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RESUMEN 

Las aguas residuales son la combinación de desechos líquidos y desechos transportados 

en el agua debido a la contaminación producida por la actividad antropogénica. Por lo 

tanto, es necesario el respectivo proceso de tratamiento para reducir los niveles de 

contaminación del agua residual previo a su descarga al medio ambiente. La planta de 

tratamiento de aguas residuales de la ciudad de Ibarra (PTAR-I) procesa un caudal 

promedio de 43,200 m3/día proveniente de la comunidad, y el efluente tratado es 

descargado en el río Tahuando. El proceso de tratamiento consiste en un proceso 

biológico en donde la etapa de sedimentación durante el tratamiento primario es parte 

fundamental del proceso. El decantador primario es usado para la remoción de sólidos 

suspendidos y así reducir la carga orgánica presente en el agua residual. Por lo tanto, el 

modelaje y monitoreo del funcionamiento del decantador primario es necesario para 

obtener un control efectivo del proceso. Los modelos usados son basados principalmente 

en relaciones empíricas derivadas de la observación diaria. Sin embargo, estos modelos 

empíricos frecuentemente suelen presentar varias limitaciones para su aplicación. Por lo 

tanto, en los últimos años, se han desarrollado diferentes herramientas computacionales 

orientadas a obtener mejores modelos. Las redes neuronales artificiales (RNA) son una 

popular herramienta computacional inspiradas en el funcionamiento del cerebro. Este 

estudio tiene como objetivo desarrollar un modelo predictivo en base a redes neuronales 

artificiales para modelar el funcionamiento del decantador primario. Dos redes 

neuronales artificiales separadas fueron elaboradas utilizando información sobre las 

características del agua residual y condiciones de operación del decantador primario. Una 

de las redes fue destinada a la predicción de la concentración de sólidos suspendidos 

totales (SST) en el efluente del sedimentador, y la segunda para la predicción de la 

demanda química de oxígeno (DQO). La metodología consistió primero en realizar un 

análisis del proceso de sedimentación para identificar las variables más representativas. 

Posteriormente, el funcionamiento del modelo propuesto fue comparado con los modelos 

empíricos tradicionales reportados en la literatura. Finalmente, el modelo propuesto fue 

validado utilizando información actual proporcionada por la PTAR-I. 
 

Palabras Claves: aguas residuales, decantador primario, análisis de procesos, modelaje 
de procesos, redes neuronales.     
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ABSTRACT 

Wastewater is the combination of liquid waste and water-carried wastes due to the 

pollution produced by anthropogenic activity. Therefore, the adequate treatment of 

wastewater is required to reduce the level of pollution before discharge to the 

environment. The Ibarra wastewater treatment plant (WWTP) processes an average flow 

of 43,200 m3/day from the community, and the treated effluent is discharged to the 

Tahuando river. The treatment process consists of a biological process where the 

sedimentation stage during the primary treatment is fundamental in the entire process. 

The primary settling tank is used to remove the suspended solids, and, as a result, to 

reduce the organic load of wastewater. Hence, the modeling and monitoring of primary 

settling tank performance are necessary to obtain effective process control. The models 

are mainly based on empirical relationships that are derived from daily observation. 

However, these empirical models frequently present some limitations to the application. 

Therefore, in recent years, several computational tools have been developed in order to 

obtain better models. Artificial neural networks (ANN) are popular computational tools 

inspired by the performance of the brain. The objective of this study is to develop a 

predictive model based on ANN for modeling the primary settling tank (PTS) of the Ibarra 

WWTP. Two separated artificial neural networks were built using the information about 

wastewater characteristics and the operational conditions of the primary settling tank. The 

first of the networks are used to predict the total suspended solids (TSS) concentration of 

the effluent from the settling tank, and the second one makes predictions about the 

chemical oxygen demand (COD). The methodology consisted of first realize a process 

analysis of the sedimentation process to identify the most representative variables. 

Posteriorly, the performance of the proposed model was compared to traditional empirical 

models reported in the literature. Finally, the model was validated using current 

information provided by the Ibarra WWTP.  

Keywords: wastewater, primary settling tank, process analysis, process modeling, neural 

networks.   
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CHAPTER I 

 

1. INTRODUCTION 

Wastewater is the combination of the liquid wastes and wastes transported in water from 

residences, commercial establishments, and industries, as well as stormwater and other 

surface runoff [1]. Wastewater contains high concentrations of organic and inorganic 

pollutants, suspended solids, pathogenic microorganisms, as well as toxic compounds. 

Therefore, the disposal of wastewater without treatment in the environment has an 

important negative consequence on human health and sustainable development [2]. 

In the last few years, population growth and industrialization have increased the 

degradation of the environment. According to the fourth World Water Development 

Report (2012), only 20% of globally produced wastewater receives proper treatment [3]. 

Therefore, the engineering of wastewater treatment has been focused in recent years to 

design and construct adequate treatment processes. As a general idea, every wastewater 

treatment process has the objective to reduce the levels of pollutant concentrations in the 

wastewater to acceptable levels before it discharges in the final disposal.  

The wastewater treatment consists of a combination of unit operations and unit processes 

designed to reduce the contaminants in the water to an acceptable level [4]. The term unit 

operation refers to physical treatment operations, while the unit process corresponds to 

biological or chemical treatment methods. Hence, the organization of these elements 

produces several levels of treatments classified into: (i) preliminary treatment, (ii) 

primary treatment, (iii) secondary treatment, and (iv) tertiary treatment.   

In Ecuador, there are approximately 421 wastewater treatment plants (WWTP), and 

around 62% of the municipalities provide proper treatment to wastewater before be 

discharged to rivers [5]. In particular, the Ibarra WWTP processes an average wastewater 

flow of 43,200 m3/day from the community and industrial activities, and the treated 

effluent is finally discharged to the Tahuando river. The treatment process consists of a 
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biological treatment method as a secondary treatment to reduce pollutants concentration 

in the wastewater.  

The reduction of suspended solids is a fundamental part of the entire biological process 

of wastewater treatment. Primary treatment is focused on the physical removal of 

suspended solids fraction from the wastewater composition [6]. Hence, sedimentation is 

one of the principal physical operations used in the primary treatment of wastewater. 

Primary settling tanks are widely operated to remove suspended solids and reduce the 

organic load of wastewater and are considered a fundamental part of the biological 

process [7].  

Then, modeling of primary settling tanks is an important task in WWTP design and 

process control. The modeling of these operational units is mainly based on empirical 

relationships that are derived from daily observation [8]. However, these empiric models 

usually fail to model full-scale settling tanks due to the complexity of the sedimentation 

mechanism. Furthermore, the laboratory test also does not provide satisfactory results 

under operating conditions. Consequently, in recent years, many attempts for modeling 

the settling tank performance have been developed using different computational tools. 

Artificial neural networks (ANN) are a popular machine learning technique that is based 

on how the brain works. They are powerful non-linear regression models that can 

establish complicated relationships between variables through the examination of a data 

set [9].  

Therefore, the objective of this study is to develop a predictive model based on ANN for 

modeling the primary settling tank (PST) of the Ibarra WWTP. The model consists of two 

separate artificial neural networks. The first one uses influent wastewater characteristics 

and operational conditions as input data to predict effluent total suspended solids (TSS) 

concentration, and the other one makes predictions of the effluent chemical oxygen 

demand (COD) using the same input data. Ibarra WWTP supplied the available data of 

the operational conditions and wastewater characteristics related to the primary treatment 

for the development of the model.  

The methodology of this study consisted first of developing an integral process analysis 

to establish the critical variables associated with the PST operation. Second, the ANN 

models were built using the available data. Then, the performance of ANN models was 
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compared to the traditional empiric models reported in the literature. Moreover, a 

sensitivity analysis was considered to identify the relationship between input variables 

and model response. Finally, a new data set was provided by Ibarra WWTP to evaluate 

the performance and accuracy of ANN models developed in this study.  

 

1.1. Problem Approach 

Wastewater treatment plants frequently have a satisfactory performance under steady-

state conditions because these conditions are similar to design parameters. However, load 

variations are usually during the routine operation of these plants. The inflow to the 

treatment processes is a random variable that necessarily influences the integral 

performance of the treatment process [3]. Hence, the development and availability of 

process models for the design and control of treatment operation is a challenging task to 

improve the process control system.   

Primary settling tanks are one of the principals controlling equipment in the performance 

and removal efficiency of the treatment process, especially in biological treatments [1]. 

Therefore, monitoring the dynamic response of primary settling tanks is an important 

aspect to improve the process control system of the entire treatment process. However, 

empiric models of the sedimentation process and laboratory settling tests have failed to 

predict the behavior of settling tanks under actual operating conditions due to the 

difficulties in simulating the effects of flocculation and density currents [2]. Consequently, 

the design and modeling of settling tanks are still based on empirical relationships that 

are derived from the daily observation and accumulated operational experience [8]. 

However, these empiric models have several limitations to modeling full-scale settling 

tanks during real operation. Hence, the development of models to describe the dynamic 

response of settling tanks is an important and difficult task.  

In recent years, many attempts for modeling the settling tank performance have been 

developed using computational tools that are focused on describing the fluid dynamics of 

the settling tanks. Models based on computational fluid dynamics (CFD) have been used 

to predict flow patterns and suspended solids distribution within the settling tanks [7]. 

However, these models are not commonly used due to the complexity of Navier-Stokes 

equations for turbulent flow and the cost associated with the specialized hardware and 

software required [10].   
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On the other hand, other types of computational modeling methodologies have been 

developed. Artificial neural networks are a popular machine learning technique that 

simulates some important features of the brain. They are able to establish complicated 

relationships through an examination of only the data set without assuming theoretical 

considerations or pre-specified formula [9]. Therefore, many models based on artificial 

neural networks have been successfully applied in many areas of engineering. In this 

context, this study has the main objective to develop a predictive model based on artificial 

neural networks for modeling the dynamic response of the primary settling tank of Ibarra 

WWTP.  

  

1.2. Objectives 
 

1.2.1. General Objective  
 

• To develop a predictive model based on artificial neural networks for modeling 

the primary settling tank behavior, in order to determine the chemical oxygen 

demand and total suspended solids concentration in the clarified effluent.  

 

1.2.2. Specific Objectives 
 

• To carry out a process analysis to identify the critical variables associated with the 

primary settling tank operation.   

• To establish the optimum characteristics of artificial neural network models that 

provide the best performance for predicting chemical oxygen demand and total 

suspended solids concentration of the effluent from the primary settling tank.   

• To compare the performance of artificial neural network models against the 

traditional empiric regression model based on the error prediction of each model.   

• To analyze the effect of input variables in the artificial neural network model 

response, employing a sensitivity analysis.    
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CHAPTER II 

 

2. BACKGROUND AND LITERATURE REVIEW 

 

2.1.  Sources of Wastewater 

Wastewater is the water supply of the community after it has been used in a variety of 

applications. Thus, wastewater is defined as a combination of liquid wastes and waste 

transported in water from households, commercial establishments, and industries, as well 

as stormwater and other surface runoff [1]. The common sources or types of wastewater 

are:  

o Domestic or municipal wastewater: this includes wastewater produced in 

residences, institutions as schools, restaurants, etc.  

o Industrial wastewater: wastewater discharged from industrial processes.  

o Stormwater: rainfall-runoff and snowmelt. 

 

2.2.  Wastewater Composition 

Wastewater composition is approximately 99% water and 1% suspended, colloidal, and 

dissolved solids [3]. Municipal sewage also contains organic matter, nutrients (N, P, and 

K), inorganic matter, dissolved compounds, toxic substances, and pathogen 

microorganisms. Therefore, these pollutants in water need to be treated before the 

wastewater is discharged into nature (water bodies).   

The composition of sewage depends on several factors as the socio-economic 

characteristics of residential communities, number, and types of industrial activities [3]. 

Consequently, the design of a wastewater treatment process partially depends on the 

composition of wastewater. Usually, in the design of WWTP, there is no interest in 
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determining all the compounds present in the raw sewage. It is due to the difficulty of the 

laboratory test, and the fact that some results themselves cannot be directly applied as 

elements in design and operation [11].  

Hence, for the WWTP design and operation, many indirect parameters are used, which 

represent the pollution potential of raw sewage. Wastewater is characterized in terms of 

physical, chemical, and biological parameters in order to define its composition and the 

nature of contaminants. The typical wastewater composition is detailed in Table 1.  

Table 1. Typical characteristics of untreated municipal wastewater. 

Component Concentration Range 

Biochemical oxygen demand (BOD5)  100 – 360 mg/L 

Chemical oxygen demand (COD) 250 – 100 mg/L 

Total organic carbon (TOC) 80 – 300 mg/L 

Total Kjeldahl nitrogen (TKN) 20 – 85 mg/L as N 

Total phosphorus 5 – 15 mg/L as P 

Oil and grease 50 – 120 mg/L 

Total solids (TS) 400 – 1200 mg/L 

Total dissolved solids (TDS) 250 – 850 mg/L 

Total suspended solids (TSS) 110 – 400 mg/L 

Volatile suspended solids (VSS) 90 – 320 mg/L 

Fixed suspended solids (FSS) 20 – 80 mg/L 

Settleable solids 5 – 20 ml/L 

Total coliforms (TC) 106 – 1010 MPN/100ml 

Fecal coliforms (FC) 103 – 108 MPN/100ml 

Source: Adapted from Riffat [4]. 
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2.2.1. Physical Parameters 

The most significant physical property of wastewater is total solids (TS) content, which 

is composed of settleable matter, floating material, colloidal matter, and matter dissolved 

in solution [1]. However, other important physical characteristics include temperature, 

turbidity, conductivity, density, color, etc.   

 

2.2.1.1. Solids 

All pollutants of raw sewage, except dissolved gases, contribute to solid concentration 
[12]. Wastewater contains several solids materials varying from coarse solids as rags to 

colloidal particles. In order to characterize the raw sewage, coarse solids usually are 

removed before the sample is analyzed for solids. The concentration of solids in 

wastewater is commonly measured in mg/L, but in the case of the settleability test is 

measured in ml/L. The relationships between the several types of solid fractions in 

wastewater are illustrated in Figure 1. 

 

Figure 1. Interrelationships of solids found in wastewater. 

 

Solids particles can be classified by their size and state, their chemical characteristics, and 

their settleability, as following [11]: 
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i. Solid Classification by Size and State 

o Total Solids (TS): substances in an aqueous solution that can exist in either the 

dissolved or undissolved state. Total solids are the residues remaining from the 

water sample dried at 103-105 °C for a specific time (one hour or overnight)[13]. 

Thus, TS correspond to everything that was in the sample that is not water. 

However, any organic or inorganic substance that volatilized at 103 °C, or less, 

will not be considered in the residue. 

o Total Suspended Solids (TSS): fraction of the TS retained on a filter with a 

specified pore size (0.45-2.0 µm), measured after being dried in an oven for at 

least one hour at a specified temperature (103-105 °C) [14]. Thus, the result of the 

TSS test depends partially on the pore size of the filter paper used for the test. The 

TSS test result is an important parameter used to evaluate the performance of the 

treatment process and measure the quality of the treated effluent. For this reason, 

TSS is one of the two universally used effluent parameters by which the 

performance of the treatment process is judged for regulatory control purposes [1].   

o Total Dissolved Solids (TDS): fraction of TS in a water sample that passes through 

a filter with a nominal pore size of 2.0 µm (or smaller) [15]. The filtrated is 

evaporated for at least one hour in an oven at a specified temperature (180 ± 2 °C) 
[14]. Wastewater contains a high fraction of colloidal solids, which contribute to 

the TDS concentration. The size of colloidal particles is less than 1.0 µm, so they 

will not settle even if allowed to sit quietly for days or weeks[12]. The number of 

colloidal particles in untreated sewage and after primary sedimentation is typically 

within the range 108-1012/ml [1]. Consequently, colloidal material and truly 

dissolved material are considered in the TDS test result.  

 

ii. Solid Classification by Chemical Characteristics 

o Volatile Solids (VS): matter that can be volatilized when ignited at a specific 

temperature (500 ± 50 °C) is classified as volatile [1]. In general, VS is associated 

with organic matter present in the wastewater sample, which can be oxidized to 

CO2 at high temperatures [16].  
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o Fixed Solids (FS): solid fraction that remains after a sample has been ignited is 

referred to as fixed solids, and it is considered the inorganic portion of the 

wastewater sample[11]. Thus, this inorganic fraction will not be oxidized and 

volatilized during the ignition process.  

Hence, VS concentration represents an estimation of organic matter in the solids, while 

FS represents the inorganic fraction of solids [16]. As a result, TS, TSS, and TDS include 

both fixed and volatile solids. Nevertheless, the determination of VS and FS 

concentrations do not distinguish precisely between organic and inorganic matter. Some 

inorganic mineral salts will be lost during the ignition, and few organic substances will 

not burn. The ratio of VS to FS is useful in controlling wastewater treatment plant 

operations because it provides a rough estimation of the amount of organic and inorganic 

matter present in sewage [1]. 

 

iii. Solid Classification by Settleability 

o Settleable Solids: they are non-dissolved solids that can settle to the bottom of a 

container under the influence of gravity in 1 hour [16]. The standard test for 

settleable solids consists of filling a 1-liter Imhoff cone to the full mark with a 

well-mixed sewage sample. After 45 minutes, the sample is gently agitated near 

the sides of the Imhoff cone with a rod, continue to settle for an additional 15 

minutes and measure the volume of solids that settled at the bottom of the cone as 

ml/L [14]. In general, about 60% of the suspended solids in municipal sewage are 

settleable solids [1].  

o Non-settleable Solids: fraction that not settle during the specified time, and it is 

usually not expressed in the result of the analysis [11].  

The equations used to determine the several fractions of solids in wastewater are detailed 

in Appendix A. 

 

2.2.1.2. Turbidity 

As a general idea, turbidity refers to the clarity of the water, and this is one of the first 

characteristics that people notice. Turbidity is a physical measure of the extent to which 
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light is scattered or absorbed by suspended material in water [12]. The measurement is 

based on a comparison of the intensity of light scattered by a sample to the light scattered 

by a reference suspension at the same conditions [1]. Colloidal material in the sample will 

absorb or scatter light and block its transmission. Turbidity measurements usually are 

reported as nephelometric turbidity units (NTU). However, the presence of bubble air in 

sewage will cause errors in turbidity readings. A turbidimeter is an equipment used to 

measure the turbidity of wastewater and provide useful data for the process control. 

Turbidimeter is an electronic device in which a beam of light is directed through a specific 

path length of the sample. The photometer placed at right angles to the direction travel of 

the light beam detects the amount of light diverted, which is proportional to the turbidity 
[16].   

The larger amount of TSS concentration in water, the murkier it appears, and higher 

measured turbidity [17]. However, dissolved solids do not cause turbidity in the sample, so 

the water of low turbidity is not necessarily without dissolved solids. High turbidity will 

cause operational problems as the reduction of the effectiveness of the disinfection 

process using UV radiation [18]. Furthermore, the components which cause turbidity will 

generate taste and odor problems. 

 

2.2.1.3. Temperature  

It is an important parameter in the wastewater treatment process because it affects the 

chemical reactions, the viscosity of the liquid, and the microbial activity [19]. The 

temperature of wastewater is commonly higher than that of the local water supply due to 

the addition of warm water from households and industrial activities [1]. Additionally, the 

temperature can vary depending on the geographical location and season of the year. 

 

2.2.1.4. Inlet Flow 

The actual volume of wastewater is used as a physical characterization of wastewater, 

and it is usually expressed in terms of cubic meters per day (m3/day) [12]. It is an essential 

parameter in the design of treatment plants. Flow rates will vary throughout the day. This 

variation can be a wide difference from the average daily flow.    
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2.2.2. Chemical Parameters 

 

2.2.2.1. Biochemical Oxygen Demand (BOD) 

Amount of oxygen utilized by a mixed population of microorganisms to oxidize organic 

matter present in sewage, through aerobic biochemical processes, at a controlled 

temperature of 20 °C for a specified time [4]. Therefore, this is an indirect measurement 

of biodegradable organic carbon. Three classes of materials exert the oxygen demand of 

sewage: (1) carbonaceous organic materials used as a source of food by aerobic 

organisms; (2) oxidizable nitrogen derived from ammonia, nitrites, and organic nitrogen 

compounds, which serve as nutriment for specific bacteria (Nitrosomonas and 

Nitrobacter); (3) chemical reducing compounds like sulfites, ferrous ions, and sulfides [6].    

The BOD value is time-dependent, and it would take an infinitely long time for the 

microorganism to degrade all the organic matter in the sample. The oxidation of about 

95% of the carbonaceous organic matter is achieved at 20 days. However, in the 

wastewater industry, the BOD5 is used as a standard value that is obtained from a BOD 

test conducted for five days. About 60% to 70% of carbonaceous matter is oxidized after 

five days [4].     

The main ecological effect of organic pollution in a water body is the reduction in the 

level of dissolved oxygen. Hence, the adequate quantity of oxygen is fundamental in the 

aerobic treatment process. This parameter is a basic idea about the "strength" of the 

pollution potential of sewage by the measurement of the oxygen consumption that it could 

cause [11]. Therefore, this is an indirect quantification of the potential impact that the 

pollutant concentration will produce.    

 

2.2.2.2. Chemical Oxygen Demand (COD) 

Amount of oxygen required to oxidize the fraction of the sample, which is susceptible to 

dichromate or permanganate oxidation in an acid solution [6]. Hence, this value is an 

indirect measurement of the level of organic matter in the sewage. The main difference 

between the COD test and BOD5 test is that the BOD5 test relates to the biochemical 

oxidation of the organic matter, undertaken entirely by microorganisms.  

The main advantages of the COD test are:   
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1. The time that the test required. The BOD test needs at least five days to provide a 

result. On the other hand, the COD test takes only two to three hours. Thus, the 

COD test is commonly used for operational control in treatment processes. 

2. The test results provide an indication of the oxygen required to stabilize the 

organic matter. However, both biodegradable and the inert fractions of organic 

matter are oxidized during the test. Therefore, the test may overestimate the 

oxygen required to oxidized organic matter.   

3. The test is not affected by nitrification. 

For raw domestic sewage, the ratio COD/BOD5 varies between 1.7 and 2.4 [11]. However, 

for industrial wastewater, this ratio can vary widely. Depending on the value of the ratio, 

it can infer the biodegradability of the wastewater and select the appropriate treatment 

process. If COD is much greater than BOD5 in raw sewage (COD/BOD5 greater than 3.5 

or 4.0), the pollutants are not readily biodegradable, and it may be toxic to the 

microorganisms [22]. If the COD/BOD5 ratio is lower than 3.0, the waste in raw sewage is 

readily biodegradable and is a good indication for biological treatment.  

 

2.2.2.3. Electrical Conductivity 

In the wastewater treatment process, conductivity is a measurement of the ability of an 

aqueous solution to carry an electric current [15]. This ability highly depends on the 

number of dissolved salts (ions) in the aqueous solution because ions transport the 

electrical current [20]. Thus, conductivity can be used to calculate the amount of TDS in 

wastewater and evaluate its variation. In order to determine the TDS value, the 

conductivity value is multiplied by an empirical factor that can range from 0.55 to 0.95, 

depending on the temperature and the soluble substances of the solution [21]. The electrical 

conductivity is expressed as millisiemens per meter (mS/m) or in micromhos per 

centimeter (µmho/cm).  

 
2.2.2.4. Nitrogen Content 

The type and amount of nitrogen compounds present will vary from the raw wastewater 

to the treated effluent [12]. Total nitrogen includes organic nitrogen, ammonia, nitrites, and 
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nitrates. It is an essential nutrient for microorganism growth in biological wastewater 

treatment. Most of the nitrogen content in untreated wastewater will be in the forms of 

organic nitrogen and ammonia [11]. The sum of these two forms of nitrogen compounds is 

measured and is known as total Kjeldahl nitrogen (TKN).  

 

2.2.3. Biological Parameters 

 

2.2.3.1. Indicator Organisms 

An important aspect in terms of the biological quality of wastewater is related to disease 

transmission by pathogenic organisms. Water-borne diseases include typhoid, cholera, 

paratyphoid, diarrhea, fever, and dysentery. Pathogenic organisms found in wastewater 

may be excreted by human beings and animals who are infected with these diseases or 

carry a particular infectious disease [1]. 

The pathogenic organism found in wastewater can be classified into four broad 

categories: bacterias, protozoa, helminths, and viruses [11]. However, the detection of 

pathogenic microorganisms in a wastewater sample is a hard task due to their low 

concentration and because they are difficult to isolate and identify [14]. Therefore, some 

microorganisms which are more numerous and more easily analyzed are commonly used 

as an indicator organism for the target pathogen(s) [1]. These organisms are predominantly 

non-pathogenic, but they give a satisfactory indication of whether the water is 

contaminated by human or animal feces, and, therefore, of its potential to transmit 

diseases [11]. Bacterias of the coliform group are the organisms most commonly used as 

an indicator. Frequently, total coliform and fecal coliform are used as indicator organisms 
[14]. 

o Total coliform: coliform organisms are rod-shaped bacteria, which are present in 

the human intestinal tract [6]. Each person discharges from 100 to 400 billion 

coliform bacteria per day, in addition to other kinds of bacteria [1]. Total coliform 

has long been used as an indication that pathogen organisms may also be present. 

All members of the total coliform groups can occur in human feces, however, 

some coliform organisms can also be present in animal manure, soil, and 

submerged wood, as well as in other places outside the human body [12]. Therefore, 
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some coliform organisms are related to other free-living organisms such as 

bacterias related to the genus Klebsiella, and not only to the intestinal or 

pathogenic ones [11]. 

 

o Fecal coliform: it is a subset of total coliform bacteria. Fecal coliforms are more 

fecal-specific. This group of coliform bacteria is predominantly originated from 

the intestinal tract of humans and other animals [11]. Therefore, fecal coliform has 

been used as a standard indicator organism of pathogenic contamination in water 
[14]. Nevertheless, even this group contains some organisms that are not 

necessarily fecal in origin.  

 
The determination of indicator organisms is a fundamental task for assessing the quality 

of natural water, drinking water, and wastewater. The multiple-tube fermentation 

technique for total and fecal coliform testing is useful in determining the coliform density 

in wastewater [12]. The technique is based on the most probable number (MPN) of 

bacterias present in the sample that produces gas in a series of fermentation tubes with 

various volumes of diluted samples [6]. The MPN is determined by the application of the 

Poisson distribution for extreme values to the analysis of the number of positive and 

negative results obtained from the multiple-tube fermentation test [1]. The MPN is 

obtained from charts based on statistical studies of known concentrations of bacteria. The 

concentrations of coliform bacteria are usually reported in MPN/100mL. It is also 

important to mention that the MPN is not the absolute concentration of organisms that are 

present in the water, but it is only a statistical estimation of the concentration.  

 

2.3.  Wastewater Treatment Fundamentals 

The main objective of wastewater treatment is to reduce the pollutant concentration to 

acceptable levels before discharge to streams and rivers [11]. Therefore, wastewater 

treatment processes are designed to reduce the amount of solids, the level of 

biodegradable organic matter, the level of pathogens and nutrients, and the presence of 

toxic compounds in wastewater [4]. Usually, the wastewater treatment process is divided 

into preliminary, primary, secondary, and tertiary treatment. Nevertheless, in developing 

countries, tertiary treatment is unusual in wastewater treatment plants because it is mainly 
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used for the removal of specific pollutants (usually toxic or non-biodegradable 

compounds), which cannot be eliminated during secondary treatment [19].   

 

2.3.1. Preliminary Treatment 

Preliminary treatment involves the removal of larger suspended solids and inert materials 

from the sewage using physical unit operations commonly. The objectives of pretreatment 

are: (1) remove coarse material from the flow stream that may cause damage to 

subsequent process equipment, and (2) removal inert material before secondary treatment 
[1]. The unit operations used in this part are screen, grit chamber, and comminutors. 

 

2.3.1.1. Screening 

Sewage contains a significant amount of floating and suspended materials, which includes 

rags, bags, organic matter, and several types of solids. Large solids can damage the 

mechanical equipment and interfere with the flow in pipes or channels [23]. Therefore, the 

first unit operation usually encountered in this part of the process is screening. A screen 

is a device with openings, generally, of uniform size, that is used to retain solids found in 

the influent wastewater. Different types are available depending on wastewater 

characteristics and site requirements [6]. Two general types of screens are commonly used 

in the wastewater treatment process: coarse screen and fine screen. Both of these screens 

are mostly used in the preliminary treatment of sewage. Coarse screens have a size of the 

opening between 25 and 75 mm (1 to 3 in) and, fine screens correspond to openings less 

than 6 mm (0.25 in) [4]. 

 

2.3.1.2. Grit Removal 

Grit is defined as sand, gravel, or other mineral material that has a nominal diameter of 

0.15-0.20 mm or larger [24]. Grit chambers are settling tanks that are placed after screens 

and before primary clarifiers. The purpose of a grit chamber is to remove materials that 

may produce heavy deposits in pipelines, protect pumps and other mechanical equipment 

from abrasion, and separate heavier inert solids from lighter biodegradable organic solids 

that are sent to secondary biological treatment [4]. The sand removal mechanism is simply 

by sedimentation: the sand grains go to the bottom of the tank due to their larger particle 

size and density, while the organic matter, which settles much slower, remains in 
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suspension and goes on to the downstream units [11]. Grit removed is usually washed to 

remove organic matter and then transported to a sanitary landfill for disposal. The amount 

of grit material removed depends on the wastewater characteristics and the design of the 

grit chamber established in the treatment process. The design of grit chambers is usually 

based on the removal of grit particles having a specific gravity of 2.65 and a wastewater 

temperature of 15.5 °C (60°F) [1]. However, the values of the specific gravity of grit 

particles can oscillate in the range from 1.3 to 2.7.   

 

2.3.2. Primary Treatment 

The objective of primary treatment is to remove a significant fraction of settleable 

suspended solids and floating material from the wastewater by sedimentation process 

(primary sedimentation or clarification) [4]. A significant part of TSS is composed of 

organic matter in suspension. Usually, the primary treatment step can be expected to 

remove 90 to 95% of settleable solids, 40 to 60% of total suspended solids, and 25 to 35% 

of BOD [12]. Primary treatment mainly consists of sedimentation or settling by gravity. 

Sedimentation is a physical operation that consists of separate solid particles with density 

higher than that of the surrounding liquid [25]. Consequently, the supernatant liquid 

becomes clarified, while the particles at the bottom form a sludge layer, which is 

subsequently removed. This process is a fundamental unit operation in several phases in 

many wastewater treatment systems.  

Settling tanks, also called sedimentation tanks or clarifiers, are commonly used in primary 

treatment; they reduce the flow velocity of the wastewater sufficiently to allow suspended 

solids to settle, in order to remove settleable material [14]. Many configurations of primary 

clarifiers are established, but the clarifier selection depends on the site conditions, size of 

the plant, local regulations, and engineering judgment [4]. All treatment plants use 

mechanically cleaned settling tanks of standardized circular or rectangular design [1]. The 

mass of solids accumulated in the bottom is called raw primary sludge, and mechanical 

scrapers collect the settled solids into a hopper where they are pumped to a sludge-

processing area [12]. Floating matter, such as oils and greases, tends to have a lower density 

than surrounding liquid and rise to the surface of the settling tank. Therefore, floating 

material is removed (skimmed) from the tank surface for subsequent treatment.  
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Settling tanks are designed to operate on a continuous flow basis. Frequently, the most 

important design parameters for primary clarifiers are detention time, overflow rate, and 

weir loading rate [4]. These design parameters are based on the average flow rate 

conditions. Design and operation are still based on empirical relationships, consequently 

flow patterns, homogeneous turbulence, and the direct way of describing the movement 

of suspended particles and their interaction mechanism with settling and removal are 

rarely considered [26]. Hence, the optimal design is difficult to achieve in practice due that 

settling tanks do not show an ideal behavior during operation. Several factors and 

conditions can affect the performance of the sedimentation unit, such as several particle 

sizes and densities (different settling velocity), liquid density, variation in liquid 

temperature (viscosity), rate flow, and tank design [22]. Typical design information for 

primary settling tanks is provided in Table 2. 

Table 2. Design parameters for primary settling tanks. 

Parameter Range Typical Value 

Detention time (h) 1.5 - 2.5 2.0 

Overflow rate (m3/m2
·d) - - 

-At average flow 32 - 50 40 

-At peak hourly flow 78 - 120 100 

Weir loading rate (m3/m·d) 125 - 500 260 

Rectangular Tank (m) - - 

-Length  15 - 90 25 - 40 

-Width  3 - 24 5 - 10 

-Depth  3 - 5 4.5 

Circular Tank (m) - - 

-Diameter  3 - 60 12 - 40 

-Depth  3 - 5 4.5 

                 Source: Adapted from Riffat [4]. 
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The primary role of sedimentation units in a conventional treatment plant is the removal 

of suspended matter, however, in terms of the effect of primary sedimentation on the 

downstream biological processes, the removal of organic matter in the primary stage is 

of significant importance [27]. A significant part of TSS concentration consists of organic 

matter in suspension, which contributes to the BOD and COD of the wastewater. Thus, 

the reduction of TSS during primary sedimentation minimizes operational problems in 

the biological treatment because it reduces the energy necessary for the oxidation of 

particles. Hence, these effects improve the elimination of substrate during biological 

treatment and reduce the volume of activated sludge generated [28].  

On the other hand, a poor solids removal during this step of the process causes organic 

overloading of the biological treatment. Frequently, the performance of settling tanks is 

measured by the removal efficiency, which is defined in Equation 1:  

𝐸𝐸 =
𝑆𝑆𝑖𝑖 − 𝑆𝑆𝑒𝑒
𝑆𝑆𝑖𝑖

 (1) 

where: 

E: removal efficiency (-) 

Si: influent contaminant concentration (mg/L) 

Se : effluent contaminant concentration (mg/L) 

Therefore, the performance evaluation of primary settling tanks consists of comparing the 

removal efficiency during operation with typical ranges mentioned previously. In some 

cases, the sedimentation is enhanced by the addition of coagulants agents. The process is 

called enhanced clarification, or chemically enhanced primary treatment [4]. Coagulants 

may be aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), or other, aided or not by a 

polymer [11]. Thus, more sludge is produced, resulting from a higher amount of settleable 

solids removed from the liquid.  
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2.3.3. Secondary Treatment 

The main objective of secondary treatment is the removal of organic matter in the effluent 

from primary treatment. Secondary treatment mainly consists of biological treatment of 

primary effluent for reducing the BOD and suspended solids of the effluent to acceptable 

levels [4]. However, the overall objectives of the biological treatment of wastewater are: 

(1) transform (i.e., oxidize) dissolved and particulate biodegradable constituents, (2) 

transform or remove nutrients, such as nitrogen and phosphorus, (3) capture and 

incorporate suspended and non-settleable colloidal solids into a biological floc or biofilm, 

(4) in some cases, remove specific trace organic compounds and constituents [1]. The 

organic matter is present in the following forms: 

o Dissolved organic matter: this organic material cannot be removed by physical 

operations as primary sedimentation. 

o Organic matter in suspension: it can be removed mainly using primary 

sedimentation, but solids with slower settling velocity remain in the liquid phase.  

Biological treatment occurs entirely by biological mechanisms, which reproduces the 

natural processes that take place in a water body after a wastewater discharge. The 

secondary treatment is considered in such a way to accelerate the degradation mechanism 

that naturally occurs in the receiving water bodies [11]. Therefore, a wastewater treatment 

plant uses technology for making the natural purification process of sewage developed 

under controlled conditions (operational control) and at high rates [25].  

The decomposition of organic pollutants in the second stage is carried out through 

biochemical reactions undertaken by organisms [29]. Several microorganisms take part in 

the process as bacteria, protozoa, fungi, and others. The microorganisms convert the 

organic matter principally into CO2, water, and cellular material (growth and reproduction 

of the microorganism) [1]. The microorganisms are able to decompose the organic matter 

by two different biological processes: biological oxidation and biosynthesis [30].  

The biological oxidation produces some end-products that remain in the solution, and 

biosynthesis transforms the colloidal particles and organic matter into new cells that form 

in turn the dense biomass that can be removed by sedimentation [29]. Thus, the secondary 

treatment is composed of a biological reactor that produces the bioconversion of organic 

matter and a settling tank, which separates the microbial biomass from the treated 
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effluent. The secondary sedimentation process is similar to primary sedimentation except 

that the sludge contains microorganisms rather than fecal solids. The biological 

decomposition of organic matter requires the presence of oxygen as a fundamental 

component of the aerobic processes, besides the maintenance of other environmental 

conditions, such as temperature, contact time, and pH [11].  

The tertiary treatment is not considered in this study because it is unusual in wastewater 

treatment plants, particularly in developing countries [2, 19]. 

 

2.4.  Dynamic Modeling 

Even though sedimentation is one of the most widely used unit processes in wastewater 

treatment, no satisfactory mathematical models have been developed as yet, mainly due 

to the complexity of sedimentation mechanisms [8]. Several sedimentation mechanisms 

take place during primary sedimentation, depending on the suspended particle 

concentration and the degree of particle interactions [31]. Wastewater contains flocculent 

particles, which can coalesce while settling and increase in size, and, as a result, they do 

not have a constant settling velocity [11]. Flocculation and settling are influenced by 

several factors such as the TSS concentration, particle size and density, specific velocity 

field, the density and viscosity of the fluid [8]. Many mathematical models of spatially 

one-dimensional solid-liquid separation processes of flocculated suspensions have been 

developed to unify studies of discrete settling and flocculating suspensions [32].     

In practice, modeling the dynamic performance of full-scale primary settling tanks has 

been frequently done using regression-based models, which are empirical relationships 

derived strictly from observed daily average influent and effluent data [27]. These 

empirical models have generally been restricted to related the TSS removal efficiency to 

overflow rate or influent TSS concentration [8]. However, these empirical models are also 

used to determine the COD removal efficiency. Smith [33] has proposed an empirical 

relationship based on data collected at a large number of several treatment plants and 

different flow rates. The model proposed by Smith relates the TSS removal to the 

overflow rate in a non-linear function suggesting that the performance of the settling tank 

will always deteriorate at higher flow rates. The empirical relationship developed by 
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Smith is defined in Equation 2. This empirical model was proposed by Jover-Smet et al. 
[7] for modeling a semi-technical primary settling tank with successful results.  

𝐸𝐸 = 𝐴𝐴 · 𝑒𝑒−(𝐵𝐵𝐵𝐵) (2) 

where: 

𝐸𝐸 : removal efficiency of TSS (-) 

𝑞𝑞 : surface overflow rate (m3/m2 ·h) 

𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵 : adjusted constants (-) 

However, a pilot-scale study over a wide range of hydraulic loadings shows a lack of 

correlation between the overflow rate and the TSS removal efficiency, and it was 

attributed to the flocculent nature of wastewater solids [27]. Tebbutt and Christoulas [34] 

suggested an empirical relationship that relates the influent TSS concentration and 

overflow rate to the TSS removal efficiency (Equation 3).  

𝐸𝐸 = 𝐷𝐷 · 𝑒𝑒−(𝐹𝐹/𝑆𝑆+𝐺𝐺𝐵𝐵) (3) 

where:  

𝑞𝑞 : surface overflow rate (m3/m2 ·h) 

𝑆𝑆 : influent TSS concentration (mg/L) 

𝐷𝐷,𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺: adjusted constants (-), see Appendix C 

These empirical models regularly have a satisfactory performance under steady-state 

conditions because these conditions are similar to design parameters (ideal behavior). 

However, load variations represent an important part during the operation life of treatment 

plants, and most of the observed problems in complying with permit requirements are due 

to these transient conditions [27]. Thereby, to describe the performance of primary settling 

units under transient conditions is necessary to be considered to define the effect of 

variation loads on the removal efficiency. Hydraulic efficiency models are also used to 

describe the dynamic behavior of settling tanks. These models identify that real flows are 

turbulent and encounter a certain degree of mixing or eddy diffusion [27]. However, 

implementing these models to predict the dynamic response of a full-scale settling tank 

is very difficult because these models have been developed using controlled studies of 

model tanks.  
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In recent years, models based on computational fluid dynamics (CFD) have been used to 

predict flow patterns and suspended solids distributions within sedimentation [7]. 

However, in practice, CFD-based models are not commonly used due to the complexity 

of the Navier-Stokes equations in turbulent flows and the cost associated with specialized 

instrumentation and software required [10].  

Finally, there exists another class of models that do not try to describe the internal 

function of the system. However, they can establish complex relationships between 

measurable inputs and outputs data of the system. These models are called "black box" 

class models. Based on this idea, artificial neural networks have been successfully applied 

in many engineering areas. The main advantage of these models is that neural networks 

can generate complicated relationships through the inspection of a data set without 

assuming theoretical and mathematical formulation.    

 

2.5.  Fundamentals of Artificial Neural Network  

Artificial neural networks (ANN) are popular machine learning techniques that simulate 

the mechanism of learning in biological organisms [35]. They are powerful non-linear 

regression models inspired by how the brain works [36]. For example, the human nervous 

system contains cells that can process and transmit information to each other; these cells 

are called neurons. These neurons are the information-processing cells in the brain [37]. 

Neurons are connected between structures referred to as axons and dendrites, and this 

connecting region between one cell to another is named as synapses. Thus, neuron 

connections form complex information processing networks that are responsible for our 

sensations, feelings, and actions. The strength of synapsis connections changes depending 

on the external stimulations, and this change is how learning takes place in living 

organisms [35]. Biological organisms learn how to solve problems using information 

gained from past experiences, and this mechanism is replicated in an ANN. As a general 

idea, the ANN modeling approach is a computer methodology that attempts to simulate 

some important features of the human nervous system, in order to develop the ability to 

solve problems by applying information gained from the past to new problems or case 

scenarios [27]. Neural networks are widely used in a variety of applications pattern 

classification, complex system modeling, control, optimization, and prediction [38].  
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2.5.1. Components of Artificial Neural Networks  

ANN consists of a group of simple processing units which communicate by sending 

signals to each other over a large number of weighted connections [39]. A neuron or node 

is a processing unit in a neural network, and these units are connected by connection 

weight, which determines the strength of the relationship between two connected neurons 
[40]. Hence, a neuron receives input data from neighbors or external sources and uses it to 

compute an output signal which is propagated to other units.   

In Figure 2, the circle and arrows represent the node and signal flow, respectively. The 

input data is denoted by x1, x2, x3. The connections between input data and the node are 

represented by w1, w2, w3, which are the weights for the corresponding input signals. 

Lastly, b is the bias, which is a factor associated with the storage of information in neural 

networks. The information on neural networks is stored in the form of weights and bias 
[41].  

 

Figure 2. A node that receives three inputs and bias. 

 

The input data is multiplied by the weight before it reaches the node. Thus, the total input 

(𝑎𝑎𝑒𝑒𝑛𝑛) to the neuron is the weighted sum plus the bias. Hence, the total input for a neuron 

which receives n input signals is defined as the following in Equation 4:  

𝑎𝑎𝑒𝑒𝑛𝑛 =  �𝑤𝑤𝑖𝑖 · 𝑥𝑥𝑖𝑖 + 𝑏𝑏
𝑛𝑛

𝑖𝑖=0

 (4) 

 

Nodes computing the output signal (𝑦𝑦) according to a transfer function called activation 

function (𝜙𝜙). The activation function determines the behavior of the node; it represents a 
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linear or non-linear mapping from the input data to the output signal [42]. The 

mathematical expression of the node output signal is presented in Equation 5.   

𝑦𝑦 =  𝜙𝜙(𝑎𝑎𝑒𝑒𝑛𝑛) (5) 

 
The activation function is the core of a neural network structure, and it is used to increase 

the modeling ability of the neural network model, which can make the neural network has 

the meaning of artificial intelligence [43]. Some of the most common functions used as 

activation functions are to solve non-linear problems. The use of non-linear activation 

functions is fundamental to improve the modeling power of a neural model [35]. An 

important characteristic of activation functions is that they limit the amplitude range of 

the output signal of a neuron to some finite values [44]. The activation function is usually 

some continuous or discontinuous function mapping the real numbers into the interval      

(-1,1) or (0,1) [42]. We list below some functions that are frequently used as activation 

functions.   

o Identity or Linear Function: it is the most basic activation function, and it provides 

no nonlinearity (Equation 6). This function is commonly in output nodes when 

the target is a real value.  

𝜙𝜙(𝑥𝑥) = 𝑥𝑥 (6) 

 
o Logistic or Sigmoid Function: it is a widely used non-linear activation function in 

machine learning (Equation 7). The sigmoid activation outputs a value in (0,1), 

which is useful in performing a computation that should be interpreted as 

probabilities [35].   

𝜙𝜙(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥 (7) 

 
o Hyperbolic Tangent Function (tanh): it is similar to the sigmoid function, but the 

output values range is (-1,1). The tanh function (Equation 8) is preferable to the 

sigmoid function when the output of the computations are desired to be both 

negative and positive [35].    



 

25 
 

𝜙𝜙(𝑥𝑥) =
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥 (8) 

  

  

2.5.2.  Artificial Neural Networks Topology 

Despite each neuron that can only perform simple computations operations, the 

hierarchical organization of interconnected neurons makes an ANN capable of 

performing complex tasks as pattern classification and prediction [27]. Depending on how 

the nodes are connected, several neural network structures will be developed. The 

architecture of neural networks consists of a network of nodes that are normally arranged 

in layers and executed in parallel, and the layered arrangement for the network is referred 

to as the topology of a neural network [38].  

Depending on the pattern of connections between nodes and the propagation of data, 

several types of neural network architectures of complex structures can be developed [39]. 

The most simple architecture of neural networks is the perceptron, which consists of an 

input layer and an output layer [41]. However, when hidden layers are added to the 

perceptron structure, more complex structures are produced, which are called multilayer 

perceptron (MLP) neural networks. Therefore, MLP neural networks contain multiple 

functional computational layers; it consists of an input layer, a hidden layer(s), and an 

output layer [42]. A specific architecture of a multilayer neural network is referred to as 

feed-forward networks, where the data flow from input to output units is strictly feed-

forward [40]. Consequently, no feedback connections are present in the network structure. 

Figure 3 shows a schematic diagram of the feed-forward multilayer neural network. 

For understanding neural network systems, it is useful to distinguish three types of units: 

1. Input units that receive data from outside the neural network. 

2. Output units that send data out of the neural network. 

3. Hidden units whose input and output signals remain within the neural 

network.   
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Figure 3. Feed-forward multilayer neural network. 

(Source: adapted from Kim [41]) 

The group of input nodes is defined as the input layer. The nodes of the input layer have 

no functionality; they only receive input signals and transmit the input information to the 

next nodes [45]. In contrast, the output nodes provide the final result of the neural network. 

Finally, the layers in between input and output layers are called hidden layers. Hidden 

nodes connect the input nodes to the output nodes and provide nonlinearity to the neural 

network model [27]. Hence, the output signals of hidden layers are subsequently processed 

by the output layer.  

 
2.5.3.  Training of Artificial Neural Networks 

The main characteristic of neural models is the ability to solve problems by using 

information gained from past experiences. Therefore, neural networks have the capacity 

to generalize. In machine learning, the generalization ability is developed during the 

training phase. There are several learning algorithms that are used to train neural 

networks; however, the most used in practice is the class of algorithms that are based on 

supervised training [38]. The supervised training consists of providing to the neural 

network a training set comprising input data and desired outputs (target output) [41]. 

Therefore, the supervised training of neural networks for a specific task is done by 

adjusting the weights of the network to minimize the discrepancy between the network 
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output and the target output on a training data set [46]. As a general idea, the algorithms 

used for supervised training consist of the following steps (Figure 4): 

1. All weights are assigned initial random values. 

2. Input data are propagated in a feed-forward way through the network. 

3. Network output data is produced according to the weight and the 

activation function. 

4. Outputs produced by the neural network are compared with the target 

outputs. 

5. The error generated is propagated back through the network. 

6. The weights are adjusted according to the errors propagated back. 

 

Figure 4. Schematic representation of supervised learning algorithm. 

 
This procedure is repeated until the errors are minimized; it means that the training data 

set is processed many times as the weights between nodes are refined during the training 

of the network. One pass over the whole training data set represents a cycle of training, 

and it is defined as an epoch. Multiple epochs are required until achieving a satisfactory 

data mapping. The backpropagation algorithm has been widely used for training 

multilayer neural networks. The algorithm uses a gradient search technique to minimize 
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the cost function equal to the mean square error (MSE) between the target output and the 

actual network output [27]. The backpropagation algorithm is often a training method too 

slow for practical problems. Subsequently, numerical optimization techniques have been 

implemented to develop algorithms that can converge faster. Levenberg-Marquardt 

algorithm (LMA) has become a standard technique for non-linear least-square problems, 

and it is ranked as one of the most efficient training algorithms for multilayer neural 

networks [47]. A combination of gradient descent and Gauss-Newton methods is used in 

LMA, and it guarantees problem-solving through its adaptive behavior [48]. A detailed 

mathematical description of these training algorithms is provided elsewhere [35,41].  

Hence, the main advantage of neural models is that neural networks can generate 

complicated relationships through examinations of only the data points in the training set 

without assuming a pre-specified functional form [27]. As a result, complicated 

mathematical models are replaced by a training period using experimental data. The 

processing ability of neural networks is stored in the strengths of the connections between 

nodes (weights), which are obtained by the process of learning from a set of training 

patterns [45].  

The generalization capability of a neural network is determined by the size of the training 

data set, the complexity of the problem, and the architecture of the network [42]. Also, the 

learning algorithm and the number of epochs used for the training process will influence 

the performance of the neural network model. The training data set should be sufficiently 

large and diverse in order to represent the problem well [42]. Typically, supervised training 

starts with a neural network comprising an arbitrary number of hidden nodes, a fixed 

architecture of connections, and randomly selected values for the weight [50]. The 

modeling capacity of the model is proportional to the number of hidden nodes used in the 

neural network. However, using an excessive number of hidden nodes will inhibit the 

network's ability to generalize [39]. Hence, determining the optimum number of hidden 

nodes is a fundamental task to guarantee the convergence of neural networks during the 

training process, without inhibiting the generalization capacity of the model.  

2.5.3.1. Overfitting  

In statistics, overfitting corresponds to the situation wherein a model possesses too many 

parameters and fits the noise in the data rather than the underlying function [42]. 

Overfitting occurs when the model has been overly customized to the training data that it 
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yields a poor performance for new input data, but its performance for the training data is 

excellent [41]. Consequently, the model has memorized the training patterns, but it has not 

learned to generalize to new scenarios. Therefore, overfitting is one of the principal 

factors that reduce the ability of generalization in neural models.  

There are several methods to confront the overfitting problems. However, the two typical 

methods used are regularization and validation. Regularization is a numerical method that 

attempts to construct a model structure as simple as possible, modifying the cost function 
[51]. This numerical method is commonly implemented in many training algorithms; a 

detailed mathematical description is shown elsewhere [52]. On the other hand, validation 

is a method that reserves a part of the training data set and uses it to monitor the 

performance [41]. Thus, the available data for training a neural network is divided into 

three subsets: training, validation, and test. The first data set is used for computing the 

learning algorithm and modifying the network weights and biases. The second subset is 

used to evaluate the performance of modeling, and it is an indicator of the generalization 

capability of the model during the training. The third subset does not affect the learning 

process, it is used as an independent measurement of neural network performance after 

the training phase. It is important to mention that the validation data set is not used for 

the training process; it does not affect the adjusting of weights and biases in the neural 

network. The errors of both training and validation data set are monitored during the 

training process. The error of the training data fails to indicate overfitting, but the error 

on validation data provides information about when the model begins overfitting the 

training data. During the initial phase of training, the training and validation error will 

normally decrease. However, when the model begins overfitting the data training, the 

error on the validation set begins to increase. Hence, when validation error increases for 

a specified number of iterations, the training process is stopped, and the weights and 

biases of the network at the minimum of the validation error are returned [51]. Therefore, 

overfitting can be avoided by stopping the network training before the absolute minimum 

of training error is reached. This method to avoid the overfitting problem is known as 

early stopping. Figure 5 illustrates a schematic representation of the early stopping 

method. 
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Figure 5. Representation of early stopping method. 

 

2.5.4. Evaluation of Artificial Neural Network  

The objective of evaluating the performance of neural models is to find a model that is as 

simple as possible that fits a given training data with sufficient accuracy, and provide a 

good generalization capability to new scenarios [42]. A test data set is used to evaluate the 

performance of the neural network after the training phase. Several statistics indicators 

are used to estimate the performance of neural network models. However, for this study 

were selected the following:       

o Mean Square Error (MSE): for supervised learning, an error measure is used to 

control and evaluate the training process. The error measure is usually defined by 

the mean square error (MSE) [42]. The MSE has been a useful measure widely used 

in model evaluations. In statistics, MSE is an estimator to quantify the difference 

between the values estimated by a model and the population parameter [53]. 

Specifically, MSE is the average squared difference between the model 

predictions and target outputs. Its mathematical expression is defined in Equation 

9:  

𝑀𝑀𝑆𝑆𝐸𝐸 =
1
𝑁𝑁
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖

𝑝𝑝)2
𝑁𝑁

𝑖𝑖

 (9) 

 



 

31 
 

Where N is the number of patterns in the sample data set, 𝑦𝑦 corresponds to the 

value target output, and 𝑦𝑦𝑝𝑝 is the value of model prediction. The best performance 

of the model is usually achieved when the MSE function is minimized. 

 

o Coefficient of Determination (R2): the coefficient of determination (R2) is a 

statistical indicator that measures the proportion of variance in measured data 

explained by the model [54]. For linear models, it measures the goodness of fit and 

precision in predictions for the general linear model [55]. The coefficient of 

determination is mathematically described as the following in Equation 10: 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖

𝑝𝑝)2𝑁𝑁
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

 (10) 

 

Where N is the total number of data records, 𝑦𝑦 is the observed value of a specific 

parameter, 𝑦𝑦𝑝𝑝 is the model prediction and 𝑦𝑦� is the mean value of observed data 

for the constituent being evaluated. The coefficient of determination ranges from 

0 to 1. Higher values of R2 indicates a better data fit of the model; a perfect fit 

would achieve in an R2 value of 1. Typically, values of R2 greater than 0.5 are 

considered acceptable [54]. 
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CHAPTER III 

 

3.  IBARRA WASTEWATER TREATMENT PLANT  

The objective of Ibarra WWTP is to treat the wastewater from the mixed sewerage of 

Ibarra. This plant has been operating since September 2018, and it processes an average 

sewage flow of 43,200 m3/day from the community. The treatment plant was built on a 

terrain situated on the left bank of the Tahuando River with a total surface area of around 

4.5 hectares. The plant is located between Carchi Avenue and the river. The treated 

effluent is discharged on the Tahuando river, where the natural purification process 

continues to reduce the levels of pollutant concentration.  

 

3.1. Process Description 

The Ibarra WWTP uses a biological treatment system to process mainly municipal 

effluents, but industrial effluents are also present in the wastewater. The activated sludge 

system is used as a biological treatment, which is a widely used process for wastewater 

treatment. The treatment process is divided principally into four steps: Pretreatment, 

primary treatment, secondary treatment, and sludge treatment. Figure 6 corresponds to 

the Block Process Diagram (BPD), which provides a schematic representation of the 

process. 
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Figure 6. Block Process Diagram of Ibarra WWTP. 
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The wastewater is collected in a connection chamber located outside the plant under the 

Avenida Carchi. From this structure, the water is sent employing a PVC pipeline of 

approximately 250 m in length to the WWTP [56]. The inlet structure and preliminary 

treatment process are located in a single building, and an accumulative electromagnetic 

flowmeter is installed in the WWTP inlet line to record the inlet flow of wastewater 

(influent). 

 

3.1.1. Inlet Structure 

The sewage pipeline discharges into large-particle wells, which enables calming and 

homogenize the inflow prior to treatment. The large-particle well is fitted with a relief 

spillway, which acts as a general bypass line. The bypass line can carry the maximum 

wastewater inflow to the plant in case of an emergency. Detailed information on design 

flows and wastewater parameters considered to the design of the Ibarra WWTP are shown 

in Table 3 and Table 4, respectively.  

 

Table 3. Design flows of the Ibarra WWTP. 

 

  

 

 

   
  

                             Source:  Acciona and BTD Proyectos [28]. 

 

 

 

 

 

 

Design flow parameters  Design Value 

Average flow (m3/h) 1,656 

Average Daily Flow (m3/day) 39,744 

Peak Flow (Primary Treatment) (m3/h) 3,312 

Maxim Flow (Pretreatment) (m3/h) 6,624 
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Table 4. Design wastewater parameters of the Ibarra WWTP. 

Parameters  Inlet Ibarra WWTP Outlet Ibarra WWTP 

BOD5 (mg/L) 210  100  

COD (mg/L) 500  250  

TSS (mg/L) 210  100  

TKN (mg/L) 40  25  

        Source: Acciona and BTD Proyectos [28]. 

 

A large-particle well was built to remove bulky solids present in the raw water inflow. 

This well is designed to handle the maximum inflow to the plant, using a retention time 

of 1 minute [28]. Thus, it has a working capacity of 113.03 m3. The lower structure of the 

well has an inverted pyramidal shape to allow the concentration of bulky solids at the 

bottom. A clamshell grab with a capacity of 100 L is installed for the removal of these 

solids. An electric hoist with a capacity of 4000 Kg is installed to handle the grab and 

carry solid wastes to the storage containers. 

 

3.1.2.  Pretreatment  

The inlet wastewater to the treatment plant principally has domestic characteristics. It is 

from the community and the municipal sewerage. The raw water contains several bulky 

solids and non-biodegradable material, which could damage the equipment and pipelines 

during the treatment process. Therefore, a pretreatment process is necessary to remove 

these solids. This part of the treatment consists of the following processes:  

 
 

3.1.2.1.  Screening  

Two bar screens with a space between bars of 80 mm are installed at the outlet of the 

large-particle well. The screening is the first step of the treatment process, and its 

objective is filtering coarse and fine particles using bar screens. The screening takes place 

in 4 channels of 2 m in height and 1 m in width. The maximum flow rate in these channels 

is 0.34 m/s, and each channel is equipped with a bar screen with a size opening of 10 mm 
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[56]. Screened material is removed using a screw-press conveyor fitted with hoppers to 

collect the discharged material from the bar screens. The screw conveyor transports the 

collected material to a container with 1100 L of capacity, and it is used mainly for landfill. 

The screening system is controlled through the combinations of programmed timing and 

level controller.  

Motorized gates are located at the inlet and outlet of each channel, so filtration lines go 

into operation automatically in accordance with the inflow of sewage. Each channel can 

operate with the average inflow of the total capacity of the plant. Fine screens are installed 

subsequent to the coarse screens into the channel. Fine screens have a size opening of 3 

mm. A bypass channel with the capacity to carry the maximum inflow to the plant is fixed 

in parallel to the screening channels. A manual bar screen with a 16 mm passage size is 

fitted in the bypass channel to screened large solids [28]. The bypass channel will be used 

exclusively when maintenance work is being carried out on the screening channels.  

 

3.1.2.2.  Grit Removal-Degreasing  

A mixed structure is used to remove oils, greases, floating solids, and grit particles from 

the wastewater. The structure consists of two channels with 25 m large and 4.5 m width, 

and it has the capacity to treat the maximum flow from the pretreatment. However, the 

inflow of these channels is regulated with motorized gates. Hydraulic equilibrium in this 

structure is reached using a weir located at the outlet of the channel. Thus a constant level 

of water is ensured to facilitate the removal of grease and floating solids [56]. Each channel 

is swept by a mobile bridge, which runs forward and backward in both channels. The 

following equipment is suspended on the bridge: 

1. Surface scrapers with a counterweight elevation system to collect floating 

material. These scrapers have a 1.5 m length as the width of the grease collection 

channel. 

2. Bottom scrapers are used to reduce the formation of deposits at the lowest part of 

channels. 
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Grit particles are collected on the floor of the channels and extracted using pumps, which 

move it with the trajectory of the bridge. These pumps are specially designed for this 

work, and they feature manually adjustable suction heights. Each channel is equipped 

with one pump with a capacity of 20 m3/h for grit extraction, and these pumps feed a 

grit/water mixture collection channel, which separates the mixture using a screw grit 

classifier [28]. The water removed from the mixture is sent to a collection well and then 

returned to the WWTP inlet.         

On the other hand, the grease has to be emulsified before removal from the sewage. 

Therefore, this emulsion is realized by an air distribution system, which supplies air 

through diffusers. The aeration system consists of blowers and fine bubble diffusers, and 

this system is used in both channels of the mixed structure. Each channel has three 

blowers (two operating and one standby) with a unitary flow of 950 m3/h, with 200 

diffusers per channel [56]. The air injected by blowers maintains a cross-circulation speed, 

which, as a result of the turbulence effect, enables the separation of the organic matter 

attached to the grit particles and prevents the mass accumulation of grit material into the 

system [28]. Superficial scrapers send the removed grease and floating substance to the 

collection zone, where they are extracted and sent to the grease concentrator. Subsequent 

to thickening in the concentrator, the greases and supernatants generated are sent to a 

waste container using a scraper system. The degreasing equipment and containers are 

arranged alongside the channels of mixed structure.   

An electromagnetic flowmeter is installed at the outlet of the grit removal-degreasing 

process to record the inflow rate into primary treatment. Regulation of an excess flow is 

carried out through a weir installed in the collection channel of the grit removal-

degreasing structure.  

 

3.1.3. Primary Treatment 

Primary settling is used for the removal of suspended solids that are not removed in the 

preliminary treatment. Primary treatment consists of removing suspended solids by 

gravitational sedimentation [8]. Two circular settling tanks are operating in the plant, and 

they can function as primary or secondary setting tanks in the process. This is an essential 

characteristic of flexible design in terms of operating conditions. At average flow, a 
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complete process consisting of primary sedimentation, biological treatment, and 

secondary sedimentation, is operating. At peak flow, the concentration of pollutants in 

sewage increases, and a high loading treatment is used. Thereby, at these conditions, both 

circular sedimentation units are used for secondary sedimentation after biological 

treatment.    

Pretreated wastewater is sent to a distribution chamber, which directs the flow to the 

primary settling tanks through spillways. Sluice gates installed at the outlet of the 

distribution chamber allow each settling tank to operate isolated. Thus, the inflow to each 

settler is distributed through separate pipelines. Consequently, the clarified water returns 

separately to the distribution chamber from each settling tank, and then it is sent to the 

biological treatment. 

 

3.1.3.1.  Primary Settling Tank (PST) 

A circular settling tank fitted with a scarper system is used for primary sedimentation. 

Circular sedimentation tanks are center-feed with the purpose to produce a radial flow 

pattern [31]. The PST has a diameter of 34 m and a cylindrical height of 4 m, but 2.8 m 

cylindrical useful height. The volume of the unit is 2,902.32 m3, and the total surface is 

907.92 m2. A schematic representation of the primary settling unit is shown in Figure 7. 

 

Figure 7. Primary settling tank (PST) cross-section view. 
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The influent flows through a vertical pipe and enters the settling tank at the bottom of the 

structure. The inlet flow is collected in a central structure called the central ring, which 

generates a homogenous radial flow through a head loss. Typically, the central ring has a 

diameter between 15 and 20 % of the total tank diameter [1]. The circular ring structure 

consists of narrow vertical windows. The windows cause the head loss of water, and it 

ensures a homogenous distribution on a horizontal plane [28]. Therefore, the flow rate 

through the windows needs to be sufficiently high to produce a uniform distribution, but 

low enough to avoid turbulent flows. This reduction in the flow velocity allows that 

suspended particles can settle along the sedimentation zone. The flocculation settling 

mechanism usually occurs in primary sedimentation [4]. The layer of accumulated settled 

solids at the bottom of the tank is denominated sludge.    

Additionally, the sedimentation unit is fitted with a rotating bridge that provides a 

constant rotatory movement to a sludge scraper. The sludge scraper moves the settled 

sludge to a hopper structure in the middle of the settling tank. The accumulated sludge is 

posteriorly removed using centrifugal pumps. Also, the rotating bridge is fitted with 

surface skimmers to remove floating material from the surface of the settling tank. Baffles 

are the structure that prevents the remaining floating solids and scum leaving the settling 

tank with the clarified effluent [12]. The clarified water is collected using a perimeter 

spillway in the clarified water collection reservoir and returns through the outlet pipeline 

to the distribution chamber. However, the clarified water can be sent to biological 

treatment or for final discharge; it depends on the operational mode and wastewater 

characteristics. Chemical flocculants are not used during this process.  

Sludge extraction or sludge purge from the settling tank is performed through pipelines 

that transport the accumulated sludge to the pumping well. The sludge purge from PTS is 

carried out every 8 hours for 3 hours, with a sludge extraction flow of 40 m3/h. The sludge 

production corresponds to 5,425.06 kg/day, and the concentration of this sludge on 

extraction from the settler is 10 kg/m3 [56]. The sludge is sent to a screening process and 

after a sludge treatment process. The equipment used for sludge extraction is detailed in 

Table 5.  
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Table 5. Purge equipment to sludge extraction.  

Description equipment 

Type of pump Centrifugal 

Operating Units 2 

Reserve Units 1 

Unit pumping flow 50 m3/h 

Pressure  14.22 psi 

   Source: Acciona and BTD Proyectos [28]. 

 

 
3.1.4. Biological Treatment 

The clarified effluent is sent to biological treatment through a pipeline that feeds a 

distribution channel to biological treatment at a constant flow. The maximum inflow to 

biological treatment is 3,312 m3/h. Biological treatment is performed by two plug flow 

activated sludge reactors, with aeration by diffusers. The volume of each biological 

reactor is 5,190 m3, and the aeration is produced by a membrane diffuser at a depth of 5 

m [28]. Air is supplied by uniformly using diffuser grids.  

The treated effluent leaves the reactor by the spillway, and it is sent through pipelines to 

the secondary settling unit. However, in the activated sludge biological treatment with a 

high loading rate adopted at the plant, it is necessary for sludge recirculation. After 

separating the biomass from treated effluent, the biomass is reintroduced to biological 

reactors frequently in order to keep the microbial mass active and avoid the loss of 

microorganisms. Sludge recirculation is carried out with submersible pumps from the 

outlet of reactors (internal recirculation) or the secondary settling tank (external 

recirculation).  
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3.1.5. Secondary Sedimentation  

The effluent from biological treatment is sent to the same distribution chamber that feeds 

the primary settling unit. However, in this case, it acts as a distribution chamber to 

secondary settling. The performance and physical characteristics of the secondary settling 

tank is similar to the primary settling unit. The purge of the secondary settling tank is 

performed in continuous mode using a centrifugal pump. A fraction of sludge is returned 

to biological reactors, but it depends on the concentration of pollutants in wastewater. 

The rest of the sludge is sent to the sludge treatment process. The average production of 

sludge is 3,386.25 kg/d, and the concentration of this sludge on extraction from the 

secondary settling tank is 6 kg/m3 [56]. 

The decanted effluent is collected by a double perimeter spillway in the decanted water 

collection channel and sent to the decanted water collection chamber. The treated water 

flow is measured by an accumulative electromagnetic flowmeter installed in the main 

outlet pipeline of the plant. After the point at which is installed the flowmeter, the pipe is 

connected to the bypass line by a control well. Finally, treated water is discharged to the 

Tahuando river.   

 

3.1.6. Sludge Treatment 

The sludge settled in sedimentation units need to be treated to produce stable and non-

contaminant products. The sludge treatment implanted in the Ibarra WWTP involves 

three general steps: Sludge thickening, anaerobic digestion, dewatering and drying. 

 

3.1.6.1.  Sludge thickening 

The installed system for the reception of sludge excess consists of an inlet structure, 

sieving, compaction zone, and discharge zone. The sludge excess from the primary 

sedimentation unit is screened in a rotatory drum sieve with an open size of 3 mm, in 

order to remove coarse solids and fibers that will affect the equipment and treatment 

process. The filtered sludge is dewatered at the required conditions in the compaction 

zone, and it is sent to a mixing chamber with the sludge of secondary sedimentation. The 

mixing chamber has a retention time of 2 hours, and it is fitted with submersible mixers 

for homogenizing the sludge before the thickening [28].  
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The mixed sludge is pumped from the mixing chamber to the thickener. The sludge 

thickening is carried out in a gravity thickener with a diameter of 15 m. The thickened 

mixed sludge is stored in a tank with 34.02 m3 of capacity before digestion. The storage 

tank is fitted with a submersible agitator to homogenize the thickened sludge.  

 

3.1.6.2.  Anaerobic digestion 

A narrow digester with a pyramid-shaped is used for the digestion process. This reactor 

requires equipment to enable feed-in, heating, homogenization, extraction, etc. All these 

operational variables need to be controlled in order to achieve the optimal performance 

of the digestion unit. The final products produced by digestion are principally digested 

sludge, CO2 and CH4, but secondary gases as hydrogen sulfide (SH2) and saturated vapor 

water are also produced in the process. Hydrogen sulfide is a highly oxidizing gas that 

affects metallic structures (premature aging), and also it forms sulfuric acid (H2SO4) in 

contact with water. Therefore, a dosing system of ferric chloride (FeCl3) is installed to 

reduce the formation of SH2 during the digestion process. A fraction of the biogas 

generated in the digester is sent to boilers to be used as fuel. On the other hand, the rest 

of the biogas is stored in a spherical double-membrane gas holder with a capacity of 550 

m2. The gas holder has a service pressure of 20 mbar, which is adequate to feed the gas 

engine to produce electric energy, and a gas flare with a capacity to burn off 200 Nm3/h 

is installed to eliminate the gas excess [56].  

The digested sludge is stored in a sludge buffer tank with a capacity of 542.84 m3 prior to 

the dewatering process. The tank is covered by a plastic cover connected to the odor 

control system. The stored sludge is pumped to the dewatering process gradually.    

 

3.1.6.3.  Dewatering and drying 

With the purpose of reducing the volume of excess sludge, the sludge is dewatered in a 

centrifuge to obtain a dry matter content of approximately 20% [28]. The dewatering 

system consists of two centrifuges with each corresponding pump system. However, one 

complete line corresponds to a complete standby line.      

Before the sludge enters the dewatering system, it undergoes chemical conditioning by 

polyelectrolyte (commercial product: FLOPAM AKA 8400) dosing. The addition of 

polyelectrolyte is used to improve the flocculation of sludge in order to get easier the 
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separation liquid-solid during the centrifugation. The dried sludge is transported by two 

screw conveyors and stored in a storage hopper with a capacity of 60 m3. Finally, solar 

thermal drying is used as an eco-friendly sludge drying alternative. A tractor-drawn wheel 

loader is used to transport the sludge from the storage hopper to the solar drying system. 

The solar drying transforms the sludge from the centrifuge, which has a large volume due 

to its high-water content, into a smaller granulated mass. This final product has a heating 

power similar to coal so that it can be used as fuel or fertilizer [56]. The solar thermal 

drying involves two drying surfaces, with a unitary volume of 960 m2. Additionally, each 

drying surface is fitted by a scarper system to achieve a homogenous distribution of 

sludge. 
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CHAPTER IV 
 

4. METHODOLOGY  

In order to develop a predictive model for the PST based on neural networks, first, a 

process analysis was developed to identify the critical variables associated with the 

performance of PST. The Ibarra WWTP supplied the available data about wastewater 

characteristics and inlet flow rates corresponding to the primary treatment unit. The 

determination of chemical, biological, and physical properties of wastewater composition 

was done according to the Standard Methods [15]. Operational variables and wastewater 

characteristics measured were classified to obtain the most representative information 

about the behavior of the sedimentation unit. Data analysis was realized to guarantee the 

quality of the data set used for neural network models.  

The objective of developing neural network models was to predict the COD and TSS 

concentration in the effluent wastewater from PST.  Thus, two neural networks were 

trained for this task using the available experimental data. One neural network was trained 

to predict effluent COD (COD model), and the other to predict effluent TSS concentration 

(TSS model). The performance of neural network models was compared to the traditional 

empirical models. Additionally, a complete sensitivity analysis (SA) was developed to 

study the effect of each input variable on the model response. Hence, local and global SA 

was developed to determine the model response under several conditions. Once the 

models were developed and trained, new experimental data were provided by the 

laboratory of Ibarra WWTP to validate the accuracy and precision of both model 

predictions. Figure 8 shows a schematic representation of the methodology developed in 

this study.  
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Figure 8. Methodology diagram. 
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4.1. Process Analysis 

An integral process analysis was considered to identify the variables associated with 

operational conditions and wastewater characteristics of Ibarra WWTP. In the treatment 

process, 14 parameters are measured to evaluate the performance of the treatment process. 

The chemical, physical and biological properties measured in Ibarra WWTP are presented 

in Table 6. In primary treatment, these parameters are measured at the settling tank inlet 

and outlet. According to the Ibarra WWTP laboratory data, the delay time between inlet 

measurement and outlet measurement was approximately one hour.   

 

Table 6. Wastewater properties that are measured during primary treatment. 

Properties Parameters Units 

Physical 

Inlet Flow rate  m3/h 

Temperature °C 

Turbidity NTU 

Conductivity µS/cm 

TSS  mg/L 

VSS mg/L 

FSS mg/L 

Chemical 

BOD5 mg/L 

COD mg/L 

DO mg/L 

pH - 

TKN mg/L 

Biological 
TC MPN/100mL 

FC MPN/100mL 
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For modeling, it was necessary to select the most influential and critical variables 

associated with the sedimentation process. Many parameters will complicate the learning 

process of neural networks, and more hidden nodes will be necessary. Therefore, the 

selection of the most representative parameters to the data set for neural networks is an 

important step in the modeling. Hence, an expert on the field of the wastewater treatment 

process was consulted to select the most important parameters associated with primary 

sedimentation.  

Biological properties were not considered because sedimentation is essentially a physical 

process. The microbiological activity is not significant during primary sedimentation; it 

does not have an important influence on the effluent COD and TSS concentration. 

Nevertheless, some properties as the concentration of total and fecal coliforms, BOD5, 

and nitrogen content change during primary sedimentation due to the removal of 

suspended solids and organic matter. Similarly, pH is an important factor in the biological 

treatment process, but it does not have a significant effect on the primary sedimentation. 

As suggested in Equation 3, Gamal and Smith [27] proposed to use influent TSS 

concentration and inlet flow as input data to the TSS neural network. In the same way, 

the COD model used influent COD and inlet flow as input parameters to estimate effluent 

COD. Both neural network models reported acceptable results. The inlet flow rate is a 

critical variable in primary sedimentation because the removal efficiency of the settling 

process partially depends on the flow distribution and retention time of wastewater in the 

settling tank. Also, the performance of the clarifier tank is a function of the constituent 

influent concentration because it is fundamentally required to estimate the effluent 

parameters [1].  

From a modeling standpoint, COD cannot differentiate between biodegradable and inert 

organic matter [57]. Additionally, both fractions are composed of particulate and soluble 

compounds (particulate and soluble COD, respectively) [1]. The particulate COD of 

sewage generally ranges from 30 to 70% of its total COD, but in domestic wastewater, 

particulate COD in some cases will represent 85% of total COD [58]. Consequently, a 

fraction of particulate COD will be removed, but the soluble and colloidal fraction of 

COD remains after the primary sedimentation process. Hence, additional information data 

was considered to provide more input information to neural models.  
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The addition of influent TSS concentration and influent turbidity as input data for the 

COD model was considered to supply an approximation of particulate and colloidal 

matter in sewage composition. Analogous to the COD model, influent COD and influent 

turbidity give complementary information about the sewage chemical composition, 

soluble compounds, and suspended matter. Therefore, influent COD and influent 

turbidity were considered as input data for the TSS model.    

Although the temperature is an important factor in the wastewater treatment process, it 

has not a significant effect on primary settling tanks performance [1]. Therefore, the 

influent temperature was not considered as input data for modeling. Additionally, it 

presented a relatively constant value in the measurements of the entire data set. 

Conductivity was not considered because there exists a large number of cases where this 

parameter has been not registered. Finally, the data set for neural models included inlet 

flow, influent turbidity, influent COD, and influent TSS concentration as input 

parameters. For the output data, only was considered effluent COD and TSS 

concentration.   

 

4.2. Data Processing for Artificial Neural Network Models 

In ANN modeling, the efficiency of process data and their ability to accurately predict 

the target output is largely dependent on the relationship between the input data and the 

output desired [59]. Some values in the available data set were inconsistent, specifically, 

the measurements associated with influent and effluent TSS concentration. The removal 

efficiency in these particular cases presented negative values. These inconsistencies could 

be produced by the wrong performance of the sedimentation unit or mistakes during the 

laboratory analysis. Hence, these erratic values were discarded only in the data set used 

for the TSS model because they could affect the training process of the neural network 

model negatively. However, in the case of the COD model, these irregularities are not 

significant because effluent TSS concentration was not considered.   

In contrast, some cases of incomplete data were found in the data set. The measurement 

of COD and TSS concentration mainly were not registered in many instances. Some 

studies available in the literature suggest the idea of using specific auxiliary parameters 

to estimate other process parameters that are not temporarily available. Hack and Kohne 
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found a very strong correlation between turbidity and the influent COD [60]. Therefore, 

turbidity data were used for estimating COD values on incomplete data. As COD 

estimation, there exists a strong linear relationship between turbidity and TSS 

concentration, which can be used for estimating TSS concentration using turbidity 

measurements [61]. However, in this study, it was considered a logarithm relationship 

because it showed a better mathematical adjustment for experimental data than a simple 

linear correlation. All these considerations were realized to maintain a larger amount of 

representative data samples as possible for the training phase. Hence, data sets of 50 and 

53 samples were used to develop the TSS neural network and COD neural network, 

respectively. Additionally, a statistical description of data sets used for the training phase 

was developed to obtain a detailed insight into the general data used for the study.  

 

4.3. Structure of Artificial Neural Network Model 

A prototype was developed to find a priori which characteristics provide the best results 

in both neural network models. A preliminary test was developed in Excel to establish 

which parameters and activation functions get better results. From the initial model 

testing, several activation functions were considered. Five different activation functions 

by the hidden layer were used (sigmoidal, sine, cosine, hyperbolic tangent, and gaussian). 

Hyperbolic tangent (tanh) in the hidden layer and linear function in the output layer 

showed the best results during the initial test for both neural networks. Additionally, the 

same configuration of layers and activation functions produced satisfactory results 

reported by Gamal and Smith in the literature [27]. 

The Neural Network Toolbox of MATLAB R2019a software was used to design the 

architecture and to train the ANN models. A multi-layer-feed forward neural network was 

selected as the architecture for both neural models. A feed-forward network with only 

one hidden intermediate layer is widely used in the automation and control of processes 
[60]. Many researchers in the field of artificial intelligence suggest that it is usually 

unnecessary to use more than one hidden layer in multi-layer feed-forward architecture, 

and varying the number of nodes in the hidden layer is sufficient for delivering different 

results [27]. Consequently, in both cases, only one hidden layer and one output node were 

used in an MLP neural network architecture (Figure 9), and the number of hidden nodes 
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ranged from 5 to 10 in order to determine the optimum number of neurons in the ANN 

architecture.  

 

Figure 9. Multilayer-neural network architecture used for the TSS model and COD 
model. 

 

4.4. Artificial Neural Network Model Training   

The data set that is fed to the network has to be scaled into a numeric range that is efficient 

for the calculation by the neural network [50]. If the data used do not scale to an appropriate 

range, the neural network will not converge on the training phase, or it will not produce 

accurate results [62]. Therefore, the data set were scaled linearly (normalized) into the 

range [-1,1] before being presented to the network. Thus, network outputs also have to be 

scaled to the initial range to obtain the real value. The mathematical expression used for 

the normalization method is defined in Equation 11.  

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑥𝑥 − 𝑥𝑥𝑛𝑛𝑖𝑖𝑛𝑛

𝑥𝑥𝑛𝑛𝑚𝑚𝑥𝑥 − 𝑥𝑥𝑛𝑛𝑖𝑖𝑛𝑛
· (𝑟𝑟𝑛𝑛𝑚𝑚𝑥𝑥 − 𝑟𝑟𝑛𝑛𝑖𝑖𝑛𝑛) + 𝑟𝑟𝑛𝑛𝑖𝑖𝑛𝑛 (11) 

 

where 𝑥𝑥 is the original value, 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the normalized value, 𝑥𝑥𝑛𝑛𝑚𝑚𝑥𝑥 and 𝑥𝑥𝑛𝑛𝑖𝑖𝑛𝑛 are the 

maximum and minimum values of the concerned variable, respectively. Lastly, 𝑟𝑟𝑛𝑛𝑚𝑚𝑥𝑥 and 

𝑟𝑟𝑛𝑛𝑖𝑖𝑛𝑛 are the desired values of the normalized variable range. The data set were divided 

into training, validation, and test set. A random division of available data is a satisfactory 
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method to generate the training, validation, and test data set [50]. Hence, 70% of the total 

data set was used for the training phase, 15% were used for the validation process, and 

the remaining 15% were used for model testing. This division has been used successfully 

and reported by Shahin et al. [63] in the literature.      

The method for training MLP is based on the minimization of a suitable cost function [62]. 

The mean square error was selected as a cost function for this study. For prediction 

problems, supervised learning is frequently utilized for teaching the neural network how 

to relate input data patterns to output data [27]. Therefore, a supervised learning algorithm 

was used for the training phase of both neural network models.  

LMA was used as a training algorithm; it is often the fastest backpropagation algorithm 

and is highly recommended as a first-choice supervised algorithm [51]. Moreover, batch-

mode for adjusting weights (weights updates were done after each epoch and not after 

each training pattern) was used during the training phase. To compare the performance 

of different MPL architectures and select the best option, both statistical criteria MSE and 

R2 were used. Additionally, the performance of selected models was compared to the 

traditional empiric models. The correlation between empirical model predictions and 

experimental data was determined. Additionally, the error associated with the model 

prediction produced by each model was calculated.   

 

4.5. Sensitivity Analysis 

One of the most important disadvantages of neural network models is the comprehension 

of internal relationships generated by the network [64]. In contrast to classical 

mathematical and statistical models, it is not evident the importance and influence that 

each input variable has over the model response. Consequently, the exact relationship 

between input and output data are not well understood. Different attempts have been 

developed to interpret the weights and internal operations in neural network models, but 

the sensitivity analysis (SA) is the most widely used [64]. Therefore, a sensitivity analysis 

was developed in this study to obtain information about the internal relationships 

established by the neural network model.  
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The sensitivity analysis studies how the uncertainty in the output of a model can be 

apportioned to different sources of uncertainty in the model input [65]. Hence, as a general 

idea, the sensitivity analysis is a method of determining the rate of change in model output 

concerning the change in model inputs [54]. It is often employed to quantify the importance 

of each of the model´s parameters on the behavior of the system [66]. In the literature, 

many methods to estimate the sensitivity measurements have been proposed. In general, 

we can distinguish between local and global SA. The local SA addresses sensitivity 

relative to a change of a specific parameter value; it means that local SA focuses on a 

single input´s behavior while other parameters remain constant [67]. The most common 

method to carry out a local SA is to set the value of all input variables to their mean value 

(Base Case) and vary the value of one of them throughout its range, with the object to 

observe the effect it has on the model response [64]. Thus, a local SA was considered in 

this study to understand the effect that input parameters generate on the ANN model 

response. A Base Case (BC) of both the TSS model and the COD model was established. 

The input value parameters were varied in the range from a reduction of 40% of the initial 

value to an increment of 40% of the initial value.  

On the other hand, a global SA focuses on the variance of model outputs and determines 

how input parameters influence the output parameters [66]. Based on this idea, in a neural 

model study, Irigoyen et al. [68] defined the sensitivity measurement as the relationship 

between the error estimation with the missing variable and the original error estimation 

of the model. The error estimation can be measured as the MSE associated with the model. 

The formula used to determine the sensitivity of the input parameter using the MSE as 

error measurement is defined in Equation 12.   

𝑆𝑆𝑖𝑖 =
𝑀𝑀𝑆𝑆𝐸𝐸𝑖𝑖
𝑀𝑀𝑆𝑆𝐸𝐸  (12) 

Where 𝑆𝑆𝑖𝑖 is the sensitivity value of the missing input variable 𝑖𝑖 , 𝑀𝑀𝑆𝑆𝐸𝐸𝑖𝑖 correspond to the 

mean square error associated with the model performance with the missing input variable 

𝑖𝑖, and 𝑀𝑀𝑆𝑆𝐸𝐸 is the mean square error of the original model using all input parameters. 

Thus, more sensitive is the model to a specific input variable as the ratio between error 

estimations increases. In contrast with the previous method, the analysis proposed by 

Irigoyen et al. [68] provides a measurement of the robustness of the model. Hence, a global 

SA was considered to identify which are the most influential variable inputs for the ANN 
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model and evaluates the model performance under a specific combination of input 

variables. In order to obtain a complete sensitivity analysis, local and global SA was 

developed in this study applying the methodologies described previously. 

 

4.6. Results and Discussion Section: Outline  

A modular methodology was considered for the development of this study. Thus, a 

segmental division of the entire work was applied to establish a systematic method for 

the organized resolution of specific tasks. Therefore, to achieve a better understanding, 

the results obtained in this study, which are reported in Chapter V, were classified into 

sections. Hence, Chapter V is divided into the following six sections:  

o Section 5.1: it corresponds to the adequation and processing of available data used 

for the ANN modeling. In this section, some correlations between wastewater 

parameters were established to complete the incomplete information using 

complementary data. Additionally, a descriptive statistic of the used data sets was 

incorporated.  

o Section 5.2: it presents the results obtained during the training phase using 

different number of hidden nodes in ANN models. This section involves the R2 

and MSE values obtained with different options of ANN architectures. Hence, 

Section 5.2 is focused on determining the optimum number of hidden nodes in the 

ANN models architectures considering the R2 and MSE values in each case.  

o Section 5.3: it consists of the evaluation of the performance of selected models in 

the previous section. Therefore, the ANN model predictions were compared with 

the experimental data. Furthermore, correlation functions between experimental 

data and model predictions were established to evaluate the performance of the 

ANN model. In the same way, a comparison based on the error of model 

predictions between the ANN model proposed in this work and the empirical 

models reported in the literature is presented in this section. 

o Section 5.4: it presents the sensitivity analysis of ANN models. This section 

describes the relationship between the input variables and the model response. In 
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the same way, this section shows the effect that each input variable has on the 

accuracy of the model output value.   

o Section 5.5: it corresponds to the validation of ANN models. Hence, this section 

shows correlation functions between new experimental data supplied by Ibarra 

WWTP and ANN model predictions used to validate the accuracy of ANN model 

predictions. 

o Section 5.6: it is destined to discuss some potential applications of this study in 

the wastewater treatment process. 

Table 7 summarizes the organization of results obtained in this study, which will be 

presented in detail and commented in Chapter V. 
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Table 7. Results and Discussion Section: Outline. 

 

 

 

 

 

 

Sections Titles Content 

 
5.1 

 

Data Processing for 
Artificial Neural Network 
Models 

Correlation functions between 
wastewater properties 

Descriptive statistics of 
experimental data 

5.2 Artificial Neural Network 
Models Training 

R2 values with different hidden 
nodes. 

Variation of MSE value with 
different hidden nodes. 

5.3 Performance of Selected 
Models 

Correlation between 
experimental data and model 
predictions 

Average error of ANN model 
against empirical models 

Error distribution of ANN model 
against empirical models. 

5.4 Sensitivity Analysis (SA) 
Local SA 

Global SA 

5.5 Model Validation 
Correlation between model 
predictions and new 
experimental data. 

5.6 Applications 
Possible potential uses of the 
ANN model in the wastewater 
treatment process. 
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CHAPTER V 
 

5. RESULTS AND DISCUSSION  

 
5.1. Data Processing for Artificial Neural Network Models 

In this study, a strong correlation between TSS concentration and turbidity measurements 

was found. The result obtained with the linear regression of the logarithmic relationship 

between turbidity and TSS concentration is shown in Figure 10 (b). It suggests a positive 

correlation between turbidity and TSS. This result is expected because turbidity is a 

measure of water clarity and a measurement of the suspended matter in wastewater. As 

the volume of suspended solids increases, the light is absorbed or scattered and results in 

higher values of turbidity [69]. However, the presence of dissolved, color-causing 

substances that absorb light may cause interference in the measurement [15]. These 

interferences could be affecting the relationship between TSS concentration and turbidity 

data.  

 

 

Figure 10. Correlation functions between wastewater properties. 
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The relationship between COD and turbidity is exposed in Figure 10 (a). Similar to TSS, 

the COD linear regression model suggests a rise in the COD as the turbidity increases. As 

was exposed previously, higher values of turbidity indicate a higher concentration of 

suspended solids. These suspended particles contain much organic matter, which is 

responsible for the COD of the wastewater. As a result, measuring the turbidity gives an 

estimation of COD. As Figure 10 shows, the turbidity/COD linear relationship achieved 

a better R2 value compared to the turbidity/TSS logarithmic relationship. This result is 

produced due that turbidity provides an integrated measurement of suspended and 

dissolved particles [69]. Dissolved substances are also included in the COD measurements. 

Thus, the interferences associated with turbidity measurements do not negatively affect 

the relationship between COD and turbidity. These interferences provide more general 

and integral information of pollutant concentrations, which is useful to estimate more 

precisely the COD in wastewater composition.  

In summary, positive linear correlations between turbidity/TSS and turbidity/COD were 

found to be consistent. A slightly lower correlation coefficient is observed in this study 

for turbidity/COD relationship, and turbidity/TSS relationship compared to the values 

reported in the literature [66,67]. However, the wastewater characteristics and conditions 

were not the same. These results will be used to develop other models or empirical 

relationships to estimate wastewater parameters. From an operational and management 

point of view, COD is an efficient monitoring parameter compared to BOD5 analysis, 

because of its quick determination between 2-3 hours. However, it requires specific 

laboratory equipment and hazardous chemicals substances. Thus, a significant reduction 

of time and risk can be reached in estimating COD monitoring using the regression model 

based on turbidity data. 

In the same way, the determination of TSS concentration required long periods due to the 

gravimetric method that it involves. Therefore, these correlations could be used as a 

complementary tool to improve the treatment process control. These results might be 

implemented and used as operational tools to obtain rapid estimations and detection of 

monitoring parameters.  

These correlations between turbidity/TSS and turbidity/COD were used to complete a 

few cases where COD or TSS experimental measurements were not available in the data 

set. Then a statistical analysis of the data set was developed to obtain a general statistical 
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description. The descriptive statistical information about the data set used for the TSS 

model and the COD model are summarized in Table 8 and Table 9, respectively. 

Table 8. Descriptive statistics of experimental data used for the TSS model.  

 

Table 9. Descriptive statistics of experimental data used for the COD model. 

 

 

 

 

 

Parameter 
Mean 

Value 

Maximum 

Value 

Minimum 

Value 

Standard 

deviation 

Coefficient 

of variation 

Flow rate (m3/h) 934 2748 193 495 0.53 

Influent COD (mg/L) 589 1389 213 298 0.51 

Influent TSS (mg/L) 336 800 48 216 0.64 

Influent Turb (NTU) 210 535 51 123 0.59 

Effluent TSS (mg/L) 71 228 20 40 0.56 

Parameter 
Mean 

Value 

Maximum 

Value 

Minimum 

Value 

Standard 

deviation 

Coefficient 

of variation 

Flow rate (m3/h) 921 2748 193 466 0.51 

Influent COD (mg/L) 550 1389 213 276 0.50 

Influent TSS (mg/L) 330 960 22 241 0.73 

Influent Turb (NTU) 197 535 50 113 0.58 

Effluent COD (mg/L) 209 389 101 56  0.27 
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5.2. Artificial Neural Network Models Training 

The training phase was carried on for 1000 epochs, but the training process was stopped 

when the validation data MSE value started to increase. This procedure avoids the 

overfitting problem. To find the best MLP architecture, different numbers of nodes in the 

hidden layer were used varying from 5 to 10. Every neural network model completed the 

training phase before 20 epochs. The R2 values corresponding to the training phase of 

each candidate TSS model and each candidate COD model are shown in Table 10 and 

Table 11, respectively. Additionally, the corresponding notation used to identify each 

specific neural network architecture is detailed in the tables. 

As one can observe in Table 10 and Table 11, the R2 value of each neural network 

architecture used in the training phase was calculated for every subdivision of the entire 

data set (training, validation, and test). Subsequently, the same statistical parameter was 

determined for the whole data set (combined). In this study, a value of R2 ≥ 0.5 was 

considered a satisfactory result. In order to guarantee the generalizability of the model, 

the model must achieve at least a satisfactory R2 value in all subdivisions of the data set.  

In the case of the TSS model, all the options used in the training phase show an acceptable 

R2 value in terms of training data. In the same way, R2 values above 0.5 are obtained in 

all cases concerned with the validation data set (Figure 11). However, in the test data set, 

only the TSS-05 architecture was not able to achieve a satisfactory R2 value. Therefore, 

the TSS-05 option was discarded. The R2 value of each subdivision provided an idea of 

the performance of a particular neural network architecture about specific group data. 

However, there is not enough information to determine which architecture presents the 

best performance. For example, Table 10 shows that TSS-08 architecture reached the 

highest R2 value in the training data. However, it did not reach the highest R2 value 

corresponding to the validation and test data set. 

On the other hand, despite the TSS-07 option not obtaining the highest value in the 

training data set, it achieved the highest value in terms of validation and test data set. 

Although specific information of each subdivision of the data set is useful to evaluate the 

performance of the model initially, it is necessary to determine the performance of each 

model about the entire data set (combined). 
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Therefore, the R2 value of the entire data set was determined to establish which number 

of nodes in the hidden layer provided the best performance in general terms. The highest 

R2 value concerned with the total data set was achieved with the TSS-07 architecture. In 

contrast, the TSS-06 was discarded because it did not reach a satisfactory R2 value in 

terms of the entire data set.   

Table 10. R2 values for the TSS model with different number of hidden nodes. 

Notation N° of Nodes Training Validation Test Combined 

TSS-05 5 0.63 0.63 0.49 0.58 

TSS-06 6 0.56 0.60 0.84 0.44 

TSS-07 7 0.57 0.78 0.86 0.60 

TSS-08 8 0.66 0.67 0.62 0.53 

TSS-09 9 0.58 0.70 0.62 0.57 

TSS-10 10 0.54 0.56 0.66 0.51 

 

 

Figure 11. R2 values for the TSS model with different number of hidden nodes. 
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In the case of the COD model, all the proposed architectures reached a satisfactory R2 

value in terms of training, validation, and test data set. The COD-09 model showed the 

highest R2 value corresponding to the training and test data set. However, COD-09 

architecture did not reach the highest value of R2 in general terms. This fact is associated 

with the R2 value obtained in the validation data set, which is the second-lowest. On the 

other hand, as it is observed in Figure 12, the COD-10 architecture obtained similar values 

of R2 in all subdivisions of the data set. 

Moreover, the COD-10 architecture achieved the second-highest values in the training, 

validation, and test data set. Consequently, this option obtained the highest R2 value in 

terms of the entire data set. Nevertheless, COD-09 and COD-10 achieved similar results 

of R2 value corresponding to the total data set. Otherwise, the COD-07 option was 

discarded because it did not provide an acceptable result about the combined data set. 

Despite the COD-07 model reached the highest R2 value in the validation data set, it 

obtained the lowest R2 value in terms of the training and test data set. Therefore, this has 

a significant effect on the R2 value obtained in the entire data set.  

 
Table 11. R2 values for the COD model with different number of hidden nodes. 

Notation N° of Nodes Training Validation Test Combined 

COD-05 5 0.61 0.77 0.62 0.57 

COD-06 6 0.56 0.56 0.79 0.50 

COD-07 7 0.54 0.89 0.60 0.47 

COD-08 8 0.55 0.64 0.76 0.55 

COD-09 9 0.65 0.56 0.86 0.58 

COD-10 10 0.61 0.62 0.69 0.60 
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Figure 12. R2 values for the COD model with different number of hidden nodes. 

Although R2 has been widely used for model evaluation, this statistical indicator is 

oversensitive to high extreme values and insensitive to additive and the proportional 

difference between model predictions and measured data [54]. Das and Sivakugan [71] 

explain that use only R2 can be confusing because that higher values of R2 might not 

necessarily indicate better model performance due to the tendency of the model to deviate 

towards higher or lower values in a wide range of data set. Therefore, if R2 is used for 

model evaluation, it is necessary to take into account additional information that can cope 

with that problem [72]. Hence, the MSE value was also considered to evaluate model 

performance. The MSE values of the normalized total data set corresponding to the 

training phase are shown in Table 12. 
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Table 12. MSE value for model performance with different hidden nodes. 

N° of Nodes TSS Model COD Model 

5 0.060 0.063 

6 0.082 0.084 

7 0.057 0.085 

8 0.070 0.066 

9 0.062 0.061 

10 0.071 0.060 

Note: The MSE values correspond to the normalized data set.  

The lower MSE values mean better performance of the network (zero means no error). 

Figure 13 shows that the minimum MSE value of the TSS model was obtained using 

seven hidden nodes. In the case of the COD model, the minimum MSE value was reached 

using ten nodes in the hidden layer. 

 

Figure 13. Variation of MSE value for model performance with different hidden nodes. 
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predict TSS concentration effluent. However, the simplicity of the model is an essential 

factor that should be considered in model selection. Kolay et al. [75] concluded that using 

more than ten nodes in the hidden layer will cause the saturation of the neural network, 

which results in lesser quality simulated results due to undesirable feedback to the 

network. Particularly in the COD model, despite the COD-10 architecture achieving the 

highest R2 value and the lowest MSE value, the COD-09 architecture obtained similar 

results with less nodes. Therefore, in order to avoid saturation problems, the COD model 

of nine nodes in the hidden layer was selected as the best option to predict effluent COD. 

The values of weights and bias obtained during the training phase of ANN models are 

detailed in Appendix B.  

In a similar study about primary settling tank modeling, Gamal and Smith [27] reported 

that the neural network structure that used nine hidden nodes yielded the best performance 

to predict effluent TSS concentration and effluent COD. In contrast, in this study, the 

architecture of seven hidden nodes showed the best performance for the TSS model. This 

is a significant result because a simpler model will be more efficient and easier to 

implement in process control. In the case of the COD model, the structure of 10 hidden 

nodes achieved the best performance. However, despite the additional hidden node, the 

COD-10 architecture did not represent a significant improvement of MSE value and 

R2compared to the COD-09 architecture. It should be mentioned that the neural network 

models developed by Gamal and Smith [27] used a more extended data set, another 

algorithm for the training phase, and the wastewater characteristics and conditions could 

not be similar.  

 

5.3. Performance of Selected Models  

Figure 14 corresponds to the comparison between COD model predictions and the 

experimental data used as the data set. The COD model predictions fit very well the 

experimental data in general terms. In many cases, the model provides very accurate 

predictions or at least a good approximation. However, there are some particular cases 

which are not fitted by the model. Particularly, the COD model fails to predict the extreme 

values of effluent COD. A sudden change in the wastewater composition will produce 

considerable incorrect predictions [60]. Effluent discharged to the primary settling tank is 

often quite variable due to stormwater and intermittent discharges from an industrial plant 
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[31]. Due to the mixed sewage system in Ibarra, industrial effluents are also treated in the 

Ibarra WWTP. Consequently, these extreme cases will be associated with a higher 

concentration of pollutants in industrial discharges, which considerably affect the 

chemical composition of untreated wastewater. As a result, the COD fractions are also 

altered significantly.  

 

Figure 14. Performance obtained by the COD model for the total data set. 

The comparison between TSS model prediction and experimental data set is presented in 

Figure 15. Similar to the COD model, the TSS model fits very well with the experimental 

data. However, the TSS model fails to predict the extreme values of effluent TSS 

concentration. These extreme values could affect the learning process of both neural 

network models significantly. There are few cases of extreme values about effluent COD 

and TSS concentration in the available data set. Therefore, due to the limited data set used 

in the training phase, both neural network models were not trained with enough examples 

to generalize these extreme cases. However, the COD model and the TSS model were 

able to generalize and fit acceptably the rest of the samples of the data set used in the 

training phase. Therefore, it should be considered the application range of ANN models 

based on the range of data set used for the training process.  

It also should be considered that the quality of data is an important factor that can 

considerably affect model performance. The errors associated with experimental 

measurements also could cause important differences between experimental data and 

model predictions. Especially in the case of TSS analysis, the gravimetric method used 

to determine solids can be associated with several sources of errors as systematic, random, 

and human error.  
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Figure 15. Performance obtained by the TSS model for the total data set. 

The prediction ability of neural network models developed was tested against the 

empirical regression model proposed by Tebbutt and Christoulas (Equation 3). A 

nonlinear regression method was used to estimate the values of parameters D, F, and G. 

The overflow rate and removal efficiency were calculated to adapt the available data to 

the empirical equation. The R2 value obtained by the empirical regression model for the 

effluent TSS concentration was 0.0014, which is very low compared with the value 

obtained by the TSS neural network model (R2= 0.60). The empirical model for the 

effluent COD showed an R2 value of 0.15, which is also much lower than that of the COD 

neural network model (R2=0.58). A more detailed description of empirical regression 

models is shown in Appendix C. The relationship between TSS model predictions and 

experimental data is observed in Figure 16 (a), and the COD model and experimental data 

is shown in Figure 16 (b). If there is a perfect agreement between the model and 

experimental results, all the points will lie along the 45° line (y=x). In both Figure 16 (a) 

and Figure 16 (b), it can be seen that the values simulated by models spread around the 

45° line, which implies neither overestimation nor underestimation [76].  
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Figure 16.Correlation between experimental data and model predictions. 
 

The error distribution of models, in terms of the percentage difference between model 

prediction and experimental measurement, was determined (Figure 17). The average error 

of the TSS model and the COD model for predicting experimental measurements is equal 

to 22.87% and 11.12%, respectively. In comparison, the average error for the empirical 

TSS model and the empirical COD model is 42.42% and 18.24%, respectively.  

 
Figure 17. Average error of neural network models against empirical models. 
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TSS model predictions are within the same range. In Figure 18, it is observed a significant 

difference between the accuracy of the TSS model and the empirical TSS model. A 

considerable difference in the error range from 0 to 5% is evident in Figure 18. In the 

same way, in the error range from 5 to 10%, the TSS model gives better results than the 

empirical TSS model. Additionally, the predictions of the TSS model are principally 

accumulated in the error range from 5 to 20%, while the empirical TSS model predictions 

are concentrated in the range from 20 to 30%. 

Table 13. Distribution of error for the TSS model versus the empirical TSS model.  

 

  

Figure 18. Distribution of error for the TSS model versus the empirical TSS model. 
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The comparison of predicted values obtained by the TSS model and the empirical TSS 

model is shown in Figure 19. It exposes a high difference in the accuracy of predictions 

between both models. The TSS model predictions are mainly concentrated within the 

±20% error range. While the predictions of the empirical TSS model show a higher error 

dispersion than the TSS model. This is a significant indication that the TSS neural 

network model has learned to generalize the information better than the traditional TSS 

empiric model. 

 

 

Figure 19. Comparison of predicted values of effluent TSS versus experimental data for 
different models. 

 

For the COD model, from Table 14 is observed that more than 80% of COD model 

predictions are within the error range from 0 to 20%. In contrast, approximately 62% of 

empirical COD model predictions are inside in the same range. It indicates a significant 

difference in predicting ability between both models. Figure 20 exposes better results of 

the COD model in the range from 0 to 10% in comparison to the empirical COD model. 

It means that more values with higher accuracy are obtained by the COD model. 
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Table 14. Distribution of error for the COD model versus the empirical COD model.  

 

 

 

 

 

 

 

 

 

 

Figure 20. Distribution of error for the COD model versus the empirical COD model. 
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performance in predicting experimental values in comparison to the traditional COD 

empiric model. The COD model predictions are mainly accumulated within the ±20% 

error range. In contrast, the predicted values of the empirical COD model expose a higher 
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predictions than the empirical COD model. 
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Figure 21. Comparison of predicted values of effluent COD versus experimental data 
for different models. 

 

Actually, these results suggest an acceptable performance of both neural network models 

in predicting experimental values. Additionally, neural network models give better results 

than traditional empirical models. 
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distribution of each model. The statistical parameters used in each case of TSS models 

and COD models are detailed in Table 15 and Table 16, respectively.  

Table 15. Statistical description of error distribution produced by TSS models. 

Parameter TSS model (%) 
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Table 16. Statistical description of error distribution produced by COD models. 

Parameter COD model (%) 
Empirical COD 

model (%) 

Mean value (µ)  11.12 18.24 

Standard deviation (σ)  9.43 13.03 

Max value   38.30 51.48 

Min value  0.75 0.88 

 

The normal distribution of TSS model errors and empirical TSS model errors is shown in 

Figure 22. It is observed an important reduction of average error using the TSS model in 

comparison to the traditional empiric TSS model. Additionally, the TSS model shows a 

significant reduction of error dispersion. The errors produced by the empirical TSS model 

predictions are widely dispersed. As a result, the variation range of prediction error will 

be greater for the empirical TSS model. In contrast, the TSS model errors are principally 

concentrated around the mean value (22.87%). These results suggest that the TSS model 

provides predictions with less variability and more accuracy than the empirical TSS 

model.  

 

Figure 22. Normal distribution of TSS model errors and empirical TSS model errors. 
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Figure 23 corresponds to the comparison between the COD model errors and empirical 

COD model errors. It shows that the COD model reached a significant reduction of 

average error in comparison to the empirical COD model. In the same way as the TSS 

model, the COD model also obtained a considerable reduction of error dispersion 

compared to the empirical model. The COD model predictions are mainly concentrated 

around the mean value (11.12%). These results indicate that the COD model developed a 

better prediction ability than the empirical COD model. In both cases, neural network 

models achieved better performance than traditional empirical models. A significant 

reduction of average error and error dispersion related to model predictions were obtained 

using ANN models.  

 

Figure 23. Normal distribution of COD model errors and empirical COD model errors.  
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statistical deviations associated with each input variable. The input parameters were 

varied in a range from a reduction of 40% of the initial value to an increment of 40% of 

the initial value. Additionally, the average error bars related to the model prediction were 

included in both the TSS model and the COD model. An average error of 20% and 10% 

were used in the TSS model and the COD model, respectively.  

Figure 24 corresponds to a schematic representation of the relationship between input 

parameters and the TSS model response. In the case of the TSS model, Figure 24 shows 

a tendency that indicates a proportional relationship between input parameters and TSS 

model predictions. It means that an increment of any input variable produces an increment 

of the TSS model prediction value. In Figure 24 is illustrated that the TSS model suggests 

that an increment of inlet flow rate produces higher values of TSS concentration in the 

effluent. The tendency shows that the TSS model response reaches a plateau or constant 

value as inlet flow increases. The same behavior is observed when the inlet flow 

decreases.   

 

Figure 24. Local SA analysis of the TSS model. 
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the particles, and they settle at the tank bottom.  

Second, the performance of the settling tank is strongly influenced by the effectiveness 

of energy dissipation at the inlet to avoid turbulent flow [77]. Thus, the inlet flow is uniform 

across the cross-sectional area of the tank as it enters the settling zone, and it generates 

quiescent conditions to allow the sedimentation of suspended solids. Hence, high inlet 

flow rates reduce the efficiency of energy dissipation and do not allow to achieve a 

uniform flow in the settling tank. Furthermore, short-circuiting or density currents occur 

when the flow through the tank is not uniform, and a current carries the particulate 

material to the effluent launders before the particles can settle [77]. Hence, the flow 

velocity thought the tank should be kept sufficiently low to avoid the resuspension of 

settled particles [1]. Low inlet flow rates avoid these problems in settling tanks. 

Consequently, the TSS concentration in the effluent decrease as the inlet flow rate 

decrease.  

The COD input data has a direct relationship with the effluent TSS concentration 

according to the model predictions. Figure 24 exposes that TSS model prediction values 

increase as the COD of the influent increases. However, it is also observed a slight 

reduction of the output value in the case of a 40% increment of influent COD. It suggests 

that with a higher value than an increment of 40% of input COD value, the COD model 

prediction value will decrease. Hence, the COD model response reached a maximum 

value at an increment of 20%. This fact could be related to the nature of suspended 

particles and pollutants in wastewater. Despite this particular case, the tendency shows a 

proportional relationship of influent COD and TSS model prediction, which is the result 

expected due to the proportional relationship between COD and TSS concentration. In 

the same way, a constant reduction of the TSS model prediction value is obtained as the 

COD input value decreases.  

Due to the direct relation between TSS concentration and turbidity, it is expected that 

both variables produce a similar effect on TSS model performance. The tendency 

demonstrates in Figure 24 that the TSS model prediction value increases as influent 

turbidity and initial TSS concentration increase. It shows a constant increment of the TSS 

model response in all the input variation range. This result is consistent because high 

values of TSS or turbidity corresponds to high concentrations of suspended particles in 

the wastewater. In a determined operational condition of the settling tank, specific 
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removal efficiency of TSS will be obtained. Thus, an increment of suspended particles 

will produce an increment of TSS concentration in the effluent.   

In general, the TSS model is consistent with the settling tank performance in practice. It 

is an important result because models should be according to the properties of the 

modeled system. Additionally, Figure 24 exposes similar values of TSS model 

predictions produced by the variations of input parameters. This result indicates that every 

input variable has a similar level of influence on the TSS model performance.  

Figure 25 corresponds to the relationship between COD model response and variation of 

input parameters. It is observed in Figure 25 that the inlet flow rate and TSS concentration 

of the influent not have a considerable effect on the COD model prediction. The COD 

model prediction value remains relatively constant through the entire variation range of 

flow rate and TSS concentration. Particularly in the case of the inlet flow rate, it is 

observed no change in the COD model response. Therefore, the inlet flow rate parameter 

does not have a relevant influence on COD model performance. This result is not 

consistent with the normal performance of the settling tank in practice. As was described 

before, the inlet flow rate is an important factor in the settling tank performance. The TSS 

removal efficiency highly depends on the inlet flow rate, and it will increase as the inlet 

flow rate decrease. Due to the proportional relationship between TSS concentration and 

COD, a reduction of TSS concentration generates a reduction of COD in the wastewater. 

Therefore, the behavior described in Figure 25 about the inlet flow rate is not the result 

expected based on the performance of the settling tank.    

 

Figure 25. Local SA analysis of the COD model. 
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On the other hand, a slight reduction of the effluent COD produced by an increase of TSS 

concentration of the influent is observed. Thus, the trend indicates that an increment of 

the TSS concentration value of input data generates a reduction of the COD model 

prediction value. This particular case will be associated with a case of high particulate 

COD fraction in the influent composition. Thus, according to the COD model behavior, 

the removal of COD in the wastewater increases as TSS concentration increases. 

However, this particular result is not always right in practice. Despite high initial TSS 

concentration promotes flocculent sedimentation in the settling tank, several factors also 

determine the sedimentation mechanism. These several factors determine different 

scenarios of COD removal efficiency. In contrast, a reduction of the TSS input data does 

not produce a significant change in the COD model response.    

Figure 25 also illustrates a not proportional tendency of the effect produced by influent 

COD and turbidity on the COD model predictions. In both cases, any variation in the 

COD or turbidity input parameter causes a reduction in the COD model prediction value. 

Both variables produced the same behavior in the COD model response. This outcome is 

associated with the direct correlation between both parameters. Instead, the variation of 

both input variables generates the same behavior on the COD model; the variation of the 

COD input parameter showed a more pronounced effect. Furthermore, this result suggests 

that COD model prediction principally depends on input COD value. In contrast, the 

tendency in Figure 25 shows that a gradual reduction of turbidity will produce that COD 

model prediction reaches a constant value. Input parameters produce a different effect on 

the model response. In some cases, ANN model responses are not coherent with the 

expected behavior observed in practice. This fact is related to the internal relationship 

developed during the training phase. In order to reach the best fit for experimental data 

and reduce the error function, ANN models establish complicated relationships between 

variables following a specific algorithm without physical considerations. As a result, the 

performance of ANN models usually differs from the physical behavior of the modeled 

system. The effect of each input parameter on the TSS model and the COD model 

response is summarized in Table 17. 
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Table 17. Influence of input parameters to neural network models.  

Note: (+) increasing effect, (-) decreasing effect, (=) no effect. 
 
 
5.4.2. Global Sensitivity Analysis  

The global sensitivity analysis of the TSS model and the COD model is exposed in Figure 

26 and Figure 27, respectively. Figure 26 relates the sensitivity (S) value obtained to each 

input parameter according to the MSE associated with the TSS model performance with 

the corresponding missing input variable. According to Figure 26, the maximum S value 

is generated by the COD input parameter. Therefore, the TSS model is most sensitive to 

changes in the COD input variable. Consequently, it indicates that the absence of COD 

input data will generate the case of the highest estimation error in the TSS model. Thus, 

COD is the most influential input variable for TSS model predictions. Whereas, influent 

TSS concentration and turbidity produce a similar effect to the model response. Both 

input parameters obtained similar S values, which indicate that the TSS model is 

relatively equally sensitive to both input parameters. On the other hand, the minimum S 

value is linked to the inlet flow rate. It means that the TSS model is less sensitive to 

Increases in the input 
variable 

TSS model response COD model response 

Flow rate 
+ 

(Reaches a plateau) 
= 

(No change) 

COD 
+ 

(Reaches a maximum) 
- 

(Sudden reduction) 

TSS 
+ 

(Constant increment) 
- 

(Slight reduction) 

Turbidity 
+ 

(Constant increment) 
- 

(Constant reduction) 
Decreases in the input 

variable 
TSS model response COD model response 

Flow rate 
- 

(Reaches a plateau) 
= 

(No change) 

COD 
- 

(Constant reduction) 
- 

(Sudden reduction) 

TSS 
- 

(Constant reduction) 
= 

(No change) 

Turbidity 
- 

(Constant reduction) 
- 

(Reaches a plateau) 
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variations of inlet flow rate data compared to the rest of the input data parameters. This 

is not an expected result due to the importance of the inlet flow rate in the TSS removal 

efficiency. Despite the difference of S values between input parameters, any input 

variable produces a similar magnitude increment of the estimation error of the TSS model. 

 
Figure 26. Global SA of the TSS model. 

In the case of the COD model, there is a large difference between the S values of each 

input parameter. Figure 27 shows that the most influential input variables are turbidity 

and COD. The highest S value is associated with the influent COD, so the COD model is 

most sensitive to variations of the COD input parameter. The influent COD is the most 

important variable in the COD model because it exists a strong correlation between the 

influent and effluent COD [27]. Hence, the COD model indicates that effluent COD mainly 

depends on the influent COD. However, the COD and turbidity input parameters obtained 

similar S values. This result will be associated with the strong correlation between both 

variables. Therefore, these input parameters are essential to the correct performance of 

the COD model. In contrast, the TSS concentration and inlet flow rate do not have a 

significant effect on the model response in comparison to the COD and turbidity input 

parameters. Thus, the absence or variation of inlet flow rate or TSS concentration data 

will not generate a significant change in the model prediction value.  
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Figure 27. Global SA of the COD model. 

In both cases, the COD model and TSS model show less sensitivity to variations of the 

flow rate input parameter. It suggests that model predictions mainly depend on the 

wastewater composition in both cases. Furthermore, the estimation error associated with 

the TSS model and the COD model was less when the whole input parameters about 

influent composition were used. However, the TSS model exposes higher stability to 

changes in COD and turbidity in comparison to the COD model.  

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

45

Flowrate COD TSS Turbidity

Se
ns

iti
vi

ty
 V

al
ue

 (S
) (

-)



 

81 
 

5.5. Model Validation  

Ibarra WWTP provided new experimental data that was used to evaluate the performance 

and accuracy of model predictions. A data set of 10 patterns was conditioned to simulate 

the performance of PST and predict the effluent characteristics. The range of application 

of both models is limited by the max and min value of the training data set. It should be 

mentioned that experimental values outside this range will not be predicted correctly by 

the models. Similarly, due to the error distribution obtained from the training data, an 

acceptable error range of ±20% was considered as the error expected for model 

predictions in both cases. Figure 28 corresponds to the relationship between the ANN 

model predictions and the new experimental data.  

 

 

Figure 28. Correlation between model predictions and new experimental data. 
 

The performance of the TSS model is exposed in Figure 28 (a). The TSS model obtained 

satisfactory results in general terms. As Figure 28 (a) shows, only two samples of the data 

set are outside the ±20% error range. Moreover, some of the samples lie along the 45° 

line, which implies a perfect agreement between the TSS model predictions and 

experimental data. Hence, in general, the TSS model provides good approximations of 

TSS concentration effluent.   

Figure 28 (b) corresponds to the relationship between COD model predictions and 

experimental data. Only one pattern of the data set is completely outside the ±20% error 

range. In contrast, two samples are within the limit of the range, so they are inside the 
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expected error range. As it is observed in Figure 28 (b), seven patterns of the data set are 

totally within the ±20 error range. Furthermore, five of these patterns were predicted with 

high accuracy by the COD model.  

In general, both models achieved satisfactory performance. Furthermore, in both cases, 

the R2 values obtained with this new data set are similar to the R2 values registered in the 

training phase. For the TSS model, it obtained an R2 value equal to 0.64, while the COD 

model reached an R2 value equal to 0.56 for the new data set. It should be mentioned that 

the neural network models have been trained on a very limited data set; however, they 

still were able to provide good predictions. 

 

5.6.  Applications 

These models could be applied to two main potential uses. The first, simulating the 

response of PST to different conditions in order to develop different strategies of the 

primary treatment operation. Furthermore, the design of settling tanks also can be 

improved using the information provided by simulations. Additionally, the response of 

PST to different conditions can then be used as input data to the development of control 

systems or operational strategies for the downstream biological processes [27].  

Second, these models could be adapted to the online control processes of PST. Thus, these 

models will be useful operational tools for monitoring the PST operation in real-time. In 

order to implement an online control process, the input data of the models should be 

measured online. The inlet flow rate can be measured online and incorporated into the 

control system. Nevertheless, TSS concentration cannot be measured online, and online 

COD analyzers are expensive. However, a turbidity analyzer for monitoring the quality 

of water through continuous measurements of turbidity is available. Due to the strong 

correlation between sewage composition and turbidity, TSS concentration and COD can 

be estimated using turbidity data. Hence, turbidity can supply the required information to 

implement neural network models to online processes control. As well, these estimations 

using turbidity data could be used to compensate for a high extent of the problems caused 

by breakdowns of process analyzers. Despite a sudden change of the wastewater 

composition after the training period could produce significant incorrect predictions, 

these adaptative models could be re-trained using the current data. This flexibility of 
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neural models is an important advantage because the models will be readapted to new 

conditions. Therefore, these models can be used to model sedimentation units in other 

wastewater treatment plants.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

84 
 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

• The predictive model based on ANN obtained satisfactory results for predicting COD 

and TSS concentration in the clarified effluent. The proposed model obtained 

successful results during the training phase and validation.  

• The process analysis determined that inlet flowrate, TSS, COD, and turbidity of the 

influent wastewater are the most representative input variables that must be 

considered for the PST modeling. Additionally, useful correlations between COD, 

TSS, and turbidity were found. They can be applied to obtain a rapid estimation of 

COD or TSS concentration using turbidity measurements.  

• A multi-layer feed-forward architecture with only one hidden layer was used in both 

ANN models. In the case of the TSS model, a hidden layer of seven nodes provided 

the best results (R2=0.60). For the COD model, the hidden layer with ten hidden nodes 

gave the best performance (R2=0.60). However, the COD model using nine nodes 

provide similar results with a simpler architecture (R2=0.58).  

• The ANN models reached better results and more accurate predictions in comparison 

to empiric models reported in the literature. The ANN models obtained a significant 

reduction of average error associated with the model predictions. The TSS model 

obtained an average error of 22.87% relative to the experimental data, while the 

average error for the empirical TSS model was 42.42%. In the same way, the COD 

model obtained an average error of 11.12%, whereas the average error of the empirical 

COD model was 18.24%. Furthermore, ANN models reduce the variability of 

estimation error compared to empiric models.   

• The local SA evidenced a proportional relationship between all input variables and 

the TSS model response. The behavior of the TSS model under different conditions 

is consistent with the normal PST operation. On the other hand, the COD model 

showed different responses under the variation of input variables. Due to the 

complicated internal relationships that neural networks developed during the training 
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phase without physical considerations, the COD model response is not coherent with 

the physical behavior of the PST. However, it provides good predictions of effluent 

characteristics. Moreover, the SA exposed a strong correlation between the COD 

model response and influent COD.  

• The global SA showed that the predictions of the COD model and TSS model mainly 

depends on the influent COD. The MSE value of the TSS model is six times greater 

when the input COD value is not considered. In the case of the COD model, the MSE 

value increases more than forty times. This indicates a higher sensitivity to input COD 

data of the COD model in comparison to the TSS model. In contrast, the inlet flowrate 

has the lowest influence in the response of both the COD model and the TSS model. 

Therefore, the predictions of ANN models mostly depend on the composition of 

influent wastewater.  

• As a recommendation, it should be considered a stricter and detailed sampling 

program at different delay times of the PST operation in the Ibarra WWTP. Thus, the 

ANN models will be trained with a complete description of the PST response at 

different delay times. Moreover, a more extensive data set should be used in the 

training phase to improve the predicting ability of the ANN models.  

• Finally, this study should be considered to implement a process control system for 

monitoring the PST operation in the Ibarra WWTP. The proposed model will be 

retrained using the current operation data of the PST, and an online turbidity analyzer 

should be considered for the implementation of the continuous monitoring of the PST 

operation. 
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APPENDIX A:  

Calculations for Solids Determination 
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The equations used to determine the several fractions of solids are detailed below. 

𝑇𝑇𝑆𝑆 (𝑚𝑚𝑚𝑚/𝐿𝐿) =  
(𝐴𝐴 − 𝐵𝐵) · 1000

𝑠𝑠𝑎𝑎𝑚𝑚𝑠𝑠𝑠𝑠𝑒𝑒 𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣𝑚𝑚𝑒𝑒 (𝑚𝑚𝑠𝑠)
 

𝐴𝐴 = Weight of dried residue + crucible, mg 

𝐵𝐵 = Weight of crucible, mg 

 

𝑇𝑇𝑆𝑆𝑆𝑆 (𝑚𝑚𝑚𝑚/𝐿𝐿) =  
(𝐶𝐶 − 𝐷𝐷) · 1000

𝑠𝑠𝑎𝑎𝑚𝑚𝑠𝑠𝑠𝑠𝑒𝑒 𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣𝑚𝑚𝑒𝑒 (𝑚𝑚𝑠𝑠)
 

𝐶𝐶 = Weight of dried residue + crucible+ paper filter, mg 

𝐷𝐷 = Weight of crucible + paper filter, mg 

 

𝑇𝑇𝐷𝐷𝑆𝑆 (𝑚𝑚𝑚𝑚/𝐿𝐿) =  
(𝐸𝐸 − 𝐹𝐹) · 1000

𝑠𝑠𝑎𝑎𝑚𝑚𝑠𝑠𝑠𝑠𝑒𝑒 𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣𝑚𝑚𝑒𝑒 (𝑚𝑚𝑠𝑠)
 

𝐸𝐸 = Weight of dried residue + crucible, mg 

𝐹𝐹 = Weight of crucible, mg 

 

𝑉𝑉𝑆𝑆 (𝑚𝑚𝑚𝑚/𝐿𝐿) =  
(𝐺𝐺 − 𝐻𝐻) · 1000

𝑠𝑠𝑎𝑎𝑚𝑚𝑠𝑠𝑠𝑠𝑒𝑒 𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣𝑚𝑚𝑒𝑒 (𝑚𝑚𝑠𝑠) 
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𝐹𝐹𝑆𝑆 (𝑚𝑚𝑚𝑚/𝐿𝐿) =  
(𝐻𝐻 − 𝐼𝐼) · 1000

𝑠𝑠𝑎𝑎𝑚𝑚𝑠𝑠𝑠𝑠𝑒𝑒 𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣𝑚𝑚𝑒𝑒 (𝑚𝑚𝑠𝑠)
 

𝐺𝐺 = Weight of residue + crucible or filter before ignition, mg 

𝐻𝐻 = Weight of residue + crucible or filter after ignition, mg 

𝐼𝐼 = Weight of crucible or filter, mg 
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APPENDIX B:  

Weights and Bias of Artificial Neural 

Network Models 
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The weights values and bias values of selected neural network models are detailed in the 

following tables below. Table 18 and Table 20 correspond to the weights and bias of the 

input layer of the TSS model and the input layer of the COD model, respectively. Whereas 

Table 19 and Table 21 correspond to the weights values and bias values of the output 

layer of the TSS model and the output layer of the COD model, respectively.  The notation 

used in the tables is described in Figure 29.  

 

Figure 29. Schematic representation of notation used in ANN models. 
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Table 18. Weights and bias of the input layer of the TSS model 

 N1 N2 N3 N4 N5 N6 N7 

X1 -0.5738 -0.7025 -2.0459 -2.6945 -0.9615 -1.1116 -4.0269 

X2 1.5529 2.0842 2.9136 0.9065 0.1095 -0.1213 0.8986 

X3 -0.7681 0.2069 1.7006 -1.7156 -1.1087 -0.8787 -1.0047 

X4 1.6573 2.1172 0.5508 0.6969 -0.1818 -1.1972 0.5602 

b 2.6277 2.3316 1.2419 -1.9281 -0.8488 -1.9235 -3.4963 

 

Table 19. Weights and bias of the output layer of the TSS model 

 N1 N2 N3 N4 N5 N6 N7 b 

Nout -0.3049 1.673 -0.9114 -1.6247 -0.491 1.4756 1.7368 0.2423 
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Table 20. Weights and bias of the input layer of the COD model 

 N1 N2 N3 N4 N5 N6 N7 N8 N9 

X1 0.8933 1.1764 0.0456 0.3398 1.2355 -1.0854 -0.9091 -0.8425 -1.9629 

X2 -1.3764 2.1995 1.0877 4.5112 -2.4768 -2.6379 -0.6889 0.0839 1.6374 

X3 2.0882 2.6052 0.9321 1.2998 1.4563 -0.0667 -0.5774 0.1386 -0.6133 

X4 -0.7427 2.8721 -3.7563 -4.215 -2.0396 -2.1571 -1.1806 0.3832 -0.5741 

b -2.0707 -1.4866 -0.8859 1.5561 -0.7479 0.2673 -2.0426 -3.005 -2.7054 

 

Table 21. Weights and bias of the output layer of the COD model 

 N1 N2 N3 N4 N5 N6 N7 N8 N9 b 

Nout -0.4209 1.576 -2.4578 1.8245 1.1141 2.2126 1.639 0.441 1.0603 -0.3192 
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APPENDIX C:  

Results of Empirical Models 
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The coefficients of empirical relationships were determined using the Excel tool 

SOLVER. A non-linear regression method was applied to the calculations. The results of 

each case are summarized in Table 22. The correlation between experimental data and 

the empirical model is shown in Figure 30.  

The empirical model proposed by Tebbutt and Christoulas [34]: 

𝐸𝐸 = 𝐷𝐷 · 𝑒𝑒−(𝐹𝐹/𝑆𝑆+𝐺𝐺𝐵𝐵) 

 

Table 22.  Coefficients of empirical models. 

Parameters  Empirical TSS model Empirical COD model 

D 0.98 1.20 

F 86.13 474.75 

G 14.81 105.38 

 

 

Figure 30. Correlation between experimental data and empirical model predictions 
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