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Resumen 
 

En este trabajo se establecen condiciones que garantizan la existencia de asignaciones eficientes             
y justas a través de un enfoque matricial. 
Un problema de asignación de recursos suele tener tres componentes: un conjunto finito de              
agentes, un conjunto finito de recursos y preferencias individuales de agentes sobre recursos. 
A partir de las preferencias individuales, se establecen criterios que miden tanto la satisfacción              
social (eficiencia) como la individual (justicia). La eficiencia de una asignación se establece a              
través de la eficiencia de Pareto.  
Cuando se reparten recursos indivisibles, el criterio más común, para medir la justicia, es la libre                
envidia de hasta un recurso. 
 
Las preferencias individuales también permiten generar relaciones de bienestar social; esta son            
relaciones binarias sobre el conjunto de todas las asignaciones. 
Estudiaremos el bienestar social utilitario y el bienestar social de Nash, veremos que: las              
asignaciones que maximizan ambas relaciones son eficientes, las que maximizan Nash son            
justas; pero, las que maximizan el bienestar social utilitario no siempre son justas.  
 
Presentaremos condiciones que garantizan cuando existe justicia en las asignaciones que           
maximizan el bienestar social utilitario. La estrategia que se propone es darle un enfoque              
matricial al problema. A partir de este enfoque, se definen las asignaciones transitorias y se               
muestra que maximizan el bienestar social utilitario. Se define la propiedad de parcialmente             
justa y se demuestra que las asignaciones transitorias son parcialmente justas. Por otra parte, se               
muestra que las propiedades de justicia y parcialmente justas, en algunos casos, son             
equivalentes.  
 
Como subproducto de este trabajo se propone un lenguaje de programación de dominio             
específico, denominado Resource Allocation Programming Language (RAPL). 
 
 
Palabras Clave: 
 
Libre de envidia de hasta un recurso, eficiencia de Pareto, bienestar social utilitario, bienestar              
social  de Nash, utilidades aditivas. 



Abstract 
 

In this work, conditions are established that guarantee the existence of efficient and fair              
allocations of indivisible resources through a matrix approach. A resource allocation problem            
usually has three components: a finite set of agents, a finite set of resources, and individual                
preferences from agents over resources. Based on individual preferences, criteria are established            
to measure both social satisfaction (efficiency) and individual satisfaction (justice). The           
efficiency of an allocation is established through Pareto efficiency. When indivisible resources            
are distributed, the most common criterion, to measure justice, is the envy-free up to one good                
criterion. 
 
Individual preferences also make it possible to generate social welfare relations; these are binary              
relations over the set of all allocations. 
We will study the utilitarian social welfare and Nash social welfare. We will see that: the                
allocations which maximize both relations are efficient, those which maximize Nash are fair; but,              
those which maximize the utilitarian social welfare are not always fair.  
 
We will present conditions that guarantee when there is justice in the allocations which              
maximize the utilitarian social welfare. The strategy proposed is to give a matrix approach to the                
problem. From this approach, the transitory allocations are defined and it is shown that they               
maximize the utilitarian social welfare. The property of partial fairness is defined and it is shown                
that the transitory allocations are partially fair. On the other hand, it is shown that the properties                 
of fair and partially fair are equivalent for some cases. 
 
As a by-product of this work, a domain-specific programming language is proposed, called             
Resource Allocation Programming Language (RAPL). 
 

 
Key Words: 
 
Envy-free up to one good, Pareto efficiency, utilitarian social welfare, Nash social welfare,             
additive utilities. 
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Chapter 1

Introduction

Assigning a group of available resources to a group of agents is a very common situation
in our daily life: how to assign household tasks among the members of a family, how
a government institution can distribute its budget. Without a doubt, this is a common
problem, easy to pose, but perhaps, complicated to solve.

This problem usually has three ingredients: a finite set of agents, a finite set of resources,
and individual preferences. The set of agents, depending on the application of the problem,
represents: individuals, objects, government institutions, among others. It is common not
to make any additional assumptions about this set. With respect to the resources to be
distributed, they can be divisible or indivisible. A divisible resource is divided and assigned
to different agents, while an indivisible resource is not. An example with divisible resources
is to divide a piece of land among a certain number of individuals. On the other hand,
an example with indivisible resources are the assets to be distributed in an inheritance: a
house, a vehicle, among others. Individual preferences define the needs, tastes, interests,
or requirements that agents have over the subsets of resources. These preferences are
established from a qualitative or quantitative point of view. In the qualitative, preferences
are structural or ordinal, that is, each agent defines a binary relation over the subsets of
the resources. While in the quantitative approach, individual preferences are given through
numerical functions. These functions are known as utility functions.

Group and individual satisfaction is sought based on individual preferences. Group
satisfaction, also known as “efficiency” or Pareto optimal, seeks to establish when an al-
location benefits the group, ensuring that no other allocation improves one agent without
harming another. Individual satisfaction, known as fairness, seeks allocations that decrease
envy among the individuals involved.

A classic example, that use divisible resources, to understand efficiency and fairness
criterion is the“fair cake-cutting” example where two people try to divide a cake fairly. In
order to guarantee the individual preference of the piece that each one receives, the first
agent is in charge of dividing the cake in half and the second agent chooses first. Then,
the first agent divides the cake ensuring equal preference for any piece. The second agent
has two options: to choose the piece he prefers the most, or to choose the piece with
least preference. If the second agent chooses the piece he prefers most, agent 1 will not
envy what agent 2 chooses and therefore, agent 2 will not envy what agent 1 receives.

1



School of Mathematical and Computational Sciences Yachay Tech University

This allocation is fair because there is no envy between the two agents. Moreover, any
other allocation that raises one agent’s utility, decreases the other agent’s utility; therefore,
this allocation is also Pareto optimal. Other examples, using indivisible resources, will be
reviewed through chapter 2 and chapter 3.

Another aspect that is considered, based on individual preferences, is how to define
binary relations over the whole of all allocations. These relations are known as welfare
relations. In the quantitative framework, utility functions define, on each allocation, social
welfare functions (SW ). An example of such functions is the utilitarian social welfare
function (SWU), which is the sum of the profits of the resources assigned to each agent.
From a SW the set of all the allocations are ordered. This is, given a SW the social welfare
relation � is defined as follows: given the allocations A and B,

A � B ⇐⇒ SW (A) ≥ SW (B)

where A � B is interpreted as “the A allocation has better or equal social welfare than
the B allocation”.

The set of all possible allocations could be very large. This amount depends on the
number of agents and the number of resources. For example, when distributing 20 resources
among 3 agents, there are 1048576 possible allocations. In a problem like this, comparing
the social welfare of each pair of allocations is quite complicated and perhaps unnecessary.
Even more so, if one wants to analyze the criteria of justice and efficiency. For this reason,
we want to reduce the size of the search space and consider the set formed by all those
that maximize social welfare (MSW ).

1.1 Background
How to fairly divide one piece of cake between two or more people? This problem took
interest in the middle of the last century, when in 1947, before the Econometric Society of
Washington D.C., Hugo Steinhaus posed this question before a community of mathemati-
cians and economists [1]. From that moment on, the field of resource allocation became
important in the scientific community. Important scientists such as John Nash [2], Von
Neumman and Morgenstern [3] and Hugo Steinhaus [4, 5] made some contributions to this
area. Most of the contributions that were made during the last half of the last century
were to the problem with divisible resources [4, 2, 6, 7, 8]. Among the contributions to the
problem with indivisible assets are [9, 10].

Fair resource allocation is present in many areas of knowledge; mathematics, computer
science, political science and economics are the most common. In computer science a
wide range of applications are found in Multi-Agent Systems and Artificial Intelligence.
These problems are known as MultiAgent Resource Allocations (MARA) problems. MARA
includes applications such as: task allocations in robotics scenarios [11], task programming
in manufacturing systems[12, 13], school and course allocations for students [14], division of
property in situations of divorce or inheritance [7, 14], among others. In computer science,
there have been theoretical contributions in the field; among which it is worth mentioning
the computational complexity of the algorithms [15, 16, 17] and the study of the properties
of justice and efficiency [18, 19, 20]. A good review of the applications and theoretical
aspects is presented by Chevaleyre et al. [21].

Information Technology Engineer 2 Graduation Project
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Allocations that maximize the utility SW , (MSWU) are Pareto optimal; however, they
are generally not fair, as it may be that only some agents get all the resources and the
rest get no resources. Another SW is the Nash social welfare function (SWNash), this is
obtained by multiplying the profits of the resources assigned to each agent. Caranaguis et
al. [20], proposed the ultimate solution for allocating indivisible resources by combining
efficiency and justice.

Finding an envy-free allocation (EF), in indivisible goods, is not always possible [22].
For this reason, Caragiannnis et al. [20] use a relaxed version of free of envy to measure
justice, which is free of envy except for one good (EF1)[19, 22, 23, 20]. An allocation
is EF1, if the envy between two agents disappears by eliminating exactly one resource
in the individual evaluations. Now, under the consideration that efficiency is measured
through Pareto optimal and justice through EF1, Caragiannis et al., Theorem 3.2 in [20],
demonstrated that, under the assumption that agents define their preferences with additive
utility functions, any allocation that maximizes the SWNash (MSWNash), is efficient and
fair.

The result of Caragannis et al. is theoretically very important. It ensures that there is
always an allocation that is Pareto optimal and EF1. In practice finding such an allocation
remains a difficult problem, as finding a MSWNash is NP-Hard [16]. Therefore, getting
allocations that are Pareto optimal and EF1, without having to find MSWNash, is an
interesting problem.

On the other hand, Camacho et al., en [24], propose a SW using qualitative preferences
and hierarchy among agents. In that work they used matrix properties to demonstrate
some of their results. Now, taking advantage of the advantages that matrices have, both
for visualizing information and for the algebraic properties they possess, we want to explore
the matrix approach to find allocations that are Pareto optimal and, redefining the problem
in some way, look for allocations that have the EF1 property.

1.2 Problem statement
In the problem of fair allocation of indivisible resources, in the quantitative framework,
assuming: additive utility functions and the same budget per agent. We want to explicitly
find allocations that are Pareto optimal, and within them to look for allocations that meet
some criterion of justice. In addition, to propose a domain specific programming language
that allows us to easily handle this type of problem.

1.3 Objectives

1.3.1 General objective
To formulate the fair allocation of indivisible resources from a matrix point of view, based
on maximum preferences, to explicitly find Pareto optimal allocations and search among
them for those that maximize Nash social welfare function.
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1.3.2 Specific objectives
To achieve this general objective, the following specific objectives were set:

1. To raise the issue of fair allocation of indivisible resources following a matrix ap-
proach.

2. To create a method to find the allocations that maximize the utilitarian social welfare
explicitly, based on the maximum preferences.

3. To propose a method to discriminate all the allocations which maximize the utilitar-
ian social welfare using the Nash social welfare function.

4. To propose a domain specific language, based on the proposed matrix approach, as
a tool to develop examples in this area.

1.4 Main contributions & results
This final degree project contributes to the research field of the fair allocation of indivisible
resources with a matrix approach to the problem. This new approach proposes several
matrices that allow us to represent and process the information of preferences and utilities
of the agents. These matrices facilitate the development of new methods to satisfy the
desired criteria of efficiency and justice.

• Valuation matrix: It is a matrix that represents the individual preferences of agents
over resources.

• Allocation matrix: It is a binary matrix, with 0’s and 1’s inputs. The agents are
represented in the rows and the resources in the columns. In each column, there is
exactly a 1, which represents to which agent the resource was assigned.

• Transition matrix: It is a binary matrix, with entries of 0’s and 1’s, which describes
which agents maximize each resource.

• Utility matrix: Given all the subsets of resources distributed in an allocation, this
matrix shows the evaluation that each agent perceives on each subset.

Following the proposed matrix approach, two methods were created for the efficient
and fair allocation of indivisible resources:

• The first method finds all the possible allocations which maximize the utilitarian
social welfare based on the transition matrix. We showed that all these allocations
are Pareto optimal.

• The second method looks for the allocations which meet an EF1 justice criterion.
This maximizes Nash social welfare overall allocations found in the first method.

Another contribution is the first version of a domain-specific language (DSL), called
RAPL. This DSL works with the different matrices proposed in this research and aims to
facilitate the treatment of non-divisible resource allocation problems.
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1.4.1 Disclosures and publications
The results of this degree work were shown and published in several national and interna-
tional events:

• “Justicia y eficiencia en el bienestar social de Nash”, presented at the first Ecuadorian
Mathematics Conference. Protoviejo-Manabi. November, 2019.

• “Asignación de recursos con eficiencia y justicia débil en el bienestar social utilitario”,
approved to be presented in the III International Congress of Intelligent Systems and
New Technologies: Interdisciplinary Trends in Health, October, 2020.

• “RAPL: A Domain Specific Language for Resource Allocation of Indivisible Goods”,
submitted to the TICEC 2020 scientific track.

1.5 Organization of final degree project
Chapter 2 exposes the theoretical foundations and works related to the allocation of indi-
visible resources. Chapter 3 presents the formulation of the problem following the matrix
approach and the proposed methods. Chapter 4 presents the theoretical foundations of
domain-specific languages and introduce the proposed DSL, which works with the results
of chapter 3. In the end, chapter 5 summarizes the conclusions and future perspectives of
this final project.
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Chapter 2

Theoretical background review

The theoretical review explains all the concepts needed to understand and evaluate prob-
lems of allocating indivisible resources. The concepts reviewed in this chapter are defined
through sets and functions, which is the most used point of view in the literature. These
basic concepts are necessary to follow and understand chapter three, which exposes the
same concepts from a matrix point of view.

2.1 Theoretical foundations
This section breaks down the components involved in the resource allocation problem. A
clear nomenclature is now defined which will be used throughout the document to refer to
these components and their characteristics.

The problem of “fair“ resource allocation is to distribute fairly the available goods, at
a given time, among the different actors involved. There are three components to this
problem: the agents, the resources or goods, and justice.

The agents are the alternatives available at the time of the repercussion. The agents
can be: people, objects, machines, among others. The set of all agents is denoted by N
and it is assumed that this set is finite.

N = {1, . . . , n}.

Resources are the aspects or factors to be distributed and depend on the nature of the
problem; they can be related to human, material, financial, technical, and other factors.
The set formed by all the resources is denoted with M . In general, there is a limited
amount of resources to be distributed and, therefore, it is rational to consider M as a finite
set. That is to say,

M = {1, . . . ,m}.
Justice is a moral principle that seeks to judge, respecting the ’truth’, if each individual

has what is his due. Now then, how do you determine if an allocation is fair? In the field
of resource allocation, there are several arguments for determining fairness. Perhaps the
most common, because it is the most natural, is “justice”. Envy is defined as a feeling of
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unhappiness for not possessing what another has. Therefore, a criterion of justice is to find
allocations that do not possess envy or that the envy is as small as possible.

On the other hand, resources are divided into two groups: divisible and non-divisible.
As its name indicates, a divisible resource is one that can be distributed among several
agents; that is, several agents obtain a fraction of this resource. In this case, envy can
be avoided and it is feasible to find fair allocations. Whereas, an indivisible resource is
distributed, in its entirety, to a single agent. Therefore, controlling envy among agents is
more complicated or impossible. To clarify this, let us look at the following example.

Example 1. A father wants to give his four children $10 and five books. In this case,

N = {1, 2, 3, 4} and M = {10 dollars, 5 books}. When distributing the goods, the father

wishes that all his children be satisfied with what they received; in the sense that, each son

is satisfied with what he has received and is not envious of what his brothers received. So,

the father observes that a fair way to distribute the $10 is to divide it among the 4 sons;

that is, to give each son $2.50. Since each son receives the same value, none of them envies

the other. But when it comes to dividing the books, it seems impossible to avoid envy among

the brothers.

This example shows that when working with non-divisible resources, such as books,
envy among agents cannot always be eliminated, making it difficult to meet the criterion
of justice.

From now on, unless the contrary is clarified, it is assumed that resources are indivisible
(or indivisible). Furthermore, it is assumed that m is the number of resources and n is the
number of agents; that is, |M | = m and |N | = n.

Definition 1. Let {A1, A2, · · · , An} be a partition of M ; that is, A1, A2, · · ·An ⊆M such

that ∪n
i=1Ai = M and for all i, j ∈ N with i 6= j, Ai ∩ Aj = ∅. A feasible allocation, or

simply an allocation, A, is a n−tuple.

A = (A1, . . . , An)

where for every i ∈ N , Ai are the resources assigned to the agent i.

Since {A1, A2, · · ·An} is a M partition, it guarantees that:

• All resources are allocated, that is to say, ∀r ∈M, ∃i ∈ N such that r ∈ Ai. This is
because ∪n

i=1Ai = M ;

• no resource is allocated twice, for Ai ∩ Aj = ∅.

The set formed by all the allocations will be denoted by MN . The capital letters
A,B,C, . . . , F,G, . . . will denote allocations that belong to MN . The cardinality of MN is
mn.
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Example 2. Pablo (1) and Maria (2) won a contest and were awarded 4 ice creams, each

with a different flavor. The flavors are: Chocolate (c), Blackberry (m), Vanilla (v), and

Strawberry (f). In this case, N = {1, 2} and M = {c,m, v, f}, there are mn possible

allocations, for this example |MN | = 42 = 16. Pablo suggests spreading the ice cream as

expressed in the allocation A,

A = (A1, A2) = ({f,m}, {v, c})

where the first agent, Pablo, receives the strawberry and blackberry ice cream (A1 = {f,m});

while, the second agent, Maria, receives the vanilla and chocolate ice cream (A2 = {v, c}).

On the other hand, Maria suggests handing out the ice creams as expressed in the allocation

B,

B = (B1, B2) = ({c,m, v}, {f})

The allocation B gives the chocolate, blackberry and vanilla ice cream to the first agent

(B1 = {c,m, v}), leaving the other agent with the strawberry ice cream only (B2 = {f}).

This example shows that there are many ways of allocating resources among agents.
Choosing among the allocations depends on the preferences of the agents as it is reviewed
below.

2.2 Individual Preferences
An interesting question is how to measure envy in an allocation. To answer this question
it is necessary to know the “truth”; this is obtained from the individual preferences of the
agents over the subsets of resources. It is denoted by P(M) to the set of all subsets of M .

Definition 2. For i ∈ N , the individual preference of agent i over P(M), denoted by ≥i

is a total preorder over P(M). That is, ≥i is a subset of P(M)× P(M) and satisfies the

following conditions:

1. It is total;

∀A,B ∈ P(M), (A ≥i B) ∨ (B ≥i A)

2. It is transitive;

∀A,B,C ∈ P(M), [(A ≥i B) ∧ (B ≥i C)]⇒ (A ≥i C).
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It is worth noting that, for each agent i ∈ N , from ≥i, the strict and indifferent part
of ≥i is defined, denoted by >i and ∼i, respectively. That is;

A >i B ⇔ (A ≥i B) ∧ ¬(B ≥i A)

A ∼i B ⇔ (A ≥i B) ∧ (B ≥i A).
The interpretation of these relations is as follows:

• A ≥i B is interpreted as “agent i, prefers A at least as much as B”;

• A >i B is interpreted as “agent i, strictly prefers A to B”;

• A ∼i B is interpreted as “agent i, prefers equally to both A and B”

The following example shows how individual preferences determine whether there is
envy in an allocation.

Example 3. Let us consider again the example 2, where N = {1, 2} and M = {c,m, v, f}.

The agents have to split the four ice creams based on each other’s preferences. For Pablo,

the agent 1, he is indifferent to any flavor:

{f} ∼1 {c} ∼1 {v} ∼1 {m}

and has a greater preference for ice cream with more flavors; that is,

A ≥1 B ⇔ |A| ≥ |B|.

While Maria, the agent 2, has a greater preference for strawberry than any other flavor.

Chocolate, vanilla and blackberry are equally preferred. This is:

{f} >2 {c} ∼2 {v} ∼2 {m}

and if they combine the flavors, she prefers anything that has the flavor of strawberry; that

is to say,

A ≥2 B ⇔ f ∈ A.

Now, let us consider the allocations B, C and D given as follows: B = ({c, v,m}, {f}),

C = ({c}, {f,m, v}) and D = ({c, v}, {f,m}). For the allocation C, Pablo prefers what

Maria was given, as he has a single flavor ice cream and Maria gets three flavors; that is,

C2 = {f,m, v} >1 {c} = C1; therefore, Pablo envies what Maria received. On the other

hand, Maria does not envy Pablo because she has strawberry-flavored ice cream; that is,
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C2 = {f,m, v} >2 {c} = C1. On the contrary, in the allocations B and D there is no envy

among the agents, since Maria always received strawberry and Pablo had the same or more

flavors than Maria’s.
From the previous example, we can observe that there are many ways to express indi-

vidual preferences over P(M) and, from these, to establish if an assignation has individual
satisfaction (envy) among the agents. For example, if Pablo, in his preferences, defines
strawberry flavor strictly over any other flavor or flavor combination, then in the alloca-
tion D there is envy.

Generally, as shown in the example above, agents’ preferences can be subjective. This
approach is known as qualitative. Another approach is the quantitative or numerical one,
in this case the preferences on the resources are objective; in the sense that, they use
numerical functions to define the preferences. In other words, given a R ⊆M , each agent
i ∈ N assigns a numerical value to R using a function, known in the literature as a utility
function:

Definition 3. Any function u of P(M) in the real numbers, u : P(M) → R, is a utility

function, where u(R) is the number that represents the utility of the set R.

In addition, a utility function u is said to:

• not be negative if, and only if, u(R) ≥ 0 for all R ∈ P(M);

• be positive if, and only if, u is not negative and for all R ∈ P(M) with R 6= ∅ you

have to u(R) 6= 0;

• be additive if, and only if, u is positive and for all R ∈ P(M),

u(R) =
∑
r∈R

u({r});

• has K budget, with k ∈ R and K ≥ 0 if, and only if, u(M) = K

Let us note that if u is additive with a K budget, then

u(M) =
∑
r∈M

u({r}) = K. (2.1)

Next we will see that if an agent has a utility function, this function defines an individual
preference.

Lemma 1. Let i be an agent, i ∈ N , and ui be a utility function, then the relation ≥i over

P(M) given by: ∀A,B ∈ P(M),

A ≥i B ⇔ ui(A) ≥ ui(B) (2.2)

is the individual preference of agent i.
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Proof. We want to prove that ≥i is a total preorder. Let A,B,C ∈ P(M). Let us see the

totality of it. As ui(A), ui(B) ∈ R, for the trichotomy of all real numbers, you have that

ui(A) ≥ ui(B) or ui(B) ≥ ui(A). Then by the equation (2.2), A ≥i B or B ≥i A. So, ≥i

is total. For transitivity, let us assume that A ≥i B and B ≥i C. . By the equation (2.2),

ui(A) ≥ ui(B) and ui(B) ≥i ui(C). For the transitivity of ≥ in R, ui(A) ≥ ui(C). Again

by the equation (2.2), A ≥i C. Then, ≥i is transitive. It has been shown that ≥i is total

and transitive; then, ≥i is a total preorder.

Let us look at an example to clarify this approach.

Example 4. Let us consider again the examples 2 and 3. N = {1, 2} and M = {c,m, v, f}.

Suppose that Pablo, agent 1, considers the utility function, u1, given by

u1({c}) = u1({m}) = u1({v}) = u1({f}) = 2.5

And for all R ∈ P(M), u1(R) =
∑
r∈R

u1({r}). That is, u1 is an additive utility function.

On the other hand; Maria, the agent (2), has an additive utility function, u2, given by

u2({c}) = u2({m}) = u2({v}) = 2 and u2({f}) = 4.

Note that both u1 and u2 have the same budget K = 10.

Now, for the allocation C = ({c}, {f,m, v}),agent 1, “evaluates” what he was assigned

with 2.5; that is, u1(C1) = u1({c}) = 2.5. While he evaluates with 7.5 what was assigned

to Maria, u1(C2) = u1({f,m, v}) = 7.5. Pablo gives more use to what was assigned to

Maria, u1(C2) ≥ u1(C1). In this case, Pablo envies Maria. For agent 2, Maria, she

evaluates her allocation better; that is, u2(C2) > u2(C1), because u2(C2) = u2({f,m, v}) =

u2({f}) + u2({m}) + u2({v}) = 4 + 2 + 2 = 8 and u2(C1) = u2({c}) = 2. Then, Maria

does not envy Pablo.

In the example above, additive utility functions were considered for both agents with
the same budget. Having the same budget guarantees that the agents have equal conditions
to evaluate their preferences. On the other hand, it was observed that for the allocation
C, there is no individual satisfaction, this was natural since Pablo received fewer flavors
of ice cream than Maria. Evaluating individual satisfaction is complicated and sometimes
“rational” assumptions do not work. For example, if you consider the allocation B =
({c, v,m}, {f}), it seems rational to think that both agents are satisfied because Maria
received the strawberry ice cream, which is the flavor she prefers most, and Pablo received
three flavors. However, u2(B1) = u2({c, v,m}) = 6 and u2(B2) = u2({f}) = 4. Then,
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Maria envies Pablo; that is, the allocation B has envy. In the next section we will study in
more detail some properties of individual satisfaction (justice) and the property of social
satiation (efficiency).

2.3 Allocation’s properties: efficiency and justice.
At the moment of distributing m indivisible resources between n agents, mn possible alloca-
tions can be calculated. Of course; not all allocations are good, but how can we determine
this? In this section we will study properties to determine when an allocation is good.
These properties are related to efficiency and justice. On the other hand, we will assume
that for all i ∈ N , the individual preferences ≥i are given through utility functions, ui.
That is, ≥i are given by the equation (2.2). Then, for every i ∈ N , the utility function ui

will be referred to instead of the relation ≥i.

2.3.1 Efficiency: Pareto optimal
The efficiency of an allocation will be measured according to the Pareto efficiency crite-
rion, also known as the Pareto optimal [22]. This criterion is named after Vilfrido Pareto
(1848-1923). It consists of maximizing a relation of social satisfaction on all allocations.
This satisfaction is measured by comparing two allocations A and B, from the individual
preferences of each agent and their corresponding evaluations, that is: “A is socially pre-
ferred to B, if there is an agent that improves its valuation utility in the allocation B, with
respect to that assigned by A and no agent worsens its evaluation in B with respect to A”.
Let us formally look at the definition:

Definition 4. Let A,B ∈MN and i, j ∈ N . A is Pareto dominated by B if ui(Ai) ≤ ui(Bi)

and there is at least one j where uj(Aj) < uj(Bj).

Below is an example where one allocation dominates another respective to Pareto.

Example 5. We want to distribute 3 resources among 3 agents; that is, M = {a, b, c}

and N = {1, 2, 3}. Each agent i ∈ N considers additive utility functions ui given in the

following way:

u1({a}) = 20, u1({b}) = 30, u1({c}) = 50;

u2({a}) = 15, u2({b}) = 50, u2({c}) = 35;

u3({a}) = 80, u3({b}) = 20, u3({c}) = 0.

Note that the utilities functions have budget K = 100 and ui(∅) = 0 for all i. Let us
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consider the following allocations:

A = (A1, A2, A3) = ({a, b}, ∅, {c});

B = (B1, B2, B3) = ({c}, {b}, {a}).

Each agent’s valuations on allocations A and B are given by

u1(A1) = u1({a, b}) = u1({a}) + u1({b}) = 50, u1(B1) = u1({c}) = 50;

u2(A2) = u1(∅) = 0, u2(B2) = u2({b}) = 50;

u3(A3) = u1({c}) = 0, u3(B3) = u3({a}) = 80.

Note that the first agent, in the allocations A and B, has equal utility; but, in B the

second and third agent improve their utility. Thus, A is Pareto dominated by B.

In order to obtain social satisfaction, we look for allocations that are not dominated by
any other allocation, in the sense of Pareto. Below is the formal definition.

Definition 5. Let A,B ∈ MN , we will say that B is Pareto optimal (PO) if it is not

Pareto dominated by any other A.

PO allocations are also called efficient in the Pareto sense, or simply efficient. We
will denote as PO, the set of all PO allocations. Caragiannis et al.[20], showed that
under additive utility functions, there is always a PO allocation in MN ; that is, PO 6= ∅.
Figure 2.1, shows that the allocations in MN can be grouped into two sets. The first,
PO, conformed by the PO allocations, and the second, POc, conformed by the non-PO
allocations. In other words, MN = PO ∪ POc.

MN

POc

PO

Figure 2.1: MN = PO ∪ POc

The easiest PO allocations to find are those that allocate all resources to a single agent.
Let us look at some examples.
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Example 6. Let us consider again the example 5, M = {a, b, c} and N = {1, 2, 3}. There

are 33 = 27 possible allocations. Let us consider C, the allocation that distributes all the

resources to agent 1; that is to say, C = (M, ∅, ∅). In this case,

u1(C1) = u1(M) = 100, u2(C2) = u2(∅) = 0 u3(C3) = u3(∅) = 0.

As the utility function of agent 1 is positive, then any allocation that improves agent 2 or

agent 3, harms agent 1; then, C is PO. Another PO allocation is B = ({c}, {b}, {a}); one

way to verify this is by checking that none of the remaining 26 allocations dominate B.

Since A = ({a, b}, ∅, {c}), A is Pareto dominated by B, therefore A is not PO.

In the example above, we saw the allocations B and C that are PO and the allocation
A that is not PO. From these non-OP allocations it is possible to arrive at OP allocations,
through negotiations between agents. This was demonstrated by Endris et al. en [18],
under the assumption that all agents consider additive utility functions.

It seems attractive to determine that an allocation is good if it satisfies PO. However,
this property does not consider the individual satisfaction of the agents; that is, Pareto
efficiency is indifferent to justice. As can be seen in the example 6, allocation C, which is
PO, does not distribute any resources to agents 2 and 3. Although this allocation satisfies
the efficiency criterion, it can be seen that not all agents are satisfied.

In general, determining when an allocation is in PO is a complicated problem; because
it requires comparing all possible allocations. This increases the computational complexity
of the problem, see [15].

Two important conclusions are drawn from this section: first, there can be more than
one Pareto optimal allocation within a single problem. Second, this criterion is not suffi-
cient to decide or label an allocation as good. More criteria are needed to classify allocations.
In the following subsection we will study the property of free envy between agents.

2.3.2 Fairness: Envy-free
A property (PO) has been studied that allows classifying the allocations by comparing
the agent utilities among the allocations. We want to find a criterion that compares the
utilities of the agents within the same allocation and evaluates the “satisfaction” of each
one. This criterion establishes the fairness of the allocation. Now, justice and efficiency
(PO), will be the conditions to determine when an allocation is good. As mentioned earlier,
one criterion related to justice is the property free of envy, [22]. An allocation is said to
be envy-free if all agents value the set of resources assigned equally or better than the
set of resources assigned to the other agents. This describes the agents’ satisfaction with
the allocation. Unfortunately, as we will see in this subsection, in the case of indivisible
resources this property does not always exist. The following is the formal definition of an
envy-free allocation.

Definition 6. An allocation A is envy-free (EF) if for all i, j ∈ N , ui(Ai) ≥ ui(Aj).
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Note that if there is an agent i ∈ N such that ui(Ai) < ui(Aj) for some j ∈ N , then
the agent i envies agent j. On the other hand, we will denote with EF the set formed by
all the EF allocations. In the following example, we will see a problem where EF 6= ∅.

Example 7. We want to distribute 3 resources between 2 agents; in this case, M = {a,

b, c} and N = {1, 2}. Let us suppose that both agents consider additive utility functions

given by

u1({a}) = 20, u1({b}) = 30, u1({c}) = 50;

u2({a}) = 15, u2({b}) = 50, u2({c}) = 35.

As for every i, ui is additive, then ui(∅) = 0. Let us consider the allocations:

A = (A1, A2) = ({a, c}, {b});

B = (B1, B2) = ({b}, {a, c})

each agent’s valuations over A are given by

u1(A1) = u1({a, c}) = u1({a}) + u1({c}) = 20 + 50 = 70, u1(A2) = u1({b}) = 30;

u2(A1) = u2({a, c}) = u2({a}) + u2({c}) = 15 + 35 = 50, u2(A2) = u2({b}) = 50.

Then,

70 = u1(A1) > u1(A2) = 30 and 50 = u2(A2) = u2(A1) = 50

no agent envies the other. That is, A ∈ EF . While valuations over B are given by

u1(B1) = 30, u1(B2) = 70 and u2(B1) = 50, u2(B2) = 50.

Then,

u1(B1) < u1(B2) and u2(B2) = u2(B1);

thus, agent 1 envies agent 2. So that, B /∈ EF .
Another example where EF 6= ∅ is the example 6, where the allocation B ∈ EF while

A,C /∈ EF (in both allocations agent 2 envies at least agent 1). In this example, the
allocation C is efficient (PO) but not fair (no EF), A is neither efficient (no PO) nor fair
(no EF). Finally, allocation B is efficient (PO) and fair (EF), it can be concluded that
allocation B is good.

Unfortunately, when considering non divisible resources and additive profits, there are
problems where it is not possible to find any EF allocation. For example, if |N | > |M |,
there is always an agent that is envious of the distribution; in this case EF = ∅. For this
reason, the property EF does not always exist and, for this reason, it is not possible to
establish the justice of an allocation. In the next section we study a relaxed version of the
envy-free property known as Envy-free up to one good [20].
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2.3.3 Envy-free up to one good
There are problems where, in all possible allocations, agents are jealous, EF = ∅. In
this subsection it is studied a property that establishes when the envy between the agents
is minimal; in the sense that if exists envy between a pair of agents, it disappears by
eliminating a resource. It is worth clarifying that, when we say to eliminate a resource, we
do not mean to remove that resource from the problem; this refers to that it is guaranteed
that the agents are one resource away from being satisfied with the assigned resources.
Next the formal definition.

Definition 7. An allocation A is said to be envy free up to one good (EF1), if for every

pair of agents i, j ∈ N , there is g ∈ Aj such that ui(Ai) ≥ ui(Aj \ {g}).

We will denote by EFO the set formed by all the EF1 allocations. Unlike envy-free
property, the envy-free up to one good property always exists, see [20]; that is, EFO 6= ∅.
For this reason, we will assume that an allocation is fair if it is in EFO. The figure 2.2
shows that MN is classified into two sets: EFO (fair) and EFOc (not fair), where EFOc

are all allocations that are not EF1. That is, MN = EFO ∪ EFOc.

MN

EFOc

EFO

Figure 2.2: MN = EFO ∪ EFOc

We will now demonstrate that EF ⊆ EFO.

Lemma 2. Let us suppose that all agents consider additive utility functions, be A ∈MN .

If A is envy free, then A envy free up to one good.

Proof. If EF = ∅, the result is direct, EF ⊆ EFO. Suppose that EF 6= ∅. Let A ∈ EF ,

then for all i, j ∈ N we have that ui(Ai) ≥ ui(Aj). If g ∈ Aj,then, for the additivity of ui,

ui(Aj) =
∑

s∈Aj

ui({s}) ≥
∑

s∈Aj\{g}
ui({s}) = ui(Aj \ {g})

So, for any g ∈ Aj

ui(Ai) ≥ ui(Aj \ {g})

such that, A ∈ EFO. Then, EF ⊆ EFO.
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Here is an example.

Example 8. Let us consider again the example 7. M = {a, b, c} and N = {1, 2}. Both

agents have additive utility functions given by

u1({a}) = 20, u1({b}) = 30, u1({c}) = 50;

u2({a}) = 15, u2({b}) = 50, u2({c}) = 35.

We know that A = (A1, A2) = ({a, c}, {b}) ∈ EF ; by the lemma 2, A ∈ EFO.

On the other hand, the allocation B = (B1, B2) = ({b}, {a, c}) /∈ EF . Let us see that

B is EF1. Indeed, agent 1 envies agent 2

u1(B1) = u1({b}) = 30 < 70 = u1({a, c}) = u1(B2).

We must determine which resource in B2 can be suppressed to end envy. If we remove the

resource {a} from B2, the envy does not disappear; as, u1(B1) = 30 and u1(B2 \ {a}) =

u1({c}) = 50. Now, if we take away the resource {c}, instead of the resource {a}, then the

envy disappears; since, u1(B1) = 30 and u1(B2 \ {c}) = u1({a}) = 20. Then, the resource

that generates envy in the B is {c}.
In the example above, we see two allocations, A and B, which are EF1. The allocation

A is EF and in the distribution there is not a resource that generates envy between agents;
but, B is not EF and in the distribution there is a resource that produces envy in agent
1. The property EF1, allows us to determine these problematic resources n the following
examples we will see allocations that involve the properties PO and EF1. Below is an
example of a problem where there is an allocation that is neither efficient nor fair.

Example 9. Consider that M = {a, b, c, d} and N = {1, 2}. Let us suppose that both

agents consider additive utility functions given by

u1({a}) = 32, u1({b}) = 34, u1({c}) = 34, u1({d}) = 2;

u2({a}) = 33, u2({b}) = 33, u2({c}) = 33, u2({d}) = 3.

The utility functions have the same budget K = 102. Consider the allocations:

A = (A1, A2) = ({a}, {b, c, d}) and B = (B1, B2) = ({b}, {a, c, d}).

The valuations of each agent on the allocations A and B are given, respectively, by

u1(A1) = 32, u1(A2) = 70 and u2(A1) = 33, u2(A2) = 69;

u1(B1) = 34, u1(B2) = 68 and u2(B1) = 33, u2(B2) = 69.
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Such that,

u1(A1) < u1(A2) and u2(A2) > u2(A1);

u1(B1) < u1(B2) and u2(B2) > u2(B1).

In both cases agent 1 envies agent 2, A,B /∈ EF . If in A (or in B) we eliminate some

resource α from A2 = {b, c, d} or α from B2 = {a, c, d}, envy is not eliminated; because,

u1(A2 \ {α}) ≥ 36 > 32 = u1(A1) and u1(B2 \ {α}) ≥ 35 > 34 = u1(B1). Thus, A,B /∈

EFO.

On the other hand, A /∈ PO, as A is Pareto dominated by B;

u1(A1) = 32 < 69 = u1(B1) and u2(A2) = 34 < 69 = u2(B2).

Then, A /∈ PO.

Here is another example of a problem with an allocation that is EF1 but not PO and
another that is EF1 and PO.

Example 10. Let us consider M = {a, b, c} and N = {1, 2}. Let us suppose that both

agents consider additive utility functions given by

u1({a}) = 25, u1({b}) = 35, u1({c}) = 40;

u2({a}) = 30, u2({b}) = 35, u2({c}) = 35.

Let us consider the allocations:

A = (A1, A2) = ({b}, {a, c}) and B = (B1, B2) = ({c}, {a, b}).

The valuations of each agent on the allocations A and B are given, respectively, by

u1(A1) = 35, u1(A2) = 65 and u2(A1) = 35, u2(A2) = 65;

u1(B1) = 40, u1(B2) = 60 and u2(B1) = 35, u2(B2) = 65.

Such that,

u1(A1) < u1(A2) and u2(A2) > u2(A1);

u1(B1) < u1(B2) and u2(B2) > u2(B1).
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In both cases agent 1 envies agent 2. In A, removing the resource c from A2 removes the

envy; that is, u1(A1) = 35 > 25 = u1(A2 \ {c}) = u1({a}). Thus, A ∈ EFO. Whereas,

in B when the resource b is deleted from B2, the envy is eliminated, u1(B1) = 40 > 25 =

u1(B2 \ {b}) = u1({a}), with B ∈ EFO.

On the other hand, A /∈ PO, as A is Pareto dominated by B;

u1(A1) = 35 < 40 = u1(B1) and u2(A2) = 65 = 65 = u2(B2).

Furthermore, making the corresponding comparisons shows that B ∈ PO (in the example

13 it is shown in a different way that B ∈ PO).

Now we will see an example of a problem where there is a PO allocation but no EF1.

Example 11. Let us consider again M = {a, b, c} and N = {1, 2} and the additive utility

functions given as in the example 10. Let

C = (C1, C2) = (M, ∅).

The valuations of each agent are given by

u1(C1) = 100, u1(C2) = 0;

u2(C1) = 100, u2(C2) = 0.

Clearly C is PO; because agent 2 gets better whenever agent 1 gets worse. Furthermore, C

is an allocation where agent 2 envies agent 1 and C is not EF1, because if you take away a

resource {α} ∈ C1 = M the envy persists, because u2(C1 \ {α}) ≥ 65 > 0 = u2(C2). Thus,

C is PO but not EF1.

The examples above show that the EF1 and PO properties are independent. To be
more precise: in the example 9, a problem was presented where there is an allocation that
is neither fair nor efficient,

∃A ∈MN : A ∈ EFOc ∩ POc;

while a problem where there is an allocation that is fair but not efficient,

∃A ∈MN : A ∈ EFO ∩ POc,

and another allocation that is fair and efficient,

∃A ∈MN : A ∈ EFO ∩ PO
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X1 X2X3

MN

PO EFO

X4

Figure 2.3: Efficient PO and Fair EFO allocations classification

. It was shown in the example 10; and using the same problem, in the example 11, an
allocation was presented that is not fair but if it is efficient,

∃A ∈MN : A ∈ EFOc ∩ PO.

Two important conclusions and one question are drawn from the subsections 2.3.2 and
2.3.3. The first conclusion is that the property of justice is established from the property
EF1. This is because there are problems where EF does not exist. The property EF1
always exists, and furthermore, by the lemma 2, every EF allocation is also EF1. The
second conclusion is that the properties EF1 and PO are independent and we established
that an allocation is good if it satisfies EF1 and PO. On the other hand, the set MN is the
union of four separate sets:

MN = X1 ∪X2 ∪X3 ∪X4

where X1 = EFO ∩ PO is the set of the fair and efficient (good) allocations; the set
X2 = EFO∩POc is formed by the fair but not efficient allocations; while, X3 = EFOc∩PO
the efficient and not fair allocations; finally, X4 = EFOc ∩ POc s 2.3.

The natural question is: given a problem of allocation of resources that are indivisible
under additive profits, are there always good allocations? That is, in any problem, EFO∩
PO 6= ∅? The answer to this question will be seen in the next section.

2.4 Social welfare: how to measure?
These methods consist in defining binary relations � over MN . When individual pref-
erences are given by utility functions, these relations are defined through social welfare
functions. Let us look at the formal definition:

Definition 8. A social welfare function over MN is any function SW : MN → R, where

the number SW (A) represents the welfare of allocation A.
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Now, given a SW , the social welfare relation � is defined as follows: for every pair
A,B ∈MN ,

A � B ⇐⇒ SW (A) ≥ SW (B) (2.3)
where A � B is interpreted as “allocation A has better or equal social welfare than allo-
cation B”. The relation � is a total preorder over MN ; where � is the strict part and ∼
is the indifferent part. In some cases we will use sub-indexes to label the social welfare
function that defines it. In this section we will focus on two SW : the utilitarian social
welfare and the Nash social welfare [22].

2.4.1 Utilitarian social welfare
In this subsection we will study the utilitarian social welfare, we will see that every allo-
cation that maximizes this social welfare is PO; but, they are not always EF1. Next, the
definition of utilitarian social welfare:

Definition 9. For all A ∈MN , the utilitarian social welfare, SWU , of A is defined as:

SWU(A) =
∑
i∈N

ui(Ai) (2.4)

where for all i ∈ N , ui is a utility function.

We will denote by �U the social welfare relation that is defined from SWU , according
to the equation (2.3). Let us see an example:

Example 12. Be M = {a, b, c} and N = {1, 2} and the additive utility functions given

as in the example 10. Let us consider the allocations

A = ({b}, {a, c}), B = ({c}, {a, b}), C = (M, ∅), D = ({a}, {b, c}).

Let’s remember that

u1({a}) = 25; u1({b}) = 35, u1({c}) = 40

u2({a, b}) = 65; u2({a, c}) = 65; u2({b, c}) = 70

Then,

SWU(A) = u1({b}) + u2({a, c}) = 35 + 65 = 100;

SWU(B) = u1({c}) + u2({a, b}) = 40 + 65 = 105;

SWU(C) = u1(M) + u2(∅) = 100 + 0 = 100;

SWU(D) = u1({a}) + u2({b, c}) = 25 + 70 = 95.

Information Technology Engineer 22 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

In such a way that,

SWU(B) > SWU(A) = SWU(C) > SWU(D)

then,

B �U A ∼U C �U D

In the above example, we observe that B produces more utilitarian social welfare than
A, C and D; while, D produces the least social welfare of these allocations. On the other
hand, we will denote byMSWU the set of all the allocations which maximize the utilitarian
social welfare; that is,

MSWU = {A ∈MN : SWU(A) ≥ SWU(B), ∀B ∈MN}

Let’s observe that MSWU 6= ∅; as, MN is finite and for all B ∈ MN exists A such that
SWU(A) ≥ SWU(B). Then, is classified into those allocations that maximize SWU and
those that do not are described in the figure 2.4.

MN MSWU c

MSWU

Figure 2.4: MN =MSWU ∪MSWU c

The following theorem guarantees that any allocation that maximizes SWU is efficient.

Theorem 1. Under additive utility functions, every allocation in MSWU is Pareto opti-

mal.

Proof of this theorem is common in the literature, [22, 18]. This theorem is presented
again in the subsection 3.2.3, Theorem 3, performing a demonstration using a matrix
approach. To illustrate the theorem let us consider the following example.

Example 13. We have M = {a, b, c} and N = {1, 2}. Each agent have additive utility

function defined as in the example 10. For the allocations

A = ({b}, {a, c}), B = ({c}, {a, b}), C = (M, ∅), D = ({a}, {b, c}).

We have that

SWU(B) = 105; SWU(A) = 100; SWU(C) = 100; SWU(D) = 95.
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MSWU

MN

PO

Figure 2.5: MSWU ⊆ PO

Such that,

SWU(B) > SWU(A) = SWU(C) > SWU(D).

It can be shown that MSWU = {({c}, {a, b}), ({b, c}, {a})}. Clearly, A,C,D /∈ MSWU
and B ∈ MSWU . As a consequence of the theorem 1, B ∈ PO and, by the examples 10

and 11, A /∈ PO and C ∈ PO.

Theorem 1, establishes thatMSWU ⊆ PO.In the previous example, it was shown that
this contention is strict; as, C ∈ PO and C /∈ MSWU . In the figure 2.5 it is described
that any allocation that maximizes SWU is efficient.

On the other hand, allocations that maximize SWU do not guarantee EF1. The fol-
lowing example shows an allocation that maximizes SWU and is not EF1.

Example 14. Let us consider M = {a, b, c} and N = {1, 2, 3}. Each agent has an additive

utility function given by

u1({a}) = 30, u1({b}) = 30, u1({c}) = 40;

u2({a}) = 40, u2({b}) = 30, u2({c}) = 30;

u3({a}) = 36, u3({b}) = 22, u3({c}) = 22.

Let us consider the allocations

A = ({c}, {a, b}, ∅) and B = ({b, c}, {a}, ∅)
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Making the corresponding calculations, we have that SWU(A) = 110 = SWU(B) and

MSWU = {A,B}. On the other hand, in both allocations agent 3 envies agents 1 and 2.

Moreover, A,B /∈ EFO because in A if we suppress some resource in A2 = {a, b} the envy

that agent 3 has over agent 2 does not disappear; in the same way, in B the envy of agent

3 over agent 1 does not disappear.

In the example 14, we can see that

MSWU ∩ EFO = ∅

that is, an allocation that maximizes utilitarian social welfare does not ensure justice. In
contrast, in the examples 10 and 13 we observe that there is an allocation that maximizes
the SWU , consequently it is PO and EF1; that is

MSWU ∩ EFO 6= ∅

Then, looking for good allocations in MSWU is not always possible.

2.4.2 Nash social welfare
In this subsection we will study Nash social welfare, we will see that any allocation that
maximizes Nash social welfare is efficient and fair (good). The following is the definition
of Nash social welfare [20]:

Definition 10. For all A ∈MN , the Nash social welfare of A is defined as:

SWNash(A) =
∏
i∈N

ui(Ai) (2.5)

where for all i ∈ N , ui is a utility function.

The social welfare relation that is defined, according to the equation (2.3), from SWNash

will be denoted by �Nash. Let us consider again the example 12 and order the allocations
using SWNash.

Example 15. Be M = {a, b, c} and N = {1, 2} and the additive utility functions given

as in the example 10:

u1({a}) = 25, u1({b}) = 35, u1({c}) = 40;

u2({a}) = 30, u2({b}) = 35, u2({c}) = 35.

Let us consider the allocations again:

A = ({b}, {a, c}), B = ({c}, {a, b}), C = (M, ∅), D = ({a}, {b, c}).

Information Technology Engineer 25 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

as

u1({a}) = 25; u1({b}) = 35, u1({c}) = 40

u2({a, b}) = 65; u2({a, c}) = 65; u2({b, c}) = 70

then

SWNash(A) = u1({b}) · u2({a, c}) = 35 · 65 = 2275;

SWNash(B) = u1({c}) · u2({a, b}) = 40 · 65 = 2600;

SWNash(C) = u1(M) · u2(∅) = 100 · 0 = 0;

SWNash(D) = u1({a}) · u2({b, c}) = 25 · 70 = 1750.

Such that

SWNash(B) > SWNash(A) > SWNash(D) > SWNash(C)

then,

B �Nash A �Nash D �Nash C.

In the previous example it is observed that the order obtained from the allocations A,
B, C and D, when using SWNash, is different from the one obtained when using SWU . The
set of all allocations that maximize the Nash social welfare is denoted by MSWN . That
is,

MSWN = {A ∈MN : SWNash(A) ≥ SWNash(B), ∀B ∈MN}

As MN is finite, then MSWN 6= ∅. In the example 15, it can be shown that, MSWN =
{B}. In the figure 2.6, it is described that MN is classified into those allocations that
maximize SWNash and those that do not.

MN MSWN c

MSWN

Figure 2.6: MN =MSWN ∪MSWN c

The following example shows that, unlike utilitarian social welfare, Nash social welfare
is not indifferent to justice.
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Example 16. Consider the example 14. We have M = {a, b, c} and N = {1, 2, 3}. Each

agent has an additive utility function, which are given by

u1({a}) = 30, u1({b}) = 30, u1({c}) = 40;

u2({a}) = 40, u2({b}) = 30, u2({c}) = 30;

u3({a}) = 36, u3({b}) = 22, u3({c}) = 22.

we show that the allocations

A = ({c}, {a, b}), ∅) and B = ({b, c}, {a}, ∅)

are PO; as MSWU = {A,B}, and also A,B /∈ EFO. Now, let’s consider C = ({c}, {b}, {a}).

Observe that

SWNash(A) = 0 = SWNash(B) and SWNash(C) = 4320

Moreover, making the corresponding comparisons you have that C ∈MSWN and also

that C ∈ EFO. Then, C maximizes Nash social welfare, and is good.

At the end of the section 2.3, we asked ourselves, ”Do good allocations always exist?”
The answer to this question is yes and was given by Caragiannis and his colleagues, [20],
in the following result.

Theorem 2. (Caragiannis et al. [20]) Under additive utility functions, an allocation

A ∈MSWN is envy free up to one good and Pareto Optimal.

In the examples 8 and 13 , we affirm that the allocation B is PO and EF1; in this sense,
the previous theorem confirms our affirmation since B ∈ MSWN . On the other hand, in
general MSWN 6= ∅ and that guarantees the existence of good allocations. Moreover,
finding good allocations comes down to finding an allocation that maximizes Nash social
welfare. In the figure 2.7, it is shown that any allocation that maximizes the SWNash is
good.

The problem of finding allocations inMSWN is a NP hard problem, [16]. The exhaus-
tive search method is the best known and consists of exploring all possible solutions and
then determining which allocation maximizes the SWNash. Another method is the MNW
solution described by Caragannis et al. [20]. This solution is performed in two steps: first,
the largest set S of agents that generate positive profit simultaneously is found. Then, an
allocation of resources among the agents in S is found, so as to maximize the product of
their individual profits. Certainly, the exhaustive search method is the most computation-
ally expensive, for more detail related to complexity see [20, 16, 15].

The following conclusions can be drawn from the subsections 2.4.1 and 2.4.2: first,
from the individual preferences, preference relations are defined over MN that measure
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MN

PO EFO

MSWN

Figure 2.7: MSWN ⊆ PO ∩ EFO

social welfare. Since the individual preferences used are additive utility functions, two
preference relations are considered, �U and �Nash, both of which are total preorders over
MN , obtained from the utility social welfare functions (SWU) and Nash social welfare
(SWNash), respectively. Second, the sets of allocations that maximize both SW , MSWU
and MSWN are considered. It was shown that the allocations in MSWU are efficient
but not necessarily fair; while, thanks to the Theorem 2, the allocations in MSWN are
efficient and fair, that is, they are good. Third, finding allocations in MSWN is still a
problem with strong computational complexity.

2.5 Summary
In this chapter we study two desirable properties of an indivisible resource allocation:
efficiency and justice. Efficiency is attributed to Pareto’s property of optimality; while
justice is measured through the property of envy free up to one good. Those allocations
that are efficient and fair we call good allocations. It was established that a good allocation
always exists.

It was shown that there are ways of ordering allocations through social welfare func-
tions; as particular cases, the utilitarian social welfare function (SWU) and the Nash social
welfare function (SWNash). The corresponding sets, MSWU and MSWN , formed by the
allocations that maximize the functions SWU and SWNash, respectively, were considered.

It was observed that efficiency and justice are properties, which in some cases, are
present in MSWU and MSWN , to be specific:

1. any allocation in MSWN is good, this is because of the Theorem 2 (see figure 2.7);

2. it is guaranteed, through the theorem 1, that any allocation that maximizes the SWU

is efficient (see figure 2.5);

3. Allocations MSWU are not always good, because there are allocations in MSWU
that are not fair. In other words, as we observe in the figures 2.8 and 2.9, depending
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MSWU

MN

PO EFO

Figure 2.8: There are no allocations in MSWU that are good

on the problem, one of the following situations may occur: MSWU ∩ EFO = ∅ or
MSWU ∩ EFO 6= ∅.

Now, in the literature, the utilitarian social welfare is the most used parameter to
establish social welfare relations. As good allocations always exist, it is of interest to know
if a good allocation can be found through SWU . In the next chapter we will establish a
method to find fair, or partially fair, allocations in MSWU .
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MSWU

MN

PO EFO

Figure 2.9: There are allocations in MSWU that are good
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Chapter 3

Proposed matrix approach

This chapter presents a matrix perspective of the theory reviewed in the Chapter 2. This
approach facilitates the analysis and obtaining the properties of efficiency and justice in
the allocations. To ensure the criterion of efficiency, transitory allocations are presented. It
is shown that these allocations are equivalent toMSWU and therefore are PO. Within the
transitional allocations we want to determine whether there are fair allocations. Depending
on the problem of resource allocation, certain conditions are established on a matrix that we
will call transition matrix. Another important piece in this chapter will be the utility matrix
associated with each allocation. From the utility matrix we will define PO, EF1, SWU and
SWNash. In the next section we establish the matrix representation of an allocation, the
valuation matrix and the utility matrix of an allocation. It is worth noting that throughout
this chapter it will be assumed that the utility functions associated to each agent are
additive utility functions.

3.1 Matrix perspective
Having a matrix perspective of the problem of resource allocation of indivisible goods
will lead to designing various methods to process the agent-resource information and thus
present the results in an intuitive way.

In order to formalize the proposed approach, we will establish some notations; let us
remember that |M | = m and |N | = n. The set of all matrices of size n×m with entries in
the set K, will be denoted byMn×m(K). The rows of these matrices represent the agents,
and their columns represent the resources. Then, if A ∈ Mn×m(K), the position (i, r),
denoted by [A]ir, refers to the agent i and the resource r. Furthermore, [A]i∗ denotes the
i-th row of A and [A]∗r denotes the r-th column of A.

3.1.1 Allocation matrix
This subsection defines the matrices that represent all allocations. These types of matrices
are binary; for this reason, we identify these matrices as a subset of Mn×m(B) where
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B = {0, 1}.

Definition 11. Let be A = (A1, A2, · · · , An) ∈ MN and F ∈ Mn×m(B). We say that

matrix F represents allocation A, if

[F ]ir =


1, if r ∈ Ai

0, otherwise.
(3.1)

Let us observe that [F ]ir = 1 is interpreted as: the resource represented in the column r
corresponds to agent 1. While [F ]ir = 0, the agent i does not have the resource represented
in the r column.

Example 17. We want to distribute 4 resources M = {a, b, c, d} among 3 agents N =

{1, 2, 3}. Let us consider F ∈ M3×4(B) given as in the figure 3.1. Note that the rows

Resources

A
ge

nt
s

F =


0 1 0 0

0 0 1 0

1 0 0 1



Figure 3.1: A matrix representing an allocation.

correspond to the agents and the columns to the resources. The resource “a” is represented

in column 1, the “b” in column 2; “c” and “d” in columns 3 and 4, respectively. In row

1 and column 2 is 1, [F ]12 = 1, this is interpreted as: “agent 1 has the resource b”; while

[F ]33 = 0 is interpreted as: “agent 3 does not have the resource c”. Moreover, matrix F

represents the A = ({b}, {c}, {a, d}) allocation.

Note that an allocation matrix is a binary matrix of 0’s and 1’s; because, when working
with indivisible resources, each resource must be assigned in its entirety to a single agent
and the matrix, which represents an allocation, will have a single 1 per column. To set
ideas, see matrix F in the example 17. In the following lemma we will see that for each
allocation there is exactly one matrix that represents it.

Remark. For all A ∈ MN , there is an unique F ∈ Mn×m(B) that represents A. Indeed,

let us suppose that there are two different matrices F and G in Mn×m(B) such that both

represent allocation A. As F 6= G there are r ∈ M and i ∈ N such that [F ]ir 6= [G]ir.

Then, one of the two does not represent A.
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To end this subsection, it is worth noting that, when we say F is an allocation matrix
we mean that F is the matrix that represents an allocation. That is to say, F is a allocation
matrix of resources M on agents N , if for each column r with 1 ≤ r ≤ m, exist only one i
with 1 ≤ i ≤ n such that [F ]ir = 1 and [F ]jr = 0 for all j 6= i.

In the following section we will study the valuation matrix, which is stored by all the
information of the utility functions of the agents on each resource.

3.1.2 Valuation matrix
From the utility functions ui that each agent defines, we define the valuation matrix. This
matrix contains the original data of the problem. That is, within a resource allocation
problem, the valuation matrix holds the utilities that each agent gives to each resource. As
considering additive utilities, we will denote with R∗ the set of non-negative real numbers,
R∗ = {x ∈ R : x ≥ 0). Let us see formally the valuation matrix definition:

Definition 12. Let ui be the utility function of agent i ∈ N . A matrix V ∈Mn×m(R∗) is

a valuation matrix if [V ]ir = ui(r) for every agent i ∈ N and for every resource r ∈M .

Example 18. It is required to distribute 4 resources among 3 agents, M = {a, b, c, d} and

N = {1, 2, 3}. The agents define additive utility functions given by:

u1({a}) = 30, u1({b}) = 40, u1({c}) = 20, u1({d}) = 10;

u2({a}) = 30, u2({b}) = 10, u2({c}) = 50, u2({d}) = 10;

u3({a}) = 30, u3({b}) = 24, u3({c}) = 16, u3({d}) = 30.

Matrix V shown in the figure 3.2. In each row the numerical preferences of each agent

Resources

A
ge

nt
s

V =


30 40 20 10

30 10 50 10

30 24 16 30



Figure 3.2: Example of a valuation matrix.

are distributed. The position [V ]13 represents the utility that agent 1 gives to the resource

represented in the 3rd column; that is, [V ]13 = 20 = u1({c}).
Each resource receives a certain utility from each agent, the sum of all these utilities

will be called the quote of the resource. In the following lemma we will see that from the
valuation matrix is calculated the budget of each agent and the quotation of each resource.
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Lemma 3. If V is the valuation matrix of a resource allocation problem, then

• From the sum of all the positions in the i row, you get the budget of the agent i utility.

• From the sum of all the positions in the column r, you get the quote of the resource

represented in the column r.

Proof. Let i ∈ N and suppose that Ki is the budget of ui, then
m∑

r=1
[V ]ir =

m∑
r=1

ui(r) =
∑
r∈M

ui(r) = Ki.

On the other hand, given r ∈M . If Cr is the quotation of the resource r, then
n∑

i=1
[V ]ir =

n∑
i=1

ui(r) =
∑
r∈M

ui(r) = Cr.

Both the budget of each agent and the quote for each resource can be found using the
norm 1 of Rk, | · |1; that is; if ~x = (x1, · · · , xk) ∈ Rk, then

|~x|1 =
k∑

i=1
|xi|.

Example 19. In the example 18, all agents have the same budget K = 100, therefore,

|[V ]1∗|1 =
∑

r=14

[V ]1r = 30 + 40 + 20 + 10 = 100;

|[V ]2∗|1 =
∑

r=14

[V ]2r = 30 + 10 + 50 + 10 = 100;

|[V ]3∗|1 =
∑

r=14

[V ]3r = 30 + 24 + 16 + 30 = 100.

While the quotations of each resource are given by

|[V ]∗1|1 =
3∑

i=1
[V ]i1 = 30 + 30 + 30 = 90;

|[V ]∗2|1 =
3∑

i=1
[V ]i2 = 40 + 10 + 24 = 74;

|[V ]∗3|1 =
3∑

i=1
[V ]i3 = 50 + 20 + 16 = 86

|[V ]∗4|1 =
3∑

i=1
[V ]i3 = 10 + 10 + 30 = 50

then, the resource “a” is the most quoted and “d” is the least quoted.
So far, we can represent two important aspects of a resource allocation problem: The

allocations and all the utilities of all the agents on each resource, using matrices. In the
next section we will study the utility matrix associated with each allocation.
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3.1.3 Utility matrix
In this subsection we will study the utility matrix. Each allocation has an associated utility
matrix and it will be used to look for properties on the allocation. Let us see the formal
definition:

Definition 13. Let matrix V be a valuation matrix, and let F be an allocation matrix that

represents the allocation A. The utility matrix of F is defined by:

UF = V · F T (3.2)

where F T is the transposed allocation matrix of F .

The utility matrix UF is a square matrix inMn×n(R∗) where the position (i, j) is given
by:

[UF ]ij =
m∑

k=1
[V ]ik · [F T ]kj

Therefore, [UF ]ii is the valuation given by the agent i to the assigned through F ; while
[UF ]ij is the valuation given by the agent i to the assigned, through F , to the agent j. In
other words: if F represents the allocation A = (A1, · · · , An), then ∀i.j ∈ N

[UF ]ij = ui(Aj)

where ui is the utility function of agent i.

Example 20. Let us consider M = {a, b, c, d}, N = {1, 2, 3} and the valuation matrix

given by

V =


30 40 20 10

30 10 50 10

30 24 16 30


Let F lbe the allocation matrix that represents the allocation A = ({b}, {c}, {a, d}); that is,

F =


0 1 0 0

0 0 1 0

1 0 0 1

 .

The utility matrix of F , UF is given by

UF = V · F T =


30 40 20 10

30 10 50 10

30 24 16 30

 ·



0 0 1

1 0 0

0 1 0

0 0 1


=


40 20 40

10 50 40

24 16 60


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Now then, [UF ]11 = 40 is the utility that agent 1 gives to the resources assigned through F ;

[UF ]12 = 20 is the utility that agent 1 gives to the resources assigned, through F , to agent

2; while, [UF ]33 = 60 is the utility that agent 3 gives to the resources assigned.
In this section we studied how to describe in matrix form: the preferences of the agents

over each resource (valuation matrix), an allocation (allocation matrix), and the valuations
that the agents have over the assigned and unassigned resources (utility matrix). In the
next section we will study how to find properties on an allocation from its utility matrix.

3.2 Useful properties from utility matrix
In this section we will study how the properties of justice and efficiency are determined
from the utility matrix; furthermore, how to calculate the social welfare of an allocation.

3.2.1 Utility matrix and fairness
In the previous chapter we studied two properties of justice: EF and EF1. In this section
we will see these properties using the utility matrix. We will begin with the property of
envy-free (EF):

Lemma 4. Let A ∈ MN and F be the allocation matrix that represents it. Then, A is

envy-free if, and only if,

∀i, j ∈ N, [UF ]ii ≥ [UF ]ij (3.3)

where UF is the corresponding utility matrix of F .

Proof. The proof is obtained directly from the definitions 6 and 13. Be i, j ∈ N . Let us

assume that A is envy-free, by the definition 6, ui(Ai) ≥ ui(Aj). But, F represents A, then

by definition 13, [UF ]ii ≥ [UF ]ij. Thus, the equation 3.3 is fulfilled. Reciprocally, if the

equation (3.3) is fulfilled, as F represents A, by the definition 13, ui(Ai) ≥ ui(Aj). Then,

A is envy-free.
Let us see the example 20 again.

Example 21. The valuation matrix is V =


30 40 20 10

30 10 50 10

30 24 16 30

. For the allocation matrix

F =


0 1 0 0

0 0 1 0

1 0 0 1

 you have that UF =


40 20 40

10 50 40

24 16 60

. Let us observe that in each row
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of the matrix UF , the elements of the diagonal (in red color) are greater or equal than

the other entries. Thus, the equation (3.3) is fulfilled and, as F represents the allocation

A = ({b}, {c}, {a, d}), A ∈ EF .

The EF property does not always exists in problems with indivisible resources, for that
reason, we established that an allocation is fair if it satisfies EF1; that is, A ∈ MN is fair
if only and only if A ∈ EFO. The following lemma shows how from the allocation matrix,
the represented allocation is fair. The proof is made through a similar reasoning to the
demonstration of the lemma 4, using the definitions 7 and 13.

Lemma 5. Let A ∈ MN and F be the allocation matrix that represents it. Then, A is

envy-free up to one good if, and only if,

∀i, j ∈ N, ∃r ∈M such that[F ]jr = 1 & [UF ]ii ≥ [UF ]ij − [V ]ir (3.4)

where UF is the corresponding utility matrix of F .

Here is an example:

Example 22. Consider the example 21, whose valuation matrix is given by:

V =


30 40 20 10

30 10 50 10

30 24 16 30


Let us look at the EF1 property in the allocations represented by the following allocation

matrices:

F =


0 1 0 0

0 0 1 0

1 0 0 1

 G =


1 0 0 0

0 1 0 1

0 0 1 0

 H =


1 0 0 0

0 1 1 0

0 0 0 1


the corresponding utility matrices are:

UF =


40 20 40

10 50 40

24 16 60

 UG =


30 50 20

30 20 50

30 54 16

 UH =


30 60 10

30 60 10

30 40 30


As the allocation represented by F is in EF , by the lemma 2, this allocation is EFO. The

allocations represented by G and H are not in EF . Let us see that the allocation given by
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H is in EFO, while allocation given by G is not. Indeed, is UH it can be seen that, agents

1 and 3 envy agent 2; while, agent 2 does not evy any agent.

30 = [UH ]11 < [UH ]12 = 60 & 30 = [UH ]33 < [UH ]32 = 40

Agent 2 is assigned the resources {b, c}. To eliminate the envy of agent 1, let us consider

the resource “b”, described in the second column of V ; that is, [V ]12 = 40, then

30 = [UH ]11 > [UH ]12 − [V ]12 = 60− 40 = 20

for i = 1 and j = 2 taking the resource “b”, r = 2, the equation (3.4) is fulfilled. In

the same way, to eliminate the envy of agent i = 3 with agent j = 3, the resource “b” is

considered again, and you have that

30 = [UH ]33 > [UH ]32 − [V ]32 = 40− 24 = 16

thus, the equation (3.4) is fulfilled. Then, H is in EFO.

For the allocation matrix G, there is envy among all agents; that is, in each row if UG,

there is an entry that is larger than the element in the diagonal. In particular, agent 3

envies agents 1 and 2. Agent 2 received {b, c}, represented in columns 2 and 3 of V . As

30 = min{[UG]32 − [V ]32, [UG]32 − [V ]33} > [UG]33 = 16

then, for i = 3 and j = 2, the equation (3.4) is not fulfilled. Thus, the allocation represented

by G is not in EFO.

From the diagonal of the utility matrix associated with an allocation, it can be deter-
mined whether the allocation is EF. If it is not, the agents (rows) that generate envy are
found, and it is verified that the equation (3.4) is fulfilled. In the next subsection, we will
see the matrix version of the Pareto dominated and Pareto efficient properties.

3.2.2 Utility matrix and efficiency
Next we will see the matrix version of the properties of Pareto dominant and Pareto
optimal. In the following lemma it is observed how using the utility matrices, it is possible
to determine if the Pareto dominant property exists between them; this is:

Lemma 6. Let A,B ∈ MN and F,G be two allocation matrices representing A and B,

respectively. Then A is Pareto dominated by B if, and only if, for all i, [UF ]ii ≤ [UG]ii and

there is at least one j where [UF ]jj < [UG]jj.
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The proof of this lemma is followed by the definitions 4 and 13. Here is an example:

Example 23. Let us consider 3 resources and 3 agents, M = {a, b, c} and N = {1, 2, 3}.

Let us suppose that the valuation matrix is given by

V =


20 30 50

15 50 35

80 20 50

 . (3.5)

Let us consider the allocation matrices:

F =


1 1 0

0 0 0

0 0 1

 and G =


0 0 1

0 1 0

1 0 0


with utility matrices

UF =


50 0 50

65 0 35

100 0 0

 and UG =


50 30 20

35 50 15

0 20 80


As

[UG]11 = 50 = [UF ]11; [UG]22 = 50 > 0 = [UF ]22; [UG]11 = 80 > 0 = [UF ]33

then G dominates F

Next we will enunciate the Pareto Optimal criterion from a matrix point of view. The
proof is obtained from the definitions 5 and 13.

Lemma 7. If F is the allocation matrix representing A, then A is Pareto Optimal if, and

only if,

∀F ′ ∈Mn×m(B)
[
∃i ∈ N, [UF ′ ]ii > [UF ]ii

]
⇒
[
∃j ∈ N, [UF ′ ]jj < [UF ]jj

]
To determine if an allocation is PO using the lemma 7 you need to compare it with

all possible matrix allocations; depending on the problem it could be very challenging.
However, as we saw in the Theorem 1, every allocation that maximizes utilitarian social
welfare is PO. In the next section we will see how to find the utilitarian social welfare of
an allocation using the corresponding utility matrix.

Information Technology Engineer 39 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

3.2.3 Utility matrix and utilitarian social welfare.
In this subsection the relation between the utility matrix and utilitarian social welfare is
established. Besides, we will show that every allocation which maximizes SWU is Pareto
optimal.

Lemma 8. Let A ∈MN . If F is an allocation matrix that represent the allocation A, then

the utilitarian social welfare of A is given by:

SWU(A) = trace(UF ) (3.6)

where UF is the utility matrix of F .

Proof. Let F be the allocation matrix that represents A = (A1, · · · , An). By definitions 9

and 11, we have that

SWU(A) =
∑
i∈N

u(Ai) =
∑
i∈N

[UF ]ii = trace(UF )

Example 24. Let us consider 3 resources and 3 agents, M = {a, b, c} and N = {1, 2, 3},

as in the example 23. The valuation matrix V V is as in (3.5). For allocation matrices:

F =


1 1 0

0 0 0

0 0 1

 and G =


0 0 1

0 1 0

1 0 0

 the utility matrices are:

UF =


50 0 50

65 0 35

100 0 0

 and UG =


50 30 20

35 50 15

0 20 80


If A and B are represented by F and G, respectively, then

SWU(A) = trace(UF ) = 50 + 0 + 0 = 50 and SWU(B) = trace(UG) = 50 + 50 + 80 = 180

then, B �U A.

Next we will give the demonstration of the theorem1. In the demonstration we will use
the utility matrix.

Theorem 3. Let A be an allocation. If A ∈MSWU , then A ∈ PO.
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Proof. Let A ∈ MSWU and F the allocation matrix that represents A. In search of a

contradiction, suppose that A /∈ PO; exists B ∈ MN such that A is Pareto dominated by

B. Then, for all i ∈ N , [UF ]ii ≤ [UG]ii and exists j ∈ N such that [UF ]jj < [UG]jj, where

G represents B. Since agents’ utilities are additive and no negative:

SWU(B) = trace(UG) =
n∑

k=1
[UG]kk >

n∑
k=1

[UF ]kk = trace(UF ) = SWU(A)

which is a contradiction since A ∈MSWU . So, A ∈ PO.

3.2.4 Utility matrix and Nash social welfare.
The Nash social welfare function can also be found from the diagonal of the utility matrix;
that is:

Lemma 9. If F is an allocation matrix that represents the allocation A, then the Nash

social welfare of A is given by:

SWNash(A) = prod(UF ) =
∏
i∈N

[UF ]ii (3.7)

where UF is the utility matrix of F .

Proof. Let F be the allocation matrix that represents A = (A1, · · · , An). By definition 9

and 11, we have that

SWNash(A) =
∏
i∈N

u(Ai) =
∏
i∈N

[UF ]ii = trace(UF )

Once the utility matrix is obtained, the SWNash. can be calculated directly. To do this
you must multiply the elements of the main diagonal of the utility matrix. The following
example explains the calculation of this function from a matrix point of view.

Example 25. In the example 23, the matrices F and G representing the allocations A =

({a, b}, ∅, {c}) and B = ({c}, {b}, {a}); respectively, have utility matrices:

UF =


50 0 50

65 0 35

100 0 0

 and UG =


50 30 20

35 50 15

0 20 80

 .

Then,

SWNash(A) = prod(UF ) = 50 · 0 · 0 = 0 and SWNash(B) = prod(UG) = 50 · 50 · 80 = 200000
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In this section we study how from the matrix representation, specifically from the
associated utility matrix, the properties of justice and efficiency are described; also how
the utilitarian and Nash social welfare are obtained. In the next section we propose an
explicit way to find all the allocations which maximize the utilitarian social welfare.

3.3 Matrix representations for the maximums utili-

tarian social welfare
In this section we will define a transitory allocation and we will demonstrate that these
allocations represent those which maximize the utilitarian social welfare.

3.3.1 Transition matrix and transitory allocations
We will start by defining the transition matrix associated to the valuation matrix and,
from this, we will define the transitory allocations.

Definition 14. Let matrix T ∈Mn×m(B). T is a transition matrix if [T ]ir = 1 whenever

[V ]ir ∈ max{[V ]kr : 1 ≤ k ≤ n} and [T ]ir = 0 otherwise, for all agent i ∈ N and for all

resource r ∈M where matrix V is a valuation matrix.
The transition matrix T is a binary matrix. This matrix is constructed based on the

valuation matrix V ; that is, [T ]ir is 1, if [V ]ir is a maximum value of the ones in the
column r and [T ]ir is 0 at any other position in the column. The information provided by
the transition matrix is interpreted as which agent offers more valuation for which resource.
Let us look at the following example:

Example 26. If V =


30 40 20 10

30 10 50 10

30 24 16 30

 is the valuation matrix for a resource allocation

problem involving 4 resources and 3 agents. The transition matrix T is built from the

valuation matrix V . That is, for the resource represented in column 1, all agents maximize

it, for all i = 1, 2, 3, [T ]i1 = 1; the resource in column 2 is maximized by agents 2 and 3,

[T ]21 = 1 = [T ]22; while, in column 3, only the second agent maximizes it, [T ]23 = 1; for

column 4, only the third agent maximizes it, [T ]34 = 1 Thus, T =


1 1 0 0

1 0 1 0

1 0 0 1


Using the transition matrix, particular matrix allocations are defined; that is, any allo-

cation matrix F that is constructed from a transition matrix T , will be called a transitory
allocation. Let us see the definition:
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Definition 15. An allocation matrix F is transitory if,

∀r ∈M,∃i ∈ N, such that ([F ]ir = 1⇒ [T ]ir = 1) (3.8)

where T is the transition matrix.

Example 27. In the example 26, the transition matrix is given by

T =


1 1 0 0

1 0 1 0

1 0 0 1


then, the matrices

F =


1 1 0 0

0 0 1 0

0 0 0 1

 G =


0 1 0 0

1 0 1 0

0 0 0 1

 H =


0 1 0 0

0 0 1 0

1 0 0 1


are matrices of transitory allocations.

In the next section we will see that transition allocations are efficient.

3.3.2 An explicit way to identify maximums in utilitarian social

welfare
Let us remember that the transition matrix identifies the position of the maximum resource
values; that is, it is interested in pointing out the agents that maximize their preferences
on the resources, without taking into account the utility value. As we will see below, any
transitory allocation is an allocation in MSWU .

Theorem 4. Let A be an allocation and F the allocation matrix that represents A. Then,

F is transitory if, and only if, A ∈MSWU .

Proof. Let A ∈ MN be an allocation, let us suppose that F is the allocation matrix that

represents A.

Let us suppose that F is transitory. We want to demonstrate that trace(UF ) ≥ trace(UG),

for any allocation matrix G. First let us observe that: for all G,

trace(UG) =
∑
i∈N

[UG]ii =
∑
i∈N

∑
k∈M

[V ]ik[Gt]ki =
∑

k∈M

∑
i∈N

[V ]ik[Gt]ki. (3.9)
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where V is the valuation matrix. Now, the proof that trace(UF ) ≥ trace(UG) will be done

using induction over m = |M |, proving that

trace(UF ) =
∑

k∈M

∑
i∈N

[V ]ik[F t]ki ≥
∑

k∈M

∑
i∈N

[V ]ik[Gt]ki = trace(UG). (3.10)

For |M | = 1, there exists i1 ∈ N such that [F ]i11 = 1 and for j 6= i1, [F ]j1 = 0. As F is

transitory, for all j ∈ N

[V ]i11 ≥ [V ]j1.

On the other hand, there is i∗ ∈ N such that [G]i∗1 = 1 and for all j 6= i∗, [G]j1 = 0. In

this way,

[V ]i11[F t]1i1 ≥ [V ]i∗1[Gt]1i∗

and therefore,

∑
j∈N, j 6=i1

[V ]j1[F t]1j = 0 and
∑

j∈N, j 6=i∗
[V ]j1[Gt]1j = 0.

Then, ∑
j∈N

[V ]j1[F t]1j ≥
∑
j∈N

[V ]j1[Gt]

So, for |M | = 1, trace(UF ) ≥ trace(UG).

Suppose that, the induction hypothesis, for |M | = m− 1 the equation (3.10) is fulfilled.

Let us see that the equation (3.10) is fulfilled for |M | = m.

trace(UF ) =
∑

k∈M

∑
i∈N

[V ]ik[F t]ki =
∑
i∈N

[V ]i1[F t]1i +
m∑

k=2

∑
i∈N

[V ]ik[F t]ki

≥
∑
i∈N

[V ]i1[F t]1i +
m∑

k=2

∑
i∈N

[V ]ik[Gt]ki

= [V ]i11[F t]1i1 +
m∑

k=2

∑
i∈N

[V ]ik[Gt]ki

≥ [V ]i∗11[Gt]1i∗1
+

m∑
k=2

∑
i∈N

[V ]ik[Gt]ki

=
∑
i∈N

[V ]i1[Gt]1i +
m∑

k=2

∑
i∈N

[V ]ik[Gt]ik

=
∑

k∈M

∑
i∈N

[V ]ik[Gt]ki = trace(UG)

So, (3.10) is fulfilled for all m. Then, A ∈MSWU .
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Let us look at the reciprocal, let us suppose that F is not transitory and show that

A /∈ MSWU . By definition 15, there are r ∈ M and ir ∈ N such that [F ]irr = 1 and

[T ]irr = 0. Consequently, there is some agent jr, different to ir, that maximizes r; that is,

there is jr ∈ N with jr 6= ir such that [T ]jrr = 1.

Now, we must find an allocation matrix G such that trace(UG) > trace(UF ). Let

us consider the matrix G as follows: G = F except in the column r and, in column r;

[G]jrr = 1 and [G]jr = 0 for all j 6= jr. Clearly, G is an allocation matrix (in each column

there is exactly a 1). On the other hand, since jr maximizes r,

[V ]jrr > [V ]irr

then

[V ]jrr[Gt]rjr > [V ]irr[F t]rir .

So that, ∑
k∈M

∑
i∈N

[V ]ik[Gt]ki >
∑

k∈M

∑
i∈N

[V ]ik[F t]ki.

Then, trace(UG) > trace(UF ). Therefore, A /∈MSWU .

An immediate result of Theorems 3 and 4 is:

Corollary 1. Let A ∈ MN and T be the allocation matrix that represents A. If T is

transitory, then A is Pareto optimal.

The above result does not state that the problem of searching for efficient allocations
reduces the search set to finding all transitory allocations.

Here is an example:

Example 28. Four resources are distributed among four agents, |M | = 4 and |N | = 4.

Consider the valuation matrix V given by

V =



20 20 20 20

25 10 25 20

25 35 0 20

25 15 20 20


Each agent has a budget of 80. It is required to distribute the resources in an efficient way.

With a brute force search you would have to compare 44 allocations. It is now known that
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all transient allocations are Pareto Optimal. First we calculate the transition matrix from

V .

T =



0 0 0 1

1 0 1 1

1 1 0 1

1 0 0 1


There are 3× 1× 1× 4 = 12 possible transitory allocations, among them,

F =



0 0 0 0

0 0 1 0

1 1 0 1

0 0 0 0


this allocation is Pareto efficient; however, it can be seen that the allocation represented

by F is not fair, agents 1 and 4 do not receive any resources; while agent 3 receives three

resources.

In this section we define the transition matrix as the one that identifies the agents that
maximize the preferences over each resource. We also established the transitory allocations;
demonstrating that these represent all the allocations that maximize the utilitarian social
welfare. Finally, transitory matrices allow us to determine in an explicit way an efficient,
but not necessarily fair, group of allocations (this is because they represent MSWU). In
the next section we will discriminate MSWU and see that in a certain sense we will find
a justice among this set, which we will call partial justice.

3.4 Finding a good allocation within the transitory

allocations
In the chapter 2 we observe that MSWU ⊂ PO. Unfortunately, in some cases MSWU ∩
EFO = ∅; that is, the allocations which maximize the utilitarian social welfare are not
fair allocations. In this section we establish conditions which will allow us to determine
allocations inMSWU which are fair,MSWU∩EFO 6= ∅, or partially fairMSWU∩EFO =
∅.

In the next subsection we will see that one way to identify justice inMSWU is through
SWNash.
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3.4.1 Transitory allocations and envy-free
In this subsection we will consider resource allocation problems with the same number
of agents and resources; we will look for conditions that will allow us to determine when
MSWU ∩MSWN 6= ∅. We will begin by defining the trivial allocations.

Definition 16. Let A ∈ MN with n = |N | = |M | and let F be the allocation matrix

representing A. We say that A is a trivial allocation if F is transitory and there is, F ∗, a

permutation of F such that trace(F ∗) = n.

Let us see an example of a problem where there are trivial allocations

Example 29. Consider again the example 28 where |M | = |N | = 4. Their respective

valuation and transition matrices are

V =



20 20 20 20

25 10 25 20

25 35 0 20

25 15 20 20


T =



0 0 0 1

1 0 1 1

1 1 0 1

1 0 0 1


Consider the allocation matrices F and G given by

F =



0 0 0 0

0 0 1 0

1 1 0 1

0 0 0 0


G =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


1 Clearly, F and G are transitory. Furthermore, it is observed that there is no permutation

of F , F ∗, such that trace(F ∗) = 4; therefore, by the Definition 16, F is not trivial. On the

other hand, there does exist a permutation of G, G∗, given by

G∗ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


such that trace(G∗) = 4; therefore G represents a trivial allocation.

In the following example we will see a problem where there are no trivial allocations.
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Example 30. 4 resources are distributed among 4 agents, |M | = |N | = 4. The valuation

matrix V and its respective transition matrix T are given by

V =



4 1 2 3

1 4 3 2

5 5 0 0

0 0 5 5


T =



0 0 0 0

0 0 0 0

1 1 0 0

0 0 1 1


Note that each agent has a budget of 10. Let F be the allocation matrix that represents the

allocation A = (∅, ∅, {1, 2}, {3, 4}); that is, A distributes the resources {1, 2} to agent 3,

and the resources {3, 4} to agent 4.

F =



0 0 0 0

0 0 0 0

1 1 0 0

0 0 1 1


Clearly, F is transitory; moreover, from the transition matrix it can be seen that F is

the only transitory matrix. On the other hand, there is no permutation of F , F ∗, such that

trace(F ∗) = 4; therefore, there is no trivial solution to this problem.

Note that if V is the valuation matrix of an allocation problem, then any permutation
of V represents the same problem; but some agents or resources are represented in different
positions. In the following theorem we will see some conditions that allow us to determine
when there is an allocation that maximizes both SWU and SWNash.

Theorem 5. Let V ∈ Mn×n(R∗) be a valuation matrix and T be the corresponding asso-

ciated transition matrix. If it exists, T ∗, a permutation of T such that trace(T ∗) = n, then

MSWU ∩MSWN 6= ∅.

Proof. Let T ∗ be a permutation of T such that trace(T ∗) = n. Consider F = In, where In

is the identity matrix in Mn×n(B). As trace(T ∗) = n, then all agents maximize at least

one resource; besides, F gives to each agent a resource that maximizes its preference, then

F is a transitory allocation matrix. If A is the allocation represented by F , then, by the

Theorem 4, A ∈MSWU .
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On the other hand, for all i ∈ N ,

[UF ]ii =
∑
r∈M

[V ]ir[F t]ri = [V ]iri
[F ]iri

= [V ]iri

(each agent i is assigned only one resource) and also,

[V ]iri
∈ max{[V ]jri

: j ∈ N}.

However,

prod(UF ) = [UF ]11 · [UF ]22 · · · [UF ]nn

= [V ]1r1 · [V ]2r2 · · · [V ]nrn

and each factor is maximum; then, prod(UF ) is maximum Nash social welfare. So, A ∈

MSWN . Therefore, MSWU ∩MSWN 6= ∅.
The immediate result of the above theorem is that every trivial allocation is efficient

and fair.

Corollary 2. If A is a trivial allocation, then A ∈MSWU ∩MSWN 6= ∅
The previous corollary assures that all trivial allocations are EF1, this because of the

fact that it is a maximum Nash social welfare; however, because of the way trivial alloca-
tions are defined and the fact that |M | = |N | the following corollary is obtained:

Corollary 3. If A is a trivial allocation, then A is envy-free.
In summary, for the case in which |M | = |N | = n, from the transition matrix T , it

is possible to determine whether MSWU ∩ EFO 6= ∅. For them it is possible to verify
the existence of a permutation of T such that its trace is equal to n. If so, any trivial
allocation is good; moreover, any trivial allocation is envy-free. Otherwise, or in the case
of |M | 6= |N |, we must look for another strategy to determine whetherMSWU ∩EFO 6= ∅.

3.4.2 Transitory allocations and and the envy-free up to one

good
In this subsection we propose other conditions to determine good allocations which max-
imize utilitarian social welfare. For this, we will define the “oligarch” agents; an agent is
oligarch if it maximizes at least one resource.

Definition 17. Let V be the valuation matrix and T the associated transition matrix. An

agent i ∈ N is said to be oligarchic if there is r ∈ M such that Tir = 1. Thus, the set of

all oligarchic agents, denoted by S, is defined as

S = {i ∈ N : Tir = 1, for some r ∈M} (3.11)
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It is worth pointing out that as M and N are finite, then at least one agent must
maximize one resource; that is, S 6= ∅. On the other hand, if an agent has more budget than
another one, this one will have the possibility of maximizing more resources. Assuming
that all the agents have an equal budget, establishes equal conditions to maximize the
resources; thus, all the agents can be oligarchs. If the budget of all agents is K = 0, then
S = N .

Example 31. In the example 30 we have that the valuation matrix and the transition

matrix are given, respectively, by

V =



4 1 2 3

1 4 3 2

5 5 0 0

0 0 5 5


and T =



0 0 0 0

0 0 0 0

1 1 0 0

0 0 1 1


.

Let us remember that there are no trivial allocations. Let us observe that although all agents

have the same budget K = 10, only agents 3 and 4 are oligarchs; that is, S = {3, 4}.

Below is the definition of a partially fair allocation.

Definition 18. Let V be the valuation matrix, A ∈ MN and F be the allocation matrix

that represents it. We say that A is partially fair (or partially EF1) if

∀i, j ∈ S,∃r ∈M such that[F ]jr = 1 & [UF ]ii ≥ [UF ]ij − [V ∗]ir (3.12)

where S is the set of oligarchic agents and V ∗ is defined by

[V ∗]ir =


[V ]ir, if [V ]ir ∈ max{[V ]jr : j ∈ N}

0, otherwise

Let us note that in the definition, envy-free is established only in the oligarchic agents.
In the example 31, we have that |M | = |N | and F , the only transitory allocation, represents
a partially fair allocation. In the following example, we will see this property considering
a problem with |M | 6= |N | and MSWU ∩ EFO = ∅.

Example 32. Four resources are distributed among three agents, |M | = 4 and |N | = 3.

The valuation matrix V and its respective transition matrix T are considered:

V =


350 100 500 50

350 350 50 250

100 300 400 200

 and T =


1 0 1 0

1 1 0 1

0 0 0 0


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In this problem, there are two transitory matrices

F =


1 0 1 0

0 1 0 1

0 0 0 0

 and G =


0 0 1 0

1 1 0 1

0 0 0 0


which represent the allocations A = ({1, 3}, {2, 4}, ∅) and B = ({3}, {1, 2, 4}, ∅), respec-

tively. For each allocation matrix the utility matrix is given by:

UF =


850 150 0

400 600 0

500 500 0

 and UG =


500 500 0

50 950 0

400 600 0


then, neither F nor G represent EF1 allocations. This is a problem whereMSWU∩EFO =

∅.

Now, each agent has a budget of 1000 and only two agents are oligarchs; that is, S =

{1, 2}. In search of verifying that there is a transitory allocation that is partially fair; let

us consider the matrix V ∗ defined from V taking the value of those positions where they

maximize each resource and in the other entries they take the value of zero:

V ∗ =


350 0 500 0

350 350 0 250

0 0 0 0

 .

Note that V ∗ is a valuation matrix and T is the transition matrix. Then, the transitory

allocations in V and V ∗ are the same. Using V ∗, the utility matrices are given by:

U∗F =


850 0 0

350 600 0

0 0 0

 and U∗G =


500 350 0

0 950 0

0 0 0

 (3.13)

Nash social welfare is calculated, using the valuation matrices V or V ∗ restricted to oli-

garchic agents, SWNash(·)S, we have that:

SWNash(A)S = ∏
i∈S([UF ]ii) = 850 · 600 = 510000

SWNash(B)S = ∏
i∈S([UG]ii) = 950 · 500 = 475000
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and so, in S,

A �Nash B.

Is S, A maximizes SWNash and is therefore EF1. So, F fulfills the equation (3.12) and so

is partially fair.
In the previous example we found a problem where there is no transitory allocation

that is EF1 (MSWU ∩ EFO = ∅); but, partially fair. The following theorem ensures that
there are always transitory allocations that are partially fair.

Theorem 6. There is an allocation which maximizes the utilitarian social welfare and is

partially fair.

Proof. Let V be the valuation matrix of the problem of distributing the M resources among

the N agents. Let us consider V ∗ the matrix such that for all i ∈ N and all r ∈M ,

[V ∗]ir =


[V ]ir, si [V ]ir ∈ max{[V ]jr : j ∈ N}

0, otherwise

Note that V ∗ is another valuation matrix. Clearly, the transitory allocations in V and in

V ∗ are the same and, by Theorem 4, they maximize the utilitarian social welfare.

Let us denote with T the set of all the transitory matrices and with S the set of all the

oligarchic agents. Using V ∗ we classify T through �Nash, restricted to agents in S. Since

T is finite, there is an allocation matrix of G in T which represents a maximum of SWNash

restricted to S. By Theorem 2, G represents an EF1 allocation restricted to S; therefore,

the equation (3.12) is fulfilled. Thus, G maximizes the social welfare of the utility and is

partially fair.
The above theorem guarantees the existence and does not establish an explicit method

for determining partially fair allocations. The existence of partially fair allocations is
established using Nash social welfare and the result of Caragannis et al., [20]. In the
following example a problem is shown where |M | 6= |N | andMSWU ∩ EFO 6= ∅. That is,
an example where all the agents are oligarchs and there are good allocations (a transitory
allocation representing an EF1 allocation).

Example 33. Five resources are distributed among three agents, |M | = 5 and |N | = 3.

Consider the valuation matrix V and its respective transition matrix T given by

V =


500 200 50 50 200

500 100 50 100 250

500 200 25 100 175

 and T =


1 1 1 0 0

1 0 1 1 1

1 1 0 1 0


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Each agent has a budget of 1000. In this problem there are 3×2×2×2 = 24 transitory

allocations and in addition all the agents are oligarchs; S = N .

The matrix V ∗ is considered from the oligarch positions in T :

V ∗ =


500 200 50 0 0

500 0 50 100 250

500 200 0 100 0


We know that a transitory allocation in V , will also be in V ∗. Let us consider the F

allocation matrix that represents the allocation A = ({1}, {3, 5}, {2, 4}). The utility matrix

U∗F , considering the valuation matrix V ∗ is given by

F =


1 0 0 0 0

0 0 1 0 1

0 1 0 1 0

 and U∗F =


500 50 200

500 300 100

500 0 300


From the matrix U∗F it is observed that both agent 2 and agent 3 envy agent 1. Let us

remember that agent 1 receives only one resource in the distribution, so agent 2 and 3 are

one resource away from not feeling envious of agent 1. Therefore, F represents an EF1

allocation using V ∗ as the valuation matrix.

If we now consider the utility matrix UF , which is built from V :

UF =


500 250 250

500 300 200

500 200 300


then agents 2 and 3 envy agent 1. But, again, since agent 1 received only one resource, F

represents an allocation that is EF1 in N . Therefore, F is good.
The following result states that if all agents are oligarchs, then there is an allocation

that maximizes both SWNash and SWU over V ∗.

Corollary 4. If S = N , there is a transitory allocation that maximizes Nash social welfare

over V ∗.

Proof. If all the agents are oligarchs, then the equations (3.12) and (3.4) are equal. Ac-

cording to Theorem 6, there is a transitory allocation F that satisfies (3.12); but, this

property is fulfilled because F represents a maximum SWNash. Thus, there is an allocation

that maximizes SWU and SWNash.
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In the example 33, a problem was presented where there is a transitory allocation that
maximizes social welfare and is EF1. If we calculate the maximum Nash social welfare,
we can show that the allocation A = ({1}, {3, 5}, {2, 4}), represented by F , is a maximum
SWNash. In other words, we find a transitory allocation that maximizes Nash social welfare.

In summary, in this subsection we established conditions that determine when in a
resource allocation problem, it is possible to find, or not, allocations that maximize the
utilitarian social welfare and that are envy-free up to one resource. In the absence of such
allocations, we establish that a subset of agents, which we call oligarchs, can achieve justice
among themselves. As a by-product, it is established when there is a transitory allocation
that maximizes Nash social welfare.

3.5 Summary
This chapter presented the matrix approach to the problem of assigning indivisible re-
sources. Of the matrices studied, two are worth highlighting: The utility matrix of an
allocation and the corresponding transition matrix. The utility matrix describes how each
agent evaluates the way in which the allocation distributes resources. This matrix provides
direct information on the existence, or not, of envy among each pair of agents. On the
other hand, the transition matrix identifies the agents that maximize the resources; from
this, we define the transitory allocations and we demonstrate in the Theorem 4, that these
allocations represent the allocations that maximize the utilitarian social welfare.

Efficiency in transitory matrices always exists, see Corollary 1. Subsequently, conditions
are provided on the allocation problem to determine the existence of justice. That is:

1. If |M | = |N | and there is a permutation of T whose trace is n, then there is an
envy-free allocation. We call this allocation a trivial allocation.

2. If |M | = |N | and there is no permutation of T whose trace is n or |M | 6= |N |. In this
case it was established:

• The oligarchic agents and was considered the set formed by all these agents.
• Partial fairness, which is the property of EF1 over the oligarchic agents.
• That there are always transitory allocations that satisfy partial justice (Theo-

rem 6). The demonstration is based on the transition matrix to determine the
oligarchic agents and the transitory allocations. Then, using Nash social wel-
fare, restricted to oligarchic agents, the transitory matrices are ordered; those
that maximize social welfare will be partially fair.

• That if all agents are oligarchs, then there is a transitory allocation that satisfies
EF1.

Another aspect to highlight is that if all the agents are oligarchs, then MSWU ∩
MSWN 6= ∅ when considering V ∗, see figure 3.3.
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MSWU

MN

PO EFO

MSWN

Figure 3.3: If S = N , then MSWU ∩MSWN 6= ∅ in V ∗
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Chapter 4

A computational tool

This section presents a new domain specific language (DSL) for solving resource allocation
of indivisible goods problems, based on the matrix approach proposed in the Chapter 3.
In the current literature, there is no DSL focused on solving this kind of problems. A
tool of this type is important, because it would speed up the development and analysis of
examples and it will motivate research on resource allocation problems. This section starts
with a review of basic concepts related to programming languages, and then explains the
general process followed by the proposed DSL, including usage examples.

4.1 Programming languages
A programming language allows humans to type instructions that can be executed by a
computer in order to solve specific problems. This instruction set is known as source code
or just code. With the evolution of technology, several programming languages have been
developed; the most popular today being C, Java and Python. These languages have
a general purpose design; this means that they are used to solve any problem that can
be computed. However, the time required to properly learn and use these languages is
immense, and to deal with new domains requires developing several routines.

A Domain Specific Language (DSL) is a specialized programming language whose com-
mands have been designed to support the resolution of a problem or set of problems within
a certain domain. A DSL has to maintain a compromise between usability and efficiency;
it must be easily understood by humans and it must be executable by a computer. In this
sense, the effectiveness of a DSL depends on the clarity with which it defines and tackles
problems of the target domain. This specific approach makes DSLs easy to learn, use, and
maintain [25].

The programming language interacts with the operative system (OS). There are two
types of interactions: directly and indirectly. The direct interaction requires a compiling
process. The compiler transforms the source code in a set of instructions, that the operative
system can run directly. On the other hand, an interpreted programming language uses a
program called interpreter that is responsible for translating each instruction at the time
it is executed.
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4.1.1 Compiled programs
The life cycle of a compiled program starts from the source code file. The compiler creates
a target program. Then, the user runs the target program directly over the operative
system. Figure 4.1 shows this life cycle.

Figure 4.1: Compiled program life cycle.

The compilation stages can be divided into two groups analysis and synthesis, as can
be seen in Figure 4.2. The stages of analysis start receiving a character stream of the
source code to compile as input The first step is the lexical analysis of the code, where the
scanner extracts tokens from the input stream. A token corresponds to a specific sequence
of characters that have a special meaning within the programming language. At the end
of this lexical analysis, the scanner returns a token stream.

The second step corresponds to the syntactic analysis, carried out by the parser. The
parser follows the token stream and creates a parse tree, sorting the tokens according to
constraints of the language, grammar. Each node of this tree corresponds to a well-defined
operation to execute.

A grammar is a set of constraints that the language imposes in order to determine
if the program is syntactically correct. For example, what character set makes up each
valid token, how to define identifiers, what are the reserved words, operators, how to
reference values, among others. Inside a grammar there is a list of production rules. Each
production rule consists of a term followed by its declaration, which shows how the term
can be decomposed. The next example shows a production rule for a “power” function,
that receives two numbers: first the base, then the reserved word “POW”, and followed by
the exponent, which is a number.
〈power〉 ::= 〈number〉 〈POW 〉 〈number〉

This grammar defines how the programming language would recognize a power operation.
If the parser identifies the character sequence 2 POW 4, it knows that it corresponds to a
declaration of a power operation (24).

The third step is the semantic analysis, which means to check the semantic constraints
such as: data type, correct definition, that variables have been initialized before the decision
process. This step rejects incorrect programs and shows warnings. If the semantic analysis
completes without errors, it generates the Abstract Syntax Tree (AST).

The stages of synthesis start creating the intermediate code, which is a flow graph
with pseudo instructions. The last compilation steps correspond to code improvements,
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Figure 4.2: Stages of compilation.

both dependent and independent of the architecture of the used computer. Finally, the
compiler returns an executable file and disappears without taking part in the execution of
the program at any time.

4.1.2 Interpreted programs
As shown in Figure 4.3, an interpreted programming language uses a program called inter-
preter; which analyzes and executes the source code without generating an executable file.
Therefore, the interpreter remains active throughout the execution of the program. The
most famous examples of interpreted languages are Python and Ruby.

Figure 4.3: Interpreted program life cycle.

The interpretation process shares the same stages of analysis as the compilation process,
see Figure 4.4. If the abstract syntax tree is returned without errors, the interpreter is
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Figure 4.4: Stages of interpretation.

called to execute the instructions and display the results of the program. Then, unlike the
compiler, the interpreter visits each node of the AST, performs the operations described
in that node and returns the results. In other words, the interpreter is present throughout
the program execution process.

In terms of advantages and disadvantages, a compiled program will have a better exe-
cution time than an interpreted one, because the interpreter performs the stages of analysis
each time the program is executed. The executable file returned by the compilation pro-
cess depends on the hardware and the operative systems. To run the same executable file
in another OS the source code file requires to be re-compiled in the best case scenario;
otherwise, it requires to use specific libraries of the target OS. An interpreted program
runs directly the source code, then the only requirement is to have the same interpreter
installed. Additionally the programmer can execute line by line the source code, and also
he can change the values of the variables in running time thanks to the interpreter. This
is a useful property in the development of new examples of a target problem, and also for
searching logic errors in the program.

In order to facilitate the development of examples of resource allocation, an interpreted
DSL will be a valuable computational tool in this research area.

4.2 Proposed DSL
This section proposes a new Domain Specific Language (DSL), called Resource Allocation
Programming Language, RAPL to represent and analyze resource allocation problems of
indivisible goods, following the matrix approach developed in Chapter 3. It includes the
minimal functionality of a complete DSL.

As explained in chapter 3, resource allocation problems can be well represented using
matrices. The matrix approach for this kind of problems is flexible and has interesting
mathematical properties that can be exploited in order to find optimal solutions based
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on efficiency and fairness criteria. However, the programming of such problems using a
general-purpose programming language might include an unnecessary level of complexity.
For these two main reasons, the results from the proposed new approach and the lack of a
DSL for these kinds of problems, a new Domain Specific Language (DSL) is proposed.

This new DSL allows the user to declare the agents’ preferences over resources. The
language can also manipulate those elements with the proper operations involved in the
resource allocation problem. The proposed DSL can measure efficiency criteria such as
Pareto optimality, measure fairness criteria such as Envy-free, and represent results using
matrices. We hope that the ease of use of this DSL can motivate further research on this
topic.

RAPL is an interpreted, high-level, domain-specific programming language developed
in Python. Since RAPL is an interpreted language, its instructions are executed directly
without a previous compilation of the program into machine-language instructions. The
advantage of this feature is that the programs written in RAPL will be easier to exe-
cute. RAPL is also dynamically typed and includes type inference, which means that the
programmer does not have to specify object types within the code. The programming
paradigm supported by RAPL is declarative. This paradigm was chosen in the design
because most of the code for this DSL is expected to be logical-mathematical operations.

RAPL follows the standard processing steps of an interpreter. Figure 4.5 shows the
overall flow of the process that takes the program written in RAPL, from the character
stream to its execution.

RAPL Character Stream

Scanner

Parser

Semantic Analysis

Tree-walk Routines

Token Stream

Parse Tree

Abstract Syntax Tree

Program Input Program Output

Figure 4.5: RAPL Interpretation Process

4.2.1 RAPL scanner
A RAPL program has to be typed in a Command-Line Interface (CLI). This means that
the code to be interpreted is introduced in a shell line by line. The scanner takes a line
of code as a sequence of characters and converts it into tokens. A token object consists of
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the type of the token, a value, a start position, and an end position. The scanner ignores
empty spaces and tabs. Then, depending on the characters found in the introduced line of
code, a type of token is created. The full list of token types can be found in the Listing 4.1.
There are three groups of constants that the scanner uses to classify the tokens DIGITS,
LETTERS and LETTERS DIGITS. If the current character is a digit the scanner returns
a token type of number. If the current character is a letter the scanner checks if it is
a keyword or an identifier, and creates the respective token type. The complete list of
supported keywords is presented in Listing 4.2. An illegal-character error is returned by
the interpreter if it finds an error during this step.

Listing 4.1: Tokens of the RAPL Program-

ming Language

1 TT_INT = ‘TT_INT ’

2 TT_FLOAT = ‘FLOAT ’

3 TT_IDENTIFIER = ‘IDENTIFIER ’

4 TT_KEYWORD = ‘KEYWORD ’

5 TT_PLUS = ‘PLUS ’

6 TT_MINUS = ‘MINUS ’

7 TT_MUL = ‘MUL ’

8 TT_DIV = ‘DIV ’

9 TT_POW = ‘POW ’

10 TT_EQ = ‘EQ ’

11 TT_AT = ‘AT ’

12 TT_PER = ‘PER ’

13 TT_UTIL = ‘UTIL ’

14 TT_NASH = ‘NASH ’

15 TT_EVAL = ‘EVAL ’

16 TT_PO = ‘PO ’

17 TT_LPAREN = ‘LPAREN ’

18 TT_RPAREN = ‘RPAREN ’

19 TT_LSQUARE = ‘LSQUARE ’

20 TT_RSQUARE = ‘RSQUARE ’

21 TT_LCURLY = ‘LCURLY ’

22 TT_RCURLY = ‘RCURLY ’

23 TT_EE = ‘EE ’

24 TT_NE = ‘NE ’

25 TT_LT = ‘LT ’

26 TT_GT = ‘GT ’

27 TT_LTE = ‘LTE ’

28 TT_GTE = ‘GTE ’

29 TT_COMMA = ‘COMMA ’

30 TT_ARROW = ‘ARROW ’

31 TT_EOF = ‘EOF ’

Listing 4.2: Keywords of the RAPL Pro-

gramming Language

1 ‘VAR ’

2 ‘AND ’

3 ‘OR ’

4 ‘NOT ’

5 ‘IF ’

6 ‘THEN ’

7 ‘ELIF ’

8 ‘ELSE ’

9 ‘FOR ’

10 ‘TO ’

11 ‘STEP ’
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4.2.2 Parser and semantic analysis of RAPL
Once the scanner returns the list of tokens, the parser builds the abstract syntax tree
(AST) out of that list. Depending on the encountered tokens, the parser creates a type of
node which determines the correct sequence of token types. If there is an error, a syntax
error or an expected character error is returned. The preference of interpretation within
nodes is determined based on the grammar used in the design of the language.

RAPL grammar

The grammar of the language is presented next and shows the complete grammar of RAPL
using the Extended Backus–Naur Form (EBNF). RAPL has four object types so far: Value,
Number, List, Matrix. A number can be an integer or a float. A list is a sequence of
Numbers, separated by commas ‘,’ and enclosed by brackets. A matrix is a sequence of
Lists, separated by commas ‘,’ and enclosed by curly brackets.

〈expr〉 ::= 〈KEYWORD:VAR〉 〈IDENTIFIER〉 〈EQ〉 〈expr〉
| 〈comp-expr〉 ((〈KEYWORD:AND〉|〈KEYWORD:OR〉)
〈comp-expr〉)*

〈comp-expr〉 ::= 〈NOT 〉 〈comp-expr〉
| 〈arith-expr〉 ((〈EE〉|〈LT 〉|〈GT 〉|〈LTE〉|〈GTE〉)
〈arith-expr〉)*

〈arith-exprr〉 ::= 〈term〉 ((〈PLUS〉|〈MINUS〉) 〈term〉)*

〈term〉 ::= 〈factor〉 ((〈MUL〉|〈DIV 〉) 〈factor〉)*

〈factor〉 ::= 〈INT 〉|〈FLOAT 〉
| 〈power〉

〈power〉 ::= 〈atom〉(〈POW 〉 〈factor〉)

〈atom〉 ::= (〈PLUS〉|〈MINUS〉) 〈factor〉
| 〈LPAREN 〉 〈expr〉 〈RPAREN 〉
| 〈matrix-expr〉
| 〈list-expr〉
| 〈if-expr〉
| 〈for-expr〉
| 〈while-expr〉

〈list-expr〉 ::= 〈LSQUARE〉 (〈expr〉 (〈COMMA〉 〈expr〉)*)?
〈RSQUARE〉

〈matrix-expr〉 ::= 〈LSQUARE〉 (〈list-expr〉)+ 〈RSQUARE〉

〈if-expr〉 ::= 〈KEYWORD:IF〉 〈expr〉 〈KEYWORD:THEN 〉
〈expr〉 (〈KEYWORD:ELIF〉 〈expr〉 〈KEYWORD:THEN 〉 〈expr〉)* (〈KEYWORD:ELSE〉
〈expr〉)?
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〈for-expr〉 ::= 〈KEYWORD:FOR〉 〈IDENTIFIER〉 〈EQ〉 〈expr〉
〈KEYWORD:TO〉 〈expr〉 (〈KEYWORD:STEP〉 〈expr〉)? 〈KEYWORD:THEN 〉 〈expr〉

〈while-expr〉 ::= 〈KEYWORD:WHILE〉 〈expr〉 〈KEYWORD:THEN 〉
〈expr〉

RAPL operators

RAPL supports basic mathematical binary operations. The binary operators for two NUM-
BERS are: +, −, /, ∗, ˆ. These operators represent summation, subtraction, division,
multiplication and exponentiation respectively. Parentheses are also supported and can be
used to change the priority on calculations.

Unary operators are also supported by RAPL. Thanks to this, expressions like -5 make
sense. Other unary operators are also available for matrices operations and are explained
below.

RAPL supports (1) comparison operators, such as >, <, >=, <= and ==, (2) logical
operators, such as AND, OR and NOT and (3) conditional and repetitive statements, such
as those declared with the keywords IF, ELIF, ELSE, FOR.

For resource allocation problems purpose, in RAPL, the matrix operations that the
DSL supports are:

Unary matrix operations

• / for matrix index value,

• @ for matrix transpose,

• % to get transition matrix from a valuation matrix,

• # to get utilitarian social welfare from utility matrix,

• ∼ to get Nash social welfare from utility matrix.

Binary matrix operations

• ∗ for standard matrix multiplication,

• + for standard matrix addition,

• − for standard matrix subtraction,

• : to get utility matrix from a valuation matrix and an allocation.

Obtaining the AST

To build the AST, the parser takes the list of tokens returned by the lexer and reads it to
identify if the sequence corresponds to an specific node. The parser is a Python class with
different methods like matrix expr, list expr, if expr, for expr, while expr, atom, power,
factor, term, arith expr, comp expr and expr, which the parser uses to identify specific
nodes within a token stream.
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There are different nodes in RAPL: NumbreNode, ListNode, MatrixNode, VarAccessNode,
VarAssignNode, BinOpNode, UnaryOpNode, IfNode, ForNode and WhileNode. Each node
is a Python class that stores its position start, position end and its corresponding methods
depending on the Node.

So the parser uses its implemented methods to validate that the token stream follows
an specific understandable sequence, if so, the method returns a node based on that se-
quence. If there are no errors during this process, the pareser then returns the AST to be
interpreted. In figure 4.6, image (a) shows a list of tokens and image (b) shows a token list
followed by a AST, which consists on a single BinOpNode.

4.2.3 RAPL interpreter
If the parser returns the AST with no errors, the interpreter is called to execute operations
and show results. The AST is a map of nodes that the interpreter has to visit in a specific
order. The interpreter then visits a node and tries to return the desired result from every
node. The interpreter returns a run-time error if there is an error during this stage. For
example, if the interpreter visits a binary operation node, it is expected to have a left
node, an operator node, and a right node. Once the entire AST has been visited by the
interpreter with no errors, the result is shown on the screen.

Fig. 4.6 shows examples of the possible errors that are detected by RAPL through the
overall flow.

(a) Parser error

(b) Scanner error

(c) Interpreter error

Figure 4.6: Errors detected in the interpretation process by RAPL.
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4.2.4 Examples using RAPL
RAPL will then be used to analyze some of the problems reviewed throughout chapter 3.
A few lines of code will be used to obtain the matrices proposed in this research in order
to conduct an analysis of fairness and efficiency criterion of an allocation.

Example 34. Figures 4.7, 4.8 and 4.9, shows how to perform the analysis carried out in

the example 29. With the help of RAPL, two allocations will be analyzed: matrix F which

represents an allocation that maximizes the utilitarian social welfare, and the matrix G

which represents an allocation that maximizes the Nash social welfare of a reduced problem.

First, the valuation matrix V is defined, which stores the valuations that each agent

gives to each resource in a resource allocation problem between 5 resources and 3 agents.

Then, with the help of the operator %, the transition matrix T is obtained from V .

Figure 4.7: Declaring valuation matrix and its transition matrix using % operator.

Next, the transitory matrices F and G are defined. The variables F and G are then

replaced by the respective transposed allocation matrix.
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Figure 4.8: Declaring F and G allocation matrices and its transposed form using @ oper-

ator.

Finally, as defined in 13, the utility matrices UF and UG are obtained by multiplying

the valuation matrix with its respective transposed allocation matrix.

Figure 4.9: Computing utility matrices by multiplying corresponding valuation and allo-

cation matrices.

Alternatively, as shown in the figure 4.10, the utility matrices UF and UG can be calcu-

lated directly with the ‘:’ operator.

Finally, and as shown in the figure 4.11, once the utility matrices UF and UG are

obtained, we proceed to calculate the values of the utilitarian social welfare with the operator

‘#’ and the values of Nash social welfare with the operator ‘∼’.
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Figure 4.10: Usage of operator ‘:’.

Figure 4.11: Get SWU and SWNash using ‘#’ and ‘∼’ operators.

Our results show that RAPL is able to describe the allocation problem very succinctly
with a clean syntax. It is important to note that the calculation of the allocations is done
with few lines of code. This syntax avoids the clutter that general-purpose programming
languages produce when trying to represent and solve this sort of problems. Therefore,
this tool will help in the development of this research area.

4.3 Summary
This Chapter presented the interpreted DSL, called RAPL, which is focused on the prob-
lem of resource allocation of indivisible goods. It follows the matrix approach presented
in Chapter 3. The description of RAPL included details of the interpreter, grammar,
operators, and the different types of errors. The examples proposed showed the succinctly
and clean syntax of RAPL and its specialized operators. In conclusion, it is important to
highlight that RAPL allows us to represent and solve any problem of resource allocation.
This computational tool will facilitate the study of new examples and properties of interest
in the research of the resource allocation problem.
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Chapter 5

Conclusions and perspectives

In this paper, a matrix approach to the problem of allocating indivisible resources was
presented. The traditional approach was shown, Chapter 2, which is based on a set theory
perspective; explaining the most important aspects of this field and the existing problem
of finding efficient and fair allocations, considering indivisible resources and additive utility
functions. These aspects were presented from a matrix approach in Chapter 3. This new
vision facilitates analysis to identify the properties of efficiency and fairness in allocations.

From the matrices defined in section 3.1, interesting aspects are presented. That is:
from the allocation matrix, the distribution of resources of an allocation is described; from
the valuation matrix, a large part of the initial data of an allocation problem is described,
the transition matrix is defined and, as a consequence, the transitory allocations; while,
from the utility matrix of an allocation, it is obtained the value of the utilitarian social
welfare, the value of the Nash social welfare, and it is established the existence, or not, of
envy among a couple of agents.

The main theoretical results obtained in this work, under the assumption of additive
profits, are:

1. a matrix characterization for the allocations which maximize the utilitarian social
welfare;

2. a matrix representation for a class of efficient allocations;

3. if |M | = |N | = n and there is a permutation of the transition matrix whose trace is
n, then there is an efficient allocation that is envy-free;

4. if |M | = |N | and there is no permutation of the transition matrix whose trace is n,
then there is an efficient allocation that is partially fair;

5. if |M | 6= |N |, then there is an efficient allocation that is partially fair;

6. if all agents are oligarchs, then there is an efficient and partially fair allocation;

7. if all the agents are oligarchs, then MSWU ∩MSWN 6= ∅ in V ∗.
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On the other hand, this matrix approach motivated the development of a domain
specific language called RAPL. This DSL is in its beginnings, but it can already perform
the basic matrix operations necessary to obtain all the arrays defined in this work, with
few lines of code .

Perspectives
As future work related to this research is wanted to:

1. find a matrix characterization to identify those allocations, or at least one, that will
maximize Nash social welfare;

2. find a matrix characterization to identify the property of envy-free up to one good;

3. study other properties of justice such as proportionality and maximin share (MMS);

4. continue to develop RALP.
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