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Abstract
Quantum teleportation (QT) is the principal method of transferring quantum states from one place to another without
actually revealing which quantum state is being transferred. This protocol makes use of entangled states shared between
the sending and receiving stations, and two bits of classical information. However, in real communication systems
which are used to carry the entangled state, a typical noise results in the degradation of the fidelity of teleported states.
The protocol of controlled quantum teleportation (CQT) represents an extension to the standard quantum teleportation
(SQT) with includes the third entity, so called “controller“, and is based on sharing of a tripartite entangled quantum
state. The role of controller is to permit the fidelity of teleported state to be higher than it can be done using only
classical resources.

As a typical noise has detrimental e�ect on the performance of quantum teleportation protocols, In this work, a
study of di�erent noisy channels, which can exhibit the Markovian or non-Markovian dynamics is presented. Each
noisy channel is characterized by the teleportation fidelity and by the control power.

Keywords: Fidelity, entangled states, Master equation, Markovian, Non-Markovian
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Resumen

Teleportación cuántica (TC) es el principal método empleado para transferir estados cuánticos de un lugar a otro sin
revelar realmente qué estado cuántico se está transfiriendo. Este protocolo utiliza estados entrelazados compartidos entre
las estaciones de envío y recepción, y dos bits de información clásica. Sin embargo, en los sistemas de comunicación
reales que se utilizan para transportar el estado enredado, un ruido típico da como resultado la degradación de la
fidelidad de los estados teletransportados. El protocolo de teleportación cuántica controlada (TCC) representa una
extensión de la teleportación cuántica estandar (TCS) la cual incluye una tercera entidad, llamada "controlador", y se
basa en compartir un estado cuántico entrelazado tripartito. El papel del controlador es permitir que la fidelidad del
estado teletransportado sea mayor de la que se puede alcanzar empleando unicamente recursos clásicos.

Como un ruido típico tiene un efecto perjudicial en el rendimiento de los protocolos de teletransportación cuántica,
en este trabajo, se presenta un estudio de diferentes canales ruidosos, que pueden exhibir la dinámica markoviana o no
markoviana. Cada canal ruidoso se caracteriza por la fidelidad de teletransportación y por el poder de control.

Palabras clave: Fidelidad, estados entrelazados, ecuación maestra, markoviano, no markoviano
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Chapter 1

Introduction

1.1 Standard Quantum Teleportation

Quantum teleportation represents a process in which an unknown quantum state is transferred from the location A to
the distant location B using both the classical and quantum channels, as shown in Fig.1. This transport of quantum
information is reached without the physical transfer of the associated quantum information carrier [1]. Contrary to its
classical approach, quantum teleportation is based on the use of quantum entanglement in order to perform the transfer
of information tasks. The protocol mentioned above allows us to transmit this input quantum state using a relatively
small amount of classical information; for example, the case of a two-level quantum system only requires two bits
of classical information. The importance of this process lies in the ability to send any quantum information far huge
distances, avoiding the exposure of our teleported states to decoherence from environments and other adverse e�ects.

S

A B

E
Figure 1.1: The basic scheme of quantum teleportation, where the letter A stands for the sending station and B for
the receiving stations. The environment is marked as E. The solid lines represent quantum channels and dashed lines
classical channels.

The first protocol to achieve quantum teleportation was first described by Bennet et al. [2], where they talk about
how to teleport an unknown quantum state using a dual classical and Einstein-Podolsky-Rosen (EPR) channels. In
order to board this protocol, we will define the positions A and B as the places where Alice and Bob stay, which are far
away from each other. Then, the protocol is summarized as follows:

1



2 �.�. STANDARD QUANTUM TELEPORTATION

i At first, an EPRs pair will be prepared and send to Alice and Bob, which corresponds to a quantum system with
two qubits is created. The first qubit is sent to Alice, and the other one is sent to Bob. Such shared EPR state can
be represented as:

| iAB =
(|0iA ⌦ |0iB + |1iA ⌦ |1iB)p

2
(1.1)

where (1.1) is one of four maximally entangled two-qubit states, known as well as Bell states. This EPR pair now
becomes our quantum channel.

ii Then, Alice must perform a Bell measurement on one qubit of the EPR pair state | iA, and the input state | iin
which she wants to transfer to Bob. This measurement provides four possible outcomes, reflecting one of the
four possible Bell states.

iii This measurement is encoded in two bits of classical information and send to Bob via a classical communication
channel.

iv Due to the measurement performed by Alice, the second qubit of |PsiiAB, that Bob possesses, contains now the
initial state | iin. However, Bob needs to apply the corrective unitary transformation (represented by the X and
Z Pauli matrices) to be the protocol successful. Which operation he should apply is given by the two bits of
classical information received from Alice.

Above described protocol has been experimentally realized, for the first time, in photonic systems [3]. If we want to
illustrate this protocol, for example we should start by preparing an entangled channel, we could create a bell state
described by:

| +i = 1p
2

(|01i + |10i) (1.2)

Since a half of the EPR must be sent to Alice and the other half to Bob, Alice will own two qubits. The first one is the
target state to be teleported | i = ↵|0i+ �|1i, and the other corresponds to the first half of the EPR pair in equation 1.2.
In the other hand Bob only owns his corresponding half of the EPR pair. Now the three qubit state is given by:

| i ⌦ | +i = (↵|0i + �|1i) ⌦ 1p
2

(|01i + |10i)

=
↵p
2

(|001i + |010i) + �p
2

(|101i + |110i).
(1.3)

A measurement over the bell state is given by the states |�+i,|��i, | +i, and | +i which conforms a Bell basis set. The
above states can be used in order to expand the computational basis, obtaining:

|00i = 1p
2

(|�+i + |��i),

|11i = 1p
2

(|�+i � |��i),

|01i = 1p
2

(| +i + | �i),

|10i = 1p
2

(| +i � | �i).

(1.4)

Once the above relations are inserted in equation 1.3 we arrive to the term:

| i ⌦ | +i = ↵

2
(|�+i + |��i)|1i + ↵

2
(| +i + | �i)|0i + �

2
(| +i � | �i)|1i + �

2
(|�+i � |��i)|0i,

=
1
2
| +i(↵|0i + �|1i) + 1

2
| �i(↵|0i � �|1i) + 1

2
|�+i(↵|1i + �|0i) + 1

2
|��i(↵|1i � �|0i).

(1.5)



CHAPTER �. INTRODUCTION 3

Then Alice must perform the Bell measurement which will lead to obtain one of the four states |�+i,|��i, | +i, and
| +i, with equal probability equal to p = 1

4 . This Bell measurement can be expressed in standard measurement in the
computational basis, using the unitary operation CNOT before the measurement. This operation will transform Bell
states according to:

|�+i ! |00i,
|��i ! |11i,
| +i ! |01i,
| �i ! |10i.

(1.6)

Since Alice applies this unitary transformation just to her qubits, the global state becomes:

| i ⌦ | +i = 1
2
|01i(↵|0i + �|1i) + 1

2
|10i(↵|0i � �|1i) + 1

2
|00i(↵|1i + �|0i) + 1

2
|11i(↵|1i � �|0i). (1.7)

Then Alice performs a measurement over her two qubits in the computational basis, obtaining one of the four possible
outcomes 00, 01, 10, or 11. This measurement results in two bits of classical information which will be sent to Bob
via a classical communication channel. This measurement also will cause the collapse of the Bob’s particle leading
to ↵|0i + �|1i, ↵|0i � �|1i, ↵|1i + �|0i, and ↵|1i � �|0i, depending on which classical bits 01, 10, 00, or 11 Alice
measured respectively. Once Bob receives the two classical bits, he must perform a unitary operation depending on the
information gathered through the classical communication channel in order to recover the target state | i sent by Alice.

1.2 Controlled Quantum Teleportation

In the previous section, we have introduced the standard quantum teleportation, which is based on the bipartite entangled
states, but it has the potential to be extended to a multipartite one. The case of our interest is the tripartite variant of
quantum teleportation, as proposed by Karlsson and Boureane [4], which is called the controlled quantum teleportation
(CQT). In this case, we assume that our model will be similar to the previous one, with the main di�erence that for this
one will appear the participation of a third party that will be called the controller. The role of the controller (or Charlie)
is to guarantee the fidelity of teleportation to be in the quantum regime (higher than 2/3). As mentioned by Barasinski
and Svozilik [5], the main resource to be this protocol e�ective is the localizable entanglement.

So from now, our system will consist of a set of three subsystems which are again separated far from each other.
Alice at position A will still be the sender, and Bob at position B continues as the receiver. The only di�erence is
now Charlie, at the point C, acting as a controller (see the Fig.2). Similarly to the previous case, for the standard
quantum teleportation, the transference of information between particles will be carried out through both the classical
and quantum channels. In this way, the CQT protocol can be described by the following steps:

i The protocol is using an entangled state conformed by three qubits, where each one will be sent to Alice, Bob,
and Charlie, respectively. A typical example is the Greenberger-Horne-Zeilinger (GHZ) state:

| iABC =
(|0iA ⌦ |0iB ⌦ |0iC + |1iA ⌦ |1iB ⌦ |1iC)p

2
(1.8)

ii Once each of them has the corresponding qubit, Charlie will perform measurement over his qubit. The outcome
measurement will be encoded in two bit of classical information and then shared with Bob only through classical
channels if Charlie wants to allow the quantum teleportation.
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S

A

C
B

E
Figure 1.2: The scheme of the controlled quantum teleportation protocol. The letter A stands for the sending, B for
receiving, and C for controller’s stations. The environment is marked as E. The solid lines represent quantum channels
and dashed lines classical channels.

iii In a similar way, Alice will perform measurements over her EPR pair qubit and the qubit | iin she wishes to
teleport to Bob. Her outcome measurement will be encoded in two bits and send to Bob.

iv Now, depending on the information received from Alice and Charlie, Bob can modify his EPR pair in order to
obtain a state identical to the input state | iin.

Just recently, the controlled quantum teleportation was experimentally presented in [6].

1.3 Quantum gates and quantum circuits

In order to describe the changes occurring to a quantum state in quantum computation we may use quantum gates.
In classical computation a computer is built using logic gates, in the same way quantum computation can be done
making use of the analogous operation known as quantum gates. This quantum gates are useful in order to manipulate
the information. All the quantum gates can be expressed as unitary matrices, it means that a square complex matrix
(representing a quantum gate) must be in accordance to UU† = U†U = I. In the case for a single qubit the main gates
are:

X =

0
BBBBB@

0 1
1 0

1
CCCCCA Y =

0
BBBBB@

0 �i
i 0

1
CCCCCA

Z =

0
BBBBB@

1 0
0 �1

1
CCCCCA H =

1p
2

0
BBBBB@

1 1
1 �1

1
CCCCCA

which acts over just on qubit, allowing us to manipulate this input quit in order to apply the basic operations of
quantum computing. X quantum gate is equivalent to NOT classical logic gate, Y and Z represent rotation of the
qubit on the Bloch sphere, anb Hadamard (H) gate creates a superposition of our single qubit. In a similar way this
quantum gates can be applied onto multiple qubits which is the general case of the gates. Within this generalization
we found a case known as controlled-Not gate, it has as input two qubits known as the control qubit and the target
qubit respectively. In such case target qubit will flip or not depending on the control qubit following the rules:
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Figure 1.3: QT circuit conformed by the quantum gates CNOT, H, X, and Z. It is based in the Standard quantum
teleportation protocol described above in the first section.

|00i ! |00i, |01i ! |01i, |10i ! |11i, |11i ! |10i. This CNOT gate has a matrix representation given by:

CNOT =

0
BBBBBBBBBBBBBBBB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
CCCCCCCCCCCCCCCCA

(1.9)

These quantum gates can be put all together into a sequence in order to build quantum circuits. For example quantum
teleportation protocol can be described through a quantum circuit as the one represented in figure 1.3.

Then the correspondent Unitary operation which describes the QT circuit can be described by the sequence of the
employed quantum gates, operating them from right to the left as is represented by ÛQT = Ûz13Ûc23Ĥ1Ûc12, where the
quantum gates are:

Ûc12 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Ĥ1 =
1p
2

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 �1 0 0 0
0 1 0 0 0 �1 0 0
0 0 1 0 0 0 �1 0
0 0 0 1 0 0 0 �1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Ûc23 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Ûz13 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 �1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 �1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

In the previous definitions for unitary operations sub-indices 1, 2, and 3 are used to point the di�erent qubits in the
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quantum circuit from the upper part to the lowest. In such case sub-indices 1, and 2 are the qubits owned by Alice, and
3 is the qubit owned by Bob. Qubits 2 and 3 are the corresponding qubits of the EPR pair. Finally the QT circuit can
be expressed in its matrix form as:

ÛQT =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1p
2

0 0 0 0 0 1p
2

0
0 1p

2
0 0 0 0 0 1p

2
0 0 0 1p

2
0 1p

2
0 0

0 0 1p
2

0 1p
2

0 0 0
1p
2

0 0 0 0 0 � 1p
2

0
0 � 1p

2
0 0 0 0 0 1p

2
0 0 0 1p

2
0 � 1p

2
0 0

0 0 � 1p
2

0 1p
2

0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(1.10)

1.4 Fidelity as a quantitative description of protocol e�ciency

In classical information protocols copying an unknown classical state is as easy as applying a CNOT operation over our
state in order to get a copy of it. Since we are treating with quantum information, make an exact copy of an unknown state
does not result such easy. According to the no-cloning theorem, it is impossible to make an exact copy of an unknown
state [1]. In this sense, the use of EPR pairs is a helpful tool in order to apply the entanglement-assisted teleportation,
in which in order to replicate an arbitrary unknown state, we destroy it in one place and further we reconstruct the
exact state in another place. When we are using this principle to create a replica of these states, it is important to know
with how large accuracy does our operation copy of the original state. In order to quantify this accuracy, the fidelity
becomes a helpful tool which allows us to verify how good the quality of our copy is. This fidelity can be cataloged
as a distance measure between two states, as this distance becomes closer to 1, we can be secure that both states are
becoming more similar. The fidelity is a crucial tool in quantum communications since the transmission of information
in the real world does not result as perfect as one could wish. For example, if we are trying to communicate a sequence
of classical information, this transmission will decay in quality, since, according to Jozsa [7], it will be subject to:

• Limitations in the resources, requiring our data to be compressed before sending it

• The existence of random noise in the communication channels, which a�ects causing errors in data transmission.

In this way, such as in the classical regime, the quantum transmission of information can be a�ected, for example,
by the quantum noise. Making use of this knowledge, we can extract information about the quality of our quantum
teleportation process through the fidelity measurement. Fidelity measurement between two states is also known as the
Uhlmann transition probability, and it is defined by the expression:

F(⇢,�) =

Tr

qp
⇢�
p
⇢
�2
, 0  F  1. (1.11)

For example lets suppose we have the states | i = |1i, and |�i = |0i. Then we can calculate their respective density
operators as:

⇢ = |1ih1| =
0
BBBBB@

0 0
0 1

1
CCCCCA , (1.12)

� = |0ih0| =
0
BBBBB@

1 0
0 0

1
CCCCCA . (1.13)
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Then the Fidelity between both states is given by:

F(⇢,�) =

2
66666666664
Tr

vuutvt0
BBBBB@

0 0
0 1

1
CCCCCA

0
BBBBB@

1 0
0 0

1
CCCCCA

vt0
BBBBB@

0 0
0 1

1
CCCCCA

3
77777777775

2

=

2
666666664Tr

vt0
BBBBB@

0 0
0 0

1
CCCCCA

3
777777775

2

= 0.

(1.14)

Fidelity can be within the range [0, 1], where the value of 1 stands for identical states, and 0 for the opposite states.
From Jozsa [7], we can find some properties of the fidelity, such as it is symmetric, non-negative, continuous, a concave
function of both states, unitarily invariant, equal to unity if and only if both states do coincide. Its properties made it a
fantastic candidate in order to characterize the preservation of our states through quantum communication.

1.5 Transmission Through Noisy Channels

According with the last sections, when we are performing task which involves the transmission of information, we
are assuming that there can exist some lost of the integrity of the information. The interaction of our system with
the environment for example, can a�ect the coherence of a state. Loss of coherence may mean that our entangled
state becomes a mixed state, causing the loss of fidelity in the teleportation process consequently. According to Nielse
Chuang [1], this interaction within our protocols can be present in di�erent steps as: i) States to be teleported are mixed,
ii) Quantum channels are noisy, and iii) Noise during the Bell Measurement and corrective unitary operation. In order
to observe how this noise is a�ecting the accuracy of the teleportation process, a solution for the master equation is
necessary. The Master equation consists of an expression that allows us to introduce and describe noise in continuous
time for a given system. The most common form of this equation is given in the form of Lindblad equation which is [8]:

d⇢
dt
= � i
~

[H, ⇢] +
X

i,↵

 
Li,↵⇢L†i,↵ �

1
2
{L†i,↵Li,↵, ⇢}

!
(1.15)

This is the most general form of Markovian master equation. When the first part corresponds to the time-free evolution
of the density state ⇢ and the second part corresponding to the sum of terms, is time dependent. The Li,↵ operators are
known as Linblad operator describes the decoherence of the evolving system. Lindblad operator is defined according
to [8] as:

Li,↵ =
p
�i,↵�

(↵)
i , (1.16)

where the sub-index i indicates the qubit over which decoherence is acting, and ↵ sub-index stands for the type
of decoherence introduced to system with ↵ = x, y, z. The X, Y, and Z are Pauli matrices and works introducing
decoherence in a specific direction. The � parameter is a eigenvalue from a diagonal positive semidefinite matrix. This
� parameter also allow us to control the noise switching it on and o�.

1.6 Non-Markovian Dynamics

As introduced above, our system can not be thought of as an ideal one since it is an open systems that is subject to
interactions with the environment. This unavoidable interaction generates a system-environment correlation, which



8 �.�. NON-MARKOVIAN DYNAMICS

means a loss of coherence in our system [8]. In this sense, A non-Markovian system could be understood as the memory
e�ects existing in an environment, such that they totally depend on the exchange of information between the system
and the environment. If we think about this flow of information, we could basically have two scenarios: the first one
in which the system is losing information constantly as it evolves in time (which is the Markovian case), and a second
one in which system and environment interchange information in both flow directions, in this way the system is losing
and recovery information from the environment (the non-Markovian case). According to Breuer et al.[8], "quantum
non-Markovianity is associated with the notion of quantum memory". As mentioned previously, the use of fidelity
results very useful in order to characterize how close are two states, then this idea can also be employed to express how
memory e�ects are a�ecting in our case. If we continue thinking about the quantum teleportation, immediately comes
to us, the idea of Alice preparing a state to be sent to Bob. If the prepared state is in a system which is coupled to the
environment, as the system starts to lose information, then they are experimenting an e�ect that can be described as
similar to sending some information through a noisy channel, which will produce a further loss of the fidelity between
the state to be sent by Alice and the one that Bob is receiving. If these losses of fidelity are continuous in time, we may
say that the system is experimenting the Markovian behavior. Conversely, if the behavior in time results nonmonotonic,
it means that for a determined period of time, the fidelity starts to increase, then we are talking about the non-Markovian
behavior. Since there exists a bidirectional flow of information, the system starts losing information that is stored by
the environment and then given back to the system, influencing the system.



Chapter 2

Results & Discussion

2.1 Standard Quantum Teleportation

For the first part, we demonstrate how under a non-entangled channel, our fidelity is upper limited by the classical limit
fidelity 2

3 . In this case, our non-entangled channel is given by:

| noni = |0A0Bi (2.1)

With the input state described by:
| ini = cos

✓

2
|0i + ei� sin

✓

2
|1i (2.2)

Which have the correspondent density operators:

⇢̂AB =

0
BBBBBBBBBBBBBBBB@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1
CCCCCCCCCCCCCCCCA
, (2.3)

⇢̂in =

0
BBBBB@

cos2
⇣
✓
2

⌘
e�i� sin

⇣
✓
2

⌘
cos

⇣
✓
2

⌘

ei� sin
⇣
✓
2

⌘
cos

⇣
✓
2

⌘
sin2

⇣
✓
2

⌘
1
CCCCCA (2.4)

Then the full density operator for our system is given as:

⇢̂ = ⇢̂in ⌦ ⇢̂AB =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

cos2 ✓
2 0 0 0 e�i� cos ✓

2 sin ✓
2 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ei� cos ✓
2 sin ✓

2 0 0 0 sin2 ✓
2 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (2.5)

where ⇢̂in = | inih in| and ⇢̂AB = | nonih non|.

9
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The output state is obtained as:

⇢̂out = TrAB
h
Ûqt (⇢̂in ⌦ ⇢̂AB) Û†qt

i
,

= TrAB

2
6666666666666666666666666666666666666666664

1
2 cos2

⇣
✓
2

⌘
0 0 1

4 e�i� sin(✓) 1
2 cos2

⇣
✓
2

⌘
0 0 1

4 e�i� sin(✓)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
4 ei� sin(✓) 0 0 1

2 sin2
⇣
✓
2

⌘
1
4 ei� sin(✓) 0 0 1

2 sin2
⇣
✓
2

⌘

1
2 cos2

⇣
✓
2

⌘
0 0 1

4 e�i� sin(✓) 1
2 cos2

⇣
✓
2

⌘
0 0 1

4 e�i� sin(✓)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
4 ei� sin(✓) 0 0 1

2 sin2
⇣
✓
2

⌘
1
4 ei� sin(✓) 0 0 1

2 sin2
⇣
✓
2

⌘

3
7777777777777777777777777777777777777777775

(2.6)

where the operator Ûqt describing the standard teleportation protocol is defined as:

Ûqt = Ûz13Ûc23Ĥ1Ûc12. (2.7)

Here, we use numbers 1-3 to distinguish di�erent qubits, 1 corresponds to the input state, 2 and 3 to the quantum
channel. The appearing operators are: Ĥ is the Hadamard operator, Ûc is the C-NOT, and Ûz is the C-Z. [1]

With the output teleported state:

⇢̂out =

0
BBBBB@
cos2 ✓

2 0
0 sin2 ✓

2

1
CCCCCA (2.8)

Which has the respective values for the fidelity and the average Fidelity:

F = h in|⇢̂out | ini,

=
⇣

cos2 ✓
2 e�i� sin ✓

2

⌘ 0BBBBB@
cos2 ✓

2 0
0 sin2 ✓

2

1
CCCCCA

0
BBBBB@

cos2 ✓
2

ei� sin ✓
2

1
CCCCCA ,

=
1
4

(3 + cos 2✓)

(2.9)

and with average fidelity calculated as:

Favg =
1

4⇡

Z ⇡

0
d✓

Z 2⇡

0
d�F(✓, ) sin(✓),

=
1

4⇡

Z ⇡

0
d✓

Z 2⇡

0
d�

1
4

(3 + cos 2✓) sin(✓),

=
1
8

Z ⇡

0
d✓(3 sin(✓) + cos 2✓ sin(✓)),

=
1
8

(3 [� cos ✓]⇡0 +
1
2

([� cos ✓]3⇡
0 + [� cos ✓]⇡0))

=
2
3

(2.10)

These values are consisted with the classical teleportation, since we are doing teleportation using a non-entangled
classical channel. In this way for the classical teleportation protocol average fidelity is between 0, and 2

3 , which is also
the upper limit for this case.
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In the same way, proceeding as above, we can find the values given for our quantum teleportation protocol approach,
in which we will use the entangled channel for our teleportation protocol. The entangled channel is:

 AB =
1p
2

(|00i + |11i) (2.11)

We will use the same input state given in 2.74, and the proceeding as in the previous case we will find that now the
density matrix of the system is given by:

⇢̂ =
1
2

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

cos2 ✓
2 0 0 cos2 ✓

2
1
2 ei� sin ✓ 0 0 1

2 ei� sin ✓
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

cos2 ✓
2 0 0 cos2 ✓

2
1
2 ei� sin ✓ 0 0 1

2 ei� sin ✓
1
2 e�i� sin ✓ 0 0 1

2 e�i� sin ✓ sin2 ✓
2 0 0 sin2 ✓

2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
2 e�i� sin ✓ 0 0 1

2 e�i� sin ✓ sin2 ✓
2 0 0 sin2 ✓

2

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(2.12)

Giving an output state such that:

⇢̂out =

0
BBBBB@

cos2 ✓
2

1
2 ei� sin ✓

1
2 e�i� sin ✓ sin2 ✓

2

1
CCCCCA (2.13)

Resulting in the calculated fidelity measurements:

F = 1 (2.14)

Favg = 1 (2.15)

In the case that we have an entangled quantum channel, our fidelity will reach the maximum fidelity 1, as showed in
Figure 3. Then we can establish how the fidelity of our system is related to the degree of entanglement of the system.
In order to achieve this goal we can characterize the behaviour for a generalized Bell state:

| i = p|00i +
q

1 � p2|11i, (2.16)

where the parameter p belongs to the interval [0,1].
Figure 2.1 shows the behavior of FAVG depending on the parameter p. As we can observe, maximum fidelity is

reached when p = 1p
2

which is consistant with the maximum quantum entangled Bell states. For the cases when p = 0
and p = 1, when the state is separable, Favg is in the classical limit, being consistent with what we showed previously.
Since our system is not a closed one, it is subject to the interactions that the environment can generate over the system.
This interaction leads to the existence of noise that will decrease the quality with which we will recover the initial state
that is being teleported. As mentioned in the last section, we take into account such phenomena making use of equation
4. This master equation will allow us to observe the time evolution of our open system, and let us to include the e�ects
of noise in our system communication channels.

2.1.1 Markovian Channel

Fidelity Through Quantum Noise Channels

Since we are trying to learn about the behavior in time evolution we are going to use a variation of the established
Lindblad equation 4, taking into account only those parts that will lead to an apparent change in the system, such that:
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Figure 2.1: Measurements for the average fidelity vs. the parameter p. Red dashed line points the maximum of the
function.

d⇢
dt
=

X

i,↵

[Li,↵⇢L†i,↵ �
1
2
{L†i,↵Li,↵, ⇢}] (2.17)

where the Lindblad operator Li,↵ =
p
�i,↵�

(↵)
i describes the decoherence acting in direction i = x, y, z on the qubit

(↵ = 1, 2, 3orA, B,C). From here we will define our initial density sate as a matrix of t dependant variables similar to:

⇢(t)BC = ⇢(t)23 =

0
BBBBBBBBBBBBBBBB@

C00(t) C01(t) C02(t) C03(t)
C10(t) C11(t) C12(t) C13(t)
C20(t) C21(t) C22(t) C23(t)
C30(t) C31(t) C32(t) C33(t)

1
CCCCCCCCCCCCCCCCA

(2.18)

In this case we are going to model an entangled pair which is forming a quantum channel. We will study first the case
where the quantum channel is subject to a noise which is only acting over the entangled qubit 2. Here some cases will
be evaluated, using the Lindblad operators L2,z, L2,y, and finally a mixture of both. In the second case, we will study
our quantum channel subject to noise, but this time acting over both qubits, 2 and 3. This time we are going to evaluate
three specific cases as will be described below. The introduction of the noise in entangled quantum channel will mean
that our ⇢ent will be modified as decribed by ⇢ent ! "(⇢ent).

Case 1: Noise over one channel in the Markovian regime

(a) Case 1a: In this case we introduce a z-direction noise acting just in one of the entangled pair qubits. For
this purpose we can define our Lindblad operator as Lz,2 =

p
�z,2�

(2)
z . Then the form of the Lindblad operator

that will be used in the master equation given by L = Lz,2 ⌦ I2. In a such way, our Lindblad equation is now
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d⇢
dt = Lz,2⇢L†z,2 � 1

2 {L
†
z,2Lz,2, ⇢} Then the di�erential equation given for our Master equation is:

0
BBBBBBBBBBBBBBBB@

Ċ00(t) Ċ01(t) Ċ02(t) Ċ03(t)
Ċ10(t) Ċ11(t) Ċ12(t) Ċ13(t)
Ċ20(t) Ċ21(t) Ċ22(t) Ċ23(t)
Ċ30(t) Ċ31(t) Ċ32(t) Ċ33(t)

1
CCCCCCCCCCCCCCCCA
= �2�

0
BBBBBBBBBBBBBBBB@

0 0 C02(t) C03(t)
0 0 C12(t) C13(t)

C20(t) C21(t) 0 0
C30(t) C31(t) 0 0

1
CCCCCCCCCCCCCCCCA

(2.19)

leading us to the time evolved entangled density operator:

"(⇢ent(t)) =

0
BBBBBBBBBBBBBBBB@

C00(t) C01(t) e�2�tC02(t) e�2�tC03(t)
C10(t) C11(t) e�2�tC12(t) e�2�tC13(t)

e�2�tC20(t) e�2�tC21(t) C22(t) C23(t)
e�2�tC30(t) e�2�tC31(t) C32(t) C33(t)

1
CCCCCCCCCCCCCCCCA

(2.20)

From this point, it is possible to distinguish two paths to follow; the first one is when we use as our initial state
density matrix, a fully entangled bell state which is: ⇢ent(0) = |�+ih�+|, where |�+i = 1p

2
(|00i + |11i).

If we use that initial state in order to solve the unknowns Cmn in equation 2.20, they will become: C00(t) =
C03(t) = C30(t) = C33(t) = 1

2 and all the remaining values correspond to zero. From this answer we can now
obtain the output density matrix using ⇢out = Tr1,2{Ûtel⇢in ⌦ "(⇢ent)Û†tel}. Then the output density matrix is:

⇢out =

0
BBBBB@

cos2 ✓
2

1
2 e�2�t+i� sin ✓

1
2 e�2�t�i� sin ✓ sin2 ✓

2

1
CCCCCA (2.21)

This expression now can be used to obtain the correspondent values for the fidelity and the average fidelity which
are:

F(✓, �) =
1
4

(3 + cos 2✓ + 2e�2�t sin2 ✓) (2.22)

Favg =
1
3

(2 + e�2�t) (2.23)

On the other hand we have the second path in which we are going to use the Werner state in order to study
the teleportation performance for the initially partially mixed state with our initial density matrix, generating:
⇢(0) = p|�+ih�+| + (1 � p) I4

4 . In this case, if we solve the unknowns in our evolved matrix 2.20, the resulting
evolved density matrix will be:

⇢ent(t) =

0
BBBBBBBBBBBBBBBB@

p+1
4 0 0 1

2 e�2t�p
0 1�p

4 0 0
0 0 1�p

4 0
1
2 e�2t�p 0 0 p+1

4

1
CCCCCCCCCCCCCCCCA

(2.24)

In standard quantum teleportation (SQT) protocol result in:

⇢out(t) =

0
BBBBB@

1
2 (p cos(✓) + 1) 1

2 e�2t��i�p sin(✓)
1
2 ei��2t�p sin(✓) 1

2 (1 � p cos(✓))

1
CCCCCA (2.25)

F =
1
4

e�2�t
⇣
p cos(2✓)

⇣
e2�t � 1

⌘
+ (p + 2)e2�t + p

⌘
(2.26)

Favg =
1
6

⇣
2pe�2�t + p + 3

⌘
(2.27)

All results are summarized in the Figures 2.2-2.4.
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(a) EPR (b) p = 0

(c) p = 1
3 (d) p = 1

3

Figure 2.2: The SQT Fidelity vs ✓ and � with the noise �z introduced in the second qubit. a) Bell’s state, b), c), d)
Werner states. For all the plots, the values t = 3, � = 1 were fixed.

In figure 2.2 we can observe the Markovian dynamics of a system going under the e�ect of some decoherence
introduced as noise acting over the z-direction. The maximum Fidelity will depend on the level of entanglement
of the entangled channel, in the case of the EPR pair, Fidelity reaches its maximum value of 1. For the Werner
states a similar behavior, but with the value for Fidelity decreasing as entanglement decreases.
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(d) p = 2
3

Figure 2.3: Contour plot of � and t with the noise �z in the second qubit. Legends in the graphs show the behavior of
Favg. a) Bell’s state, b), c), d) Werner states.

Figure 2.3 shows how is the behavior of the average fidelity of a system going under the e�ects of Markovian
dynamics. Most of the graphs presents a more or less similar behavior, with the main di�erence in the maximum
value for average fidelity. In the case of Werner state where entanglement is null, average fidelity shows a constant
behavior and reaches the minimum value of all of the cases.
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Figure 2.4: The SQT evolution of Favg vs �. Parameter t is fixed with values for a) t=0, b) t=3, c) t=5, d) t=10

Figure 2.4 shows the behavior of Markovian Dynamics of the system through time. Again we observe how average
fidelity decreases as entanglement becomes minimum. We also can observe how average fidelity decreases faster
as �, and t parameters become bigger.

(b) Case 1b: For this case Lindblad operator Lx,2 =
p
�x,2�

(2)
x was employed. As in previous case decoherence is

applied just in second qubit, but this time noise appears in the y-direction. The correspondent Lindblad equation
for the system is: d⇢

dt = Lx,2⇢L†x,2 � 1
2 {L
†
x,2Lx,2, ⇢}, with the corresponding time evolved fully entangled density

matrix:

"(⇢ent(t)) =
1
4

e�2t�

0
BBBBBBBBBBBBBBBB@

1 + e2t� 0 0 1 + e2t�

0 �1 + e2t� �1 + e2t� 0
0 �1 + e2t� �1 + e2t� 0

1 + e2t� 0 0 1 + e2t�

1
CCCCCCCCCCCCCCCCA

(2.28)

Once it is computed through the teleportation circuit, the output density matrix is given by:

⇢out =

=

0
BBBBB@

1
2

⇣
e�2t� cos(✓) + 1

⌘
1
2 sin(✓)

⇣
cos(�) � ie�2t� sin(�)

⌘

1
2 sin(✓)

⇣
cos(�) + e�2t�i sin(�)

⌘
1
2

⇣
1 � e�2t� cos(✓)

⌘
1
CCCCCA

(2.29)

Which will result in the calculated fidelity functions as:

F =
1

16
e�2�t�2i�(

⇣
1 + e2i�

⌘2
cos(2✓)

⇣
�

⇣
e2�t � 1

⌘⌘
+ e4i�

⇣
e2�t � 1

⌘
+

2e2i�
⇣
5e2�t + 3

⌘
+ e2�t � 1),

(2.30)
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Favg =
1
3

⇣
e�2�t + 2

⌘
. (2.31)

In the same way as in case 1a, we can also solve lindblad equation using the Werner state as the initial state. In
that case our evolved density matrix will become:

"(⇢ent(t)) =
1
4

0
BBBBBBBBBBBBBBBBB@

e�2t�p + 1 0 0
⇣
1 + e�2t�

⌘
p

0 1 � e�2t�p
⇣
1 � e�2t�

⌘
p 0

0
⇣
1 � e�2t�

⌘
p 1 � e�2t�p 0⇣

1 + e�2t�
⌘
p 0 0 e�2t�p + 1

1
CCCCCCCCCCCCCCCCCA

(2.32)

Once it is applied in the SQT protocol, results are:

⇢out =
1
2

0
BBBBB@

⇣
e�2t�p cos(✓) + 1

⌘
p sin(✓)

⇣
cos(�) � ie�2t� sin(�)

⌘

p sin(✓)
⇣
cos(�) + e�2t�i sin(�)

⌘ ⇣
1 � e�2t�p cos(✓)

⌘
1
CCCCCA (2.33)

F =
1
8

e�2�t�2i�(p
⇣
e2�t � 1

⌘ ⇣⇣
1 + e4i�

⌘
sin2(✓) � e2i� cos(2✓)

⌘

+e2i�
⇣
(p + 4)e2�t + 3p

⌘
),

(2.34)

Favg =
1
6

⇣
2pe�2�t + p + 3

⌘
. (2.35)

(a) GHZ (b) p = 0

(c) p = 1
3 (d) p = 2

3

Figure 2.5: The SQT Fidelity vs ✓ and � with the noise �x introduced in the second qubit. a) Bell’s state, b), c), d)
Werner states.
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In figure 2.5 we observe the behavior of fidelity in a system under the e�ects of decoherence introduced as noise
acting in the x-direction. Maximum fidelity will depends on both the angles of � and ✓, and the entanglement of
the quantum channel.

Case 1c: In this part noise is going to be inserted in the system using Ly,2 =
p
�y,2�

(2)
y . Again the noise is only acting

over just one channel, and it is propagating in y-direction. Then it can be introduced in our Lindblad equation in order
o get the expression: d⇢

dt = Ly,2⇢L†y,2 � 1
2 {L
†
y,2Ly,2, ⇢}. When we evaluate our answer using the bell states, it gives us as

result the evolved density matrix for the entangled channel:

"(⇢ent(t)) =
1
4

e�2t�

0
BBBBBBBBBBBBBBBB@

1 + e2t� 0 0 1 + e2t�

0 �1 + e2t� 1 � e2t� 0
0 1 � e2t� �1 + e2t� 0

1 + e2t� 0 0 1 + e2t�

1
CCCCCCCCCCCCCCCCA

(2.36)

When (2.36) is used in the SQT protocol we obtain as result:

F =
1
8

e�2�t�2i�(
⇣
1 + e4i�

⌘
sin2(✓)

⇣
�

⇣
e2�t � 1

⌘⌘
� e2i� cos(2✓)

⇣
e2�t � 1

⌘

+e2i�
⇣
5e2�t + 3

⌘
),

(2.37)

Favg =
1
3

⇣
e�2�t + 2

⌘
. (2.38)

It also can be computed for the case where the initial state is a Werner state, then our evolved density matrix becomes:

"(⇢ent(t)) =
1
4

0
BBBBBBBBBBBBBBBBB@

e�2t�p + 1 0 0
⇣
1 + e�2t�

⌘
p

0 1 � e�2t�p
⇣
�1 + e�2t�

⌘
p 0

0
⇣
�1 + e�2t�

⌘
p 1 � e�2t�p 0⇣

1 + e�2t�
⌘

p 0 0 e�2t�p + 1

1
CCCCCCCCCCCCCCCCCA

(2.39)

When it is transformed by the SQT circuit, then our results are:

F =
1
8

e�2�t�2i�(e2i�
⇣
(p + 4)e2�t + 3p

⌘
� p

⇣
e2�t � 1

⌘
(
⇣
1 + e4i�

⌘
sin2(✓)

+e2i� cos(2✓))),
(2.40)

Favg =
1
6

⇣
2pe�2�t + p + 3

⌘
(2.41)
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(a) EPR (b) p = 0

(c) p = 1
3 (d) p = 1

3

Figure 2.6: The SQT Fidelity vs ✓ and � with the noise �y introduced in the second qubit. a) Bell’s state, b), c), d)
Werner states.

Similar to previous cases, in figure 2.6 we observe the dependence of fidelity in a system under Markovian dynamic,
but this time with noise acting over y-direction. Like in the previous cases Fidelity depends on the angles ✓, and �, and
the level of entanglement.

Case 2: Noise over two channels in the Markovian regime

(a) Case 2a: Contrary to the case 1, for this case noise in both qubits of the entangled pair quantum channel
is introduced. Proceeding as previously we can define our Lindblad operators as: Lz,2 =

p
�z,2�

(2)
z , and

Lz,3 =
p
�z,3�

(3)
z , with �z,2 = �z,3. As we can notice in the previous expressions system still subject to noise just

in z-direction. The Lindblad equation for this case is of the form: d⇢
dt = Lz,2⇢L†z,2 � 1

2 {L
†
z,2Lz,2, ⇢} + Lz,3⇢L†z,3 �

1
2 {L
†
z,3Lz,3, ⇢}. Then replacing in the master equation it will appear:

0
BBBBBBBBBBBBBBBB@

Ċ00(t) Ċ01(t) Ċ02(t) Ċ03(t)
Ċ10(t) Ċ11(t) Ċ12(t) Ċ13(t)
Ċ20(t) Ċ21(t) Ċ22(t) Ċ23(t)
Ċ30(t) Ċ31(t) Ċ32(t) Ċ33(t)

1
CCCCCCCCCCCCCCCCA
= �2�

0
BBBBBBBBBBBBBBBB@

0 C01(t) C02(t) 2C03(t)
C10(t) 0 2C12(t) C13(t)
C20(t) 2C21(t) 0 C23(t)
2C30(t) C31(t) C32(t) 0

1
CCCCCCCCCCCCCCCCA

(2.42)
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And using the same initial condition as in the case 1, our time evolved density matrix is equal to:

"(⇢ent(t)) =

0
BBBBBBBBBBBBBBBB@

0 �2�C01(t) �2�C02(t) �4�C03(t)
�2�C10(t) 0 �4�C12(t) �2�C13(t)
�2�C20(t) �4�C21(t) 0 �2�C23(t)
�4�C30(t) �2�C31(t) �2�C32(t) 0

1
CCCCCCCCCCCCCCCCA

(2.43)

(a) EPR (b) p = 0

(c) p = 1
3 (d) p = 1

3

Figure 2.7: The SQT Fidelity vs ✓ and � with the noise �z introduced in the first and second qubit. a) Bell’s state, b),
c), d) Werner states. Parameter t = 3, and � = 1 were fixed for all the plots

Despite of the existence of noise acting in two channels instead of just in one, in figure 2.10 we can observe a
very similar behavior to the case of figure which noise i z-direction acts over just one of the qubits.
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Figure 2.8: SQT Contour plot of � and t with noise �z over both qubits. Legends in graphs show the Favg. a) Bell’s
state, b), c), d) Werner states.

In figure 2.8 we observe a similar behavior with it analogous of the figure 2.3, but with the di�erence that average
fidelity seems to decrease faster than the analogous case. This acceleration in decreasing of average fidelity could
be caused by e�ects of noise inducing decoherence in the same direction over the two qubits.
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Figure 2.9: The SQT Favg and � through time with noise �z acting over both qubits. For the di�erents plots the value
for t was fixed as: a) t=0, b) t=3, c) t=5, d) t=10

As t and � parameter increases, average fidelity decreases faster. Comparing with its analogous case but with
noise acting in only one qubit it also seem to lose coherence faster.

(b) Case 2b: This case uses noise in the x-direction for both the equbit 2, and qubit 3, with Lindblad operators:
Lx,2 =

p
�x,2�

(2)
z , and Lx,3 =

p
�x,3�

(3)
x , where �x,2 = �x,3. From the previous part we know that our Lindblad

equation is: d⇢
dt = Lx,2⇢L†x,2 � 1

2 {L
†
x,2Lx,2, ⇢} + Lx,3⇢L†x,3 � 1

2 {L
†
x,3Lx,3, ⇢}. Then finally solving for the time evolved

density matrix we have:

"(⇢ent(t)) =
1
4

e�4t�

0
BBBBBBBBBBBBBBBB@

1 + e4t� 0 0 1 + e4t�

0 �1 + e4t� �1 + e4t� 0
0 �1 + e4t� �1 + e4t� 0

1 + e4t� 0 0 1 + e4t�

1
CCCCCCCCCCCCCCCCA

(2.44)

Then applying unitary quantum teleportation operations to "(⇢ent(t)), we obtain the desired functions for fidelity
measurement, they are:

F = 1
16 e�4�t�2i�

✓⇣
1 + e2i�

⌘2
cos(2✓)

⇣
�

⇣
e4�t � 1

⌘⌘
+ e4i�

⇣
e4�t � 1

⌘
+ 2e2i�

⇣
5e4�t + 3

⌘
+ e4�t � 1

◆
(2.45)

Favg =
1
3

⇣
e�4�t + 2

⌘
(2.46)
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(a) EPR (b) p = 0

(c) p = 1
3 (d) p = 2

3

Figure 2.10: The SQT Fidelity vs. ✓ and �, with �x noise acting over both qubits. a) Bell’s state, b), c), d) Werner
states. Values of t = 3, and � = 1 were fixed for all the plots.
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Figure 2.11: Contour plots of � and t with noise �z acting over both qubits. a) Bell’s state, b), c), d) Werner states.
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Figure 2.12: The SQT Favg and � paramter through time with noise �z acting over both qubits. Value of t was fixed for
each plot a) t=0, b) t=3, c) t=5, and d) t=10

(c) Case 2c: For this last case noise in two di�erent directions is apply. For the qubit 2 z-directional noise is
introduced, meanwhile in the other hand for qubit 3 we make use of x-directional noise. In this way we employ
the Lindblad operators: Lz,2 =

p
�z,2�

(2)
z , and Lx,3 =

p
�x,3�

(3)
x , where �z,2 = �x,3. Then introducing them in our

Lindblad equation we get: d⇢
dt = Lz,2⇢L†z,2 � 1

2 {L
†
z,2Lz,2, ⇢} + Lx,3⇢L†x,3 � 1

2 {L
†
x,3Lx,3, ⇢}, which then lead us to the

time evolved expression:

"(⇢ent(t)) =
1
4

e�2t�

0
BBBBBBBBBBBBBBBBB@

1 + e2t� 0 0 e�2t�
⇣
1 + e2t�

⌘

0 �1 + e2t� e�2t�
⇣
�1 + e2t�

⌘
0

0 e�2t�
⇣
�1 + e2t�

⌘
�1 + e2t� 0

e�2t�
⇣
1 + e2t�

⌘
0 0 1 + e2t�

1
CCCCCCCCCCCCCCCCCA

(2.47)
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(a) EPR (b) p = 0

(c) p = 1
3 (d) p = 1

3

Figure 2.13: The SQT Fidelity vs ✓ and �, with noise �z and �x acting in second and third qubit. a) Bell’s state, b), c),
d) Werner states. In each plot values for t = 3, and � = 5 were fixed.
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Figure 2.14: Contour plots � and t, with noise �z and �x acting over two qubits. a) Bell’s state, b), c), d) Werner states.

In figure 2.14 we can observe the e�ects of the decoherence caused by the e�ects of noise acting over two qubits in
di�erent z, and x-directions. In this case there is not an apparent dependence on the entanglement or angles of the initial
state, since in all the graphs all of them show a similar constant behavior. Isotropic noise could cause the complete lost
of coherence in the system, drooping the value of fidelity down to its minimum possible value for this case.



28 �.�. STANDARD QUANTUM TELEPORTATION

0.0 0.2 0.4 0.6 0.8 1.0
�

0.5

0.6

0.7

0.8

0.9

1.0
Favg

(a) t = 0

0.0 0.2 0.4 0.6 0.8 1.0
�

0.5

0.6

0.7

0.8

0.9

1.0
Favg

(b) t = 3

EPR
p=0

p= 1
3

p= 2
3

0.0 0.2 0.4 0.6 0.8 1.0
�

0.5

0.6

0.7

0.8

0.9

1.0
Favg

(c) t = 5

0.0 0.2 0.4 0.6 0.8 1.0
�

0.5

0.6

0.7

0.8

0.9

1.0
Favg

(d) t = 10

Figure 2.15: The SQT Favgand� through time with noise �z and �x acting over both qubits. For each plot the value for
t was fixed a) t = 0, b) t = 3, c) t = 5, d) t = 10

Contrary to the previous cases in which we observe how for each case they have their own minimal value for the
average fidelity, in this case we can observe in figure 2.18, how all the cases converge to the same value as t and �
parameters increases. Again this behavior could be due to the presence of isotropic noise in the system.

2.1.2 Non-Markovian Channel

The non-Markovian channels have been partially studied in [9]. In order to introduce our system to the Non-Markovian
regime, we will use the theoretical background use in [10]. Later, we will return to the Master equation. Then
accordingly, we can consider our initial state as | si = ↵|HHi + �|VVi, where |Hi and |Vi represents the vertical and
horizontal polarization respectively. In order to represent the environment, transverse momentum of light polarization
�!q = {qx, qy} is employed, then the environment can be depicted by | ei =

R
d~q f (~q)|~qi where f (~q) is the distribution

function of the transverse momentum which is normalized
R

d~q| f (~q)|2 = 1. It is defined as :

| f (q)|2 = e�w2
0.q

2 ⇥
1 + cos (2qdv)

⇤
, (2.48)

where w is the beam width and dv is the tunable parameter.
In order to achieve the desired behavior the initial state must be coupled to the environment such that | sei = | si ⌦

| ei.This coupling generates a unitary transformation over our coupled system which is given by Û(dc) =
R

d~qeiqdc�z ,
equally written:

Û (dc) =
Z

dq f (q)|qihq| ⌦
⇣
|0ih0|eiqdc + |1ih1|e�iqdc

⌘
. (2.49)
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his unitary transformation is linked with a spatial displacement parameter dc. For the case, dc is considered as the
parameter which mediates with temporal evolution. Once the initial state (the Bell state) is transformed by the unitary
operator Û(dc), it evolved state will be:

| se(dc)i = Û(dc)| sei =
Z

dq f (q)(↵|00ieidcq + �|11ie�idcq)|qi (2.50)

Then we must proceed to find the density matrix for the evolved state which is given by ⇢se(dc) = | se(dc)ih se(dc)| and
is equivalent to the expression:

⇢̂se(dc) =
Z

dq
Z

dq0 f (q) f ⇤(q0)|qihq0|( |↵|2|00ih00| + ↵�⇤|00ih11|eidcq+idcq0

+�↵⇤|11ih00|e�idcq�idcq0 + |�|2|11ih11|) (2.51)

Since we desire to look the e�ects of the environment over our system the next step consists in trace out the environment
variable from our evolved density matrix leading to:

⇢̂s(dc) =
Z

dqhq|
Z

dq
Z

dq0 f (q) f ⇤(q0)hq||qihq0||qi( |↵|2|00ih00| + ↵�⇤|00ih11|eidcq+idcq0

+�↵⇤|11ih00|e�idcq�idcq0 + |�|2|11ih11|) (2.52)

The last expression is only non-vanishing for q = q0 = q, then this expression in (2.52) becomes:

⇢̂s(dc) =

0
BBBBBBBBBBBBBBBB@

|↵|2 0 0 ↵�⇤

0 0 0 0
0 0 0 0

�↵⇤⇤ 0 0 |�|2

1
CCCCCCCCCCCCCCCCA
, (2.53)

where (dc) =
R

dq| f (q)|2e2idcq.
Since dc dependant terms are appearing in the o�-diagonal matrix terms, we can conclude they are inducing decoherence
of the system. Due to the normalization of the transverse momentum distribution function, it becomes | f (q)|2 =
e�!

2 q2
2 (1�Cos(2dvq)

p
w2

e
� 2d2

v
!2 (�1+e

� 2d2
v

!2 )
p

2⇡

. Using the last expression for solve (dc) we obtain:

(dc) =
e

dc(dc+2dv)
!2 (1 + e

4dcdv
!2 + 2e

dv (2dc+dv )
!2 )

2(1 + e
d2
v
!2 )

(2.54)

Once expression for  has been obtained we can now make use of the density matrix for the evolved system ⇢̂s(dc), in
order to calculate what is the behavior of the fidelity when it is included in our quantum teleportation protocol. In this
way the output density matrix is:

⇢̂out(dc) = Tr1,2{Utel⇢̂
s(dc)U†tel} =

0
BBBBB@

(|↵|2 + |�2|) cos2
⇣
✓
2

⌘
1
2 e�i� sin(✓)

1
2 ei�(↵�⇤ + �↵⇤) sin(✓) (|↵|2 + |�2|) sin2

⇣
✓
2

⌘
1
CCCCCA (2.55)

F(dc) = h in|⇢̂out(dc)| ini = 1
4

⇣
↵2 + �2

⌘
(3 + cos(2✓)) + ↵� sin2(✓) (2.56)

Favg(dc) =
2
3

⇣
↵2 + �2 + ↵�

⌘
(2.57)
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Figure 2.16: The QT fidelity as a function of the coupling strength dc. Parameter ! = 2 has been fixed for all the plots.

Figure 2.16 exhibits the Non-Markovian behavior of the system. As the environment parameter dv increases, system
starts to recover information from the environment. The coupling strength also needs to increase as dv increases in
order to observe the Non-Markovian behavior.
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Figure 2.17: The quantum teleportation (QT) fidelity as a function of the coupling strength dc and the environment dv.
The di�erent plots show how is the behavior between Favg, and dc as parameter dv increases. The parameter ! = 2 was
fixed

Figure 2.17 shows how in order to observe Non-Markovian behavior it is necessary to mantain a linear relation
between the dc and dv parameters.

In a similar way we can generalize the Non-Markovian case in order to apply to any initial entangled density matrix
⇢̂s(0).
Let:

⇢̂s(0) =

0
BBBBBBBBBBBBBBBB@

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

1
CCCCCCCCCCCCCCCCA

(2.58)

and subsequently our initial state is: ⇢̂ = ⇢̂s(0) ⌦ ⇢̂p(0). The momentum initial estate is ⇢̂p(0) = |�ih�| with
|�i =

R
dq f (q)|qi. The evolved density matrix then is equal to:

⇢̂s(dc) = Trq{U(dc)⇢̂(0)U†(dc)} (2.59)

Where U(dc) =
R

dq|qihq|eiqdc�̂z . Then equation (2.59) can be solved similarly to eq. (2.52) obtaining as result:

⇢̂s(dc) =

0
BBBBBBBBBBBBBBBB@

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

1
CCCCCCCCCCCCCCCCA

(2.60)
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Which can be used in order to extend this case using a Werner state in order to construct our initial density matrix,
which will be transformed to the evolved density matrix:

⇢̂s(dc) =

0
BBBBBBBBBBBBBBBB@

1+p
4 0 0 p

2 

0 1�p
4 0 0

0 0 1�p
4

p
2  0 0 1+p

4

1
CCCCCCCCCCCCCCCCA

(2.61)

then it can be used to calculate its behavior when it is used in the SQT protocol obtaining the following results:

⇢̂out(dc) = Tr1,2{Utel⇢̂
s(dc)U†tel} =

0
BBBBB@

1
2 (1 + p cos(✓)) 1

4 e�i�p sin(✓)
1
2 ei�p sin(✓) 1

2 (1 � p cos(✓))

1
CCCCCA (2.62)

F(dc) = h in|⇢̂out(dc)| ini = 1
4

⇣
p cos(2✓) + 2p sin2(✓) + p + 2

⌘
(2.63)

Favg(dc) =
1
6

(2p + p + 3) (2.64)
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Figure 2.18: Werner state contour plots of SQT Favg as function of the coupling strenght dc

and dv for diferent values of p = a)0.25, b)0.5, c)075, and Bell’s state d). All the plots have fixed the value ! = 2.

In figure 2.1 we can observe the behavior of the system under Non-Markovian dynamics. Here we can distinguish
how a greater level of entanglement of the quantum channel allows us to reach higher values of average fidelity.

Noisy channels in the Non-Markovian regime: Inserting noise with the Master Equation

In the Markovian regime the master equation allowed us to introduce noise over the quantum entangled channel in
our system, in order to understand its e�ects. For that case the Master equation evolves depending in � being a time
dependent function. In the non-Markovian approach, the behavior of our system depends on the coupling parameter
dc.In order to understand the e�ects of noisy channel in the non-Markovian regime it is necessary to find an expression
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such that allow us to establish a relation between both dc and t, evolution parameters.
In order to establish the relation we are going to find how �(dc), and (dc) are related. First we need to solve

the Lindblad equation, in which we will introduce some noise over our system. If this noise is introduced using the
Lindblad operator Lz,2 = �z,2(dc)�(2)

z , our Master equation is given by: d⇢
ddc
= Lz,2⇢L†z,2 � 1

2 {L
†
z,2Lz,2, ⇢}, same which can

be written in a simplified form as:
d⇢̂s

ddc
= �(dc)(L̂z⇢̂sL̂†z + ⇢̂s) (2.65)

And solving L.H.S of (2.65), we find that:

d⇢̂s

ddc
=

0
BBBBBBBBBBBBBBBB@

0 0 �2�(dc)P02 �2�(dc)P03

0 0 �2�(dc)P12 �2�(dc)P13

�2�(dc)P20 �2�(dc)P21 0 0
�2�(dc)P30 �2�(dc)P31 0 0

1
CCCCCCCCCCCCCCCCA

(2.66)

Then we get, eight di�erential equations with the form:

dPm,n

ddc
= �2�(dc)Pm,n (2.67)

The same equation that has a solution of the form Pm,n(dc) = Pm,n(0)e�2
R dc

0 dx�(x). For the second part it is necessary
to find the evolved Matrix for the non-Markovian regime. This can be find similarly as was did in (2.60), obtaining as
result:

⇢̂s = Trq{Û(dc)⇢̂(0)Û†(dc)} =

0
BBBBBBBBBBBBBBBB@

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

1
CCCCCCCCCCCCCCCCA

(2.68)

Now we can compare between the solution to (2.67) and the evolved matrix ⇢̂s in (2.68), which results in the relation:

(dc) = e�2
R dc

0 dx�(x) (2.69)

And finally we need to solve last expression for �, such that:

ln (dc) = �2
Z dc

0
dx�(x) (2.70)

Then if we derive both sides simultaneously and using Leibtnitz integration rule, we arrive to:

1
(dc)

d(dc)
ddc

= �2�(dc) (2.71)

which finally lead us to the relation between (dc) and �(dc)

�(dc) = � 1
2(dc)

d(dc)
ddc

(2.72)

Now we can make use of this relation in order to prove the e�ects of noisy channel, within Non-Markovian regime. For
this purpose we are going to introduce noise in z-direction over each of the channel that our system contains. In this
way we can establish two possible cases, due to in this case we only have two channels. Nevertheless both cases have a
similar behavior as the one that can be observe in the following case:
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Figure 2.19: Contour plot coupling dc parameter and environment dv, with noise �z acting over one qubit. a) Bell’s
state, b),c),d) are Werner states. For all the plots the value ! = 2 has been fixed.
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Figure 2.20: The SQT Favg vs. coupling strength dc, with noise �z acting over one qubit. The graph shows the behavior
as environment parameter dv increase. Favg shows the Non-Markovian behavior just when environment parameter dv
is large enough, for example in the last plots just c) and d) show to be in the Non-Markovian regime. For all the plots
the parameter ! = 2 was fixed.

2.2 Controlled Quantum Teleportation

As was discussed in the first section, controlled quantum teleportation (CQT) is a protocol similar to SQT, but with
the main di�erence that is the participation of a third party (the controller C), which is also related to both A and B,
through a tripartite quantum entangled channel. In this case our fully entangled channel (GHZ) is given by:

| GHZi =
1p
2

(|000i + |111i (2.73)

With the same input state used in SQT described by:

| ini = cos
✓

2
|0i + ei� sin

✓

2
|1i (2.74)

As described in the mathematical models, we can compute two fidelities for the CQT protocol. The first one is the one
that is given when there is not present the controller’s participation FNC . The second one, is the fidelity FCQT when
controller’s participation is present, and it is in communication with the sender. The communication between Alice
and Charlie, allow the correct selection of an appropriate unitary transformation thus fidelity will achieve its maximal
value. In order to obtain the results, calculation must be performed numerically in order to find the unitary operation
which maximises the Fidelity of CQT. Using these fidelities, we can define the control power P as P = FCQT � FNC .
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The above introduced fidelities are calculated as:

FNC(⇢) =
2 fNC(⇢) + 1

3
, where fNC(⇢) = f (TrC⇢), (2.75)

FCQT (⇢) =
2 fCQT (⇢) + 1

3
, where fCQT (⇢) = max

UC
[

1X

t=0

ht|UC⇢CU†C |ti f (⇢t
S R)], (2.76)

where

⇢t
S R =

TrC[U†C |tiht|UC ⌦4 ⇢U†C |tiht|UC⌦4]

ht|UC⇢CU†C |ti
(2.77)

The function f is the fully entangled fraction [11], which can be obtained for any two-qubit ⇢̂ as:

f (⇢̂) = max{�1, �2, �3, �4} (2.78)

with {�i}4i=1 are eigenvalues of the following matrix:

M = Re

0
BBBBBBBBBBBBBBBB@

h 1|⇢̂| 1i h 1|⇢̂| 2i h 1|⇢̂| 3i h 1|⇢̂| 4i
h 2|⇢̂| 1i h 2|⇢̂| 2i h 2|⇢̂| 3i h 2|⇢̂| 4i
h 3|⇢̂| 1i h 3|⇢̂| 2i h 3|⇢̂| 3i h 3|⇢̂| 4i
h 4|⇢̂| 1i h 4|⇢̂| 2i h 4|⇢̂| 3i h 4|⇢̂| 4i

1
CCCCCCCCCCCCCCCCA

(2.79)

In this section we study CQT protocol using principally three kind of entangled states: GHZ, Werner, adn W states.
When we evalute our CQT protocol using these di�erent states we obtain the results described in the next table:

Werner
GHZ p = 0 p = 1

3 p = 2
3 W

FNC(⇢) 2
3

1
2 0.5333 0.5833 0.7778

FCQT (⇢) 1 1
2 0.6 0.75 1

P(⇢) 1
3 0 0.0667 0.1667 0.2222

Table 2.1: The di�erent results for controlled fidelity, non-controlled fidelity and control power in terms of the di�erent
states for the CQT protocol

.

Previously, we defined our system as an open one. It is subject to the interactions with the environment.. As in
the bipartite case this interactions will have consequences over the e�ciency of our protocol. In order to study such
consequences we need to make use of the Master equation 4 again. This Master equation will allow us to observe the
time evolution of our open system, and let us to observe the e�ects of noise over our quantum channels.

2.2.1 Markovian Channel

Here we expect a behavior in which, the system victim of the interaction with environment, will be subject to decoherence
as it evolves in time. The obtained results will not only depend on the introduced noise, but also can should depend on
which type of entangled state is use in the quantum channel. Results are shown in Fig.23.
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(a) The CQT fidelity as a function of the coupling strength dc and the environment parameter
dv.

(b) The NC fidelity as a function of the coupling strength dc and the environment parameter
dv.

Figure 2.21: The CQT fidelity, and non-controlled (NC) fidelity as a function of the coupling strength dc and environment
parameter dc, where noise �z is acting over one qubit. Parameter ! = 2 has been fixed for the plots.
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Figure 2.21 shows the behavior of CQT fidelity and NC fidelity under the e�ects on Markovian dynamics. Both
presents a behavior very similar to its analogues of Markovian dynamics in SQT. E�ects of noise acting over some
qubit within the system induces the lost of fidelity.

2.2.2 Non-Markovian Channel

For this part we will take into account the bidirectional process in which environment interacting with the system, not
only induces its decoherence, but also can have a memory e�ect. This memory e�ect is the result of the environment
retreating some of the information back to system. Like it was established before, due to the relation between (dc)
and �(dc) it is also possible to study the e�ects of noisy channels over the tripartite quantum channel, within the Non-
Markovian dynamics. Finally for this part we expect to initially observe some decoherence inducing the lost of fidelity,
with a posterior partial recovery of the fidelity. For this purpose noise acting on the z-direction in one channel was
studied. In order to observe the e�ects depending in which channel noise is applied, it was probed channel by channel
until complete in the three. Acording with the result obtained previously we also expect di�erent results depending on
the state used in the quantum channel. Due to this consideration CQT for this case was proved with GHZ, Werner, and
W states.

(a) dv=6 (b) dv=8

Figure 2.22: The CQT fidelity as a function of the coupling strenght dc. Environment parameter is fixed to a) dv = 6,
and b) dv = 8. Parameter ! = 2 is fixed for both plots.

Figure 2.22 shows how is the behavior CQT fidelity under the presence of Non-Markovian dynamics. As expected
the bilateral exchange of information between the environment and the system allows the recovery of information of the
system. It means a recovery of the CQT fidelity.
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(a) Control Power vs coupling strength dc. (b) Controlled fidelity vs. coupling strength dc.

(c) Non-control fidelity vs. coupling strength dc.

Figure 2.23: Results obtained from inserting noise �z in the first qubit of the quantum channel with the W state.
Parameter ! = 2 is fixed in all the plots

Figure 2.23 shows the behavior Non-Markovian dynamics under the e�ects of noise acting in one qubit over
z-direction. In (a) we can observe how not only fidelity is recovered by the system but also its control power.
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(a) Control Power vs coupling strength dc and environment dv.
(b) Controlled fidelity vs. coupling strength dc and environment
dv.

(c) Non-control fidelity vs. coupling strength dc and environment
dv.

Figure 2.24: Results obtained from inserting noise �z in the second qubit of the quantum channel with the W state.
Parameter ! = 2 is fixed in all the plots.

Similarly to Fig. (2.24), when some noise is introduced in the Non-Markovian regime making use of the Master
equation, and we are using some Greenberger-Horne-Zeilinger (GHZ), or Werner state, their behavior result to be
a constant function. In the case of Werner states they are subject also to the parameter p, which will have also a
repercussion in the obtained measurements. As in previous case there is a linear dependence of the Fidelity with the
parameter p which becomes a GHZ state with Fidelity= 1 as p! 1.





Chapter 3

Conclusions & Outlook

Use of the quantum teleportation protocol results a great advantage over classical teleportation protocols since the first
has a better e�ciency than the classical ones, when an unknown quantum state is transmitted. In the study of the bipartite
case, as was expected, the standard quantum teleportation (SQT) protocol presents advantage over classical teleportation,
reaching the maximum possible fidelity. For the case of Werner states, the resulting fidelity shows a linear dependence
on the t parameter, reaching its minimum for p = 0 and its maximum when p = 1. Once the noise is introduced in our
system decoherence in the system induces the loss of fidelity, despite the decoherence, the minimum average fidelity
never goes under the classical limit. The presence of noise in only one of the two channels, causes the same e�ect, no
matter in which direction (x,y,z) the noise is acting and even on which qubit it is acting. On the other hand, the presence
of noise acting simultaneously in more than one qubit certainly leads us to a faster lost of fidelity in comparison to the
last case. One interesting e�ect can be observed in case 2b where noise is introduced in both channels in two di�erent
direction, resulting in a loss of the average fidelity that is under the classical upper limit. In the Non-Markovian regime, it
was interesting to analize the behavior that show its e�ects. In general it behaves as was expected, showing an initial loss
of fidelity due to the decoherence and then a partial recovery of the fidelity. We consider that it is important to recall that
the environment parameter dv is acting like a switch that allows us to go from Markovian dynamics to Non-Markovian.
In the case of the Werner state, we observe a similar behavior but with a fidelity which also gets a�ected depending on p.

For the tripartite case, we expect some similar results, but here we start to observe some interesting and surprising
e�ects. When the system is free from noise, behavior in general is exactly the same as for the SQT. Under those
conditions the Greenberger-Horne-Zeilinger (GHZ) and W states show a superior e�ciency than the classical protocol.
The Werner state has also the same behavior, showing a linear dependence of the fidelity depending on the p parameter.
Once we start testing the e�ciency of the protocol using noisy channels some peculiarities appear. Contrary to the
bipartite case, the GHZs and Werner states do not show a drop in the Fidelity. This behavior tell us that there do not
exist any particular dependence of the system on the noise, or even in the non-Markovian regime. The we can assume
that fidelity does not get a�ected by those e�ects. In the case of the W state we can appreciate the expected behavior.
One of the most interesting parts for W states is related with the control power, where we can see certain recovery of
the control power where we study its behavior within the non-Markovian dynamics.
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