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Resumen

El manejo y la proteccion de información siempre fueron temas de interés para la sociedad
y de mucha importancia en la era digital actual. La gran mayoŕıa de personas en todo el
mundo ha manejado información importante y sensible a través de varias plataformas que
van desde cuentas bancarias hasta redes sociales. Todas las plataformas han garantizado
que la información que fluye por ellas se mantenga segura de ataques maliciosos. Esto ha
dado lugar a un campo vasto e importante en la informática llamado criptograf́ıa. Existen
varios algoritmos criptográficos que permiten que la información permanezca segura, y
estos se han dividido en dos grupos, algoritmos de clave simétrica y clave asimétrica.
El funcionamiento de los algoritmos de clave asimetrica esta basado en la manipulación
de números primos muy grandes, lo que proporciona un alto nivel de seguridad, pero
también implica un elevado tiempo computacional. Este trabajo propone un sistema
criptográfico basado en redes neuronales artificiales, implementado mediante el uso de
técnicas de aprendizaje profundo. El método utiliza los pesos sinápticos de una red
neuronal autocodificadora como claves de cifrado y descifrado, evitando el uso de números
primos grandes. La solución propuesta permitio que los pesos sinápticos iniciales y finales,
tengan un alto nivel de aleatoriedad, sin afectar el rendimiento general de la red. El
análisis de seguridad teórico demostró que la metodoloǵıa propuesta es robusta y dif́ıcil
de romper. Los resultados experimentales confirmaron que el sistema propuesto realiza el
cifrado y descifrado de datos en un bajo tiempo computacional, con respecto a algoritmos
tradicionales como RSA, ElGamal, ECC y Paillier.

Palabras clave: autoencoder, criptograf́ıa, criptosistema, llaves de cifrado y de-
scifrado, redes neuronales artificiales.



Abstract

The management and protection of information were always topics of interest for society
and of great importance in the current digital age. The vast majority of people around the
world have handled important and sensitive information through various platforms rang-
ing from bank accounts to social media. All platforms have ensured that the information
flowing through them is kept safe from malicious attacks. This has given rise to a vast
and important field in computing called cryptography. There are several cryptographic
algorithms that allow information to remain secure, and these have been divided into two
groups, symmetric key and asymmetric key algorithms. The operation of asymmetric key
algorithms is based on the manipulation of very large prime numbers, which provides a
high level of security, but also implies a high computational time. This work proposes a
cryptographic system based on artificial neural networks, implemented through the use of
deep learning techniques. The method used the synaptic weights of an autoencoder neu-
ral network as encryption and decryption keys, avoiding the use of large prime numbers.
The proposed solution allowed the initial and final synaptic weights to have a high level
of randomness, without affecting the overall performance of the network. The theoretical
security analysis indicated that the proposed methodology was robust and difficult to
break. The experimental results confirmed that the proposed system performs the en-
cryption and decryption of data in a low computational time, with respect to traditional
algorithms such as RSA, ElGamal, ECC and Paillier.

Keywords: autoencoder, cryptography, cryptosystem, encryption and decryption
keys, artificial neural networks.
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Chapter 1

Introduction

Information security refers to the process of protecting digital information, preventing
access, use, disclosure, modification or destruction of data without authorization [1].
Nowadays, no system can guarantee 100% data protection and information security has
became a topic of great interest in the academic and industrial field. Since the massive
increase of people with internet access, the information vulnerable to attacks has also
became massive and data transport systems have been forced to improve their data
protection. The existing or available systems are based on the concept of cryptography,
which is considered both science and an art [2].

Cryptography-based systems play a critical role in the process of ensuring a secure
communication between multiple entities, based on data encryption and decryption. The
term encryption refers to transforming a simple message into an equivalent that cannot be
read or understood, known as encrypted text. In addition, when we talk about decryption,
we are referring to the process that transforms the encrypted text back to the original
text [3].

Cryptography can be classified into symmetric key cryptography and asymmetric key
or public-key cryptography [4]. Symmetric key encryption consists of using the same
key for encryption and decryption process. The algorithms that are used to symmetric
encryption are generally based on data substitution and permutation [5]. Symmetric
key algorithms include DES (Data Encryption Standard), 3DES (Triple Data Encryp-
tion Standard), AES (Advanced Encryption Standard), Blowfish Encryption Algorithm,
International Data Encryption Algorithm, etc [4]. On the contrary, asymmetric key
encryption uses two keys in the process of the data codification. The public-key crypto-
graphic algorithms are based on mathematical equations and use one key for encryption
and a different key for decryption. Public-key algorithms are RSA (Rivest, Shamir and
Adleman), Elgamal and ECC (elliptic curve cryptography) [5].

In addition, artificial intelligence and neural networks provide a tool for the devel-
opment of complex works on the information security field, such as detection of credit
card fraud [6], image cryptography [7], communication protection with adverse neural
cryptography [8], etc.

In this work by using an ANN called Autoencoder, two keys are generated, one public
and one private. Through random training which requires an initialization password,
the system is trained using the full ASCII code, which consists of 256 characters. To
measure the effectiveness of the proposed system, it is compared with other public-key
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algorithms, using encryption, decryption and key generation times as metrics. Besides,
a security analysis is carried out to determine the difficulty that exists to break the
proposed security of the system.

1.1 Problem Statement

The problem statement lies in that most asymmetric data encryption algorithms are serial
and present a considerable computational cost since they use complex formulas and large
prime numbers. The objective of this research thesis is the development of an asymmetric
key cryptographic system capable of encrypting messages in lower computation time with
respect to traditional algorithms, and guaranteeing high security for encrypted data. The
formulation of the problem can be divided into three parts: (1) Encode the 256 characters
of the complete ASCII code using an autoencoder neural network which integrates a
randomization algorithm that allows increasing the randomness in the training of the
network and therefore, in the generation of the public and private keys. (2) Evaluate and
establish the level of security presented by the proposed system, in addition. (3) Measure
the performance of the system by comparing it with other asymmetric key algorithms.

1.2 Justification

Data security has a crucial role in today’s digital world, for this reason, the computa-
tional performance and security of encryption algorithms must be taken into account.
Generally, traditional asymmetric key algorithms have a serial behavior and use complex
mathematical operations such as long prime-number calculations and discrete mathemat-
ics. These operations require high computational power. For these reasons, this thesis
intends to implement artificial intelligence techniques (artificial neural networks) that
allow generating a system that presents a better computational performance and high
security with respect to traditional algorithms. In this case, neural networks have an ad-
vantage since they can increase randomness (security), and simplify the operations used
in data encryption and decryption.

Information Technology Engineer 16 Final Grade Project



Chapter 2

Objectives

2.1 General Objective

To develop an asymmetric cryptography system based artificial intelligence and using
an artificial neural network, capable of being a viable alternative to encode and decode
information using asymmetric keys.

2.2 Specific Objectives

• To find an efficient autoencoder neural network architecture, capable of encoding
the complete ASCII code in reasonable computation time.

• To design a process that allows the training of the neural network (key generation)
with a high randomized level.

• To implement a strategy to guarantee that the information encoded by the system
is difficult to violate, and prove that the system has a high level of security.

2.3 Manuscript Outline

This work is structured into the following chapters:

• Chapter 1 - Introduction. The introduction, the problem statement and the
justifications of this work are presented.

• Chapter 2 - Objectives. The general objective and the specific objectives of this
work are established.

• Chapter 3 - Technical Backgrund. A technical background about artificial
intelligence and information security approaches are presented.

• Chapter 4 - Related Work presents a review of recent work related to informa-
tion security developed with artificial neural networks.
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• Chapter 5 - Methodology. The cryptographic system proposal is presented in
detail.

• Chapter 6 - Performance and security parameters. The performance of our
proposal and the security parameters in its evaluation are described.

• Chapter 7 - Results present the main findings of proposed system.

• Chapter 8 - Conclusions
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Chapter 3

Technical Background

This chapter presents the concepts that established the bases for the development of an
asymmetric key cryptographic system capable of combining the cryptography and the
artificial intelligence.

3.1 Cryptography

Cryptography refers to the study of information hiding and retrieval [9]. Data hiding is
known as “data encryption” and retrieval is defined as “decryption” [10]. Cryptography
comes from the Greek words kryptós that means “hidden” and gráphein that refers to
“to write”, therefore, cryptography means “hidden writing”. The process of hiding data
is considered an art, which aims to protect the information through a transformation to
an unreadable format for all readers except the receiver, who is capable to recover the
original information from the unreadable format. The main objective of cryptography is
to keep information safe from theft or unauthorized access [9].

3.1.1 Basic Terms in Cryptography

Cryptography has several terms that are useful to understand this area of study and
among these terms are:

1. Plain text: The original message or data that will be entered into the encryption
algorithm [11].

2. Encryption: The process of converting plain text into encrypted text. This process
is done on the sender’s side and requires two things, an encryption algorithm and
a secret key [9, 10].

3. Encryption algorithm: It is responsible to perform substitutions and transforma-
tions in plain text [11].

4. Secret key: A value external to the encryption algorithm and different from plain
text. This value can be a numeric, alphanumeric text or a special symbol [10]. The
transformation and substitutions that the algorithm performs will depend on the
key, therefore, a different result will be produced depending on the key [11].
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5. Ciphertext: The encrypted message generated with the encryption algorithm and
the key. A plain text will have two different “representations” if two different keys
are used. The ciphertext is an unintelligible “random” data set [11].

6. Decryption: The process of converting the ciphertext into plain text. This process
is done on the receiver side to retrieve the original message from the ciphertext [10].
To perform the decryption, a decryption algorithm and a key are required [9].

7. Decryption algorithm: It can be seen as the encryption algorithm executed in re-
verse, which transforms the ciphertext into plain text using the secret key [10].

8. Symmetric encryption or private key: It is an encryption method that uses the
same key to encrypt and decrypt the data. This method requires that the sender
and the receiver have the same key which must remain private [12].

9. Asymmetric encryption or public-key cryptography: It is an encryption method
that uses two different keys, one for the encryption process and another for the
decryption process. These two keys are called the public key and the private key.
This method requires that the private key remain secret, while the public key does
not present any risk and is of public domain [12].

10. Encoder: It is the person who sends the message and uses an encryption algorithm
to make the message secure [9].

11. Decoder: It is the person capable of using a decrypting algorithm to decipher the
message. This person can be the recipient of the message or an intruder who tries
to read the encrypted message [9].

3.1.2 Security Objectives

Cryptography has many security objectives such as confidentiality, authentication, in-
tegrity, non-repudiation, and access control. Confidentiality refers that the transmitted
information can only be read by the receiver. Authentication is the identification pro-
cess that determines the provenance of the information, whether the information comes
from an authorized person or an unauthorised person. Integrity means that no one other
than the sender and receiver can alter the information [13]. No repudiation, guarantees
that the information transmission cannot be denied by either the sender or the receiver.
Access control, guarantees that only authorized persons can access to the information
[10].

3.1.3 Classification of Cryptography

Cryptography can be divided into three types, secret key cryptography (SKC), public-key
cryptography (PKC), and hash functions [14].
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Secret Key Cryptography

This type of cryptography is also known as symmetric cryptography, due to it uses a
single key to encrypt and decrypt the data (See Figure 3.1). The most popular secret
key algorithms are Data Encryption Standard (DES), triple-DES, Rivest Cipher 2 (RC2),
Blowfish, CAST, Serpent, TEA, AES (Rijndael), Twofish, IDEA, RC-6 and MARS [15].
This cryptography requires that the key be known by both the sender and the receiver,
for this reason, the difficulty of this approach lies in the distribution of the secret key.
Secret key encryption is faster compared to public-key, however, key distribution can
become a complicated logistical problem [13].

Encryption DecryptionPlain
Text

Cipher Text

Secret Key

Plain
Text

Figure 3.1: Secret or private key encryption scheme, which consists of a single key to
carry out the encryption and decryption processes.

Public-key Cryptography

This type of cryptography is also known as asymmetric key cryptography and is based
on mathematical functions computationally intensive [15] (See Figure 3.2). This is an
encryption scheme that uses two mathematically related, but not identical keys known
as a public key and a private key. Unlike symmetric key encryption approaches that
rely on a unique key to encrypt and decrypt, in the public-key criptography each key
performs a unique function [14]. The public key is used in the encryption process and the
private key is used in the decryption process [13]. There are various popular asymmetric
cryptography algorithms such as RSA, Diffie-Hellman keys, ElGamal, etc [15].

Encryption DecryptionPlain
Text

Cipher Text

Public Key Secret Key

Plain
Text

Figure 3.2: public-key encryption scheme, which consists of a different key for the en-
cryption and decryption processes.
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Hash Function

Hash function or one-way encryption: performs a non-reversible mathematical transfor-
mation that assigns a unique digest or finger print to the given data [15]. Hash functions
do not use a key since they calculate a fixed-length hash value that depends on the plain
text. This process makes it impossible to retrieve the content of the original message.
The hash function has three properties:

• It is very easy calculate a hash for any data.

• In computational terms, it is very difficult to calculate an alphanumeric text that
has a certain hash.

• It is unlikely that two different messages will have the same hash.

Hash functions are used primarily by operating systems to perform password en-
cryption. Additionally, these functions are used in various applications such as message
integrity checks, digital signatures, authentication, among other security applications.
The most commonly used hash functions are MD5 and SHA-1 [14].

3.1.4 Asymmetric Key Algorithms

Rivest-Shamir-Adleman (RSA)

RSA was developed in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman. RSA is
an asymmetric or public-key cryptosystem based on prime number theory. The security
of the system is based on the difficulty that exists in the decomposition of large prime
numbers, which are considered mathematical problems that do not have an effective
solution [16, 17]. The RSA cryptosystem is one of the most typical method used for public-
key cryptography and is considered the first algorithm used for both data encryption
and the creation of digital signatures [17].The RSA algorithm consists of three steps
encryption, decryption and key generation. RSA has to deal with different kind of attacks
such as mathematical attacks, brute-force attacks, chosen ciphertext attacks and timing
attacks [16].

The RSA cryptosystem uses a three different positive numbers n, e and d, such that:

(me)d ≡ m(mod n)

Encryption
C = E(M) ≡M e(mod n)

Decryption
M = D(C) ≡ Cd(mod n)

where,
M = Message or Plain text
C = Ciphertext
(n,e) = Public Key
(n,d) = Private Key
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Diffie-Hellman

The Diffie-Hellman algorithm is a public-key algorithm developed by Witfield Diffie and
Martin Hellman in 1976. The algorithm uses a key exchange algorithm and was developed
under an insecure communication channel [16]. This algorithm consists of two keys, one
private and one public, that are used in the encryption and decryption process of the
information (public key in encryption and private key in decryption) [18].

ElGamal

The ElGamal scheme was proposed by T. ElGamal in 1984 [19]. ElGamal is an asymmet-
ric encryption scheme based on the key exchange process established in the Diffie-Hellman
algorithm. This encryption scheme is made up of three algorithms used for key genera-
tion, encryption and decryption. This process is described below [20]:

Key Generation:

1. Let p a large prime number, and a a primitive element (mod p).

2. Select a random number x, and compute y ≡ ax(mod p).

3. Publish the public key (a, p, y), and keep x as the secret key.

Encryption:

1. Select a random number r such that r ∈ Zq, and then compute C1 ≡ ar(mod p).

2. Compute C2 ≡ m× yr(mod p).

3. Then consider (C1, C2) as the ciphertext.

Decryption:

1. Compute m ≡ C2 × Cx
1 (mod p).

Elliptic Curve Cryptography (ECC)

ECC was developed in 1985 by Koblitz and Miller [16]. ECC is a type of public-key
cryptography, based on the algebraic structure of elliptic curves in finite fields [21]. ECC
uses a complex algebraic and geometric equations for key generation. The ECC scheme
uses the private key for both the decryption process and the generation of signatures.
The public key generated by ECC is used for both encryption and signature verification
[16]. ECC can be used as a complement to other encryption algorithms thus generating
new ones such as ECC-Diffie-Hellman and ECC-DSA [22].

An elliptical curve is the set of points described by the equation:

Ep(a, b) : y2 = x3(mod p),

where p is a prime number.
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Paillier

Paillier was described in 1999 under the name Public-Key Cryptosystems Based on Com-
posite Degree Residuosity Classes by Pascal Paillier. This cryptosystem has two versions
of a partially homomorphic cryptographic system. The basic version is called Scheme
1 (See Table 3.1), and the faster decryption variant is called Scheme 3 (See Table 3.2)
[23]. The security of the Paillier scheme depends on the integer factorization hardness
and is based on the n-th residues in Z∗n2 . Paillier’s schemes can be described in five parts
parameters, public key, private key, encryption and decryption [24].

Table 3.1: Paillier’s Scheme 1

Parameters prime numbers p, q
n = pq
λ = lcm(p− 1, q − 1)
g, with g ∈ Z∗n2 (the order of g multiple of n)

Public Key n, g
Private key p, q, λ
Encryption plain text m < n

choose random number r < n such that r ∈ Z∗n
ciphertext c = gmrn(mod n2)

Descryption ciphertext c < n2

plain text m = L(cλ(mod n2))
L(gλ(mod n2))

(mod n)

Table 3.2: Paillier’s Scheme 3

Parameters prime numbers p, q
n = pq
λ = lcm(p− 1, q − 1)
α, a divisor of λ
g ∈ Z∗n2 (the order of g multiple of αn)

Public Key n, g
Private key p, q, α
Encryption plain text m < n

choose random number r < α
ciphertext c = gm(gn)r(mod n2)

Descryption ciphertext c < n2

plain text m = L(cα(mod n2))
L(gα(mod n2))

(mod n)
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3.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational networks that try to simulate the
decision process of the biological neuron networks that conform the central nervous system
of a living being [25]. Among the first studies on artificial neural networks, we have
Warren McCulloch and Walter Pitts, who in 1943 published an article where purpose use
ANNs as a way to simulate the human brain. Later, Minsky and Dean Edmunds, in 1951
developed the stochastic neural analog reinforcement calculator, which is recognized as
the ANN [26].

3.2.1 Biological Foundations

The biological neural network consists of thousands of neurons (nerve cells) interconnected
with each other. In Figure 3.3 the graphic representation of a biological neuron is shown.
The nucleus of the cell is the place where most of the “calculations” are performed.
Once the information is processed by the nucleus, the information is distributed through
synaptic connections among all interconnected neurons [27].

The information distribution process takes place in the pre-synaptic region, which is
made up of several membranes connected to the axon. These membranes communicate
with the dendrites of other neurons through electrochemical signals, which can excite the
cell or inhibit its activation [25, 28].

Cell Body

Axon

Pre-synaptic region
 of the cell (output region)

Dendrites (Inputs)

Synapse

Figure 3.3: Scheme of a biological neuron which is composed of the dendrites, the axon
and the pre-synaptic regions.

3.2.2 From Natural Neural Neuron to Artificial Neuron

In an analog sense, artificial neural networks follow the same information flow as natural
neural networks. The mathematical model that describes the artificial neural networks
is very simple in comparison to the complex behavior of the biological neural networks.
The ANNs are conformed by nodes that fulfill the role of neurons. These nodes are
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interconnected and distribute information through functional links [28]. The simplest
model of a neuron is called a “perceptron” and its representation is shown in Figure 3.4.

Summation

N∑
i=1

f (
∑

)

Nonlinearity
Activation Function

Net
Output

x1

x2

x3

w1

w2

w3

Inputs

Outputs

Figure 3.4: Diagram of the structure of a perceptron. The diagram shows all the parts
that make up a perceptron and how the input information flows through each component
until the output is generated.

The artificial neuron consists of a input X, and a single output o.

X = [x1, . . . ,xn].

Each input xi is multiplied by a weight function wi and the resulting value is added
from i ∈ {1, . . . , N} (See Equation 3.1). This process is called the net input of the neuron,
which can be expressed as follows:

net =
N∑
i=1

wixi. (3.1)

Then the activation function is computed. The most common nonlinear activation
function is the sigmoid, however, there are several activation functions such as hard-
limiter, arc-target, hyperbolic target sigmoid, etc [28]).

3.2.3 Activation Functions

Among the most popular activation functions are Binary Step Function, Linear, Sigmoid,
Tanh, ReLU, Swish, SoftMax, etc. These functions play a fundamental role in the process
of transformation of the net output of the neuron, which activate or inhibit the neurons
with which they are connected [29]. Some activation functions are shown in the Table
3.3.
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Table 3.3: Activation Functions

Binary Step Function f(x)


1, if x ≥ 0

0, if x < 0

Linear f(x)=ax

Sigmoid f(x)=1/1+e−x

ReLU f(x)


x, if x ≥ 0

0, if x < 0

Tanh f(x)=2/1+e−2x − 1

Swish
f(x) = x× sigmoid(x)

f(x) = x/(1 + e−x)
.

3.2.4 Basic Network Structures

The complete structure of an ANN is composed of at least three layers the input layer,
the hidden layer and the output layer. Each layer is conformed by a certain number of
neurons that are interconnected with all neurons that conform other layers (See Figure
3.5). Each connection represents a weight which is modified according to the activation
function used to the network setting. Once the weights reach an optimal value, the
network is said to be trained [30].

Historically, the perceptron proposed by McCilloch and Pitts is the first artificial
neuron model and is considered the most abstract form of a neural network [31, 27].
Later, ADALINE (adaptive linear network) is developed by Widow and Hoff. ADALINE
continues to be a single neuron, which is adaptively trained to reduce error through an
adjusting of the weights in the neural network [32]. Next Madanile (Many Adeline) is
developed, which is a multilayer neural network formed by several adalines. These early
ANN models, especially the Perceptron, are the basis for almost all ANN architectures
[27].
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Output Value 1

Output Value 2

Input Value 1

Input Value 2

Input Value 3

Input Value 4

Input Value n

Input layer Hidden layer

Output layer

Figure 3.5: General structure of an artificial neural network (ANN). Each circle represents
a neuron and all connections represent the network weights.

3.2.5 Autoencoder

An autoencoder (AE) is a symmetric neuronal network capable of learning to reconstruct
the input X from characteristics [33].

The general structure of an autoencoder consists of two parts, the encoding function
h = f(x) and the decoding function g(f(x)) ≈ x [34].

The autoencoder is designed to work with approximations and to learn to copy per-
fectly g(f(x)) = x for all points. The general structure of the autoencoder is shown in
Figure 3.6.

x r

h
f g

Figure 3.6: General structure of an autoencoder. Using the encoder f(mapping x to h)
and the decoder g(mapping h to r), the autoencoder mapping an input x to an output
r through an internal representation h .

Autoencoders, due to their architecture, are restricted to approximate the input values
of the network by prioritizing only the useful properties extracted from the input data
[35]. In other words, autoenders perform an input data re-dimensionalization, depending
on the number of hidden neurons of the neural network. Once the data entered into the
network is re-dimensionalized by the encoding function, the generated “code” is mapped

Information Technology Engineer 28 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

through the decoding function. Autoencoders use an unsupervised training since is not
required labeled data in the training process [36]. Figure 3.7 shows an example of the
autoencoder artificial neural network architecture.

x1

x2

x3

x4

x5

x6

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

h1

h2

h3

Input layer

Hidden layer

Output layer

encoding function
f(x)

decoding function
g(f(x))

Figure 3.7: Example of an autoencoder neural network architecture. The architecture is
characterized by having the same number of input and output neurons. The number of
neurons in the hidden layer is generally less than that of the input layer, however, this
number of neurons may be higher than in the input layer.

3.2.6 Learning Process

So that neural networks can be capable to solve a certain task, instead of a directly
programmed they are trained by a learning algorithm. The learning algorithms are im-
portant since they specify the final configuration of the neural network, in other words,
the algorithms condition and determine the capacity of the network [37].

There are several learning algorithms, some require a monitoring method that verifies
the optimal output of the network, others are unsupervised algorithms that do not need
a verification of the output of the network. The learning process can be classified into
supervised, unsupervised, and reinforcement [38, 37].

The most common learning rules are Hebbian learning rule, Correlation learning rule,
Instar learning rule, Winner Takes All (WTA), Outside Learning rule, Error Backpropa-
gation learning, etc [38].

• Unsupervised: In this type of learning, the network is trained based on a set of
inputs, without providing information to guide the outputs of the network.
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• Supervised: In this type of training, need to identify the set of examples. A set of
input and output examples are presented to the network, to it can learn from them.

• Reinforcement: This training is used when the inputs and outputs of the network
cannot be specified.

The data set used for learning a neural network is defined as a learning or training
set [37].

3.2.7 Backpropagation Algorithm

The Backpropagation algorithm (BP algorithm) is used to perform supervised training
[37]. The algorithm trains the weights of a multilayer network using gradient descent to
minimize the squared error between the network inputs and the target parameters (net-
work outputs) [39]. The algorithm assigns a small initial value to the network connection,
and the error gradient relative to the sample is calculated from a training sample of the
network [27].

The learning process of the backpropagation algorithm can be divided in two parts,
forward propagation and backpropagation [40, 39, 27].

1. Forward propagation of information: The input information of the network propa-
gates from the input layer to the output layer through all hidden layers. During this
propagation the weights operating signals and offset value of the network remain
constant and the state of each neuron layer only affects the next layer. If the output
network does not is the expected one, an inverse propagation is performed with the
error information. The error function of the network output units is defined by:

E =
1

2

∑
d∈D

∑
k∈N

(tkd −Okd)
2, (3.2)

where N is the set of output neurons in the network, tkd and Okd are the target and
output values of the k-th output unit in the training example d.

2. Backpropagation of error information: In this process, the error information propa-
gates from the output layer to the input layer through all the hidden layers. During
this propagation, the values of the weights of the network are modified with respect
to the calculated error. This process makes it possible to increase the similarity of
the network output value with the expected value.

Mathematical Description of the BP Algorithm

The mathematical formula [40] of the BP model is presented as follows:
Forward propagation: Output of the network.

• Hidden layer node output

yj = f(
∑
i

wjixi) = f(netj) (3.3)
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• Output layer node output

zl = f(
∑
j

vljyj) = f(netl) (3.4)

• Output node error

E =
1

2

∑
l

(tl − zl)2 (3.5)

Back propagation: Modification of weight value

• Output node derivation by means of error function

∂E

∂vlj
=

n∑
k=1

∂E

∂zk
× ∂zk
∂vlj

=
∂E

∂zl
× ∂zl
∂vlj

, (3.6)

where
∂E

∂zl
=

1

2

∑
k

[−2(tk − zk)× ∂zk
∂zl

] = −(tl − zl)

∂zl
∂vlj

=
∂zl
∂netl

× ∂netl
∂vlj

= f ′(netl)× yj.

So,
∂E

∂vlj
= −(tl − zl)× f ′(netl)× yj.

Suppose the error of the input node is,

δl = −(tl − zl)× f ′(netl).

Therefore,
∂E

∂vlj
= −δl × yj. (3.7)

• Hidden layer node output deviation by error function

∂E

∂wji

=
∑
l

∑
j

∂E

∂zl
× ∂zl
∂yj
× ∂yj
∂wji

, (3.8)

where,
∂E

∂zl
=

1

2

∑
k

[−2(tk − zk)× ∂zk
∂zl

] = −(tl − zl).

So,

∂E

∂wji

= −
∑
l

(tl − zl)× f ′(netl)× vlj × f ′(netj)× xi = −
∑

δlvljf
′(netj)× xi.
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Suppose that the error of hidden layer node is:

δ′j = f ′(netj)×
∑

δlvlj.

Therefore,

∂E

∂wji

= −δ′jxi. (3.9)

Due to, the modification of weight ∆vlj and ∆wji is proportional to the error func-
tions and descends along the gradient, the formula that describe the modification
of weight of hide layer and output layer is:

∆vlj = −η ∂E
∂vlj

= ηδlyj, (3.10)

where η is the learning rate.

The formula that describes the modification between the input layer and the hidden
layer is:

∆wji = −η′ ∂E
∂wji

= η′δ′jxi,

where,

δ′j = f ′(netj)×
∑
l

δlvlj.

Here η′ represent the learning rate, δ′j expresses the error δl of the output node zl
that is propagated through the vlj weight value to the yj node, becoming the node
error of the hidden layer.
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Pseudo Code of BP Algorithm.

The pseudo code [39] of a backpropagation-trained neural network is presented below.

1. Create a neural network with nin inputs neurons, nout output neurons, and
nhid hidden neurons.

2. Initialize the weights with small values (wij ∈ [−0.5, 0.5]) .
while not training do

for each training example (x, t), where x is the input and t is the target value.
do

if Propagate the input forward in the network: then
for every neuron in the network do

Input the x value to the network and calculate the output ou
end

end
if Propagate the error backward in the network: then

for every output neuron k do
Calculate the error term δk:
δk ≥ ok(1− ok)(tk − ok)

end
for each hidden neuron h do

Calculate the error term δh:
δh ←− oh(1− oh)

∑
k∈outputswkhδk

end
for each neuron weight do

Update wji:
wji ←− wji + ∆wji

where
∆wji = ηδjxji

end

end

end

end

Algorithm 1: Backpropagation Algorithm.
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Chapter 4

Related Work

This chapter presents the previous work and the approaches with which they combine
cryptography with artificial intelligence.

4.1 Cryptography Based on Neural Networks

According to Charniya [41], neural networks are able to accurately identify a nonlinear
system model from the inputs and outputs of a complex system and do not need to
know the exact relationship between inputs and outputs. By extending these concepts to
the field of cryptography, neural networks could produce encryption keys with high-level
security [42]. In [43], a neural network is established as the only algorithm or method
for key generation through a public channel that is not based on number theory. The
main advantages over traditional approaches are simple, low calculations for training and
a new key can be generated for each message exchange.

4.1.1 First Approach

In [44], it is determined that the use of autoencoder neural network as encoder and decoder
of data is feasible. In this article, several comparisons between network architectures are
made, to determine which ones are capable of storing an efficient binary encoding of the
ASCII code. To determine a suitable architecture, two data sets, one with 52 characters
and the other with 95 characters, were coded in network architectures in which the number
of neurons in the hidden layer varied. The results showed that an autocoder with more
neurons in the hidden layer than in the input/output layers had better accuracy.

In [45], it is developed in a symmetric encryption system where the neural network
is used as a data encryption system, which by a single initialization key can encode and
decode data. The architecture shows that the work is viable and a strong starting point.

Taking the concepts established in [44] and [45], this work proposes a new approach
which seeks to develop an asymmetric key system capable of increasing security by sep-
arating the neural network and using each part as different encryption and decryption
keys. The use of two different keys and a randomization algorithm capable of not altering
the performance of the network, give the possibility of increasing the randomness in the
training of the network and consequently the security of the system.
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4.1.2 Cryptographic Properties of Neural Networks.

Volna [46] in his work on neural network-based cryptography, mention that ANNs offer
a very powerful general framework for representing the non-linear mapping of various
input variables to various output variables. Based on this concept, an encryption system
using a permanently changing key was developed. In Volna’s work, the topology is a very
important issue to achieve a correct operation of the system, so a multilayer topology
was implemented, considered the most suitable topology in this case. The encryption
and decryption process is done using the backpropagation algorithm.

Jogdand [47] proposed that neural networks can be used to generate common secret
keys. In this work on neural cryptography, two neural networks are defined, which receives
an identical input vector, with which they are trained to generate an output bit. Both
networks and their weight vectors exhibit a novel phenomenon, in which the networks are
synchronized in a time-dependent state with identical weights. The secret key generated
through a public channel is used to encrypt and decrypt the information that is sent
through the channel.

Kinzel and Kanter [48] show the application of interactive neural networks for the
exchange of keys through a public channel. This work shows that two neural networks
trained simultaneously, achieve a state of synchronization in which the values of their
synaptic weights are identical depending on the training time. This neural cryptogra-
phy uses a topology called the tree parity machine that consists of one output neuron,
K hidden neurons, and K×N input neurons. The hidden values are equal to the sign
function of the dot product of the input and the weights, while the output value is the
multiplication of the hidden values. It has not been proven that there is no algorithm for
the successful attack, but this approach is very difficult to crack by brute force. Even if
an attacker knows the input/output relationship along with the algorithm, it could not
recover the secret common key that A and B use for encryption.

Klein et al. [49] shows the applications of mutual learning neural networks that
synchronize their time-dependent weights. It suggests that synchronization is a novel
approach to generating a secure cryptographic secret key using a public channel. This
work describes the learning process in a simple network, where two perceptrons receive
a common and change their weights according to their mutual output, and the learning
process in a tree of parity machines. Klein, to understand more about synchronization,
the process is analytically described using statistical physics methods, developing a new
technique that combines neural networks with chaos synchronization. This allows having
a more secure system against attackers, since the generation of pseudo-random numbers
increases the security of a cryptosystem. [50].

A field in which neural networks have been applied together with cryptography is the
steganography. This field can be defined as a technique to hide messages within other
messages [51]. Additionally, the steganalysis is the art and science of detecting whether
a given medium has a hidden message in it [52].

In [53] Shi et al., use an artificial neural network as a classifier and shows that that
ANN performs better in Steganalysis than Bayes classifier due to its powerful learning
capability.

Pseudo random number generator is another approach for neural networks in cryp-
tography. Cheng and Chan [54], state that randomness increases the security of the cryp-
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tosystem. In their work, they develop a pseudo-random number generator which proves
to be very suitable for practical implementation on efficient flow encryption cryptosys-
tems. The pseudo-random number generator takes advantage of multilayer perceptron
neural networks. In the overfitting process, the network will not be able to predict the
input pattern when it receives unknown input patterns and will give unpredictable re-
sults [55]. In [50], Karrasl and Zorkadis state that a multilayer neural network can be
used as an independent random generator and also as a method to strengthen existing
generators. This process is performed by taking the pseudo-random numbers generated
by linear computational generators as input to the neural networks.
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Chapter 5

Methodology

This chapter describes the methodology used to implement the ANN-based asymmetric
cryptography system. The development of this system focuses on providing better compu-
tational time performance for the data encryption and decryption process, implementing
an alternative to the traditional algorithms used in information security.

5.1 Research Approach

In this work, an experimental study was developed to design an asymmetric key cryp-
tographic system based on ANN, capable of providing an adequate level of security and
low execution time. This study was carried out in three parts: (1) Autoencoder neural
network calibration to randomize the training process and generate a different ASCII code
codification according to an initialization password. (2) Calibration of the neural weights
that will work as a public and private key. (3) Comparative study of system performance
and security analysis to determine the system resistance to attacks by hackers. This work
was developed in Borland C++ and uses an autoencoder neural network architecture to
generate a public and private keys. Additionally, an algorithm was designed to increase
the randomness of the network, both in the initialization of the synaptic weights and in
the network training processes.

5.2 Autoencoder Neural Network Architecture.

To develop this system, an autoencoder with 8 neurons in the input layer, 10 neurons
in the hidden layer and 8 neurons in the output layer was selected. This architecture
was selected taking into account the following factors: number of preset characters in
the complete ASCII code, size of the generated keys and the resizing of plain text. The
graphical representation of the autoencoder is shown in Figure 5.1.

The full ASCII code was encoded in 28 bits, this means that each character used
in the cryptosystem had an 8-bit representation. Each 8-bit set was used as input to
the neural network. Due to this, the input and output layers were made up of eight
neurons (following the symmetry of the autoencoder). The size of the neural network
allowed the system to be simple but robust. The ten neurons that were established in the
intermediate layer allowed the generation of keys of considerable length. This implies that
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trying to “emulate” a key using a brute force approach involves a great computational
cost. Furthermore, having ten neurons in the hidden layer implied that the ASCII code
suffered from a considerable resizing, which means that the security level of the system
increased.

The selected activation function was the sigmoid function. See Equation 5.1.

f(x) =
1

1 + e−Bx
, (5.1)

where β is the gain value.

Due to the gain β was set as a variable value, each layer of the neural network has
a “different” sigmoid function. The hidden layer uses a β value equal to 10.5, while the
output layer has a β value equal to 5.5. This allowed the network weights WE and WD

to have different ranges for their possible values at the end of the training.
The general ranges are:

WE ∈ (−0.75, 0.75)

WD ∈ (−2, 2)

However, these may vary slightly.
The last parameter of the network to be established was the learning rate with a value

of 0.25. All network parameters were established after several coding tests performed with
the proposed network architecture.
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Figure 5.1: Autoencoder architecture used in the proposed system. This architecture is
composed of 8 neurons in both the input and output layers (following the definition of
autoencoder) and the hidden layer contains 10 neurons.

5.3 Randomization Algorithm

The proposed system implemented a randomization algorithm that allowed generating
initial random synaptic weights and a vector of random indices. This algorithm was based
on changing “seeds” in conjunction with the rand() function provided by Borland C ++.
The change of seeds was an important process to increase the randomness in the system
since we avoid using recursive processes on the same seed.

Due to, the final synaptic weights of the neural network depend on the initial random
values and how the input data are entered. The proposed algorithm generates different
keys (WE and WD) for each initialization password. A description of the randomization
algorithm is shown in Figure 5.2.

The algorithm used two alphanumeric strings as input. The first string is entered by
the system user and is called the initialization password. The second string is a random
sequence of characters, which was defined exclusively for the cryptosystem. The two
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chains were subjected to a loop of XOR operations between all the elements that made
up the chains. This generated several different seeds (65,536 possible seeds) which were
used in the Borland C ++ random function to generate pseudo-random numbers. When
a pseudo-random number between [-0.5,0.5] is generated with a seed X, this is placed as
initial synaptic weight value, and then the seed changes. Each seed is used only once in the
whole process since the seed value change once the pseudo-random number is generated.
When a pseudo-random number between [−0.5, 0.5] was generated with a seed X, this
was established as the initial synaptic weight value. Each seed was used only once in the
whole process, since the value of the seed changed once the pseudo-random number was
generated. In addition, the random number generation algorithm was implemented to
create a pseudo-ordered index vector. This vector was used to reorder the training data
entered into the neural network. A vector of pseudo-ordered indexes was created to avoid
a high computational time at the moment of key generation. This algorithm increased the
randomness in the process of initialization and training of the neural network. Therefore,
the randomness in the entire cryptographic system increased, especially in the generation
of the private key.
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Initialization Password Internal String

Character of the
Initialization Password

P1, P2, P3, . . . , Pn

Character of the
Internal String

S1, S2, S3, . . . , Sn

Pi

for i = 1 to n

Si

for i = 1 to n

Ci

Si + 1Pi + 1

Ci is used as seed
of the rand() function

rand(Ci) = Ri, Ri ∈ [-0.5,0.5]

Index Generation

rand(Ci) = Ii, Ii ∈ [0,255]

Character
replacement

Character
replacement

for i = 0 to 255

Synaptic weight
matrices are filled

Create an incomplete
random vector

Pseudo ordered
vector

Merge with an
ordered vector

Figure 5.2: A representation of the randomization algorithm that shows the entire process
that the initialization password undergoes. The algorithm is used to obtain several seeds
with which the weight matrix of the neural network is initialized.

5.4 Asymmetric Key Cryptography Model

The system implemented an autoencoder neural network architecture to generate a public
and private key. These keys correspond to the synaptic weights of the network (WE and
WD). The system have a randomization algorithm that depends on a secret initialization
password entered by the user and a random character string specific for this system.

In addition, the system performed a preprocessing of the information before generating
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the ciphertext from the plain text. In the same way, to generate the plain text from the
ciphertext, a preprocess was carried out inverse to the one initially performed. A complete
scheme of the system is presented in Figure 5.3.

0.471285 0.966985
0.116430 0.243542
0.058160 0.020261
0.987687 0.987435
0.377028

Random Algorithm

Initialization Password Internal Random String

WE

Public Key
WD

Private Key

“Hello World”

01110111

01100010

XOR Message

Plain Text

Binary Message

01110111

01100010

XOR Message

Binary Message

Plain Text

“Hello World”

Preprocessing
Reverse

Preprocessing

Cipher Text

Training

Figure 5.3: Scheme of the proposed cryptographic system which is composed of the
initialization of the system, the creation of the keys and the data encryption/decryption
process.

5.5 Encryption and Decryption Process

This section describes in detail a message encryption and decryption process.

5.5.1 Encryption

A flow chart of the encryption process is presented in Figure 5.5. To perform data en-
cryption, the plain text must be pre-processed. First, the original message was translated
into ASCII code, thus obtaining a binary text. Next, the binary text was divided into
8-bit sets and all of these were subjected to various XOR operations (see Figure 5.4).
When the “XOR text” was obtained, it was encrypted using the public key, obtaining
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the ciphertext. The resulting ciphertext was resized from “XOR text”, and each 8-bit
set was converted to a set of ten floating numbers. An example of message encryption is
presented in Table 5.1.

01110111

01101111

01110010

01101100

XOR 01100010

01110010
XOR 00000110

01101100
XOR 00000110

01101010

00000110

01100010

01110111

XOR

Binary Text XOR Text

XOR set
XOR set

XOR set

Figure 5.4: XOR text generation corresponding to the information preprocessing that
the system performs.

Plain Text Binary Message XOR Message

“World”
011101110110111
101110010011011
0001100100

011000100000011
001101010000110
0001110111

Ciphertext: 0.471285 0.966985 0.116430 0.243542 0.058160 0.020261 0.987687
0.987435 0.377028 0.002005 0.229696 0.037587 0.990485 0.025279 0.470377
0.982231 0.980661 0.643427 0.011464 0.004897 0.554947 0.958932 0.923121
0.307470 0.193312 0.000062 0.983166 0.925149 0.204126 0.022497 0.985374
0.610509 0.876300 0.158316 0.794756 0.022864 0.251481 0.068353 0.012083
0.998407 0.975261 0.653203 0.107748 0.082523 0.000600 0.980367 0.991929
0.711553 0.053618 0.007623

Table 5.1: Example of message encryption
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Plain Text

Binary Text

Translation to
ASCII code

Binary text is divided into 8-bit sets

and
XOR operations are performed between all 8-bit sets

XOR Text

The output is calculated
using the public key

f

 8∑
i=1

weijxi

 Cipher Text

All sets of 10 decimals
numbers are joined

Preprocess

Figure 5.5: Flow chart that shows how the ciphertext is obtained from the plain text.
The diagram shows the information preprocessing and the use of the public key in the
encryption process.

5.5.2 Decryption

A flow chart of the decryption process is presented in Figure 5.6. In the decryption
process, the ciphertext was divided into blocks of ten floating numbers and, using the
private key with the Equation 5.2 the “XOR text” was obtained. From this point, a
reverse process to the preprocessing was performed (section 5.5.1). The “XOR text”
was divided into 8-bit blocks and was subjected to a recovery process by means of XOR
operations. Then the binary text was obtained and later the plain text. An example of
message decryption is presented in Table 5.2.

Θ(x)


1, if x ≥ 0.5

0, if x < 0.5
(5.2)
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Ciphertext:0.471285 0.966985 0.116430 0.243542 0.058160 0.020261 0.987687
0.987435 0.377028 0.002005 0.229696 0.037587 0.990485 0.025279 0.470377
0.982231 0.980661 0.643427 0.011464 0.004897 0.554947 0.958932 0.923121
0.307470 0.193312 0.000062 0.983166 0.925149 0.204126 0.022497 0.985374
0.610509 0.876300 0.158316 0.794756 0.022864 0.251481 0.068353 0.012083
0.998407 0.975261 0.653203 0.107748 0.082523 0.000600 0.980367 0.991929
0.711553 0.053618 0.007623

XOR Message Binary Message Plain Text
011000100000011
001101010000110
0001110111

011101110110111
101110010011011
0001100100

“World”

Table 5.2: Example of message decryption

Cipher Text

Division into sets of

10 decimal numbers

The output is calculated
using the private key

Θ

f
 10∑

i=1

wdijxi




XOR Text

All 8-bit sets are subject
to XOR operations

Binary Text

Translation to ASCII code
and

All 8-bit sets are joined

Plain Text

Transform Binary Text

to Plain Text

Inverse of
Preprocess

Figure 5.6: Flow chart showing how to get plain text from ciphertext. The diagram
includes the inverse of preprocessing and how the private key is used in the decryption
process.
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Chapter 6

Performance and Security
Parameters

This chapter describes the parameters used to evaluate the performance and security
of the proposed cryptosystem. Different parameters are taken into account to evaluate
performance, such as encryption time, decryption time and key generation time. These
parameters are compared with data from asymmetric cryptographic algorithms such as
RSA, ECC, Paillier and Elgamal. In addition, the security parameters considered are
precision, network tolerance, private key, determination of significant digits and neural
network security. Finally, a way of measuring the efficiency of the randomization algo-
rithm in the creation of keys is established.

6.1 Hardware Characteristics

The characteristics of hardware used in the cryptographic system performance evaluation
are taken into account to establish that the data obtained is subject to the used hardware.
The system is tested under a Windows 10 64-bit operating system, 8Gb RAM and Intel(R)
Core(TM) i7-5500U CPU 2.40GHz 2.40GHz.

6.2 Performance Parameters

6.2.1 Encryption Time

Encryption time is determined based on the time required by an algorithm or system to
translate a plain text into a ciphertext. The encryption time depends only on the size of
the plain text and this is measured in seconds.

6.2.2 Decryption Time

Decryption time is determined during the translation into the plain text from the cipher-
text. For this work, it is preferred that decryption and encryption time will be similar to
guarantee the efficiency of the cryptographic system.
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6.2.3 Key Generation Time

The time required to generate the keys is equivalent to the training time of the artificial
neural network. It depends on the size of the string needed to initialize the neural network
training.

6.3 Security Parameters

6.3.1 Precision

Precision is given by the number of characters successfully retrieved, over the total number
of characters that the complete ASCII code has. This value is measured in percentages
and it can change during the training process or due to a variation in the weights in a
training network (public and private keys).

6.3.2 Network Tolerance

Network tolerance refers to the amount of noise that the synaptic weights of trained
network support before its data recovery fail. The noise that enters the network alters
the number of significant digits that each synaptic weight needs in data recovery. In other
words, the network needs less significant digits per weight to recover the data with high
precision.

6.3.3 Private Key Security

The private key is a portion of all synaptic weights involved in data recovery. The
synaptic weights of an ANN are continuous values, generally with a large number of
significant digits. Therefore, to hack a private key, almost an infinite number of attempts
are needed to get the exact numbers. Equation 6.1 is used to determine the number of
attempt necessary to hack the private key.

V Rm
n = nm. (6.1)

Where n is the set of all possible elements that can be used to generate the public key.
In this case, n depends on the number of significant digits and the rank corresponding
to the synaptic weights of a network with a high precision. Besides m is a subset of n,
that depends on the number of elements in the private key (size of WD).

6.3.4 Significant Digits Determination

To identify the minimum number of significant digits that the public key use to recover
the data, a randomly float values in the range [0.001-0.1] are added and subtracted to
the public key. When the precision decreases more than 75%, the number of significant
digits of the float value capable to have a high accuracy is established as the minimum
amount of significant digits.
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6.3.5 Neural Network Security

The generation of public and private keys depends on two character strings. The first
is a user-entered string, and the second is an internal random character string. The
randomization algorithm uses the two strings to initialize the synaptic weights of the
network and generate a chain of pseudo-ordered indexes, which will be used in training.
Therefore, in order to obtain a neural network capable of generating identical keys, a
hacker would need to guess by brute force the password entered by the user.

So, the hacker has to guess the size of the string and the exact combination of char-
acters that were used. Equation 6.2 is used to calculate the time necessary to hack the
network.

T = (NM)× tnn. (6.2)

Where N is the total number of printable ASCII characters, M is the length of the
string entered, and tnn is the neural network training time.

6.3.6 Randomization Algorithm Efficiency

The randomization algorithm depends mainly on an initialization password. If the pass-
word changes, the resulting keys must be totally different. To measure the efficiency in
the randomization of data carried out by the algorithm, it is proposed to compare the
keys generated by two initialization passwords with high similarity.
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Chapter 7

Results

This chapter presents the results of the performance evaluation and the security analysis
of the proposed system including the randomization. The encryption and decryption time
was compared with the results obtained by Maqsood [3], Matta [56] and Farah [57].

7.1 Performance Evaluation

To evaluate the performance of the cryptographic system, the encryption/decryption time
and the key generation time were used.

7.1.1 Encryption and Decryption Time of Cryptosystem

To determine the overall performance with respect to encryption and decryption time, the
proposed system ran with the following input file sizes: 200 KB, 300 KB, 400 KB, 500 KB,
600 KB. For each file size, the cryptosystem was run ten times to have a representative
average time. The results are shown in Figure 7.1.

The results showed that when the file size increases, the time that the cryptosys-
tem requires to encrypt and decrypt information also increases. This was because the
cryptosystem performs a resizing of the data, this means that the size of the file that
is decrypted is greater than the one that was encrypted. Additionally, it was obtained
that the encryption time is less than the decryption time. However, the time difference
between each process is small, and in some cases the decryption time became equal to
the encryption time. This was because the encryption and decryption are done through
matrix operations that do not represent a high computational cost. This produces a
similarity in the times of each process and a reduced computational time.
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Figure 7.1: Execution time corresponding to the encryption and decryption processes of
the cryptographic system.

7.1.2 Key Generation Time of the Cryptosystem

To determine the average time that the cryptosystem needs to generate the public and
private key, it was executed with the following initialization password lengths (numbers
of characters): 4, 5, 10, 12, 14, 15. For each password of initialization, the system was
executed ten times and the average value was taken. Table 7.1 shows the average times
for each initialization password length and the sizes of the generated keys. In Figure 7.2,
the average times of each password length are shown graphically, and the key creation
time does not depend on the password length. Additionally, it was determined that the
size of the keys is constant and does not depend on the size of the initialization password.
Since the generation time of the keys does not depend on the length of the initialization
password, a general average of 27.47 seconds was determined. In addition, the length of
the password is always the same, so it was not taken into account for future calculations.
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Table 7.1: Key Generation Time and Keys Size of the Cryptosystem

Initialization Password
Length

Time (s) Public Key Size (KB) Private Key Size (KB)

4 26.4 1 1
5 32.7 1 1
10 22.39 1 1
12 30.9 1 1
14 21.03 1 1
15 31.4 1 1

Average: 27.47 1 1
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Figure 7.2: Time required by the cryptographic system to generate a set of keys with
respect to the length of the initialization password.

7.1.3 Comparison between RSA, ElGamal and the proposed
cryptosystem

Maqsood et al. [3] analyzed the performance of RSA and Elgamal asymmetric cryp-
tographic algorithms in terms of encryption/decryption time and key generation time.
The algorithms were implemented in Java (Eclipse platform version: 3.3.1.1) and the
experiments were performed under Intel Pentium processor with 2.34 GHz and 1 GB
of memory. The reported performance was measured in seconds and was based on the
execution of the algorithms with different text file sizes such as 32 KB, 126 KB, 200 KB,
246 KB and 280 KB.

To compare the proposed cryptosystem with the RSA and ElGamal algorithms, data
files of the same size as those used in the comparison made by Maqsood were created.
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Encryption Time

The comparison of encryption times between RSA, ElGamal and the proposed cryp-
tosystem are shown in Table 7.2 and Figure 7.3. The encryption times reported for
the cryptosystem are much lower than those of RSA and ElGamal. Additionally, it is
seen that as the file size increases, the cryptosystem requires more time to perform the
encryption.

Table 7.2: Encryption Time comparative with Maqsood et al.

File size (KB) RSA Time (ms) ElGamal Time (ms) Cryptosystem Time (ms)
32 130 450 10
126 520 1030 31
200 740 1410 47
246 1110 1750 47
280 1390 1830 62

32 126 200 246 280
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Figure 7.3: Encryption times of the RSA, ElGamal algorithms and the proposed cryp-
tosystem. The encryption times of RSA and ElGamal were obtained by Maqsood et
al.

Decryption Time

The decryption time comparison between the RSA, ElGamal algorithms and the proposed
cryptosystem are shown in Table 7.3 and Figure 7.4. The behavior was similar to the
encryption process where the decryption times are much lower than those of SRA and
ElGamal and if the file size increases, so does the decryption time. Additionally, the
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cryptosystem decryption times are very similar to the encryption times. This was because
the decryption performed by RSA and ElGamal is based on mathematical operations
between very large prime numbers. While the cryptosystem based on matrix operations
avoids the use of large prime numbers that can increase the computational time.

Table 7.3: Decryption Time comparative with Maqsood et al.

File size (KB) RSA Time (ms) ElGamal Time(ms) Cryptosystem Time (ms)
32 150 430 16
126 430 850 32
200 660 130 47
246 930 1300 62
280 230 1640 63
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Figure 7.4: Decryption times of the RSA, ElGamal algorithms and the proposed cryp-
tosystem. The decryption times for RSA and ElGamal were obtained by Maqsood et
al.

Key Size and Generation Time

The size of the keys and key generation time are shown Table 7.4. The time that the
cryptosystem needs to generate a set of keys is much longer than that reported for RSA
and ElGamal. To determine the total size of the set of keys, the size of the encryption
key was added to the size of the decryption key. The size of the keys generated by the
proposed cryptosystem is much larger than the key sizes for RSA and ElGamal. The
comparison of the generation times is shown in Figure 7.5 and the comparison of the key
sizes is shown in Figure 7.6.
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Table 7.4: Key Generation Time comparative with Maqsood et al.

Key Size (bits) Generation Time (s)
RSA 1024 0.287

ElGamal 160 0.86
Cryptosystem 16000 27.74
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Figure 7.5: Comparison of key generation times between RSA, ElGamal and the proposed
Cryptosystem. The times of RSA and ElGamal were obtained by Maqsood et al.
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Figure 7.6: Size comparison of the keys generated by RSA, ElGamal and the proposed
Cryptosystem. RSA and ElGamal key sizes were obtained by Maqsood et al.
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7.1.4 Comparison between RSA-16bits, ECC-16bits and the pro-
posed cryptosystem

Matta et al [56] carried out the performance analysis of RSA-16bits and ECC-16bits
encryption algorithms with a steganographic approach. Even though Matta’s work uses
steganography rather than an encryption approach where the plain text is transformed
to a ciphertext, it provides useful information for evaluating the proposed system. The
RSA-16bits and ECC-16bits algorithms were evaluated separately and for each one, the
key generation time and the encryption/decryption times were analyzed. Matta, evaluate
RSA-16bist and ECC-16bits with the follow file sizes: 22 KB, 87 KB and 174 KB.

Encryption Time

To compare the proposed cryptosystem with the RSA-16bits and ECC-161bits algorithms,
data files of the same size as those used in the comparison made by Matta [56]. The com-
parison of the encryption times between RSA-16bits and ECC-161bits and the proposed
cryptosystem are shown in Table 7.5 and Figure 7.7. The encryption times presented
by the cryptosystem are much lower than those of RSA-16bits and ECC-16bits. This is
because the proposed cryptosystem is based on matrix operations that require a reduced
computing time. In addition, the cryptographic algorithms that are used for the purchase
have a serial execution approach based on operations with very large prime numbers, for
which they require a high computation time.

Table 7.5: Encryption Time comparative with Matta et al.

File size (KB) RSA-16. Time (ms) ECC-16. Time (ms) Cryptosystem Time (ms)
22 3782 51391 16
87 4297 93741 16
174 4265 113947 32
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Figure 7.7: Encryption times of RSA-16bits, ECC-16bist and the proposed cryptosystem.
The encryption times of RSA and ECC were obtained by Matta et al.

Decryption Time

The comparison of the decryption times between RSA-16bits and ECC-161bits and the
proposed cryptosystem are shown in Table 7.6 and Figure 7.8. The decryption times
presented by the cryptosystem are much lower than the times of RSA-16bits and ECC-
16bits. This is because one uses matrix operations and the other uses operations and
functions that involve very large prime numbers. When comparing the data presented
in Figure 7.7 and Figure 7.8, the cryptosystem requires more time in the decryption
process than in the encryption process. This is due to the re-dimensioning that plaintext
undergoes when it is encrypted. Ciphertext is larger than plain text and for that reason
decryption takes more time than encryption.

Table 7.6: Decryption Time comparative with Matta et al.

File size (KB) RSA-16. Time (ms) ECC-16. Time (ms) Cryptosystem Time (ms)
22 4328 24187 16
87 4188 75402 31
174 4390 115137 47
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Figure 7.8: Decryption times of RSA-16bits, ECC-16bist and the proposed cryptosystem.
The decryption times of RSA and ECC were obtained by Matta et al.

Key Generation Time

The key generation times are shown in Table 7.7 and Figure 7.9. To obtain the generation
time of the set of keys, the creation time of the public key plus the creation time of the
private key was added. In the case of the cryptosystem, it only has a single creation
time for the two keys. The key generation time required by the proposed cryptosystem
is much higher than the declared time for RSA-16bits, however it presents a much lower
time than that required by ECC-16bits.

Table 7.7: Key Generation Time comparative with Matta et al.

Public Key Private Key Total Time (s)
RSA-16bits 0.031 0.015 0.046
ECC-16bits 123.203 122.922 246.125

Cryptosystem - - 27.47
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Figure 7.9: Comparison of key generation times between RSA-16bits, ECC-16bits and
the proposed Cryptosystem. The times of RSA and ECC were obtained by Matta et al.

7.1.5 Comparison betwee RSA, ElGamal, Paillier and the pro-
posed cryptosystem

Farah et al. [57] analyzed the performance evaluation of the RSA, ElGamal and Pailler
algorithms, comparing the encryption and decryption time of each algorithm. It was
performed under Windows XP operating system with Intel (R) Core (TM) 2 Duo CPU
2.09 GHz and 4 GB of RAM. The comparison was measured in seconds and use a different
file sizes such as: 68 KB, 105 KB, 124 KB and 235 KB.

Encryption Time

To compare the proposed cryptosystem with the RSA, ElGamal and Paillier algorithms,
data files of the same size as those used in the comparison made by Farah [57]. The
comparison of the encryption times between RSA, ElGamal, Paillier and the proposed
cryptosystem are shown in Table 7.8 and Figure 7.10. In relation to all the algorithms
mentioned above, the proposed cryptosystem presents much lower computation times.
This comparison verifies that the cryptosystem based on matrix operations has lower
computational times than algorithms based on serial operations that involve large prime
numbers.

Table 7.8: Encryption Time comparative with Farah et al.

File size (KB) RSA (ms) ElGamal (ms) Paillier (ms) Cryptosystem (ms)
68 490 900 470 16
105 530 1400 500 31
124 900 50 500 31
235 1500 3000 2520 47
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Figure 7.10: Encryption times of RSA, ElGamal, Paillier and the proposed cryptosystem.
The encryption times of RSA, ElGamal and Paillier were obtained by Farah et al.

Decryption Time

Comparison of decryption times are shown in Table 7.9 and Figure 7.11. The proposed
cryptosystem presented lower decryption times than the RSA, ElGamal and Pailler algo-
rithms. When comparing Figure 7.10 with Figure 7.11, it can be seen that the cryptosys-
tem requires more time to perform the decryption than the encryption. It can be seen
in Figure 7.11 that ElGamal has low computation times, however these are still high in
relation to those obtained by the cryptosystem

Table 7.9: Decryption Time comparative with Farah et al.

File size (KB) RSA (ms) ElGamal (ms) Paillier (ms) Cryptosystem (ms)
68 30000 500 7500 16
105 50000 1500 8200 31
124 59000 2300 14800 32
235 95000 3200 36000 63
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Figure 7.11: Decryption times of RSA, ElGamal, Paillier and the proposed cryptosystem.
The decryption times of RSA, ElGamal and Paillier were obtained by Farah et al.

7.2 Security Evaluation

To determine the security of the private key, the parameters and equations defined in the
section 6.3 are taken into account.

7.2.1 Private Key Security Results

Table 7.10: Network Tolerance

Thousandths (4 digits) Hundredths (3 digits) Tenths (2 digits)
Noise Accuracy Noise Accuracy Noise Accuracy
0,001 99,61 0,01 100,00 0,1 66,67
0,002 99,61 0,02 100,00 0,2 17,65
0,003 99,61 0,03 99,22 0,3 3,92
0,004 99,61 0,04 98,43 0,4 0,78
0,005 100,00 0,05 98,04 0,5 0,00
0,006 100,00 0,06 92,55 0,6 0,00
0,007 100,00 0,07 86,67 0,7 0,00
0,008 99,61 0,08 78,43 0,8 0,00
0,009 99,61 0,09 74,12 0,9 0,00

The results in Table 7.10 shows that the number of significant digits necessary for the
cryptosystem to have high precision is in the order of hundreds. This means that the
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numbers used in the cryptosystem must be composed of at least 3 digits. The rank of the
private key is (-2,2) (See Section 5.2) and the size of WD is 80. According to the rank and
the significant digits, we have the set [-1.99, ..., 1.99], that contains 399 elements. Using
Equation 6.1, the number of attempts a hacker needs to replicate the correct sequence of
numbers that make up the private key is calculated.

V R80
399 = 39980 −→ V R80

399 = 1.19628× 10288(attempts)

To calculate the time to perform all this attempts, an hypothetical machine capable
to realize 1× 107 attempts per second is assumed.

x(years) =
1.19628× 10288(attemptstotal)× 1(seconds)× 1(years)

1× 107(attemptsmachine)× 3.15× 10193(seconds)
(7.1)

Evaluating Equation 7.1 we obtain that takes 3, 79 × 10193 years to hack the private
key.

7.2.2 Neural Network Security

To obtain the correct password capable to generate the correct public and private key,
the hacker needs to know the system initialization password. We know that the the
average training time for the network is 27.47 seconds (see Table 7.1). The total number
of printable characters of the ASCII code are 223. Then using Equation 6.2 we have the
following results.

Table 7.11: Neural Network Security Results

Initialization Password
Length

Equation Time (s) Time (years)

4 T = (2234)× 27.47(s) 67932580424 2,15E+03
5 T = (2235)× 27.47(s) 15148965434612 4,80E+05
10 T = (22310)× 27.47(s) 8,35425E+24 2,65E+17
12 T = (22312)× 27.47(s) 4,15448E+29 1,32E+22
14 T = (22314)× 27.47(s) 2,06598E+34 6,55E+26
15 T = (22315)× 27.47(s) 4,60714E+36 1,46E+29

Table 7.11 shows the time in years that it would take to hack the cryptosystem in
relation to the length of the initialization password used. The computation time required
to hack the system with a brute force approach increases exponentially when the length
of the initialization password or increases. All the times presented in Table 7.11 are
extremely large which makes the hacking process computationally unfeasible.

7.2.3 Randomization Algorithm Performance

To determine the performance of the randomization algorithm, keys are created with
the initialization passwords “helloworld” and “helloworle”. The difference between the
passwords is minimal to determine the effectiveness of the algorithm.
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Pseudo-ordered Index Vector

Figure 7.12 shows the distribution of the pseudo-ordered vectors of indices created with
the passwords “helloworld” and “helloworle”. The distribution of the two vectors follows
the same distribution pattern, however, these are differentiated by a translation on the x
axis. The x-axis shift is due to the fact that the initialization passwords that were used
only vary by one bit from each other. Each point that moves away from the “line” of
linear growth represents the randomness that is introduced in the process of creating the
vectors of pseudo-ordered indexes.
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Figure 7.12: Pseudo-order index vector distribution with passwords “helloworld” and
“helloworle”

Distribution of Public and Private Key

Figure 7.13 shows the difference between the public and private key created with the
password “helloworld”. The values that make up the public key and the private key do
not coincide at any point. The private key is “bigger” than the public key in terms of
possible values that each key could make up. It can be seen in Figure 7.13 that the
private key is made up of values within a range of [−2.2, 1.5] while the public key is made
up of values within an approximate range of [−0.65, 0.65].
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Figure 7.13: Public and Private key distribution with password “helloworld”

Figure 7.14 shows the difference between the keys created with the password “hel-
loworle”. The distribution of the public and private keys has a high randomity and they
do not coincide at any point with each other. In Figure 7.14 it can be seen that the
private key is larger than the public key. The private key is within a range of [−2.5, 1.75]
while the public key is within an approximate range of [−0.60, 0.60].
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Figure 7.14: Public and Private key distribution with password “helloworle”

The difference between the public and private key is due to the cryptosystem seeks
to guarantee a high level of security. Since the public key is publicly known, the possible
values that make it up are irrelevant for security. On the other hand, the private key, since
it is a secret, needs a method that makes it difficult to replicate it. So the cryptosystem
generates private keys with a greater range of possible values.
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Public Key Comparison

Figure 7.15 shows the difference between the public key generated with the password
“helloworld” and the public key generated with “helloworle”. The distributions of the
public keys are very different from each other, even though the initialization password
is only varied by one bit. In Figure 7.15 it can be seen that the key corresponding to
“helloworld” is in a range of [−0.61, 0.52] while that corresponding to “helloworle” is in
a range of [−0.45, 0.45].
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Figure 7.15: Comparison between public keys generated by passwords “helloworld” and
“helloworle”

Private Key Comparison

Figure 7.16 shows the difference between the private key generated with “helloworld”
and the private key generated with “helloworle”. The private key distributions are very
different from each other. In figure 7.16 it can be seen that the key corresponding to
”helloworld” is in a range of [-2.2, 1.32] while the one corresponding to ”helloworle” is in
a range of [-2.5, 1.8].
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Figure 7.16: Comparison between private keys generated by passwords “helloworld” and
“helloworle”

The level of randomity that the public and private keys present when compared to
each other indicates that the randomization algorithm that was created together with the
cryptosystem works correctly. Additionally, the variation that exists between the ranges
of values that make up the keys makes the system have a high level of security.
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Chapter 8

Conclusions

Based on the results obtained in this work, we can conclude that the proposed asymmetric
key cryptographic system presents a considerable performance improvement with respect
to traditional algorithms. In more detail, the following conclusions are pointed out:

1. The experimental results showed that the proposed cryptosystem presents much
lower calculation times than other asymmetric algorithms. The file sizes that were
used for the purchase varied for each algorithm and ranged from 32 KB to 280
KB. Additionally, the system was evaluated with files with sizes from 200 KB to
600 KB, where the system did not present a major problem in the encryption and
decryption of the information. Regarding the key generation time, the system has
spends longer execution time than traditional algorithms because it is equal to the
time required for the neural network to be trained.

2. The autoencoder neural network architecture that was chosen has a high capacity
to encode all the ASCII code in a reasonable computational time. The average
training time obtained was 27.47 seconds, which is acceptable due to this process
is only performed once per set of keys.

3. The system was able to generate totally different sets of keys with the variation
of one bit in the initialization password. Therefore, the randomization algorithm
developed for the neural network training process to have a high level of randomity
presented successful results.

4. The security evaluation carried out on the cryptographic system determined that a
brute force hack, whether trying to “reconstruct” the private key or to compromise
the entire system, would require an enormous computational time, making hacking
infeasible.

8.1 Future Work

Since the proposed cryptographic system is based on neural networks, as future work,
we will implement the cryptosystem under a parallelization approach, thus improving
training times (generation of keys). With this approach, the level of randomness could
be increased without compromising the performance of the neural network.
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