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Resumen 

 

Actualmente la búsqueda de nuevos rasgos biométricos es una necesidad debido a que los 

rasgos tradicionales como huella dactilar, voz o rostro, son altamente propensos a 

falsificaciones. Por tal motivo, el estudio de señales bioeléctricas llama la atención por su 

potencial para desarrollar sistemas biométricos. Una motivación para utilizar señales 

electroencefalográficas es que son únicas para cada persona y son mucho más difíciles de 

replicar que los biométricos convencionales. El presente estudio está enfocado en el 

desarrollo de un sistema biométrico basado en el análisis de electroencefalogramas 

(EEG). Empleando seis clasificadores distintos: Clasificador ingenuo de Bayes (GNB), 

K-vecinos más cercanos (KNN), Bosque aleatorio (RF), AdaBoost (AB), Máquina de 

vectores de soporte (SVM) y Perceptrón multicapa (MLP); se realizó una comparación 

entre diferentes niveles de descomposición de la transformada discreta de ondícula, 

utilizada como método de preprocesamiento. Demostrando que el nivel de 

descomposición no posee un gran impacto sobre el resultado general del sistema. 

Posteriormente se analizó el efecto del tiempo de grabación de los EEGs sobre el 

desempeño del sistema, probando que este tiempo es un factor altamente influyente del 

desempeño general. Cabe mencionar que, durante este estudio, se utilizaron dos conjuntos 

de datos distintos. Finalmente, SVM y AB fueron los mejores clasificadores ya que 

obtuvieron valores de sensibilidad, especificidad y precisión superiores a 95%.  

 

Palabras clave: Biométrico, electroencefalograma, nivel de descomposición, tiempo de 

grabación, clasificación, transformada discreta de ondícula. 

 

 

 

 

 



 

Abstract 

 

Searching for new biometric traits is currently a necessity because traditional biometrics 

such as fingerprint, voice, or face are highly prone to forgery. For this reason, the study 

of bioelectric signals is outstanding for its potential to develop biometric systems. A 

motivation for using EEG signals is that they are unique to each person and are much 

more difficult to replicate than conventional biometrics. The present study is focused on 

the development of a biometric system based on the analysis of electroencephalograms 

(EEG). Using six different classifiers: Gaussian Naïve Bayes Classifier (GNB), K-

Nearest Neighbors (KNN), Random Forest (RF), AdaBoost (AB), Support Vector 

Machine (SVM) and Multilayer Perceptron (MLP); a comparison was made between 

different levels of decomposition of the discrete wavelet transform, used as a 

preprocessing method. This comparison proved that the level of decomposition does not 

have a great impact on the overall result of the system. Subsequently, the effect of the 

recording time of the EEGs on the performance of the system was analyzed, proving that 

this time is a highly influential factor in overall performance. It is worth mentioning that, 

during this study, two different data sets were used. Finally, SVM and AB were the best 

classifiers since they obtained values of sensitivity, specificity, and accuracy greater than 

95%. 

 

Keywords: Biometric, electroencephalogram, level of decomposition, recording time, 

classification, discrete wavelet transform. 
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1 Introduction 

 

With the rapid development of technologies, biometric systems are present in many daily 

scenarios to provide security to data [1]. Nowadays, most smartphones have at least one 

embedded biometric system, usually fingerprint or face recognition. However, biometrics 

is also applied in situations that require much more security, such as in banks, to ensure 

access to each account of the clients [2]. 

Currently, there are many types of biological traits used in the development of biometric 

systems. Nevertheless, many of them are susceptible to brute force attacks, forgery, or 

direct forcing on users [3, 4]. Also, a constant problem of most biometrics is that they 

cannot guarantee that the user is alive [5]. For this reason, the study of bioelectric signals 

used as biometric features has become a topic of interest because these signals are capable 

of overcoming the problem mentioned above [6, 7]. 

Among the bioelectric signals are electroencephalograms (EEG). Traditionally, these 

signals have been used mostly in medicine to make diagnoses regarding problems 

associated with the brain [8, 9]. One of the most important characteristics of these signals 

is that they are unique to each person, and any sudden change in the behavior of the person 

can cause significant changes in signal morphology [10]. These characteristics of EEG 

signals make them potential traits for the development of biometric systems. 

Despite the advantages of bioelectric signals, the development of biometric systems based 

on them can be complex. In the case of EEGs, a preprocessing of the signals before 

working with them is required because they are very noisy [11-13]. After preprocessing, 

the state-of-the-art proposes a large number of features that can be extracted from these 

signals and many classification algorithms that can be used for this task [14-17]. Still, 

creating a functional methodology for the development of biometric systems based on 

EEG analysis is necessary for progress in this research area. 

1.1 Problem Statement 

The development of new technologies has caused the parallel development of security 

systems. Biometrics are of particular interest because of the need to generate systems that 
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are robust to possible further attacks such as those based on artificial intelligence. The 

research of novel biological traits helps to create biometrics that meets the security 

requirements of specific situations such as protecting a bank vault or blocking access to 

confidential documents [18]. Over the past few years, electroencephalogram signals have 

attracted the attention of researchers because of their properties as a biometric trait. 

Despite the existence of studies on the development of biometric systems based on EEGs, 

it is still necessary to carry out specific analyzes to improve the future development of 

these biometrics. In this sense, there is a need for a comparison between classifiers based 

on different criteria, such as distance, statistics, decision trees, among others, using the 

same data for training and testing. 

Moreover, there are several EEG preprocessing techniques, but finding a specific analysis 

of each technique is challenging. For example, it is common to use the discrete wavelet 

transform, but comparisons between possible variations of this technique are still lacking. 

One of these variations that can have a significant impact on the overall performance of 

the system is the level of decomposition because the lower this level is, the lower the 

computational cost. 

Finally, a study that has not been carried out and that would be of great help for 

developing better biometrics is the analysis of the effect that the recording time of EEG 

has on the performance of classifiers. This analysis would provide a better idea of how 

much recording time is required to achieve a robust system. Currently, the recording time 

used varies from research to research, making it difficult to make comparisons between 

the proposed methods. 

1.2 Objectives 

For finding a solution to the problems described in Section 1.1, this work establishes the 

following general objective and specific objectives. 

1.2.1 General Objective 

Developing a biometric system based on the analysis of EEG signals taking into 

consideration some of the factors that can affect the performance of the system to helping 

the improvement of the future development of these systems. 
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1.2.2 Specific Objectives 

• To compare different classification algorithms for identifying the best one for 

developing this kind of biometric system. 

• To analyze the impact that the level of decomposition of the discrete wavelet 

transform has over the performance of the classifiers and selecting the best level 

for this specific scenario. 

• To analyze the impact that the recording time of EEG has over the performance 

of the classifiers and proposing a standard time for future studies. 

• To develop a biometric system based on EEG signals using the results obtained 

in the previous analyzes. 

1.3 Contribution 

This work presents a specific analysis of the discrete wavelet transform as a preprocessing 

method. Besides, it provides a first study of the impact that recording time has over the 

classifiers. During the whole process, a comparison is made between different 

classification algorithms to select the most suitable for developing these systems. The 

main contribution of this study is the detailed analysis of some fundamental parts in the 

biometric systems development process that will improve the understanding of the factors 

that can affect the performance of the system. Based on the results obtained in this 

research, the scientific article entitled "A method for studying how much time of EEG 

recording is needed to have a good user identification" [19] was presented in the "6th 

IEEE Latin American Conference on Computational Intelligence (LA-CCI)". Moreover, 

a scientific poster was exhibited at the conference "LatinX in AI Research at NeurIPS." 

1.4 Document Organization 

The organization of this document is as follows: Chapter 2 presents a review of the most 

commonly used biometric traits. After that, it describes all the essential concepts related 

to electroencephalogram signals required for this work, and in the end, it presents a brief 

review of the state of the art and related works. Chapter 3 presents in detailed each part 

of the proposed biometric system. Moreover, in this chapter, the performance metrics and 

the description of the experiments are presented. Chapter 4 shows the experimental results 

with their analysis, and finally, the conclusions and the proposed future work are 

presented in Chapter 5. 
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2 Theoretical Framework 

 

This chapter presents the necessary background of the essential topics needed for 

understanding the contents of this research. First, it provides an introduction of biometric 

systems and those fundamental requirements of good biometric traits. Subsequently, it 

presents a summary of the main biometric systems. Moreover, this chapter introduces the 

key points related to electroencephalogram signals. These signals require a preprocessing 

step before working with them; therefore, this chapter also explains the most popular 

preprocessing techniques. Finally, the most commonly used feature extraction and 

classification algorithms are summarized. 

2.1 Biometric Systems 

For many years, humans have been used specific characteristics of the body like face or 

voice to distinguish each other. Even the police use body features like fingerprints to 

identify criminals. In this case, when the police find a fingerprint on a crime scene, they 

compare it with a fingerprint database until they find a match [20]. For this reason, a 

biometric system is a pattern recognition algorithm that extracts specific characteristics 

from users to identify or verify their identity, comparing these characteristics against a 

database [21]. 

A biometric system can tackle two different tasks: Identification and Verification. On the 

one hand, an identification system, often called a recognition system, tries to recognize 

to which user the extracted features belong, making a one-to-many comparison with the 

database [21]. For this reason, the user does not need to provide an identity.  

On the other hand, the verification systems are also known as authentication systems 

because, as its name indicates, its purpose is to verify the users are whom they claim they 

are. The verification performs a one-to-one comparison with already stored templates of 

each user [22]. Generally, a username, a PIN, a voice recording, or any other identification 

is provided by a user who wants to be recognized. 

By its origin, the biometric systems can be divided into biometrics based on physiological 

and behavioral features. Figure 1 shows this classification. Some physiological features 
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are fingerprints, hand geometry, DNA, and face, while behavioral are voice, keystroke, 

or signature [23]. Despite this classification, all biometric systems rely on something the 

user: know (e.g., PIN), has (e.g., credential card), does (e.g., signature), or is (e.g., face). 

 

 

 

 

 

 

 

 

 

Figure 1: Classification of biometric systems based on their origin [24]. 

2.1.1 Requirements of a Biometric System 

Although most of the biometric traits correspond to biological measurements, an ideal 

biometric should satisfy the following requirements [25]: 

- Universality: each system user must have this biometric trait. 

- Distinctiveness or uniqueness: the features of two different users must vary 

sufficiently to be correctly identified. 

- Permanence: the time, position, and space must not affect the extracted 

characteristics. 

- Collectability: it corresponds to how easy it is to measure the trait quantitatively. 

- Performance: it refers to the recognition speed and accuracy of the system. 

- Acceptability: it is related to how much the users of the system will accept the 

extraction of the specific biometric trait. 

- Circumvention: it is related to how easy it is to fool the system. 

Some of the most known traditional biometric methods are discussed below. 
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2.1.2 Fingerprint 

Fingerprints are graphical patterns of ridges and valleys on the surface of the fingertips. 

Figure 2 illustrates the different types of ridges. The ridge ending and bifurcation are also 

known as minutiae, which is one of the most used features to develop biometric systems 

[26]. These features are processed and stored in a database for posterior comparisons. 

Fingerprint recognition exhibits uniqueness and permanence because the fingerprints do 

not suffer changes over the lifetime and are unique even for identical twins [27]. 

Nevertheless, this technique has problems with the circumvention and universality 

because using some glue to copy the fingerprint of a person can fool the system [28]. 

Besides, people who have lost their hands or fingers cannot use this kind of system. For 

this reason, currently, these biometric systems are employed in applications that do not 

need to be extremely secure such as smartphones unblocking. 

 

 

 

 

 

 

Figure 2: Types of ridges in a fingerprint [29]. 

2.1.3 Face 

Face recognition has been one of the most extensively studied topics in computer vision. 

There are many applications for face recognition like the automatic classification of 

photographs in social networks, robotics, and digital entertainment [30]. Moreover, 

thanks to the quick development of smartphones, they tend to incorporate face recognition 

as a biometric system. However, this is not the only market for face recognition. Thanks 

to all the effort of researchers and the advance in deep learning [31], several applications 

support face recognition as a biometric system, for example, banks and other companies 

that require a high level of security. 
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The accuracy of the systems relies on the quality of the face representations. Traditional 

face recognition systems use local descriptors as Local Binary Patterns (LBP), 

Eigenfaces, Scale-invariant feature transform (SIFT), among others [32]; Figure 3 shows 

these conventional face representations. Researchers are currently trying to develop 

convolutional neural networks (CNN) that are capable of automatic feature extraction; 

thus, the systems are more robust [33]. 

 

 

 

 

 

 

 

Figure 3: Representation of traditional local descriptors. (A) Local Binary Patterns [34], 

(B) Eigenfaces [35], and (C) Matching process of SIFT [36]. 

2.1.4 Voice 

This biometric trait can be considered a mixture of physiological and behavioral 

characteristics because the mouth, lips, and vocal cords (physiological features) are 

responsible for its production, and it depends on the age, medical condition, and other 

behavioral features [37]. Generally, the human voice contains much information about 

the speaker, like emotion, gender, and identity [38].  

In the case of voice recognition, there are two different applications: speak recognition 

and speaker recognition. In the first case, the system aims to understand what is saying 

the speaker, while in the second, it seeks to recognize who is the speaker [39]. To create 

biometrics based on voice recognition, the traditional extracted features used to represent 

the users are the Mel Frequency Cepstral Coefficients (MFCC); Figure 4 illustrates them. 

These features take human perception sensitivity concerning Mel frequencies [40]. 

Besides, another approach to this problem is using artificial neural networks; for example, 
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Self-Organized Maps (SOM) can help to recognize the speaker regardless of the text used 

[41].  

 

 

 

 

Figure 4: Heatmap of Mel Frequency Cepstral Coefficients extracted from an audio file 

[42]. 

2.1.5 Signature 

The systems based on signature recognition are one of the oldest biometrics used across 

the world. Despite the rapid development of technology, the signature continues being 

one of the most socially accepted methods for verification systems [43]. The main 

application for this kind of system is serving as a symbol of consented authorization in 

scenarios such as financial transactions, land purchases, contracts, legal documents, 

among others. [44]. There are two groups of signature recognition systems: offline and 

online, also known as static and dynamic systems, respectively, Figure 5 exemplifies both 

of them.  

 

 

 

 

 

Figure 5: Representation of signature recognition systems. (A) Signature as an image 

(offline), and (B) Signature as a function (online) [45]. 

Offline systems work with hard copies of signatures, and there are two different 

approaches: writer-dependent and writer-independent [46]. For the first approach, the 

system is trained only with genuine signatures or both genuine and forged signatures. In 
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contrast, for the writer-independent case, the classifier is trained only once with genuine 

and forged signature samples of several writers [47]. 

Finally, an online signature is more robust than an offline one as it stores dynamic features 

like elevation and pressure signals. In this case, a signal over time represents the signature, 

and as in the offline case, there are two approaches: parametric and functional [48]. As 

its names indicate, the parametric approach extracts a set of parameters from the signal. 

On the contrary, in the functional method, a function characterizes the signature. 

2.1.6 Hand Geometry 

A pattern of hand shape and palm contains much information for identifying a person. 

Hand geometry represents the patterns of hand shape and palm lines. The most significant 

advantages of this biological trait are uniqueness and permanence because every person 

has different hand lines and shapes that do not change during the lifetime [49]. Traditional 

systems for hand recognition work with the length and width of fingers, the angle between 

them, and the surface area. Newer methods use artificial intelligence for automatic pattern 

recognition of complex geometric features of the hand [50]. Figure 6 presents traditional 

measurements for hand geometry. 

 

 

 

 

 

 

Figure 6: Traditional scanner and measurements for hand geometry recognition [51]. 

A hand geometry system is cheap to implement because it only needs a low-cost camera 

or document scanner. Also, most of the algorithms used for this recognition have low 

computational complexity and occupy small templates reducing the execution time and 

the required memory [52, 53]. Further, hand geometry is one of the best options for 

developing multimodal biometric systems, especially with fingerprints. For example, a 
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biometric system could use hand geometry for verification and fingerprints for 

identification [53]. 

2.1.7 Iris 

The iris is a thin, circular diaphragm, which lies between the cornea and the lens of the 

human eye. The formation of the unique patterns of the iris is random and not related to 

any genetic factors [54]. Iris contains unique features like ridges, freckles, rings, and 

furrows; Figure 7 illustrates some of them. Iris recognition systems are popular these days 

because iris accomplishes some of the essential requirements of biometrics like 

uniqueness, stability, and acceptability.  

 

 

 

 

 

 

 

 

Figure 7: Important features of the iris [55]. 

All humans have unique iris patterns; even these patterns are different for each eye. 

Additionally, the iris is stable over time regardless of the age of the person [56]. 

Furthermore, iris recognition systems are user-friendly since an iris image can be captured 

from a considerable distance. Though these systems can experiment troubles with the 

process of iris segmentation due to it is a small area with a constantly involuntary 

movement, which can cause a decrease of accuracy [57].  

Also, the two main problems with iris recognition systems are the liveness testing and 

eye contact lenses. On the one hand, with traditional methods, there is no way to verify if 

the user is alive. On the other hand, the contact lenses can alter the final image causing 

system failures [58].  
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2.1.8 Palm Print 

Palm print contains similar patterns to fingerprint (ridges, minutiae, valleys, principal 

lines, and wrinkles). Figure 8 shows the principal lines that are crucial features of palm 

prints. They are stable over time, and they are easy to extract from low-resolution images, 

they are one of the biggest problems of previous biometric systems [59]. Moreover, palm 

prints can provide multi-spectral features which can help to avoid fake palm prints [60]. 

 

 

 

 

 

 

Figure 8: Principal features of palm prints [61]. 

Palm print recognition methods can be divided into categories based on texture, line, 

subspace learning, correlation filter, local descriptor, and orientation coding [62]. 

However, most of these methods perform a two-dimensional analysis. For this reason, 

recently, three-dimensional techniques have been applied to increase the accuracy and 

robustness of the biometric systems based on palmprint recognition [63]. 

2.1.9 Ear 

The ear seems to be an advantageous biometric trait since, in principle, everyone has ears, 

their images are easy to take, they are different for each person, and its structure does not 

suffer radical changes over time. These features of ears satisfy the biometric 

characteristics of universality, collectability, distinctiveness, and permanence [64]. 

Additionally, the limited surface of the ear, allows faster processing, while the lack of 

significant changes reduces intra-class variations [65]. 

Despite all the benefits of ear recognition systems, slight variations in the orientation of 

the ear concerning the acquisition device can cause significant changes in the results. 

Moreover, occlusion due to hair, earrings, or headscarves can affect the correct 
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segmentation of the ear surface [66]. Some methods solve the problem of rotation. For 

example, the Active Shape Model (ASM) helps automatically extract the ear from 2D 

images even if the head is a little rotated [67], as shown in Figure 9. 

 

 

 

 

 

Figure 9: Automatic ear extraction process. (A) Sobel edge extraction, (B) Initial 

matching function, and (C) Improved matching function [67]. 

2.1.10 Bioelectrical Signals 

Bioelectrical signals are those that are generated by the summation of electrical potential 

differences across a specialized tissue or an organ. The most studied bioelectrical signals 

are [68]: 

- Galvanic skin response (GSR), 

- Electromyogram (EMG), 

- Electrooculogram (EOG), 

- Electrocardiogram (ECG), and 

- Electroencephalogram (EEG) 

 

 

 

 

 

 

Figure 10: Bioelectrical signals. (A) Electrocardiogram, (B) Electroencephalogram, (C) 

Galvanic Skin Response, (D) Electromyogram, (E) Electrooculogram, and (F) 

Mechanomyogram [68]. 
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Figure 10 shows a representation of each signal. A typical application of these signals is 

a medical diagnosis. However, recent studies have shown that the bioelectrical signals 

can also be applied as biological traits for biometric systems. One of the main advantages 

of these traits over the previous is that they guarantee that the user is alive [6]. 

2.1.10.1 Galvanic Skin Response 

Galvanic skin response is the property of the human body that causes continuous variation 

in the electrical characteristics of the skin. It is a method used to measure the electrical 

conductance of the skin. The state of the sweat glands of the skin produces variations on 

the conductance. The conductivity is measured by placing the sensor into two fingers, as 

shown in Figure 11. 

 

 

 

 

 

 

Figure 11: Galvanic skin response measurement [69]. 

If the individual produces a high sweating level, the conductivity increases, while if the 

sweating level is low, the conductivity decreases, producing an increase in the resistivity 

[70]. In most cases, this signal is examined in parallel with other bioelectrical signals to 

develop reliable biometrics because the analysis of just the galvanic skin response is more 

often used to sentiment analysis. 

2.1.10.2 Electromyogram 

Electromyography detects the electrical potential difference that activates the muscle 

cells. These signals can be analyzed to understand the biomechanics associated with the 

movement of a human or an animal [70]. Figure 12 presents the two methods for 

performing an electromyogram. The first one is a surface method, and the other one is an 

intramuscular method. Nonetheless, only the first one is suitable for developing 

biometrics because it is a non-invasive technique that facilitates data acquisition. 
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The extracted signal requires an amplification close to a thousand times because it is only 

a few millivolts in amplitude. Most of the developed biometric systems based on EMG 

place the electrodes around the wrist to use the EMG and the circumference of the wrist 

as biometric data. These systems can be remarkably accurate, achieving a 97.9% 

recognition rate [6]. 

 

 

 

 

 

 

Figure 12: Measurement of Electromyogram. (A) Surface [71], and (B) Intramuscular 

[72]. 

2.1.10.3 Electrooculogram 

Electrooculogram signal is the electrical recording of the eyeball and eyelid movements 

through an electrode placed near the eye. The advantages of EOG signals over 

conventional biometric traits are that these signals cannot be easily forged or captured 

remotely, such as the voice or face. Moreover, they are one dimensional, low-frequency 

signals that can be quickly processed [73]. Furthermore, these signals are unique to each 

person because of the different eye blinking patterns of each individual. Nonetheless, the 

main problem with EOG signals is the dissatisfaction of the users since, as seen in Figure 

13, signal acquisition can be annoying. 

Even though there are many eye movements, the most studied for developing biometrics 

is the saccade, which consists of rapid vertical or horizontal eye movements [6]. From 

this eye movement, the extracted features are generally based on amplitude, accuracy, 

latency, and maximum velocity [73]. 
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Figure 13: Electrooculogram acquisition system [74]. 

2.1.10.4 Electrocardiogram 

Electrocardiography is a non-invasive technique that monitors the direction and 

magnitude of the electrical activity produced by depolarization and repolarization of the 

atria and ventricles of the heart. Figure 14 illustrates the components of an ECG. The 

primary use of electrocardiograms is related to medical applications. However, currently, 

researchers are investigating the benefits of these signals as a biometric trait. As heart 

mass, orientation, position, size, anatomy, the conductivity of cardiac muscles and the 

activation order, chest configuration, individual’s age, sex, relative body weight, and 

other electrophysiological factors vary among individuals, ECG differs from person to 

person [75]. All these factors affect the morphology of the ECG signal satisfying the 

uniqueness requirement of a biometric system. 

There are two types of methods for working with these signals for biometric applications, 

the fiducial points-based methods, and the non-fiducials-based methods. The first group 

relies on local features of the heartbeats, such as the temporal or amplitude difference 

between consecutive fiducial points. The fiducial points are extracted in the temporal 

domain. On the other hand, the non-fiducials-based methods generally use features based 

on the autocorrelation of the signals [6].  

Table 1 summarizes compliance with the requirements of a biometric system, introduced 

in Section 2.1.1, of all the biometrics presented in this section. 
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Figure 14: Parts of electrocardiogram signal [76]. 

Table 1: Comparison of biometric traits [1, 77]. 
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Fingerprint Medium High High High Medium High High 

Face High Medium Medium High High High Medium 

Voice Medium High Low High Medium High High 

Signature Medium Medium High High Medium High High 

Hand 

Geometry 

Medium High Medium Medium Medium Medium Medium 

Iris High High High Medium High High Medium 

Palm Print Medium High High Medium Medium Medium Medium 

Ear High High High High Medium Low Medium 

GSR High Medium High Medium Medium Low Low 

EMG High Medium High Medium High Low Low 

EOG High High High Low High Low Low 

ECG High High Medium Low High Low Low 
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2.2 Electroencephalogram Signals 

The electric potential difference produced by a human brain has the order of a few 

microvolts. These voltage fluctuations are the result of ionic current that flows between 

the neurons. The excitatory and inhibitory postsynaptic potentials developed by cell 

bodies and dendrites of pyramidal neurons produce cortical potentials [78]. The electric 

potential generated by a single neuron is minimal; thus, it is impossible to detect. 

Therefore, the EEG determines the summation of the synchronous activity of a large 

number of neurons present in the brain [79]. 

Electrodes, also known as channels, are placed on the scalp of the person to record the 

EEG signals. The amplitude of the signal may go from 10 to 100 microvolts with a 

frequency between 1 and 100 Hz. There are two types of recordings, monopolar and 

bipolar. The first type is the measure of the potential at an active electrode, while the 

bipolar recording is a voltage difference between two active electrodes. The most used 

recording type is a monopolar recording [79]. 

In clinical applications, many EEG channels are recorded simultaneously from various 

locations on the scalp to make a comparison of the activities in different regions of the 

brain. The International Federation of Societies for Electroencephalography and Clinical 

Neurophysiology recommends the 10-20 system of electrode placement for clinical EEG 

recording; Figure 15 illustrates this systematic placement of electrodes [78]. 

 

 

 

 

 

 

 

 

Figure 15: The 10-20 system of electrode placement for EEG recording [80]. 
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The signal extracted from electrodes is called raw EEG signal. This signal could include 

some non-cerebral signals known as artifacts. There are roughly three groups of artifacts: 

biological, biomedical, and environmental. Some of the biological artifacts are blinking 

of eyes during signal acquisition procedure and muscular activities [81].  

Sometimes bioelectrical signals like ECG, EMG, or EOG get mixed up with the EEG 

signals. These contaminations are the biomedical artifacts. These kinds of artifacts are the 

most difficult to remove because, most of the time, they are very similar to the actual 

EEG signal. Finally, the environmental artifacts are line noise, pulse, electrode 

stabilization, among others [79]. The elimination of the artifacts is crucial, especially from 

the medical point of view, because their presence can lead to a wrong diagnosis. 

A highly studied application of EEG signals is the analysis of brain rhythms for medical 

purposes. These rhythms are the result of the classification of EEG signals into five 

specific frequency sub-bands: delta (δ, 0–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–13 Hz), 

beta (β, 13–30 Hz) and gamma (γ, 30–50 Hz) [82]. Table 2 summarizes the main 

characteristics of each brain rhythm, and Figure 16 shows their wave shape. All these 

rhythms allow the investigation of the nervous system, monitoring of sleep stages, 

biofeedback and control, and diagnosis of diseases like epilepsy, Parkinson, and many 

more [81, 83]. 

 

 

 

 

 

 

 

 

 

Figure 16: The wave shape of brain rhythms [84]. 
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Table 2: General information of brain rhythms. 

Rhythm 
Frequency 

range (Hz) 

Amplitude 

(μv) 
State of mind 

Delta (δ) 0 - 4 

High 

amplitude 

(20 – 200) 

Deep sleep, loss of bodily awareness, 

repair 

Theta (θ) 4 – 8 
More than 

20 

Creativity, insight, deep states, dreams, 

deep meditation, reduced consciousness 

Alpha (α) 8 – 13 30 – 50 Physically and mentally relaxed 

Beta (β) 13 – 30 5 – 30 
Awake, alert consciousness, thinking, 

excitement 

Gamma (γ) 30 - 50 Less than 5 

Heightened perception, learning, 

problem-solving tasks, cognitive 

processing 

 

Signal processing techniques can help to distinguish between the brain activity of a 

healthy and unhealthy person. However, the nature of EEG signals is highly non-linear, 

non-Gaussian, non-correlated, and non-stationary [85]. Also, EEG features depend on 

several factors like the age and the mental state of the subject [80]. The general 

experimental design for working with EEG signals include initial recording at rest (eyes 

open, eyes closed) as a baseline and then the recording while doing a specific task as a 

trial [77]. These signals are an excellent choice to employ them as biometric traits because 

they fulfill most of the requirements of biometric systems [18]:  

- Universality: All human brains are composed of neurons that produce electrical 

activity that forms EEG signals. Moreover, individuals of any age and any mental 

state, including vegetative state or coma, produce these signals. 

- Distinctiveness: The evidence from EEG-based person recognition research 

shows that EEG signals are sufficiently different among people so that they can 

be correctly classified. 



School of Mathematical and Computational Sciences      Yachay Tech University 

 

Information Technology Engineer 27 Final Grade Project 

 

- Permanence: Some researchers have conducted session-to-session tests to 

validate EEG variability over time. These studies have concluded that EEG 

signals maintain a significant degree of repeatability [86]. 

- Collectability: Unfortunately, the process of signal acquisition can be time-

consuming and inconvenient for routine biometric procedures because it needs to 

place electrodes over the scalp. In some cases, it also uses a conductive paste to 

reduce skin impedance. 

- Performance: The accuracy of the system depends on preprocessing and feature 

extraction. Two commonly used metrics for quantifying the performance of the 

system are the false acceptance rate (FAR) and the false rejection rate (FRR). 

- Acceptability: The EEG signals are socially acceptable for medical purposes, but 

for developing biometric systems, there are some doubts concerning privacy due 

to the sentimental analysis or Brain-Computer Interface (BCI) systems that try to 

“read minds.” 

- Circumvention: One of the crucial problems of traditional biometrics is that the 

features can be collected without user consent. Nonetheless, no technique allows 

the recording of brain waves remotely. Additionally, even if someone is forcing 

the user to make a recording of EEG, the negative emotions would lead to an 

authentication failure.  

2.2.1 Preprocessing 

The human head is composed of layers like the scalp, skull, and brain, so EEG signals 

over the scalp are relatively weak and subject to contamination from the artifacts 

previously discussed [87]. Therefore, after recording, EEG signals must be processed to 

reduce these noises as much as possible. A widely applied technique for reducing the 

noise is bandpass filtering, which works by analyzing the signal across a period of time. 

One of the advantages of bandpass filtering is that it can work on short signal recordings. 

Furthermore, it has proven that this filtering technique is useful to maximize the signal-

to-noise ratio [88]. In bandpass filtering, a low-pass filter removes or attenuates high-

frequency noise while the high-pass filter removes or attenuates low-frequency noise. 

Regardless the advantages of bandpass filtering, in most of the works it is combined with 

other techniques such as Principal Component Analysis (PCA) [89], Support Vector 

Machines (SVMs) [90], Independent Component Analysis (ICA) [89, 91], Blind Source 



School of Mathematical and Computational Sciences      Yachay Tech University 

 

Information Technology Engineer 28 Final Grade Project 

 

Separation (BSS) [92], Wavelet Transform (WT) [93] and Fourier Transform (FT) [93, 

94]. 

Most current researches employ a Discrete Fourier Transform (DFT) or Discrete Wavelet 

Transform (DWT). DFT transforms the time domain signal samples to frequency domain 

components. Also, it establishes a relationship between the time domain representation 

and the frequency domain representation [95]. DWT is widely used for time-frequency 

analysis, especially in EEG signal analysis due to its non-stationary characteristics. The 

efficiency of this transform depends on the levels of decomposition used. These levels 

are the main steps of the DWT. At each level, the signal is convoluted with a low-pass 

filter and a high-pass filter. These filters depend on the mother wavelet chose for the 

decomposition. Then, the filtered signals of each level pass through downsampling by a 

factor of two. This filtering process effectively reduces the noise injected by artifacts [9]. 

Table 3 shows a summary of preprocessing techniques. This summary contains a 

description of the proposed algorithm, with its contribution and challenges. 

Table 3: Comparison of preprocessing techniques for EEG data. 

Authors Year Algorithm Contribution Challenges 

Joyce et al. [92] 2004 ICA using 

Second-order 

Blind Inference 

(SOBI) procedure 

An automated 

procedure for 

extracting and 

removing ocular 

artifacts 

Being capable of 

removing the 

muscle-related 

artifacts 

Vallabhaneni et 

al. [88] 

2005 None Review on Spatial 

and Temporal 

Domain techniques 

for preprocessing 

Lack of 

implementation of 

the presented 

methods 

Kumar, 

Arumuganathan, 

Sivakumar, & 

Vimal [96] 

2008 Adaptive filter 

with Least Mean 

Square (LMS) 

algorithm through 

WT 

A robust technique 

for removing ocular 

artifacts 

Difficulty to found 

correct values for 

the filter order and 

convergence factor 

which can lead to a 

bad performance 

on other scenarios 

Li, Sun, Zhang, 

Wu, & Wu [97] 

2009 Notchfilter, BSS 

and Finite 

Impulse 

Response (FIR) 

filtering 

Artifact removal 

using basic filtering 

and BSS technique 

Working with data 

from more subjects 

and with more 

EEG channels 
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Authors Year Algorithm Contribution Challenges 

Guerrero-

Mosquera & 

Navia [98]  

2009 Low-pass filter 

and ICA based on 

the Joint 

Approximate 

Diagonalization 

of Eigen-matrices 

method (JADE) 

Artifact removal 

through the 

implementation of 

ICA 

Artifacts were 

identified and 

visually 

eliminated. 

Automatic removal 

is not implemented 

yet 

Wang & Makeig 

[99] 

2009 Bandpass 

filtering and the 

extended infomax 

ICA algorithm 

Noise removal 

using filtering and 

ICA. Additionally, 

the used ICA 

technique can 

match efficiently 

the distributing of 

the input  

The time 

complexity of the 

extended infomax 

ICA algorithm is 

not optimal 

Zhou & Gotman 

[91]  

2009 ICA based on 

JADE algorithm 

The method works 

without parameter 

tuning 

The number of 

sources is limited 

to 40 or 50 

depending on the 

available memory 

of the computer  

Vidaurre, 

Krämer, 

Blankertz, & 

Schlögl [100] 

2009 Spatial Filters: 

Bipolar montage, 

Laplacian 

montage, 3 

Laplacian 

channels, 11 

Laplacian 

channels and 

Common Spatial 

Patterns (CSP) 

Comparison among 

different spatial 

filters which are 

easy and fast to 

calculate and only a 

very low number of 

parameters needs to 

be selected 

Improving the 

filters by adapting 

the bias 

Azim et al. [93] 

 

2010 Bandpass elliptic 

filter, DWT and 

Fast Fourier 

Transform (FFT) 

Combination of 

different techniques 

for achieving better 

results 

Improving the 

signal acquisition 

and 

implementation of 

digital filters 

Kameswara, 

Rajyalakshmi, & 

Prasad [101] 

2012 None Review on the 

classic 

preprocessing 

techniques (Basic 

Bandpass filtering, 

Adaptive filtering 

and BSS) 

Making a real 

comparison among 

the different type 

of preprocessing 

techniques 

 

 

 



School of Mathematical and Computational Sciences      Yachay Tech University 

 

Information Technology Engineer 30 Final Grade Project 

 

Authors Year Algorithm Contribution Challenges 

Jirayucharoensak 

& Israsena [102] 

2013 Infomax ICA and 

Lifting Wavelet 

Transform 

Effective removal 

of ocular and 

muscular artifacts 

It cannot be seen 

as a general 

procedure because 

the algorithm is 

based on fixing a 

threshold which 

can change 

according to the 

data 

Kalaivani, 

Kalaivani, & 

Anusuya [103] 

2014 Eight level DWT Simple but 

effective denoising 

process and 

frequency band 

decomposition 

Choosing of the 

level of 

decomposition and 

mother wavelet 

needs to be done 

for other 

applications 

Oana & Anca 

[104] 

2015 Basic Bandpass 

filtering 

Effective isolation 

of the Mu rhythm 

frequency range 

Cleaning the 

artifacts of the 

signal 

Maki, Toda, 

Sakti, Neubig, & 

Nakamura [105] 

2015 Multi-Channel 

Wiener Filter 

Provides an 

unsupervised 

method for EEG 

event signal 

separation using 

multi-channel EEG 

signals 

This method does 

not use any prior 

information for 

estimation of 

spatial correlation 

matrices and 

blindly separates 

EEG signals into 

individual EEG 

components using 

time-varying 

scaled spatial 

correlation 

matrices. 

Swee & You [94] 2016 EmoEngine and 

FFT analysis 

Comparison 

between an API 

(EmoEngine) for 

preprocessing the 

signals and a 

classic technique 

Comparing the 

API with respect to 

more robust 

methods 

 

2.2.2 Feature Extraction 

Feature extraction in systems based on EEG signals is a process that translates the 

preprocessed brain signal (input signal) into a feature vector correlated to a neurological 

phenomenon [106]. Extracting the most representative features from EEG signals 
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constitutes a crucial step in the development of a robust biometric system because these 

features present different degrees of distinctiveness among people [107].  

The quality of the extracted features produces a direct impact on the identification results. 

For this reason, there are many ways of performing this step. The most common EEG 

features can be extracted using the information of a single channel or from more than one 

channel in domains like time, time-spatial, or frequency. Generally, the feature vectors 

are the result of the concatenation of the extracted features from each channel. 

Consequently, these vectors are usually significantly shorter than the input signal. The 

most popular features are: Autoregressive (AR) features, Power spectral density (PSD) 

and features based on Wavelet Transform. 

The autoregressive modeling of EEG signals is a generalization of the Autoregressive 

Moving Average (ARMA) model in time series prediction [108]. AR modeling is a 

parametric modeling technique in which a mathematical model is used to formulate a 

linear prediction to describe the signal generation system [109]. 

In simple words, the AR model forecasts the output based on previous input and output 

values. The value of each current sample 𝑦(𝑡) in an AR model is linearly related to the 𝑝 

most recent sample values, as shown in (1): 

𝑦(𝑡) = − ∑ 𝑎𝑘𝑦(𝑡 − 𝑘) + 𝑥𝑛

𝑝

𝑘=1

 ( 1 ) 

where {𝑎𝑘 | 𝑘 ∈ {1,2, … , 𝑝}} are the linear parameters, 𝑝 is the order of the model, 𝑛 

corresponds to the discrete sample time, and 𝑥𝑛 is the noise input [87].  

Power spectral density is a function that represents the distribution of the average signal 

power over frequencies. The definition of PSD can be presented as the discrete-time 

Fourier transform of the autocovariance sequence (ACS) as follows [110]: 

ϕ(ω) = ∑ 𝑟(𝑘)𝑒−𝑖ω𝑘

∞

𝑘=−∞

 ( 2 ) 

where 𝑖 = √−1, ω is the radian frequency, and 𝑟(𝑘) represents the ACS that is defined 

as 

𝑟(𝑘) = 𝐸{𝑦(𝑡)𝑦∗(𝑡 − 𝑘)} ( 3 ) 
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where 𝑦(𝑡) is the discrete-time signal {𝑦(𝑡) | 𝑡 ∈ {0,1,2, … }} which it is assumed to be a 

sequence of random variables with zero mean (𝐸{𝑦(𝑡)} = 0 ∀𝑡), and 𝑦∗(𝑡) is its complex 

conjugate. 

For calculating the PSD, some methods in the nonparametric approach have been 

employed, such as Bartlett and Welch. These classic methods use a periodogram for 

estimating the power of a signal at different frequencies [111]. However, the Welch 

method is frequently applied because it can reduce more noise and frequency resolution 

than standard Bartlett’s method. 

Finally, the features based on wavelet transform are one of the most popular in recent 

research for EEG based biometrics. The main advantage of these features is that they 

capture the time and frequency characteristics of the input signal. Examples of these 

features are: Energy, Entropy, Root Mean Square (RMS), Mean Absolute Value (MAV), 

Integrated EEG (IEEG), Simple Square Integral (SSI), Variance of the EEG, and Average 

Amplitude Change (AAC) [112]. The most used version of WT is the DWT. Section 3.3 

explains in detail this transformation, and Section 3.4 explains the feature extraction 

process of this work. For this reason, this section does not provide a formal definition of 

this technique. 

The AR, PSD, and WT based features can be extracted from a single EEG channel 

separately to handle only the most significative channels. Nevertheless, in most of the 

applications, all the available channels are used to avoid losing important information. As 

it was mention before, the feature vector will be the concatenation of the features 

extracted from each channel into a single one-dimensional vector. 

2.2.3 Classification Algorithms 

A classifier is an algorithm that takes a feature vector as input and returns the 

corresponding class. When trained, it represents a model of the association between the 

extracted features and the classes [9]. In the case of biometrics, the classes are subjects, 

e.g., for a given feature vector from subject 1; the classifier works as a function 𝑐 that 

takes as input the feature vector and maps it to the subject. The classifiers need to adjust 

their hyperparameters to the working data for maximizing their performance. 

One of the most used classifiers for this application is Support Vector Machine [113]. 

This classifier finds a hyperplane within the features space, maximizing the margin 
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between the nearest data point of each class and the hyperplane [114]. Despite being 

initially designed for binary classification problems [115], SVMs can be extended to 

multiclass problems. 

Additionally, with the rapid development of Artificial Neural Networks (ANN), they are 

frequently used for people identification in biometric systems. The inspiration of ANNs 

is the brain structures where the organization of the layer-wise neurons allows to achieve 

a high-level abstraction of the data [116]. The result of the ANN depends on the 

characteristics of the neurons and their associated interconnection weights. By modifying 

the connections between the neurons, the network can adapt to the desired outputs. 

Nonetheless, classical classifiers are also employed. K-Nearest Neighbors (K-NN) is a 

distance-based classifier because it predicts the output class based on the k nearest 

training classes to the input feature vector [117]. Random Forest (RF) is an ensemble of 

decision tree classifiers. Each tree is constructed using a randomly selected group of 

features, independently sampled with an identical distribution for all trees [118]. Each 

tree in the forest predicts a class, and the output is the most voted class for each input 

feature vector. AdaBoost (AB) is additionally an ensemble classifier as RF, but in this 

case, the weak classifier can be any of the previous classifiers. AB is adaptive because it 

tweaks its weak classifiers in favor of those instances misclassified by previous classifiers  

[119]. 

It is important to know that no rule indicates which classifier is better for a specific 

application. For this reason, it is pertinent to make a comparison among different 

classifiers to obtain the best one for developing biometrics based on EEG signals. 

Moreover, all the classifiers have many hyperparameters that need to be adjusted. For this 

reason, there are many hyperparameter optimization techniques. Some techniques are 

quick because they do not perform a complete search, which in most cases, does not 

guarantee to find the best hyperparameters. Greedy search performs a complete search 

concerning its dictionary of parameters and always finds the best parameters inside it. 

Though, it takes much time because it proves all possible combinations within its 

dictionary [120].  

Table 4 shows a comparison of different feature extraction and classification algorithms. 

The database column corresponds to the number of people used in the experiments, which 

varies a lot for each study. 
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Table 4: Comparison of feature extraction and classification techniques for EEG data. 

Authors Year Database 
EEG 

Channels 

Methodology 

(Feature extraction + 

Classifier) 

Results 

(Classification 

Accuracy) 

Poulos, 

Rangoussi, 

Chrissikopoul

os, & 

Evangelou 

[121] 

1999 4 1 AR model of             

α-rhythm + Kohonen's 

Learning Vector 

Quantizer (LVQ) 

neural network 

72% - 84% 

Paranjape, 

Mahovsky, 

Benedicenti, 

& Koles [122] 

2001 40 8 AR models for single 

EEG traces using 

Lattice Equivalent 

Model and Levinson 

Recursion + 

Discriminant Function 

Analysis (DFA) 

49% - 82% 

Poulos, 

Rangoussi, 

Alexandris, & 

Evangelou 

[123] 

2001 4 18 FFT based spectral 

analysis of α-rhythm 

+ LVQ neural 

network 

80% - 100% 

Palaniappan 

& Raveendran 

[124] 

2002 10 61 Visual evoked 

potential (VEP) 

signals of γ-band + 

Fuzzy ARTMAP (FA) 

neural network 

90.95% 

Palaniappan 

& Paramesran 

[125] 

2002 20 61 VEP patterns selected 

by genetic algorithm 

and FA + Multilayer 

Perceptron (MLP) 

trained by            

back-propagation 

95.9% 

Palaniappan 

[126] 

2004 20 61 γ-band spectral power 

(GBSP) computed 

using Parseval's 

theorem + MLP with 

a single hidden layer 

trained by            

back-propagation 

99.06% 

Ravi & 

Palaniappan 

[127] 

2005 40 61 Normalized late        

γ-band (LGB) spectral 

powers + Neural 

network trained by 

back-propagation 

95.4% 

LGB spectral powers 

+ Simplified fuzzy 

ARTMAP (SFA) 

neural network 

82.44% 
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Authors Year Database 
EEG 

Channels 

Methodology 

(Feature extraction + 

Classifier) 

Results 

(Classification 

Accuracy) 

Palaniappan 

[128] 

2006 5 6 Combination of six 

order AR coefficients, 

Channel Spectral 

Power,                 

Inter-hemispheric 

Channel Spectral 

Power differences and 

Linear Complexity + 

Linear Discriminant 

Analysis (LDA) 

99.83% 

Mohammadi, 

Shoushtari, 

Ardekani, & 

Shamsollahi 

[129] 

2006 10 100 AR parameters of 

each epoch + 

Competitive neural 

network with a 

reinforcement 

learning algorithm 

85% - 100% 

Palaniappan 

& Ravi [130] 

2006 20 61 GBSP computed 

using Parseval's 

theorem + LDA 

84.25% - 

96.50% 

GBSP computed 

using Parseval's 

theorem + K-NN 

62.48% - 

94.18% 

GBSP computed 

using Parseval's 

theorem + SFA 

66.26% - 

92.84% 

Palaniappan 

& Mandic 

[131] 

2007 40 61 The energy of the 

channels reduced by 

Davies Bouldin index 

+ Elman neural 

network trained by 

resilient               

back-propagation 

98.56% 

Touyama & 

Hirose [132] 

2008 5 1 P300 evoked 

potentials + LDA 

97.6% 

Palaniappan 

[133] 

2008 4 6 AR coefficients of 

order six estimated 

with Burg's method + 

LDA 

92.45% - 

99.9% 

Yazdani, 

Roodaki, 

Rezatofighi, 

Misaghian, & 

Setarehdan 

[134] 

2008 20 61 PSD of γ-band VEP 

signal + K-NN 

100% 
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Authors Year Database 
EEG 

Channels 

Methodology 

(Feature extraction + 

Classifier) 

Results 

(Classification 

Accuracy) 

Riera, Soria-

Frisch, 

Caparrini, 

Grau, & 

Ruffini [135] 

2008 51 2 AR modelling + 

Classification score 

98.1% 

Das, Zhang, 

Giesbrecht, & 

Eckstein [136] 

2009 20 20 Spatio-temporal filter 

+ SVM 

94.08% 

Spatio-temporal filter 

+ LDA 

87.78% 

Palaniappan 

& Eswaran 

[137] 

2009 40 61 Genetic algorithms 

and Min-max 

clustering + SFA 

neural network 

95.42% 

Gupta, Khan, 

Palaniappan, 

& Sepulveda 

[138] 

2009 4 8 P300 and γ-band 

energy feature using 

Wavelet Packet 

Decomposition 

(WPD) + Generalized 

regression neural 

network 

85% 

Brigham & 

Kumar [139] 

2010 120 64 Univariate AR model 

and PSD + Linear 

SVM 

98.95% 

Zúquete, 

Quintela, & 

Silva [140] 

2010 70 8 Energy of VEP from 

γ-band + Radial SVM 

98.5% 

The energy of VEP 

from γ-band + K-NN 

95.1% 

Abdullah, 

Subari, 

Loong, 

Loong, & 

Ahmad [141] 

2010 10 8 WPD coefficients + 

ANN 

81% 

Hu [142] 2010 3 6 AR coefficients + 

MLP trained with 

back-propagation  

92.8% 

Yang et al. 

[143] 

2011 7 2 P300 waves obtained 

by the oddball 

paradigm + LVQ 

neural network 

92.14% 

Shedeed [144] 2011 3 4 DFT and Wavelet 

mean, std and entropy 

+ MLP 

93% 

Gui, Jin, & 

Xu [145] 

2014 32 6 Wavelet mean, std and 

entropy + MLP 

94.04% 
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Authors Year Database 
EEG 

Channels 

Methodology 

(Feature extraction + 

Classifier) 

Results 

(Classification 

Accuracy) 

Koike-Akino 

et al. [146] 

2016 25 14 PCA and Partial Least 

Squares (PLS) + 

Quadratic 

Discriminant Analysis 

(QDA) 

96.7% 

Zhang et al. 

[116] 

2017 20 64 γ-band spectral power 

ratio + RF 

86% 

γ-band spectral power 

ratio + MLP 

85.1% 

γ-band spectral power 

ratio + K-NN 

78% 

γ-band spectral power 

ratio + AB 

73.9% 

γ-band spectral power 

ratio + Bagging 

66.7% 

Saini et al. 

[147] 

2018 70 14 γ-band features + 

Hidden Markov 

Models (HMM) 

95.65% 

 

2.3 Summary 

This chapter presented the theoretical background that supports this study. The basis of 

biometric systems was introduced, remarking the characteristics of good biometric traits. 

A brief description of the main biometric traits was showed, highlighting their strengths 

and weaknesses. Also, this chapter presented five of the most popular bioelectrical 

signals. These signals are extremely significant because they introduce novel ways of 

developing robust biometrics.  

Moreover, this chapter provided a more in-depth description of electroencephalogram 

signals. This description covered an explanation of how these signals fulfill each of the 

characteristics for good biometrics. Finally, it included a review of the state-of-the-art of 

preprocessing, feature extraction, and classification techniques. Chapter 3 will present the 

proposed methods for designing a viable biometric system based on the analysis of 

electroencephalogram signals. 
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3 Methods 

 

This chapter explains in detail the proposed method for developing biometric systems 

based on EEG analysis. It begins with the general workflow of the system. After that, 

each step in the workflow is detailed. Furthermore, this chapter describes the performance 

metrics used to verify the functionality of the system and the validation process used to 

obtain reliable results. Finally, the description of the conducted experiments of this 

research is presented; each description contains the objective of the experiment and its 

general explanation. 

3.1 General Workflow of the Proposed Biometric System 

Figure 17 shows the general workflow of the proposed system. The description of each 

part of the workflow is explained later. 

 

 

 

 

 

 

Figure 17: Workflow of the proposed biometric system. 

3.2 Data Acquisition 

The EEG signals used in this study corresponds to two different datasets. The first one is 

the open-access “DEAP dataset” [148], and the second one is a private dataset recorded 

in the “Instituto Nacional de Astrofísica, Óptica y Electrónica” (INAOE). The aim of 

working with two different datasets is to validate the proposed methodology. 
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3.2.1 DEAP Dataset 

This dataset is available at https://www.eecs.qmul.ac.uk/mmv/datasets/deap/index.html. 

The authors of this dataset describe it as “a multimodal dataset for the analysis of human 

affective states” [148]. There are two versions of the dataset, one contains the original 

data, and the other corresponds to the preprocessed data. 

The original data folder contains 32 .bdf files, each with 48 recorded channels at 512Hz. 

The channels correspond to 32 EEG channels, 12 peripheral channels, 3 unused channels, 

and 1 status channel. Specific toolkits such as EEGLAB for Matlab or MNE for Python 

allow reading the data. On the other hand, the preprocessed version of the dataset contains 

32 .dat files, each with 40 recorded channels at 128Hz. This version still contains 32 EEG 

channels and 8 peripheral channels, and the files can be read using the cPickle Python 

module. The authors of DEAP selected 40 one-minute videos to create this dataset. Each 

video intended to evoke specific emotions on the viewers. Then, they recorded the 

physiological signals of 32 healthy participants (50% female), aged between 19 and 37 

(mean age 26.9), while they saw the 40 videos. After each video, the participants rate 

their level of valence, arousal, dominance, and liking [148]. 

On both versions of the dataset, each file contains the 40 recordings of one participant, 

where each recording corresponds to one video. In the original version, there are only the 

raw signals. Nevertheless, the signals of the preprocessed version are the result of blind 

source separation for removing the EOG artifacts and a bandpass frequency filter from 4 

- 45Hz. Moreover, this version segmented all the recordings into 3-seconds pre-trial 

(baseline) and 60-seconds trials [148]. The present work uses the preprocessed version of 

the dataset because of the benefits that it provides. 

3.2.2 INAOE Dataset 

This dataset was elaborated to develop biometric systems and brain-computer interfaces. 

The dataset is composed of the EEG recordings, but it also has the audio and video 

recordings of all participants. All these signals were captured simultaneously for allowing 

to develop unimodal biometric systems based on any of these signals or multimodal 

biometric systems based on a combination of them. 

For recording the EEG signals, this dataset used the Emotive Epoc+ brainwear device. 

The internal sampling rate of this device is 2048Hz, but it was downsampled to 128Hz, 

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/index.html


School of Mathematical and Computational Sciences      Yachay Tech University 

 

Information Technology Engineer 40 Final Grade Project 

 

and it contains 14 EEG channels. During the recording of the signals, each participant 

pronounced 135 random numbers between 1 and 10. The order in which the participants 

pronounced the numbers were the same among all of them. Moreover, each recording had 

a duration of 2.5 seconds. This dataset contains the recordings of 51 healthy participants 

(49% female). There is only one version of this dataset that corresponds to the raw EEG 

signals without any preprocessing technique for removing EOG artifacts or bandpass 

frequency filtering. Because of the intention of this work, it only used the EEG signals 

regardless of having access to voice and video recordings. 

3.3 Data Preprocessing 

Generally, the preprocessing of EEG signals can be divided into [79, 81]: noise filtering, 

and decomposition of the signal into frequency sub-bands. This section focuses on the 

second type of preprocessing, whose objective is to facilitate signals analysis rather than 

cleaning them. The two most widely used techniques are Fourier Decomposition [93, 94, 

149] and Discrete Wavelet Decomposition [8, 9, 150, 151]. Nonetheless, the DWT can 

reveal features related to the nature of the signals unobvious for the Fourier transform 

[152]. For this reason, this work applied a DWT to both datasets because though the 

preprocessed version of the DEAP dataset was used, it did not contain this type of 

preprocessing. 

The fundamental idea of wavelet analysis is expressing a signal as a linear combination 

of a particular set of functions obtained by shifting and dilating one single function called 

mother wavelet [152]. This work uses Daubechies-4 (db4) as mother wavelet due to its 

smoothing feature, making it appropriate to detect changes in EEG signals [114]. The 

following equation defines the DWT of the function 𝑓(𝑡) [153]: 

𝐷𝑊𝑇ψ(𝑗, 𝑘) = ∫ 𝑓(𝑡) ∗ ψ𝑗,𝑘(𝑡)dt
∞

−∞

 ( 4 ) 

where ∗ denotes convolution and ψ𝑗,𝑘(𝑡) is the scaled and shifted mother wavelet defined 

as: 

ψ𝑗,𝑘(𝑡) =
1

√𝑗
ψ (

𝑡 − 𝑘

𝑗
) ( 5 ) 

where ψ(𝑡) is the mother wavelet, and the parameters 𝑗 and 𝑘 represent the scale and the 

shift, respectively. This transformation decomposes a signal into a set of sub-bands 
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through successively high-pass and low-pass filtering combined with downsampling by 

a factor of two. The high-pass filter (ℎ) is the discrete mother wavelet, while the low-pass 

filter (𝑙) is its mirror version. The outputs of the low-pass filters are called approximation 

coefficients (𝐴𝑙), and the outputs of the high-pass filters are known as detail coefficients 

(𝐷𝑙). The 𝑙 sub-index in the DWT coefficients corresponds to the level of decomposition. 

The maximum level of decomposition can be computed as [8, 9, 150]: 

log2(𝑀) − 1, ( 6 ) 

where 𝑀 represents the length of the signal. Regarding the levels of decomposition of 

DWT some authors propose to use five levels to obtain the following frequency bands: 

32 - 64Hz (𝐷1, γ); 16 – 32Hz (𝐷2, β); 8 – 16Hz (𝐷3, α); 4 – 8Hz (𝐷4, θ); 2 – 4Hz (𝐷5, δ) 

and <2Hz (𝐴5) [86, 114]. Section 2.2 described these bands, which correspond to the five 

primary brain rhythms related to specific cognitive functions. Figure 18 illustrates these 

bands computed from an EEG signal.  

 

 

 

 

 

 

 

Figure 18: Example of discrete wavelet transform with five levels of decomposition. 

Additionally, other authors suggest that four levels of decomposition are enough to 

achieve good results while reducing the computational cost of the process [8, 150, 151, 

154]. This work made a comparison between the five levels DWT and the four levels 

DWT, but it also included two extra levels of decomposition: three and two. The objective 

for including these last two levels of decomposition in the comparison was to analyze this 

technique further. 
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3.4 Feature Extraction 

The extracted wavelet coefficients show the energy distribution of EEG signals in time 

and frequency in a compact representation. However, the choice of the features represents 

a critical step in all classification systems because of its direct influence on classification 

performance. Some authors use the coefficients directly as their feature vectors [8, 147, 

151]. Nevertheless, other authors try decreasing the dimensionality of the feature vectors 

extracting higher-level features such as the maximum, minimum, mean, standard 

deviation, entropy or relative energy of the wavelet coefficients in each sub-band [9, 114, 

150, 152, 154]. For the present work chose the relative wavelet energy (RWE) as a feature 

because it has been proven to be very useful in classification tasks [146]. The energy (𝐸) 

of each sub-band was computed using the following equations [155]: 

𝐸𝐷𝑖
= ∑|𝐷𝑖𝑗|

2
𝑁

𝑗=1

, i ∈ {1,2,3, ⋯ , L}, ( 7 ) 

𝐸𝐴𝐿
= ∑|𝐴𝐿𝑗|

2
𝑁

𝑗=1

, ( 8 ) 

where 𝑁 is the length of the coefficient vector, 𝐿 is the maximum level of decomposition, 

𝐷𝑖𝑗 is the 𝑗th element of the detail coefficient vector 𝐷𝑖, and 𝐴𝐿𝑗 is the 𝑗th element of the 

last (𝐿) approximation coefficient vector 𝐴𝐿 . Using equations (7) and (8), the total energy 

is defined as: 

𝐸𝑇 = (∑ 𝐸𝐷𝑖

𝐿

𝑖=1

) + 𝐸𝐴𝐿
; ( 9 ) 

finally, the RWE was computed as follows: 

𝑅𝑊𝐸𝑖 =
𝐸𝑖

𝐸𝑇
, ( 10 ) 

where 𝐸𝑖 is an element of the set formed by the union of the energies of the detail 

coefficients with the energy of the last approximation coefficients 

({𝐸𝐷1
, 𝐸𝐷2

, ⋯ , 𝐸𝐷𝐿
} U {𝐸𝐴𝐿

}). The length of the RWE vector depends on the level of 

decomposition (𝐿 + 1), and it is computed for each EEG channel. The final feature vector 

was the concatenation of all the RWE vectors. These vectors were scaled using min-max 

scaling to obtain values between zero and one. This scaling method is defined as follows: 
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𝑥′ =
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 , ( 11 ) 

where 𝑥 is the original feature vector, and 𝑥’ is the scaled feature vector. 

3.5 Classification 

This research tested six different classification algorithms to compare and choose the best 

one for this specific problem and datasets. The reason for choosing these classifiers was 

that each one is based on a different criterion to make the classification.  

• Support Vector Machine (SVM) is known as a “large margin” classifier since it 

creates a large margin between the data points and its decision boundary. 

Moreover, this classifier is dependent on its kernel function [156].  

• K-Nearest Neighbor (K-NN) is perhaps the most common distance-based 

classifier; regardless of its simplicity, it can achieve excellent results in lots of 

tasks [117].  

• Random Forest (RF) is an ensemble algorithm based on decision trees. These 

kinds of algorithms follow the divide-and-conquer approach to improving the 

performance of its weak classifiers [157]. 

• Gaussian Naïve-Bayes (GNB) is a statistical classifier based on the Bayes’ 

Theorem. It is a very fast classification algorithm which performance is related to 

the independence assumption of the data [158]. 

• AdaBoost (AB) can be seen as an ensemble algorithm, but it is also known as a 

boosting classifier. The difference concerning Random Forest is that in the case 

of AdaBoost, the weak learners are tweaked in favor of those instances 

misclassified by previous classifiers [119]. 

• Multilayer Perceptron (MLP) is a biologically inspired classification algorithm. 

The basis of this algorithm is the connections among neurons represented with 

weights that are corrected during the training phase [116]. 

It is worth mentioning that this study just evaluated the closed set recognition, meaning 

that all testing classes were known at training time [159]. 

3.5.1 Hyperparameter Optimization 

For selecting the hyperparameters of each classifier, this work employed a greedy search 

optimization. Greedy search optimizes only one hyperparameter at a time while keeping 
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other hyperparameters fixed [120]. It performs an exhaustive search through a manually 

specified subset of the hyperparameter space of the learning algorithm. In this work, ten-

fold cross-validation was used to guide the performance of the greedy optimization. This 

optimization was made independently for each dataset. However, the subset of possible 

values for the hyperparameters was the same for both of them. Additionally, this study 

just used the five-level DWT for this optimization. Furthermore, in each dataset, 20% of 

the available data of each subject was selected randomly to perform this step. The 

subsequent phases did not use this data. Table 5 contains the set of values tested during 

the greedy search optimization process and the best value of each hyperparameter for 

each dataset. 

Table 5: Set of values for hyperparameter optimization, and best value for each dataset. 

Classifier Hyperparameter Tested Values 

Best 

Value 

DEAP 

dataset 

Best 

Value 

INAOE 

dataset 

SVM 

Penalty Parameter 
0.5; 1; 10; 50; 100; 

200; 300 
300 300 

Kernel linear; rbf; sigmoid sigmoid linear 

Tolerance 
1e-7; 1e-6; 1e-5; 1e-

3; 0.1; 1 
1e-3 0.1 

Kernel coefficient scale, auto  auto scale 

K-NN 

Number of neighbors 1; 5; 10; 20; 50; 100 1 1  

Distance metric 
Euclidean; 

Manhattan 
Euclidean Manhattan 

Leaf size 5; 10; 30; 50; 100 5 5 

RF 

Number of estimators 
1; 10; 50; 100; 200; 

500; 750; 1000 
500 1000 

Min number of samples 

required to split an 

internal node 

2; 5; 10; 50; 100 2 2 

Criterion Gini; Entropy Gini Entropy 
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Classifier Hyperparameter Tested Values 

Best 

Value 

DEAP 

dataset 

Best 

Value 

INAOE 

dataset 

GNB Var smoothing 

1e-9; 1e-8; 1e-7; 1e-

6; 1e-5; 1e-4; 1e-3; 

1e-2, 1e-1, 1, 10 

0.1 1e-9 

AB 

Weak Classifier SVM; RF RF RF 

Number of weak 

classifiers 

5; 10; 50; 100; 500; 

800 
5  5 

Learning rate 0.1; 0.5; 1; 5 0.1  0.1 

Boosting algorithm 
SAMME; 

SAMME.R 
SAMME  SAMME 

MLP 

Neurons per hidden 

layer(s) 

(106); (106,106); 

(106,106,106); 

(84,84); (127,127) 

(106) (127,127)  

Learning rate 
1e-3; 5e-3; 0.01; 

0.05; 0.1 
1e-3 1e-3  

Batch normalization True, False True False 

Dropout True, False True True 

Dropout percentage 10; 20; 30; 40; 50 50 20 

L2 regularization True, False True False 

L2 regularization value 0.01; 0.05; 0.1; 0.5 0.05 NA 

Epochs 10; 100; 500 500 500 

 

3.6 Data Analysis 

3.6.1 Performance Metrics 

For measuring the performance of the classification algorithms in this multi-class 

scenario, this work computed the following metrics: Average accuracy (𝐴𝑐𝑐), Macro-

averaging Sensitivity (𝑆𝑒), and Macro-averaging Specificity (𝑆𝑝). The average accuracy 

measures the effectiveness of a classifier. In contrast, the macro-averaging sensitivity 

represents the agreement of the data class labels with those predicted by the classifiers. 
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Finally, the macro-averaging specificity corresponds to the effectiveness of the classifier 

to identify the class labels [160]. These metrics were calculated with the following 

equations [161]: 

𝐴𝑐𝑐 =
∑

𝑇𝑝𝑖 + 𝑇𝑛𝑖

𝑇𝑝𝑖 + 𝐹𝑛𝑖 + 𝐹𝑝𝑖 + 𝑇𝑛𝑖

𝑙
𝑖=1

𝑙
, 

( 12 ) 

𝑆𝑒 =
∑

𝑇𝑝𝑖

𝑇𝑝𝑖 + 𝐹𝑛𝑖

𝑙
𝑖=1

𝑙
, 

( 13 ) 

𝑆𝑝 =
∑

𝑇𝑛𝑖

𝑇𝑛𝑖 + 𝐹𝑝𝑖

𝑙
𝑖=1

𝑙
 

( 14 ) 

where 𝑙 is the number of participants (classes), 𝑇𝑝𝑖 are the true-positive classifications, 

𝑇𝑛𝑖 are the true-negative classifications, 𝐹𝑝𝑖 corresponds to the false-positive 

classifications, and 𝐹𝑛𝑖 corresponds to the false-negative classifications; all of them of 

the ith participant. For illustrating better these concepts, if participant 1 is using the 

system, the following scenarios are examples for each of these measures: 

• 𝑇𝑝1: Signal of participant 1 classified as participant 1. 

• 𝑇𝑛1: Not signal of participant 1 classified as not participant 1. 

• 𝐹𝑝1: Not signal of participant 1 classified as participant 1. 

• 𝐹𝑛1: Signal of participant 1 classified as not participant 1. 

The sensitivity and specificity measurements were also used to create a graphic 

representation of the performance of the classifiers through a Receiver Operating 

Characteristic (ROC) curve. This performance metric offers a more robust framework for 

evaluating classifier performance than the traditional accuracy measure. Additionally, it 

allows performing visual comparisons between the performance of the classifiers [162]. 

3.6.2 Validation of Experiments 

This study executed ten-fold cross-validation with overlapping for validating the results 

of all the experiments shown in Chapter 4. The experiments used 80% of the available 

data because the hyperparameter optimization had already utilized the remaining 20%.  

The train-test split of the datasets was performed by randomly selecting of 75% of the 

signals of each subject for training and 25% for testing. This way of splitting the datasets 

ensured that the same amount of information of each participant was used in the training 
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and testing phases. Moreover, the information contained in each fold was the same for all 

the classification algorithms. Figure 19 illustrates the general idea of this validation 

process. 

 

 

 

 

 

 

 

 

 

Figure 19: Validation process representation. 

3.6.3 Experiments Description 

This work conducted three experiments for evaluating the proposed method. Each 

experiment had the objective of assessing a specific feature of the process. A necessary 

clarification is that every experiment was performed separately in both datasets. Below is 

a detailed description of all the experiments. 

3.6.3.1 Assessment of Levels of DWT 

The objective of this experiment was to assess if there was any statistically significant 

difference between the decomposition levels of the DWT mentioned previously and select 

the best one for the following experiments. This experiment was performed using all 

available EEG recording time. 

Each signal of the dataset was decomposed into sub-bands using DWT to calculate the 

RWE vector. Each feature vector corresponds to a row of the data matrix that was 

employed to train and test the different classifiers. Figure 20 represents this process. This 

process was repeated for all the different levels of decomposition. Finally, this work 
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compared the results obtained by each classifier for selecting the best decomposition 

level. Figure 21 shows the general workflow of the experiment. 

 

 

 

 

 

 

 

 

Figure 20: General classification process. 

 

 

 

 

 

 

 

Figure 21: Flowchart for the assessment of levels of DWT. 

3.6.3.2 Assessment of Different Recording Times Systematically Selected  

The objective of this test was to study the impact that the duration of EEG recordings has 

on the performance of the system. This experiment only applied the best level of 

decomposition found in the previous experiment. There was a variation in the process 

between the two datasets because of the difference in the recording durations of the 

signals in each one, i.e., 60 seconds on the DEAP dataset and 2.5 seconds on the INAOE 

dataset. 
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In the case of DEAP dataset each signal was segmented in the following times: 0.25, 0.5, 

1, 2, 4, 6, 8, 10, 20, 30, 40, 50 and 60 seconds. In contrast, the segments used in the 

INAOE dataset were: 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25 and 2.5 seconds. In any 

case, all the segmentations were made from the beginning of each recording. Furthermore, 

the same preprocessing, feature extraction, and classification process mentioned above 

were applied to each time segment. Figure 22 shows the general flowchart of this 

experiment. 

 

 

 

 

 

 

Figure 22: Flowchart for the assessment of different recording times systematically 

selected. 

3.6.3.3 Assessment of Different Recording Times Randomly Selected  

This last experiment had the purpose of testing the proposed method in a more realistic 

scenario since, in the previous experiment, the time segmentation always started from the 

beginning of the recording. However, in a more realistic scenario, the start of the 

segmentation should be taken randomly to successfully simulate the differences that may 

exist between the recordings. In general, this experiment was the same as the previous 

one, but changing the way the signals were segmented. That is why the only block that 

changes in Figure 23 concerning Figure 22 is the segmentation step. 

 

 

 

 

Figure 23: Flowchart for the assessment of different recording times randomly selected. 
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3.7 Summary 

This chapter presented the details of the proposed method. Also, the datasets, 

preprocessing technique, feature extraction, and classification, including the 

hyperparameter optimization, were detailed. Likewise, this chapter introduced the 

performance measures computed in this work and the process for validating the results. 

Additionally, the goal and description of each experiment were also presented. The 

performance measures, validation process, and experiment description will be crucial to 

understand the results presented in Chapter 4. 
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4 Results 

 

This chapter shows the results obtained in each of the experiments mentioned in Section 

3.6.3. For each experiment, the results are presented separately for the two datasets used 

in this study. In the same way, the analysis of the results is presented independently. 

Finally, there is a comparison of the proposed system concerning previous works of this 

topic. 

4.1 Assessment of Levels of DWT 

4.1.1 Results with DEAP Dataset 

Table 6 shows the performance of all classifiers using all available recording time (60 

seconds). All the classifiers except for GNB obtained results above 95% in all the 

performance metrics. In the case of SVM and MLP, the results obtained were very close 

to 100%. Furthermore, based on these results, the decomposition level does not seem to 

have a significant impact on the classifiers. 

For having a better perception of this impact, Figures 24, 25, and 26 show the 

performance of each classifier at each level of decomposition. When analyzing these 

boxplots, they seem to follow the same pattern in which the performance of the classifiers 

is very similar when using five, four, and three levels of decomposition. Nevertheless, 

when using two levels, the performance is affected. The results of GNB clearly show this 

difference between levels. 

This work conducted a Multivariate Analysis of Variance (MANOVA) for checking if 

the difference in the performance of the classifiers caused by the variation in the level of 

decomposition of the DWT was significant. This analysis executed the Wilks, Pillai, 

Hotelling-Lawley, and Roy tests [163]. Although each of these tests is different, the p-

value obtained in each one was the same, and it was 0.004. As this p-value is less than 

0.05, it means that there was a significant difference between the performance of the 

classifiers and the level of decomposition used during the preprocessing. 
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Table 6: Results of the assessment of different levels of DWT using the DEAP dataset. 

Level of 

Decomposition 
Classifier Sensitivity Specificity Accuracy 

2 

GNB 75,47±2,31 99,21±0,07 98,47±0,14 

RF 96,02±0,95 99,87±0,03 99,75±0,06 

AB 96,09±0,91 99,87±0,03 99,76±0,06 

KNN 98,01±0,66 99,94±0,02 99,88±0,04 

SVM 99,18±0,54 99,97±0,02 99,95±0,03 

MLP 98,44±0,86 99,95±0,03 99,90±0,05 

3 

GNB 88,24±1,50 99,62±0,05 99,27±0,09 

RF 98,05±0,58 99,94±0,02 99,88±0,04 

AB 98,05±0,68 99,94±0,02 99,88±0,04 

KNN 98,83±0,30 99,96±0,01 99,93±0,02 

SVM 99,57±0,48 99,99±0,02 99,97±0,03 

MLP 99,57±0,37 99,99±0,01 99,97±0,02 

4 

GNB 88,44±1,76 99,63±0,06 99,28±0,11 

RF 98,24±0,73 99,94±0,02 99,89±0,05 

AB 98,32±0,58 99,95±0,02 99,90±0,04 

KNN 98,67±0,47 99,96±0,02 99,92±0,03 

SVM 99,49±0,39 99,98±0,01 99,97±0,02 

MLP 99,26±0,51 99,98±0,02 99,95±0,03 

5 

GNB 87,85±1,70 99,61±0,05 99,24±0,11 

RF 98,28±0,70 99,94±0,02 99,89±0,04 

AB 98,16±0,78 99,94±0,03 99,89±0,05 

KNN 98,36±0,46 99,95±0,01 99,90±0,03 

SVM 99,45±0,43 99,98±0,01 99,97±0,03 

MLP 98,87±0,77 99,96±0,02 99,93±0,05 
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Figure 24: Sensitivity of the classifiers using different decomposition levels with the 

DEAP dataset. 

 

 

 

 

 

 

 

 

Figure 25: Specificity of the classifiers using different decomposition levels with the 

DEAP dataset. 

 

 

 

 

 

 

 

Figure 26: Accuracy of the classifiers using different decomposition levels with the 

DEAP dataset. 
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Additionally, a Hotelling’s T2 test was applied to all possible combinations of pairs 

between the decomposition levels (2-3, 2-4, 2-5, 3-4, 3-5, and 4-5). In each of the tests, 

the hypotheses were as follows: 

• 𝐻0: The performance of all classifiers using decomposition level A is equal to the 

performance using decomposition level B. 

• 𝐻𝑎: The performance of all classifiers using decomposition level A is different 

from the performance using decomposition level B. 

The p-values obtained in each of the tests are in Table 7; this table shows that in the case 

of level three regarding levels four and five, the null hypothesis cannot be rejected. The 

same happens between level four and level five. Nevertheless, the p-value of any test that 

compares level two is less than or equal to 0.05, meaning that the null hypothesis is 

rejected. These results confirm the initial result obtained in the MANOVA and the trend 

observed in the boxplots. 

Finally, another MANOVA was performed between the decomposition levels three, four, 

and five. This analysis resulted in a p-value of 0.484, which is greater than 0.05, indicating 

that there is no significant difference between these three levels. For this reason, for the 

following experiments with this dataset, only DWT with three decomposition levels was 

used since it is the least computationally expensive. 

Table 7: Resulting p-values of Hotelling’s T2 tests between different levels of DWT 

using the DEAP dataset. 

Level of 

decomposition 

Level of decomposition 

2 3 4 5 

2 1 0.04 0.05 0.05 

3   1 0.71 0.43 

4     1 0.73 

5       1 

 

4.1.2 Results with INAOE Dataset 

The process of extracting results using this dataset was the same as the one detailed for 

the DEAP dataset. Table 8 shows the performance of the classifiers using 2.5 seconds of 
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recording, i.e., the maximum time available. In this scenario, GNB was the classifier with 

the lowest performance; however, SVM had a similar performance. Using this dataset, 

the classifiers that stood out the most were AB and RF. 

Figures 27, 28, and 29 show the boxplots for sensitivity, specificity, and accuracy, 

respectively. These figures provide a graphical representation of the impact of the 

different decomposition levels of DWT on the performance of the classifiers. As before, 

it seems that the only level of decomposition that affects performance is level two. 

However, when performing a MANOVA to verify said variation, the obtained p-value 

was 0.6318, indicating that the level of decomposition of DWT does not have any impact 

on the performance of the classifiers. 

Despite the result of the MANOVA, this study applied the same Hotelling’s T2 tests 

described in Section 4.1.1. Table 9 shows the p-values obtained in each of the tests and, 

as can be seen, all are greater than 0.05. These p-values verified the result of the 

MANOVA since the hypothesis of equality of performance between the classifiers using 

different levels of decomposition could not be rejected. For this reason, the following 

experiments carried out with this dataset only used a discrete wavelet transform with two 

levels of decomposition. 

Table 8: Results of the assessment of different levels of DWT using the INAOE dataset. 

Level of 

Decomposition 
Classifier Sensitivity Specificity Accuracy 

2 

GNB 65,42±1,64 99,31±0,03 98,64±0,06 

RF 96,00±0,43 99,92±0,01 99,84±0,02 

AB 96,16±0,44 99,92±0,01 99,85±0,02 

KNN 94,09±0,45 99,88±0,01 99,77±0,02 

SVM 67,88±3,78 99,36±0,08 98,74±0,15 

MLP 87,59±2,03 99,75±0,04 99,51±0,08 

3 

GNB 67,04±1,66 99,34±0,03 98,71±0,07 

RF 97,13±0,60 99,94±0,01 99,89±0,02 

AB 97,16±0,43 99,94±0,01 99,89±0,02 

KNN 95,37±0,41 99,91±0,01 99,82±0,02 
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Level of 

Decomposition 
Classifier Sensitivity Specificity Accuracy 

3 
SVM 73,03±4,71 99,46±0,09 98,94±0,18 

MLP 92,01±1,01 99,84±0,02 99,69±0,04 

4 

GNB 66,59±1,43 99,33±0,03 98,69±0,06 

RF 97,37±0,45 99,95±0,01 99,90±0,02 

AB 97,41±0,46 99,95±0,01 99,90±0,02 

KNN 95,34±0,58 99,91±0,01 99,82±0,02 

SVM 74,05±4,78 99,48±0,10 98,98±0,19 

MLP 92,73±1,15 99,85±0,02 99,71±0,04 

5 

GNB 64,81±1,14 99,30±0,02 98,62±0,04 

RF 97,63±0,32 99,95±0,01 99,91±0,01 

AB 97,54±0,35 99,95±0,01 99,90±0,01 

KNN 95,25±0,62 99,91±0,01 99,81±0,02 

SVM 75,90±4,48 99,52±0,09 99,05±0,18 

MLP 93,85±0,90 99,88±0,02 99,76±0,04 

 

 

 

 

 

 

 

 

Figure 27: Sensitivity of the classifiers using different decomposition levels with the 

INAOE dataset. 
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Figure 28: Specificity of the classifiers using different decomposition levels with the 

INAOE dataset. 

 

 

 

 

 

 

 

Figure 29: Accuracy of the classifiers using different decomposition levels with the 

INAOE dataset. 

Table 9: Resulting p-values of Hotelling’s T2 tests between different levels of DWT 

using the INAOE dataset. 

Level of 

decomposition 

Level of decomposition 

2 3 4 5 

2 1 0.51 0.45 0.61 

3   1 0.99 0.58 

4     1 0.53 

5       1 
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4.2 Assessment of Different Recording Times 

Systematically Selected 

4.2.1 Results with DEAP Dataset 

Appendix A shows the performance of the classifiers using the time segments described 

in Section 3.6.3.2. This appendix reveals that with 4 seconds of recording, SVM and MLP 

reached a sensitivity, specificity, and accuracy greater than 90%. On the other hand, the 

rest of the classifiers, except for GNB, needed 8 seconds of recording to obtain similar 

results. 

Figure 30 shows the initial section of a ROC curve using the time extremes of this 

experiment, i.e., 0.25 and 60 seconds. This figure allowed to visually checking the impact 

of the recording time on the performance of the classifiers. It is worth mentioning that the 

ROC curves are defined for binary classification problems. Therefore, the one-vs-all 

approach was used in this study, comparing the data of the first participant with all the 

others. 

Additionally, to obtain better interpretability of the results of Appendix A, Figures 31, 

32, and 33 show the boxplots of the performance of the classifiers grouped by time. These 

figures demonstrate that the performance obtained by GNB was below the rest of the 

classifiers. Also, the significant impact of the recording time over the results of the system 

was verified again. However, this impact seems to decrease with increasing time since 

the results obtained with 30, 40, 50, and 60 seconds do not show a significant difference 

between them as do the results obtained with 0.25, 0.5, 1, and 2 seconds of recording. 

For this reason, a Hotelling’s T2 test was applied to the combination of each time segment 

concerning the total time (0.25-60, 0.5-60, 1-60, 2-60, 4-60, 6-60, 8-60, 10-60, 20-60, 30-

60, 40-60, 50-60) to verify if there was a significant difference between using 60 seconds 

of recording or less. Table 10 shows the p-values obtained in these tests. In this table, 

using a 95% confidence level, there was no significant difference in the performance of 

the classifiers using 40, 50, or 60 seconds of recording. 
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Figure 30: ROC curve of all classifiers using 0.25 and 60 seconds of recording time of 

the DEAP dataset. 

 

 

 

 

 

 

 

Figure 31: Sensitivity of the classifiers grouped by recording time using the DEAP 

dataset. 

 

 

 

 

 

 

 

Figure 32: Specificity of the classifiers grouped by recording time using the DEAP 

dataset. 
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Figure 33: Accuracy of the classifiers grouped by recording time using the DEAP 

dataset. 

Table 10: Resulting p-values of Hotelling’s T2 tests between the results of each time 

segment and 60 seconds using the DEAP dataset. 

Time segment p-value 

0.25 2.2e-16 

0.5 2.2e-16 

1 2.2e-16 

2 2.2e-16 

4 2.2e-16 

6 8.6e-12 

8 5.3e-11 

10 3.1e-6 

20 0 

30 0.05 

40 0.09 

50 0.48 

 

A MANOVA was performed with the data corresponding to the 40, 50, and 60 seconds 

segments to confirm the result mentioned above. The p-value obtained in this test was 

0.08973 (> 0.05). This value established that when using this dataset is not necessary to 

have recordings longer than 40 seconds. Additionally, during this experiment, another 
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Hotelling’s T2 test was performed between each possible combination of classifier pairs 

using the data up to 40 seconds due to the previous results; Table 11 shows the p-values 

of each test. These results revealed that the performance of RF and AB was almost 

identical. This similarity is because the weak classifier of AB was RF. However, also, 

there was a high similarity between SVM and MLP. As SVM was the classifier that 

achieves higher results, it means that either SVM or MLP can be considered as the best 

one for developing a biometric system based on EEG signals using this dataset. 

Table 11: Resulting p-values of Hotelling’s T2 tests between the performance of the 

classifiers with 40 seconds of recording using the DEAP dataset. 

 

 

 

 

 

 

 

 

 

4.2.2 Results with INAOE Dataset 

The overall results of this experiment are presented in Appendix A. This appendix 

exhibits that with just 1 second of recording, RF and AB got values higher than 90% in 

all the performance metrics. At the same time, KNN needed 1.75 seconds to achieve 

similar results. On the other hand, GNB, SVM, and MLP never got sensitivities higher 

than 90%.  

Figure 34 shows a graphical assessment of the performance of the classifiers. This figure 

corresponds to a ROC curve for all classifiers using 0.25 and 2.5 seconds of recording 

time. As in the case of the DEAP dataset, the one-vs-all approach was followed. 

Figures 35, 36, and 37 analyze the sensitivity, specificity, and accuracy of the results 

contained in Appendix A. These figures show that SVM and MLP were the most unstable 

classifiers for this experiment because they have the highest standard deviation. 

Moreover, they represent the direct impact of the recording time on the performance of 

Classifier 
Classifier 

GNB RF AB KNN SVM MLP 

GNB 1 2.2e-16 2.2e-16 3.5e-13 2.2e-16 2.2e-16 

RF   1 0.99 0.04 0.05 0 

AB     1 0.02 0.1 0 

KNN       1 6.6e-5 2.2e-6 

SVM         1 0.8 

MLP           1 
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the classifiers. Nevertheless, as in the results of the DEAP dataset, this impact seems to 

decrease when it is near to the maximum time. 

This study applied a Hotelling's T2 test to each of tested segments of time respecting to 

2.5 seconds (0.25-2.5, 0.25-2.5, 0.75-2.5, 1-2.5, 1.25-2.5, 1.5-2.5, 1.5-2.5, 1.75-2.5, 2-

2.5, 2.25-2.5) to check whether there was a time segment that produced results that were 

not statistically different from those of 2.5 seconds. Table 12 contains the resulting p-

values of these tests. These values confirmed that the results obtained using 1.75 seconds 

are not statistically different from the results obtained using 2, 2.25, or 2.5 seconds of 

recording.  

 

 

 

 

 

 

 

Figure 34: ROC curve of all classifiers using 0.25 and 2.5 seconds of recording time of 

the INAOE dataset. 

 

 

 

 

 

 

 

Figure 35: Sensitivity of the classifiers grouped by recording time using the INAOE 

dataset. 
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Figure 36: Specificity of the classifiers grouped by recording time using the INAOE 

dataset. 

 

 

 

 

 

 

 

Figure 37: Accuracy of the classifiers grouped by recording time using the INAOE 

dataset. 

Furthermore, a MANOVA was conducted with the classification results of the time 

segments: 1.75, 2, 2.25, and 2.5. The p-value for this test was 0.09799 (> 0.05), supporting 

that when using this dataset for developing biometric systems, it is not necessary to have 

recordings longer than 1.75 seconds. 

Finally, Table 13 presents the resulting p-values of the Hotelling’s T2 tests conducted 

with all the combinations of classifiers pairs omitting the results of more than 1.75 

seconds of recording. These results show that there was no significant difference between 

the results of RF and AB, but this result was expected because the weak classifier of AB 

was RF. As AB was the classifier that achieves higher results, it means that either AB or 
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RF can be considered as the best one for developing a biometric system based on EEG 

signals using this dataset. 

Table 12: Resulting p-values of Hotelling’s T2 tests between the results of each time 

segment and 2.5 seconds using the INAOE dataset. 

Time segment p-value 

0.25 2.2e-16 

0.5 8.5e-11 

0.75 7.2e-6 

1 0 

1.25 0.02 

1.5 0.05 

1.75 0.21 

2 0.16 

2.25 0.16 

 

Table 13: Resulting p-values of Hotelling’s T2 tests between the performance of the 

classifiers with 1.75 seconds of recording using the INAOE dataset. 

Classifier 
Classifier 

GNB RF AB KNN SVM MLP 

GNB 1 2.2e-16 2.2e-16 1.1e-13 7.9e-8 0 

RF   1 0.82 4.4e-5 2.2e-16 6.2e-14 

AB     1 5.6e-6 2.2e-16 5.8e-14 

KNN       1 2.2e-16 0 

SVM         1 9.1e-11 

MLP           1 
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4.3 Assessment of Different Recording Times Randomly 

Selected 

4.3.1 Results with DEAP Dataset 

The performance of the classification algorithms using the same time segments of the 

previous experiment, but randomly selecting the start of them, is shown in Appendix B. 

At first glance, the results obtained do not seem to show a significant difference between 

selecting the time segments from the start of the recording (previous experiment) and 

selecting the start of the segment randomly (current experiment). Nonetheless, a 

Hotelling’s T2 test was performed using all the results from all the classifiers obtained in 

both experiments for verifying this assumption. The p-value obtained in this test was 

0.917, demonstrating that there was no significant difference between the performance of 

the system in a more controlled environment and a more realistic one. 

4.3.2 Results with INAOE Dataset 

The results of the assessment of different recording times randomly selected are shown 

in Appendix B. Even though there seems to be no difference between these results and 

the results of Section 4.2.2, a Hotelling’s T2 test was performed to validate it. The p-value 

obtained in this test was 0.09278, which is greater than 0.05. This value indicates that the 

difference between the performance of the classifiers in a more controlled environment 

(previous experiment) and a more realistic one (current experiment) is not significant. 

4.4 Comparison of the Proposed System 

Creating a fair comparison of the results obtained in this study with the previous 

researches in biometric systems based on EEG signals is complicated because of the 

variety of EEG datasets, features, the number of subjects, and cognitive tasks used [116, 

142, 144–147, 164]. Despite these differences, Table 14 presents a short but detailed 

comparison with the previous related studies. In this table, the results of this work are the 

sensitivity using three levels of decomposition with 40 seconds in the case of the DEAP 

dataset and two levels of decomposition with 1.75 seconds in the case of the INAOE 

dataset. 

This table shows that most of the previous studies used the multilayer perceptron as a 

classification algorithm. However, in the case of the DEAP dataset, the proposed MLP 
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performed better than previous works. Also, since it was proved that it does not have a 

significant difference with SVM, this classifier could be used instead due to its lower 

simplicity. On the other hand, in the results obtained with the INAOE dataset, MLP and 

SVM were not the best classifiers, but AB reached a sensitivity higher than most of the 

previous works.  

An important fact to take into account while analyzing this comparison is the number of 

subjects in the datasets and the recording time used. Table 14 contains the number of 

subjects, but as most of the articles do not include the recording time, this parameter could 

not be included in this comparison. Nevertheless, in the case of this study, the difference 

between both databases is 38.25 seconds, which in terms of biometric systems, can be 

considered a huge difference. 

Finally, despite some of the previous studies use the discrete wavelet transform, none of 

them uses the relative wavelet energy as a feature for the system. Instead, they calculate 

the mean, standard deviation, or entropy, which are common features for developing 

biometric systems. 

Table 14: Comparison of the present study with previous works related to biometric 

systems based on EEG analysis. 

Study Year Subjects Feature Classifier Sensitivity (%) 

Hu [164] 2010 3 

AR coefficients 

MLP 85,00 

Linear complexity 

Energy spectrum 

density 

Energy entropy 

Phase locking value 

Hu [142] 2010 3 AR coefficients MLP 92,80 

Shedeed [144] 2011 3 
DFT and Wavelet 

mean, std and entropy 
MLP 93,00 

Gui, Jin, & Xu 

[145] 
2014 32 

Wavelet mean, std 

and entropy 
MLP 94,04 
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Study Year Subjects Feature Classifier Sensitivity (%) 

Koike-Akino et 

al. [146] 
2016 25 PCA and PLS QDA 96,70 

Zhang, Zhou, & 

Zeng [116] 
2017 20 

Gamma-band spectral 

power ratio 

RF 86,00 

MLP 85,10 

KNN 78,00 

AB 73,90 

Bagging 66,70 

Saini et al. [147] 2018 70 
Gamma-band 

features 
HMM 95,65 

This work using 

DEAP 
2020 32 

Relative wavelet 

energy 

MLP 98,67 

SVM 98,67 

KNN 97,34 

RF 96,68 

AB 96,60 

GNB 84,45 

This work using 

INAOE 
2020 51 

Relative wavelet 

energy 

AB 94,22 

RF 94,15 

KNN 91,28 

MLP 83,40 

GNB 62,45 

SVM 57,47 

 

4.5 Summary 

This chapter presented the results obtained in each experiment. The first experiment 

revealed that the decomposition level of the discrete wavelet transform might not have a 

significant impact on the performance of the classifiers. Subsequently, the analysis 

performed using different time segments of EEG recording helped to verify that this time 

has a direct impact on the performance of the classifiers. 

Furthermore, during this experiment, the best classifiers for each dataset could be 

recognized. SVM and MLP were the best in the case of the DEAP dataset, while AB and 

RF stood out when using the INAOE dataset. On the other hand, the last experiment tested 
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the proposed system in a more realistic environment. As no significant difference in the 

performance of the classifiers concerning the experiment with a more controlled 

environment was found, the efficacy of the proposed method was verified. Finally, this 

chapter also included a brief comparison between the proposed system in this work and 

some studies on biometric systems based on EEG signals previously developed. 
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5 Conclusions and Future Work 

 

This work proposed a biometric system based on the analysis of electroencephalogram 

signals. The discrete wavelet transform (DWT) served as a preprocessing method for the 

system. The wavelet relative energy was extracted as a feature, and six different artificial 

intelligence models were tested to select the best one. 

Due to this study used two different datasets, the experimental results showed that the 

best classifier was different for each of them. Support Vector Machine and Multilayer 

Perceptron were the best when using the DEAP dataset. On the other hand, when using 

the INAOE dataset, the best classifiers turned out to be Random Forest and AdaBoost. 

The difference in the nature of the experiments used during the collection of the EEG 

signals in each of the datasets might be related to the differences in the best classifiers. 

However, the proposed methodology managed to obtain classifiers with a sensitivity, 

specificity, and accuracy greater than 95% using both datasets. 

This study was carried out to discover the potential of EEG signals to develop biometric 

systems because these signals can solve some of the problems of biometrics, such as the 

verification that the user is alive. The results obtained demonstrated that these 

bioelectrical signals could be used to create robust biometric systems. Besides, this work 

analyzed the impact of the level of decomposition of discrete wavelet transform and the 

recording time on the classifier performance. It is worth mentioning that neither of these 

analyses has been previously performed. 

The experimental results obtained using different levels of decomposition showed that 

although the state-of-the-art recommends using five or four levels, fewer levels can be 

used and obtain significantly similar results. Nevertheless, this always depends on the 

dataset, since in the case of DEAP, only three levels of decomposition were necessary, 

while for the INAOE dataset, two levels of decomposition were enough. 

Furthermore, the results obtained in this study allowed the observation of the effect that 

the recording time of EEG signals has on the overall performance of the system. A 

MANOVA and Hotelling's T2 tests verified this effect. Additionally, these techniques 
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exhibited that there is a point from which it does not matter if the available time increases, 

the performance of the system does not vary significantly. Consequently, using 2 seconds 

of EEG recording can be proposed as a standard for future studies because of the high 

results achieved with this time. 

Finally, thanks to the results of this study, EEG signals should be applied to the 

development of biometric systems in scenarios where high security is needed, and the 

portability of the system is not a problem. However, with the development of more 

portable EEG recording devices, these systems could begin to be used in more common 

scenarios and gradually replace traditional biometrics. 

Some of the limitations found during the development of this study were the lack of public 

datasets of EEG signals and the lack of own equipment for recording these signals. Most 

studies in the area of biometric systems based on EEG signals use private datasets. 

Therefore, accessing datasets with more realistic scenarios or more participants is very 

difficult, forcing researchers to create their datasets. Even though this work could not 

create a private dataset due to the lack of necessary materials, it worked with a private 

dataset of the INAOE. 

As future work, an analysis of EEG channels should be performed. The study of channels 

could reduce the amount of data that the system must process by selecting only the 

channels that provide valuable information. Also, it could improve the portability of the 

system. Additionally, thanks to the quick development of Deep Learning, these types of 

neural networks should be tested for having a more extensive comparison. Likewise, in 

this work, only the development of unimodal biometric systems based on EGG signals 

was studied. However, it would be interesting to study the development of multimodal 

systems using classical signals such as voice, face or fingerprint, and bioelectric signals 

such as electrocardiograms. These multimodal biometrics could help to decrease the 

required time of EEG recording and increase the security of the system. 
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Appendices 

A Results of the Assessment of Different Recording 

Times Systematically Selected 

Tables 15 and 16 contain the results of using the DEAP dataset and INAOE dataset, 

respectively. 

Table 15: Results of the assessment of different recording times systematically selected 

using DEAP dataset. 

Time (s) Classifier Sensitivity (%) Specificity (%) Accuracy (%) 

0,25 

GNB 29,18±3,38 97,72±0,11 95,57±0,21 

RF 58,52±2,26 98,66±0,07 97,41±0,14 

AB 58,63±2,24 98,67±0,07 97,41±0,14 

KNN 43,75±2,55 98,19±0,08 96,48±0,16 

SVM 57,97±2,42 98,64±0,08 97,37±0,15 

MLP 62,81±2,30 98,80±0,07 97,68±0,14 

0,5 

GNB 33,52±1,51 97,86±0,05 95,84±0,09 

RF 64,41±2,66 98,85±0,09 97,78±0,17 

AB 64,65±2,20 98,86±0,07 97,79±0,14 

KNN 50,39±2,82 98,40±0,09 96,90±0,18 

SVM 68,12±3,15 98,97±0,10 98,01±0,20 

MLP 73,59±2,42 99,15±0,08 98,35±0,15 

1 

GNB 38,87±2,45 98,03±0,08 96,18±0,15 

RF 73,01±2,97 99,13±0,10 98,31±0,19 

AB 72,89±2,45 99,13±0,08 98,31±0,15 

KNN 61,33±1,73 98,75±0,06 97,58±0,11 

SVM 77,30±2,27 99,27±0,07 98,58±0,14 

MLP 81,33±2,17 99,40±0,07 98,83±0,14 

2 

GNB 45,66±2,13 98,25±0,07 96,60±0,13 

RF 82,27±2,34 99,43±0,08 98,89±0,15 

AB 82,50±2,46 99,44±0,08 98,91±0,15 
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Time (s) Classifier Sensitivity (%) Specificity (%) Accuracy (%) 

2 

KNN 76,45±2,80 99,24±0,09 98,53±0,18 

SVM 87,85±1,77 99,61±0,06 99,24±0,11 

MLP 89,14±1,84 99,65±0,06 99,32±0,11 

4 

GNB 56,02±1,65 98,58±0,05 97,25±0,10 

RF 88,40±1,85 99,63±0,06 99,27±0,12 

AB 87,73±1,70 99,60±0,05 99,23±0,11 

KNN 83,83±1,52 99,48±0,05 98,99±0,10 

SVM 92,58±1,47 99,76±0,05 99,54±0,09 

MLP 93,67±1,35 99,80±0,04 99,60±0,08 

6 

GNB 64,3±1,31 98,85±0,04 97,77±0,08 

RF 91,17±1,38 99,72±0,04 99,45±0,09 

AB 91,05±1,48 99,71±0,05 99,44±0,09 

KNN 89,69±1,59 99,67±0,05 99,36±0,10 

SVM 94,73±0,84 99,83±0,03 99,67±0,05 

MLP 95,20±1,31 99,85±0,04 99,70±0,08 

8 

GNB 67,03±1,70 98,94±0,05 97,94±0,11 

RF 90,09±0,97 99,71±0,03 99,43±0,06 

AB 91,48±1,07 99,73±0,03 99,47±0,07 

KNN 90,39±1,30 99,69±0,04 99,40±0,08 

SVM 95,47±0,72 99,85±0,02 99,72±0,05 

MLP 95,98±0,89 99,87±0,03 99,75±0,06 

10 

GNB 68,44±1,97 98,98±0,06 98,03±0,12 

RF 93,16±0,84 99,78±0,03 99,57±0,05 

AB 93,16±0,77 99,78±0,02 99,57±0,05 

KNN 92,73±1,08 99,77±0,03 99,55±0,07 

SVM 96,64±0,80 99,89±0,03 99,79±0,05 

MLP 96,37±1,08 99,88±0,03 99,77±0,07 

20 

GNB 77,85±1,48 99,29±0,05 98,62±0,09 

RF 94,88±0,83 99,83±0,03 99,68±0,05 

AB 94,65±1,12 99,83±0,04 99,67±0,07 

KNN 96,37±0,84 99,88±0,03 99,77±0,05 

SVM 97,97±0,52 99,93±0,02 99,87±0,03 
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Time (s) Classifier Sensitivity (%) Specificity (%) Accuracy (%) 

20 MLP 97,73±0,69 99,93±0,02 99,86±0,04 

30 

GNB 80,82±1,97 99,38±0,06 98,80±0,12 

RF 96,25±1,01 99,88±0,03 99,77±0,06 

AB 96,05±1,23 99,87±0,04 99,75±0,08 

KNN 96,72±0,66 99,89±0,02 99,79±0,04 

SVM 98,63±0,31 99,96±0,01 99,91±0,02 

MLP 98,48±0,54 99,95±0,02 99,90±0,03 

40 

GNB 84,45±1,35 99,50±0,04 99,03±0,08 

RF 96,68±0,77 99,89±0,02 99,79±0,05 

AB 96,60±0,74 99,89±0,02 99,79±0,05 

KNN 97,34±0,49 99,91±0,02 99,83±0,03 

SVM 98,67±0,31 99,96±0,01 99,92±0,02 

MLP 98,67±0,56 99,96±0,02 99,92±0,03 

50 

GNB 85,20±1,24 99,52±0,04 99,07±0,08 

RF 97,03±0,93 99,90±0,03 99,81±0,06 

AB 97,03±0,98 99,90±0,03 99,81±0,06 

KNN 97,70±0,62 99,93±0,02 99,86±0,04 

SVM 99,18±0,44 99,97±0,01 99,95±0,03 

MLP 98,63±0,77 99,96±0,02 99,91±0,05 

60 

GNB 88,24±1,50 99,62±0,05 99,27±0,09 

RF 98,05±0,58 99,94±0,02 99,88±0,04 

AB 98,05±0,68 99,94±0,02 99,88±0,04 

KNN 98,83±0,30 99,96±0,01 99,93±0,02 

SVM 99,57±0,48 99,99±0,02 99,97±0,03 

MLP 99,57±0,37 99,99±0,01 99,97±0,02 
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Table 16: Results of the assessment of different recording times systematically selected 

using INAOE dataset. 

Time (s) Classifier Sensitivity (%) Specificity (%) Accuracy (%) 

0,25 

GNB 40,49±1,46 98,81±0,03 97,67±0,06 

RF 67,80±0,90 99,36±0,02 98,74±0,04 

AB 68,17±0,84 99,36±0,02 98,75±0,03 

KNN 38,98±3,73 98,78±0,07 97,61±0,15 

SVM 26,84±15,32 98,54±0,31 97,13±0,60 

MLP 43,59±16,68 9 8,87±0,33 97,79±0,65 

0,5 

GNB 48,77±1,28 98,98±0,03 97,99±0,05 

RF 82,43±0,55 99,65±0,01 99,31±0,02 

AB 82,51±0,51 99,65±0,01 99,31±0,02 

KNN 60,93±3,75 99,22±0,07 98,47±0,15 

SVM 37,98±20,41 98,76±0,41 97,57±0,80 

MLP 56,23±18,56 99,12±0,37 98,28±0,73 

0,75 

GNB 53,73±1,19 99,07±0,02 98,19±0,05 

RF 88,02±0,38 99,76±0,01 99,53±0,01 

AB 88,29±0,40 99,77±0,01 99,54±0,02 

KNN 79,43±2,89 99,59±0,06 99,19±0,11 

SVM 33,14±15,80 98,66±0,32 97,38±0,62 

MLP 55,53±16,86 99,11±0,34 98,26±0,66 

1 

GNB 59,11±1,31 99,18±0,03 98,40±0,05 

RF 91,35±0,72 99,83±0,01 99,66±0,03 

AB 91,37±0,63 99,83±0,01 99,66±0,02 

KNN 85,29±1,52 99,71±0,03 99,42±0,06 

SVM 34,81±14,49 98,70±0,29 97,44±0,57 

MLP 64,38±11,72 99,29±0,23 98,60±0,46 

1,25 

GNB 63,03±1,28 99,26±0,03 98,55±0,05 

RF 93,04±0,63 99,86±0,01 99,73±0,02 

AB 93,15±0,56 99,86±0,01 99,73±0,02 

KNN 89,04±0,80 99,78±0,02 99,57±0,03 

SVM 43,27±15,26 98,87±0,31 97,78±0,60 
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Time (s) Classifier Sensitivity (%) Specificity (%) Accuracy (%) 

1,25 MLP 72,36±9,16 99,45±0,18 98,92±0,36 

1,5 

GNB 62,16±1,34 99,24±0,03 98,52±0,05 

RF 93,35±0,68 99,87±0,01 99,74±0,03 

AB 93,41±0,77 99,87±0,02 99,74±0,03 

KNN 89,92±1,10 99,80±0,02 99,60±0,04 

SVM 50,28±13,30 99,01±0,27 98,05±0,52 

MLP 78,52±6,48 99,57±0,13 99,16±0,25 

1,75 

GNB 62,45±1,33 99,25±0,03 98,53±0,05 

RF 94,15±0,70 99,88±0,01 99,77±0,03 

AB 94,22±0,73 99,88±0,01 99,77±0,03 

KNN 91,28±1,18 99,83±0,02 99,66±0,05 

SVM 57,47±11,15 99,15±0,22 98,33±0,44 

MLP 83,40±4,66 99,67±0,09 99,35±0,18 

2 

GNB 63,41±1,70 99,27±0,03 98,57±0,07 

RF 94,76±0,50 99,90±0,01 99,79±0,02 

AB 94,79±0,49 99,90±0,01 99,80±0,02 

KNN 92,59±0,80 99,85±0,02 99,71±0,03 

SVM 63,27±9,71 99,27±0,19 98,56±0,38 

MLP 85,57±3,29 99,71±0,07 99,43±0,13 

2,25 

GNB 64,40±1,36 99,29±0,03 98,60±0,05 

RF 95,71±0,43 99,91±0,01 99,83±0,02 

AB 95,63±0,44 99,91±0,01 99,83±0,02 

KNN 93,63±0,83 99,87±0,02 99,75±0,03 

SVM 67,89±6,73 99,36±0,13 98,74±0,26 

MLP 87,45±2,69 99,75±0,05 99,51±0,11 

2,5 

GNB 65,42±1,64 99,31±0,03 98,64±0,06 

RF 96,00±0,43 99,92±0,01 99,84±0,02 

AB 96,16±0,44 99,92±0,01 99,85±0,02 

KNN 94,09±0,45 99,88±0,01 99,77±0,02 

SVM 67,88±3,78 99,36±0,08 98,74±0,15 

MLP 87,59±2,03 99,75±0,04 99,51±0,08 
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B Results of the Assessment of Different Recording 

Times Randomly Selected 

Tables 17 and 18 contain the results of using the DEAP dataset and INAOE dataset, 

respectively. 

Table 17: Results of the assessment of different recording times randomly selected 

using DEAP dataset. 

Time (s) Classifier Sensitivity (%) Specificity (%) Accuracy (%) 

0,25 

GNB 25,90±2,68 97,61±0,09 95,37±0,17 

RF 50,12±2,44 98,39±0,08 96,88±0,15 

AB 48,79±3,21 98,35±0,10 96,80±0,20 

KNN 38,87±1,79 98,03±0,06 96,18±0,11 

SVM 51,68±2,44 98,44±0,08 96,98±0,15 

MLP 59,10±1,85 98,68±0,06 97,44±0,12 

0,5 

GNB 35,12±2,82 97,91±0,09 95,94±0,18 

RF 63,98±1,30 98,84±0,04 97,75±0,08 

AB 64,26±1,63 98,85±0,05 97,77±0,10 

KNN 50,20±1,87 98,39±0,06 96,89±0,12 

SVM 69,38±3,41 99,01±0,11 98,09±0,21 

MLP 74,02±2,72 99,16±0,09 98,38±0,17 

1 

GNB 40,23±1,89 98,07±0,06 96,26±0,12 

RF 74,22±2,26 99,17±0,07 98,39±0,14 

AB 74,53±1,89 99,18±0,06 98,41±0,12 

KNN 63,52±1,48 98,82±0,05 97,72±0,09 

SVM 79,73±1,63 99,35±0,05 98,73±0,10 

MLP 82,38±1,56 99,43±0,05 98,90±0,10 

2 

GNB 48,44±2,20 98,34±0,07 96,78±0,14 

RF 80,51±1,93 99,37±0,06 98,78±0,12 

AB 80,66±1,50 99,38±0,05 98,79±0,09 

KNN 78,55±1,69 99,31±0,05 98,66±0,11 

SVM 88,63±2,19 99,63±0,07 99,29±0,14 

MLP 90,82±0,81 99,70±0,03 99,43±0,05 
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Time (s) Classifier Sensitivity (%) Specificity (%) Accuracy (%) 

4 

GNB 56,76±2,75 98,61±0,09 97,30±0,17 

RF 89,65±1,92 99,67±0,06 99,35±0,12 

AB 89,26±1,86 99,65±0,06 99,33±0,12 

KNN 88,44±1,33 99,63±0,04 99,28±0,08 

SVM 94,10±1,07 99,81±0,03 99,63±0,07 

MLP 94,41±1,25 99,82±0,04 99,65±0,08 

6 

GNB 61,91±2,45 98,77±0,08 97,62±0,15 

RF 91,17±1,04 99,72±0,03 99,45±0,06 

AB 91,05±1,43 99,71±0,05 99,44±0,09 

KNN 90,23±1,49 99,68±0,05 99,39±0,09 

SVM 94,96±1,63 99,84±0,05 99,69±0,10 

MLP 96,45±1,57 99,89±0,05 99,78±0,10 

8 

GNB 65,70±1,75 98,89±0,06 97,86±0,11 

RF 91,45±1,77 99,72±0,06 99,47±0,11 

AB 91,64±1,73 99,73±0,06 99,48±0,11 

KNN 92,15±1,61 99,75±0,05 99,51±0,10 

SVM 96,95±1,07 99,90±0,03 99,81±0,07 

MLP 96,91±1,03 99,90±0,03 99,81±0,06 

10 

GNB 70,86±2,41 99,06±0,08 98,18±0,15 

RF 92,73±1,15 99,77±0,04 99,55±0,07 

AB 92,85±1,22 99,77±0,04 99,55±0,08 

KNN 93,63±1,43 99,79±0,05 99,60±0,09 

SVM 97,27±0,96 99,91±0,03 99,83±0,06 

MLP 97,15±1,09 99,91±0,04 99,82±0,07 

20 

GNB 78,67±2,24 99,31±0,07 98,67±0,14 

RF 94,65±1,43 99,83±0,05 99,67±0,09 

AB 94,69±1,58 99,83±0,05 99,67±0,10 

KNN 95,78±1,12 99,86±0,04 99,74±0,07 

SVM 97,70±0,88 99,93±0,03 99,86±0,06 

MLP 97,85±0,91 99,93±0,03 99,87±0,06 

30 
GNB 81,88±1,75 99,42±0,06 98,87±0,11 

RF 95,66±1,25 99,86±0,04 99,73±0,08 
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Time (s) Classifier Sensitivity (%) Specificity (%) Accuracy (%) 

30 

AB 95,98±0,94 99,87±0,03 99,75±0,06 

KNN 97,03±0,99 99,90±0,03 99,81±0,06 

SVM 99,22±0,52 99,97±0,02 99,95±0,03 

MLP 98,09±0,95 99,94±0,03 99,88±0,06 

40 

GNB 84,69±1,64 99,51±0,05 99,04±0,10 

RF 96,02±1,09 99,87±0,04 99,75±0,07 

AB 95,98±1,08 99,87±0,03 99,75±0,07 

KNN 97,27±0,84 99,91±0,03 99,83±0,05 

SVM 99,26±0,37 99,98±0,01 99,95±0,02 

MLP 98,36±0,67 99,95±0,02 99,90±0,04 

50 

GNB 87,50±1,25 99,60±0,04 99,22±0,08 

RF 97,34±1,13 99,91±0,04 99,83±0,07 

AB 97,03±0,84 99,90±0,03 99,81±0,05 

KNN 97,73±0,78 99,93±0,03 99,86±0,05 

SVM 99,18±0,56 99,97±0,02 99,95±0,04 

MLP 98,79±0,71 99,96±0,02 99,92±0,04 

60 

GNB 88,32±1,67 99,62±0,05 99,27±0,10 

RF 97,46±0,77 99,92±0,02 99,84±0,05 

AB 97,46±0,84 99,92±0,03 99,84±0,05 

KNN 98,36±0,78 99,95±0,03 99,90±0,05 

SVM 99,26±0,56 99,98±0,02 99,95±0,04 

MLP 99,06±0,84 99,97±0,03 99,94±0,05 
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Table 18: Results of the assessment of different recording times randomly selected 

using INAOE dataset. 

Time (s) Classifier Sensitivity (%) Specificity (%) Accuracy (%) 

0,25 

GNB 37,39±1,08 98,75±0,02 97,54±0,04 

RF 66,17±1,16 99,32±0,02 98,67±0,05 

AB 66,12±1,42 99,32±0,03 98,67±0,06 

KNN 39,90±2,93 98,80±0,06 97,64±0,11 

SVM 55,72±2,13 99,11±0,04 98,26±0,08 

MLP 66,87±1,57 99,34±0,03 98,70±0,06 

0,5 

GNB 47,82±1,39 98,96±0,03 97,95±0,05 

RF 80,38±1,05 99,61±0,02 99,23±0,04 

AB 80,27±1,10 99,61±0,02 99,23±0,04 

KNN 65,98±2,48 99,32±0,05 98,67±0,10 

SVM 36,78±6,05 98,74±0,12 97,52±0,24 

MLP 63,25±3,62 99,27±0,07 98,56±0,14 

0,75 

GNB 52,10±1,71 99,04±0,03 98,12±0,07 

RF 86,33±0,84 99,73±0,02 99,46±0,03 

AB 86,31±0,98 99,73±0,02 99,46±0,04 

KNN 71,50±4,76 99,43±0,10 98,88±0,19 

SVM 54,56±10,04 99,09±0,20 98,22±0,39 

MLP 72,48±5,44 99,45±0,11 98,92±0,21 

1 

GNB 54,10±1,26 99,08±0,03 98,20±0,05 

RF 89,45±0,56 99,79±0,01 99,59±0,02 

AB 89,56±0,49 99,79±0,01 99,59±0,02 

KNN 81,47±3,65 99,63±0,07 99,27±0,14 

SVM 49,03±6,98 98,98±0,14 98,00±0,27 

MLP 75,40±3,66 99,51±0,07 99,04±0,14 

1,25 

GNB 58,34±1,82 99,17±0,04 98,37±0,07 

RF 92,08±0,48 99,84±0,01 99,69±0,02 

AB 92,06±0,53 99,84±0,01 99,69±0,02 

KNN 84,98±2,65 99,70±0,05 99,41±0,10 

SVM 61,66±6,79 99,23±0,14 98,50±0,27 
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Time (s) Classifier Sensitivity (%) Specificity (%) Accuracy (%) 

1,25 MLP 80,46±2,49 99,61±0,05 99,23±0,10 

1,5 

GNB 60,52±0,99 99,21±0,02 98,45±0,04 

RF 93,88±0,46 99,88±0,01 99,76±0,02 

AB 93,85±0,40 99,88±0,01 99,76±0,02 

KNN 90,28±0,97 99,81±0,02 99,62±0,04 

SVM 62,72±2,30 99,25±0,05 98,54±0,09 

MLP 82,90±2,74 99,66±0,05 99,33±0,11 

1,75 

GNB 62,29±1,36 99,25±0,03 98,52±0,05 

RF 94,73±0,28 99,89±0,01 99,79±0,01 

AB 94,78±0,34 99,90±0,01 99,80±0,01 

KNN 90,47±2,19 99,81±0,04 99,63±0,09 

SVM 68,49±3,90 99,37±0,08 98,76±0,15 

MLP 85,58±1,39 99,71±0,03 99,43±0,05 

2 

GNB 64,20±1,39 99,28±0,03 98,60±0,05 

RF 95,57±0,30 99,91±0,01 99,83±0,01 

AB 95,48±0,39 99,91±0,01 99,82±0,02 

KNN 92,27±0,86 99,85±0,02 99,70±0,03 

SVM 73,50±3,41 99,47±0,07 98,96±0,13 

MLP 88,14±1,69 99,76±0,03 99,53±0,07 

2,25 

GNB 66,09±1,08 99,32±0,02 98,67±0,04 

RF 95,56±0,42 99,91±0,01 99,83±0,02 

AB 95,55±0,40 99,91±0,01 99,83±0,02 

KNN 93,45±0,89 99,87±0,02 99,74±0,04 

SVM 74,24±2,87 99,48±0,06 98,99±0,11 

MLP 89,06±1,28 99,78±0,03 99,57±0,05 

2,5 

GNB 65,19±1,51 99,30±0,03 98,63±0,06 

RF 95,90±0,38 99,92±0,01 99,84±0,01 

AB 95,85±0,21 99,92±0,00 99,84±0,01 

KNN 94,02±0,71 99,88±0,01 99,77±0,03 

SVM 71,33±3,90 99,43±0,08 98,88±0,15 

MLP 88,97±1,39 99,78±0,03 99,57±0,05 
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