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Resumen

El area de dimensién de reduccion (RD) tiene como propésito proveer maneras de aprovechar
informacion de alta dimensionalidad, a través de la generaciéon de una representacion de en
baja dimensionalidad, siguiendo algun criterio de preservacién de estructura. En la literatura
cientifica, se encuentran docenas de técnicas de reduccion de la dimensionalidad. Sin
embargo, la selecciéon de un método adecuado para la reduccion de dimensionalidad es una
situacién frecuente y no representa una tarea trivial. Para realizar una reduccién adecuada,
podria incorporarse el criterio de expertos en el proceso de analisis, de forma que los expertos
necesitan interactuar dinamicamente con las representaciones de la baja dimensionalidad.
Dicha interaccion puede lograrse con los diferentes modelos interactivos descritos en la
literatura. No obstante, aun hay problemas abiertos relacionados con la interaccion dinamica
del usuario con los datos. En este trabajo, se presenta un modelo interactivo, llamado "Inverse
Data Visualization Framework" (IDVF), el cual es un modelo pionero de visualizacion interactiva
que se basa en la aproximacion, por métodos kernels, de una reduccion de dimensionalidad
dada por un experto. En términos generales, el modelo opera de la siguiente manera:
Inicialmente, se muestra un grafico de dispersion de los datos en baja dimensionalidad
generado por métodos espectrales. Seguidamente, se solicita al usuario agrupar (a su criterio)
algunos puntos del grafico de acuerdo a la representacion que considere mas idonea. Una vez
generado los datos, el modelo tratara de generar una representacion de la misma
dimensionalidad con una forma similar al creado por el usuario, mezclando diferentes
aproximaciones de métodos espectrales en forma de matrices kernel y otras matrices kernels
que son comunmente usados para la reduccidon de dimensionalidad. Todo esto se desarrolla
usando el método de analisis de componentes principales con kernel (Kernel PCA). La mezcla
de las matrices kernel, después de la descomposicion espectral de KPCA, debera generar un
grafico de 2 dimensiones que resultara similar a la representacion dada por el usuario.

Palabras clave: Reduccion de dimensionalidad, modelo de interaccién, funciones kernel,
visualizacion de datos.



Abstract

Broadly, the area of dimensional reduction (DR) is aimed at providing ways to harness high
dimensional (HD) information through the generation of lower dimensional (LD) representations,
by following a certain data-structure-preservation criterion. In literature there have been reported
dozens of DR techniques, which are commonly used as a preprocessing stage within
exploratory data analyses for either machine learning or information visualization (V) purposes.
Nonetheless, the selection of a proper method is a nontrivial and -very often- toilsome task. In
this sense, a readily and natural way to incorporate an expert’s criterion into the analysis
process, while making this task more tractable is the use of interactive IV approaches.
Regarding the incorporation of experts’ prior knowledge there still exists a range of open issues.
In this degree thesis, we introduce a here-named Inverse Data Visualization Framework (IDVF),
which is an initial approach to make the in-put prior knowledge directly interpretable. Our
framework is based on 2D-scatter-plots visuals and spectral kernel-driven DR techniques. To
capture either the user’s knowledge or requirements, users are requested to provide changes or
movements of data points in such a manner that resulting points are located where best
convenient according to the user’s criterion. Next, following a Kernel Principal Component
Analysis approach and a mixture of kernel matrices, our framework accordingly estimates an
approximate LD space. Then, the rationale behind the proposed IDVF is to adjust as accurately
as possible the resulting LD space to the representation while fulfilling users’ knowledge and
requirements. Results are greatly promising and open the possibility to novel DR-based
visualizations.

Keywords: Dimensionality reduction, interaction model, kernel functions, data visualization.
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Resumen

El drea de dimensién de reducciéon (RD) tiene como propédsito proveer
maneras de aprovechar informacién de alta dimensionalidad, a través de la
generacion de una representaciéon de en baja dimensionalidad, siguiendo al-
gun criterio de preservacion de estructura. En la literatura cientifica, se en-
cuentra docenas de técnicas de reduccién de la dimensionalidad. Sin em-
bargo, la seleccion de un método adecuado para la reduccién de dimension-
alidad es una situacién frecuente y no representa una tarea trivial. Para
realizar una reducciéon adecuada, podria incorporarse el criterio de exper-
tos en el proceso de andlisis, de forma que los expertos necesitarian inter-
actuar dindmicamente con las representaciones de la baja dimensionalidad.
Dicha interaccién puede lograrse con los diferentes modelos interactivos de-
scritos en la literatura. No obstante, atin hay problemas abiertos relaciona-
dos con la interaccién dindmica del usuario con los datos. En este trabajo, se
presenta un modelo interactivo, llamado "Inverse Data Visualization Frame-
work" (IDVF), el cual es un modelo pionero de visualizacion interactiva que
se basa en la aproximacion, por métodos kernels, de una reduccién de dimen-
sionalidad dada por un experto. En términos generales, el modelo opera de
la siguiente manera: Inicialmente, se muestra un gréfico de dispersién de los
datos en baja dimensionalidad generado por métodos espectrales. Seguida-
mente, se solicita al usuario agrupar (a su criterio) algunos puntos del grafico
de acuerdo a la representaciéon que considere més idénea. Una vez generado
los datos, el modelo tratara de generar una representacion de la misma di-
mensionalidad con una forma similar al creado por el usuario, mezclando
diferentes aproximaciones de métodos espectrales en forma de matrices ker-
nel y otras matrices kernels que son comtinmente usados para la reduccién
de dimensionalidad. Todo esto se desarrolla usando el método de anélisis de
componentes principales con kernesl (Kernel PCA). La mezcla de las matri-
ces kernel, después de la descomposicion espectral de KPCA, debera generar
un gréafico de 2 dimensiones que resultara similar a la representaciéon dada

por el usuario.

Palabras clave: Reduccion de dimensionalidad, modelo de interaccion,
funciones kernel, visualizacion de datos.



iv

Abstract

Broadly, the area of dimensional reduction (DR) is aimed at providing ways
to harness high dimensional (HD) information through the generation of
lower dimensional (LD) representations, by following a certain data-structure-
preservation criterion. In literature there have been reported dozens of DR
techniques, which are commonly used as a preprocessing stage within ex-
ploratory data analyses for either machine learning or information visual-
ization (IV) purposes. Nonetheless, the selection of a proper method is a
nontrivial and -very often- toilsome task. In this sense, a readily and natural
way to incorporate an expert’s criterion into the analysis process, while mak-
ing this task more tractable is the use of interactive IV approaches. Regard-
ing the incorporation of experts’ prior knowledge there still exists a range of
open issues. In this degree thesis, we introduce a here-named Inverse Data
Visualization Framework (IDVF), which is an initial approach to make the in-
put prior knowledge directly interpretable. Our framework is based on 2D-
scatter-plots visuals and spectral kernel-driven DR techniques. To capture
either the user’s knowledge or requirements, users are requested to provide
changes or movements of data points in such a manner that resulting points
are located where best convenient according to the user’s criterion. Next,
following a Kernel Principal Component Analysis approach and a mixture
of kernel matrices, our framework accordingly estimates an approximate LD
space. Then, the rationale behind the proposed IDVF is to adjust as accu-
rately as possible the resulting LD space to the representation while fulfilling
users’ knowledge and requirements. Results are greatly promising and open

the possibility to novel DR-based visualizations.

Keywords: Dimensionality reduction, interaction model, kernel func-

tions, data visualization.
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Chapter 1
Introduction

High-dimensional (HD) data requires an arduous and extensive analysis that
exceeds the human senses and may even deceive the human perception. The
wide and ubiquitous field of Computer Science refers to the HD data analysis
as an Information Visualization (IV) problem. The area of IV aims to gener-
ate natural visual representations to simplify the data interpretation by the
user. Particularly, the visualization approaches powered by low-dimensional
(LD) spaces (mainly at 2D or 3D) represent a very appealing and outstand-
ing alternative. In this connection, the Dimensionality Reduction (DR) tech-
niques have taken place as a crucial stage for such approach, here named as
DR-based IV. According to [1], the most remarkable DR techniques reported
by literature are the original versions and variants of Principal Component
Analysis (PCA), Classical Multidimensional Scaling (CMDS), locally linear
embedding (LLE), Laplacian eigenmaps (LE), Stochastic Neighbor Embed-
ding (SNE). Besides strengths and weaknesses of each DR method, there are
some approaches to select a DR algorithm [2], [3]. As a result, there is grow-
ing necessity for an interactive approaches enabling (even non-expert) users
assess each method and select the one(s) that best fit(s) the data set.

The state of the art reports some approaches to add interactivity through
a so-called Interaction Models (IM) such as: geometric [4], equalizer-like [5],
color-based [6], [7], geodesic [8] models, and among others, as extensively
reviewed in [9]. The intuition behind these models is to find a kernel matrix,
create a linear combination between kernel matrices, and adjust the weights
in order to obtain the desired representation [10]. Since methods as LLE, LE,
and ISOMAP [11] are susceptible to be represented as kernel matrices, it is
possible to explore the DR of the data from a linear combination of kernel
matrices using a Kernel DR method, namely Kernel PCA (KPCA) [12]
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1.1 Problem statement

The task of selecting an appropriate kernel (or multiples kernels) and their
criteria within a KPCA framework is challenging -even for experts. More de-
tailed interactive tools -as those based on IM and kernel matrices [9]- propose
diverse interfaces for dynamic selection of kernel combination approaches.
In order to pick to the best kernel, the users should explore multiple options
-e.g. try several kernels and their combinations. As natural, the option that
a kernel perfectly suits the user’s needs does not exist is also possible. How-
ever, these mechanisms are not efficient enough when user has no a proper

interpretation of the data structure.

1.2 Contribution

As an alternative to tackling these issues, in this work, we present a novel in-
teractive DR based on choosing/setting a suitable kernel for KPCA from the
lower dimensional space defined by a user. Specifically, we introduce a here-
named Inverse Data Visualization Framework (IDVF). Broadly, IDVF works
as follows: It uses spectral DR techniques based on kernels. Its visualization
consist of 2D-scatter-plots. Then, to capture either the user’s knowledge or
requirements, users are requested to provide changes or movements of data
points in such a manner that resulting points are located where best conve-
nient according to the user’s criterion. Subsequently, we estimates an ap-
proximate LD space from a a mixture of kernel matrices inputting to a KPCA
approach. Therefore, the main goal of IDVF is to adjust as accurate as pos-
sible the resulting LD space to the representation fulfilling users” knowledge
and requirements. Results are greatly promising and open the possibility to

novel DR-based visualizations approaches.

1.3 Document Organization
This work is divided into six Chapters as follows:

e Chapter 1 (Introduction) outlines the general aspects of the work, the
problem statement 1.1, the contribution 1.2, and the objectives 1.4.

e Chapter 2 (Overview and Background) explains the main idea of in-
teractive model for dimensional reduction (Section 2.1), the previous

interactive models (Section 2.2), the dimensional spectral techniques
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(Section 2.3) and their kernel approximation (Section 2.5.1), the kernel
matrix used in this work (Section 2.5), the generation of the mixture ker-
nel (Section 2.6), and finally the quality used to evaluate the proposed
model (Section 2.7).

o Chapter 3 (Methodology) gathers stages for the operation of the IDVFE.
The methodology itself and the flow-chart are explained in the section
3.2.

e Chapter 4 (Experimental setup) describes the considered databases (Sec-
tion 4.1), the kernels used for the experiments (Section 4.2), and the
metrics (Section 4.3).

e Chapter 5 (Results) is divided into three sections 5.1, 5.2, and 5.3. Each
section has three trials and at each trial the plot of the representation

and their quality curve are depicted.

e Chapter 6 (Conclusion and future work) draws the final remarks as fol-

lows: Conclusions in Section 6.1, and the future work 6.2.

1.4 Objectives

1.4.1 General Objective

To develop an interactive model for dimensionality-reduction-based visual-
ization able to produce a similar low-dimensional space to that beforehand
given by an user through applying the best combination of kernel matrices

into a Kernel Principal Component Analysis (KPCA) framework.

1.4.2 Specific Objectives

e To create an interactive scatter plot enabling the user to drag and move

points in order to create an interface for the interactive model.

e To combine different dimensionality reduction methods and kernels

matrices to produce a set of methods according the intuition of the user.

e To develop a mathematical model based on two vectors and high-dimensional
datasets, aimed at approximating the KPCA outcomes to two 2D scatter

plot giving by an user.



Chapter 2

Overview and Background

2.1 Context

Dimensional reduction (DR) transform a high dimesional data into a sub-
stantial representation of lower dimensionality, an optimal representation
is an inherent dimensional depiction of data, in other words the minimum
number of parameters that the data can preserve their features [13]. How-
ever, interactive models described in [5] have an additional aimed, which is
to produce an approximation of non-legible data to a more comprehensible
representation according to the expert judgement. This thesis focuses on in-
teractive models of weighting factors commonly used to obtain the best DR
set from a linear combination of kernel matrices, which becomes a mixture
Kernel Matrix (K). Such a Kernel Matrix is used as an input of a kernel-based
DR method -e.g. Kernal Pricnipal Component Analysis (KPCA). The linear
combination of weighting factors are manipulated by an Interactive Model
(IM) [5].

Previous works [4]-[7], [14] have reported different interaction models
based on linear mixtures, wherein the users may select the methods within
an intuitive approach. Yet, the use of these interfaces to determine structure
of the data represents is an ardours task.

2.2 Previous interactive models

This section introduces active interactive models based on combination of
kernels approximation methods. These models are based on the combina-
tion of the weighting factors of kernels matrices.
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2.2.1 Geometrical Homotopy Model

This method is based on the combination of different kernel methods, each
vertex of a polygon with M vertexes represent a kernel [15]. The model only
allows a pairwise combination of kernels. The relation between the 2 kernel
matrices is tuned by a given parameter A, which is manipulated according to
its position in the edge, a visibly representation of it is in Figure. 2.1.

f

fy f2
° ° f f
—\— 1-\ | lh A — 1-A : ’

(a) M=2 (b) M =3

FIGURE 2.1: Representation of Homotopy model with M = 2
and M = 3. Source: [15].

2.2.2 Color-Based Model

The color-based model described in [7] uses weighting factors and three ref-
erence colors (red, blue, and green). Each color represents a kernel matrix, the
interface allows for selecting a colors combination among them. The weight-
ing factors are calculated with the percentage of the reference colors inside

the selected color, as shown in Figure 2.2.
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@ skeich 1612082 [=]

weighted factors

<= Weighting factors

Data-sets

InfoVis: Color-based Model with Dissimilarity Matrix

for Dimensionality Reduction

Color selected

’—I

LLE CMDS

FIGURE 2.2: GUI of color-based model. Source: [7].

2.2.3 DataVisSim

Likewise, DataVisSim is another model based on weighting factors. The rate
of the weighting factor is giving by an equalizer-bar. Each bar represented
the coefficient value of a kenel matrix [6]. Figure 2.3 shows the interface of

DataVisSim.

DIMENSIONALITY REDUCTION METHOD

AUTOMATIC FIRHUAL

FIGURE 2.3: GUI of DataVisSim. Source: [6].
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2.3 Dimensional Reduction Spectral Techniques

There are many different techniques to reduce the dimensional of dataset.
The aim of the thesis is particularly interested in non linear techniques, spe-
cially on spectral techniques based in similitude, dissimilarities, and kernel.

The concerning techniques which are clearly related with this thesis are
explained in the subsections 2.3.1,2.3.2,2.3.3, 2.3.4, and 2.4.

2.3.1 (Classical) Multi-Dimensional Scaling

(Classical) Multi-Dimensional Scaling (CMDS/MDS) generates a dense fea-
tures maps or an embedding coordinates set from matrix of similarity gener-
ated between pairs of data points. This method can be understood a scaling
process over a multidimensional data set regarding a target space [16]. A re-
striction of CMDS is that the objective space must be an Euclidean space. In
contrast, MDS uses any kind of similarity (also kernel) matrix, which can be
analyzed with non-linear techniques [17].

Additionally, Principal Component Analysis has the same minimization
function metric of MDS, as is shown in the master thesis [17].

2.3.2 Isomap

Isometric Mapping works in a similar way to MDS. The similarity matrix
used for Isomap is generated by the geodesic distance of the points [18]. The

geodesic distance measures the topological distance [17].

2.3.3 Laplacian Eigenmaps (LE)

Laplacian Figenmaps is a DR algorithm, which holds low-computational
complexity and robustness to noise and outliers. The algorithm generates a
Laplacian graph followed from the inherent geometric structure of the man-
ifold [19]. This is justified by the fact that the Laplacian graph can be seen as
an approximation of the Laplacian operators providing an optimal embed-
ding space.

2.3.4 Locally Linear Embedding

Locally Linear Embedding (LLE) is a non-supervised DR method that seeks

the smallest-neighborhood-preserving embeddings. It computes a low-dimensionality
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linear reconstruction from linear local symmetries of a non-linear, high-dimensional

embedding space [20].

24 Kernel PCA

PCA has been extended in different non-linear generalizations. One of the
most remarkable ones is Kernel PCA (KPCA), which is based on a mapping
of the original data onto a higher-dimensional space, and the kernel trick
to estimate the principal components from a non-linear representation. The
principles of KPCA are widely described in [21]-[24].

The kernel trick maps the input samples onto a so-named high-dimensional
feature space F. The kernel function x(x1, x) satisfies that:

K(x1,%2) = (¢(x1), ¢(x2)), 2.1)

where ¢(-) maps R"*P

onto F and (-, -) stands for inner product.

The benefit of the kernel trick is the fact that the inner product on the
feature space can be replaced by a kernel function and reduce a problem from
F to R". KPCA optimization problem can be understood as an eigenvalue
problem of selecting the eigenvectors associated to the largest eigenvalues
of a Gram matrix K holding pairwise kernel function values. A fully matrix
development of KPCA is introduced in [24].

2.5 Kernels Matrices

This work takes advantage of the equivalent matrices as performing a DR
process, when using neighborhood structure preservation through KPCA, as
explained in [12]. Table 2.1 gathers the kernel matrices used in this work.
In addition to DR-based kernel matrices, we use other common kernels [25]
described in Table 2.2.

2.5.1 Kernels based in DR methods

DR Technique Description Reference
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Kernel LE

Kernel LE constructs an Laplacian matrix
L, from the neighborhood relations graph
W and its corresponing degree D, as fol-
lows: L = D — W. Then, the KLE is de-
fined as the pesudoinverse of the Laplacian
matrix as:

Kig=L" (2.2)

[12], [26],
[27]

Kernel Isomap

To calculate the kernel matrix the two first
steps of the Isomap algorithm are per-
formed. It constructs the neighborhood
graph and compute the geodesic distances
which is defined as D?. Then, it constructs
the kernel matrix K (D?) = —1HD’H.
However, this matrix K is no positive def-
inite, in order to get a kernel, the largest
0 2K(D?)
a —4K(D)
calculated. Then, the Mercer Kernel matrix

eigenvalues c* of ) must be

is applied as:

1
Kisomap = K <D2> +2K (D) + 5¢*H
(2.3)
Kisomap is positive definite if ¢ > c*.

[11], [28],
[29]

Kernel LLE

It builds a weight matrix W and defines a
matrix M, so that M = (I, — W' )(I — W)
and compute the maximum eigenvalue c of
M. Then, its kernel matrix can be written
as:

Kiig = (cI, — M) (2.4)

[30]-[32]
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The Kernel version approximation of
CMDS is based in a distance matrix D, and
it is double centered. For this article D is
Kernel CMDS | based on the euclidean distance. [24]

Kcevmps = %(I —1515)D(I — 151L) (2.5)

TABLE 2.1: Kernel matrices representing spectral DR tech-
niques.

2.5.2 Classic kernels functions

Kernel Function Definition
Linear xTy
Polynomial (yx Ty +c)P
Sigmoid tanh(yx "y +¢)

Radial basis function exp(—y | x—y ||?)
Laplacian exp(=yllx =y )

TABLE 2.2: Kernel Functions and its definitions

2.6 Mixtures of Kernel Matrices

A kernel matrix or Gram matrix is a square, symmetric positive definite ma-
trix, such that its entries can be represented by a kernel function [33].

In this sense, as discussed in [34], the linear combination of kernel ma-
trices is a also a kernel Matrix [34]. By taking advantage of this property,
multiple kernel analysis for DR [2], and interaction models for visualization

[35] have been proposed.

Let us define the matrix K as a linear combination of kernels matrices, as

follows:

m .
K (Xuxp) = Y a;K? (X,xp) ifa; >0andife; €ER . (2.6)
i=1
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2.7 Quality Curve

Lee and Verleysen [36], introduced a formal evaluation measurement of di-
mensionality reduction in form of a ranking-based metric. Let as denote L <
D and | - | the set cardinality, the authors represent J;; as the distance between
two elements (;,§;) of high dimensional dataset & = {g;,...,{n} C RP.
Analogously, d;; is the distance between two elements (x;, x;) of the low di-
mensions dataset X = {x;,...,x;} C RE. Then, the rank of §j with respect
to ¢&; in RP is given by pij = |[{k[6ix < éjjor (0 = djjand 1 < k < j < n})l,
while the Rank of x; with respect to x; in R is given by r;; = |[{k|dy < d;;
or (dj = dijjand 1 < k < j < n})|. Thus, reflexive ranks are set to zero
(pi; = ri; = 0) and non-reflexive ranks belong to {1,...,n — 1}. The defini-
tion of a co-ranking matrix allows to compare different rank based criteria. It

is defined as:
an = [{(i,) 1 pij = k Arij =1} 2.7)
The core of the Quality Criterion of [36] as expressed by [37] is the matrix
Qnx:

L
KN

L
Y ) an (2.8)

k=11=1

Qnx(K) =

Qnx describes the agreement among HD and LD neighborhood, where
Onx = 1 represents the ideal K-ary neighborhood agreement and Qnx = 0

represents the absence of agreement.

The overall result is the curve generated by the following equation: [38],
[39]:
_ (N-1)OQnx(K) —K

Finally, an indicator of quality is its area under the curve.
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Chapter 3

Methodology

3.1 Outline

Inverse Data Visualization Framework (IDVF) tunes the coefficients of the
kernel matrices in order to achieve the best approximation of DR structure
provided by the user. In such vein, the user avoids manual adjustment of the
weights.

Given a scatter plot of a DR structure of a High Dimensional Data set, the
main idea of IDVF is to find the advantageously Mixture Kernel Matrix K.
The expected result is to get a similar low dimensional data set to the struc-
ture by applying KPCA (K).

In broad terms, the rationale of IDVF is to estimate the coefficients or
weighting factors for a mixture of kernel matrices, which is aimed to map
X, xp onto Y,z such that d < D, and Y, 4 approximates the desired space
(pointed out graphically by the user) ¥, 4. For the proposed of this thesis,
the low dimensional space represent with the letter “d” is two.

3.2 Method flowchart

The IDVF works as follows: Considering a high-dimensional (3D for quick
test), input data matrix, we calculate a set of kernel matrices. Then, we can es-
timate a low-dimensional representation and plot an initial lower-dimensional
(2D) representation. Over such representation, the user can pick up a data
point and decide its final location. Next, the algorithm seeks for the weight-

ing factors or coefficients, which best approximate the desired low-dimensional
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representation by following a KPCA-based DR applied over a linear combi-
nation of kernel matrices regarding obtained coefficients. This process iter-
ates until the user manually stops. Figure 3.1 depicts the IDVF workflow.

s )

l

Data Matrix

Kernel Matrices

Computation
Plotihelow Compute KPCA of
dimensional set from Kernel matrix P?mpute th'e
KPCA <«——| coefficient for mixture
] m
- (i) kernel
E i
i : K= 0! iK v
e - ’, 1
e Drag the selected
Selected data data points from
points from the plot the plot
User s
Satisfied? No > Vi s > 3

End

FIGURE 3.1: Proposed IVDF flowchart. It seeks for the best

coefficients, which used as weighting factors for a mixture of

kernel matrices best represent a desired, low-dimensional space
when applying KPCA.

3.2.1 Data Matrix and Kernel Matrices Computation

The data use in this work X, « p is specified in the section 4.1. Once the data
is load, the algorithm proceed to compute their kernel matrices and construct
the multidimensional matrix K,(qn;)n as is specified in the section 4.2. Next, the
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kernel matrix correspondent to the approximation of CMDS is calculated the

d eigenvalues A and eigenvectors v.

3.2.2 Plot the low dimensional set from KPCA

Given some matrix kernel or mixture kernel K calculate the fast approxima-
tion of 4 maximum eigenvalues A;, and eigenvectors v; to construct d dimen-

sional set of point Y, as shown in Eq. 3.1:

KPCA(K(anD)) =Yyxqa = {ylr- . -ryd}/ 3.1)

where the d terms from Y are constructed by the d eigenvalues and eigenvec-

tors, according to the simplified expression used in [18], as follows:

yj = VA, (3.2)

3.2.3 Select and drag data points from the plot.

Given two dimensional scatter plot generate by spectral decomposition gen-
erate by some kernel matrix. The user thought an interface can edit the posi-
tion of the points. To do this task, the user must drag his mouse in order to
specify the area of point that he wants to move. Once the points are selected,
the selected points are manipulate by the user, and they can be moved throw
the x and y plane. This process can be repeat until the scatter satisfied the
representation expected by the user. Finally, the set of points adulterated by
the user are call Y, a clear explanation of Y is in the equation 3.6.

3.24 Compute the coefficients for the mixture of kernels

Once the user define the low dimensional Y through a graphic interface, we
need to estimate coefficients of the mixture matrix K to subsequently apply
KPCA (K) for producing a matrix Y that best approximates to Y. However,
building the matrix K is not a trivial task, and there is no a linear or straight-

forward relationship between K and Y.

Our proposed solution is to generate a square and symmetric matrix M,
whose spectral decomposition is similar to Y. To achieve this goal, M is de-
tined as the spectral decomposition of Y, as can be seen in Eq. 3.3:
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D
M=VDV'=Y \ow/. (3.3)
i=0

Notwithstanding, the result of KPCA(K) is a matrix Y holding d elements.
Then, to compute M, it is necessary to count on D eigenvectors and eiven-
values. Since, Y is a low-dimensional set of d elements, it is not possible to
generate a exact spectral decomposition, as expressed in Eq. 3.3. Alterna-
tively, it is possible to generate an approximation generated by the spectral
decomposition M*, such that d eigenvalues and eigenvectors are different
from zero, and the remaining ones are null, as described in Eq. 3.4:

d
M., = Y Ajojo] withd < D. (3.4)
j=1

Matrix M is the approximation generated by d eigenvectors v; and d eigen-
values A;. At this extent, the original values of Y are explained in the subsec-
tion 3.2.2.

Therefore from equations 3.4 and 3.2, an approximation of M can be ex-

pressed as:
oy d T d T
j= =

Since Y is constructed by the user modification of Yj, yA] can be expressed
as presented in Eq. 3.6:

5 = A9 6)

where 7; is any vector that multiply by a constant ;\j return the vector y;. M
is constructed by applying Eq. 3.5 on Eq. 3.6, so:

d d
M=) JA/Aga = Y55 withg e Y. (3.7)
j=0 j=0
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Then, M is expected to approximate K, and can be defined as:

vec <k (anD)> = Z:ociK(i) (X xp) = <K(0) K(m)> . (3.8)

Xm

From previous equation, we can appreciate that there exists a linear rela-
tionship between M and K as expressed in Eq. 3.9:

X0
<Vec(K(0)) vec(K(m))) | = vec(M). (3.9)

Xm

Since M and K () are beforehand calculated, the unique unknown variable

is «. A simplest approach to estimated « is as follows:

L%
= (Vec(K(O)) Vec(K(m)))+ VeC(M\). (3.10)

Xm
3.2.5 Compute KPCA of Kernel matrix

Once the values of alpha was calculated using as it is shown in equation 2.6,

K is calculated in the following equation:

12:(1<<0> K<m>) . (3.11)

Xm

Thus, KPCA(K) generate a d dimensional set Y being similar to Y.

3.2.6 Compute the quality curve

The LD space generate by KCMS, CMDS, the mixture kernel matrix K, and
the low dimensional manipulation of the user is compare with the original

data, using the curve generate by Ryx, which is explained in the section 2.7.
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If the K-ary neighbourhood are similar between the LD and HD spaces, the
quality curve has higher values of area under the curve. Biggest curves are
mostly related with original data. On the other hand, similar curves shows

similar distribution of distance among data points.
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Chapter 4

Experimental setup

4,1 Databases

For experiments, the considered data-sets are three toy 3D figures database,
they holds some topology and geometry relevant for DR purposes, and they
are frequently used in the literature [6], [7], [14]. There are describe:

1. S 3D: A surface in form of the uppercase letter S.
2. Spherical Shell: A spherical surface.

3. Swiss Roll: A Swiss-roll-like manifold.

All previous datasets are generated by random points, setting N = 200
and D = 3. Figure 4.1 shows views of the datasets scatter plots.
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FIGURE 4.1: Databases used for the experiment

4.2 Parameter settings and method

The experiment was executed with 100 different kernel matrices {K(), ..., K(100)},
the kernel used in this work are specify in the Section 2.5. To complete the
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100 kernels matrices, some of the kernel matrices were obtained by varying

the hyper-parameters, as is shown in the Table 4.2
K1) follow the next distribution:

TABLE 4.1: Kernel Functions and its definitions

Kernel Position | Kernel Matrices Hyper parameter
KW Kcmps
(K@, . . K10} Kig with neighborhood from 2 to 10.
{K(ll), o ,K(19)} Kiig with neighborhood from 2 to 10.
{K20), K@)} Kisomap with neighborhood from 2 to 10.
K (29) Kiinear
K(0) Kpolynomial setting the degree as 3.
KGD Ksigmoid o=1.
K (32) Klaplacian o=1.
{K®3), K10} KRrgpr with  chosen from {0.0001, ...,1.2}

TABLE 4.2: Table of Kernel Matrices used for experimental re-

sults.

4.3 Quality measure

To validate proposed approach and quantify the results of experiments, we
evaluate the curve generate by Ryx in the different K-ary neighborhood,
which is explained in Sections 3.2.6 and 2.7. Specifically, to quantify the qual-
ity of the similarity of embedding representations.
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Chapter 5
Analysis of results

The experiments performed in this article seek two aims: The first one is
to compare the DR result made by user manipulation with the DR outcomes
produced by KPCA using the mixture kernel K. The second one is to contrast
the quality curve of the original space of the data with the DR produced by
CMDS, KPCA inputted with the CMDS kernel, and the mixture kernel.

Consequently, Chapter 5 is divided into three subsections (5.1, 5.2, and
5.3), one for every database mentioned in subsection 4.1.

Each subsection starts with two plots illustrating the two dimensional
representations of the database using CMDS and Kcwmps (Figures 5.1(a), 5.8,
and 5.15). These results was used to compared the quality curves for the user

manipulation of the DR and their approximation using a mixture Kernel.

5.1 Results for S 3D

Figure 5.1(a) shows a two dimensional representation of S 3D using CMDS,
and the 5.1(b) the a two dimensional representation of S 3D using the Kernel
approximation of CMDS.

:‘ * .. o

:.::". ...0 o * 1. .‘.‘
X N Py
¥ : ]
< é

Lot

-’
(a) CMDS (b) Kcmps

FIGURE 5.1: Dimentionality Reduction of S 3D
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Trial 1

Figure 5.2(a) is the Figure 5.1(a) adulterated by the user. The Figure 5.2(b)
is an approximation using a computed, mixture kernel matrix based on the

representation shown in Figure 5.2(a).
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(a) DR manipulation by the user  (b) Approximation from kernel mix-
ture matrix to the user manipulation

DR representation
FIGURE 5.2: Experimental results of the first trial for S 3D
Figure 5.3 shows similar quality curves in the kernel methods and R

values, excepting when the value of K is around 10? or higher, since at that

value the curves are distinguishable from each other.
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FIGURE 5.3: Quality Curves of CMDS, Kcyps, DR manipulated
by the user, and kernel mixture matrix

Trial 2

Figure 5.4(a) is a two-dimensional representation made by the user, in this
trial the user attempts to create 3 groups of data points. However, the approx-
imation presented in Figure 5.4(b) reaches seemingly two separate groups, as
the two first groups (from left to right) remain visually as one.
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ture matrix to the user manipulation

FIGURE 5.4: Experimental results of the second trial for S 3D

The quality curves of Fig. 5.5 shows that the mixture kernel matrix has an

area under the curve higher than the DR manipulate by the user. However,

the curves mentioned before seem parallel respect each other.

a (6.4 CMDS

.8 KCMD
20 + 55.8 KC S

46.7 User Manipulation
¢ 5H8.4 Mixture Kernel

o))
fa—

B
)

100RNx (K)

Do
-

0

10"

FIGURE 5.5: Quality Curves of CMDS, Kcymps, DR manipulated
by the user, and Kernel Mixture Matrix.
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Trial 3

At a first glance, Figures 5.6(a) and 5.6(b) are not resembling. Nonetheless, if
Figure 5.6(b) is rotated 180 degrees, the Figures can now be compared visu-

ally, and they appear to be similar, as is shown in Figure 5.6(c).
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(c) Approximation from kernel mix-
ture matrix to the user manipulation
DR representation rotate 180 degrees

FIGURE 5.6: Experimental results of the third trial for S 3D

The quality curve of 5.6(a) and 5.6(b) are closer together, however for
higher number K the curves tends to separate from each other, and the area
under the curve of mixture kernel shown in Figure 5.7 is higher than user

manipulation.
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FIGURE 5.7: Quality Curves of CMDS, Kcyps, DR manipulated
by the user, and kernel mixture matrix

5.2 Results for Swiss Roll

In the case of the Swiss Roll database, the DR of the CMDS method and
Kcmps are distinguishable from one another. On one hand, once properly
rotated 180 degrees, the two-dimensional representations become compara-
ble and look seemingly similar, as is shown in Figure 5.8(c). On the other
hand, the gap among points of Figure 5.8(a) is smaller than the that of the
points in Figure 5.8(b).
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FIGURE 5.8: Dimentionality Reduction of S 3D

Trial 1

In the same way that Section 5.1 the user modified the position of certain
points of the two dimensional representation of the Swiss Roll.
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FIGURE 5.9: Experimental results of the first trial for Swiss
Roll
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As result, the quality curve of the mixture kernel matrix, user manipula-
tion, and Kcypg are similar to each other.
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FIGURE 5.10: Quality Curves of the embeddings resulting from
CMDS, Kcmps, DR manipulated by the user, and kernel mix-
ture matrix.
Trial 2

Figure 5.11(b) is an approximation of the 5.11(a) generated by a mixture ker-
nel, however to check their affinity, the Figure 5.11(b) must suffer a reflection

in the Y axis and a rotation of 180 degrees, as shown in Figure 5.11(c).
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ture matrix to the user manipulation
DR representation

(c) Approximation from kernel mix-
ture matrix to the user manipulation
DR representation rotate 90 degrees
and reflected in Y axis.

FIGURE 5.11: Experimental results of the second trial for Swiss
Roll.

The qualities curves of presented in Figure 5.12, shows that the curve gen-
erate by mixture kernel and user manipulation are almost equal, however
they have low R, values for high values of neighbors.
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FIGURE 5.12: Quality Curves of CMDS, Kcvps, DR manipu-
lated by the user, and kernel mixture matrix.

Trial 3

The result of DR approximation shown in Figure 5.13(b) is similar to a reflec-
tion in Y axis and rotation 180 degrees of the Figure 5.13(a).
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and reflected in Y axis

FIGURE 5.13: Experimental results of the third trial for Swiss
Roll

The quality curves of Figures 5.13(a) and 5.13(a) are presented in Figure
5.14. The curves represented are similar. Likely in the above mentioned case,
the R,y for a K> 10! are low.
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FIGURE 5.14: Quality Curves of CMDS, Kcvps, DR manipu-
lated by the user, and kernel mixture matrix

5.3 Results for Spherical Shell

Similar to the Section 5.2, the two dimensional representation between Kcp1ps
and CMDS show in Figure 5.15 have a rotation of 180 degrees from each other
and different dispersion among their points.



Chapter 5. Analysis of results 33

o0® ’-“’." ."o'\

(a) CMDS

o'!.’ '. ° .o'. ‘ d ..%
. K ¢ . '.0 ::' :: & . o’ .‘
e &, 0 o %8 e . R ¢ e
. . i e 3
-~ . e © o’ g 3¢ .
<. .z. . :..f'."'
(b) Kcmps (c) Kcmps rotate 180 degrees

FIGURE 5.15: Dimentionality Reduction of Spherical Shell

Trial 1

The figure 5.16(a) is alteration of the Kcp1ps representation, where some points
from the right corner were dragged to the center. However, the approxima-
tion result shown in figure 5.16(b) has the upper and button corner points of

the figure closely to the center of the image.

(a) DR manipulation by the user  (b) Approximation from kernel mix-
ture matrix to the user manipulation

DR representation

FIGURE 5.16: Experimental results of the first trial for
Spherical Shell
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The qualities curves of the figure 5.17 are closer from each other.
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FIGURE 5.17: Quality Curves of CMDS, Kcvps, DR manipu-
lated by the user, and kernel mixture matrix
Trial 2

In the figure 5.18(a) presented an 2D representation made by user which not

follow a circular shape, the approximation represented by figure 5.18(b) in

the same way represent a non circular shape.
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FIGURE 5.18: Experimental results of the second trial for
Spherical Shell

From Figure 5.19 can be appreciated that the quality curve of Figures

5.18(a) and 5.18(b) are similar and they exhibit the smallest values of area

under the curve R, than the other the curves.
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FIGURE 5.19: Quality Curves of CMDS, Kcvps, DR manipu-
lated by the user, and kernel mixture matrix
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Trial 3

In the figure 5.20(a) presented an 2D representation made by user which is
similar to a circle with less density of points in the center, the approximation
represented by figure 5.18(b) in the same way is similar to a circle with less
density of points in the center, moreover the upper corner is squashed to the

center.
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(a) DR manipulation by the user  (b) Approximation from kernel mix-
ture matrix to the user manipulation
DR representation

FIGURE 5.20: Experimental results of the third trial for
Spherical Shell

The figure 5.21 show that the quality curve of figure 5.20(a) and 5.20(b)
are similar and they have smaller values of R, than the other the curves.



Chapter 5. Analysis of results 37

o0
-
3

& 53.8 CMDS

+ 55.3 KCMDS
52.0 User Manipulation

¢ 50.6 Mixture Kernel

~J
o
T

N
a—

n
-

B
)

100Rxx (K)

9
-

10 10! 102
K

FIGURE 5.21: Quality Curves of CMDS, Kcvps, DR manipu-
lated by the user, and kernel mixture matrix
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Chapter 6

Conclusion and Future work

6.1 Conclusions

In this work, we introduce the Interactive Data Visualization Framework
(IDVF), which opens the possibility to formally develop new interactive data
visualization approach based on mixtures of dimensional reduction (DR)
techniques. Our IDVF allows for readily incorporating the users” knowledge
and expertise into the data exploration and visualization processes. What
makes this approach appealing and essentially different from other similar
works is the fact that the user can directly handle data and dynamically ac-
complish a new representation. IDVF seeks to best fit the user’s data inter-
pretation and accordingly find the best combination of kernels representing
DR methods. Although it counts on already promising results, this thesis is
still a first approach to produce IDVE. Indeed, some of the two-dimensional
approximations are not resembling to those made by the user. Moreover, in
some cases, the results differ from the user expectations as well as their qual-
ity curves exhibit different behaviors. It is caused by many factors, such as:
having not enough number of kernels to avoid the resulting ill-posed prob-
lem, KPCA outcomes reaches a no suitable representation with the current
kernels matrices, and a poor approximation of the matrix required to esti-
mate the eigenvalues. Notwithstanding, in many occasions, there was pos-
sible to successfully reach a similar representation of the user dimensional
reduction data, as can be observed from the experimental results.

In terms of visualization, the representation quality of two-dimensional
scatter plots depends on the expertise or prior knowledge about data that
users may hold. As a matter of fact, because the user directly manipulates
the data points themselves, not optimal resulting embedding spaces can be
yielded when user-provided, desired embedding is not meaningful. As a
consequence, the corresponding quality curves will produce poor values of

area under the curve.
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6.2 Future Works

For future works, we are aimed at exploring the possibility of developing
novel kernel representations arising from other dimensional reduction meth-
ods, improves in the equations system and the approximation of eigenvalues,
as well as an inverse framework more robust to different data point varia-
tions and datasets. In addition, further developing of GUI for a top-notch
user experience is also to be explored, which should be able to deal with

dimensionality reduction of three-dimensional spaces.
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Appendix A

Interactive model and kernel

matrices

A.1 Interface

Fig. A.1 shows a view of an interface for proposed IDVE. The left-scatter-plot
can be manipulated by the user to set the desired low-dimensional space,
while the right-one depicts the obtained representation given by the mixture

of kernels. Find a demo at https://sdas-group.com/gallery/.
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FIGURE A.1: View of the IDVF interface. Both the scatter plot of
the desired and the obtained low-dimensional representations
are displayed.
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A.2 PythonImplementation of the interactive model

and kernels matrices

In this appendix are reference the code use to implement the flow chart figure
3.1, it contains the implementation of the different Kernel models explain in
the section 2.5. For the complete code you can visit the github repository:

https://github.com/martinvelezf/Inverse-Data-Visualization-Framework- IDVF-Towards-a-prior-knowledge-driven-datavisualization


https://github.com/martinvelezf/Inverse-Data-Visualization-Framework-IDVF-Towards-a-prior-knowledge-driven-datavisualization
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