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Resumen

En este trabajo consideramos monoides cancelativos (c-monoides), en la construcción de conjuntos par-
cialmente ordenados. En particular, aplicamos esta construcción general a los submonoides de N. Aso-
ciado a un conjunto parcialmente ordenado localmente finito se estudia clásicamente lo que se denomina
el álgebra de incidencia. Toda álgebra de incidencia posee dos elementos especiales e invariantes bajo
isomorfismo de conjuntos parcialmente ordenados, la funcion zeta y su inversa, la función de Möbius.
Presentamos y probamos resultados usando argumentos combinatorios, funciones generatrices y la fun-
ción de Möbius asociada a conjuntos parcialmente ordenados. Recientemente, se introdujeron los +1-
monoides para el estudio de particiones ordenadas. Usando las propiedades de los +1-monoides constru-
imos una nueva familia de conjuntos parcialmente ordenados. La función generatriz de Möbius de cada
uno de estos conjuntos es la inversa (respecto a la composición de series formales) de la función gener-
atriz de su función zeta. Estos resultados nos permiten obtener una nueva derivación para los números
de Fuss-Catalán con signos alternantes. Extendemos dicha construcción a c-monoides que surgen del
producto ordinal de L especies y a c-operads, los cuales son también monoides, pero asociados a la
sustitución ordinal de L especies. Finalmente, probamos que la restricción de un operad a los conjuntos
con cardinal en un +1-monoide es también un operad, es decir que la ley de composición del operad
restringida al +1-monoide está bien definida.

Palabras clave: Monoides numéricos, Operads numéricos, Función de Möbius, L especies,
Posets asociados



Abstract

In this work we consider cancellative monoids (c-monoids), in the construction of partially or-
dered sets (posets). In particular, we apply this general construction to the submonoids of N.
In association with a locally finite poset, the incidence algebra is classically studied. Every
incidence algebra possesses two elements which are special and invariant under poset isomor-
phisms, the zeta function and its inverse, the Möbius function. We present and prove results
using combinatorial arguments, generating functions and the Möbius function associated to
posets. Recently, +1-monoids were introduced for the study of ordered set partitions. Using
the properties of +1-monoids, we construct a new family of posets. The Möbius generating
function of each of these posets is the inverse (with respect to the composition of formal power
series) of its zeta generating function. Those results allow us to obtain new derivation of the
Fuss-Catalan numbers with alternating signs. We extend this construction to c-monoids arising
from the ordinal product of L -species and to c-operads. Operads are also monoids, but associ-
ated to the ordinal substitution of L -species. Finally, we prove that the restriction of an operad
to sets whose cardinal is in a +1 monoid is also an operad. That is, we prove that the law of
composition of the operad restricted to a +1 monoid is well defined.

Keywords: Numerical monoids, Numerical operads, Generalized Möbius function,
L-species, Associated posets
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Notation

Posets

I (P ) Incidence algebra of P

PM Poset associated to the operad (or monoid) M

µP Möbius function of the poset P

MöbPM [n] Möbius cardinal

C�M� Algebra of formal series of the monoid M

ζM Zeta function associated to the c-monoid M

µM Möbius function associated to the c-monoid M

ζ〈−1〉
M Compositional inverse of the zeta function associated to a c-monoid M

C(n) Chain of length n

B(n) Boolean poset on n elements

Categories

F Category of finite sets and arbitrary functions

L Category of totally ordered sets and order preserving bijections

VecK Category of finite-dimensional vector spaces (over the field K) and linear maps

Set Category of sets and total functions

Species

0 Empty species

1 Singleton indicator

X Singleton structures

E Sets, the uniform species
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E+ Non-empty sets

S Permutations

L Linear orders

Π Partitions

NCP Non-crossing partitions

K Compositions

C Cyclic permutations

C Connected permutations

A Rooted trees

AE Ordered trees

Aµ(n) Weighted rooted trees

E〈AE 〉 Lists of trees in ascending order

MS Restriction of M to S

M+ Positive species for M

M〈N〉 Ordinal substitution of L -species

M ¦N Ordinal product of L -species

M .N Shuffle product L -species

M(N ) Shuffle substitution of L -species

MH Ordinal derivative L -species

M ′ Shuffle derivative of L -species

M−1(x) Reciprocal of M(x)

M 〈−1〉(x) Compositional inverse of M(x)
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Chapter 1

Introduction

Enumerative combinatorics is a branch of combinatorics concerned with counting the number
of combinatorial structures on a finite set such as prime permutations, pattern avoiding permu-
tations1, and non-crossing partitions. This counting is done, mostly, through calculations and
manipulations of generating functions, which are formal power series representing a counting
function. The enumeration of these combinatorial structures is fuelled by an interest in their
wide range of applications.

Prime permutations, those which don’t map intervals into intervals (except the trivial ones),
together with pattern avoiding permutations have been helpful for their applications in genetics,
as a tool for the comparative study of genomes [BHS02; Bé+05]. In computer science, to check
whether a permutation can be sorted by a stack [AA05; Knu97]. Non-crossing partitions are of
importance in the field of free probability [NS06; Voi97] on which they are used to recover the
moments of non-commutative random variables. Not only are combinatorial objects of interest
for their applications but their representations, such as planar trees or paths, are useful in other
disciplines.

Perhaps one of the most recurrent, if not the most fascinating, sequence of positive inte-
gers in combinatorics is that of Catalan numbers, named after mathematician Eugène Charles
Catalan, which are the solution to the problem of counting structures such as binary trees, non-
crossing partitions, stack sortable permutations, standard Young tableaux, amongst many others
which have been cataloged by the likes of Stanley [Sta11] and many others. A generalization
of the Catalan numbers known as the Fuss-Catalan numbers are also of interest in the context
of free probability.

As with other branches of mathematics, the study of combinatorics has been aided by pow-
erful tools like partially ordered sets (posets from now on) and combinatorial species. We can
associate to a locally finite poset an algebra, called the incidence algebra. Two prominent mem-
bers of the incidence algebras are the zeta function, and its inverse in the (convolution) product
of the algebra, which is called the Möbius function.
The Möbius function used in our environment is a natural generalization of the classical, number
theoretical one, associated with the poset of positive integers numbers ordered by the divisibility
relation. The classical Riemann’s zeta function can be expanded as a series of Dirichlet type.
The coefficients of its inverse Dirichlet series are given by the classical Möbius function.

1Atk99.
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The study of the Möbius function as a tool in combinatorics was systematically developed by
Gian-Carlo Rota’s in his seminal work on the Foundations of Combinatorial Theory I [Rot64] in
the mid 60’s, when it caught interest for its properties related to those of the underlying poset. In
particular, the Möbius function of a poset gives, as a result, the generating function (generally,
alternating in signs) of important structures on finite sets.

Combinatorial species, introduced by Joyal [Joy81], provide a better understanding of the
use of generating functions for combinatorial structures and ease their analysis, as calculations
on generating functions have a natural analogous to operations in species. L -species are a
family of species in which subjacent sets are totally ordered.

The current work is concerned with the building of posets of a special kind of set theoretical
monoids called c-monoids. We apply a general procedure, introduced in [MY91], to construct
the associated poset to submonoids of N, including numerical monoids, and +1 monoids. The
Möbius function associated to the posets obtained by this construction gives rise to generating
functions with interesting combinatorial meanings.

Numerical monoids are of interest in the study of algebraic curves. While +1 monoids,
which are a recent construction (see [BMR20]), have applications in the theory of set operads.
As such, we extend and generalize our construction in the broader context of Category Theory
and that of L -species through monoids and operads.

In Chapter 2 we give a simple overview of monoids in order to define c-monoids and estab-
lish the construction of an associated poset PM to a c-monoid M , with the help of the incidence
algebra for a poset P. We establish and prove some properties of PM and then proceed to go over
the Möbius function and how to calculate it in some cases. This construction is then applied
to numerical monoids and +1 monoids and the results get interpreted combinatorially. Chapter
3 delves into the necessary Category theory content the reader must be familiar with to follow
the definition of generating functions and L -species together with its operations. Classical
enumerative results are provided together with some figures to help with understanding.

Finally, Chapter 4 deals with the generalization of the construction proposed in Chapter
2 to Category theory. In particular, we make a distinction between monoids arising from the
ordinary product of L -species and between operads, those monoids arising from the ordinary
substitution of L -species. The extended construction for c-monoids are carried on without any
more special consideration. While for operads, we prove that the construction is well defined.

Mathematician 6 Final Grade Project



Chapter 2

Monoids

In this chapter, we give a brief review on set monoids and posets in order to introduce the
concept of c-monoid and how to construct its associated poset with the help of notions from the
incidence algebra I (P ). We then extend the construction to numerical monoids and +1 monoids
and give a combinatorial interpretation for the Möbius function of these posets.

Definition 2.0.1. A monoid is a set S with a law of composition which is associative, and
having a unit element e.

Note that by definition, S is not empty. Furthermore, if the law of composition is commuta-
tive, we also say that S is a commutative (or abelian) monoid.

Definition 2.0.2. A subset H of S, containing the unit element e and closed under the law of
composition is called a submonoid of S.

This definition implies that a submonoid is also a monoid, under the law of composition
induced by that of S. We introduce cancellative monoids, monoids with an additional property,
which we will refer to as c-monoids

Definition 2.0.3. A monoid (M ,∗,e) that satisfy the conditions

1. The identity has no proper divisors,i.e.,

e = a ∗b =⇒ a = e = b (2.1)

2. The left cancellation law, i.e.,

∀a,b,b′ ∈ S : a ∗b = a ∗b′ =⇒ b = b′. (2.2)

3. The finite factorization property, i.e.,

∀a ∈ M :
∣∣∣{(a1, a2)| a1 ∗a2 = a

}∣∣∣<∞ (2.3)

is called a c-monoid.

7



School of Mathematical and Computational Sciences YACHAY TECH

2.1 Posets and c-monoids
In this section we introduce how to build the associated poset to a c-monoid, based on the
work of Méndez and Yang [MY91]. Before doing so, we introduce the necessary notation and
preliminary definitions. A partially ordered set (poset) P , is a set together with a binary relation
denoted by ≤ (or ≤P when the possibility of confusion arises) which is reflexive, transitive and
antisymmetric.

Definition 2.1.1. A (closed) interval of P is denoted by

[p, q] = {r ∈ P | p ≤ r ≤ q}, p, q ∈ P.

Open intervals are defined analogously. If every interval of P is finite, we say P is a locally
finite poset. As an example, the set of positive integers endowed with the divisibility order
relation is locally finite. We say that P has a 0̂ or 1̂ if it has a unique minimal or maximal
element, respectively. Furthermore, we can think of intervals as posets with a 0̂ and 1̂.

Definition 2.1.2. Two posets P1 and P2 are isomorphic, denoted by P1
∼= P2, if there exists an

order preserving bijection φ : P1 → P2 whose inverse is order-preserving, i.e.,

p ≤P1 q ⇐⇒φ(p) ≤P2 φ(q).

2.1.1 The incidence algebra
Let P be a locally finite poset, let Int(P ) denote the set of all closed intervals of P , and let C be
the field of complex numbers. We define the set I (P ) as follows:

I (P ) := { f | f : Int(P ) →C}

In an abuse of notation, for any function f in I (P ) and [x, y] ∈ Int(P ), we write f (x, y) :=
f ([x, y]). The set I (P ) forms an algebra together with the operations of sum, convolution and
scalar multiplication defined in the following way

1. ( f + g )(x, y) = f (x, y)+ g (x, y).

2. ( f ? g )(x, y) = ∑
x≤z≤y

f (x, z)g (z, y)

3. (λ f )(x, y) =λ f (x, y), for λ ∈C.

Note that the sum in the convolution is finite because P is locally finite. The unit element of our
incidence algebra δ is

δ(x, y) =
1 i f x = y

0 otherwise.

Indeed, for any function f in I (P ) we have

(δ? f )(x, y) = ∑
x≤z≤y

δ(x, z) f (z, y)

= δ(x, x) f (x, y)

= 1 f (x, y) = f (x, y).

Mathematician 8 Final Grade Project
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We define the zeta function of I (P ) by

ζ(x, y) = 1, for all (x, y) ∈ Int(P ).

If P is finite and if we use a total order l extending P , the incidence algebra is isomorphic
to the algebra of matrices M with rows and columns indexed by the elements of l , in which the
x y entry is f (x, y) if x ≤P y , and 0 otherwise.

Example 2.1.1. Take the following poset P into account.

d

b c

a

Let l = {a,b,c,d} be the total order extending P . Let f ∈ I (P ), generic. Then f is sent, by this
isomorphism, to the following matrix

a b c d


a f (a, a) f (a,b) f (a,c) f (a,d)
b 0 f (b,b) 0 f (b,d)
c 0 0 f (c,c) f (c,d)
d 0 0 0 f (d ,d)

The zeta function of any interval can be thought of as an upper triangular matrix filled with ones
and zeroes. In particular, for the proposed poset we have that its zeta function is sent to (2.4)

a b c d


a 1 1 1 1
b 0 1 0 1
c 0 0 1 1
d 0 0 0 1

(2.4)

Proposition 2.1.0.1. A function f ∈ I (P ) is invertible if and only if f (x, x) 6= 0 for all x ∈ P .

The inverse of ζ under convolution is called the Möbius function, µ. Thus,

(µ?ζ)(x, y) = ∑
x≤z≤y

µ(x, z)ζ(z, y)

= ∑
x≤z≤y

µ(x, z) = δ(x, y). (2.5)

An important feat of µ(x, y) is that it can be defined recursively, depending only in the poset
[x, y]. Indeed, by (2.5),

(µ?ζ)(x, y) = ∑
x≤z≤y

µ(x, z) = ∑
x≤z<y

µ(x, z)+µ(x, y) = 0 (2.6)
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Thus, for any [x, y] ∈ Int(P ) we have

µ(x, y) =


1, x = y ;

− ∑
x≤z≤y

µ(x, z), x < y. (2.7)

As an example, take the poset defined on Example 2.1.1 and the matrix (2.4) associated to its
zeta function. Then,

Example 2.1.2. The associated matrix to the Möbius function on the intervals of P is

a b c d


a 1 −1 −1 1
b 0 1 0 −1
c 0 0 1 −1
d 0 0 0 1

(2.8)

It can be easily checked that this matrix corresponds to the inverse of (2.4).

Having defined the Möbius function µ, we give the following theorems and definition which
will come in handy later on.

Theorem 2.1.1. Let [x, y] and [w, z] be two isomorphic posets with 0̂ and 1̂. Then

µ(x, y) =µ(w, z). (2.9)

For any two intervals [a,b], [c,d ] in locally finite posets P and Q, respectively. We define
an order for the Cartesian product[a,b]× [c,d ] in the following way

Definition 2.1.3. For (p1, q1),(p2, q2) in [a,b]× [c,d ]. We have that

(p1, q1) ≤× (p2, q2) if p1 ≤P p2 and q1 ≤Q q2 (2.10)

Hence, the Cartesian product of intervals is equivalent to an interval of the form [(a,c), (b,d)]
with the order as in Definition 2.1.3.

Proposition 2.1.1.1. Let P and Q be locally finite posets, and let P ×Q be their product. If
(p1, q1) ≤× (p2, q2) in P ×Q then

µP×Q
(
(p1, q1), (p2, q2)

)=µ(p1, p2)µ(q1, q2). (2.11)

Adapted from [Sta11]. Let (p1, q1) ≤P×Q (p2, q2). We have∑
(p1,q1)≤(p,q)≤(p2,q2)

µP (p1, p)µQ (q1, q) =
( ∑

p1≤p≤p2

µP (p1, p)
)( ∑

q1≤q≤q2

µQ (q1, q)
)

= δp1,p2δq1,q2 = δ(p1,q1),(p2,q2)

The result follows from the fact formula (2.7) determines µ uniquely.
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Denote by B(n), the Boolean poset of n elements which is defined for subsets of [n] under
the order of set inclusion in the following way: A subset A of [n] = {1,2, . . . ,n} is encoded as

A 7→ (
δA,i

)n
i=1

with

δA,i =
1, if i ∈ A.

0, otherwise.

That is, we assign to every subset of [n] a tuple of ones and zeroes assigning 1 to the position
corresponding to the elements of A and 0 everywhere else. In general, for the set of parts of
[n], P [n] also denoted by B(n), is encoded by ones and zeroes like a characteristic function for
subsets assigning 1 to k-th position of the tuple if the k-th element belongs to A. Indeed,

B(n) ∼= {0,1}n (2.12)

Example 2.1.3. To find the Möbius function of B(n) it suffices to notice that, by its definition,
B(n) is isomorphic to the product of chains of length 1, denoted by C(1).

µ(;, [n]) =µ(C(1)n) (2.13)

The graph and associated Möbius function of C(1)

1 −1

; −1

together with (2.13) and Proposition 2.1.1.1 gives us the following result

µ(;, [n]) = (−1)n (2.14)

The proof of Theorem 2.1.1, and more on the incidence algebra and the Möbius function
can be found on [Sta11].

2.1.2 The poset associated to a c-monoid
To any c-monoid (M ,∗) we can always built an associated poset (PM ,≤). We define a binary
relation ≤ in the following way:

a ≤ b if ∃b′ : a ∗b′ = b. (2.15)

Proposition 2.1.1.2. The relation defined on (2.15) is a partial order in PM .

Proof. Let’s prove that (2.15) defines an order relation on PM , i.e., that it is reflexive, transitive
and antisymmetric.

Mathematician 11 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

• (Reflexivity) Let a ∈ M , we have to prove that

a ≤ a

That is,
∃b ∈ M : a ∗b = a

But this follows from the existence of the identity element e in M as a ∗e = a.

• (Transitivity) Let a,b,c be elements in M such that

a ≤ b, and b ≤ c. (2.16)

We have to prove that a ≤ c. That is,

∃ c ′ ∈ M : a ∗ c ′ = c. (2.17)

(2.16) implies that

∃b′ : a ∗b′ = b (2.18)
∃c ′′ : b ∗ c ′′ = c (2.19)

So that taking c ′ = b′∗ c ′′, by associativity, we obtain the required result.

• (Antisymmetry) We have to prove that if

a ≤ b and b ≤ a =⇒ a = b

Let a,b be elements in M such that a ≤ b and b ≤ a. This implies that

∃a′ ∈ M : a ∗a′ = b. (2.20)
∃b′ ∈ M : b ∗b′ = a. (2.21)

Because M is a c-monoid and by (2.20) we have that

a ∗a′∗b′ = a ∗e

=⇒a′∗b′ = e.

Since the identity in a c-monoid has no proper divisors, we conclude that a′ = b′ = e and
thus, condition (2.1.2) holds.

Therefore, ≤ defines an order relation in M .

Example 2.1.4. Let (N+,∗) be the monoid of positive integers with the usual product. Then, the
associated poset PN+ on the interval [1,30] has the following diagram with associated Möbius
function values

-1
30

6
1

10
-1

15
1

2
-1

3
-1

5
-1

1
1
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As an application of Proposition 2.1.1.1, we may compute the Möbius function for PN+ on
the interval [1,n]. For n = pα1

1 pα2
2 · · ·pak

k , we have the poset isomorphism

[1,n] ∼= C(α1)×C(α2)×·· ·×C(αk ) (2.22)

And thus, as a consequence of Proposition 2.1.1.1,

µ(1,n) =µ(n) = 0, if ∃ i :αi ≥ 2. (2.23)

That is, if the length of a chain is greater or equal than 2, its Möbius function is 0. Otherwise,
if a number can be decomposed as the product of non repeated primes, it is isomorphic to the
product of chains of length one. Hence,

µ(n) = (−1)n , if ∀ i :αi = 1. (2.24)

Thus, we get that the Möbius function is given by

µ(n) =
(−1)k , n = p1p2 · · ·pk

0, otherwise.
(2.25)

It is important to remark that while the cancellative property and the lack of proper divisors
of identity of a c-monoid M allow us to define the associated poset PM , the finite factorization
property is equivalent to PM being locally finite. We shall now state some more properties of
PM which are not so immediate.

Proposition 2.1.1.3. For a c-monoid (M ,∗,e), the associated poset PM has the following prop-
erties:

1. PM has a minimum element, 0̂. Furthermore, 0̂ = e.

2. For any [a,b] ∈ Int(PM ) we have that [a,b] ∼= [e,b′]. With b′ being the unique element in
PM such that a ∗b′ = b.

Proof. To prove (1), it suffices to note that for all a in PM we have that

a ∗e = a.

To show that (2) holds, define the mapping φ : [a,b] → [e,b′] such that to any element x of [a,b]
it assigns x ′ such that a ∗ x ′ = x. This mapping is clearly an order preserving bijection as x ′ is
unique for any x ∈ [a,b]. Indeed, suppose this is not the case and there is some x ′′ such that
a ∗x ′′ = x. Then by the cancellation law, it must be that x ′ = x ′′. We’ve reached a contradiction
so it must be that x ′ is unique.

To each function in f ∈ I (PM ) we can assign a function (denoted by abuse of language with
the same symbol) f : M →C, by making f (a) := f (e, a) for a ∈ M .
For f , g ∈CM we define the convolution product

( f ? g )(a) = ∑
a1∗a2=a

f (a1)g (a2),
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This convolution is well defined as there is a finite number of decompositions of a in two factors.
Consider the set of indeterminates (variables) {Xa}a∈M , with the product Xa Xb := Xa∗b . We can
identify a function f ∈CM with the formal (infinite) sum f = ∑

a∈M
fa Xa , where fa := f (a). Then,

we have that the set
C�M� =

{ ∑
a∈M

fa Xa | fa ∈C
}

.

together with usual sum of formal series, product by a scalar and convolution defined by the
extension of the product Xa Xb := Xa∗b , to the whole set C�M�, ∑

a1∈M
fa1 Xa1

 ∑
a2∈M

ga2 Xa2

= ∑
a∈M

( ∑
a1∗a2=a

fa1 ga2

)
Xa .

is an algebra. The identity element of this algebra is Xe , which coincides with the delta function
of the incidence algebra.

Xe =
∑

a∈M
δ(e, a)Xa . (2.26)

Analogously, we can define the zeta function by

ζM (X ) = ∑
a∈M

ζ(a)Xa = ∑
a∈M

Xa .

An element of C�M� is invertible if its constant term , ce , is different from zero.

Theorem 2.1.2. For a monoid M , the inverse of its zeta generating function ,ζM , with respect
to the product, is given by the Möbius function, µM .

ζ−1
M (X ) = ∑

a∈M
µ(a)Xa =µM (X )

Proof. Indeed, by the definition of the Möbius function on (e, a),

µM (X )ζM (X ) =
 ∑

a1∈M
µ(a1)Xa1

 ∑
a2∈M

ζM (a2)Xa2


= ∑

a∈M

( ∑
a1∗a2=a

µM (a1)

)
Xa

= ∑
a∈M

( ∑
e≤a1≤a

µ(e, a1)

)
Xa = Xe .

In a similar way, we prove that ζM (X )µM (X ) = 1, by using the fact that∑
a1∗a2=a

µM (a2) = ∑
e≤a1≤a

µM (a1, a),

since, by Proposition 2.1.1.3, the interval [e, a2] is isomorphic [a1, a], whenever a1∗a2 = a.
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2.2 Numerical Monoids
Denote by N = {0,1,2, . . . } the set of nonnegative integers. From now on, we will focus on
additive submonoids of N and their applications. Notice that, if a submonoid S of N contains a
nonzero element a then it must be an infinite set as ka ∈ S for all k ∈N.

Definition 2.2.1. A numerical monoid S is an additive submonoid of N with finite complement
in N.

Numerical monoids, despite having a very simple definition as mathematical objects, have
applications on important areas such as algebraic geometry, cryptography and error-correcting
codes [BA13]. It is important to remark that numerical monoids can also be found denoted as
numerical semigroups, semimodules, or demimodules in the available literature. See [Sae12;
AGS16]. We will denote them numerical monoids on the present work.
To any numerical monoid S we associate its set of gaps, G(S), defined as

G(S) =N\ S (2.27)

Note that by definition, the set of gaps of any numerical monoid must be finite. This cardinality,
denoted by g (S), is called the genus or degree of singularity of S. We focus particularly in
numerical monoids because they classify the set of all submonoids of (N,+) up to isomorphism
as we shall prove. Let us introduce some notation and more conditions for numerical monoids
which will be useful to prove the isomorphism and further results.
For a submonoid S of N we denote by

Gr(S) = {x − y | x, y ∈ S}

the subgroup of Z generated by S. A submonoid S of N is a numerical monoid if 1 ∈ Gr(S).
Therefore, the finite complement property of numerical monoids implies g cd(S) = 1 for any
numerical monoid M .

Proposition 2.2.0.1. Let S be a submonoid of N. Then S is isomorphic to a numerical monoid.

Adapted from [AGS16]. Let d = gcd(S), i.e., d is the generator of the group generated by S in
Z. Define S1 = {s/d | s ∈ S}, which is a numerical monoid as it inherits the zero element from
S and clearly has finite complement in N. The map φ : S → S1 given by φ(s) = s/d is a monoid
isomorphism. Thus, S is isomorphic to the numerical monoid S1.

Another important quality of numerical monoids is the fact that they are finitely generated,
meaning that the elements of a numerical monoid can be described as a linear combination of a
finite number of them.

All the submonoids of N are c-monoids. Hence, we can define the algebra of formal series
for any numerical monoid S, denoted by C�S�, in a similar way as that for the general case of
a c-monoid M and the product extension of Xa .Xb = Xa+b . This leads us to represent C�S� as
the (isomorphic) algebra of power series C�{xs |s ∈ S}�. Take for example the numerical monoid
S = {〈2,3〉} = {

2k1 +3k2 | k1,k2 ∈N
}=N\ {1}. Then,

ζS(x) =
∞∑

k=0, k 6=1
xk = x

1−x
−x = 1−x +x2

1−x
. (2.28)
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And, by Theorem 2.1.2, its associated Möbius function

µS(x) = ζ−1
S (x) = 1−x

1−x +x2
. (2.29)

Expanding (2.29) up to the first eighteen terms we obtain.

µS(x) = 1−x2 −x3 +x5 +x6 −x8 −x9 +x11 +x12 −x14 −x15 +x17 +x18 · · · (2.30)

So that, the coefficient of the k-th power of x would be the corresponding value of the Möbius
function for k ∈ {〈2,3〉}, which can be checked on the diagram of the poset.

...
...

−10 8 9 −10

1 6 7 0

0 4 5 1

−10 2 3 −10

0 1

2.3 +1 Monoids
We define +1 monoids, introduced in [BMR20], as their properties make them of interest in the
study of operads and their associated Möbius function.

Definition 2.3.1. A subset S+ of N+ such that S+−1 is an additive submonoid of N+ will be
called a +1 monoid.

The set S+ of odd integers is a +1 monoid as, S+−1, the set of even integers is an additive
monoid. The set of multiples of a positive integer m plus one is always a +1 monoid.

Proposition 2.3.0.1. Let S+ be a +1 monoid. Then:

1. If s1, s2, . . . , st and t are elements of S+, then s1 + s2 +·· ·+ st is in S+.

2. If s1, s2, . . . , st−1 are elements of S+ and t is also in S+, then s1+ s2+·· ·+ st−1 is in S+−1.

A proof for Proposition 2.3.0.1 can be found on [BMR20]. We describe a family of posets
associated to a +1 monoid. They have as underlying sets compositions whose parts are in
S+ (S+-restricted compositions from now on). We define an order relation with the help of
Proposition 2.3.0.1 in the following way.

Definition 2.3.2. Let c = (s1, s2, . . . , sl ), and c′ = (s′1, s′2, . . . , s′r ) be two S+-restricted numerical
compositions of a positive integer n. Then we say that

(s1, s2, . . . , sl ) ≤ (s′1, s′2, . . . , s′r )
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if there are r numbers ki ∈ S+, for i = 1,2,3, . . . ,r, such that

s′i = sσi−1+1 + sσi−1+2 +·· ·+ sσi−1+ki ,

where σ0 is defined to be zero, and for i = 1,2,3, . . . ,r , σi is defined as the sum σi = k1 +k2 +
·· ·+ki .

We denote by PS+(n) the poset of compositions of n with components in S+. It has a zero,
the compositions with n parts, each part equal to 1. It also has a unique maximal element n if,
and only if, n is an element of S+. It can be shown that, for any +1 monoid S+, the poset PS+(n)
is isomorphic to the poset PES+ [n], obtained from restricting the operad E+ to S+, which will be
discussed further in the operadic context of the following chapter.
Indeed, PE++

S
[n] is an order on the compositions of the linear order 1,2, . . . ,n having as the 0̂ of

the poset compositions with all its segments having length one. The order compares the com-
positions obtained by concatenating, at each level, k neighbouring compositions, with k in S+.
This, is analogous to adding k neighbouring parts of the S+ restricted numerical compositions
of n, with k ∈ S+ as we have just introduced.

This fact, makes possible the computing of the compositional inverse of the ζ function of
the poset in the following way

ζ〈−1〉(x) = ∑
s∈S+

µ(0, s)xs . (2.31)

We provide some examples of the proposed poset.

Example 2.3.1. Denote by N \ 2 the +1 monoid obtained by adding 1 to the numerical monoid
generated by 2 and 3. Then PN\2(6) has the following diagram

6
6

3+1+1+1
-1

4+1+1
-1

1+1+3+1
-1

1+4+1
-1

1+3+1+1
-1

1+1+4
-1

1+1+1+3
-1

1+1+1+1+1+1
1

The compositional inverse of the ζ function for N\ 2,

ζ〈−1〉
N\2 =

( ∞∑
k=1,k 6=2

xk
)〈−1〉 =

( x

1−x
−x2

)〈−1〉 =
(x −x2 +x3

1−x

)〈−1〉

expanded up to the first terms with the help of Mathematica,

x−x3−x4+2x5+6x6−x7−28x8−31x9+98x10+288x11−131x12−1730x13−1638x14 · · · (2.32)
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Example 2.3.2. Let Odd denote the +1 monoid of odd numbers, then the interval [0̂,7] of the
associated poset POdd(0̂,7) := POdd(7), has the following diagram

-5
7

3+3+1
1

3+1+3
1

5+1+1
2

1+5+1
2

1+1+5
2

1+3+3
1

3+1+1+1+1
-1

1+3+1+1+1
-1

1+1+3+1+1
-1

1+1+1+3+1
-1

1+1+1+1+3
-1

1+1+1+1+1+1+1
1

The compositional inverse of the ζ function for Odd,

ζ〈−1〉
Odd =

( ∑
s∈S

xs
)〈−1〉 =

( ∞∑
k=0

x2k+1
)〈−1〉 =

(
x

∞∑
k=0

x2k
)〈−1〉

.

After some calculations in Mathematica, and expanded up to the first terms

ζ〈−1〉
Odd = −1−

p
1+4x2

2x
= x−x3+2x5−5x7+14x9−42x11+132x13−429x15+1430x17−4862x19 . . .

(2.33)
Note that the coefficients of the inverse function are exactly the Catalan numbers with alternat-
ing sign. This is no coincidence, as we will see later on.

We give the following proposition to help understand the combinatorial meaning behind the
compositional inverse of +1 monoids.

Proposition 2.3.0.2. Let F (x) be a formal power series of the form F (x) = xM(x) where M(x)
has 1 as constant term, M(0) = 1. Then

F 〈−1〉 =AM−1 (x),

Where
AM−1 (x) = xM−1(AM−1 (x)

)
(2.34)

Proof. Condition (2.34) implies

AM−1 (x)M
(
AM−1 (x)

)= x.

Which is equivalent to,
(xM(x))◦ (

AM−1 (x)
)= x.

Then, xM(x) is the left compositional inverse of AM−1 (x). By associativity of the composition
of generating functions, it is also its right inverse. We have(

xM(x)
)〈−1〉 =AM−1 (x).
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In general for +1 monoids of the form nN+1, its zeta function is given by

ζnN+1(x) =
∞∑

k=0
xnk+1 = x

∞∑
k=0

xnk = x

1−xn
= xζnN. (2.35)

Equation(2.35) clearly follows the suppositions needed for Proposition 2.3.0.2 to hold. Hence,
the compositional inverse for the zeta function of +1 monoids of the form nN+1 gives us the
generating function of trees enriched with the multiplicative inverse of ζnN, that is,

ζ〈−1〉
nN+1 =Aζ−1

nN+1
=AµnN (2.36)

With Möbius function given by

µnN(0, j n) =


1, if j = 0

−1, if j = 1

0, otherwise.
(2.37)

From (2.37), we can deduce that the resulting trees must be n-ary with weight −1 on each
internal vertex. Hence, equation (2.36) can be interpreted combinatorially as the generating
function of weighted n-ary trees on k vertexes, including its root. The n-ary trees are trees in
which every internal node has exactly n sons. The weight, w(T ), is given in function of the
internal vertexes, denoted Iv, of the n-ary tree and their inner degree, denoted id, the number of
nodes leaving the vertex, as evidenced by its generating function

ζ〈−1〉
nN+1 =

∞∑
k=1

( ∑
T :n−ary tree

w(T )
)
xk . (2.38)

Where the weight of an n-ary tree is given by

w(T ) = ∏
v∈Iv(T )

µ(id(v)).

We provide some examples to try and establish some patterns

Example 2.3.3. Set n = 3. Then, the compositional inverse for the zeta function of the +1
monoid of multiples of 3 plus one is given by

ζ〈−1〉
3N+1 =

( ∞∑
k=0

x3k+1
)〈−1〉 =

(
x

∞∑
k=0

x3k
)〈−1〉

which expanded to the first terms, with the help of Mathematica, gives us

x −x4 +3x7 −12x10 +55x13 −273x16 +1428x19 · · ·

That is, for seven vertexes we have 3 ternary trees with positive weight as we can see in Fig. 2.1
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Figure 2.1: Weighted Ternary trees with seven vertexes

For n = 4, the inverse of the zeta function expanded is

x −x5 +4x9 −22x13 +140x17 −969x21 +7084x25 −53820x29 +420732x33 −3362260x37 · · ·

And, for n = 5, we obtain

x −x6 +5x11 −35x16 +285x21 −2530x26 +23751x31 −231880x36 · · · .

These sequences of coefficients coincide with those of the Fuss-Catalan numbers for p = n and
r = 1.
The Fuss-Catalan numbers, denoted by Am(p,r ), are numbers of the form

Am(p,r ) ≡ r

mp + r

(
mp + r

m

)
= r

m!

m−1∏
i=1

(mp + r − i ) = r
Γ(mp + r )

Γ(1+m)Γ(m(p −1)+ r +1)
. (2.39)

This family of generalized Catalan numbers are of interest for their numerous applications in
combinatorics [MP15; Ava07; Lin11] and non-commutative probability [Mł10]. In general, the
compositional inverse of the zeta function for +1 monoids of the form nN+1 is given by

ζ〈−1〉
nN+1 =

∞∑
k=0

(
(−1)k Ak (n,1)

)
xkn+1 (2.40)
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Chapter 3

Preliminaries

In this chapter, we introduce the reader to basic category theory concepts needed to properly de-
fine combinatorial species. Then, we proceed to introduce combinatorial species together with
their operations, providing some classical examples for a better understanding of the notions
introduced.

3.1 Category Theory Fundamentals
We begin by defining the notion of category and then, presenting some examples which will be
used later on.

Definition 3.1.1. A category C consists of

• a collection of objects;

• a collection of morphisms

so that:

• Each morphism has specified domain and codomain objects; the notation f : X → Y (or

X
f−→ Y ) means that f is a morphism with domain X and codomain Y. The collection of

all morphisms with domain X and codomain Y is denoted C(X ,Y );

• For any pair of morphisms f , g with codomain of f equal to the domain of g , exists a
composite morphism g ◦ f : dom f → codg , satisfying the following associative law:
for any morphisms f : X → Y , g : Y → Z , h : Z →W (with X, Y, Z, and W not necessarily
distinct),

h ◦ (g ◦ f ) = (h ◦ g )◦ f ;

• Each object X has an identity morphism i dX : X → X satisfying the following identity
law:
for any morphism f : X → Y

idY ◦ f= f and f◦ idX = f
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Example 3.1.1. The category Set has as objects sets and total functions between sets as mor-
phisms.

Example 3.1.2. The category F has finite sets as objects and arbitrary functions as morphisms.

Example 3.1.3. The category VecK has as objects finite-dimensional vector spaces (over the
field K) and linear maps as morphisms.

Example 3.1.4. The category L has totally ordered sets as objects and order preserving bijec-
tions as morphisms.

Example 3.1.5. The category Poset has as objects all partially-ordered sets and as morphisms
all order-preserving total functions

Example 3.1.6. The category Top has as objects topological spaces and continuous functions
as morphisms

As we have seen now, categories can be thought of as universes categorizing mathematical
objects but they also constitute a mathematical domain in their own right. It makes sense then
to ask: What is a morphism between categories?

Definition 3.1.2. Let C and D be categories. A covariant functor F : C → D is a map taking
each C-object X to a D-object F (X ) and each C-morphism f : X → Y to a D-morphism F ( f ) :
F (X ) → F (Y ), such that for all C-objects X and composable C-morphisms f and g :

1. F (idX ) = idF (X )

2. F (g ◦ f ) = F (g )◦F ( f )

When F reverses the direction of arrows, i.e., every morphism f : X → Y is sent to a morphism
F ( f ) : Y → X , and condition (2) is changed by

F ( f ◦ g ) = F (g )◦F ( f ),

the functor is called contravariant.

In particular, a (covariant) functor consists of a mapping on objects and a mapping on mor-
phisms preserving all of the category structure, namely domains and codomains, composition,
and indentities. Having defined functors as mappings from one category to another we now
proceed to define structure-preserving mappings from one functor to another called natural
transformations.

Definition 3.1.3. Let C and D be categories and let F and G be functors from C to D. A natural
transformation α from F to G , written α : F →G consists of:

• an arrow αc : F (c) →G(c) in D for every object c ∈C , the collection of which define the
components of the natural transformation, so that, for any morphism f : c → c ′ in C , the
following square of morphisms in D commutes.

F (c)

F ( f )

��

αc // G(c)

G( f )

��
F (c ′)

αc′ // G(c ′)

(3.1)
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The commutativity of the diagram above is referred to as the naturality condition on α.
Also, if each component αc of α is an isomorphism in D then α is called a natural isomor-
phism.

3.2 L -Species
L -Species are introduced to justify the combinatorial structures that use a linear order on an
underlying set. A linear order, or totally ordered set, is equivalent to a bijective word, or a list,
of a subjacent set V. For example, acb is a total order over the set {a,b,c}.
More generally, a totally ordered set can be defined as a pair (V , l ) where V is a finite set and
l : [n] → V is a bijection, with n = |V |. For simplicity, we denote by |l | the cardinality of the
subjacent set V .

Figure 3.1: A totally ordered set.

Definition 3.2.1. Let l be a totally ordered set. A permutation of l is a bijection σ : l → l , not
necessarily order preserving.

Note that a permutation σ of a linear order l turns l into another linear order l ′ over the same
subjacent set. For example, the bijection σ(a) = b, σ(b) = d , σ(c) = a, σ(d) = c sends the linear
order l = {a < b < c < d} to l ′ = {b < d < a < c}, as can be seen in figure 3.2.

Figure 3.2: A permutation of the linear order abcd

Definition 3.2.2. An L -Species N is a covariant functor from L to the category F of finite sets
and arbitrary functions. In the case when N : L →VecK, we say that N is a L -vector species.

We denote by N [l ] the image of the object l under the functor N . In an abuse of notation,
when l = [n], we denote N [n] = N [{1,2, . . . ,n}]. Intuitively, by this definition we mean that
to any finite linear order l , N associates a finite set N [l ] which elements are known as N -
structures on l .

It should be noted that L -species with natural transformations as morphisms form a cate-
gory. We say two L -species M and N are isomorphic, denoted M = N , if there exists a natural
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isomorphism between them. Let us proceed to define some useful L -Species.
The singleton especies is defined by

X [l ] =
{

{l } , if |l | = 1
; , otherwise.

The uniform species defined by

E [l ] = {l }, for every linear order l.

E [l ] = {l } can be interpreted as the identity permutation on the elements of l . We can denote E
with the symbol E/ to differentiate it from its isomorphic version E.[l ] = {l r }, where l r denotes
the reverse of the linear order l . In order to simplify our notation we will use E from now on
and will explicitly state the change to E. to denote the isomorphic version.

The species of permutations defined by

S[l ] = {σ| σ : l → l , σ a bijection}.

= {l ′|l ′ a linear order over the same subjacent set}.

3.2.1 Generating Functions
There are two kind of generating functions associated to a L -Species N . The ordinary gener-
ating function

Ñ (x) =
∞∑

k=0
|N [n]|xn , (3.2)

and the exponential one

N (x) =
∞∑

k=0

|N [n]|
n!

xn (3.3)

where N [n] is the set that N assigns to the totally ordered set [n]. By functoriality, |N [l ]| =
|N [n]| for any totally ordered set l with cardinality n. An L -Species is then equivalent to an
N-graded set, or to a sequence of sets {N [n]}∞n=0. We won’t go into the technicalities of this but
will give a way of recovering one from the other:
The functor N is recovered from the sequence of sets {N [n]}∞n=0 via a correspondence G that
defines N [l ] := N [n]× {l }, with l ∈ L . For the other way around, there is a correspondence F
which sends N to {N [n]}∞n=0.
From this we can see that a morphism between L -species is then equivalent to a sequence of
functions between N-graded sets.
It is important to remark that in equations (3.2) and (3.3), whenever |N [n]| is replaced by
dimN [n], N is a vector species. Let us now define the generating functions for some L -
Species.
The singleton species have as generating function

X (x) =
∞∑

n=0
δn,1

xn

n!
= x (3.4)
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The uniform species have as generating functions

E(x) = ex (3.5)

Ẽ(x) = 1

1−x
(3.6)

The species of permutations have as generating functions

S(x) =
∞∑

n=0
n!

xn

n!
= 1

1−x
(3.7)

S̃(x) =
∞∑

n=0
n!xn (3.8)

3.2.2 Combinatorial Operations
The functorial notation is useful for defining operations amongst L -Species, and it is fun-
damental to the understanding of the combinatorial meaning of them. These set-theoretical
operations mimic operations between their generating functions. Because we have two types
of generating functions for L -Species, we will have two kinds of products, substitutions, and
derivatives.

Sum

The nth coefficient of the sum of two formal power series M(x)+N (x) is the sum of the re-
spective coefficients |M [n]| + |N [n]|. Let M and N be L -Species, thus we define their sum
as

(M +N )[l ] := M [l ]
⊎

N [l ] (3.9)

with
⊎

standing for disjoint union.

Figure 3.3: Sum of M and N

Ordinal Product and Substitution

The nth coefficient of the product of ordinary formal power series is given by

(M̃ Ñ )[n] = ∑
k+ j=n

|M [k]||N [n −k]|,
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where
∑

denotes the disjoint union. From this we define the ordinal product of M and N

(M ¦N )[l ] := ∑
l1+l2=l

M [l1]×N [l2] (3.10)

Where l1 + l2 means ordinal sum of the ordered sets l1 and l2.

Figure 3.4: The ordinal product of L -Species M an N

Let N be a positive L -Species, the nth coefficient of the substitution of ordinary generating
functions is given by

M̃(Ñ )[n] =∑
k

∑
n1+n2+···+nk=n

|M [k]||N [n1]||N [n2]|...|N [nk ]|,

where n1+n2+·· ·+nk = n goes over the strong compositions of n. With that in mind we define
the ordinal substitution of L -Species. Let M , N be L -Species such that N is positive then we
have that

M〈N〉[l ] = ∑
c∈K[l ]

N
[
l1

]×N
[
l2

]×·· ·×N
[
l|c|

]×M [c] (3.11)

where c goes over the set K[l ] of strong compositions of l . Notice that c is a totally ordered set
itself, and thus the expression M [c] makes sense.

Figure 3.5: Ordinal Substitution of M and N on [9].

Remark 3.2.1. The elements of M〈N〉[l ] are pairs (a,mc) with a = (nl1 ,nl2 , . . . ,nl|c|) being
segmented assemblies of N -structures for which nli is an element of N [li ] for every li ∈ c, and
mc an M-structure on the composition c of l which is also a linear order.
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Shuffle Product and Substitution

The shuffle product and substitution of L -Species imitate the product of exponential generating
series. Let us introduce some notation beforehand.
If l is a linear order on a set V, and B ⊆V , we denote as lB the restriction of l to B . It is evident
that lB is a total order over B .
Given two L -Species M and N , their shuffle product is defined as

(M .N )[l ] = ∑
V1

⊎
V2=V

M [lV1 ]×N [lV2 ]. (3.12)

Figure 3.6: Shuffle Product of M and N

Consider a partition π on V , the subjacent set of the linear order l . It is clear that on each
block B of the partition π, l induces by restriction a linear order lB and a total order on π by
making

πl = {B1 < B2 < ·· · < Bk }, Bi < Bi+1 if minlBi <minlBi+1

Let M and N be L -Species, such that N is positive, then their shuffle substitution is defined as

M(N )[l ] = ∑
πl∈Π[l ]

(
∏

B∈π
N [lB ])×M [πl ]. (3.13)

Figure 3.7: Shuffle substitution of M and N on {a,b,c,d ,e, f , g ,h, i }
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Ordinal Derivative

The derivative of a generating function Ñ (x) is equal to

Ñ ′(x) =
∞∑

n=1
|N [n]|nxn−1 =

∞∑
n=0

|N [n +1]|(n +1)xn .

Notice that there are n +1 ways of adding a ’ghost’ element ∗ in a linear order l of length n,
from which we obtain a linear order of length n +1 every time. We denote by l

(k)←∗ the linear
order obtained from inserting the ’ghost’ vertex ∗ in the kth position of l , for example

v1v2
(1)←∗=∗v1v2, v1v2

(2)←∗= v1 ∗ v2, v1v2
(3)←∗= v1v2∗

Whence, the (ordinal) derivative of an L -Species N is defined as

NH[l ] =
|l |+1∑
k=1

N [l
(k)←∗]. (3.14)

Shuffle Derivative

Just as in the case of the ordinal derivative, the shuffle derivative is obtained by adding a ‘ghost’
vertex. In this case, the ‘ghost’ vertex is added as the first element of the linear order. Let N be
an L -Species then its shuffle derivative is defined as

N ′[l ] = DN [l ] = N [∗+ l ]. (3.15)

Figure 3.8: Shuffle derivative of N

All the elemental properties, associativity, commutativity, distributivity, linearity, etc., of
the operations are true at the combinatorial level, including the product rule and the chain rule
for the derivative:

(M N )′ = M N ′+M ′N , (3.16)

M(N )′ = M ′(N )N ′ (3.17)

where the equality means isomorphism of L -species.

3.2.3 Some classical enumerative results
Having defined operations between L -Species, we show an application of them as means to
find some classic enumerative results. In order to ease the reader with the notation we have
defined and will later use, we emphasize the difference between ordinal and shuffle operations.
It is of utmost importance to keep in mind that for ordinal operations we work with ordinary
generating functions while we use the exponential generating functions for the shuffle ones.
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Results pertaining shuffle operations

Let’s introduce the species C of cyclic permutations, we have that

C [l ] := {l ′|l ′is a permutation with l ′(1) = min(l )}

Note that every permutation l ′ of a linear order can be uniquely partitioned as an ordinal sum
of cyclic permutations l ′ = l ′1 + l ′2 +·+ l ′k , with min(l ′i+1) < min(l ′i ). Take for example

579468312 = 579+468+3+12

Example 3.2.1. In order to find the generating series C (x) we use the following identity

S= E(C ) (3.18)

Thus, we have that

S(x) = E(C (x)).

1

1−x
= eC (x). Replacing the known exponential generating functions.

log(
1

1−x
) =C (x). Taking the logarithm on both sides.

Example 3.2.2. The following identity: C (x)′ = S(x), which can be easily verified taking the
derivative on the exponential generating function for cyclic permutations obtained in Example
3.2.1. We provide a pictorial proof below

Figure 3.9: Shuffle derivative of a cyclic permutation

Example 3.2.3. Let us denote by Π the species of partitions of a set, then we have that Π =
E(E+). Indeed, we obtain the generating series for the Bell numbers.

Π(x) = E(E+(x))

= eex−1

Results pertaining ordinal operations

Example 3.2.4. To find the generating series for compositions, K, given by

K= E〈E+〉
we proceed in the following way

K̃(x) = E〈E+〉(x) = Ẽ(Ẽ+(x)) = 1

1− x
1−x

= 1−x

1−2x
(3.19)
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Example 3.2.5. In a similar way, one can find the ordinary generating function for non-empty
compositions given by the identity

K+ = E+〈E+〉
Thus,

K̃+(x) = Ẽ+〈Ẽ+〉 =
x

1−x

1− x
1−x

=
x

1−x
1−x−x

1−x

= x

1−2x
=

∞∑
k=1

2k−1xk (3.20)

giving us (the well known) result that |K+[n]| = 2n−1.

Some species can be defined by implicit equations and thanks to Joyal’s [Joy81] combina-
torial formulation of the implicit function theorem we can find their generating functions.

Example 3.2.6. Let AE be the species of ordered trees defined by

AE = X ¦E〈AE 〉 (3.21)

This implicit equation can be interpreted in the following way: each structure of AE [l ] is con-
structed by choosing as root the first (minimum) element of l (denoted by ml ) and then placing a
structure of AE in each segment of a composition on the rest of the linear order of l+, l = ml+l+,
c= l+1 + l+2 +·· ·+ l+n ,

AE [l ] = X ¦E〈AE 〉[l ] = X [{ml }]× ∑
c∈K[l+]

AE
[
l+1

]×AE
[
l+2

]×·· ·×AE

[
l+|c|

]
×E [c]

= {ml }× ∑
c∈K[l+]

AE
[
l+1

]×AE
[
l+2

]×·· ·×AE

[
l+|c|

]
(3.22)

We drop E [c] in (3.22) because it gives E [c] = {c} which does not add any information because
this composition is already encoded in the increasing order of the roots attached to ml . Because
this is a recursive definition, it then takes the first member in every segment of the new linear
order as the father to the remaining members in it and so on until we have gone through l . As
we have seen in sub-subsection (3.2.2), every segment of l+ is ordered and we have that l+i < l+j ,
for i < j .

Figure 3.10: Recursion of ordered trees.
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Note that the construction gives all the possible ordered trees taking into account all the
possible compositions of l . But, by the definition of the ordinal operations used, the order is
always respected so that the label of any son of AE [l+i ] is always less than that on any son of
AE [l+j ] if i < j . By induction in the length of l , we easily obtain that the labels of the resulting
plane tree are in preorder (reading first the root and then from left to right) according to the
order of l . For a better understanding of the construction and the ordinal operations behind
it, we provide a concrete example for n = 13 on which we separate the internal compositions
with | and the external ones with ‖. The sequence is as follows: In the first step the minimum
element 1 is chosen as the root, and a composition is created, in this case 234|567|8910|111213,
with an element of AE in each of the segments of this composition. In the second stage, by the
implicit equation that defines AE , the minimum of each segment of the composition is chosen
as the root of the respective tree, an internal composition is taken in the remaining elements of
each segment, and an element of AE if placed in each of them. The two level of composition is
represented as follows. The vertices in red are the roots of each of the second stage subtrees,

23|4‖567‖89|10‖1112|13.

Figure 3.11: An element of AE [13]
in X [{1}]×AE [{2,3,4}]×AE [{5,6,7}]×AE [{8,9,10}]×AE [{11,12,13}]

To obtain the explicit ordinary generating function of ordered trees we carry on the following
calculations:
Taking generating functions in (3.21), we get

ÃE (x) = xẼ(ÃE (x)) = x

1− ÃE (x)
. (3.23)

Making the change of variable y = ÃE (x) and replacing in (3.23), we obtain

y = x

1− y

=⇒y(1− y) = x

=⇒y2 − y +x = 0

So that, solving the quadratic equation and taking our variable change back we get

ÃE (x) = 1−p
1−4x

2
(3.24)
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We choose the root with negative sign to ensure the positivity of the species and can properly
carry out the substitution. Getting back to (3.21) we can obtain the generating function for lists
of planar trees in ascending order, solving (3.23) for Ẽ(ÃE (x)).

Ẽ(ÃE (x)) = ÃE (x)

x

= 1−p
1−4x

2x
(3.25)

Which is the generating function for the Catalan numbers, a sequence of positive integers
appearing in many counting problems in combinatorics, given by the formula

Cn = 1

n +1

(
2n

n

)
=

(
2n

n

)
−

(
2n

n +1

)
, forn ≥ 0. (3.26)

Furthermore, we can establish a bijection between lists of trees in ascending order (elements of
E〈AE ) and non-crossing partitions, another member of the Catalan family, which is a collection
of discrete objects whose enumeration can be done using (3.25). The reader interested in getting
a wider background on Catalan numbers and their applications is referred to [Sta11; Sta15].
Before stating and constructing the bijection, let us define non-crossing partitions.

Definition 3.2.3. A set partition of [n] is called non-crossing if whenever four elements, 1 ≤
a < b < c < d ≤ n, are such that if a,c are in the same class and b,d are in the same class, then
the classes must be the same.

To illustrate Definition 3.2.3.

Figure 3.12: Two partitions of [7], in linear and circular representation: (i )crossing 156/2347,
(i i ) non-crossing 167/245/3

Theorem 3.2.1. There is a bijection between the species of non-crossing partitions, NC P [n],
and lists of trees in ascending order E〈AE 〉[n].

Proof. Given a non-crossing partition of n in k blocks, the corresponding list of trees in ascend-
ing order is built as follows: The roots of each tree in the list are labelled, from left to right, with
the labels in the block containing 1. We then find the block that contains the smallest remaining
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element, say m, and label with them the sons of the node labelled m −1. Repeat this procedure
until all k blocks are used.

For the reverse transformation, given a list of trees in ascending order with n edges and
k internal nodes, we can recover the blocks of the corresponding non-crossing partition in the
following way: The list of roots form a block always and then for each tree in the list, the blocks
are formed by nodes on the same level.

This bijective proof was adapted from that on [DZ86]. To give the reader a better under-
standing of the presented bijection we do so with the following graph.

Figure 3.13: (a) a non-crossing partition of [17], (b) the list of ascending ordered trees associ-
ated to it.

3.3 The category of L -structures
The description of a species in particular is done frequently by specifying the conditions struc-
tures must fit to belong to the species. A significant part of the concept is the transport of
structures, i.e., the ability to change labels without changing the underlying structure. To enrich
L -Species as a category in itself we turn to Joyal’s categorification of combinatorial species
[Joy81] and adapt it to our frame of reference.

If l is a linear order, M [l ] is the set of all structures of the species M on l . We say that l
is the subjacent linear order of m ∈ M [l ]. We also say, in an abuse of notation, that m is an
element of M and that it is an M-structure. In particular, M sends a linear order of labels to
labelled ordered structures.

If u : l → l ′ is a bijection, the element t = M [u](m) is the structure on l ′ obtained by trans-
port along u. The bijection u is an isomorphism between m ∈ M [l ] and t ∈ M [l ′] which can be
thought of as a relabelling which, via transport, sends the structure s to the structure t.

u : s → t

We denote by el (L ) the category whose objects are pairs of the form (l ,m) such that m ∈
M [l ], and whose morphisms are order preserving bijections; it is the grupoid of elements of
L , constructions that can be performed on linear orders. A grupoid is a category where all
morphisms have an inverse.
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Definition 3.3.1. Let P : l → l and Q : l ′ → l ′ be permutations. Then f : l → l ′ is a permutation
isomorphism if and only if the following diagram commutes:

l

f

��

P // l

f

��
l ′

Q // l ′

(3.27)

The concept of isomorphism of structures defines an equivalence relation whose classes are
the types of structures of the species M , that is, those species related by relabelling. We denote
by π0(M) the set of types of the species M . Additionally, if m ∈ M we denote the type of m by
|m| ∈π0(M). We introduce the concept of subspecies.

Definition 3.3.2. A subspecies S of a species M is a subset of M which is also a species.

Subspecies result from restricting a species to any subset defined with a property that is
relabelling invariant.

Example 3.3.1. Rooted trees is a subspecies of forests

Example 3.3.2. Permutations is a subspecies of endofunctions.
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Chapter 4

Monoids and Operads in Species

In this chapter we generalize the results from Chapter 2 to the setting of species. For this,
we introduce c-monoids and c-operads together with some additional considerations needed to
ensure our construction is well defined. We also apply the construction and give a combinatorial
interpretation of the results.

4.1 Monoids and c-monoids

Monoids can be defined in the general context of monoidal categories, see [ML78]. In Chapter
2, we defined monoids in the familiar monoidal category of Sets with respect to the Cartesian
product. By simplicity, we shall avoid the technical details about monoids in the general context
of monoidal categories. It suffices to say that the binary operations of product and substitution
among species defines each of them a monoidal category of its own (as the Cartesian product
defines a monoidal category on Sets). This fact enables us to define monoids with respect
to the product (we keep calling them monoids), and monoids with respect to the substitution
(that are called operads). As the backbone of this work is L -species, we shall define monoids
and operads on L -species with respect to the operations of product substitution respectively.
Operads with respect to the ordinal substitution are found in the literature with the name of
non-symmetric operads.

Definition 4.1.1. A monoid (M ,e,ν) with respect to the ordinal product is an L -species M
together with the morphism e : 1 → M , and the product ν : M ¦M → M satisfying the following
properties:

1. (Associativity) For ml1 ,ml2 ,ml3 :

ν(ν(ml1 ,ml2 ),ml3 ) = ν(ml1 ,ν(ml2 ,ml3 )).

With mli in M [li ] for all i = 1,2,3 and li ∩ l j =; for i 6= j .

2. (Existence of identity element) ∃e ∈ M [;], ∀ m ∈ M [l ] : ν(m,e) = m = ν(e,m).
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Equivalently, in diagram form we have the existence of the identity element

M ¦1
%̃

%%

M¦e // M ¦M

ν
��

1¦Me¦Moo

λ̃

yy
M

(4.1)

and associativity of the product

M ¦ (M ¦M)M¦ν //

α̃
��

M ¦M ν // M

(M ¦M)¦Mν¦M // M ¦M

ν

;; (4.2)

As category theory is only a mean to and end in the present work, we expand on some of
the presented morphisms used to define the monoid structure

• M ¦M [l ] = ∑
l1+l2=l

M [l1]×M [l2]
ν−→ M [l ].

• M ¦1[l ] = ∑
l1+l2=l

M [l1]×1[l2]
%̃−→ M [l ].

• 1¦M [l ] = ∑
l1+l2=l

1[l1]×M [l2]
α̃−→ M [l ].

The morphisms λ̃, %̃ correspond to the left and right identity isomorphisms, while the morphism
α̃ is the associativity isomorphism.

Definition 4.1.2. A monoid (M ,ν,e) for which the following properties hold

1. The left cancellation law, i.e.,

ν(ml1 ,ml ′2 ) = ν(ml1 ,ml2 ) ⇒ ml ′2 = ml2 . (4.3)

2. |M [;]| = 1.

is called a c-monoid. Since M has as identity an element of M [;], what Property 2 really says
is that the only M-structure on the empty set is the identity, M [;] = {e}.

Example 4.1.1. E is a c-monoid with the empty segment as identity and product ν : E ¦E [l ] →
E [l ] decomposing the subjacent linear order into two and then putting it back together by means
of concatenation.

In a similar way as the one proposed previously, we introduce how to build a poset PM over
a totally ordered set l associated to a c-monoid M . The subjacent set of PM [l ] is defined as

M ¦E [l ] = {
(ml1 , l2)| l1 + l2 = l

}
= {

ml1 | ml ∈ M & l1is an initial segment of l
}
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We define the relation ≤ as follows:

ml1 ≤ ml2 ⇐⇒ ∃m′
l2

: ν(ml1 ,m′
l2

) = ml2 . (4.4)

The definition of ordinal product implies that,

(ml1 ,m′
l2

) ∈ M ¦M [l2].

Thus, (4.4) implies that

ml1 ≤ ml2 =⇒ l1 is an initial segment of l2. (4.5)

Proposition 4.1.0.1. The order relation ≤ defined on 4.4 is a partial order in M ¦E [l ]

The proof of Proposition 4.1.0.1 is similar to that in the case on monoids in the category Set,
presented in the previous chapter. As the monoids treated in this chapter are a generalization in
the context of species of those in Chapter 2, it comes as no surprise that some results get carried
on to more general settings.

Proposition 4.1.0.2. For a c-monoid M , the associated poset PM has the following properties

1. PM [l ] has a minimum element, 0̂. Furthermore, e ∈ M [;] is the 0̂ of PM [l ].

2. For any (ml1 ,ml2 ) ∈ PM [l ] we have that (ml1 ,ml2 ) ∼= (e,ml ′2 ). With ml ′2 the element such
that ν(ml1 ,m′

l2
) = ml2 .

3. The elements of M [n] are maximal on PM [n].

Proof. Point 1 is immediate as the empty linear order is an initial segment of any linear order.
In the case of 2, we define a mapping such that to any pair (e,m′

l2
) it assigns the m structure on

l needed to obtain (ml1 ,ml2 ) which is an order preserving bijection. For 3, we have to show that
for any element mn ∈ PM such that for m in M [n], m ≤ mn then it must be that m = mn . Note
that the length of m and mn must be n, this with the definition of ≤ imply that m = mn .

We can restrict a c-monoid to any submonoid S of N by restricting the product ν to pairs of
M-structures of the form (ml1 ,ml2 ), where the lengths of the linear orders l1 and l2 are both in
S.

Proposition 4.1.0.3. A c-monoid M restricted to a submonoid of N, denoted by MS , is also a
c-monoid.

The proof for Prop. 4.1.0.3 is analogous to that in the case of restricting of c-operads to +1
monoids, which will be shown in the following section.

We define the following Möbius analogue of the cardinal,

MöbPM [n] = ∑
m∈M [n]

µ(0̂,m)

which gives us the multiplicative inverse of the ordinary generating function of M in the fol-
lowing way

M̃−1(x) =
∞∑

n=0
MöbPM [n]xn . (4.6)
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Example 4.1.2. Let us consider the c-monoid E . The associated poset PE [3], and its Möbius
function are as follows,

123 0

12 0

1 −10

; 1

Since PE [n] is a chain of length n+1, Möb PE [n] = 0 for n ≥ 2. And we obtain the multiplicative
inverse, which according to 4.6 is

Ẽ−1(x) = 1−x. (4.7)

Restricting E to any submonoid S of N in the following way

ES[l ] =
E [l ] = {l }, if |l | ∈ S.

;, otherwise.

gives rise to another c-monoid with generating function

ẼS(x) = ∑
s∈S

xs .

And with multiplicative inverse given by

Ẽ−1
S (x) =

(∑
s∈S

xs

)−1

= ∑
s∈S

MöbPES [s]xn . (4.8)

Example 4.1.3. S is a c-monoid with the empty permutation as identity and with product ν :
S[l1]×S[l2] −→S[l ].

We construct the associated poset PS to the c-monoid S, with subjacent set (S¦E [l ],≤ν) in
the following way:

S¦E [l ] = {(σl1 , l2)|l1 + l2 = l }

Which is equivalent to the set of permutation on initial segments of l ,

S¦E [l ] = {(σl1 )|l1 an initial segment of l }

The elements of S×S[l ] are of the form (σ1,σ2) where σ1 is a permutation on an initial
segment of l1 of l , σ2 is a permutation on l2 and l1+ l2 = l . Thus, ν acts as the concatenation of
permutations on the initial and final segment of l in the following way

S[l1]×S[l2] −→S[l ]

(σ1,σ2)
ν−→σ1 +σ2

Mathematician 38 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

The order relation is defined by

σ1 ≤ν σ ⇐⇒ σ|l1 =σ1. (4.9)

That is, if σ1 is a permutation on an initial segment of l and σ restricted to this segment is equal
to σ1. The poset PS[l ] is always a tree with the empty set as its root and with permutations of l
as leaves. To illustrate we provide an example.

Example 4.1.4. The poset PS[3] is represented in the following tree

123

132 12 213

1 21 231 312 321

;
Note that in any tree-like poset, with the root being the zero of the poset, every interval is a

chain. In Example 4.1.4 we have that for leaves σ in PS[n], if the chain [0̂,σ] is of length 2 or
more, µ(0̂,σ) = 0 . Otherwise, when a leaf σ covers the root, µ(0̂,σ) =−1. Hence,

MöbPS[n] =− ∑
σ∈S, 0̂<.σ

µ(0̂,σ)

A permutation σ ∈ S[n] covers the empty set if, and only if, the image by σ of every proper
initial segment [k] of [n] is not [k], 1 ≤ k < n,

σ([k]) 6= [k], for every k, 1 ≤ k < n. (4.10)

Otherwise, we would have ; < σ1 < σ, with σ1 = σ|[k]. Permutations satisfying (4.10) have
been called connected in the literature. Denote by C the species of connected permutations.
Then, we have

MöbPS[n] =
1 if n = 0

−|C [n]| otherwise.
(4.11)

So, the Möbius function counts the primes on the poset PS (elements covering 0̂), as connected
permutations are indeed the primes in this case. Furthermore, all maximal elements which are
not prime have a Möbius function value of 0. Then, by a simple computation of the Möbius
function we recover the result by Comtet [Com74].

S̃−1(x) = ( ∞∑
n=0

n!xn)−1 = 1− C̃ (x). (4.12)

Another way of obtaining the result is to observe that every permutation σl ∈ S[l ] can be
decomposed in blocks of connected permutations. Thus,

S=
∞∑

k=0
C k . (4.13)
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where,
C k [l ] = ∑

l1+l2+···+lk=l
C [l1]×C [l2]×·· ·×C [lk ]. (4.14)

We can rewrite S as E〈C〉 and then (4.13), as shown by Gessel and Stanley [GS95], is equivalent
to

S̃(x) = 1

1− C̃ (x)
(4.15)

Then we have that,
1− C̃ (x) = (S̃(x))−1. (4.16)

Expanding the right hand side of (4.16), up to the first 10 terms, we obtain

C̃ (x) = x −2x2 +2x3 −4x4 −4x5 −48x6 −336x7 −2928x8 −28144x9 −298528x10 . . . (4.17)

4.2 Operads
In this section we introduce operads in the simpler and familiar context of sets. We start by
giving an informal and natural description of what a set operad is.

A set operad is a collection of:

• A family of labeled combinatorial structures.

• An "associative" mechanism η that produces larger structures from smaller ones, using as
an assembler an external structure within the family.

• Identity structures over the singleton sets.

Operads are monoids in the general categorical sense and live in an environment that is called
a monoidal category. In this work we consider only positive species, that is, species assigning
the empty set to the empty set.
Operads are assembling mechanisms given by a pair (a,θ′) ∈ O〈O〉[l ] where a is a segmented
assembly of l and θ′ is a structure on the subjacent composition of a. Hence, η(a,θ′) is a
structure θ on O [l ] which is associative and has a neutral element.
Positive L -species together with the operation of ordinal substitution, the identity e : X −→ O

choosing the identity in O [1] , and the isomorphisms α, %, and λ constitute a monoidal category
(L+,◦, e, α,%, λ). For arbitrary, positive L -species M , N , and R we have the canonical identity
and associativity isomorphisms %,λ, and α given by

M〈X 〉 % // M X 〈M〉λoo (4.18)

and
M〈N〈R〉〉 α−→〈M〈N〉〉〈R〉 (4.19)

We proceed to formally define operads

Definition 4.2.1. An non-symmetric operad (O , η, e) is a monoid in the monoidal category of
positive species with respect to the operation of substitution. This means:
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1. The morphism O〈O〉 η−→O is an associative product and the following diagram commutes

O〈O〈O〉〉
α
��

O〈η〉 // O〈O〉
η

""〈O〈O〉〉O η〈O〉 // O〈O〉 η // O

(4.20)

2. The morphism X
e−→O is the operadic identity and the following diagram commutes

O〈X 〉
%

$$

O〈e〉 // O〈O〉
η

��

X 〈O〉
λ

zz

e〈O〉oo

M

(4.21)

In both (4.20) and (4.21), O = 1O stands for the identity morphism of O . We define also
shuffle operads

Definition 4.2.2. A shuffle operad O is a monoid in the monoidal category of positive L -
species with respect to the shuffle substitution with a product η and identity e satisfying the
associativity and identity properties akin to those in Definition 4.2.1.

As we have seen, it is important to establish mechanisms to operate between mathematical
objects, we proceed to do so by defining homomorphims between operads.

Definition 4.2.3. Let (O1,η1,e1) and (O2,η2,e2) be two operads. A natural transformation
O1

Ψ−→ O2 is called an operad homomorphism if Ψ preserves products and identities, and
the following diagrams commute

O1〈O1〉 Ψ〈Ψ〉 //

η1

��

O1〈O2〉

η2

��
O1

Ψ // O2

O1
Ψ // O2

X

e1

OO

e2

>> (4.22)

4.3 Posets associated to c- Operads
The understanding of the combinatorial interpretation of the ordinal substitution (3.11) of L -
species provided in Remark 3.2.1 is of utmost importance in the generalization of our construc-
tion. With that in mind, we get on with it. As in the two previous monoidal categories where
we have defined c-monoids, a c-operad is an operad with non proper divisor of unity, which in
this context means |O |[1] = 1.

Definition 4.3.1. A c-operad is an operad that satisfies
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1. The left cancellation law,
η(a,θ) = η(a,θ′) ⇒ θ = θ′.

2. There is a single element in O [1],
|O [1]| = 1.

We can also establish a poset PO associated to any c-operad O . Posets in the operadic
sense differ to those coming from ordinal c-monoids as they come from different underlying
operations.
The subjacent set of PO is defined as (E+〈O〉[l ],≤η). With

E+〈O〉[l ] = ∑
l1+l2+···+lk=l

O [l1]×O [l2]×·· ·×O [lk ]×E [c]

= (θl1 ,θl2 , . . . ,θlk )× c

= (θl1 ,θl2 , . . . ,θlk )

Hence, elements in E+〈O〉[l ] are what we call segmented assemblies of operad structures re-
stricted to segments li of the composition c of l , with c = (l1, l2, . . . , lk ). In order to define the
general order relation on PO , we introduce some notation necessary to avoid confusion.

1. a = (θl1 ,θl2 , . . . ,θlk ) a segmented assembly of O -structures such that θli ∈ O [li ]. Recall
that c= (l1, l2, . . . , lk ) is a composition of l , that we call the subjacent composition of a .

2. Given the composition c we shall consider compositions of c, i.e., ordered segments c(i )

of c such that c(1) + c(2) +·· ·+ c(r ) = c.

3. We denote by ac(i ) the restriction of a to the segments in c(i ), and by l ′i the ordinal sum of
linear orders in c(i ).

4. We shall consider segmented assemblies of the form a" = (θ"c(1) ,θ"c(2) , . . . ,θ"c(r ) ) where
each θ′′

c(i ) is an element of O [c(i )]. Recall that each c(i ) is itself a linear order.

Definition 4.3.2. We define a partial order relation on the set on the segmented assemblies of
O , E〈O〉[l ] as follows

a ≤η a′ ⇐⇒∃a" : η(ac(i ) ,θ′′c(i ) ) = θ′l ′i
, for i = 1,2, . . . ,r .

That is, an assembly a is comparable to a′ if there is an assembly a" such that a′ is the result of
assembling the segments of a with respect to the order structure on the segments of a". Figure
4.1 provides a scheme of the proposed assembling mechanism.

Figure 4.1: Order on the segmented assembly (θl1 ,θl2 ,θl3 ,θl4 ,θl5 ).
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We provide some particular examples to clarify the proposed construction of the poset associ-
ated to a c-operad O .

Example 4.3.1. E+ is a c-operad. Then E+〈E+〉[l ] defines a partial order over the compositions
of l with η : E+〈E+〉[l ] −→ E+[l ] joining the segments of the linear order. And with the identity
being the linear order with one element segments.

Take E+〈E+〉[3], with graph

123

12|3 1|23

1|2|3

Notice that this poset is isomorphic to the Boolean poset P (n − 1) if we identify it with the
complement of the position of the bars separating the segments in the following way

1
{1,2}

−1 {1} {2} −1

;
1

Thus, since µ(B(n)) = (−1)n−1,

MöbPE+[n] =µ(0̂,12. . .n) = (−1)n−1 (4.23)

The inverse of the ordinary generating function with respect to the substitution for E+ can be
found solving

Ẽ+(x) =
∞∑

n=1
xn = x

1−x

for x, which yields

Ẽ+
<−1>

(x) = x

1−x
= x

1

1−x
= x

∞∑
n=0

(−1)n xn =
∞∑

n=1
(−1)n−1xn . (4.24)

Example 4.3.2. S+ is a c-operad. The elements of S+〈S+〉 are pairs (a,τc) where a is a seg-
mented assembly of permutations together with a permutation rearrangement for each segment,
and τc an external permutation on the composition c. The product η(a,σc) is obtained by con-
catenating the internal permutations after rearranging them using the external permutation τc.
For example,

η({12,43,5,867}, l4l2l1l3) = 86743125

Here l1 = 12, l2 = 34, l3 = 5,l4 = 678, c= 12|34|5|678, and τc = l4l2l1l3
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Consider the poset PS+[3], with graph

213 312 123 321 231 132

12|3 21|3 1|23 1|32

1|2|3

Theorem 4.3.1. The Möbius function of the intervals [0̂,σ] of PS+[n], σ ∈S+[n] is equal to

µ(0̂,σ) =


(−1)n either if σ is the identity or its reverse
−1 if σ is prime.
0 any other case.

(4.25)

As in the case of monoids, we can restrict any c-operad O to a +1 monoid S+, denoted by
OS+ . For this construction we take into consideration properties of the ordinal substitution and
of +1 monoids to ensure it is well defined, that is, that our restricted operadic structure is closed
under the assembling mechanism η.

Proposition 4.3.1.1. A c-operad O restricted to a +1 monoid S+, denoted by OS+ , is also a
c-operad.

Proof. Let O be a c-operad, S+ be a +1 monoid. Then, the elements of OS〈OS〉 are of the form(
(θl1 ,θl2 , . . . ,θls ),θc

)
(4.26)

By the definition of ordinal substitution, for i = 1,2, . . . , s, it follows that

θli ∈O+
S [li ] =⇒ |li | ∈ S+.

And
θc ∈O+

S [c] =⇒ |c| = s ∈ S+. (4.27)

So that, applying η in (4.26) we obtain

η
(
(θl1 ,θl2 , . . . ,θls ),θc

)= θ′l1+l2+···+ls
(4.28)

By (4.27) and Proposition 2.3.0.1, we have that |l1 + l2 + ·· · + ls | ∈ S+, and thus θ′l1+l2+···+ls
∈

OS+[l ]. Hence, η is closed and our operadic structure is well defined. Thus, an operad restricted
to a +1 monoid is also an operad.

Furthermore, a c-operad restricted to any +1 monoid is also a c-operad because the restricted
set inherits the properties of the initial one, including those neeeded for constructing POS+ , the
poset associated to OS+ .
In particular, for any +1 monoid and the positive uniform species E+, we have that ES+[l ] is a
c-operad with associated poset PES+ [l ] which follows an order relation on the compositions of
l with cardinality in S+, as we have seen in Section 2.3.

Mathematician 44 Final Grade Project



Chapter 5

Conclusions and future work

In this work we built posets from numerical monoids and +1 monoids. For +1 monoids, this
construction hints to the fact that they are operadic structures as we have proven that, due to
their clausure properties, the restriction of an operad to a +1 monoid it’s still an operad. The
restriction of other c-operads, such as S+, gives rise to different families of operads whose
Möbius function can lead to results with combinatorial interpretations of potential interest.

Another aspect to possibly study further is the meaning behind the Möbius function associ-
ated to posets arising from different classes of numerical monoids, such as Arf and symmetrical
semigroups, and the +1 monoids we can get from them.

Algebras associated to additive submonoids of N can be studied for their Koszulness and
their dual algebras. The zeta function for this kind of algebras gives their Hilbert series as a
graded algebra. In turn, the Möbius function gives the Hilbert series of the graded dual algebra,
with alternating signs. Connections between these algebras and algebraic curves associated to
numerical monoids can also be studied in depth later on.
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