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Abstract

Recently, computer scientists have considered the use of second order differential equa-

tions [1] in order to provide a dynamic search trajectory to train neural networks [2], [3].

They are based on the heavy ball method of B.T. Polyak [4]. Previous research focused

on using Polyak’s method in order to speed up the convergence rate to a local minimizer

compared to simple steepest descent. We focus here on the glabal optimization aspect and

weaken the requirement on the objective to Lipschitz continuity instead of twice continuous

differentiability [2]. We analyze theoretically the non-smooth but convex case where the

ODE generalizes to an Ordinary Differential Inclusion (ODI). We show numerical results for

implementation of what we call Savvy Ball method which was referred to as TOAST in [5],

using the parallel programming environment OpenMP.

Key Words: ANNs, ODI, Heavy Ball, MNIST
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Resumen

Actualmente, cient́ıfos computacionales han considerado el estudio de ecuaciones diferenciales

de segundo orden, para brindar una trayectoria de búsqueda dinámica al entrenamiento de re-

des neuronales artificiales. Estas están basadas en el método de B.T. Polyak. Investigaciones

pasadas se han enfocado en el uso de este método para acelerar la tasa de convergencia a un

mı́nimo local comparado al método steepest descent. Esta tesis se enfoca en el aspecto de op-

timización global y asume a la función objetivo como Lipschitz continua en vez de dos veces

Lipschitz diferenciable. Analizamos teoreticamente los casos no continuous y convexos donde la

EDO se generaliza como una Inclusión Diferencial Ordinaria. Mostramos resultados númericos

de la implementación de nuestro método Savvy Ball mencionado antes como TOAST a través

de la región paralela dada por la libreŕıa OpenMP.

Palabras Claves: Redes Neruronales, ODI, Heavy Ball, MNIST
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1 Introduction and Motivation

Reproducing the human learning process is a study of almost thousands of years ago. The

first step to reinforce this insight appeared in 1943 with the model of a simple neural network

with electrical circuits [6]. So far the most significant transition happened with the Perceptron

Algorithm in 1958 by Rosenblatt, a neurobiologist from Cornell. He proposed the oldest neural

network capable of being trained with datasets [6]. The basics of the Perceptron Algorithm has

been extended to the so called Artificial Neural Networks (ANN).

Prediction models such as ANNs and Machine Learning (ML) algorithms solve a learn-

ing problem through steps such as: training, validating and testing the input datasets. Namely,

the objective function depends on a set of parameters and a known dataset called samples.

These functions are nonsmooth and nonnegative. Considering a non-smooth optimization prob-

lem, ANNs can be studied as a globally minimization problem for piecewise smooth objective

functions [7]. The most common approach is to neglect the non-smoothness applying a stochastic

gradient and to hope that it works with a global optimality.

In the context of ML, especially supervised learning, ANN looks for a prediction func-

tion (i.e. predictor) to fit the training sample and then to predict data based on the parameters

adjustment. Here, computer scientists named the average fitness error Emprirical Risk (ER),

which is the value to minimize as a non-smooth optimization problem. For example, we may

consider the single-layer case with the most used activation function for ANN, the Rectifier with

constant output weights p P t´1, 1ud. For this case, the prediction function is defined as follows

fpW̃ ;xq ” pJmaxp0,Wx` bq with W̃ ” pW, bq P Rdpn`1q

where the feature vector x P Rn and the corresponding label y P Rm comes from the training set.

The predictor has parameters such as the weights W̃ P Rdˆpn`1q including the inhomogeneous

shift b P Rd. Hence, the optimization problem is stated as follows,

min
W̃

ϕpxq “ 1
qm

m
ÿ

i“1

}fpW̃ ;xiq ´ yi}
2
q for q P t1, 2u

given a training sample set of m pairs pxi, yiq
m
i“1. Here, ϕ is the empirical risk and the objective

function of our learning task. [8]. Later on in describing optimization algorithms we will denote
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the optimization variables W̃ as x as customary when no confusion is possible.

In a neural network, the activation function transform the summed weighted input

from the node, i.e. the activation of the node for that input. In general, the most popular

activation function is the rectified linear activation function

Repxq “

$

’

’

&

’

’

%

x if x ą 0

0 if x ď 0

(1)

It has become the default activation function because of its performance and training profi-

ciency, even tough it is not differentiable at the origin, which turns the learning problem into a

nonsomooth optimization task.

Moreover, as observed before by Griewank and Rojas in [5], classical optimizers such as

Stochastic Gradient Method (SGM) and Steepest Descent(SD) also known as back-propagation

may be stumped at saddle points or local minima. Moreover, they assumed that the standard

gradient exists and is available at all iterates. As they already stated in [8] we should consider

the following

Proposition 1.1. For q “ 1 let’s assume that the locally Lipschitz continuous function ϕ : Rn Ñ

R has a non-empty bounded level set tx P Rn : ϕpxq ď ϕpx0qu for some x0 P Rn. Then, ϕ is not

differentiable at all geometrically isolated local minimizers and at least one global minimizers.
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Here, we consider the generalized gradient Bϕpxq defined by Clarke [9] whose existence

follows from the assumption that the objective function ϕpxq is everywhere locally Lipschitz

continuous. Then the steepest descent differential inclusion

´ 9xptq P Bϕpxptqq from xp0q “ x0 P Rn (2)

has at least one absolutely continuous solution trajectory xptq according to the theory developed

by Filippov (see [10] and [11]). According to the theorem of Picard-Lindelöf the solution xptq

is unique for the smooth case i.e. when Bϕpxq is equivalent to the singleton t∇ϕpxqu and the

gradient ∇ϕpxq is Lipschitz continuous. Moreover, uniqueness of xptq by (2) can also be assured

if ϕ is not everywhere differentiable but globally convex [12][8]. Moreover, it can then also be

proven that the limiting point x˚ “ limtÑ8 xptq exists and is a global minimizer, unless ϕ does

not attain its global infimum, possibly because it is unbounded below. However, the minimizing

trajectory xptq may have kinks and is in general difficult to follow unless ϕ is piecewise linear as

shown in [13].

Although that is not really needed in the convex case, one may try to increase the

chances of approaching a global or at least low local minimum by following the second order

differential inclusion

´ :xptq P Bϕpxptqq from xp0q “ x0 with 9xp0q P Bϕpx0q . (3)

In the smooth case, this equation models the motion of a body in a potential field given by ϕpxq

which motivated its naming by Polyak [14]. Hence methods that are based on this equation and

its discretizations are called heavy ball methods. In terms of global optimization this method has

the advantage that the momentum of the balls motion makes it to achieve an optimal convergence

rate. This is the idea behind the method of Snyman and Fatti [15] who developed a complex

optimization scheme involving random restarts and local minimization runs. In [16] they did a

detailed numerical comparison with differential evolution and other currently popular derivative

free methods. Global optimization methods are notoriously difficult to compare, especially if

nonsmoothness is allowed, see for example the survey [17]. Thus we will refrain from any claims

of empirical efficiency and instead emphasize theoretical properties. However, we note that

practically all objectives in machine learning are piecewise smooth in a way that allows the

evaluation of gradients or rather their piecewise linearization [18].

Mathematician 10 Thesis



School of Mathematical and Computational Sciences YACHAY TECH

2 Derivation of the Savvy Ball Trajectory

As already argued in [2] the drawback of the heavy ball motion is that it picks up speed and

momentum when going down hill and slows down when climbing up hill. It may thus race by

an attractive local minimum near the bottom of a valley but settle down in a dent on top of a

mountain. This is exactly the opposite behavior of what one wants in global minimization. We

therefore prefer the savvy ball equation

d

dt

„

9xptq

pϕpxptqq ´ cqe



P
´e Bϕpxptqq

pϕpxptqq ´ cqe`1
“ B

„

1

pϕpxptqq ´ cqe



. (4)

It can be rewritten as a first order system of one vector differential equation and one vector

inclusion

9xptq “ vptqpϕpxptqq ´ cqe , (5)

9vptq P
´e Bϕpxptqq

pϕpxptqq ´ cqe`1
. (6)

Now we prove that the conditions of the Filippov theorem [11] are satisfied, namely the values

of the multi-function on the right hand side are convex and outer semi-continuous(o.s.c) by

definition of the Clarke differential.

Definition 2.1. A set-valued mapping F : XÑÑY is outer semi-continuous (osc) at x0 if

lim sup
xÑx0

F pxq Ă F px0q

Proposition 2.2. Let Bϕ be the gradient of a Lipschitzian function. Then, the multi-valued

function

F px, vq “

„

pϕpxq ´ cqv,
´eg

pϕpxq ´ cqe`1



gPBϕpxq

has convex images and is outer semi continuous.

Proof. It is well known that the Clarke gradient is outer semi-continuous, i.e., for any sequence

xi Ñ x˚ (7)
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with wi P Bϕpxiq such that

wi Ñ w˚ (8)

we have

w˚ P Bϕpx˚q

Now, let’s consider a double sequence

pxi, viq Ñ px˚, v˚q

and

si “ rvipϕpxiq ´ cq
e,

´ewi
pϕpxiq ´ cqe`1

s P F pxi, viq

Since ϕ is continuous, from (7) and (8), we have immediately

vipϕpxiq ´ cq
e Ñ v˚pϕpx˚q ´ cq

e

Similarly, it follows that

´ewi
pϕpxiq ´ cqe`1

Ñ
´ew˚

pϕpx˚q ´ cqe`1

We know that w˚ P Bϕpx˚q, so that

s˚ P F px˚, v˚q

i.e., F is also outer semi-continuous.

Since ϕ is a convex set, we have for

gi P
´eBϕpxq

pϕpxq ´ cqe`1
and

ÿ

i

αi “ 1 with αi ě 0

ÿ

i

αipvpϕpxq ´ cq
e, giq “ pvpϕpxq ´ cqe,

ÿ

i

αigiq

“ pvpϕpxq ´ cqe, gq where g P
´eBϕpxq

pϕpxq ´ cqe`1

which means that the image of F is convex.

Mathematician 12 Thesis
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Hence there exists (at least) one absolutely continuous solution pxptq, vptqq for t ě 0

and obviously the tangent 9xptq has the same property. Since vptq is the integral of its almost

everywhere existing derivative 9vptq we get the integrated form

vptq “
9xptq

rϕpxptqq ´ cse
P

9x0

rϕpx0q ´ cse
´

ż t

0

e Bϕpxpτqq dτ

rϕpxpτqq ´ cse`1
. (9)

Definition 2.3. Given k points x1, ..., xk P R
n a conic combination of these k points is a vector

of the form λ1x1 ` λ2x2 ` ... ` ... ` λkxk where tλiui Ă R`. As k tends to infinity we can

generalize the sum to an integral with a positive weight function.

Thus we see that the tangent 9xptq is a conic combination of its initial value and negative

generalized gradients along the solution trajectory xpτq for τ P r0, ts. To get a better feel how

the trajectory behaves it is good to look at the second order expression for the acceleration :xptq,

namely

´ :xptq P

«

I ´
9xptq 9xptqJ

} 9xptq}2

ff

re Bϕpxptqqs

rϕpxptqq ´ cse`1
with } 9xp0q} “ 1 . (10)

which can be obtained by differentiation of (9). This formulation was derived directly in [2]

for the smooth case where we have a proper gradient Bϕpxq “ t∇ϕpxqu. As we can see the

tangent length is normalized such that } 9xptq} “ 1, which means that t represents an arc length

parametrization of the trajectory xptq. Now we can get a better feel for the role of the two

constants c called the target value and e ą 0 the sensitivity parameter. Since the projection in

front of the right hand side merely serves to normalize the tangent length } 9xptq} “ 1, we have

essentially the heavy ball equation (3) for the transformed potential logpϕpxq´cqe. The choice

of the two method parameters e and c is critical, as is typical for global optimization schemes,

which very often require many more than two more or less intuitive parameter choices. The

attribute savvy ball suggests that the method knows what it is doing as specified by the two

hyper parameters.

The target c indicates at any stage what range of function values we are looking for;

it should always be below the values ϕpxq already obtained at previous points x during the

optimization of the current objective. Once we have reached the current target value c it can be

lowered to a lower level unless we are already happy with what has been achieved. In machine

learning the objective is frequently a nonnegative empirical risk that one wants to push down as

close to zero as possible. Then a successive halving strategy makes sense until we reach a level
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that might be too ambitious.

As long as the actual function value ϕpxptq is much larger than the target c the recip-

rocal 1{rϕpxptqqcse`1 and thus the second derivative :xptq is small so that the trajectory moves

more or less straight ahead, hopefully ignoring smaller wiggles in the objective function. When

ϕpxptq comes closer to the target value c the reciprocal grows and the second derivative :xptq

corrects the tangent 9xptq towards the local direction of steepest descent or at least one element of

the negative generalized gradient ´e Bϕpxptqq. In the limit as ϕpxptqq converges to c the second

order trajectory (10) reduces the first order trajectory (2) with a different parametrization.

The sensitivity parameter e is also very important but not quite as variable as c. At

least in the convex case e should be selected equal to 1, which we consider as its default value.

In general the ideal value of e would be the reciprocal of the growth rate of ϕ towards infinity

so that for some reference point x̊

ϕpxq ´ ϕp̊xq „ }x´ x̊}1{e .

Of course such an exponent is hard to come by, but for smooth and essentially quadratic functions

a value e P r12 , 1s can be recommended. In our numerical experiments we have used the default

value e “ 1 throughout.

The thesis is organized as follows. In the following Section 3 we show some results

from non-smooth analysis which is the background needed to avoid the optimizer’s house of

horrors showed in [5], in Section 4 we bring further details for the convex case and show some

conditions where convergence is guaranteed. We develop some mathematical properties of the

Savvy Ball trajectory in the convex but not necessarily smooth case. In particular we show

that the inclusion (10) reaches the target level if that is not empty. We also establish rates of

convergence in terms of the parameter t, which represents the arclength of the search trajec-

tory. In the subsequent Section 5 we consider the case where the objective is non-convex but

homogeneous in the catchments surrounding some local minimizers. There we can show not

only convergence to desirable local minimizers below or at the target level but also divergence

from undesirable local minimizers above the target level. In Section 6 we show that on affine

functions with a proximal term the search trajectory is a circular segment, which allow us to

integrate piecewise linear functions in abs-normal form exactly. In Section 7 we introduce the

generalized abs-normal form and its abs-linear approximation at a given reference point. In
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Section 8 and 9 we consider various numerical integration options and show numerical results

on the standard MNIST problem. .

3 Fundamental Results of Nonsmooth Analysis

Since the prediction function and the loss function are Lipschitz continuous we can assume that

the empirical risk satisfies the same condition. Then we can apply the following theorem

Theorem 3.1. Let U be an open subset of Rn and ϕ : U Ă Rn Ñ R is locally Lipschitz

continuous. Then ϕ is differentiable almost everywhere (with respect to the Lebesgue measure

λ). That is, there is a set E Ă U with λpUzEq “ 0 and such that for every x P E there is a

linear function ∇ϕpxq : Rn Ñ R with

lim
yÑx

}ϕpyq ´ ϕpxq ´∇ϕpxqpy ´ xq}
}y ´ x}

“ 0

At the exceptional points x P UzE the so called limiting gradient can be defined as

Definition 3.2. At all points x P U we set

g P BLϕpxq ðñ
 

lim
nÑ8

∇ϕpxnq Ñ g : xn Ñ x and xn P E
(

Then, we can define the Clarke’s geralized derivative as follows [19]

BCϕpxq ” conv pBLϕpxqq

So now we can take a look into another known definition for generalized derivative which is

defined by the Hadamard derivative or directional derivative.

Definition 3.3. Let’s consider ϕ : U Ñ R. The Hadamard derivative in the direction h P Rn

at x P U is denoted by

ϕ1px;hq “ lim
tÑ0`

rϕpx`thq´ϕpxqs
t P RY t˘8u
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For merely Lipschitzian ϕ the Hadamard derivative may not exists in some directions

h. But it does always exist in the convex case, where we may alternatively define the so-called

sub-gradient of ϕ by:

Definition 3.4. Let’s assume that ϕ is convex, we define the sub-gradient Bϕ through ϕ1px0, ¨q,

Bϕ ” tu P Rn : uJh ď ϕ1px0;hq, for h P Rnu

which is identical to the set

tu P Rn : ϕpxq ě ϕpx0q ` u
Jpx´ x0q, for x P Rnu

Remark 3.5. The definition of Clarke’s generalized derivative is equivalent to the concept of

subgradient when ϕ is Lipschitz continuous and convex [20].

Remark 3.6. Let’s show an example where the subgradient can be empty for a Lipschitz function.

Let’s consider the real-valued function

fpxq “

$

’

’

&

’

’

%

x2 sinp 1
xq if x ‰ 0

0 if x “ 0

(11)

Here an important result from convex analaysis states that since f is no the upper envelope of

the set of all its affine minorants, we have the subgradient is empty. [21]

4 Analyzing the convex case

Practically all convergence proofs for gradient descent methods (see e.g. [22] and [23]) assume

that in some vicinity of a stationary point the objective function is convex. To show an asymp-

totic linear rate, which is sometimes called exponential in the machine learning literature, one

typically assumes strict convexity. Certainly the convex case is interesting in its own right for

both theoretical and practical reasons. We conjecture that in the convex case the system (5),

(6) has only one solution, but our attempts to prove that have so far failed. As it turns out in

the convex case we should use e “ 1 and since }xptq} “ 1 is enforced automatically we get the
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slightly simplified differential inclusion

´ :xptq P
”

I ´ 9xptq 9xptqJ
ı

Bϕpxptqq

rϕpxptqq ´ cs
with ´ 9xp0q P αBϕpx0q S 0 (12)

where 0 ă α P R can be selected such that } 9xp0q} “ 1. Notice that, if Bϕpx0q does include the

zero vector 0 the convexity already ensures that x0 is a global minimizer so that then nothing

remains to be done. Otherwise, we can take ´ 9xp0q to be any element of Bϕpx0q positively scaled

to a unit vector. While such 9x0 “ 9xp0q needs not be a descent direction with respect to the

objective function ϕpxq, it is well know that for any differentiable path xptq from xp0q “ x0 with

initial tangent 9x0 and any x̊ P Rn the Euclidean distance function rptq “ }xptq ´ x̊} satisfies

r0 9r0 “ d
dt

1
2rptq

2
ˇ

ˇ

ˇ

t“0
“ px0´x̊q

J 9x0

P αp̊x´x0q
JBϕpx0q ď αpϕp̊xq´ϕpx0qq . (13)

where the last inequality follows again by convexity. Hence we see that the distance to any point

x̊ with ϕp̊xq ă ϕpx0q is strictly decreasing for all small t ą 0. That applies especially to any

global minimizer x̊ if they exist.

Proposition 4.1 (Convergence in the convex case).

Suppose ϕ : Rn ÞÑ R is globally convex. Then we have for almost all t in the maximal interval

r0, t˚q Ă r0,8q on which the denominator ϕpxptqq´c is positive

(i) For any reference point x̊ the distance rptq “ }xptq ´ x̊} satisfies

9rptqrptq

rϕpxptqq ´ cs
ď

9r0r0

rϕpx0q ´ cs
` rϕp̊xqcs

ż t

0

dτ

rϕpxpτqq ´ cs2
(14)

(ii) If the level set tx P Rn : ϕpxq ď cu is non-empty the trajectory converges s.t.

ϕpx˚q “ c for x˚ P lim
tÑt˚

xptq

provided 9rptq ă 0 at t “ 0 as assumed in (13) or sometime later along the way.

Mathematician 17 Thesis



School of Mathematical and Computational Sciences YACHAY TECH

(iii) If (ii) holds with x˚ not being a global minimizer then t˚ ă 8 and

lim sup
tÑt˚

t´ 9xptqu Ă tv P αBϕpx˚q
ˇ

ˇ }v} “ 1, α ą 0u .

where lim sup denotes the outer limit of an ordered family of sets.

(iv) If ϕ is strongly convex at its unique global minimizer x˚ “ x̊ in that

ϕpxq ´ ϕpx˚q ě
σ
2 }x´ x˚}

2 for some σ ą 0

and c “ ϕpx˚q we get exponential convergence in that for all t P r0,8q

}xptq ´ x˚} ď }x0 ´ x˚} expp´σ̃tq for some σ̃ ą 0 .

except in the highly unlikely case where xpt˚q “ x˚ for finite t˚ ă 8.

Proof. For later reference we let e be general in the beginning. First we note that by definition

of vptq in (9) and its absolute continuity for almost all t

d

dt

„

rptq 9rptq

pϕpxptqq´cqe



“
d

dt

”

pxptq´x̊qJvptq
ı

“ 9xptqJvptq ` pxptq´x̊qJ9vptq

P
1

pϕpxptqq´cqe
´ e

pxptq´x̊qJBϕpxptqq

pϕpxptqq ´ cqe`1

“
ϕpxptqq` ep̊xxptqqJBϕpxptqqc

pϕpxptqq ´ cqe`1
(15)

ď
pϕp̊xq´cq

rϕpxptqq´cs2
if e “ 1 and ϕ convex (16)

Integrating with respect to t we obtain (14), which completes the proof of (i).

To prove (ii) let x̊ be any point in the level set. Then the second term on the right

hand side of (14) is nonpositive and we get the simple bound

9rptqrptq ď ´rϕpxptqq ´ csr´ 9r0r0{pϕpx0q ´ cqs ă 0 for t P r0, t˚q . (17)
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where the last inequality follows form 9r0 ă 0 as guaranteed by the choice of 9x0. This means

that the distance rptq “ }xptq ´ x̊} is monotonically decreasing for all x̊ with ϕp̊xq ď c, which

implies in particular that xptq stays within a convex compact subset of Rn. By definition of

the supremal t˚ we must have lim inftÑt˚ ϕpxptqq “ c or t˚ “ 8 or both. If both conditions

hold xptq must have a cluster point x˚ with ϕpx˚q “ c and since for x̊ “ x˚ the distance rptq

is monotonically decreasing x˚ must in fact be a proper limit of xptq as asserted. If the liminf

was not zero and thus t˚ “ 8 the negative right hand side of (14) would be bounded away from

zero and the squared distance rptq2 would go to zero in finite time for any x̊ in the target level.

This is obviously a contradiction, which completes the proof of (ii).

To prove the third assertion (iii) we note first that due to x˚ not being a global mini-

mizer the generalized gradient Bϕpx˚q cannot contain zero and the same is by outer semiconti-

nuity true for all x in some neighborhood of x˚. Moreover, we can assume that the convex hull

Tδ of all Bϕpxq with }x ´ x˚} ă δ does not contain zero and we have lim supδÑ0 Tδ “ Bϕpx˚q.

Then there is a supporting vector v P Rn such that for δ sufficiently small and some ν ą 0 we

have vJg ě ν for all g P Tδ. Moreover we may rewrite (9) to

´ 9xptq P ´ 9x0
rϕpxptqq ´ cs

rϕpx0q ´ cs
` rϕpxptqq ´ cs

ż t

0

Bϕpxpτqq

rϕpxpτqq ´ cs2
dτ . (18)

which shows that ´ 9xptq is a conic combination of ´ 9xp0q and vectors in Tδ with the weight of

´ 9xp0q going to zero as xptq converges to x˚. Since the vectors in Tδ are bounded the correspond-

ing multipliers α are bounded below by some α˚ so that for all 9xptq with t larger than some

t0 ă t˚

gJp´ 9xptqq ě α˚g
Jv ě α˚ν ” ν˚

ùñ gJp´xptq ` xpt0qq ě ν˚pt´ t0q .

No since by (ii) xptq Ñ x˚ the last inequality yields the bounds

t ď t˚ ď t0 ` g
Jp´x˚ ` xpt0qq{ν˚ ă 8 ,

which completes the proof of (iii) as the limiting set inclusion was already shown.

Mathematician 19 Thesis



School of Mathematical and Computational Sciences YACHAY TECH

Finally to prove (iv) we note that by (14) and the strong convexity assumption

9rptqrptq ď ´σ
2 r

2ptqr´ 9r0r0{pϕpx0q ´ cqs ă 0 for t P r0, t˚q . (19)

so that division by rptq ą 0 and integration of the differential inequality yields the asserted

exponential decline.

The proposition says essentially that we loose nothing compared to steepest descent

provided we know an upper bound c on the infimal value inftϕpxq|x P Rnu, which might be minus

infinity. The trajectory has a finite length t˚ if c is a strict upper bound, but unfortunately this

does not mean that it is easy to follow. In particular the curvature :xptq may tend to infinity so

that classical path following strategies may result in excessively small step and possibly infinitely

many drastic changes of direction. So far we have not found an example where this is actually

the case, so the question remains to be explored.

While for a strict upper bound c the trajectory will approach the limit point x˚ along

a convex cone we might get a spiraling convergence if c exactly equals the global minimum.

Of course that is rather unlikely to happen in practice, except if we know that a residual or

empirical risk can be driven exactly to zero. For the special case ϕpxq “ r and c “ 0 we get

9r “ 9r0 ă 0, which defines a spiral of finite length. Actually, we are sofar also lacking an example,

where the spiral is infinitely long.

Unfortunately, Proposition 3.1 does not address the thorny question what happens if

the target set tx P Rn|ϕpxq ă cu is empty and thus not reachable. Then one would want the

trajectory to run off to infinity, but that does not always need to happen. For example when

ϕpxq “ r2 one can easily see that c ă 0 and | 9r0| ă 1| leads to a trajectory that circles around

the origin infinitely often. In such situations we can either lower our expectation by gradually

increasing the target value c or reduce the sensitivity e to enable the trajectory to climb the wall

around a given undesirable minimizer x̊. Of course the latter makes only sense if sufficiently

far away from x̊ the function attains other local minimizers, some of them hopefully below or

at the actual target. Naturally, this cannot happen when ϕ is convex as we have assumed in

this Section 4. Since for a global optimization method getting away from undesirable stationary

points or local minimizers is very important, we consider in the next section the nonconvex case

with homogeneous center points.
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5 Properties in the homogeneous case

In this section we assume that for some reference point x̊ P Rn and all x P Rn

ϕp̊x` ρpx´ x̊qq ´ ϕp̊xq “ rϕpxq ´ ϕp̊xqsρd for ρ ą 0 (20)

which means that ϕ is positively homogeneous of degree d with respect to the center point x̊.

That holds for example if ϕpxq ´ ϕp̊xq is equal to its piecewise linearization ∆ϕp̊x;x ´ x̊q as

defined in Section 7 and the latter is homogeneous. Notice that we do not assume x̊ to be a

stationary point, let alone a minimizer.

Proposition 5.1. Let x̊ P Rn some reference point. For every x P Rn, from (20), fixing ρ “ 1,

we have

Bϕpxqpx´ x̊q “ tdpϕpxq ´ ϕp̊xqqu . (21)

which means that all elements in Bϕpxq have the same inner product with x´ x̊.

Proof. By first differentiation (20) with respect to ρ, since ϕ is positively homogeneous of degree

d with respect to x̊ we have that

Bϕp̊x` ρpx´ x̊qqpx´ x̊q Q drϕpxq ´ ϕp̊xqsρd´1

with equality holding if x̊` ρpx´ x̊q P E so that the generalized gradient is a singleton. Taking

ρ = 1,

Bϕpxqpx´ x̊q Q drϕpxq ´ ϕp̊xqs (22)

From the other hand, consider any g P BLϕpxq, then we have

g “ lim
iÑ8
∇ϕpxiq, xi P E

Then,

∇ϕpxiqpxi ´ x̊q “ dpϕpxiq ´ ϕp̊xqq
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which implies in the limit when iÑ8

gJpx´ x̊q “ dpϕpxq ´ ϕp̊xqq

Clearly, this property is then also true for any convex combination of limiting gradients and

thus all elements of the generalized gradient Bϕ.

In other words Proposition 5.1 says that the difference between various elements in

Bϕpxq is orthogonal to the radial direction x ´ x̊. Then it follows from equation (15) that the

distance rptq “ }xptq ´ x̊} satisfies

d

dt

„

rptq 9rptq

pϕpxptqq´cqe



“
ϕpxptqq` ep̊x´ xptqqJBϕpxptqq ´ c

pϕpxptqq ´ cqe`1
(23)

“
p1´ edqrϕpxptqq ´ ϕp̊xqs ` pϕp̊xq ´ cq

rϕpxptq ´ cse`1
(24)

Integrating with respect to t we get

9rptqrptq

rϕpxptqq ´ cse
“

9r0r0

rϕpx0q ´ cse
`

ż t

0

p1´ edqrϕpxpτqq ´ ϕp̊xqs ` pϕp̊xq ´ cq

rϕpxpτq ´ cse`1
dτ . (25)

Now if we choose e “ 1{d it is clear that the right hand side is monotonically growing or

falling depending on whether the constant ϕp̊xq´ c is positive or negative, respectively. For any

trajectory that moves at some time t towards x̊ in that 9xptqJpxptq ´ x0q “ 2 9rptqrptq ă 0 we thus

get the following result.

Proposition 5.2 (Convergence/Divergence in homogeneous case).

Suppose (21) holds with e ě 1{d and 9rptq ă 0 for any t ě 0. Then xptq must approach the level

set tϕpxq ď cu if ϕp̊xq is desirable, i.e. at or below the target level c. If ϕp̊xq is undesirable, i.e.

above the target level c, and e ď 1{d then the trajectory either diverges monotonically towards

infinity or reaches the target level somewhere else.

Proof. Let us first consider the case ϕp̊xq ď c, where x̊ is a desirable local minimizer. If the level

set was not reached 9rptq would by (25) be negative and bounded away from zero, which leads to

a contradiction since rptq cannot become negative. Thus we are left with the undesirable case

ϕp̊xq ą c but with e ď 1{d. If the trajectory stays clear of the feasible set the trajectory xptq is
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well defined for all positive t ě 0 . If rptq was nevertheless bounded above the integral on the

RHS of (25) would diverge. Hence 9rptqrptq in the numerator of the left hand side would also

grow unbounded, which is impossible. Hence rptq must be unbounded and its derivative 9rptq

must be positive at some t1 and thus by (25) all subsequent t ě t1. This completes the proof as

we must have monotonic divergence towards infinity.

The Proposition ensures that, once the search trajectory xptq enters a ball of radius r0

about some x̊ in which ϕpxq is homogeneous with respect to x̊ in the sense of (20) and e “ 1{d

then xptq does the right thing, i.e. it must reach the level set if ϕp̊xq ď c and otherwise, it

either finds another point in the ball below the target level or leaves the ball altogether. The

last possibility cannot occur if x̊ minimizes ϕ locally. Hence we see that, provided e “ 1{d,

the local homogeneous minimizers repulse the trajectory if they are undesirable and attract

it if they are desirable, i.e. above the target level . Irrespective of the local minimality of x̊

the undesirable possibility of the trajectory circling within the ball forever without reaching

the target has been excluded. Unfortunately, when e ą 1{d or ϕ does not satisfy the rather

stringent homogeneity assumption (20) this may still happen. Nevertheless, since all piecewise

smooth functions have homogenous local approximations one can be optimistic that the selective

behavior of the trajectory will work in many situations for e “ 1. In the piecewise linear case

to be considered later we will add a quadratic regularization term q
2}x̊}

2, makes the trajectory

turn back towards x0 when the quadratic term dominates the piecewise linear components,

which for e “ 1 will effectively limit the search domain. We will indicate the presence of this

regularization term by the prefix prox and thus refer for example to prox-linear or prox-piecewise-

linear functions.

6 Closed form solution in prox-linear case

No we reconsider the task of computing the savvy ball trajetory to the sum of an affine function

and a proximal term in the Euclidean norm of the form

ϕpxq “ µ` gJx` q
2}x}

2 with q ě 0 . (26)
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Obviously this kind of simple model is both convex and homogeneous. The latter property holds

if q “ 0 with degree d “ 1 with respect to all x̊ P Rn and if q ‰ 0 with degree d “ 2 with respect

to its unique global minimizer x˚ “ ´g{q.

Theorem 6.1. For ϕpxq as above px0, 9x0q with c ă ϕ0 “ ϕpx0q and } 9x0} “ 1 the solution of the

initial value problem for the ODE

:xptq “ ´
”

I ´ 9xptq 9xptqJ
ı ∇ϕpxptqq
rϕpxptqq ´ cs

(27)

is given for small nonnegative t by the circle

xptq “ x0 `
sinpωtq
ω 9x0 `

1´cospωtq
ω2 :x0 (28)

where

:x0 “

”

I ´ 9x0 9xJ0

ı

pg ` qx0q

pϕ0 ´ cq
and ω “ }:x0} . (29)

If ω and thus :x0 vanish because 9x0 is colinear with the gradient g`qx0, then the circle degenerates

to the straight line xptq “ x0 ` t 9x0.

Moreover the function value along the trajectory is given by

ϕpxptqq “ ϕ0 `

”

pg ` qx0q
J9x0

ı

sinpωtq
ω `

”

q ´ ω2pϕ0 ´ cq
ı

p1´cospωtqq
ω2 , (30)

In the straightline case ω “ 0 the trigonometric coeffcients on the RHS reduce to t and 1
2 t

2

Proof. Assuming ω ‰ 0 we get differentiating xptq twice

9xptq “ cospωtq 9x0 `
1
ω sinpωtq:x0 and :xptq “ cospωtq:x0 ´ ω sinpωtq 9x0 , (31)

which obviously ensures that the initial conditions 9xp0q “ 9x0, :xp0q “ :x0 hold and that } 9xptq} “ 1,

}:xptq} “ ω as well as 9xptqJ:xptq “ 0 for all t ě 0. When :x0 “ 0 the trigonometric quotients

reduce continuously to t and 0, respectively as claimed so that 9xptq “ 9x0 and :xptq “ :x0 “ 0. To

get the function value we apply Taylor’s theorem for the quadratic function ϕpxq with Hessian
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qI so that

ϕpxptqq “ ϕ0 `∇ϕpx0q
Jpxptqx0q `

1
2}xptqx0}

2

“ ϕ0 ` pg ` qx0q
J
”

sinpωtq
ω 9x0 `

p1 cospωtqq
ω2 :x0

ı

` 1
2

„

´

sinpωtq
ω

¯2
`

´

cospωtq
ω

¯2
´ 2 cospωtq

ω2 ` 1
ω2



“ ϕ0 ` pg ` qx0q
J9x0

sinpωtq
ω `

”

pg ` qx0q
J:x0 ` q

ı

p1´cospωtqq
ω2 .

This implies the asserted equality since by definition of :x0

pg ` qx0q
J:x0 “ ´pg ` qx0q

J
”

I ´ 9x0 9xJ0

ı

pg ` qx0q

pϕ0 ´ cq
(32)

“ ´pg ` qx0q
J
”

I ´ 9x0 9xJ0

ı ”

I ´ 9x0 9xJ0

ı

pg ` qx0q

pϕ0 ´ cq
“ ´ω2pϕ0 ´ cq .

The remainder of the proof consists in substituting the expressions for xptq, 9xptq and ϕpxptqq

into the right hand side of

aptq ” ´

”

I ´ 9xptq 9xptqJ
ı

rg ` qxptqs

N

rϕpxptq ´ cs (33)

and checking that the resulting acceleration aptq is indeed identical to :xptq as given in (31).

Firstly we note for the numerator on the right hand side that

pg ` qx0q “ pϕ0 ´ cqr 9x0 9xJ0 pg ` qx0q ´ :x0s P spanp 9x0, :x0q

and hence

g ` qxptq “ pg ` qx0q ` q
sinpωtq
ω 9x0 ` q

p1´cospωtqq
ω2 :x0 P spanp 9x0, :x0q (34)

Thus we see from (34) that the vector aptq like 9xptq and :xptq is always an element of the two

dimensional subspace spanned by 9x0 and :x0. For every t ě 0 the pair p 9xptq, :xptq{ωq forms an

orthogonal basis of this plane so that aptq “ :xptq is equivalent to 9xptqJ:xptq “ 0 “ 9xptqJaptq

and :xptqJ:xptq{ω “ ω “ :xptqJaptq{ω. All but the very last equality are obvious. To show it we
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compute using again (32) to eliminate :x0

:xptqJpg ` qxptqq

“
“

cospωtq:x0ω sinpωtq 9x0q
‰J
”

pg ` qx0q `
q
ω sinpωtq 9x0 `

q
ω2 p1´ cospωtqq:x0

ı

“ ώpg ` qx0q
J9x0 sinpωtq`pg ` qx0q

J:x0 cospωtq´q cospωtqp1´cospωtqq´q sin2pωtq

“ ώpg ` qx0q
J9x0 sinpωtqω2pϕ0 ´ cqpcospωtq ´ 1qω2pϕ0cq ´ qp1´ cospωtqq

“ ´pϕpxptqq ´ cqω2

where we have used the expression (37) for the function value. Thus we get finally

:xptqJaptq{ω “ ´:xptqJpg ` qxptqq{rωpϕpxptqq ´ cqs “ ω

which completes the proof.

When the function (26) is valid on all of Rn we get a full circle except in the special

case where it degenerates to a straight line due to 9x0 pointing exactly along or against the

the negative gradient ´∇ϕpx0q. The last radial escape possibility is the only case where the

trajectory runs off to infinity, whether or not the target can actually be obtained. Provided

q ą 0 the target level set is always the ball

T ”

!

x P Rn : }x` g{q}2 ď 2qpc´ bq{q ` }g{q}2
)

(35)

which may of course be empty. The unconstrained minimizer of the prox-linear function is then

given by

x˚ “ ´g{q with ϕpx˚q “ ϕ0 ´
1
2q }g ` qx0}

2 “ µ´ 1
2q }g}

2 . (36)

when q “ 0 so that ϕ is in fact linear the ball becomes the hemisphere

T ”

!

x P Rn : gJx ď c´ µ
)

which is always nonempty if g ‰ 0. In the rather uninteresting degenerate case g “ 0 the target

level set is empty if c ă b and equal to the whole of Rn otherwise. Whenever T is nonempty

and we do not have radial escape as defined above, all other trajectory reach the target, i.e.
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the boundary BT in a perpendicular fashion. Strictly speaking the ODE (27) has a singularity

where ϕpxq “ c so that the solution can be extended in a continuos fashion into the interior

of the target level in several ways. One of the infinitely many ways is the continuation of the

circle, another one is the transition to steepest descent 9x “ ´∇ϕpxq{}∇ϕpxq}, which would in

this special case simply follow a straight line to the global minimizer x˚ “ ´g{q which is the

center of the target ball. When exactly ϕpx˚q “ c all circular trajectories contain the global

minimizers directly, so that no continuation is necessary. In the case of a hemisphere with

r10 ą 0 the straight line would run off to infinity with ϕ becoming arbitrarily negative. These

observations are of course consistent with the Propositions 1 und 2 in the previous two sections.

If T is empty because c ă ϕpx˚q the trajectory will be a complete circle with the

undesirable global minimizer in its interior, except in the highly unlikely radial escape case. We

will have to design heuristic measures to detect this unproductive circling and reduce the target

to a more realistic level. Whenever T is nonempty and we do not have radial escape there exists

a value t0 that solves the trigonometric equation

c “ ϕ0 `

”

pg ` qx0q
J9x0

ı sinpωt0q

ω
`

”

q ´ ω2pϕ0 ´ cq
ı

p1´ cospωt0qq

ω2
(37)

if ω ‰ 0 and otherwise the simple quadratic

c “
”

pg ` qx0q
J9x0

ı

t0 `
q
2 t

2
0 .

Most of the time the point xpt0q will lie outside the current polyhedron as defined in the next

section and we can use t0 as an upper bound in searching for the exit point in the next subsection.

If either equation from has no positive solution we set t0 “ 8.

7 The Generalized Abs-Normal and Abs-Linear Forms

All objective functions in machine learning and other applications are evaluated by a sequence

of smooth intrinsic functions, arithmetic operations, and the nonsmooth element abs, which

can be used to represent min and max as well. Such an evaluation procedure can be formally
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interpreted as the generalized abs-normal form

Minfpx, zq s.t. z “ F px, z, hq and h “ |z| (38)

where

f : Rn`s`s ÞÑ R and F : Rn`s`s ÞÑ Rs .

Here we must require that the matrices

M ”
BF

Bz
P Rsˆs and L ”

BF

Bh
P Rsˆs

are strictly lower triangular. That means we can compute for any x the piecewise smooth

functions zpxq, which finally yields the objective

ϕpxq “ fpx, zpxqq : Rn ÞÑ R .

For simplicity we have assumed here that hpxq “ |zpxq| does not occur explicitly in

the response function f so that all nonsmoothness is incorporated in what we will sometimes

call the state equation z “ F px, z, |z|q. On the other hand we have a slight generalization of

the usual abs-normal form [18] where z does not occur directly as arguments of f and F . As a

motivation for allowing z itself to occur as an argument of F and f , it was noted in [13] that

for repeated applications of the maximum to multi-component vectors using the nonsymmetric

form

maxpu, vq “ u` 1
2 rz `|p| zqs with z “ v ´ u (39)

generates matrices L and M that are quite sparse. In contrast the repeated application of the

symmetric form

maxpu, vq “ 1
2 ru` v `|p| zqs with z “ v ´ u (40)

tends to fill in the matrix L in the standard form where M ” 0.

Given code for evaluating (38) every AD tool will be able to compute for given x and
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z the vectors y and the partitioned Jacobian

BrF´z, f s

Brx, z, hs
”

»

—

–

Z M´I L

aJ bJ 0

fi

ffi

fl

P Rps`1qˆpn`s`sq .

Given the generalized abs-linear form evaluated at some consistent point p̊x, z̊q we get the

piecewise linear model

z “ x̊` Zpx´ x̊q `Mpz ´ z̊q ` Lp|z| ´ |̊z|q

“ p̊x´ Zx̊´Mz̊ ´ L|̊z|q
looooooooooooomooooooooooooon

“c

`Zx`Mz ` L|z|, (41)

y “ ẙ ` aJpx´ x̊q ` bJ pz ´ z̊q

“ pẙ ´ aJx̊´ bJz̊
loooooooomoooooooon

“µ

`aJx` bJz . (42)

where the constant shift µ can be set to zero without loss of generality as we are doing optimiza-

tion. Note that we can unambiguously evaluate the piecewise linear functions zpxq and ypxq for

any x P Rn by forward substitution using the triangular structure of L and M .

The fundamental property on which our successive piecewise linearization approach is

based is the generalized Taylor approximation

ˇ

ˇϕpxq ´ ϕp̊xq ´∆ϕp̊x;x´ x̊q
ˇ

ˇ ď
γ
2 }x´ x̊}

2

where ∆ϕp̊x;x ´ x̊q ” ypxq ´ µ with y the piecewise linear approximation defined above. We

will generally refer to a quadratic regularization term in the Euclidean norm } ¨ } “ } ¨ }2 as the

proximal term and label functions including this term accordingly.

The key advantage of the piecewise linearization is that it allows us to deal with the

combinatorial aspect of nonsmoothness more or less explicitly. More specifically, the full domain

Rn is decomposed into polyhedra, which can be identified by the signature vector and matrix

σ “ σpxq ” sgnpzpxqq P t´1, 0,`1us and Σ ” Σpxq “ diagpσpxqq P Rsˆs
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as a function of the piecewise linear zpxq. The inverse images

Pσ ” tx P Rn : σpxq “ σu

are pairwise disjoint, relatively open polyhedra. Using the partial order of the signatures given

by

σ̃ ă σ ðñ σ̃iσi ď σ2
i for i “ 1 . . . s ,

we can define the essential closures

sPσ ” tx P Rn : σpxq ă σu ,

which are no longer disjoint and whose inclusion ordering corresponds exactly to the partial

ordering ă of the signatures such that

sPσ Ă sPσ̃ ðñ σ ă σ̃ .

Hence, we see that x̊ “ 0 with σ̊ “ σp̊xq belongs exactly to the essential closures P̄σ for which

σ ą σ̊. Consequently, we find for some open ball Bρp̊xq

Bρp̊xq “

$

&

%

ď

σąσ̊

Pσ

,

.

-

XBρp̊xq .

Here, the σ on the right hand side can be restricted to be definite, i.e., only have nonzero

components σi “ ˘1, which will be denoted by 0 R σ. Within each sPσ, we have |z| “ Σz so that

one can solve the equality constraint Eq. (41) for z to obtain the affine function

zpxq “ pI ´ LΣq´1pc` Zxq for x P sPσ .

Note here that due to the strict lower triangularity of L the unit lower triangular matrix pI ´

LΣq´1 is for any σ well defined and its elements are polynomial in the entries of L. For definite

signatures σ S 0 the elements x P sPσ are exactly characterized as solutions of the system of

inequalities

ΣpI ´ LΣq´1pc` Zxq “ pΣ´ Lq´1pc` Zxq ě 0 .
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If there is an x P P̄σ with definite signature σpxq S 0 then the polyhedron sPσ has a nonempty

interior. The converse needs not be true in the presence of degeneracy. From duality theory it

is known that either: sPσ has a nonempty interior (in which case we call it full-dimensional), or

the rows of pΣ´ Lq´1Z have a vanishing convex combination such that

λJpΣLq´1Z “ 0 with 0 ď λ ‰ 0 .

Obviously this can be checked by standard Linear Optimization techniques. If dimp sPσq “ n we

have by (42) the function value

yσ “ µ` aJx` bJΣpILΣq´1pc` Zxq , (43)

and correspondingly the gradient

gσ “ aJ` bJΣpILΣq´1Z “ aJ` bJpΣLq´1Z , (44)

where the last equality relies on definiteness, i.e., 0 R σ, so that detpΣq˘1. This explicit gradient

expression is crucial for our numerical integration procedure.

8 Piecewise Numerical Integration

In [24] an explicit integrator with a third order local truncation was suggested and tested. The

results were not entirely convincing. Of course we are not really interested in the solution

trajectory itself but only where it leads us to in the medium run. However, especially when

going uphill it is important that the integration is sufficiently exact such that the trajectory

does not turn back prematurely. The ability to climb uphill occasionally is essential for any

nonlocal search procedure. Moreover, we have to deal with kinks in the function ϕ and thus

jumps in its gradient. So rather than following the ODI on the original ϕ we perform the savvy

ball method on its piecewise linearization, where the trajectory can be expressed as a sequence

of circle segments.

An objective of the form (26) is not of practical interest, since the global minimizer x˚

can be computed directly without any significant effort. Instead we are interested in the case
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of prox-abs-linear forms as an assumed upper bounding approximation of a piecewise smooth

function in abs-normal form. If the starting point x0 lies in the interior of a polyhedron and one

chooses any c and x0, the resulting circle will usually leave the polyhedron unless it reaches the

level set or stays inside sPσ.

In the smooth case like for example on MNIST with a single layer neural model, the

maximal step t˚ will always be given by the root t0 of the equation (37) if that exists. That

value depends very strongly on the chosen q and generally may be too large. We have therefore

introduced an additional restriction, namely that the change in the direction 9x may not exceed

a certain angle α so that always ωt˚ ď α ă 2π. In our calculations we typically set α „

2π{30 which corresponds to 12 degrees. Also in the smooth case one can reset the reference

point x̊ to the current point after each step because the piecewise linearization just amounts to

linearization, i.e. normal differentiation. In the nonsmooth case that is not feasible because one

might repeatdly run into the same gradient discontinuity.

Note that all computations in the Savvy Ball method are of order pn`sq2, whereas

the local minimizer ALMIN involves matrix factorizations with a computational cost of order

pn`sq3. This is even more true for the application of mixed integer linear optimization packages

like GUROBI, which can be adopted to minimizing (42) subject to (41) since the constraints

can be written using bilinear products of real and binary variables [25]. Like SALMIN Savvy

Ball, is on the other hand dependent on the `2 norm and thus strongly affected by linear

variable transformations or diagonal rescalings. Fortunately, the free parameters in an abs-linear

prediction model and in particular a neural network seem to have naturally a quite homogeneous

scaling.

9 Experimental Results

9.1 Classification Problem: The MNIST Dataset for Digit Recognizer

In this paper, the Savvy Ball Method has been tested on the MNIST dataset which is a classic

source to test classification algorithms. The MNIST digit database is the most used sample for

supervised learning task such as character recognition and pattern recognition. It consists of

70000 images of digits from 0 to 9. All these black and white digit images are size normalized,
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and centered with fixed dimensions of 28ˆ 28 pixels as described in 1. The dataset is split into

the classifier training sample, that contains 60000 images, and the remainder belonging to the

classifier testing sample.

Figure 1: Here we can observe how the pattern recognition task works using MNIST samples.
That is a real-valued square matrix M28ˆ28 [26]

For each digit image the feature value x P X “ r0, 1s784 Ă R784 decribes the pixel value

associated to the grayscale image with a range of 0 to 255 or 0 to 65535 depending on 8-bit

or 16-bit data value. Moreover, the correspondant label y P Y that represent the itself digits

Y “ t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u. We consider the MNIST sample divided into two sets correspond-

ing to each learning stage: the training dataset D60000 and the testing dataset D10000.

We consider an abs-linear prediction function for single-layer case using the Savvy Ball

method. Hence, the Neural network model consider for the numerics has the following structure

...

...
...

x1

x2

x3

x784

z1

z10

y1

y10

Input

layer

Hidden

layer

Ouput

layer
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where the hidden layer is computed by z “ Wx ` b and the output layer is given by

y “ smaxpzq.

Now, for the classification task we used the loss function given by

ϕpW, bq “
60000
ÿ

k“1

´ logpsmaxpWxk ` bqlkq

where lk makes reference to the kth label and smax is the softmax activation function, which is

given by

yj “ smaxpzqj “
exppzj ´ zmaxq

ř10
i“1 exppzi ´ zmaxq

where zmax « max1ďiď10 zi. Here zmax is only introduced to avoid numerical overflow in the

exponential evaluations and can be set to zero mathematically or any number similar to zmax.

We can check that the gradient of the loss function with respect to z is given by

B

Bzj
p´ log y`q “

B

Bzj
p´ logpsmaxpzqlqq

“
B

Bzj
p´z` ` logpdenqq

“

$

’

’

&

’

’

%

´1` y` if ` “ j

y` if ` ‰ j

ùñ ∇zp´ log y`q “ y ´ e` where e` is the `´ th unit vector.

Applying the chain rule we can then compute the derivative of the k-th loss with ` “ `k as

∇b
`

´ logpsmaxpWxk ` bq`
˘

“ ȳk ´ e` and ∇W
`

´ logpsmaxpWxk ` bq`
˘

“ pȳk ´ e`qx
J
k

where ȳk “ Wxk ` isb. Since the ȳk are already available from the forward evaluation of the

loss values one only has to do 60000 rank-one updates of the derivative with respect to rW, bs.

This requires about the same effort as the computing the 60000 matrix vector products Wxk` b

so that the empirical risk and its gradient are about twice as expensive as computing the risk

function by itself. This complexity ratio is consistent with the theory of the reverse mode of

automatic or algorithmic differentiation.

As we can see the tasks of evaluating for each sample point the loss contribution and
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the gradient contribution are completely independent except for the additive accumulation of

these contributions. Thus we have 60000 parallel tasks whose results can be combined by a

so-called reduce operation. This structure could best be exploited by an MPI implementation,

but because we have a shared memory situation it is more convenient to utilize OpenMP. At

the time of writing we cannot report conclusive results on the size of the speed-up that can be

obtained.

An even better speed-up can be expected if one utilizes the fact that all 60000 feature

vectors xk are multiplied by the same matrix W so that we have in fact the product of a 10ˆ785

matrix with a 785ˆ 600000 matrix. For such numerical linear algebra operations very effective

Basic Linear Algebra Subprograms (BLAS) have been developed and implemented on all major

computing platforms. The BLAS interface are provided for the three levels

• Level 1: Encompasses linear algebra subroutines for operations depending only on vectors

(e.g. y “ αx` y ).

• Level 2: Consists of linear algebra functions for computing expressions of the form matrix-

vector multiplication (e.g. y “ αAx` βy).

• Level 3: A set of functions for computing operations like matrix-matrix multiplication

(e.g. Z “ αWX ` βZ).

We have obtained run-time reductions of some 40% using the BLAS 2 Routine for the individual

products Wxk ` b. Unfortunately, our efforts to implement BLAS 3 were not yet successful.
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9.2 Numerical Results

For the single layer model learning on MNIST it is well known that steepest descent and stochas-

tic gradient can reach an accuracy of some 91%. This is achieved essentially in one monotonic

descent sweep. Applying the Savvy algorithm we can do a little bit better, namely reaching

92% accuracy. This means that after training the model on the training set it yields fails only

on 8% of the test samples to classify the digits properly. As one can see in the figure 2 after a

more or less monotonic descent over some 400 steps, there is an extended search that involves

periods of uphill searches. That is essential for global optimization. It is also typical that after

the optimal result is obtained, further efforts to lower the risk value are made but of course not

successful. Eventually the calculation has to be terminated when the computing resources or

the users patience have run out.

Figure 2: The figure shows how an OMP implementation of the Savvy Ball method (TOAST)
speed up the convergence for less number of iterations for the same MNIST dataset.

The nearly horizontal stretches in the figure indicate periods where the current target

value has been nearly obtained. It is then reduced to a half, which leads to further reduction

possibly after a transitionary period of growth. The halving strategy works reasonably well as

we know that the globally minimal value should be close to zero. So far other strategies for

adjusting the target have lead to similar results and reducing the sensitivity e below 1 also

did not make a big difference. The parallelized version should of course generate the same

convergence curve but using less wall clock time.
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10 Summary and Conclusion

From the point of view of Non-smooth Analysis, we approached the study of the single-layer

ANN case as a globally minimization problem for piecewise smooth objective functions. We

considered a supervised learning task where the ANN looks for a predictor to fit the training

sample and then to predict data based on the parameters adjustment. Here the value to minimize

is the empirical risk.

For the non-smooth analysis, we consider the Clarke’s generalized gradient which is

well-defined from the assumption that the objective function ϕpxq is Lipschitz continuous. Then

the steepest descent differential inclusion given by (2) has at least one absolutely continuous

solution trajectory by Filippov’s theory. In terms of global optimization, the motion modeled in

(3) guarantees an optimal convergence rate, but its behavior is exactly the opposite of what one

wants. Therefore, we developed a method based on the Polyak’s heavy ball method associated

to equation (3) which we called Savvy Ball method. This method is given by the equation (4)

which satisfies the conditions of the Filippov Theorem as shown in Section 2. The attribute savvy

ball suggests that its behavior is controlled by the target value and the sensitivity parameter.

Moreover, in Section 3, we show up the background needed to avoid the optimizer’s

house of horror observed in [5]. Here, we remarked the fact that the definition of Clarke’s

generalized derivative is equivalent to the concept of sub-gradient and Hadamard derivative

when ϕ is Lipschitz continuous and convex. In section 4, we provide a detailed analysis to the

convex case where we bring conditions to guarantee a convergence rate. Here the curvature

:xptq may tend to infinity where we could not find an example where this scenario holds, so the

question remains to be explored. We did not address the question of what happens if the target

set is empty and unreachable. In such situation, we could either gradually increase the target

value or reduce the sensitivity parameter, but this cannot happen when ϕ is convex.

Since for a global optimization method getting away from undesirable stationary points

or local minimizers is crucial, we consider the nonconvex case with homogeneous center points

in Section 5. In section 6, we consider the task of computing the savvy ball trajectory to the

sum of an affine function and a proximal term in the Euclidean norm where it is both convex

and homogeneous. This result is an alternative proof which was presented by [5] where they

show that the initial value problem for the ODE given by (27) has a solution given by the circle
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(28). In section 7, we consider the abs-normal and abs-linear form where we observed that the

piecewise linearization allow us to deal with the combinatorial aspect of nonsmoothness through

the decomposition of the domain into polyhedra.

10.1 Conclusions

From the numerical simulations, we appreciate that the code performanced serially reachs a local

minima with less than 800 iterations where the CPU run-time was 2808.4348 seconds. We tried

to implement a parallel code but we noticed that parallelization is not a so easy task. However,

we was able to code a parallel region using Open MP which shows up an optimized performance

of 0.69379 % for 17 iterations. This was the number of iterations that holds an optimization for

the CPU run-time, since we observed a decay in the way the paralleled region was setted up. It

means that probably the time used for the communication between the threads is more than the

processing time. We suggest the use of another libraries such as Open MPI where the directions

for passing information and synchronization between threads is given explicitly. This hopefully

will speed up the performance. Moreover, it remains to be investigated from which conditions

the Savvy ball trajectories are unique in the convex case.
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A Savvy Ball method for the MNIST character recognition

problem: Code

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4 #include <time.h>

5 #include "mnist.h"

6

7 #define square(x) ((x)*(x))

8 #define sgn(x) (x>0? 1 :-1) // sign function

9 #define act(x) (x>0? x : 0) // activation function

10 #define actp(x) (x>0? 1 : 0) // activation derivative

11 #define max(x,y) (y>x? y: x)

12 #define min(x,y) (y<x? y: x)

13 #define firstsign(x,y,z) ((x !=0) ? sgn(x) : ((y != 0) ? sgn(y): sgn(z)))

14 FILE *fptre;

15 FILE *fptrt;

16 int m,mt ,n,n1 ,d, d1;

17 int sw;

18 double targetred;

19 double one = 1;

20 double* x;

21 double* p;

22 double ** X;

23 double ** Z;

24 double ** dZ;

25 int* Y;

26 double ** W;

27 double ** Wmin;
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28 double ** Wini;

29 double ** dW;

30 double ** ddW;

31 double ** bW;

32 double* z;

33 double* bz;

34 double ** Z;

35 double ** M;

36 double ** L;

37 double* a;

38 double* c;

39 double q; // for the benefit of CGS

40 double omega;

41 double e;

42 int l1=0;

43 int mnist =1;

44 double iprod;

45 double tnorm;

46 double gnorm;

47

48

49

50 void resetzero(int l, double* v)

51 { for(int i = 0; i< l; i++) v[i] = 0.0; }

52

53

54 int randint = 3;

55 int prime = 524287;

56 double myrandnumb () // between 0 and 1

57 { randint = (randint *7)% prime;
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58 // printf ("\n randint %f", randint /( double)prime );

59 return randint /( double)prime;}

60

61 int setsample () // allocating memory of features ,labels , layers and its derivatives

62 { Y = (int*) malloc(m*sizeof(int)); // scalar label

63 X = (double **) malloc(m*sizeof(double *)); // feature vectors

64 Z = (double **) malloc(m*sizeof(double *)); // middle layer

65 dZ = (double **) malloc(m*sizeof(double *)); // middle layer derivative

66 *X = (double *) malloc(n1*m*sizeof(double ));

67 *Z = (double *) malloc(d1*m*sizeof(double ));

68 *dZ = (double *) malloc(d1*m*sizeof(double ));

69 load_mnist ();

70 for(int i = 0; i < m; i++ )

71 { X[i] = *X + i*n1;

72 Z[i] = *Z + i*d1;

73 dZ[i] =*dZ + i*d1;

74 for(int j=0; j<n; j++)X[i][j] = train_image[i][j];

75 X[i][n] = 1;

76 Y[i] = train_label[i];

77 };

78 return 0;

79 };

80

81 void printmatrix(int m, int n,double ** A){

82 for (int i=0;i<m;i++)

83 {printf("\n row %i ",i);

84 for(int j=0;j<n;j++)

85 printf(" %f ", A[i][j]);

86 };

87 }
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88

89 double dot(int l, double* a, double* b) // Inner product evaluation

90 { double val;

91 val = 0;

92 for(int i=0;i<l;i++) val += a[i]*b[i]; // parallelization could be needed

93 return val;

94 };

95

96 double norm(int l, double* a) // Inner product evaluation or euclidean norm

97 { double valmax =0;

98 for(int i=0;i<l;i++) valmax = max(valmax , fabs(a[i]));

99 if(valmax ==0) return 0;

100 double val =0;

101 for(int i=0;i<l;i++) val += square(a[i]/ valmax );

102 return sqrt(val)* valmax;

103 };

104

105 void softmax(int l, double* b, double* e) // b and e can coincide

106 { double sum = 0;

107 double maxi =0;

108 for(int i=0; i<l; i++) maxi=max(maxi , b[i]);

109 for(int i=0; i<l; i++) sum += exp(b[i]-maxi);

110 for(int i=0; i<l; i++) e[i]= exp(b[i]-maxi)/sum;

111 }

112

113

114

115 void saxpy(int l, double* a, double q, double* b) // sum of a vector and a scaled one

116 { for(int i=0;i<l;i++) b[i] += q*a[i];

117 };
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118

119 void scale(int l, double* a, double q, double* b)// scalar product

120 { for(int i=0;i<l;i++) b[i] = q*a[i];

121 };

122

123

124 int pred(double* x,double* z, int l) // prediction function , y last component of z.

125 { for (int i = 0; i< d; i++) z[i] = dot(n1,W[i],x);

126 softmax(d, z, z);

127 z[d] = -log(z[l]);

128 return 0;

129 };

130

131

132 int bpred(double* x, double* z, int l) // incremental reverse of pred

133 { z[l]-=1;

134 for(int i=0; i < d; i++){

135 saxpy(n1, x, z[i], bW[i]); // parallel region must be implemented*

136 };

137 z[l]-=1;

138 return 0;

139 }

140

141 int b2pred(double* x, double* z, int l) // combination of pred and bpred

142 { for (int i = 0; i< d; i++) z[i] = dot(n1,W[i],x); //has been integrated into bemprisk

143 softmax(d, z, z);

144 z[d] = -log(z[l]);

145 z[l]-=1;

146 for(int i=0; i < d; i++) saxpy(n1 , x, z[i], bW[i]);

147 z[l]+=1;
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148 return 0;

149 }

150

151 int emprisk(double* risk) //emp risk penalized by the proximal term

152 { //*risk = 0.5*q*square(norm(n1*d,*W)); // proximal term

153 *risk =0;

154 for (int k = 0; k< m; k++ ) // depends globally on W

155 { pred(X[k],Z[k],Y[k]); // global z serves as workspace

156 *risk += Z[k][d]; //cross entropy

157 };

158 return 0;

159 };

160

161 double accuracy () // counts how often we are wrong on the test set

162 {

163 int count = 0;

164 x[n] = 1;

165 for (int k = 0; k< mt; k++ )

166 { int l = test_label[k];

167 for(int i= 0;i< n ;i++)

168 x[i] = test_image[k][i];

169 pred(x,z,l); // global z serves as workspace

170 int wrong = 0;

171 for(int i= 0;i < 10;i++)

172 if (z[i] > z[l]) wrong = 1 ; // label has not maximal probability

173 if(wrong) count ++;

174 };

175 return count /(( double)mt);

176 };

177
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178 int bemprisk(double* risk) // empirical risk and gradient evaluation ////////////////

179 { *risk =0;

180 double scale = 0; // could always be zero mathematically

181 resetzero(n1*d, *bW);

182 for (int k = 0; k< m; k++ )

183 { int l = Y[k];

184 x = X[k];

185 double sum = 0;

186 for (int i = 0; i< d; i++)

187 { z[i] = exp(dot(n1,W[i],x)-scale );

188 sum += z[i];};

189 z[l] -= sum;

190 for(int i=0; i < d; i++)

191 {z[i] /= sum;

192 saxpy(n1 , x, z[i], bW[i]);};

193 *risk += -log(1+z[l]);

194 scale += max(log(sum),-scale *0.1); // presumably this helps with the numerics

195 }

196 return 0;

197 };

198

199 // This is for the global method

200 void setcircle(double den) // compute the tangent and radial vector

201 {

202 // scale(d*n1 ,*dW ,1.0/ tnorm ,*dW); // (re)normalize the tangent

203 // double gnorm = norm(d*n1 ,*bW);

204 if(den <=0) /// should never happen

205 { omega = 0;

206 resetzero(d*n1 ,*ddW); //

207 printf("\n now we are following straight lines");
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208 scale(d*n1, *bW, -1/gnorm , *dW); // tangent = normalized steepest descent

209 tnorm = 1;

210 }

211 else

212 { tnorm = norm(d*n1 ,*dW); //norm of the tangent

213 iprod = dot(d*n1 ,*bW ,*dW)/ square(tnorm );

214 scale(n1*d,*dW,iprod/den ,*ddW); // set second derivative to

215 saxpy(n1*d,*bW ,-1/den ,*ddW);

216 // check = dot(n1*d, *ddW , *dW);

217 omega = norm(n1*d,*ddW); // normalize second derivative in Euclidean norm.

218 tnorm = norm(d*n1 ,*dW);

219 if(omega != 0) scale(n1*d,*ddW ,1/omega ,*ddW); //ddW is either zero or normalized.

220 };

221 };

222

223 double trigsolve(double omega , double zbar , double zhat ,double ztil , double* teast)

224 {double sigma = firstsign(zbar , zhat , ztil); // possible here but does is dicy in real switching case

225 double tea = *teast; double tau = tea*omega;

226 if (sigma < 0) { zbar *= sigma; zhat*= sigma; ztil*= sigma;}

227 double ztest = zbar - *teast*(fabs(zhat)-*teast*omega*min(0,ztil )/2);

228 if (ztest >= 0) return tea; // No change in upper bound since test failed

229 if(omega == 0){ // steppest descent case below target or by accident

230 if(zbar*zhat < 0) tea = -zbar/zhat; // second derivative term drops out

231 return tea;

232 }

233 else { zbar*= omega;} // ztil has like already has one omega in denominator

234 {double rho = sqrt(square(zhat)+ square(ztil ));

235 double zbplzt;

236 zbplzt = zbar+ztil;

237 if(fabs (zbplzt)<= rho)
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238 { double delta = atan2(zhat ,ztil);

239 double tautil = acos(zbplzt/rho);

240 if ((- delta - tautil > 0) && (zbar > 0.00000001) ) tau = - delta - tautil;

241 else if ( tautil - delta > 0.0000001 ) tau = tautil - delta;

242 else {tau = 2*M_PI - delta - tautil ;}

243 double err = zbar+ zhat*sin(tau) + ztil*(1-cos(tau ));

244 double slope = zhat*cos(tau) + ztil*sin(tau);

245 if(fabs(err) >= 0.00001) printf("\n omega %e root test tau %e res %e slope %e", omega , tau , err , slope);

246 };

247 return tau/omega;

248 };

249 };

250

251 // This is for the global method

252

253

254 int main (){

255 double y, el , elt , eta;

256 n = SIZE;

257 n1 = n+1;

258 srand (2019);

259 printf("feature dimension: %i \n",n);

260 d = 10;

261 q=0;

262 e = 1;

263 d1 = d+1;

264 printf("layer size: %i \n",d);

265 m = NUM_TRAIN;

266 mt = NUM_TEST;

267 printf("sample size: %i \n",m);
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268 int meth = 3;

269 printf("method: %i \n",meth);

270 sw = m*d1;

271 eta = 2*M_PI /60;

272 targetred = 0.5 ;

273 printf("angle bound: %f sensitivity %f targetred %f \n",eta , e, targetred );

274 int maxit =750;

275 printf("maxit: %i \n",maxit);

276 z = (double *) calloc(d,sizeof(double )); // intermediate layer

277 bz = (double *) calloc(d,sizeof(double )); // adjoints of intermediates

278 x = (double *) malloc(n1*sizeof(double )); //input data

279 //xb = (double *) calloc(n1 ,sizeof(double )); // input gradient

280 p = (double *) malloc(d*sizeof(double )); //fixed output weights

281 W = (double **) malloc(d*sizeof(double *)); // Weight matrix

282 Wmin = (double **) malloc(d*sizeof(double *)); // Weight matrix

283 Wini = (double **) malloc(d*sizeof(double *)); // Weight matrix

284 dW = (double **) malloc(d*sizeof(double *)); // Weight matrix tangent

285 ddW = (double **) malloc(d*sizeof(double *)); // Weight matrix curvature

286 bW = (double **) malloc(d*sizeof(double *)); // adjoined weight matrix

287 *W = (double *) calloc(d*n1,sizeof(double )); // continuous allocation vector

288 *Wini = (double *) calloc(d*n1,sizeof(double )); // continuous allocation vector

289 *dW = (double *) calloc(d*n1,sizeof(double )); // continuous allocation vector

290 *ddW = (double *) calloc(d*n1,sizeof(double )); // continuous allocation vector

291 *bW = (double *) calloc(d*n1,sizeof(double )); // contiguous allocation vector

292 *Wmin = (double *) calloc(d*n1,sizeof(double )); // continuous allocation vector

293

294 fptre = fopen("./ eltdat.txt","w");

295 for( int i = 0; i < d; i++) // allocation of weights and initializations

296 { W[i] = *W+n1*i;

297 Wmin[i] = *Wmin+n1*i;
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298 Wini[i] = *Wini+n1*i;

299 dW[i] = *dW+n1*i; // only needed for TOAST

300 ddW[i] = *ddW+n1*i; // "

301 bW[i] = *bW+n1*i; // "

302 };

303 for( int j = 0; j < n; j++) x[j] = (2*( double)rand ())/ RAND_MAX -1;

304 x[n] = 1;// allocation of single sample poin

305

306 // Verification of adjoints by devided differences

307

308 setsample (); // Initialize the training set of m samples with same random numbers

309 for (int i = 0; i < n1*d; i++)

310 (*W)[i] = (*Wini)[i] = myrandnumb ()- 0.5 ;

311 pred(x,z,1);

312 y =z[d];// prediction function evaluation

313 printf("\n prediction value %f \n \n ",y); // print prediction value

314 bpred(x,z,1); // adjoint prediction function evaluation

315 x[1] += 0.01;

316 pred(x,z,1); // check x-derivatives against divided difference

317 printf("%f, %f xerror \n \n ",xb[1],(z[d]-y)/0.01);

318 x[1] -= 0.01;

319 W[1][0] += 0.01;

320 pred(x,z,1); ///check W-derivative against devided differences

321 printf("%f, %f Werror \n \n ",bW[1][0] ,(z[d]-y)/0.01);

322 W[1][0] -= 0.01;

323 W[0][n] += 0.01;

324 pred(x,z,1); // check W-derivative against devided differences

325 printf("%12.7f, %12.7f berror \n \n ",bW[0][n],(z[d]-y)/0.01);

326 emprisk (&el);

327 double el0 = el;
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328 printf(" lossvalue %f, \n",el);/// empirical risk

329 bemprisk (&el);

330 printf(" lossvalue using bemprisk %f, \n",el);

331 emprisk (&elt); // check W-derivative against devided differences

332 // End checking against divided difference

333 // Begin learning

334 if(meth ==3)// This is for TOAST

335 {

336 double mul1 , mul2;

337 double taust = 0;

338 double teast = 0;

339 double target = 0 ; // not active currently

340 double targetol = 0.00000001;

341 double t = 0; // length of trajectory

342 double elmin = 1/0.0;

343 int it , bestit = -1;

344 for(it =0;it < maxit; it++){

345 bemprisk (&el); // Compute the function value and gradients

bb and bW

346 gnorm = norm(n1*d, *bW);

347 if(it %10==0) printf("it %i, emprisk %12.4f , target %12.4f , gnorm %12.4f , taustar %8.2f,

teastar %12.4f \n", it , el/m, target/m, gnorm/m, taust/eta , teast);

348 if(it %1==0) {fprintf(fptre ,"%i, %f \n",it ,log(min(1,el/el0 ))/ log (10.));};

349 if(el <elmin)

350 { elmin = el; bestit = it;

351 for (int i = 0; i < n1*d; i++)

352 (*Wmin)[i] = (*W)[i]; };

353 if(it == 0) // initialize tangent to perturbed negative gradient

354 { target = el0/2;

355 for (int i = 0; i < d*n1 ; i++)(*dW)[i] = - (*bW)[i]*(1 + 0.1* myrandnumb ());
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// initialize tangent to perturb SD

356 tnorm = norm(n1*d,*dW);

357 // printf (" initial gradient size %18.12f \n ", tnorm);

358 };

359 if(el <target +targetol ){

360 target *= targetred;

361 printf("\n it %i target reached and reduced el %18.12e target %18.12e \n ", it , el , target );

362 for (int i = 0; i < d*n1 ; i++) (*dW)[i] = - (*bW)[i]*(1 + 0.1* myrandnumb ());

// initialize tangent to perturb SD

363 tnorm = norm(n1*d,*dW);

364 if(target <0.0001) exit (50);

365 };

366 // Compute the circle

367 scale(d*n1 ,*dW ,1.0/ tnorm ,*dW);

368 tnorm = 1;

369 e = 1.0;

370 setcircle ((el -target )/e); //

371 // compute targetea

372 double zbar , zhat , ztil , targetea;

373 zbar = (el -target );

374 zhat = iprod;

375 ztil = 0.0;

376 double teastold = teast;

377 if(omega == 0)

378 { printf("it %i, omega equal to zero \n", it);

379 targetea = fabs((target -el)/zhat); // go to mimimizer which might be below target

380 }

381 else{

382 ztil = q/omega - zbar*omega;

383 teast = 2*M_PI/omega; // computing targetea
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384 targetea = trigsolve(omega , zbar , zhat , ztil , &teast );

385 };

386 teast = targetea;

387 if(it) teast = min(teast , teastold *3);

388 taust = min(teast*omega , eta);

389 if( taust == targetea*omega) printf(" Level set in reach %18.12f, target %18.12f, %i, \n ", el , target , it);

390 t += teast;

391 if(taust == 2*M_PI){

392 printf("Adjust c \n");

393 exit (1);

394 };

395 // Update the point and tangent

396 if(omega == 0){

397 saxpy(n1*d,*dW,teast ,*W);

398 } // straight line

399 else{

400 saxpy(n1*d,*dW ,sin(taust )/( omega*tnorm),*W);

401 saxpy(n1*d,*ddW ,(1-cos(taust ))/omega ,*W);

402 scale(n1*d,*dW ,cos(taust )/tnorm ,*dW);

403 saxpy(n1*d,*ddW ,sin(taust),*dW);

404 if(fabs(check0 -1)+ fabs(check1 -1)+ fabs(check2 -1)> 0.000001)

405 %18.12f, check1 %18.12f, omega %18.12e, check2

%18.12f, teast %f, \n ", check0 , check1 ,omega , check2 , teast);

406 printf("\n it %5d , el0 %5f, el %5f, target %5f, targetol %8.8f ",it , el0 , el , target , targetol );

407 };

408

409 };

410 printf("\n maxit reached elmin %18.12f bestit %i trajectory %f target %f

\n ", elmin/m, bestit , t, target/m);

411
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412 fclose(fptre);

413 W = Wmin;

414 for (int i = 0; i < d*n1 ; i++) (*Wini)[i] -= (*Wmin)[i];

415 double dist = norm(n1*d, *Wini);

416 printf("failure rate %12.4f distance %12.4f \n",accuracy(), dist);

417 return 14;

418 }

419 };
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