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Resumen

En muchos campos, como la visión computacional, la robótica y la fotogrametŕıa,

el uso de cámaras es muy importante para ejecutar diferentes tareas. Para

lograr esas tareas con éxito, es necesario llevar a cabo una calibración de

las cámaras como un paso esencial antes de ejecutar dichas tareas. En fo-

togrametŕıa, la fiabilidad de la calibración de la cámara es esencial para re-

alizar mediciones decisivas. Las distorsiones de la lente de la cámara tienen

un impacto significativo en la geometŕıa de la imagen y, en consecuencia, en

la calibración de la cámara en general. El problema abordado en esta tesis

es la calibración confiable de la distorsión radial de las cámaras, que es in-

dispensable para poder realizar mediciones confiables. Esta tesis compara las

aplicaciones de diferentes métodos algebraicos y sus modelos de la distorsión

radial de manera totalmente determinista utilizando solo 2 ortofotograf́ıas de

un cubo personalizado con un patrón reticular. Como resultados notables, se

demuestra experimentalmente que los modelos obtenidos con los métodos que

minimizan la distancia Ortogonal y Vertical siempre dan los mejores resulta-

dos para casi todos los experimentos. Además, el método de Wu es el mejor

método de interpolación para un pequeño conjunto de datos de puntos carac-

teristicos. Además, Cubic Spline Interpolation tiene muy poco control sobre

los picos, lo que produce resultados no muy óptimos con conjuntos de datos

más grandes para algunos experimentos. Finalmente, el clustering ayuda a re-

ducir el conjunto de datos de puntos caracteŕısticos y también produce buenos

modelos de corrección de distorsión radial.
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Abstract

In many fields such as computational vision, robotics and photogrammetry,

the use of cameras is very important in order to execute different tasks. In or-

der to achieve those tasks successfully, it is necessary to carry out a calibration

of the cameras as an essential step before any of them. In photogrammetry,

the reliability of camera calibration is essential to take decisive measurements.

Camera lens distortions have a significant impact on image geometry and

consequently, on camera calibration in general. The problem addressed in

this thesis is the reliable radial distortion calibration of cameras, which is

indispensable for being able to perform reliable measurements. This thesis

compares the applications of different algebraic methods and their obtained

models to the fully deterministic radial distortion correction only using 2 or-

thophotographs of a personalized cube with a lattice pattern on it into. As

remarkable results, it is experimentally proved that models obtained with the

methods that minimizes the Orthogonal and Vertical distance always give best

results for almost all the experiments. In addition , Wu’s method is the best

interpolation method for a small feature point data set. Also, Cubic Spline has

a little control over spikes which produces not very good results with bigger

data sets for some experiments. Finally, clustering helps to reduce the feature

points data set and also produces good radial distortion correction models.

Keywords: Photogrammetry, Camera Calibration, radial lens distortion, al-

gebraic methods, deterministic algorithms, orthophotographs.
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Introduction

Within many fields such as computational vision, robotics and photogrammetry, the use of

cameras is very important for different tasks like: detection and measurement of objects,

navigation systems, topographic mapping, reconstruction of three-dimensional scenes, and

many others. For these tasks to be executed successfully, it is necessary to carry out a

calibration of the cameras before.

Camera Calibration is an important component of any vision task used to determine

the mapping relationship between the 3D world and its corresponding 2D image. So far,

a variety of calibration methods [4], have been developed to adapt to different applica-

tions and deal with almost all problems of camera calibration. In photogrammetry, the

reliability of camera calibration is essential to take decisive measurements. Current pho-

togrammetric software uses non-deterministic algorithms to perform the camera calibra-

tion. Non-deterministic algorithms can produce different outputs on various executions,

even for the same input. Thus, these algorithms do not give reliable metric information

from images.

For most photogrammetric applications, it is common to use the projective pinhole

camera model to determine the intrinsic and extrinsic parameters of the camera, but this

model does not take into account the camera lens distortion. Camera lens distortions have

a significant impact on image geometry and consequently on camera calibration in gen-

eral. Lens distortion is principally radial and therefore, camera models can be augmented

with a radial lens distortion model to compensate for lens distortion effects and improve

9
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the camera model. This means that the calibration camera procedure can estimate the

parameters of the lens distortion model together with the rest of camera calibration pa-

rameters or they can be calculated separately, [5] and [6] .

In this context, this thesis presents a fully deterministic distortion correction with an

analysis and comparison of the performance of models obtained with different algebraic

data fitting methods using only 2 orthophotographs of a personalized cube with a lattice

pattern on it.
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Chapter 1

Preliminaries

1.1 Problem statement

The realm of the problem addressed in this thesis is Photogrammetry. Photogrammetry

is “the art, science and technology of obtaining reliable information about physical objects

and the environment through the process of recording, measuring and interpreting photo-

graphic images and patterns of electromagnetic radiant imagery and other phenomena”[7].

The problem addressed in this thesis is the reliable calibration of cameras, which is

indispensable for being able to perform reliable measurements. Current photoghram-

metric software suites, independently from their commercial or open source nature, have

incorporated algorithms from Computer Vision, which are not deterministic, such as the

Scale-Invariant Feature Transform (SIFT) [8], or the Speeded up Robust Features (SURF)

[9] algorithms.

Non-determinism is not acceptable for the Photogrammeter, who wants to obtain re-

liable metric information from images, whether they are photographies, optical, radar,

hyperspectral or multispectral satellite images, echographies, multi-beam echo sounder

images, computer tomographies or any other image, i.e., one or several mappings from

Rn to R (each layer corresponding to such a mapping), since the Photogrammeter can-

not accept that an algorithm will give different results on the same input images. This

determinism requirement is very important as photogrammetric surveys are used in order
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to take life-critical decisions, like building a bridge, a dam, an arrangement of surgical

equipments, etc.

This thesis addresses the problem of non-determinism of the feature detection in pho-

togrammetric suites in the context of photogrammetric calibration of cameras. The main

objective of the calibration of a camera is the production of a calibration report (see an

example in Figures 1.3 and 1.4), that will be used to correct the images taken with the

camera, object of the calibration.

In the old photogrammetric suites like Intergraph’s ImageStation, the Photogrammeter

had to manually register (click with a mouse or pointer) all the remarkable points in an

image, such that the 8 red circles imprinted on classical 23cm by 23cm aerial photographs

(defining 4 axes, which intersect all at the geometric center of the photograph, see Figure

1.1). The centers of such circles are called the fiducial centers of the image. Moreover,

the position and the orientation of the plane were known from the Global Navigation

Satellite System (GPS, Glonass, Beidou, Galileo) and the Inertial Measurement Unit.

In nowadays photographic camera images, such fiducial centers are not usually present.

Moreover, modern cameras are not tight to a plane or a GNSS device and an Inertial

Measurement Unit.

Figure 1.1: A classical example of aerial photogrammetric camera photograph. Source:
[1]
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In this thesis we consider the fully deterministic distortion correction of a modern

camera with control of the uncertainty and without knowledge of any geometric infor-

mation on the position and the orientation of the camera, corresponding to the modern

non-photogrammetric digital camera based mapping. For this purpose, we need to ob-

tain photographs, whose scale is constant (unlike normal photographs and like orthopho-

tographs), because they correspond to the orthogonal projection that maps each point

(x, y, z) ∈ R3 into the point (x, y) ∈ R2, in order for us to perform geometric measure-

ments directly on the orthophotograph (see Figure 1.2) for the difference between the

perspective projection of normal photographs and the orthogonal projection of orthopho-

tographs). However, unlike orthophotographs, these photographs were not corrected of

all geometric flaws that affect a photograph.

Figure 1.2: The difference between the perspective projection of normal photographs and
the orthogonal projection of orthophotographs
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Figure 1.3: First pages of a Zeiss calibration report from Denmark’s Kort og Matrikel
Styrelsen

Figure 1.4: Last pages of the same Zeiss calibration report from Denmark’s Kort og
Matrikel Styrelsen
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1.2 Justification and Contribution

The problem of non-determinism of automated calibration algorithms is very important

for Photogrammeters, who, as a profession, have always relied and must rely only on

deterministic algorithms. This situation is similar to the insurance companies, who refuse

to cover autonomous cars, as long as they rely on non-deterministic algorithms. The

non-determinism infringes the reliable nature of Photogrammetric measurements in the

American Society for Photogrammetry and Remote Sensing (ASPRS) definition of Pho-

togrammetry.

Photogrammetric measurements are used in many decision taking activities based

on measurements, in civil engineering [10], construction [11], forensics [12], surgery [13],

astronomy [14], real estate [15], in addition to the classical related disciplines of geodesy

[16], applied topography [17], and metrology [18].

The main geometric flaw that affects all high quality imaging is the distortion [19].

Among the different kinds of distortion, the radial distortion is the one whose amplitude

is the greatest (see [20]).

In this thesis, a comparison between different polynomial interpolation techniques

and models to the fully deterministic radial distortion correction is made. It is based

on the precise pixel level manual feature measurements. These methods and models can

be broadly classified into linear ones, piecewise cubic ones and higher degree ones, and

they all assume only the continuity of the function that maps radial distances to radial

distortion and its correction.

1.3 Objectives

1.3.1 General Objective

To provide a comparative analysis of the radial distortion calibration of digital cameras

using different algebraic methods without the use of non-deterministic algorithms.
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1.3.2 Specific Objectives

• To determine the feature points of a photographic image without the use of non-

deterministic algorithms.

• To compare different algebraic methods and determine which one gives the best

correction of the radial distortion.

• To propose an algebraic method of calibration of radial distortion based on the

results obtained.

1.4 Document organization

An introductory theoretical background with a quick review of some photogrammetry

concepts and the data fitting algebraic methods used in this work is presented in Chapter

2.

The methodology used in this study is detailed in Chapter 3. It includes a description

of the lattice, photos and feature detection method used as well as the full description of

the experiments.

The results are shown, compared and discussed through comparative tables and plots

in Chapter 4.

The conclusions obtained from this work and some recommendation for future works

that can improve it are presented in Chapter 5.

Some supplementary material is presented in Apprendix A.
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Chapter 2

Theoretical Framework

This chapter presents an introductory theoretical background with a broad review of

the concepts applied in this work. It presents a quick review of some photogrammetry

concepts and the data fitting methods used in this work.

2.1 Pinhole Camera Model

Based in the book Image Analysis, Vision and Computer Graphics by Jens M. Cartensen

[2], the bundle of light rays from the object passes through the projection center (the lens

center) to then, be pictured on the image plane (Figure 3.1).

Figure 2.1: Projection center and image plane. Source: [2]

The ideal model for image acquisition in cameras is known as the pinhole camera
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model. This model consists of an airtight box with a very fine hole (projection center)

through which the light rays enter and then, get projected on the image plane. Ideally,

the hole should be so narrow to allow only the bundle of light rays to pass through as

straight unbroken light rays.

Figure 2.2: Pinhole Camera Geometry. Source: [2]

The geometry of the pinhole camera is shown in Figure 3.2. The principal point is the

orthogonal projection of the perspective or projection center (O) onto the image plane.

If the manufacturing process of the lenses and of the camera were perfect, the principal

point would be the intersection of the optical axis (of symmetry) and the image plane.

The camera constant (c) is the distance between the principal point and the perspective

or projection center (O). A camera coordinate system can be seen with its origin in the

projection center, the x and y axes are parallel to the image plane, and the z axis is the

axis joining the principal point and the projection center. Finally, x is the real world

point with coordinates (x, y, z), xc is the image point with coordinates (xc, yc), [2].

2.2 The Lens System

As just described, the pinhole camera model is an ideal model and it has a very fine hole.

This hole does not allow enough light to generate clear-cut images. Therefore, a lens

system is needed to produce the central projection.
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Figure 2.3: Lens System. Source: [2]

Figure 3.3 describes a lens system. In order to describe the path of the rays through

the lens system, two virtual projection centers known as inner and outer projection centers

or front and near nodal points are introduced.

The front and rear nodal points “have the property that a ray aimed at one of them

will be refracted by the lens such that it appears to have come from the other, and with

the same angle with respect to the optical axis” [21].

Lens distortion

In a distortion free camera, like the pinhole camera, the incidence ray and outgoing ray

lie in a plane through the optical axis and the angle between them and the optical axis

is the same, in other words, angle i is equal to angle u. But, in real world cameras, this

is not the case due to the geometric shape of the lenses. Then, lens distortion must be

taken into account.

Lens distortion is made up mainly of two types: radial and tangential distortion (Fig-

ure 3.4). Radial distortion refers to the displacement of the point P (without distortion or

ideal position) to a new position P ′ in the image that moves on the line that connects the

point with the geometric center of the image (O) also known as the center of distortion.

Optically, radial distortion takes place when the angle of the outgoing ray is different

from the angle of incident ray. Tangential distortion is the displacement of the point P in
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a perpendicular direction to the line that joins the center of distortion with that point.

Optically, tangential distortion occurs when the incidence and outgoing ray do not lie

in the same plane containing the optical axis, [2]. Note that the center of distortion is

invariant to both transformations in the images. Because of the lens production methods,

the radial distortion is by far the largest while tangential distortion is usually less than a

few microns and it will not be specifically treated in this work.

Figure 2.4: Radial and Tangential Distortion. Source: [3]

According to [2], the radial distortion dr can be expressed as an odd exponents poly-

nomial in r to the powers of one to seven:

dr = a1r + a2r
3 + a3r

5 + a4r
7, (2.1)

where: ai are the distortion coefficients and r is the radial distance of the distorted image

point.

The radial distance is the Euclidean distance from the geometric center of the image

C to a point P:

r =
√

(xp − xc)2 + (yp − yc)2 (2.2)

where: xp and yp are the coordinates of the point P. xc and yc are the coordinates of the
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geometric center of the image.

Figure 3.4 also shows another way to define the radial distortion dr :

dr = rd − ru, (2.3)

where: rd is the radial distance of the distorted image point, and ru is the radial distance

of the undistorted image point.

2.3 Mathematical Model

A mathematical model is a description or representation of a system using mathematical

concepts and language [22].

A mathematical model is deterministic when there is no probabilistic component. Our

methods are deterministic because its machinery is fully algebraic. That is, the input

received by the method will always produce the same result. In addition, the code was

made in Maxima [23], a fairly complete computer algebra system written in the functional

programming language Lisp with an emphasis on symbolic computation.

2.4 Data Fitting Algebraic Methods

In this section, we will describe 4 data fitting algebraic methods:

2.4.1 Minimize the sum of squares of the vertical distance

Residual (ε)

This algebraic method tries to minimizes the sum of the squares of the vertical distance

between the actual value of y and the model predicted value of y. We are going to define
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this as the residual:

ε = y − ŷ = y −Xb = ∆y, (2.4)

where y is the observed value of the radial distortion, ŷ is the modeled value of the radial

distortion, X is the matrix formed by the odd powers of the radial distances and b is the

unknown vector of coefficients.

Consider the following model of the form

y = β0 + β1X1β2X2 + · · ·+ βkXk + ε (2.5)

where:ε is the residual.

Assume that (2.5) is the model of an experiment with n observations. Then, the

n-tuples of observations are also assumed to follow the same model:

y1 = β0 + β1X11β2X12 + ...+ βkX1k + ε1

y2 = β0 + β1X21β2X22 + ...+ βkX2k + ε2
...

yn = β0 + β1Xn1β2Xn2 + ...+ βkXnk + εn

These equations can also be written in matrix form:
y1

y2
...

yn


=


1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
...

...
...

...

1 xn1 xn2 . . . xnk




β0

β1
...

βk


+


ε1

ε2
...

εn


or:

y = Xβ + ε (2.6)

This method tries to find estimated values for β in order to provide the “best” fit for the

data points. These estimators are obtained by minimizing the sum of squared residuals
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εi. This means:

Find minβ S(β) for S(β) =
N∑
i

ε2i =
n∑
i

(yi − (βxi))
2.

Parameters Estimation

The Parameter Estimation is an algebraic deterministic process.

Let B be the set of all possible values of β. As described above, the purpose is to find

a vector b = [b1, b2, ..., bk] from B that minimizes the sum of squared deviations of ε:

S(β) =
n∑
i=1

ε̂i
2 = ε>ε = (y −Xβ)>(y −Xβ). (2.7)

Then,

S(β) can be written as:

S(β) = y>y + β>X>Xβ − 2β>X>y (2.8)

. As S(β) is a quadratic form, it does not have a maximum, nor an inflexion point, and

it has only global minimum value. Thus, its attained global minimum value corresponds

to the root of its derivative. Differentiate S(β) with respect to β:

∂S(β)

∂β
= 2X>Xβ − 2X>y = 2(X>Xβ −X>y) (2.9)

∂2S(β)

∂β2
= 2X>X. (2.10)

Equation (2.9) is equal to zero if and only if:

X>Xb = X>y. (2.11)

In the case in which the rank(X)=k (full rank), we know that X>X is positive definite
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and non-singular. Subsequently, the unique solution for b is:

b = (X>X)−1X>y. (2.12)

Being that ∂2S(β)
∂β2 is at least non-negative definite, which means that ∂2S(β)

∂β2 > 0, then b

minimizes S(β).

2.4.2 Minimize the sum of squares of the orthogonal distance

Residual (ε)

This algebraic method tries to minimizes the sum of the squares of the orthogonal distance

between the actual value of y and the model. Then, the residual is defined as follows:

ε = V ·
−→
N . (2.13)

where: V is the matrix of the difference of y (∆y = y − ŷ) and
−→
N is the Unitary Normal

Vector.

The matrix V and the
−→
N vector are defined as follows:

V =


0 0 0 0 0 ∆y1

0 0 0 0 0 ∆y2
...

...
...

...
...

...

0 0 0 0 0 ∆yn


, (2.14)

−→
N =

1√
β2
1 + β2

2 + · · ·+ β2
k + 1



β1

β2
...

βk

−1


. (2.15)
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As in the previous method, the system of equations of the model for n observations

can be written in a matrix way as follows:

y = Xβ + ε. (2.16)

This method tries to find estimated values for β in order to provide the “best” fit

for the data points. These estimators are obtained by minimizing the sum of squared

residuals ε̂i. This means another minimization problem:

Find minβ S(β) for S(β) =
∑N

i ε
2
i = ε>ε = (V ·

−→
N )>(V ·

−→
N ).

Parameter Estimation

In order to talk about the Parameter Estimation of this model, it is necessary to under-

stand its geometry.

Figure 2.5 shows the geometry of one observed point and the hyperplane of the model.

It demonstrates that the angle α1 between the unitary normal vector and the vector of

the vertical distance in y will be constant for each observed point. Also, the angle α2

between the normal and the hyperplane is always 90◦. Then, by definition, all the three

angles of each triangle formed between the observed point and its vertical and orthogonal

projections onto the hyperplane of the model, α1, α2, α3, are the same for each observed

point. Therefore, we can conclude that the parameter estimation for this method is the

same as the one detailed for the minimization problem of the vertical distance, but the

residual is different for each model.
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Figure 2.5: Orthogonal distance vs Vertical Distance

2.4.3 Cubic Spline Interpolation

The following subsection is based on [24]. Cubic Spline Interpolation is a method of

Spline Interpolation which gives a smoother interpolating polynomial than the preceding

methods.

Given a set of n data points (xi, yi), i = 1, ..., n in an interval [a,b], the idea is to find

a piecewise cubic polynomial of the form:

S(x) =



s1(x) if x1 6 x < x2

s2(x) if x2 6 x < x3
...

sn−1 if xn−1 6 x 6 xn

, (2.17)
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where each cubic polynomial si is a third degree polynomial defined by:

Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di for i = 1, 2, ..., n− 1. (2.18)

To determine this cubic spline S(x), these equations are determined by the following

conditions:

1. S(x) must interpolate all data points and so in each sub interval. Then, we must

have Si(xi) = yi and Si(xi+1) = yi+1.

2. S ′(x) must be continuous at each of the internal knots. Therefore, we must have

S ′i−1(xi) = S ′i(xi).

3. S ′′(x) must be continuous at each of the internal knots. Therefore, we must have

S ′′i+1(xi) = S ′′i (xi).

4. One of the following conditions at the end points a and b:

• Natural Spline: S ′′0 (a) = 0 = S ′′n(b).

• Clamped cubic Spline: S ′′0 (a) = f ′′(a) and S ′′n(b) = f ′′(b).

Parameter Estimation

The first and second derivative of (2.20) are fundamental to solve this problem, and they

are:

S ′i(x) = 3ai(x− xi)2 + 2bi(x− xi) + ci, (2.19)

S ′′i (x) = 6ai(x− xi) + 2bi, (2.20)

for i = 1, 2, ..., n− 1.
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Due to condition 1, we have that:

S(xi) = yi for i = 1, 2, · · · , n− 1. (2.21)

Since xi ∈ [xi, xi+1], S(xi) = si(xi) we have:

yi = si(xi)

= ai(xi − xi)3 + bi(xi − xi)2 + ci(xi − xi) + di

= di.

(2.22)

Since the curve S(x) must be continuous across its entire interval, it can be concluded

that each spline must join at the data points, so:

Si(xi) = Si−1(xi) for i = 2, ..., n. (2.23)

From (2.18) we have:

di = ai−1(xi−xi−1)3+bi−1(xi−xi−1)2+ci−1(xi−xi−1)+di−1 for i = 2, ..., n−1. (2.24)

Letting h = xi − xi−1 and replacing it in (2.24):

di = ai−1h
3 + bi−1h

2 + ci−1h+ di−1 for i = 2, ..., n− 1. (2.25)

Due to condition 2, we have:

S ′i−1(xi) = S ′i(xi). (2.26)

And by (2.19), we know that:

s′i(xi) = ci, and

s′i−1(xi) = 3ai−1(xi − xi−1)2 + 2bi−1(xi − xi−1) + ci−1.
(2.27)
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So,

ci = 3ai−1(xi − xi−1)2 + 2bi−1(xi − xi−1) + ci−1. (2.28)

Again, letting h = xi − xi−1 and replacing it in (2.28):

ci = 3ai−1h
2 + 2bi−1h+ ci−1 for i = 2, ..., n− 1. (2.29)

From (2.20), we have:

S ′′i (x) = 6ai(x− xi) + 2bi,

S ′′i (xi) = 6ai(xi − xi) + 2bi,

S ′′i (xi) = 2bi for i = 2, ..., n− 2.

(2.30)

Lastly, due to condition 3, we know that S ′′i+1(xi) = S ′′i (xi), for i = 1, 2, ..., n− 1. Then,

S ′′i (xi+1) = 6ai(xi+1 − xi) + 2bi, (2.31)

S ′′i+1(xi+1) = 6ai(xi+1 − xi) + 2bi. (2.32)

Letting h = xi+1 − xi and using (2.30) and (3.32) we have:

S ′′i+1(xi+1) = 6ai(xi+1 − xi) + 2bi,

2bi+1 = 6aih+ 2bi.
(2.33)

In order to simplify these equations and make the determination of ai, bi, ci and di easier,

we are going to substitute S ′′i (xi) for Mi and express the above equations in terms of Mi

and yi.
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Each bi can be represented by:

s′′i (xi) = 2bi,

Mi = 2bi,

bi =
Mi

2
,

(2.34)

and di has already been determined to be

di = yi. (2.35)

Similarly, using (2.33), ai can be redefined as

2bi+1 = 6aih+ 2bi,

6aih = 2bi+1 − 2bi,

ai =
2bi+1 − 2bi

6h
,

ai =
2(Mi+1

2
)− 2(Mi

2
)

6h
,

ai =
Mi+1 −Mi

6h
,

(2.36)
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and ci can be redefined as:

di+1 = aih
3 + bih

2 + cih+ di,

cih = −aih3 − bih2 − di + di+1,

ci =
−aih3 − bih2 − di + di+1

h
,

ci =
−aih3 − bih2

h
+
−di + di+1

h
,

ci = (−aih2 − bih)− di − di+1

h
,

ci = −(
Mi+1 −Mi

6h
h2 +

Mi

2
h)− yi − yi+1

h
,

ci =
yi+1 − yi

h
− (

Mi+1 −Mi

6
h+

3Mi

6
h),

ci =
yi+1 − yi

h
− (

Mi+1 −Mi + 3Mi

6
)h,

ci =
yi+1 − yi

h
− (

Mi+1 + 2Mi

6
)h.

(2.37)

Then, the equation for determining our parameters for the n− 1 equations are:

ai =
Mi+1 −Mi

6h
,

bi =
Mi

2
,

ci =
yi+1 − yi

h
− (

Mi+1 + 2Mi

6
)h,

di = yi.

(2.38)
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In order to make it easier to handle, by (2.29) and (2.38):

ci+1 = 3aih
2 + 2bih+ ci,

yi+2 − yi+1

h
− (

Mi+2 + 2Mi+1

6
)h = 3

Mi+1 −Mi

6h
h2 + 2

Mi

2
h+

yi+1 − yi
h

− (
Mi+1 + 2Mi

6
)h,

yi+2 − yi+1

h
− yi+1 − yi

h
= 3

Mi+1 −Mi

6h
h2 + 2

Mi

2
h+ (

Mi+2 + 2Mi+1

6
)h− (

Mi+1 + 2Mi

6
)h,

yi+2 − 2yi+1 + yi
h

= h(
3Mi+1 − 3Mi

6
+

6Mi

6
− (

Mi+1 + 2Mi

6
) + (

Mi+2 + 2Mi+1

6
),

yi+2 − 2yi+1 + yi
h

=
h

6
(Mi + 4Mi+1 +Mi+2),

6(
yi+2 − 2yi+1 + yi

h2
) = Mi + 4Mi+1 +Mi+2,

for i = 1, ..., n− 1.

(2.39)

And these systems can be put in the following matrix equation:



1 4 1 0 · · · 0 0 0 0

0 1 4 1 · · · 0 0 0 0

0 0 1 4 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 4 1 0 0

0 0 0 0 · · · 1 4 1 0

0 0 0 0 · · · 0 1 4 1





M1

M2

M3

M4

...

Mn−3

Mn−2

Mn−1

Mn



=
6

h2



y3 − 2y2 + y1

y4 − 2y3 + y2

y5 − 2y4 + y3
...

yn−2 − 2yn−3 + yn−4

yn−1 − 2yn−2 + yn−3

yn − 2yn−1 + yn−2


. (2.40)

Note that the system has n − 2 rows and n columns and therefore, it is an under-

determined system. In order to generate a unique cubic spline, the condition 4, which

gives the condition at the end points a and b, must be taken into account. In this thesis,

we will be working with natural splines only:

Natural Splines:
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This spline has the constraint that the second derivative should be equal to zero at the

end points:

M1 = Mn = 0. (2.41)

This results in the spline extending as a straight line outside the endpoints. The matrix

for determining the M1 −Mn values can be adapted as follows:



1 0 0 0 · · · 0 0 0 0

0 1 4 1 · · · 0 0 0 0

0 0 1 4 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 4 1 0 0

0 0 0 0 · · · 1 4 1 0

0 0 0 0 · · · 0 0 0 1





0

M2

M3

M4

...

Mn−3

Mn−2

Mn−1

0



=
6

h2



y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5
...

yn−4 − 2yn−3 + yn−2

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn


. (2.42)

Eliminating the first and last column and row of this matrix, we have:

4 1 0 · · · 0 0 0

1 4 1 · · · 0 0 0

0 1 4 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 4 1 0

0 0 0 · · · 1 4 1

0 0 0 · · · 0 1 4





M2

M3

M4

...

Mn−3

Mn−2

Mn−1


=

6

h2



y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5
...

yn−4 − 2yn−3 + yn−2

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn


. (2.43)

This result gives an n− 2 by n− 2 matrix, which will determine the solutions for M2

through Mn−1. The spline is now unique.
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Residual

The residual of this model is calculated with the the orthogonal distance, which is the

distance of the observed points to the nearest point of each spline. It is defined as follows:

S(x) = Pcs(x, y)

normal =
∂Pcs(x, y)

∂x
(x0 − x) +

∂Pcs(x, y)

∂y
(y0 − y)

ε = min
(x,y)∈V (

{
S(x),normal

}
)

dE((x0, y0), (x, y))
} (2.44)

where: Pcs(x, y) is the polynomial obtained with Cubic Spline interpolation, dE is the

Euclidean distance and V (PS) stands for the set of common roots (or variety) of the

polynomial set PS.

2.4.4 Wu’s polynomial elimination

Wu’s method is an algorithm for eliminating variables from systems of multivariate poly-

nomial equations by means of converting such systems into equivalent triangular sets,

which uses polynomial division and only requires pseudo-remainder computations [25]. In

other words, Wu’s Method transforms a system of polynomial equations into an equiva-

lent triangular system of polynomial equations using the Euclidean Division Algorithm:

Let K[xc] be the ring of polynomials in the variable xc, i.e., the set of polynomials

in the variable xc, equipped with the addition of polynomials and the multiplication of

polynomials, such that the set of polynomials in the variable xc together with the addition

of polynomials is a group, the set of polynomials in the variable xc has a neutral element

for the multiplication of polynomials and the multiplication of polynomials is well formed

and associative, and the multiplication of polynomials is distributive with respect to the

addition of polynomials.
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Let p and q be two polynomials considered as univariate in the variable to be eliminated

xc:

∃Q,R ∈ K[xc] p = q ·Q+R where deg(R, xc) < deg(q, xc). (2.45)

A more detailed definition could be find in Appendix A.

Residual

The residual of this model is calculated with the orthogonal distance as in the previous

method, which is the distance of the observed points to the nearest point of the model.

It is defined as follows:

S(x) = PWu(x, y)

normal =
∂PWu(x, y)

∂x
(x0 − x) +

∂PWu(x, y)

∂y
(y0 − y)

ε = min
(x,y)∈V ({S(x),normal})

dE((x0, y0), (x, y))

(2.46)

where: PWu is the polynomial obtained using Wu’s Method and dE is the Euclidean

distance.

2.4.5 Legendre Polynomials Approximation

According to Weierstrass Approximation Theorem [26] any continuous function in a closed

interval [a, b] can be approximated by lineal combinations of polynomials within the in-

terval. The Legendre polynomials form an orthogonal set of polynomials and they can be

obtained as follows [27]:

Pn(x) =
1

n!2n
dn

dxn
(x2 − 1)n, for n = 0, 1, 2, · · · (2.47)
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2.5 Error Measure

The error present in each model is evaluated by two different and complementary mea-

sures: the root mean square error and the maximum error.

2.5.1 Root Mean Square Error

The RMS value of vector can be a popular measure for the performance and the accuracy

of a model [28]. It is defined as follows:

RMS =

√√√√ 1

n

n∑
i=1

ε2i . (2.48)

where: ε is the residual vector of each method and n is the number of data points.

2.5.2 L-infinity Norm

A common used vector norm is the magnitude of the largest component of the vector,

called L-infinity Norm. It is defined as follows [29]:

‖ε‖∞ = maxi |εi| yui = hackeryc + ∆y ∗Ky for i = 1, ..., 81. (2.49)
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Chapter 3

Methodology

In the present chapter, the experimental set up and the concepts of Chapter 2 will be

applied to address the problem. First, a description of the lattice used will be given. Then,

an explanation of the orthophotographs and the method for feature Points Detection will

be detailed. Finally, a detailed description of the experiments made in this work will be

provided.

3.1 Lattice

Figure 3.1: Lattice pattern image produced by GeoGebra.

37



School of Mathematical and Computational Sciences YACHAY TECH

The lattice pattern image (Figure 3.1) that contains many feature points with different

distances from the image center was created using GeoGebra. The size in pixels of the

image was 397x398. It was glued to a wooden cube of 14x14 cm, to then, be photographed

with the camera.

In equations detailed in this chapter, it will be useful to know the constant distance/-

variation of the coordinates in x and y between each feature point of this lattice. Since

the lattice is formed by 8x8 identical squares of the same size, then this measure is defined

as follows:

∆x =
397

8
= 49, 625

∆y =
398

8
= 49, 75

(3.1)

3.2 Orthophoto

An orthophoto or orthophotograph is a photograph geometrically corrected such that the

scale is uniform (this means that the photo follows a given map projection) and the dis-

tortion and other geometric artifacts have been corrected.

In this thesis, in order to compute the radial distortion, we needed to use photographs

with a constant scale, that can be used to measure the true distance of features within

the photography. In the remainder of this thesis experiments, we will refer them as

orthophotos or orthophotographs.

Figures 3.2 and 3.3 show the two orthophotographs used in this work. The pixel size

of both photos is 5184x3888. Then, the coordinates of the geometric center are:

(xc, yc) = (2592, 1994) (3.2)
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Figure 3.2: Orthophoto 1

Figure 3.3: Orthophoto 2

The size in pixels of the lattice pattern on the orthophotos was measured using the

measure tool of the GIMP software. Its size was 3065x3060 pixels for Orthophoto 1 and

3090x3080 for Orthophoto 2.

The multiplication factor that will be applied to the lattice pattern image in order to

match its size with the orthophoto will be useful in future sections:
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Orthophoto 1:

Kx1 =
size in pixels of lattice in x axis of orthophoto

size in pixels of lattice in x axis of image

=
3065

397
≈ 7.720

Ky1 =
size in pixels of lattice in y axis of orthophoto

size in pixels of lattice in y axis of image

=
3060

398
≈ 7.688

(3.3)

Orthophoto 2:

Kx2 =
3090

397
≈ 7.783

Ky2 =
3080

398
≈ 7.738

(3.4)

3.3 Feature Points Detection

In order to obtain the lens radial distortion, it is necessary to establish a correspondence

among the orthophotos and the original lattice image. This is achieved by identifying

a set of feature points on each orthophoto. Although there are already feature points

detection algorithms such as SIFT and SURF, these algorithms do not obtain a matching

rate greater than 60 % on images with lens distortions [30]. For this reason, the feature

points detection was performed manually.

To manually detect feature points, the ”GNU Image Manipulation Program” (GIMP)

was used. A zoom was made at each of the 81 lattice feature points to accurately obtain

the pixel coordinates of each distorted feature point (xid,yid).
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Figure 3.4: Manual Feature Points Detection using GIMP

The coordinates were used to obtain the radial distance of the distorted feature points:

rdi =
√

(xdi − xc)2 + (ydi − yc)2 for i = 1, ..., 81. (3.5)

Due to the method used for the feature detection, we can say that the data obtained

have an uncertainty equal to
√

2 ∗ pixel size.

3.4 Radial Distortion

As detailed in (2.3), the radial distortions of the 81 feature points can be obtained by

subtracting the radial distance of the undistorted feature points from the radial distance

of the distorted feature points.

In order to obtain the radial distance of the undistorted feature points, the pixel

coordinates of each of them are needed. These are obtained with the following equations:

xui = xc + ∆x ∗Kx for i = 1, ..., 81.

yui = yc + ∆y ∗Ky for i = 1, ..., 81.
(3.6)
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where:xc and yc are the coordinates of the center of the lattice on the image. ∆x

and ∆y are the constant values for x and y defined in (3.1) and Kx and Ky are the

multiplication factor defined in (3.4).

After the coordinates of the undistorted feature points were obtained, the radial dis-

tance of each of them was computed as before:

rui =
√

(xui − xc)2 + (yui − yc)2 for i = 1, ..., 81. (3.7)

Then, the radial distortion of each feature point was obtained using (2.3):

dri = rdi − rui for i = 1, ..., 81. (3.8)

Finally, the lattice pattern image was overlapped on the 2 orthophotographs of the

cube using GIMP to be able to optically observe the lens distortion. In order to super-

imposed them with the correct dimension, the multiplication factors ∆x and ∆y were

applied to the lattice pattern image.

Figure 3.5: Lattice pattern image superimposed on Orthophoto 1
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Figure 3.6: Lattice pattern image superimposed on Orthophoto 2

3.5 Experiments

The objective of the experiments is to compare the residuals of the mathematical models

obtained with different data fitting methods. For this, 4 different experiments were carried

out with a different number of observation points. All the data used in the Experiments

were normalized in order to handle the calculus easier.

All the models are based on (2.1), but one extra term was added in the Taylor’s

Expansion in order to achieve a better accuracy:

dr = a1r + a2r
3 + a3r

5 + a4r
7 + a5r

9 (3.9)

3.5.1 Experiment 1: 81 Feature Points

Minimize the sum of squares of the vertical distance:
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

dr1

dr2
...

dr80

dr81


=



rd1 r3d1 r5d1 r7d1 r9d1

rd2 r3d2 r5d2 r7d2 r9d2
...

...
...

...
...

rd80 r3d80 r5d80 r7d80 r9d80

rd81 r3d81 r5d81 r7d81 r9d81





a1

a2

a3

a4

a5


+



ε1

ε2
...

ε80

ε81



or:

D[81,1] = R[81,5]A[5,1] + ε[81,1], (3.10)

where: D is the normalized vector with the radial distortion of each feature point calcu-

lated with (3.8). A is the vector of distortion coefficients.R is the normalized matrix of

the radial distance of each distorted feature points. And, ε is the residual vector.

For this model, ε is the difference between the observed distortion and the model

distortion:

ε = D − D̂. (3.11)

The optimization problem for this model is the following:

Find minA S(A) for S(A) =
∑n

i=1 ε
2
i = ε>ε = (D −RA)>(D −RA).

The estimation of the parameters a1, a2, a3, a4, a5 was made as follows:

A = (R>R)−1R>D. (3.12)

Then, the distortion vector of the model is:

D̂ = AR. (3.13)
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Finally, the Root Mean Square Error and the L-infinity Norm were obtained as follows:

RMSE =

√
ε>ε

81
,

‖ε‖∞ = maxi |εi| .
(3.14)

Parts of the Maxima code will be show below. 1

Code to calculate distortion coefficients

`/∗Code to get the Distortion Parameters Vector (A) for methods:

−Minimize the sum of squares of the vertical distance

−Minimize the sum of squares of the orthogonal distance∗/'

`/∗Read the R matrix normalized (Radial Distances) of the 81 Feature Points∗/'

R : read matrix(”RMatrix O1.csv”)$

`/∗Read the Distortion Vector of the 81 feature points∗/'

D: read matrix(”DVector O1.csv”)$

Rf: col (R,5)$

RDON: addcol(Rf,D)$

RDONl : args(RDON)$

`/∗Calculate the transpose of R Matrix∗/'

RT: transpose(R)$

RTR: RT.R$

`/∗Calculate the determinant of RT∗R in order to know if the matrix is invertible .∗/ '

Det: determinant (RTR)$

I : invert(RTR)$

`/∗ Calculate the estimation parameters a1,a2,a3,a4 and a5. A=inv(RTR)∗RT∗D∗/'

A:I.RT.D;

1The complete source code is available in https://github.com/Mafer2212/AlgebraicRadialDistortionModels
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Code to calculate epsilon, RMSE and L Infinity Norm for vertical distance method

`/∗Epsilon for method with vertical distance∗/'

Epsilon1: D−Dmod$

`/∗ Absolute Value of Epsilon Vector∗/'

AbsEpsilon1: abs(Epsilon1)$

`/∗RMSE and L infinity norm/'

`/∗RMSE∗/'

SumE1: transpose(Epsilon1).Epsilon1 $

RSME1= sqrt(SumE1/81);

`/∗ Infinity Norm ∗/'

Epsilon1List: args(transpose(AbsEpsilon1))$

LInf1= lmax(Epsilon1List[1]);

Minimize the sum of squares of the orthogonal distance:



dr1

dr2
...

dr80

dr81


=



rd1 r3d1 r5d1 r7d1 r9d1

rd2 r3d2 r5d2 r7d2 r9d2
...

...
...

...
...

rd80 r3d80 r5d80 r7d80 r9d80

rd81 r3d81 r5d81 r7d81 r9d81





a1

a2

a3

a4

a5


+



ε1

ε2
...

ε80

ε81


or:

D[81,1] = R[81,5]A[5,1] + ε[81,1]. (3.15)

For this model, ε is the orthogonal distance from the observed point and the model,i.e.,

ε = V ·
−→
N , (3.16)

where: V is the matrix of the difference of Distortion (∆D) and
−→
N is the Unitary Normal

Vector.
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To be more precise, we define the V matrix and the ~N vector as follows:

V =



0 0 0 0 0 ∆D1

0 0 0 0 0 ∆D2

...
...

...
...

...
...

0 0 0 0 0 ∆D80

0 0 0 0 0 ∆D81


, (3.17)

−→
N =

1√
A2

1 + A2
2 + A2

3 + A2
4 + A2

5 + 1



A1

A2

A3

A4

A5

−1


. (3.18)

The optimization problem for this model is the following:

Find minA S(A) for S(A) =
∑n

i=1 ε
2
i = ε>ε = (V ·

−→
N )>(V ·

−→
N )

As justified above, the algebraic method that minimizes the Orthogonal distance has

the same parameter estimation as the method that minimizes the vertical distance to the

model, the only difference between them is the definition of its residual.
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Figure 3.7: Orthogonal distance vs Vertical Distance

The parameters vector A and the distortion vector of the model D̂ are the same as the

previous model. In this case, ∆D will be used in the computation of ε of the this model:

D − D̂ = ∆D. (3.19)

Finally, the Root Mean Square Error and the L-infinity Norm were obtained as follows:

RMSE =

√
ε>ε

81
,

‖ε‖∞ = maxi |εi| .
(3.20)
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Code to calculate epsilon, RMSE and L Infinity Norm for orthogonal distance method

'/∗Epsilon for Orthogonal distance from the point to the model. d(R,H)= V∗N∗/'

'/∗N vector is the Unitary Normal Vector ∗/'

n: 1/sqrt( first (A)ˆ2+ second(A)ˆ2+ third (A)ˆ2+ fourth(A)ˆ2+ fifth(A)ˆ2+1)$

An: addrow (A, [−1])$

N: An.n$

'/∗V matrix is a zero matrix with the delta D values on the last column∗/'

v: zeromatrix(81,5)$

V: addcol(v, Epsilon1)$

Epsilon2: V.N$

'/∗ Absolute Value of Epsilon Vector∗/'

AbsEpsilon2: abs(Epsilon2)$

'/∗RMSE and L infinity norm of Linear Non Parametric Model∗/'

'/∗RMSE∗/'

SumE2: transpose(Epsilon2).Epsilon2 $

RSME2= sqrt(SumE2/81);

'/∗ L−Infinity Norm∗/'

Epsilon2List: args(transpose(A)

3.5.2 Experiment 2: 5 Greatest Feature Points in Distortion

Minimize the sum of squares of the vertical distance:

Subsequently, the 5 points with the greatest difference of distortion (ε) were taken because

they correspond to the points with more influence in the error measure. Then, with these

points, we have the following model:
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

dr1

dr2

dr3

dr4

dr5


=



rd1 r3d1 r5d1 r7d1 r9d1

rd2 r3d2 r5d2 r7d2 r9d2

rd3 r3d3 r5d3 r7d3 r9d3

rd4 r3d4 r5d4 r7d4 r9d4

rd5 r3d5 r5d5 r7d5 r9d5





a1

a2

a3

a4

a5


+



ε1

ε2

ε3

ε4

ε5


or:

D[5,1] = R[5,5]A[5,1] + ε[5,1]. (3.21)

The estimation of parameters, the distortion vector, epsilon, the RMSE and L-infinity

Norm of this model was obtained as in Experiment 1.

Minimize the sum of squares of the orthogonal distance:

The same 5 points with the greatest difference of distortion (∆D) were taken in this

experiment. Then, with these points we have the following model:



dr1

dr2

dr3

dr4

dr5


=



rd1 r3d1 r5d1 r7d1 r9d1

rd2 r3d2 r5d2 r7d2 r9d2

rd3 r3d3 r5d3 r7d3 r9d3

rd4 r3d4 r5d4 r7d4 r9d4

rd5 r3d5 r5d5 r7d5 r9d5





a1

a2

a3

a4

a5


+



ε1

ε2

ε3

ε4

ε5


or:

D[5,1] = R[5,5]A[5,1] + ε[5,1]. (3.22)

The estimation of parameters, the distortion vector, epsilon, the RMSE and L-infinity

Norm of this model was obtained as in Experiment 1.

Wu’s Method:
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With the same 5 points, we have the following system of polynomials:

P1(a1, a2, a3, a4, a5) = a1r
9
d1 + a2r

7
d1 + a3r

5
d1 + a4r

3
d1 + a5rd1 − dr1

P2(a1, a2, a3, a4, a5) = a1r
9
d2 + a2r

7
d2 + a3r

5
d2 + a4r

3
d2 + a5rd2 − dr2

P3(a1, a2, a3, a4, a5) = a1r
9
d3 + a2r

7
d3 + a3r

5
d3 + a4r

3
d3 + a5rd3 − dr3

P4(a1, a2, a3, a4, a5) = a1r
9
d4 + a2r

7
d4 + a3r

5
d4 + a4r

3
d4 + a5rd4 − dr4

P5(a1, a2, a3, a4, a5) = a1r
9
d5 + a2r

7
d5 + a3r

5
d5 + a4r

3
d5 + a5rd5 − dr4

(3.23)

After applying Wu’s Polynomial Elimination Method, we have the following triangular

system:

P1(a1, a2, a3, a4, a5) = a1r
9
d1 + a2r

7
d1 + a3r

5
d1 + a4r

3
d1 + a5rd1 − dr1

P ′2(a1, a2, a3, a4) = a1A11 + a2A21 + a3A31 + a4A41 + A01

P ′3(a1, a2, a3) = a1A12 + a2A22 + a3A32 + A02

P ′4(a1, a2) = a1A13 + a2A23 + A03

P ′5(a1) = a1A14 + A04

, (3.24)

where the Aij are formal coefficients in the rdk where k = 1 . . . 5.

Residual

Finally, the Root Mean Square Error and the L-infinity Norm were obtained as follows:

RMSE =

√
ε>ε

81
,

‖ε‖∞ = maxi |εi| .
(3.25)

where:

εi = min
(r,d)∈V ({PWU ,Normal})

{
dE((ri, di), (r, d))

}
for i = 1, .., 5. (3.26)
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Code to calculate distortion coefficients with Wu’s Method

load(grobner);

'/∗ define the 5 polynomials with the points (r ,d) which gives the five greatest DELTA D

for Orthophoto 1∗/'

p1 : a1∗(0.61615)+a3∗(0.61615)ˆ3+a5∗(0.61615)ˆ5+a7∗(0.61615)ˆ7+a9∗(0.61615)ˆ9−

(0.0054821);

p2 : a1∗(0.60924)+a3∗(0.60924)ˆ3+a5∗(0.60924)ˆ5+a7∗(0.60924)ˆ7+a9∗(0.60924)ˆ9−

(−0.0081988);

p3 : a1∗(0.71541)+a3∗(0.71541)ˆ3+a5∗(0.71541)ˆ5+a7∗(0.71541)ˆ7+a9∗(0.71541)ˆ9−

(−0.0048082);

p4 : a1∗(0.91477)+a3∗(0.91477)ˆ3+a5∗(0.91477)ˆ5+a7∗(0.91477)ˆ7+a9∗(0.91477)ˆ9−

(−0.006484);

p5 : a1∗(0.9512)+a3∗(0.9512)ˆ3+a5∗(0.9512)ˆ5+a7∗(0.9512)ˆ7+a9∗(0.9512)ˆ9− (−0.0063481);

'/∗ Generate the S− polynomial between 2 polynomials∗/'

pr11:poly s polynomial(p1,p2,[a9])$

pr12:poly s polynomial(p1,p3,[a9])$

pr13:poly s polynomial(p1,p4,[a9])$

pr14:poly s polynomial(p1,p5,[a9])$

pr21:poly s polynomial(pr11,pr12,[a7])$

pr15:poly s polynomial(p2,p3,[a9])$

pr16:poly s polynomial(p2,p4,[a9])$

pr17:poly s polynomial(p2,p5,[a9])$

pr18:poly s polynomial(p3,p4,[a9])$

pr19:poly s polynomial(p3,p5,[a9])$

pr20:poly s polynomial(p4,p5,[a9])$

pr22:poly s polynomial(pr11,pr13,[a7])$

pr23:poly s polynomial(pr11,pr14,[a7])$

pr24:poly s polynomial(pr11,pr15,[a7])$

pr25:poly s polynomial(pr11,pr16,[a7])$

pr26:poly s polynomial(pr11,pr17,[a7])$

Information Technology Engineer 52 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

pr31:poly s polynomial(pr21,pr22,[a5])$

pr32:poly s polynomial(pr21,pr23,[a5])$

pr33:poly s polynomial(pr21,pr26,[a5])$

pr41:poly s polynomial(pr31,pr32,[a3])$

'/∗Solving the linear equation to obtain a1∗/'

l1 : linsolve (pr41,a1);

pa1:l1 [1];

'/∗transform the fractional answer into decimal∗/'

a1: float (pa1);

'/∗Solving the linear equation to obtain a3 using the value of a1 obtained before∗/'

l2 : linsolve (pr31,a3);

a3: ev(l2 [1], numer, expand, a1=−11.71152835355197);

'/∗Solving the linear equation to obtain a5 using the value of a1 and a3 obtained before∗/'

l3 : linsolve (pr21,a5);

a5: ev(l3 [1], numer, expand, a1=−11.71152835355197, a3=81.11892796116398);

'/∗Solving the linear equation to obtain a7 using the value of a1, a3 and a5 obtained before∗/'

l4 : linsolve (pr11,a7);

a7: ev(l4 [1], numer, expand, a1=−11.71152835355197, a3=81.11892796116398, a5=

−201.3149002219625);

'/∗Solving the linear equation to obtain a9 using the value of a1, a3, a5, a7 and a9 obtained

before∗/'

l5 : linsolve (p1,a9);

a9: ev(l5 [1], numer, expand, a1=−11.71152835355197, a3=81.11892796116398, a5=

−201.3149002219625, a7= 212.3307920836902);

Cubic Spline Interpolation:

In order to have a more precise piecewise cubic polynomial we have added the origin
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point (0,0), therefore we have 6 points:

P1 = (r1, d1) = (0, 0)

P2 = (r2, d2)

P3 = (r3, d3)

P4 = (r4, d4)

P5 = (r5, d5)

P6 = (r6, d6)

(3.27)

Given the previous 6 points, we have the following piecewise cubic polynomial:

S(r) =



s1(r) if r1 6 r < r2

s2(r) if r2 6 r < r3
...

s5(r) if r5 6 r 6 r6

. (3.28)

The parameter estimation of each cubic spline was obtained using the function cspline of

Maxima.

Residual

The residual of this model is calculated as follows:

εi = min
(r,d)∈V ({PCS ,Normal})

{
dE((ri, di), (r, d))

}
for i = 1, .., 6. (3.29)

3.5.3 Experiment 3: Clusters

Given that there are observations whose distance from each other is less than the un-

certainty, therefore insignificant, a clustering of the observations has been made. The

clusters are been build as a subset of the Euclidean Minimum Spanning Tree where the

edge length is less than the uncertainty. The centroids of each cluster are used on this
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Experiment.

Minimize the sum of squares of the vertical distance:

Given the n centroid points, we have the following model:

dr1

dr2
...

drn−1

drn


=



rd1 r3d1 r5d1 r7d1 r9d1

rd2 r3d2 r5d2 r7d2 r9d2
...

...
...

...
...

rdn−1 r3dn−1 r5dn−1 r7dn−1 r9dn−1

rdn r3dn r5dn r7dn r9dn





a1

a2

a3

a4

a5


+



ε1

ε2
...

εn−1

εn


or:

D[n,1] = R[n,5]A[5,1] + ε[n,1]. (3.30)

For this model, ε is the difference between the centroid points and the model.

ε = D − D̂. (3.31)

Therefore the estimation of the parameters a1, a2, a3, a4, a5 was made as before:

Â = (R>R)−1R>D. (3.32)

Then, the distortion vector of the model is:

D̂ = ÂR. (3.33)

The RMSE and L-infinity Norm of this model were obtained as Experiment 1 and 2.

Minimize the sum of squares of the orthogonal distance:
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

dr1

dr2
...

drn−1

drn


=



rd1 r3d1 r5d1 r7d1 r9d1

rd2 r3d2 r5d2 r7d2 r9d2
...

...
...

...
...

rdn−1 r3dn−1 r5dn−1 r7dn−1 r9dn−1

rdn r3dn r5dn r7dn r9dn





a1

a2

a3

a4

a5


+



ε1

ε2
...

εn−1

εn



or:

D[n,1] = R[n,5]A[5,1] + ε[n,1]. (3.34)

For this model ε is the orthogonal distance from the observed point and the model.

ε = V ·
−→
N . (3.35)

The estimation of parameters, the RMSE and L infinity Norm of this model were

obtained as Experiment 1 and 2.

Cubic Spline Interpolation:

Given the n centroids we have the following piece cubic polynomial:

S(x) =



s1(x) if x1 6 x < x2

s2(x) if x2 6 x < x3
...

sn−1 if xn−1 6 x < xn

, (3.36)

The parameter estimation of each cubic spline was obtained using the function cspline

of Maxima.

Finally the residual, RMSE and L infinity Norm of this model were obtained as Ex-

periment 1 and 2.
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Code to calculate distortion coefficients of each spline with Cubic Spline Interpolation

load(numericalio);

load(”eigen”);

load( interpol ) ;

load(grobner);

'/∗Read the 55 centroids of the feature points of Orthophoto1∗/'

centroidsm: read matrix(”Centroids.csv”)$

centroidsl : args(centroidsm)$

'/∗Sort centroids∗/'

sortedcentroids : sort( centroidsl ) ;

'/∗Calculate the 54 splines using Cubic Spline Interpolation∗/'

cspline (sortedcentroids ,d1=0,dn=0)$

3.5.4 Experiment 4: Residuals of the 81 Feature Points and all

the models

This experiment calculates the residuals of the 81 features points with the models obtained

in the previous experiments.

Experiment 1

Given that this experiment was made with the 81 feature points, the residual and error

measurements are the same as Experiment 1.

Experiment 2

Minimize the sum of squares of the vertical distance:

The distortion coefficients A= [a1, a2, a3, a4, a5] used for this computation were ob-

tained in Experiment 2 with the 5 greatest feature points in distortion with the method
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that minimizes the sum of squares of the vertical distance. The distortion vector of the

model, D̂, was obtained with the radial distance of the 81 feature points as follows:

D̂[81,1] =[5,1] R[81,5]. (3.37)

The residual, RMSE and L-Infinty Norm of the model with the 81 feature points was

obtained as follows:

ε = D − D̂ = ∆D,

RMSE =

√
ε>ε

81
,

‖ε‖∞ = maxi |εi| for i = 1, ..., 81.

(3.38)

Minimize the sum of squares of the orthogonal distance:

The same distortion coefficients obtained with the 5 observations with the previous

method were used to calculate the residual of this model with the 81 feature points as

follows:

ε = V ·
−→
N , (3.39)

where:

V is the matrix of the difference of Distortion (∆D)
−→
N is the Unitary Normal Vector

The RMSE and L-Infinity were obtained as detailed in previous experiments.

Wu’s Method:

The distortion coefficients obtained with Wu’s method were used to calculate the
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residual of the 81 feature points with the model. The residual was calculated as follows:

εi = min
(r,d)∈V ({PWU ,Normal})

{
dE((ri, yi), (r, d))

}
for i = 1, .., 81. (3.40)

The RMSE and L-Infinity were obtained as detailed in previous experiments.

Cubic Spline Interpolation:

The distortion coefficients obtained with Cubic Spline Interpolation were used to cal-

culate to the residual of the 81 feature points with the model. The residual was calculated

as follows:

εi = min
(r,d)∈V ({PCS ,Normal})

{
dE((ri, yi), (r, d))

}
for i = 1, .., 81. (3.41)

The RMSE and L Infinity were obtained as detailed in previous experiments.

Experiment 3

The same calculations were made with the models obtained in Experiment 3.
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Chapter 4

Results and Discussion

The results of each one of the experiments mentioned in Chapter 3 are presented through

plots of the calibration models and tables comparing the RMSE and L-infinty norm of each

model. There is a total of 8 experiments, 4 applied to each orthophoto. In this Chapter,

we will refer to some algebraic methods as follows: Minimize the Vertical Distance as

VDM, Minimize the Orthogonal Distance as ODM. The results are shown in the following

subsections.

4.1 Experiment 1: 81 Feature Points

The results of Experiment 1 obtained with both Orthophotos are shown in this section.

Tables 4.1 and 4.3 show the RMSE and L-infinity Norm of the models obtained with

VDM and ODM with the 81 normalized feature points. Tables 4.2 and 4.4 show the same

results in pixel in order to make them easy to interpret.

For Orthophoto 1, the maximum error of both models is approximately 9 pixels and

the RMSE is approximately 3.6 pixels. Furthermore, for Orthophoto 2 the maximum error

of both models is approximately 15 pixels and the RMSE is approximately 4 pixels, one

sixth of the value obtained with the L-Infinity norm. The maximum error of Orthophoto

2 is twice the maximum error of Orthophoto 1 while their mean errors are very similar.

This means that both models in the two orthophotos give good results on average, but
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Orthophoto 2 has a larger out layer than Orthophoto 1.

It can be noticed from Figures 4.1 and 4.2 that the scale of the D axis is much bigger

than the scale of the r axis, which means that the residual errors of both models appear

far bigger than what they really are. Examining the actual residuals, one can conclude

that these models for both Orthophotos constitute a good model in order to use them in

the radial distortion correction, since the error measures are smaller than 5 pixel.

4.1.1 Orthophoto 1:

Figure 4.1: Calibration model obtained with VDM and ODM

Table 4.1: Experiment 1 - Comparison of Root Square Mean Error and
L-infinity Norm of each model

Method RMSE L-infinity
VDM 0,00162250134262369 0,00394002288412341
ODM 0,00161197119404872 0,00391445185668038
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Table 4.2: Experiment 1 - Comparison of Root Square Mean Error and
L-infinity Norm of each model in pixels

Method RMSE L-infinity
VDM 3,65630677560249 8,87884156937211
ODM 3,63257708578879 8,82121725902924

4.1.2 Orthophoto 2

Figure 4.2: Calibration model obtained with VDM and ODM

Table 4.3: Experiment 1 - Comparison of Root Square Mean Error and
L-infinity Norm of each model

Method RMSE L-infinity
VDM 0,00192301065285817 0,00680300547667035
ODM 0,00190692861178089 0,00674611228506883
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Table 4.4: Experiment 1 - Comparison of Root Square Mean Error and
L-infinity Norm of each model in pixels

Method RMSE L-infinity
VDM 4,28892911928263000 15,17287917472740000
ODM 4,25306102142716000 15,04598915163470000

4.2 Experiment 2: 5 Greatest Distortion Feature Points

The results of Experiment 2 obtained with both Orthophotos are shown in this section.

Tables 4.5 and 4.7 show the normalized RMSE and L-infinity of the models applying VDM,

ODM, Cubic Splines Interpolation, and Single Algebraic Curve using Wu’s Method for

the 5 Greatest Points in Distortion of both orthophotos. Tables 4.7 and 4.8 show the

same results in pixels in order to make them easy to interpret.

It is clear that for Orthophoto 1 all the methods gives excellent models given that its

maximum errors are 0 pixels but with different precision. However, the algebraic curve

obtained with Wu’s polynomial elimination gives the best model being that its maximum

error is approximately 2,35E-11 pixels, closer to zero. The same behaviour is shown for

Orthophoto 2.

For Orthophoto 1, Figures 4.3 to Figure 4.5 do not show great difference between

each model. The plot of the model obtained with VDM/ODM and Wu are graphically

the same, however the difference in residuals is noticeable since the precision of Wu is

different by 8 decimals. For Orthophoto 2, the behaviour is the same adding that the

model obtained with Cubic Spline interpolation, Figure 4.7, has a prominent spike. The

possible reason for this spike will be explained in the next section.
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4.2.1 Orthophoto 1:

Table 4.5: Experiment 2 : 5 Greatest Feature Points in Distortion -
Comparison of Root Square Mean Error and L-infinity Norm.

Method RMSE L-infinity
VDM 2,34511998350156E-07 3,17626752506343E-07
ODM 1,77064958702815E-07 2,39819575165065E-07
Cubic Spline 8,36335606314196E-13 1,72928833864612E-12
Wu’s Elimination 8,43874796172484E-16 1,04474468442891E-15

Table 4.6: Experiment 2 : 5 Greatest Feature Points in Distortion -
Comparison of Root Square Mean Error and L-infinity Norm in pixels

Method RMSE L-infinity
VDM 0,000528472788282 0,0007157718867730
ODM 0,000399015884437 0,0005404334126345
Cubic Spline 0,000000001884682 0,0000000038969513
Wu’s Elimination 0,000000000001902 0,0000000000023543

Figure 4.3: Calibration model obtained with VDM and ODM
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Figure 4.4: Calibration model obtained with Cubic Spline Method

Figure 4.5: Calibration model obtained with Wu’s Method

4.2.2 Orthophoto 2

Table 4.7: Experiment 2 : 5 Greatest in Distortion Feature Points -
Comparison of Root Square Mean Error and L-infinity Norm.

Method RMSE L-infinity
VDM 4,98537144583741E-08 6,63604094132061E-08
ODM 1,56732828057551E-08 2,08627476435543E-08
Cubic splines 3,70651484494395E-11 6,10284053730989E-11
Wu’s Elimination 3,66122988837112E-14 7,55307710526317E-14
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Table 4.8: Experiment 2 : 5 Greatest in Distortion Feature Points -
Comparison of Root Square Mean Error and L-infinity Norm in pixels

Method RMSE L-infinity
VDM 0,00011118973643080 0,00014800494832246
ODM 0,00003495643610733 0,00004653060332437
Cspline 0,00000008266714189 0,00000013611287307
Wu’s Elimination 0,00000000008165714 0,00000000016845779

Figure 4.6: Calibration model obtained with VDM and ODM

Figure 4.7: Calibration model obtained with Cubic Spline Method
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Figure 4.8: Calibration model obtained with Wu’s Method

4.3 Experiment 3: Clusters

The results of Experiment 3 obtained with both Orthophotos are shown in this section.

Tables 4.9 and 4.11 show the RMSE and L-infinity Norm of the models obtained applying

VDM, ODM and Cubic Spline Interpolation to the centroids of the clusters obtained for

each Orthophoto with the normalized data. Tables 4.10 and 4.12 show the same results

in pixels in order to make them easy to interpret.

For Orthophoto 1, the maximum error and RMSE of the models obtained with VDM

and ODM are almost equal to the values obtained in Experiment 1 which values are 3 and

9 pixels, respectively. However, the RMSE and the maximum error obtained with Cubic

Spline interpolation are 0.06 and 0.43 pixels which indicates that this model is better than

the others, therefore it is the best method for the radial distortion correction with this

amount of data. The same behaviour is shown for Orthophoto 2.

It can be notice from Figure 4.10 and 4.12 show that cubic spline interpolation method

suffer from the very loose control of the interpolated curves. Frequently the size and shape

of these features such as spikes or sharp corners are controlled by control polygons and

these polygons depend on the configuration of the initial tangent vectors of each node

[31]. Therefore, the Maxima implementation of the cspline function may be the cause of
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these spikes. Unfortunately it is not possible to access the code of this function to observe

the configuration of the control polygons. The same behavior is observed for Orthophoto

2.

4.3.1 Orthophoto 1

Figure 4.9: Calibration model obtained with VDM and ODM

Figure 4.10: Calibration model obtained with Cubic Spline Method
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Table 4.9: Experiment 3 : Cluster - Comparison of Root Square Mean
Error and L-infinity Norm.

Method RMSE L-infinity
VDM 0,00145610179873744 0,00408925976689172
ODM 0,00129592646602684 0,00363942958038284
Cubic Spline 2,80927001949541E-05 1,93605065169300E-04

Table 4.10: Experiment 3 : Cluster - Comparison of Root Square Mean
Error and L-infinity Norm in pixels.

Method RMSE L-infinity
VDM 3,28132540345482000 9,21514688469049000
ODM 2,92037029119148000 8,20145455939273000
Cubic Spline 0,06330689988932910 0,43628901435901800

4.3.2 Orthophoto 2

Figure 4.11: Calibration model obtained with VDM and ODM

Information Technology Engineer 69 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Figure 4.12: Calibration model obtained with Cubic Spline Method

Table 4.11: Experiment 3 : Cluster - Comparison of Root Square Mean
Error and L-infinity Norm.

Method RMSE L-infinity
VDM 0,00160450071258876 0,0037615829950519
ODM 0,00151740373669321 0,0035573933048394
Cubic Spline 4,34622217606314E-04 7,34450667123198E-04

Table 4.12: Experiment 3 : Cluster - Comparison of Root Square Mean
Error and L-infinity Norm in pixels.

Method RMSE L-infinity
VDM 3,57855002930096 8,38953378552415
ODM 3,3842959020216 7,9341254356495
Cubic Spline 0,969346624371714 1,63806001189821

4.4 Experiment 4: 81 Feature Points VS all the mod-

els

In this section, we will describe the residuals between the 81 feature points and the models

obtained in the previous experiments.
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4.4.1 Orthophoto 1 - Models obtained with 5 observations VS

81 observations

In this subsection, the residuals between the 81 feature points and the models obtained

with the 5 Greatest Points in Distortion for Orthophoto 1 are being discussed.

For Orthophoto 1, Table 4.14 shows that the model obtained with ODM gives the

best fit for the 81 Feature Points given that the RMSE and L-infinity Error are 5 pixels

and 10 pixels respectively. However, all the other models gives similar error values. As

a conclusion none of these models can be used for the radial distortion calibration since

their RMSE and L-infinity values are very high.

As expected, the models obtained with VDM and ODM using the 81 points, (Ex-

periment 1), give lower values of RMSE and L-infinity. However, the difference in error

between these models and those obtained with the 5 greatest points is 2 to 4 pixels in the

RMSE and L-infinity, so it can be said that despite having calculated the models with

a very reduced amount of points, their error differences are not as significant. Graphi-

cally the difference between the models obtained in Experiment 1 and Experiment 2 is

significant.

Table 4.13: Experiment 4 : 81 Feature Points VS the models with 5
points - Comparison of Root Square Mean Error and L-infinity Norm.

Method RMSE L-infinity
VDM 0,00317321736178327 0,0059635671834
ODM 0,00239589276912081 0,00450270683152934
Cspline 0,00335154131771229 0,00709700292933852
Wu’s Elimination 0,00317541481926291 0,00596483815599785
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Table 4.14: Experiment 4 : 81 Feature Points VS the models with 5
points - Comparison of Root Square Mean Error and L-infinity Norm in

pixels.

Method RMSE L-infinity
VDM 7,1508453247786 13,4388986477494
ODM 5,39914435521375 10,1468498448514
Cspline 7,55269835946465 15,9930961012644
Wu’s Elimination 7,15579729520897 13,4417627845412

Figure 4.13: Calibration model obtained with 5 points with VDM and ODM VS 81 feature
points

Figure 4.14: Calibration model obtained with 5 points with Cubic Spline VS 81 feature
points
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Figure 4.15: Calibration model obtained with 5 points with Wu VS 81 feature points

4.4.2 Orthophoto 2 - Models obtained with 5 observations VS

81 observations

In this subsection, the residuals between the 81 feature points and the models obtained

with the 5 Greatest Points in Distortion for Orthophoto 2 are being discussed.

For Orthophoto 2, Table 4.16 shows that the model obtained with ODM gives the

best fit for the 81 feature points. Unlike the observed in the previous experiments, the

distinctness in error with the VDM and ODM models is very significant. It is also noto-

rious that the RMSE and L-infinity of the other models are very high so none of these

models can be used for the radial distortion calibration. Apparently Orthophoto 2 has

higher outlayers than Orthophoto 1.

As expected, the models obtained with VDM and ODM using the 81 points, (Exper-

iment 1), give lower values of RMSE and L-infinity. Graphically the difference between

the models obtained in Experiment 1 and Experiment 2 is noticeable.
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Table 4.15: Experiment 4 : 81 Feature Points VS the models with 5
points - Comparison of Root Square Mean Error and L-infinity Norm.

Method RMSE L-infinity
VDM 0,00607650877810264 0,0334526609422366
ODM 0,00191036598948663 0,0105170300999435
Cspline 0,0040056523695532 0,0119761208831621
Wu’s Elimination 0,00554052714124905 0,0277882149377483

Table 4.16: Experiment 4 : 81 Feature Points VS the models with 5
points - Comparison of Root Square Mean Error and L-infinity Norm in

pixels.

Method RMSE L-infinity
VDM 13,5525590579779 74,6101387526892
ODM 4,26072747367182 23,456342572506
Cspline 8,93388659286189 26,7105819281341
Wu’s Elimination 12,3571484936706 61,97661153995880000

Figure 4.16: Calibration model obtained with 5 points with VDM and ODM VS 81 feature
points
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Figure 4.17: Calibration model obtained with 5 points with Cubic Slpline VS 81 feature
points

Figure 4.18: Calibration model obtained with 5 points with Wu VS 81 feature points

4.4.3 Orthophoto 1 -Models obtained with 55 centroids VS 81

observations

In this subsection, the residuals between the 81 feature points and the models obtained

with the 55 centroids of the clusters of both Orthophotos are being discussed.

For Orthophoto 1, Table 4.18 shows that the model obtained with VDM and ODM

gives the best fit for the 81 feature points whereas the model obtained with cubic spline
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is the worst being that the RMSE and L-infinity are 15 an 63 pixels, respectively. This is

given because of the lack of control that cubic spline has over the spikes as explained in

Experiment 3. As seen in Figure 4.20 these spikes generate very large orthogonal distances

from the feature points to the algebraic curve.

When comparing these results with those obtained in Experiment 1, we can see that

the RMSE and L-infinity values of the model obtained with VDM/ODM are practically

similar, so we were able to obtain models with RMSE of approximately 3 pixels with a re-

duced number of points, which guarantees us less calculations. Graphically the difference

between the models obtained in Experiment 1 and Experiment 3 is not very significant.

The same behavior is shown for Orthophoto 2, but with much lower values of RMSE

and L-Infinity for the model obtained with cubic spline than in Orthophoto 1. This is

because its spikes are less prominent.

Figure 4.19: Calibration model obtained with 55 centroids with VDM and ODM VS 81
feature points
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Figure 4.20: Calibration model obtained with 55 centroids with Cubic Spline VS 81 feature
points

Table 4.17: Experiment 4 : 81 Feature Points VS the models with 55
centroids - Comparison of Root Square Mean Error and L-infinity

Norm.

Method RMSE L-infinity
VDM 0,00175262148447056 0,00519967550268258
ODM 0,00155982814431107 0,00462769643202177
Cspline 0,00690145832773324 0,0277858275611668

Table 4.18: Experiment 4 : 81 Feature Points VS the models with 55
centroids - Comparison of Root Square Mean Error and L-infinity Norm

in pixels.

Method RMSE L-infinity
VDM 3,94953251525441 11,7174687452952
ODM 3,515072723205 10,4285139095611
Cspline 15,5524363415469 62,6153624090894
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4.4.4 Orthophoto 2 - Models obtained with 55 centroids VS 81

observations

Figure 4.21: Calibration model obtained with 55 centroids with VDM and ODM VS 81
feature points

Figure 4.22: Calibration model obtained with 55 centroids with Cubic Spline VS 81 feature
points
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Table 4.19: Experiment 4 : 81 Feature Points VS the models with 55
centroids - Comparison of Root Square Mean Error and L-infinity

Norm.

Method RMSE L-infinity
VDM 0,00202452640969937 0,00846576993982556
ODM 0,00191462921456444 0,00800622326926245
Cubic spline 0,0032846492007512 0,0162801747320613

Table 4.20: Experiment 4 : 81 Feature Points VS the models with 55
centroids - Comparison of Root Square Mean Error and L-infinity Norm

in pixels.

Method RMSE L-infinity
VDM 4,5153417420807 18,8813760121917
ODM 4,27023582982736 17,8564398819014
Cubic Spline 7,32581880541942 36,309999308411
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Chapter 5

Conclusions and future work

In general terms, the main goal of this research is to provide a comparative analysis of

the radial distortion calibration using different algebraic methods. At a specific level, the

following conclusions are specified:

• The set of feature points of the lattice transform this process into a fully determinis-

tic radial distortion correction given that these feature point were determine without

the use of non-deterministic algorithm and it was based on the manual detection of

the precise pixel

• The best model was produced in the only experiment in which Wu’s Method was

used to obtain one algebraic curve for the 5 Greatest Feature Points. This means

that Wu’ is the best interpolation method for a small amount of data. However, the

lineal methods VDM and ODM always gave very good models for each experiment.

• Cubic Spline is a very good interpolation method but when we try to fit the model

with a bigger set of data the result are not good enough to used it for the radial

distortion calibration due to little control over spikes.

• Clustering is a good way to reduce the feature point data set in order to make the

data fitting calculations shorter and easy. The models and residuals obtained with

clustering are almost the same that the ones obtained with 81 features points.
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• We are currently working on a new experiment in which the piecewise linear curve

obtained with Cubic Spline is simplified using Douglas–Peucker algorithm.

As future work, it would be advisable to apply the same experiments with a feature

detection algorithm such as the Sobel filter to obtain the features points and then, apply a

line search on the features in order to be able to find the lines and their intersections. This

would make the Feature Detection process a little bit faster than doing it manually and

would give better result that feature detection algorithms like SIFT and SURF. It would

also be advisable to implement the cubic spline code in such a way that it can manipulate

the splines using restrictions on the tangents of each side of the nodes, as mentioned in

this work [31], so a better manipulation of the control polygons can be achieved therefore

it would be possible to reduce the spikes of this algebraic curve.
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Appendix A

Extra Definitions

The following definitions are based on Charles C. Pinter’s Abstract Algebra Book. For

more detailed definitions see [32].

A.1 Rings

By a ring we mean a set A with two binary operations called addition and multiplication

which satisfies the following axioms:

• A with addition alone is an Abelian group.

• The multiplication is associative.

• The multiplication is distributive over the addition. That is, for all a, b and c in A,

a(b+ c) = ab+ ac (A.1)

and

(b+ c)a = ba+ ca (A.2)

The easiest examples of rings come from the traditional number system. The set Z of the

integers, with conventional addition and multiplication, is a unitary ring called the ring

of integers.
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A ring that has a neutral element for the multiplication (called a unity) is called a

unitary ring or a ring, depending on the authors.

A.2 Ideals

Let A be a ring, and B a nonempty subset of A. B is a subring of A if, and only if, B is

closed with respect to subtraction and multiplication. It exists a special subrings called

ideals which are the counterpart of normal subgroups.

A nonempty subset B of a ring A is called ideal of A if B is closed with respect to

addition ad negatives, and B absorbs products in A.

A simple example of an ideal is the set E of the even integers. E is an ideal of Z

because the sum of two even integers is even, the negative of any even integer is even,

and, finally, the product of an even integer with an integer is always even.

A.3 Rings of Polynomials

Suppose we wish to enlarge the ring Z by adding to it the number π. It is easy to see that

we will have to adjoin to Z other new numbers besides just π; for the enlarged ring will

also contain such thing as −π, π + 7, 6π2 − 11, and so on. As a matter of fact, any ring

which contains Z as a subring and which also contains the number π will have to contain

every number of the form:

aπn + bπn − 1 + ...+ kπ + l (A.3)

where a,b,...k,l are integers. In other words, it will contain all the polynomial expressions

in π with integer coefficients.

But the set of all the polynomial expressions in π with integer coefficients is a ring.

This ring contains Z because every integer a is a polynomial with a constant term only,
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and it also contains π.

In elementary algebra, one considers polynomials whose coefficients are real numbers,

or in some cases, complex numbers. As a matter of fact, the properties of polynomials

are independent of the exact nature of the coefficients. All we need to know is that the

coefficients are contained in a ring. This ring is assumed to be commutative with unity.

Let A be a commutative ring with unitary, and x in arbitrary symbol. Every expression

of the form

a0 + a1x+ a2x
2 + ...+ anx

n (A.4)

is called a polynomial in x over A

A.4 Division Algorithm for Polynomials

If a(x) and b(x) are polynomials over a field F , and b(x) 6= 0, there exists polynomials

q(x)andr(x) over F such that

a(x) = b(x)q(x) + r(x) (A.5)

and

r(x) = 0 or deg r(x) < deg b(x) (A.6)

A.5 Wu’s Method

This section is based on the Book called Ideals, Varieties, and Algorithms from David

Cox. More detailed information could be find in [33].

The idea here is to follow the one-variable polynomial division algorithm as closely as

possible, and we obtain a result known as the pseudo-division algorithm.
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Let f, g ∈ K[x1, ..., xn, y] be as:

f = cpy
p + ...+ c1y + c0.

g = dmy
m + ...+ d1y + d0.

(A.7)

Assume m ≤ p and g 6= 0. There is an equation

dsmf = qg + r, (A.8)

where q, r ∈ K[x1, ..., xn, y], s ≥ 0, and either r = 0 or the degree of r in y is less than m.

Also r ∈ 〈f, g〉 in the ring K[x1, ..., xn, y].

Wu’s method uses pseudo-division to reduce the hypotheses expressed as polynomials

whose set of common zeroes is denoted as V to a system of polynomials fj that are in

triangular form in the variables x1, . . . , xn. Then, it uses successive pseudo-division of the

conclusion g with respect to each one of the polynomials fj to determine whether g is in

the ideal generated by the fj, thus in I(V ).
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