher-order contributions
do not change this expression. Since we are interested in the A subspace, we find Eq. E.8 by using Eq. E.19,

[HAAM]αβ = ε(A)
α δαβ − [HAB]αα′

1

ε(B)
β − ε

(A)
α

[HAB]αβ − [M]αα′ [HAB]†

[HAAM]αβ = ε(A)
α δαβ − [HAB]αα′

1

(ε(B)
β − ε

(A)
α )

[HAB]†α′β −
1

(ε(B)
β − ε

(A)
α )

[HAB]αα′ [HAB]†α′β

[H′AA]αβ = ε(A)
α δαβ −

 1

(ε(B)
β − ε

(A)
α )

+
1

(ε(B)
β − ε

(A)
α )

 [HAB]α′β[HAB]∗αβ (E.20)
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