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Resumen
En el contexto del descubrimiento de nuevos materiales, es posible llevar a cabo la intercalación de átomos

de litio (Li) entre capas de NbS2, sin embargo, solo unos pocos trabajos experimentales y teóricos tratan acerca
de este material1–3. Recientemente, Damien Voiry del Institut Européen des Membranes en Francia, desarrolló
algunos experimentos con LiNbS2 brindando información interesante al respecto. Por tanto, hemos realizado la
descripción del LiNbS2 con los funcionales más avanzados de la teoría del funcional de la densidad (DFT). En este
trabajo damos a conocer cálculos detallados con la DFT acerca del bulk y varias superficies de LiNbS2. Además,
describimos varias simulaciones de la estructura electrónica y atómica, parámetros de red, imágenes de microscopía
de efecto túnel (STM), fonones, y más. Los cálculos fueron realizados con el funcional meta-GGA SCAN, y algunas
variaciones del funcional híbrido HSE, ambos implementados en VASP. En nuestro estudio encontramos que el
funcional SCAN+rVV10 describe muy bien algunas propiedades de LiNbS2 y NbS2. Por otro lado, empleamos
los híbridos HSE12 y HSE12s, y los comparamos con el funcional ampliamente usado HSE06. El rendimiento de
los funcionales híbridos es tratado también. Sorprendentemente, encontramos que la intercalación de litio en NbS2

produce un band-gap considerable, convirtiendo al material en semiconductor y por ende dando lugar a aplicaciones
tecnológicas prometedoras.
Palabras clave: Teoría del funcional de la densidad, materiales en capas, intercalación, di-calcogenuros, estructura
electrónica.



Abstract
In the context of the discovery of new materials, an intercalation of Lithium (Li) atoms among layers of NbS2

can be performed. However, there are just a few experimental works and references that deal with this material1–3.
Recently, Damien Voiry from Institut Européen des Membranes in France, has performed some experiments with
LiNbS2 providing some insights about it. Therefore we have worked on describing this material with the state
of the art non-empirical density functionals of DFT. In this work we present detailed density functional theory
calculations of the bulk and several surfaces of LiNbS2. We describe various insights regarding the electronic and
atomic structure, lattice parameters, scanning tunneling microscopy images, phonons, and so on. The computations
were performed with the meta-GGA SCAN functional and some variations of the hybrid HSE as implemented in
VASP. We found out that SCAN+rVV10 performs very well in the description of certain properties of LiNbS2 and
NbS2. Besides, we tested the hybrids HSE12 and HSE12s and compared them with the customary HSE06. The
performance of the hybrids is discussed too. Surprisingly, we find that the intercalation of Li on NbS2 produces a
considerable band gap, making the material a semiconductor and providing promising technological applications.

Keywords: Density-functional theory, layered materials, intercalation, di-chalcogenides, electronic-structure.
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Chapter 1

Introduction

Research at the atomic level is very important as it implies from solving complex theoretical problems, to develop
techniques that allow reproducibility in the experiments. Furthermore, the investigation at the atomic scale has an
impact on several fields which include the environment, health, agriculture, technology, economy, and so on, being
in itself an important matter for academia and industry4,5. For instance, various benefits are coming from various
fields such as photovoltaics6,7, pharmaceutics, electronics, auto-parts, etc. Thanks to the increasing of computational
power and the refinement of both, theoretical and experimental techniques, studying materials provides reliability
and constitutes a key aspect for making intellectual advances in science and crucial contributions to the development
of the society.

At the beginning of the XXI century, a great breakthrough emerged via the discovery of graphene, a class of
layeredmaterial with a honeycomb lattice structure. Since then, amyriad of studies have been published, nevertheless,
other 2D layered materials were not part of that research trend and hence were not considered for thorough studies8.

Recently, the interest in other layered materials apart from graphene had a revival. One class of these materials
is known as transition metal dichalcogenides (TMD). There have been several publications9,10 which indicate the
potential applications of TMDs such as optoelectronics11, photovoltaics, ultrathin field effect transistors12, light-
emitting diodes13 and quantum computing. Specifically, TMDs present interesting physical effects such as the
dominance of d-electron orbitals in the valence and conduction bands, and van der Waals interactions. Besides,
phenomena related to spin orbit-coupling12, charge density wave (CDW) order and superconductivity can arise14.
Moreover, effects such as the shift of the bandgap value depending on the number of layers of a TMD have been
predicted9,11.

The previous considerations constitute interesting physical effects which have not been explored in all the existing
TMDs. Also, there are several of aspects that have not been studied6. For instance, the behaviour of TMDs systems
in the presence of defects and various possible atomic arrangements of TMDs that could be stable. Furthermore, in
the framework of non-empirical DFT methods for describing the electronic structure of TMDs, there are no studies
that use the most recent density functionals such as SCAN or modifications of the customary hybrid functionals as
HSE.
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2 1.1. PROBLEM STATEMENT

Niobium Sulfide (NbS2) is a class of TMD layered material which presents interesting electronic properties and
is a promising material to be used in quantum computing. Some experiments on bulk and thin films of NbS2 have
shown remarkable features such as superconductivity and metallic transport properties11,15. Besides, it has been
shown that this material has applications in quantum engineering, i.e. miniaturized neuromorphic computing15.

As NbS2 has a layered structure, we can think about intercalating some compound among the layers. The
experimental realization of this idea has been performed by intercalating atoms of lithium in NbS2 to obtain
LiNbS2

1–3,16. There are some approximations to understand its behaviour via automated DFT calculations17–19,
however, this system has been explored thoroughly neither experimentally nor theoretically. In this context, we aim
to study the electronic structure of LiNbS2 assiduously, employing the state-of-the-art methods of density-functional
theory.

1.1 Problem Statement
The structure of LiNbS2 presents various interesting challenges. First of all, we have niobium in the structure,
this implies that we are going to deal with d orbitals. In general, trying to perform simulations of structures with
d or f orbitals is difficult. Furthermore, if we use DFT for simulating structures with transition metals there are
some drawbacks which may be minimized by choosing appropriate exchange-correlation functionals and corrections.
Besides, as we have a 2D layered material, we have to consider van der Waals interactions. Also, there are scarce
publications that give insight about LiNbS2. Hence, with the presence of d orbitals plus van der Waals effects, a
theoretical challenge of a completely unknown structure appears.

1.2 General and Specific Objectives
The main objective of this thesis is to compute with density-functional theory (DFT) the electronic structure of
LiNbS2. Specifically, we aim to:

• Explain the theoretical foundations of DFT with a focus on the SCAN and HSE functionals (Chapter 2).

• Explain the methodology for studying LiNbS2 (Chapter 3).

• Study the bulk NbS2 (Chapter 4.1).

• Study the system of bulk LiNbS2 for several symmetries and analyze its stability (Chapter 4.2).

• Study the surfaces of LiNbS2 considering pristine structures and defects (Chapter 4.2.4 to 4.2.6).

• Compute STM images (Chapter 4.2.7).

• Compute phonons (Chapter 4.2.8).

• State some conclusions and remarks about all the research (Chapter 5).



Chapter 2

Theoretical Background

2.1 Many-body Schrödinger equation
As a starting point we have to consider the interactions in the atomic systems in the non-relativistic regime. If
there are N electrons we can label their positions as r1, r2, . . . , rN . If there are M nuclei the labels can be set as
R1,R2, . . . ,RM . We have electrostatic or Coulombic interactions that contribute to the total potential energy V as
follows20,21:

1. electron-electron (e − e) interaction, i.e. two electrons repel one another:

V(e−e) =
1
2

∑
i, j

C
1

|ri − r j|
, (2.1)

2. nucleus-nucleus (n − n) interaction, i.e. two nucleus repel each other:

V(n−n) =
1
2

∑
I,J

C
ZIZJ

|RI − RJ |
, (2.2)

3. electron-nucleus (e − n) interaction, i.e. an electron and a nucleus attract each other:

V(e−n) = −
∑
i,I

C
ZI

|ri − RI |
, (2.3)

where the sub-indexes’ sums for the nuclei are capitalized, and the ones for the electrons are lowercase. In
addition, the constant C is given by

C =
e2

4πε0
. (2.4)

Remember that e is the charge of the electron, and ε0 is the vacuum permittivity.

3



4 2.1. MANY-BODY SCHRÖDINGER EQUATION

Setting N the number of electrons of our system and M the number of nuclei, i runs from 1 to N and I from 1 to
M 21.

Now, consider the contributions for kinetic energy K, we have

K =

N∑
i=1

p2
i

2me
+

M∑
I=1

P2
I

2MI
, (2.5)

where me is the mass of the electron and MI represents the mass of the I-th nucleus.
To establish the general equation to be used in quantum mechanics, we have to take into account the position and

momentum operators, where the last has the form:

p̂ = −i~2∇2 , (2.6)

where ~ is the reduced Planck’s constant (i.e. ~ = h/2π). ∇2 acts with respect to each particle, for instance if we
have i particles the operator is given by

∇2
i =

∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

. (2.7)

Till here almost all the ingredients we need are ready. Now, take into account the many-body wavefunction Ψ.
It will have all the information of the electrons’ and nuclei’s positions. It can be written as

Ψ = Ψ(r1, r2, . . . , rN ; R1,R2, . . . ,RM) . (2.8)

Then, we can build a Hamiltonian using the kinetic and potential operators. Applying it to the wavefunction we
obtain

(K̂ + V̂)Ψ = EtotΨ , (2.9)

where Etot is the total energy of the system. Then, using equations (2.1) to (2.9) we can write the full many-body
Schrödinger equation,

− N∑
i=1

~2

2me
∇2

i −

M∑
I=1

~2

2MI
∇2

I +
1
2

∑
i, j

C
1

|ri − r j|
+

1
2

∑
I,J

C
ZIZJ

|RI − RJ |
−

∑
i,I

C
ZI

|ri − RI |

 Ψ = EtotΨ . (2.10)

Notice that the equation (2.10) does not have experimental values as inputs and just takes into account the
fundamental constants of equation (2.16). A theory with this type of equations is known as having a first-principles
approach, otherwise it would be a phenomenological approach.

Also, consider the probability of simultaneously find electrons (labeled with sub-index i) at positions ri respec-
tively21, given as

|Ψ|2 = |Ψ(r1, . . . , rN ; R1, . . . ,RM)|2 . (2.11)
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The electron density, which is the probability of finding any electron at position r is given by21

n(r) = N
∫
|Ψ|2dr2 . . . drNdR1 . . . dRM . (2.12)

If Ψ is normalized to 1 we have: ∫
|Ψ|2dr2 . . . drNdR1 . . . dRM = 1 . (2.13)

Therefore, the integral of the electronic charge density is the number of electrons, this is∫
n(r)dr = N . (2.14)

One remarkable feature of equation (2.10) is that if we are aiming to solve it in a computer, its complexity
increases exponentially with the size of the system21. This means that the matrix operations we would have to deal
with will be really huge, and hence not solvable. We will see in the next sections how we can handle this problem.

2.2 The Born-Oppenheimer (BO) approximation
In general, the BO approximation states that the total wave function can be expressed as the product of the electronic
wave function (depending on electronic coordinates with the nuclei at fixed positions) ΨR, and the wave function of
the nucleus (as a function of nuclear coordinates with the electrons on some fixed state)22 χ, so that

Ψ(r1, . . . , rN ; R1, . . . ,RM) = ΨR(r1, . . . , rN)χ(R1, . . . ,RM) . (2.15)

The BO approximation is also called adiabatic approximation. In general, atoms are of masses that are 104 to
105 times larger than the electron’s mass. Hence, the electrons are 102 to 103 times faster than the nuclei (which will
be expressed in the kinetic energy). Therefore, it is possible to assume that the electrons follow the nuclei’s motion
instantaneously23.

Then, we have a framework in which the electrons contribute with potential energy for the motion of the nuclei.
On the other hand, the moving nuclei continuously deform the wave function of the electrons and do not cause abrupt
changes22. Remember that this approximation holds only for materials in their equilibrium configuration21. Then,
based on BO approximation we can start to simplify the original many-body Schrödinger equation (2.10). First, let
me rewrite equation (2.10) considering atomic units.

2.2.1 Atomic units

It is known that fundamental physical constants are independent of the system we are dealing with. They are given
by:



6 2.2. THE BORN-OPPENHEIMER (BO) APPROXIMATION

~ = 1.05457163 · 10−34J · s ,

me = 9.10938291 · 10−31kg ,

mp = 1.67262164 · 10−27kg ,

e = 1.60217649 · 10−19C ,

ε0 = 8.85418782 · 10−12F/m .

(2.16)

We can also consider the Bohr radius a0, which is the average distance between the nucleus and the electron of
Hydrogen in its ground state,

a0 = 0.529Å . (2.17)

We notice that the potential energies of equation (2.10) are given by Hartrees Ha, then

EHa =
e2

4πε0a0
. (2.18)

Besides, it is possible to handle the kinetic energies of equation (2.10) considering

~ = meva0 , (2.19)

which is the angular momentum in the ground state of Hydrogen in the Bohr model. Also, take into account

1
2

mev2 =
1
2

EHa , (2.20)

which is the kinetic energy expressed in orders of EHa. The previous equation came from equating the centrifugal
force and the nuclear attraction.

Therefore, with equations (2.16) to (2.20) we have the set of equations:

~2

2me
=

mev2a2
0

2
=

1
2

EHaa2
0 , (2.21)

~2

2MI
=

mev2a2
0

2(MI/me)
=

1
2

EHaa2
0

MI/me
, (2.22)

and
C =

e2

4πε0
= a0EHa . (2.23)

Replacing the three previous equations into equation (2.10) we have:

− N∑
i=1

1
2

EHaa2
0∇

2
i −

M∑
I=1

1
2

EHaa2
0

MI/me
∇2

I +
1
2

∑
i, j

a0EHa
1

|ri − r j|
+

1
2

∑
I,J

a0EHa
ZIZJ

|RI − RJ |
−

∑
i,I

a0EHa
ZI

|ri − RI |

 Ψ = EtotΨ .

(2.24)
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Finally, dividing the last equation by EHa we get:− N∑
i=1

1
2

a2
0∇

2
i −

M∑
I=1

1
2

a2
0

MI/me
∇2

I +
1
2

∑
i, j

a0
1

|ri − r j|
+

1
2

∑
I,J

a0
ZIZJ

|RI − RJ |
−

∑
i,I

a0
ZI

|ri − RI |

 Ψ =
Etot

EHa
Ψ . (2.25)

Notice that we have simplified the initial many-body Schödinger equation. We can even go further by setting this
equation in units of Hartrees (Ha), bohrs (a0), and atomic units (a.u.). Also, setting e = 1 we get:− N∑

i=1

1
2
∇2

i −

M∑
I=1

1
2
∇2

I

MI
+

1
2

∑
i, j

1
|ri − r j|

+
1
2

∑
I,J

ZIZJ

|RI − RJ |
−

∑
i,I

ZI

|ri − RI |

 Ψ = EtotΨ , (2.26)

where 1 Ha = 27.211eV , 1a0 = 0.529Å, 1 a.u. of mass = me = 9.109 · 10−31 kg.
Equation (2.26) is a more compact version of the many-body Schrödinger equation, nevertheless remember that

it yields a very high complexity when trying to solve it. If we consider equation (2.26) and the BO approximation,
we can now have more simplifications. First, if the nuclei are fixed, we have that MI = ∞, then

M∑
I=1

1
2
∇2

I

MI
≈ 0 . (2.27)

Also, as proposed in ref.21, we can define

E = Etot −
1
2

∑
I,J

ZIZJ

|RI − RJ |
, (2.28)

and ∑
i

Vn(ri; R) = −
∑
i,I

ZI

|ri − RI |
. (2.29)

Hence, equation (2.26) can be written as− N∑
i=1

1
2
∇2

i +
∑

i

Vn(ri; R) +
1
2

∑
i, j

1
|ri − r j|

 ΨR = ERΨR , (2.30)

where the subscript R is to denote the fixed nuclear coordinates. It is important to note that R does not act as a
variable but as parameter. In the previous equation it follows E = ER.

From here, we can compute a many-body Schrödinger equation as a function of just the nuclei. Replacing
equations (2.15) and (2.30) into (2.10) we get− N∑

i=1

1
2
∇2

i

MI
+

1
2

∑
I,J

ZIZJ

|RI − RJ |
+ ER

 χ = Etotχ . (2.31)

The effect of the electrons is contained in ER = E(R1, . . . ,RM). ER acts as an ‘effective potential’ for the nuclei21. In
summary, the most remarkable result that we have obtained for the BO approximation is the decoupling of equation
(2.10) into (2.30) and (2.31). For a more formal treatment and some historical insights it is advised to review ref.22.
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2.3 Hartree-Fock (HF) theory
Let me consider the equation (2.30) again:− N∑

i=1

1
2
∇2

i +
∑

i

Vn(ri; R) +
1
2

∑
i, j

1
|ri − r j|

 ΨR = ERΨR .

Then, let us define the many-electron Hamiltonian

Ĥ(r1, . . . , rN) = −

N∑
i=1

1
2
∇2

i +
∑

i

Vn(ri; R) +
1
2

∑
i, j

1
|ri − r j|

. (2.32)

Hence, we can express equation (2.30) as
ĤΨ = EΨ . (2.33)

Also, we can define the single-electron Hamiltonian as

Ĥ0(r) = −
1
2
∇2 + Vn(r) . (2.34)

Notice that equation (2.34) does not take into account the electron-electron interaction and consequently it is a
considerable simplification. (2.34) is a second order partial differential equation that could be solved by customary
methods, nevertheless if there are N number of electrons, then we will have a partial differential equation in 3N
unknowns. Hence, trying to solve that kind of system would be impossible23.

To handle this problem, we can re-write (2.34) as a set of algebraic equations in matrix form. Notice that if we
use a basis set, we will just find an approximate solution to the true many-body Schröndiger equation. It is possible
to check the accuracy of our solution and its convergence. Let us consider the ground state energy E0 so that we
can define the Rayleigh-Ritz variational principle: “The expectation value of the Hamiltonian in any state |Ψ〉 is
always larger than or equal to the ground state energy E0”23, this can be expressed as

E0 ≤
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

. (2.35)

Then, if we consider an initial guess for |Ψ〉, 〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉 will be an upper bound for E0
23. So, let us consider

the Hamiltonian (2.34). We can write ∑
i

Ĥ0(ri)ΨH = EΨH , (2.36)

where the subscript H is to denote that we are working in the Hartree scheme. So, if the electrons are not interacting,
we can write ΨH as

ΨH(r1, . . . , rN) = φ1(r1) . . . φN(rN) , (2.37)

where we are assuming that each particle state is occupied once, and the probability of finding an electron i at ri is
given by the product of individual probabilities |φ(ri)|2.

Then, we have:
Ĥ0(r)φi(r) = ε0

i φi(r) , (2.38)
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and expanding the previous equation we obtain(
−

1
2
∇2 + Vn(r)

)
φi(r) = ε0

i φi(r) . (2.39)

Then, let us find the expectation value of the Hamiltonian (2.32) with

〈ΨH |Ĥ|ΨH〉 =

N∑
i=1

∫
d3rφ∗i (r)

(
−

1
2
∇2 + Vn(r)

)
φi(r) +

1
2

N∑
i, j=1

∫
d3rd3r′

1
|r − r′|

|φi(r)|2|φ j(r′)|2 . (2.40)

The energy EH of this system is a functional of the wave functions φ. As this function is complex we can write
EH in terms of both real and imaginary parts of φ23:

〈ΨH |Ĥ|ΨH〉 = EH[φ∗i , φi] . (2.41)

Then, we can minimize (through the Lagrange multipliers method) the previous result with respect to φ∗i (r). We
consider as a constraint the normalization condition 〈φi|φi〉 = 1 of the wave functions given as

δ

δφ∗i

〈ΨH |Ĥ|ΨH〉 −

N∑
i=1

{εi(1 − 〈φi|φi〉)}

 = 0 , (2.42)

where every εi act as the Lagrange multiplier. Then, by this minimization we obtain the Hartree equations23,24:−1
2
∇2 + Vn(r) +

N∑
j=1

∫
d3r′
|φ j(r′)|2

|r − r′|

 φi(r) = εiφi(r) . (2.43)

The previous result can also be obtained through a mean field approximation. This is, in the framework of
classical electrostatics, let us consider the distribution of electronic charge n(r), which will produce an electrostatic
potential Φ(r), then

∇2Φ(r) = 4πn(r) , (2.44)

where the electrons in this system will have the potential energy VH(r) = −Φ(r). Hence, replacing this result in the
previous equation we get

∇2VH(r) = −4πn(r) . (2.45)

The solution for equation (2.45) is

VH(r) =

∫
dr′

n(r′)
|r − r′|

, (2.46)

which is named the Hartree potential.
Then, remember that we have defined the single-electron Hamiltonian H0 in equation (2.34). We neglected the

term of electron-electron interaction, nevertheless now we have the Hartree potential experienced by electrons, so
that we just add this potential to H0. Hence, we can write a more compact form of the Hartree equations as(

−
∇2

2
+ Vn(r) + VH(r)

)
φi(r) = εiφi(r) , (2.47)
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where we have defined:
n(r) =

∑
i

|φi(r)|2 . (2.48)

Notice that the Hartree equations have the form of the one-particle Schrödinger equation. To find the solution
of this system we can apply a self-consistency cycle, which means that we use an initial guess of the solution, and
make various iterations that yield a new density and a new effective potential. This is performed till the difference
of the new result and the previous one is in terms of a certain reasonable tolerance23. Finally, in this mathematical
framework we write the Hartree energy EH as

〈ΨH |Ĥ|ΨH〉 = EH =

N∑
i=1

εi − VH . (2.49)

Note that VH is subtracted as it is already counted twice in the Hartree eigenvalue23.
One important aspect of quantum mechanics that we have not considered yet is the Pauli exclusion principle.

This means that the sign of a quantum state |φ〉 changes when there is the exchange of two electrons. Therefore,
instead of using the solution for Ψ proposed in equation (2.37) given by the product of φis, we have to use a Slater
determinant so that we account for the Pauli principle23, so that

ΨHF = ΨHF(r1σ1, . . . , rNσN) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
φ1(r1σ1) φ1(r2σ2) · · · φ1(rNσN)
φ2(r1σ1) φ2(r2σ2) · · · φ2(rNσN)

...
...

. . .
...

φN(r1σ1) φN(r2σ2) · · · φN(rNσN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.50)

where we have introduced information about spin via σ, and N is the number of electrons. Then, as done before
with the Hartree approach

〈ΨHF |H|ΨHF〉 =

N∑
i=1

∫
d3rφ∗i (r)

(
−

1
2
∇2 + Vn(r)

)
φi(r) +

1
2

N∑
i, j=1

∫
d3rd3r′

1
|r − r′|

|φi(r)|2|φ j(r′)|2

−
1
2

N∑
i, j=1

∫
d3rd3r′

1
|r − r′|

δσiσ jφ
∗
i (r)φi(r′)φ∗j(r

′)φ j(r)

, (2.51)

so, we get
〈ΨHF |H|ΨHF〉 = EHF[φ∗i , φi] . (2.52)

Notice that we have an additional term accounting the electrons with same spin. This term is known as the
exchange potential VX . Then, minimizing the previous expression with respect to φ∗i we can obtain theHartree-Fock
equations23: (

−
∇2

2
+ Vn(r) + VH(r)

)
φi(r) −

N∑
j=1

∫
d3r′

1
|r − r′|

φ∗j(r
′)φi(r′)φ j(r)δσiσ j = εiφi(r) . (2.53)
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Sometimes the exchange term is written as21

−

N∑
j=1

∫
d3r′

1
|r − r′|

φ∗j(r
′)φi(r′)φ j(r)δσiσ j =

∫
VX(r, r′)φ(r′)d3r′ , (2.54)

with
VX(r, r′) = −

1
|r − r′|

φ∗j(r
′)φ j(r) . (2.55)

Then, to summarize the main result we have that23:

〈ΨHF |H|ΨHF〉 = EHF =

N∑
i=1

εi − EH − EX , (2.56)

where we have defined both the Hartree energy EH and the exchange Energy EX . These energies have to be subtracted
since they are already twice in the Hartree-Fock eigenvalues23. To end this section, it is advisable to review ref.24

for a good explanation about minimizing functionals and a detailed and formal derivation of the results of the
Hartree-Fock theory.

2.4 Density Functional Theory (DFT)
DFT is a useful framework that allows to study various many-body electronic systems and obtain results regarding the
properties and defects of metals, metal and semiconductor surface physics, relativistic effects, magnetism, electron-
hole droplets in semiconductors, excited states, and more interesting physics25. The foundation of DFT was based
on the seminal paper of P. Hohenberg and W. Kohn in 196426. Hence, I start with the study of two fundamental
theorems that are the basis of DFT.

2.4.1 Hohenberg-Kohn (HK) Theorems

2.4.1.1 First HK Theorem

Based on the original paper of Hohenberg and Kohn26, let us consider the following25:

1. A system of Ne electrons enclosed in a large box and moving under the influence of some external potential
V(r) = Vext and of their mutual Coulomb repulsion.

2. The Hamiltonian operator (in atomic units) with the same form as equation (2.30):

Ĥ = −

N∑
i=1

1
2
∇2

i +
∑

i

V(ri) +
1
2

∑
i, j

1
|ri − r j|

, (2.57)

so that, we can simplify the notation as

Ĥ = T̂ + Vext + Vee = (T̂ + Vee) + Vext = Ĥ0 +
∑

i

V(ri) , (2.58)
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where

T̂ = −
∑

i

1
2
∇2

i , Vee =
1
2

∑
i, j

1
|ri − r j|

, Vext = V(ri) = −
∑
i,I

ZI

|ri − RI |
+ adittional fields . (2.59)

Hence, Vee is the potential energy between electrons, T̂ is the kinetic energy operator, and Vext is a one-particle
potential produced by the nuclei and felt by the electrons. It is remarkable to mention that Vext could also
include some additional (to the electron-nuclei interaction term) fields24. Also, in this case Ĥ0 = T̂ + Vee.

3. The ground state of the system Ψ is non-degenerate.

Therefore, “if the total number Ne of the electrons is fixed, the potential V(ri) = Vext results in a unique wave
function Ψ for the ground state which, in turn, gives rise to the unique electron density n(r)"24. This is

V(ri) = Vext → Ψ→ n(r) . (2.60)

In other words, we have stated that the electronic density n(r) in the ground state Ψ is a functional of V(ri)26. Now,
we have to prove the opposite, i.e. “ the potential V(ri) and the wave function Ψ of the ground state are uniquely
determined by the density n(r)"24. Or, as stated by Hohenberg and Kohn26: we have to show that V(ri) is a unique
functional of n(r).

Now, let us consider the expression for the total energy E:

E =

〈
Ψ

∣∣∣∣∣∣∣
Ne∑
i=1

V(ri)

∣∣∣∣∣∣∣ Ψ
〉

+ 〈Ψ|T̂ + Vee|Ψ〉 , (2.61)

where 〈
Ψ

∣∣∣∣∣∣∣
Ne∑
i=1

V(ri)

∣∣∣∣∣∣∣ Ψ
〉

=

∫
V(r)n(r)dr . (2.62)

Therefore, let us assume there are two different potentials V(r) and V ′(r) corresponding to the wave functions Ψ and
Ψ′ that result in the same density n(r)24. The expressions for the energy are

E = 〈Ψ|Ĥ|Ψ〉 (2.63)

and
E′ = 〈Ψ′|Ĥ′|Ψ′〉 , (2.64)

where Ĥ′ = Ĥ0 + V ′ext.
Then, as we have stated that Ψ is the ground state for the potential V(r), we have:

E = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ′|Ψ′〉 + 〈Ψ′|Vext − V ′ext |Ψ
′〉 , (2.65)

where we have used the fact that: Ĥ′ + [Vext − V ′ext] = (Ĥ0 + V ′ext) + [Vext − V ′ext] = Ĥ0 + Vext = Ĥ. Hence, replacing
the expression for E′ based on equation (2.64) we obtain

E < E′ + 〈Ψ′|Vext − V ′ext |Ψ
′〉 . (2.66)
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Following equations (2.62) and (2.59) we can replace the brackets by integrals of V(r) and the density n(r) to get

E < E′ +
[∫

V(r)n(r)dr −
∫

V ′(r)n(r)dr
]
, (2.67)

so that
E < E′ +

∫
n(r)[V(r) − V ′(r)]dr . (2.68)

In the same manner, we can follow the previous reasoning but starting with Ψ′ as the ground state, then

E′ < 〈Ψ|Ĥ′|Ψ〉 = E + 〈Ψ|V ′ext − Vext |Ψ〉 , (2.69)

so that
E′ < E −

∫
n(r)[V(r) − V ′(r)]dr . (2.70)

Adding (2.68) and (2.70) we get:
E − E′ + E′ − E < 0 , (2.71)

implying
0 < 0 , (2.72)

which is not true. This approach is known as reductio ad absurdum, and we can conclude that assuming that the same
density n(r) corresponds to two different potentials is not true. Consequently, there must exist a unique density for
an external potential. Finally, we can state that the total energy can be expressed as the “sum of a unique functional
of the density, and the interaction energy of the electrons with the external potential”24. So we can write

E ≡ E[n(r)] = FHK[n(r)] +

∫
n(r)V(r)dr , (2.73)

where
〈Ψ|Ĥ0|Ψ〉 = 〈Ψ|T̂ + Vee|Ψ〉 ≡ FHK[n(r)] . (2.74)

In summary, we have proved the existence of the energy representation through a universal functional24.

2.4.1.2 Second HK Theorem

First, let us consider a density n′(r) , n(r). n′(r) corresponds to Ψ′ and the Hamiltonian Ĥ is the same in both cases.
We have stated that Ψ′ is not the true ground state function24, therefore

E[n(r)] = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ′|Ĥ|Ψ′〉 , (2.75)

which implies that

E[n(r)] < FHK[n′(r)] +

∫
n′(r)V(r)dr ≡ E[n′(r)] . (2.76)

So, in summary we have arrived at
E[n(r)] < E[n′(r)] . (2.77)
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Then, we know that the energy is a unique functional of the density. Furthermore, we can affirm that the true density
has the lowest energy. Hence, we can find the correct density by means of the variational principle of the energy
functional with respect to the density24, that is

δ

{
E[n(r)] − µ

(∫
n(r)dr − Ne

)}
, (2.78)

where we have assumed differentiability of E[n(r)] and that the ground-state density satisfy the stationary principle27.
Then, we obtain the Euler-Lagrange equation

µ =
δE[n(r)]
δn(r)

= V(r) +
δFHK[n]
δn(r)

, (2.79)

where µ is the chemical potential. Notice that FHK is a universal functional of the density n(r) as it does not depend
on the external potential Vext. This implies that if we know some (approximate or accurate) form of FHK we can use
this method in any system. Finding FHK in an explicit form is a challenging task27.

2.4.2 Levy constrained-search method

It is also possible to prove the Hohenberg-Kohn theorems in a more general manner via the method proposed by M.
Levy24,27. Here I will not show the mathematical details but rather the main remarks provided by Levy. First, we say
that a density n(r) is V-representable if “it can be constructed from the antisymmetrised ground state wave function
Ψ of a Hamiltonian with some V(r)”24.

The universal functional for any V-representable density is defined as

FHK[n0] = MinΨ→n0〈Ψ|T̂ + Vee|Ψ〉 , (2.80)

which acts as a constrained-search for the density functional FHK[n0]. The subscript 0 is to refer to the ground state.
If we perform the search over all the antisymmetric wave functions that output n0, FHK[n0] yields the minimum
expectation value of 〈T̂ + Vee〉. Then, the definition FHK[n0] is useful for deriving the first Hohenberg-Kohn (HK)
theorem, and even more allows us to get rid of the assumption that there should be no degeneracy in the ground state.
In this framework, it is also possible to derive the second (HK) theorem and also the condition of Ne-representability
can be introduced. This condition requires “ the density to be derivable from some antisymmetric Ne-electron wave
function”24.

Then, we have a mathematical framework that allows to search for the true density that minimizes the energy in
the set of trial densities constrained by normalization and Ne-representability24.

2.5 Kohn-Sham theory
It is remarkable to mention that the Kohn-Sham (KS) method is “ a practical tool for rigorous calculations” as it
provides a practical way to deal with the kinetic energy functional T̂ [n(r)]27. Here I present the main result provided
by Kohn and Sham, for more formal approaches we can refer to refs.23,24,27.
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Let us consider equation (2.73)

E ≡ E[n(r)] = FHK[n(r)] +

∫
n(r)V(r)dr ,

where we have defined:
FHK[n(r)] ≡ 〈Ψ|Ĥ0|Ψ〉 = 〈Ψ|T̂ + Vee|Ψ〉 . (2.81)

The dependence of FHK on n(r) is only implicit. Hence, Kohn and Sham proposed to “split these implicit terms
into the kinetic and Coulumb energy of independent electrons” as we have done before in the Hartree approach (eqn.
(2.47)), but adding an extra term that takes into account the difference21. Therefore, we can write

E =

∫
drn(r)Vn(r) −

∑
i

∫
drφ∗i (r)

∇2

2
φi(r) +

1
2

∫ ∫
drdr′

n(r)n(r′)
|r − r′|

+ Exc[n] . (2.82)

Notice that the first three terms in the previous equation correspond to the total energy EVee=0 in the independent
electrons approximation (or just what we obtain setting Vee = 0), this is

EVee=0 =

∫
drn(r)Vn(r) −

∑
i

∫
drφ∗i (r)

∇2

2
φi(r) +

1
2

∫ ∫
drdr′

n(r)n(r′)
|r − r′|

. (2.83)

Remember that the first term with Vn corresponds to the external potential, the second one −∇
2

2 is the kinetic energy,
and the third one is the Hartree term. Exc is called the exchange and correlation (or exchange-correlation (xc)) energy,
and contains “everything that is left out”21. In general what we have expressed in equation (2.82) is an splitting
of E[n] based on the already studied and known contributions of the non-interacting (or independent) electrons
approximation and an unknown contribution expressed in Exc.

Then, if we follow the minimization of the functional E[n] as we did when deriving the Hartree-Fock equations,
we get

δE[n]
δn

∣∣∣∣
n0

= 0 . (2.84)

Remember that with the previous minimization we will obtain an expression for the wave functions φi(r), which
follows

n(r) =
∑

i

|φi|
2 ,

i.e. if we know φi we can build the density. Also we impose orthonormality,∫
drφ∗i (r)φ j(r) = δi j . (2.85)

And hence we obtain the Kohn-Sham equations:(
−
∇2

2
+ Vn(r) + VH(r) + Vxc(r)

)
φi(r) = εiφi(r) , (2.86)

where Vn is the external potential, VH is the Hartree potential, and Vxc is the exchange and correlation potential which
given by

Vxc(r) =
δExc[n]
δn

∣∣∣∣
n(r)

. (2.87)
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Notice that the exact form of Exc is not known and therefore a challenging task will be to find approximations to this
functional21. Also, as we have been doing previously we can write the energy in the compact form23

E =

N∑
i

εi + Exc[n] −
∫

Vxc(r)n(r)d3r − VH . (2.88)

The exchange and correlation functional for the energy can be expressed as23

Exc[n] =

∫
d3rn(r)εxc([n], (r)) , (2.89)

where εxc is the exchange and correlation energy per particle at the point r, but dependent on the whole electron
density n(r).

Finally, as mentioned when deriving the Hartree-Fock equations, the Kohn-Sham equations can be solved via a
self-consistency cycle. This process is summarized in figure (2.1).

2.6 DFT functionals
In this section I will refer to the main results provided in DFT theory to understand better the basis of the approxi-
mations for exchange-correlation energy functionals. Therefore, I follow a more formal approach ∗.

Remember we already considered the total energy E given by equation (2.82) in the Kohn-Sham theory. This
energy can be written more generally as

E = Ts[n↑, n↓] +

∫
d3r n(r)v(r) + U[n] + Exc[n↑, n↓] , (2.90)

where:

• n↑(r) and n↓(r) are spin densities. Then, Ts is the non-interacting kinetic energy functional of the spin densities,
v(r) is the external potential (due to the nuclei).

• U[n] is the Hartree electrostatic self-repulsion of the electron density:

U[n] =
1
2

∫
d3r

∫
d3r′

n(r)n(r′)
|r − r′|

. (2.91)

• Finally, Exc is the exchange-correlation energy. Its functional derivative yields the exchange-correlation
functional:

vσxc([n↑, n↓]; r) =
δExc

δnσ(r)
. (2.92)

Notice we already derived this equation but here is expressed more formally including even the spin indexes
σ. Exc includes all the information that is not considered in the first three terms of equation (2.90). If we were
able to know the exact form of Exc on n↑ and n↓, it would be possible to know “the exact ground-state energy
and spin-densities of a many-electron system”20. Furthermore, the forces on the nuclei would be found by
−∂E/∂R20.

∗If one is really interested on a more detailed theoretical framework about DFT functionals, I strongly recommend to look at the chapter by
John P. Perdew and Stefan Kurthin in the book A Primer in Density Functional Theory 20.
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2.6.1 Exchange-correlation functional Exc

Let us consider the exchange-correlation energy functional Exc, it can be split as20

Exc[n] = Ex[n] + Ec[n] , (2.93)

where Ex[n] is the exchange energy contribution, and is given as20

Ex[n] = 〈φmin
n |V̂ee|φ

min
n 〉 − U[n] , (2.94)

where φmin
n is a single Slater determinant. Besides20,

〈φmin
n |T̂ + V̂ee|φ

min
n 〉 = Ts[n] + U[n] + Ex[n] . (2.95)

If the interaction between electrons is switched-off V̂ee = 0. In other words, we consider the one-electron limit,
hence we have20:

Ex[n] = −U[n] . (2.96)

On the other hand, the correlation energy Ec is given as20:

Ec[n] = F[n] − {Ts[n] + U[n] + Ex[n]} = 〈Ψmin
n |T̂ + V̂ee|Ψ

min
n 〉 − 〈φ

min
n |T̂ + V̂ee|φ

min
n 〉 . (2.97)

Notice that F[n] was already defined in equation (2.74) [as FHK[n]], and more generally in equation (2.80),
however to be consistent with the formalism of this section we have20

F[n] = minΨ→n〈Ψ|T̂ + V̂ee|Ψ〉 = 〈Ψmin
n |T̂ + V̂ee|Ψ

min
n 〉 . (2.98)

Here Ψmin
n is the wave function that yields the density n and minimizes 〈T̂ + V̂ee〉

20.

2.6.2 Coupling-Constant Integration

We have seen the exact expressions for Ex, in equation (2.94), and Ec in (2.97), though they do not provide a physical
insight to construct an approximated functional. To overcome this problem, as is customary done by physicists, we
can insert a coupling constant λ > 0. The idea is then to perform a coupling constant integration, or also known as
the adiabatic connection33.

We consider a normalized antisymmetric wave function Ψ
min,λ
n , that yields a density n(r) and minimizes the

expectation value of the expression T̂ + λV̂ee
20,33, this is

Ψmin,λ
n =

Ψmin
n if λ = 1

φmin
n if λ = 0

, (2.99)

where Ψmin
n is the interacting ground-state wave function for density n, and φmin

n is the non-interacting or Kohn-Sham
wave function for density n20. The change of λ at fixed n(r) represents a change in the external potential vλ(r) that
is given as

vλ(r) =

the true external potential if λ = 1

the Kohn-Sham effective potential if λ = 0
. (2.100)
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Then, after some steps of mathematical treatment, we can consider the average density of electrons n2(r, r′) † at
r′, given that there is one electron at r33. Then, it follows that∫

d3r′n2(r, r′) = N − 1 . (2.101)

Also, we can define
n2(r, r′) = n(r′) + nλxc(r, r′) , (2.102)

where nλxc(r, r′) is the density at r′ of the exchange-correlation hole about one electron in r20. Then, we have:∫
d3r′nλxc(r, r′) = −1 . (2.103)

The interpretation of the previous equation is that if an electron is at r, hence it is missing in the rest of the system20.
Then, we can arrive at another expression of the exchange-correlation energy:

Exc[n] =
1
2

∫
d3r

∫
d3r′

n(r)n̄xc(r, r′)
|r − r′|

, (2.104)

where

n̄xc(r, r′) =

∫ 1

0
dλnλxc(r, r′) (2.105)

is the coupling-constant averaged hole density20.
Therefore, with the previous framework in mind, it is possible to have a clearer physical insight about Exc, which

is “just the electrostatic interaction between each electron and the coupling-constant-averaged exchange-correlation
hole which surrounds it”20. Now, we can move on our analysis of functionals.

2.6.3 Hierarchy of Exc DFT functionals

As it is difficult to find the functional Exc[n] and consequently the exchange correlation energy εxc([n], r) there
has been an extensive work on approximations for Exc[n]. From around the 60’s the efforts for understanding and
constructing accurate and efficient functionals have arisen. There are two types of functionals: non-empirical and
empirical. The first are constructed only with mathematical parameters and fundamental physical constants, whereas
the latter depend on experimental parameters. This thesis is devoted only to the non-empirical functionals.

Jianwei Sun ‡, describes a systematic way to produce non-empirical functionals. I summarize this process along
with historical insights in Table 2.1.

Now, remember that we already stated in equation (2.89) the expression for the exchange-correlation energy:

Exc[n] =

∫
d3rn(r)εxc([n], (r)) .

†The sub-script 2 is used just to follow the notation that is used in refs. 20,33
‡Jianwei Sun alongwith Adrienn Ruzsinszky and John P. Perdew (one of themost cited scientists in history 34) created the SCAN functional 35,

one of the main tools that was used in this thesis. Sun et al. wrote a chapter book 33 to explain the basics of DFT and how SCAN works, hence I
follow his work. As an interesting fact, I met Ruzsinszky and Perdew in a series of conferences at San Francisco University in Quito in 2019.
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Table 2.1: Adapted from the work by Jianwei Sun et al.33: The systematic, nonempirical way to improve approxima-
tions to the exact density functional for the exchange-correlation energy Exc. Notice that the first appropriate norm
for step (v) was the uniform electron gas in 1965. The most recent functional that fulfills all steps from (i) to (v) is
the strongly constrained and appropriately normed (SCAN)35 density functional.

Steps Historical context

(i) Prove the existence of the exact functional and derive exact formal expressions for it. 1965-79
(ii) Discover mathematical properties of the exact functional (exact constraints), which
include limits, scaling relations, equalities, and bounds.

1980’s

(iii) Develop approximate but computationally tractable forms for the approximations at
various levels of flexibility.

1965-98

(iv) Impose the “exact constraints” from step (ii) on each form, as appropriate 1970-present∗

(v) If a form still retains some flexibility, fit it to energies/densities of appropriate norms,
systems for which the form can be expected to be highly accurate.

1965, 2015

∗The book was published on 2018.

2.6.3.1 The Local Spin Density Approximation

We can start considering εxc([n], r) for the homogeneous (or uniform) electron gas, a system with constant n(r). This
framework is known as the Local Spin Density Approximation (LSDA) or just Local Density Approximation (LDA),
which is also used in non-homogeneous situations23. Hence, we will have an expression of the form:

ELS DA
xc [n↑, n↓] =

∫
d3r n(r)εuni f

xc (n↑, n↓) , (2.106)

where εuni f
xc (n↑, n↓) is the exchange-correlation energy per electron for the uniform electron gas.

This expression has been useful for certain problems of bulk and surface structures, nevertheless it has some
drawbacks at obtaining accurate cohesive energies, lattice constants and bond lengths23.

2.6.3.2 The General Gradient Approximation GGA

An improved version of the LSDA approach is the Generalized Gradient Approximation (GGA). Here, we consider
the second-order gradient expansion of the density n(r) to LSDA for the exchange-correlation energy. One challenge
that arises, is that the exchange-correlation hole in the GGA approach n̄xc(r, r + u) is not realistic as LSDA is at large
u. To overcome this problematic behavior, Perdew and Wang came up with a solution and proposed the so called
PW91 functional36. However, some years later a more updated version of this class of GGAs emerged thanks to the
work by Perdew, Burke, and Ernzerhof37. This GGA is widely known and abbreviated as PBE. The general form of
a GGA functional is as follows:

EGGA
xc [n↑, n↓] =

∫
d3r n(r)εuni f

xc (n)Fxc(n↑, n↓,∇n↑,∇n↓) , (2.107)
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where Fxc is the enhancement factor.
GGA functionals achieve chemical accuracy (with an error up to≤ 0.1eV) for various chemical reactions. Thanks

to this improvement Walter Kohn was awarded with the Nobel Prize in chemistry in 1998 for his development of
the density-functional theory23. As the GGA approximation seems promising there are still some drawbacks. In
general, we can mention:

• No proper description of van der Waals forces.

• Underestimation of band gaps (both in GGA and LDA).

• Wrong prediction of the magnetization of strongly correlated systems. For instance, Nickel Oxide (NiO) is
predicted as metal instead of an antiferromagnetic insulator.

As pointed out by Groß23, “there is no systematic way of improving the functionals since there is no expansion
in some controllable parameter”. Furthermore, Sun et al.33 state that there is a dilemma about GGAs, i.e. they can
be accurate for structures or energies, but not both. This aspect is due to a formal limitation, this is that a GGA
functional “cannot satisfy all the known exact constraints appropriate to a semilocal functional”33.

2.6.3.3 Meta-GGA

One step forward in the exchange-correlation functional is the meta-GGA’s. This approximation consider additional
semilocal information33 such as the Laplacian of the density ∇2

nσ or the kinetic energy density τσ, or both. It can be
expressed as33:

EMGGA
xc [n↑, n↓] =

∫
d3r n(r)εuni f

xc (n)Fxc(n↑, n↓,∇n↑,∇n↓,∇2n↑,∇2n↓, τ↑, τ↓) . (2.108)

The Kohn-Sham orbital kinetic energy density for electrons of spin σ is defined as20

τσ(r) =
1
2

∑
α

θ(µ − εασ)|∇ψασ(r)|2 , (2.109)

where µ is the chemical potential. α represents the set of remaining one-electron quantum numbers (apart from the
z-component of the spin σ =↑, ↓). θ(µ− εασ) is a step function which ensures that when εασ < µ all Kohn-Sham spin
orbitals are singly occupied, whereas if εασ > µ these orbitals are empty.

The kinetic energy density contributes to overcome the GGA’s dilemma mentioned before because meta-GGAs
satisfy more exact constraints33. In this framework, we can use a dimensionless variable α33:

α =
τ − τw

τuni f , (2.110)

where
τuni f =

3
10
· (3π2)2/3n5/3 (2.111)
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is the kinetic energy density of the uniform electron gas33. Also,

τw =
|∇n|2

8n
(2.112)

is the von Weizsäcker kinetic energy density. It is exact for single-orbital systems33.
With the previous definitions in mind, it is remarkable that meta-GGAs are able to recognize the accurate α for

various cases33:

• Slowly varying densities, when α ≈ 1. Then, simulating metallic bonds.

• Single-orbital systems, when α = 0, simulating covalent single bonds.

• Single-orbital systems, when α >> 1, for non-covalent bonds between closed shells.

Meta-GGAs are in principle intrinsically non-local functionals, due to the fact that they are determined by Kohn-
Sham orbitals (which are non-local functionals of the electron density)33. With this consideration, in 2011 Nazarov
and Vignale38 showed that (as pointed by Sun et al.33) “the exchange-correlation kernel derived from meta-GGAs
within the adiabatic TDDFT § can provide a nonlocality”33 ¶.

2.6.3.4 Meta-GGA example: Strongly Constrained and Appropriately Normed Semilocal (SCAN) Density
Functional

From the previous discoveries, the non-empirical SCAN meta-GGA emerged in 201533. SCAN is one remarkable
state-of-the-art functional up to date. It was published by Jianwei Sun, Adrienn Ruzsinszky and John P. Perdew,
the last being one of the creators of the PBE (GGA) functional ‖. SCAN is “the first meta-generalized-gradient
approximation (meta-GGA) that is fully constrained, obeying all 17 known exact constraints that a meta-GGA can. It
is also exact or nearly exact for a set of “appropriate norms”, including rare-gas atoms and nonbonded interactions35.”

SCAN is able to recognize several chemical bonds via the parameter α we defined earlier. Therefore, SCAN
predicts accurate geometries and energies of various systems such as covalent, metallic, ionic, hydrogen, and van
der Waals bonds. Furthermore, SCAN represents a significant and systematic improvement over the GGAs33,39. In
2016 (one year later of the original publication), it was shown that “SCAN matches or improves on the accuracy of
a computationally expensive hybrid functional, at almost-GGA cost” in some cases39.

To understand SCAN remember what was mentioned in Table (2.1). More specifically, the 17 SCAN constraints
are distributed as33:

• 6 for exchange
§TDDFT holds for Time Dependent DFT.
¶More technically, what Nazarov and Vignale showed is that the exchange-correlation kernel of meta-GGA supports a singularity of the form

α/q2, where q is the wave vector. This singularity is important for a theory to describe the excitonic effect in crystals. Notice that the definition
of the kernel fxc, appears in the TDDFT framework, for more details about fxc see the publication by Nazarov and Vignale 38.

‖Notice that PBE was published in 1996 37, and it took almost 20 years to have a very improved version of a functional. This is a milestone
in the history of simulations and solid state physics; also it shows the complexity of describing the many-body effects at quantum level.
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• 6 for correlation

• 5 for both exchange and correlation

Also, SCAN considers the next appropriate norms33:

• uniform and slowly varying densities

• the jellium surface energy

• the H atom

• the He atom and the limit of large atomic number for the rare-gas atoms, including Ar2

• the Z→ ∞ limit of the two-electron ion

SCAN has shown a very good performance predicting various effects of the so called intermediate-range van
der Waals interactions. There are various examples that show an advantage in relation to the PBE functional such as
the description of defects in semiconductors, seven phases of ice, liquid silicon, liquid water, some metal oxides and
more33. For more details about some advantages of SCAN see refs.33,39,40.

As we have seen with other functionals, SCAN also presents a drawback in some systems. For instance, when
we have long-range van der Waals (vdW) interactions (which are non local), SCAN (which is semi-local) cannot
properly describe the system. To overcome this challenge, we could account for other methods such as Quantum
Montecarlo (QMC) simulations, or the random-phase approximation RPA, nevertheless they are suitable for not very
big systems as it could represent high computational cost. Then, to solve this problem we can combine the SCAN
approach with the rVV1041 density functional. rVV10 is first principles (or non-empirical), and in combination with
SCAN, we can afford for the SCAN+rVV1042 functional in order to describe van der Waals interactions that SCAN
alone cannot33.

2.6.3.5 Hyper-GGA

The class of hyper-GGAs functionals add the exact exchange energy density εexact
xc to the previous meta-GGA. εexact

xc

is a fully nonlocal functional of the occupied Kohn-Sham orbitals33. Then, hyper-GGAs have the form:

EMGGA
xc [n↑, n↓] =

∫
d3r n(r)εuni f

xc (n)Fxc(n↑, n↓,∇n↑,∇n↓,∇2n↑,∇2n↓, τ↑, τ↓, εexact
xc ) . (2.113)

2.6.3.6 Hybrid functionals

There are also the class of hybrid functionals, which combine DFT and exact Hartree-Fock exchange43. Specifically,
remember when we defined the coupling constant integration in equation (2.99); then at λ = 0 is the exact exchange
hole. This fact suggested that a fraction of exact exchange should be mixed with GGA exchange and correlation20.
The simplest hybrid can be written as20:

Ehyb
xc = aEexact

x + (1 − a)EGGA
x + EGGA

c , (2.114)
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where a is a constant (also known as the mixing parameter) that can be obtained theoretically or fitted empirically20.
As mentioned by Perdew and Kurth20 “hybrid functionals are in a sense hyper-GGA’s, but hyper-GGA’s can also

make use of full exact exchange and a fully nonlocal correlation functional which incorporates the exact exchange
energy density...”. In general, we can affirm that hyper-GGAs and hybrids are sophistications of the LSDA and
GGAs and provide more accurate results. There are even more approximations that have considerable improvements
in the accuracy of the calculations such as the RPA or the GW approaches33.

All these approximations for Exc can be summarized on a Jacob’s ladder, which starts from the bottom with the
LSDA, till hybrids and other approximations. The heaven in this analogy is the exact form of Exc. Here I present a
Table 2.2 adapted from the work by Sun et al.33

Table 2.2: Jacob’s ladder of DFT functionals adapted from Sun et al.33. The authors clearly state that: The
approximations in the lowest three rungs are semilocal since their ingredients, n, ∇n, ∇2n, and τ only require the
information at local point r or infinitesimally around r. The highest two rungs are nonlocal due to the explicit
appearance of the occupied ψocc or unoccupied ψunocc orbitals in the functionals. Climbing from a lower rung to
a higher rung usually results in the increase of accuracy. However, from semilocal rungs to nonlocal ones, the
computational cost increases dramatically.33

Ingredients Altitude Functionals’ name
Heaven(Chemical Accuracy)

n, ∇n, ∇2n, τ, ψocc, ψunocc Rung 5 RPA, GW
n, ∇n, ∇2n, τ, ψocc Rung 4 Hybrid functionals, e.g., HSE06

n, ∇n, ∇2n, τ Rung 3 Meta-GGA’s, e.g., SCAN
n, ∇n Rung 2 GGA’s, e.g., PBE

n Rung 1 LSDA

2.6.3.7 Hybrid functional example: Heyd-Scuseria-Ernzerhof (HSE)

It is know that semi-local functionals such as meta-GGAs underestimate the true values of band gaps, or fail at
describing materials with elements presenting d and/or f orbitals44. To partially overcome these difficulties hybrid
functionals (which include part of Hartree-Fock (HF) exchange44, play an important role. One important hybrid
functional is the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional. In the HSE scheme we consider
the split of the Coulumb potential 1/r for exchange into short-range (SR), i.e., [1−erf(ωr)]/r and long-range (LR)
components , i.e., erf(ωr)/r 44. This can be expressed as:

1
r

=
1 − erf(ωr)

r
+
erf(ωr)

r
, (2.115)

so that we are constructing a screened potential, which enables to reduce the computational cost in extended
systems44. In equation (2.115) ω is known as the screening parameter and defines the separation range. The
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(VASP)

exchange-correlation energy for HSE is then:

EHS E
xc = aEHF,S R

x (ω) + (1 − a)EPBE,S R
x (ω) + EPBE,LR

x (ω) + EPBE
c , (2.116)

whereEPBE,S R
x is the short range component of theGGAfunctional PBE,EPBE,LR

x represents the long-range component
of PBE. Both terms are obtained via integration of the PBE exchange hole. EHF,S R

x is the short-range HF exchange;
and EPBE

c is the PBE correlation energy. If ω = 0, HSE reduces to another hybrid named PBEh. For ω → ∞ HSE
becomes PBE. Usually, the mixing constant a is fixed as a = 1/4, this result is obtained from perturbation theory44.
When we setω = 0.2 (considering a = 1/4), we name the functional as HSE06. However, a study in 2012 byMoussa
et al.45 showed a way to make a better selection of the parameters a and ω. Hence, I summarize the results in Table
(2.3) .

ω (Å−1) a HSE name
0.2 0.25 HSE06

0.185 0.313 HSE12
0.408 0.425 HSE12s

Table 2.3: Various HSE functionals as given by the screening parameter ω and the mixing parameter a. HSE12 and
HSE12s were proposed by Moussa et al.45 in 2012, whereas HSE06 comes from the considerations of the study by
Scuseria et al. in 200644.

2.7 Computational implementation ofDFT: theVienna ab initioSimulation
Package (VASP)

My thesis work has been developed entirely through the VASP code implementations. I will provide the specific
computational details of this thesis in the next sections, but for now I will present some important concepts that are
the basis to understand the VASP code.

2.7.1 Translational Invariance and Periodic Boundary Conditions

When developing DFT calculations we assume periodicity of the system in 3D. This means that we choose a unit cell
(either a primitive cell or a supercell) and make periodic extensions of it. Technically, we are working on a Bravais
lattice ∗∗, and in real space we usually consider a Wigner-Seitz cell, whose analogous is the first Brillouin Zone in

∗∗In the Solid State Physics book by Aschroft and Mermin 46, the Bravais lattice is defined as an infinite array of discrete points with an
arrangement and orientation that appears exactly the same, from whichever of the points the array is viewed. A 3D Bravais lattice is formed by
the position vectors R of the form:

R = n1a1 + n2a2 + n3a3 ,

where the a1,a2, and a3 are any vectors (also called primitive vectors) not laying in the same plane, and n1, n2, and n3 are integers.
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the reciprocal space46. As we repeat periodically a unit cell (ensuring the distances between cells are large enough),
the band energies will be the same as the electron energy levels of a single cell24.

If we consider a perfect periodic crystal, the ions will be arranged periodically. Hence, we can consider the case
when an electron goes through a periodic potential U(r) that is part of a Bravais lattice. We can write46:

U(r + R) = U(r) (2.117)

for all Bravais lattice vectors R.
One fundamental fact about crystallographic systems is the Bloch’s theorem. According to Aschroft and

Mermin46, the theorem is stated as: The eigenstates ψ of the one-electron Hamiltonian Ĥ = −∇
2

2 + U(r), where
U(r + R) = U(r) for all R in a Bravais lattice, can be chosen to have the form of a plane wave times a function with
the periodicity of the Bravais lattice, this is:

ψnk(r) = eik·runk(r), (2.118)

where n the band index, and the k point within the Brillouin zone (BZ). For every n, the energies εn(k) and the
wave functions ψnk(r) are some continuous functions of k. Then, usually we state that εn(k) forms a band that is
characterized by the quantum number n24. In addition,

unk(r + R) = unk(r), (2.119)

for all Bravais lattice vectors R.
The implications and meaning of Bloch’s theorem is nicely explained by Kantorovich †† (Chapter 5)24 stating

that “the wave function of an electron is not periodic”, nevertheless, “the density |ψnk(r)|2 associated with the state
nk is ”24. Then, “it is possible to try and solve the Schrödinger equation for each value of k independently”47.

Furthermore: “For every given n there will be N different solutions of the Schrödinger equation corresponding
to N different values of the vector q in the first BZ. Each of the solutions can accommodate up to two electrons with
opposite spins24.” This idea will also become important when dealing with surface systems (either pristine or with
defects)24. Therefore, considering the Bravais framework and a parallelepiped with sides N1a1, N2a2, and N3a3 the
periodic boundary conditions are given as24

ψnk(r + N1a1) = ψnk(r + N2a2) = ψnk(r + N3a3) ≡ ψnk(r) . (2.120)

Periodicity is important when dealing with surface systems. A common procedure for computing them is the so
called slab model. This is based on the idea of considering a certain number of surface layers that will be inside a
slab with a determined vacuum space. This arrangement is repeated periodically, and with an appropriate vacuum
we can avoid artificial interactions. Also, the thickness of the slab should be enough so that the internal surface
layers simulate the bulk of the crystal. Sometimes in the slabs, the atoms of the bottom are fixed and the remaining
atoms are allowed to relax, so there is a continuous transition from the surface to the bulk region in the slab24. This
procedure is also an important part of this work and will be better understood when working with a real example.

††I strongly recommend to read Chapter 5 by Kantorovich 24, see the citation number for the exact reference. This reading is very illuminating.
What I cited mostly in this section from Kantorovich’s work was from section 5.2.1.1
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2.7.2 k-point sampling

When performing DFT calculations, we will need to evaluate integrals in the reciprocal space (or k space). Com-
putationally, this can be solved by sampling and re-formulating all the DFT physics over a grid of k points. For
instance, let us consider the electronic density24

n(r) = 2
occ∑
nk

|ψnk(r)|2 , (2.121)

where the summation is performed with respect to the lowest occupied (occ) states nk described by the Kohn-Sham
orbitals ψnk(r). Here, one-electron energies ελ, and wave functions ψλ in periodic systems are labeled with the band
index n and the k point within the Brillouin zone (BZ), then: ελ = εnk and ψλ = ψnk.

The choice of the set of k points for representing n(r) is known as k-point sampling. This choice is made as a
function of the size of the unit cell and on the system point symmetry. In general, the bigger the cell, the smaller the
set of k points that are needed. The BZ becomes smaller in the reciprocal space when the unit cell is bigger (i.e. the
k points are closer among them and therefore we need less points).

If we have defined in real space the lattice vectors a1, a2, and a3, we can also define the set of vectors in reciprocal
space b1, b2, and b3. The relation between ai and b j is written as

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, b2 = 2π

a3 × a1

a2 · (a3 × a1)
, b3 = 2π

a1 × a2

a3 · (a1 × a2)
. (2.122)

Also, we have that bi = 2π/a for all i. The volume of the BZ, VBZ (in reciprocal space) and the volume of the
primitive cell in real space Vcell are related by

VBZ =
(2π)3

Vcell
. (2.123)

Going further in the way of choosing k-points, VASP allows to specify the set of k-points as48:

1. An automatically generated (shifted) regular mesh of points.

2. The beginning and end-points of line segments.

3. An explicit list of points and weights.

Regarding to the equation of the density 2.121, and following the available lectures by Martĳn Marsman in the
VASP documentation49,50, the sampling of the Brillouin Zone is given as

n(r) =
∑
nk

wk fnk|ψnk(r)|2dk , (2.124)

where wk are the weights for each k point in the first BZ and fnk is the occupation number for our system of study.
This equation is the one that will be used in a DFT code and is the basic idea behind VASP’s implementations.

Considering the previous framework, now we have to face a problem: we can infer that if we consider more k
points to sample the BZ, we obtain more accuracy51. However, the complexity of performing an approximation for
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the integral scales linearly with the number of symmetrically irreducible k points ‡‡. Hence, the idea is to have a
framework (or method) that allows to choose properly the k points so that we have a reasonable computational cost,
and a good accuracy of the sampling in order to perform the integrations.

The most used framework to perform this task is the Monkhorst-Pack (MP) method52, published on 1976. In
VASP we can choose among various methods: the Monkhorst-Pack, Rk length, or the generalized regular grids53.
The idea behind the MP method is this: “a regular grid of k-points is generated, and the Brillouin zone integral of a
function is approximated by calculating the average value of the function over the k-points. The speed and accuracy
[· · · ] may be improved by shifting the grid so that no point falls on the high-symmetry Γ point at the center of the
Brillouin zone”51.

In addition, it is remarkable to mention very recent works that have shown a considerable improvement over the
MP method. For instance, there is the so-called Moreno-Soler (MS) approach. MS consists in a “search through
all possible superlattices in which lattice points are separated by a distance of at least rmin to identify the one that
results in the fewest number of irreducible k-points”51. At first sight, this method is computationally expensive as
it is a problem of searching through various possibilities, nevertheless there are interesting works that overcome the
search problem and hence it is possible to overcome the MP method. See for instance, the works by Wisesa et al.51

in 2016 and the most advanced from 2020 by Morgan et al.54.
Notice that VASP cannot “automatically construct optimal generalized regular k-points grids with a certain target

sampling density (in the spirit of the aforementioned publications)”53. Further details about the k-points mesh will be
discussed later. As an important fact, keep in mind that we usually specify how many k-points are in each direction.
Hence if a certain number of k-points are used in each direction we can label them as

M × N × K (2.125)

k-points. Usually, a procedure to choose a reasonable set of M × N × K k-points is to perform calculations with
the previous fixed cut-off energy and various separation lengths of k-points till observe convergence. In this way we
assure to have reliable calculations and a reasonable use of computational resources.

2.7.3 Plane waves

VASP was created by Georg Kresse and various colaborators55–58. This code has been proved to yield reliable
results59 and is widely used to study various atomic systems. As pointed out by Hafner43, modern DFT calculations
for solids are based on technical choices such as43:

1. Basis set for expanding the Kohn-Sham eigenfunctions.

2. Full-potential or pseudopotential approaches of the interactions between the ionic core and the valence
electrons.

3. Method for determining the eigenstates of the Kohn-Sham Hamiltonian.
‡‡“the largest subset of k-points for which no two k-points in the subset are symmetrically equivalent” 51
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4. Choice of the exchange-correlation functional.

In DFT codes implementations, the spin-orbitals have to be expanded as a set of basis functions. There are
various choices, however for periodic systems (e.g. crystals) and especially for VASP, the appropriate choice is the
plane waves. Then, let us consider a wave function:

ψnk(r) = unk(r)eik·r , (2.126)

where unk(r) is periodic, following Bloch’s theorem. Hence, a generic plane wave can be written as24

φk+G(r) =
ei(k+G)·r
√

Ω
, (2.127)

where k is a vector in the Brillouin zone, G is a reciprocal lattice vector, Ω is the volume of the Wigner-Seitz cell.
Taking into account equation (2.126) and considering periodicity we can write60:

unk(r) =
1
√

Ω

∑
G

CGnkeiG·r (2.128)

and
ψnk(r) =

1
√

Ω

∑
G

CGnkei(k+G)·r . (2.129)

In the same way, the density and the potential can be written as

n(r) =
∑

G

nGeiG·r (2.130)

and
V(r) =

∑
G

VGeiG·r (2.131)

respectively.
Kantorovich24, and Hafner43 mention in their respective works various advantages of using plane waves:

1. The calculation of matrix elements can be performed either in reciprocal or direct spaces. It is possible
to change from certain space to another via very efficient Fast Fourier Transforms algorithms, reducing the
complexity of computations with respect to the amount of plane waves that are used. For instance, the potential
energy has a diagonal representation in real-space, whereas the kinetic energy has a diagonal representation
in momentum-space. Working with a diagonal representation is computationally better.

2. It is easy to control the convergence of the calculation with respect to the size of the basis set using a single
parameter. Specifically, we can check the eigenvalues and total energies as a function of the cut-off energy,
i.e., the highest kinetic energy of a plane-wave within the chosen basis set.

3. Plane waves do not depend on positions of atoms, hence the Hellmann-Feynman forces acting on the atoms
and the stresses on the unit cell may be easily calculated.

4. Basis-set superposition errors are avoided.
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2.7.4 Pseudopotentials

First, remember when we considered the idea of fixing the nuclei of the atoms. In solids this idea is clever and is a
very good approximation, as the nuclei are almost not moving. Now, let us think about the electrons that are very
near to the nucleus (core electrons), and those which are far apart from the nucleus (valence electrons). In the case
of the first, they are going to have a considerable influence of a Coulomb potential of the nucleus, and will occupy
a small volume around it. Hence the one-electron energies ε are large and negative. On the other hand, the valence
electrons will feel a weaker Coulomb potential from the nucleus. They are partially screened by the core electrons
and therefore their wave functions are diffuse24.

Then, we can perform another approximation known as the frozen-core approximation. This is based on
considering only the valence electrons wave functions variationally, whereas the wave functions of the core electrons
are considered identical to the clamped atoms. One condition that has to be fulfilled is the orthogonality between
the wave functions of the valence electrons ψv with respect to the core ones. This yields the nodal structure of ψv,
and describes the oscillation of the spin-orbitals in the core regions changing their sign24.

The previous nodal structure of the valence spin-orbitals ψv is problematic for we have to use more basis functions
in order to expand ψv so that we reproduce the oscillations within the small core regions24. This means we should
use large values of G for describing oscillations on a small scale. Therefore, a solution for this problem is to use a
pseudo-wave function ψ̃v for describing the valence electrons. Further, ψ̃v does not oscillate inside the atomic core
regions, whereas outside the core regions ψ̃v is identical to ψv. These considerations of the form of the wave function
can be expressed as24

ψv = ψ̃v −
∑

c

〈ψc|ψ̃v〉ψc , (2.132)

where outside the core regions ψc ' 0, then ψv ' ψ̃v. On the other hand, orthogonality of ψv to any of the core wave
functions ψc′ is given as

〈ψc′ |ψv〉 = 〈ψc′ |ψ̃v〉 −
∑

c

〈ψc|ψ̃v〉〈ψc′ |ψc〉 = 〈ψc′ |ψ̃v〉 −
∑

c

〈ψc|ψ̃v〉δcc′ = 0 , (2.133)

where ψ̃v will be smooth inside the core regions. Notice that the sum subindex c is indicating that the sum is performed
over all the core states. Hence, using these pseudo-wave functions we will need less plane waves. However, by using
this trick another complication arises. This is that if we consider the Kohn-Sham equations for either the core and
the valence electrons we will have an expression of the form24:(

F̂ + V̂ps(εv)
)
ψ̃v = εvψ̃v , (2.134)

where
V̂ps(ε) =

∑
c

(ε − εc)|ψc〉〈ψc| (2.135)

is a non-local energy dependent pseudo-potential.
From the previous result, variousmethods have emerged to build energy independent pseudo-potentials. Actually,

there have been various studies to produce the so-called hard norm-conserving and ultrasoft pseudo-potentials which
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work well in certain cases but present some drawbacks. For instance, one disadvantage is that in this framework
we cannot restore the exact wave function24. Also, the exchange interaction between valence and core electron
presents non linearity, and hence non linear core corrections are needed in certain cases43. Therefore, the Projector
Augmented-Wave (PAW) method can be used to overcome these difficulties.

2.7.5 The Projector Augmented-Wave (PAW) Method

The PAW method was proposed by Blöchl61 in 1994. This method is based on the “exact partitioning” of the
wave functions and allows to perform all-electron (AE) calculations instead of only considering the valence electrons
pseudowave functions as we studied in the pseudo-potentials. Particularly, in the PAW scheme the hole wave function
corresponding to every electron is calculated. Besides, the PAWmethod resembles the computational capabilities of
the ultrasoft pseudo-potentials, i.e. just a few of plane waves will be needed to expand the smooth part of the whole
wave function of valence electrons24.

Also, it is worth mentioning that the PAW method resembles the accuracy of the full-potential linearized
augmented-plane-wave (FLAPW) method. Actually, FLAPW is a benchmark of DFT calculations of solids43. Now,
to describe the PAW approach, let us consider the all-electron (AE) valence wave functions ψAE

n , they are formed
from pseudo (PS) wave functions through a linear transformation43 given by

|ψAE
nk 〉 = |ψPS

nk 〉 +
∑

i

(|φAE
i 〉 − |φ

PS
i 〉)〈p

PS
i |ψ

PS
nk 〉 . (2.136)

To follow the notation we used for the pseudo-potentials, we can re-write the previous equation using tildes. This
notation is used in the original work by Blöchl61 and in the VASP documentation62, so that

|ψnk〉 = |ψ̃nk〉 +
∑

i

(|φi〉 − |φ̃i〉)〈 p̃i|ψ̃nk〉 . (2.137)

Specifically:

• The pseudo-orbitals ψ̃nk are the variational quantities and are expanded in plane waves as

ψ̃nk(r) = 〈r|ψ̃nk〉 =
1
√

Ω

∑
G

CnkGei(G+k)·r . (2.138)

Notice that: “An AE wave function is a full one-electron Kohn-Sham wave function and is not to be confused
with a many-electron wave function ”61. In the regions among the PAW spheres (or also known as the
augmentation regions) around the atoms we have that

ψ̃nk = ψnk . (2.139)

Inside the spheres, ψ̃nk are an inaccurate approximation to the true wave functions ψnk, and are used as a
computational tool. Also, the PAWmethod implemented in VASP uses the frozen core (FC) approximation62.
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• The AE partial waves φAE
i = φi are are solutions of the spherical scalar-relativistic Schrödinger equation for a

nonspinpolarized atom at a reference energy εi in the valence regime and for an angular momentum li, hence(
−∇2

2
+ vAE

e f f

)
|φi〉 = εi|φi〉 , (2.140)

where vAE
e f f is the spherical component of the AE potential.

• The pseudo partial waves φPS
i = φ̃i are node-less. Outside a core radius rc, we have that φ̃i = φi.

• pPS
i = p̃i are the projector functions. These functions are dual to the partial waves, i.e.,

〈p̃i|φ̃ j〉 = δi j . (2.141)

Furthermore, in the PAW method the total charge density related to two AE orbitals ψnk and ψnk,

n(r) = ψ∗nk(r)ψmk(r) = 〈ψnk|r〉〈r|ψmk〉 , (2.142)

can be re-written as:
n(r) = ñ(r) − ñ1(r) + n1(r) , (2.143)

where:
ñ(r) = 〈ψ̃nk|r〉〈r|ψ̃mk〉 , (2.144)

ñ1(r) =
∑
i, j

φ̃∗i (r)φ̃ j(r)〈ψ̃nk| p̃i〉〈p̃ j|ψ̃mk〉 , (2.145)

and
n1(r) =

∑
i j

φ∗i (r)φ j(r)〈ψnk|pi〉〈p j|ψmk〉 . (2.146)

As remarked by Hafner43 regarding the PAWmethod: “A node-less pseudo wave function and the corresponding
pseudo charge density are determined by solving a generalized Kohn-Sham equation in a plane wave basis.”

For clarifications about the bra-ket notation used here, I strongly recommend to review the original work by
Blöchl61. Also, the review of Hafner43 and the VASP documentation including some tutorials may be illuminating62.
Furthermore, in the same way we can establish similar expressions for the total energy E 43:

E = Ẽ − Ẽ1 + E1 , (2.147)

where each term is composed of kinetic, Hartree, and exchange-correlation contributions.
Finally, in VASP “the forces on the atoms and stresses on the unit cell are calculated as derivatives of the free

energy with respect to the ionic positions and the shape of the unit cell. The derivatives of the free-energy contain
both Hellmann-Feynman as well as Pulay contributions”43.

There are more mathematical details that I have not considered as it is not the scope of this thesis. The main
idea with the previous mathematical background of the PAW method is to note the technical basis that VASP codes
are based on. In VASP, the PAW potentials are available for the users, nevertheless they are generated and provided
only by the authors, and the pseudo-potential generation package is not available63.
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2.7.6 Cut-off energy Ecut

One important parameter in the DFT calculations is the cut-off energy. This parameter works as a point of reference
that we have to satisfy60 in order to avoid using an excess of plane waves. We have that

1
2
|G + k|2 < Ecut . (2.148)

One of the first steps of any DFT calculation is to determine the cut-off energy for the system of interest. This is
performed by means of various computations with a fixed Ecut. Therefore, if we graph the total energy of the system
E with respect to Ecut, we will find a range of energies in which E is converging, i.e. E vary in less than 1 meV/atom.
Notice this follows the same procedure mentioned for the k points. What is customary to do at the beginning of any
DFT calculation is to compute:

1. Cut-off energy convergence.

2. k-points convergence.

3. Equation of state.

With all these ingredients in mind, we can continue to any complex calculations. The previous steps are necessary
for reliable results and for consistency in all the next steps after the previous three ones.

2.7.7 Birch-Murnaghan equation of state

In this thesis is employed the Birch-Murnaghan (MB) equation of state. This approach is very useful to relate the
total energy of a system with the volume of its unit cell. We start considering a function of the pressure as a function
of the volume §§:

P(V) =
3
2

B0

[(V0

V

)7/3

−

(V0

V

)5/3] {
1 −

3
4

(B′0 − 4)
[(V0

V

)2/3

− 1
]}

, (2.149)

where V0 is the ground state volume, B0 is the bulk modulus ¶¶, and B′0 is the bulk modulus derivative. Here we
consider V as the volume of the unit cell.

We have that at zero temperature68:
P(V) = −

dE(V)
dV

. (2.150)

therefore
E(V) = −

∫
P(V) dV . (2.151)

§§For a formal derivation of the equation of state considered in this thesis I recommend to review section 5.2 of ref. 64. Also, the original
work by Birch 65 can be useful. As a curiosity, notice that these two references I mentioned are related to the field of geophysics. The work by
Birch 65 published in 1947 was the Paper No. 100 published under the auspices of the Committee of Experimental Geology and Geophysics, and
the Division of Geological Sciences at Harvard University. Actually, DFT calculations are useful for studying materials at very high pressures
present inside the Earth, or other planets. See for instance the work by Salazar J., ref. 66

¶¶The bulk modulus is “a measure of the ability of a substance to withstand changes in volume when under compression on all sides” 67
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If we integrate equation (2.149) and group the terms in factors of V we obtain an expression of the form:

E(V) = E0 + aV−2 + bV−2/3 + cV−4/3 , (2.152)

where E0, a, b, and c are constants. Notice E0 comes from the integration, whereas the other constants are generated
when re-arranging the terms.

If we know the expression E(V) and its minimum E0(V0), given by dE(V)/dV = 0, we can then obtain the
equation for the bulk modulus B0

68,69 written as

B0 = V0
∂2E(V)
∂V2 = −V0

∂P(V)
∂V

. (2.153)

In the calculations in this thesis, we will perform a fitting of the function E(V) with the polynomial (2.152), then the
bulk modulus will be obtained with equation (2.153).

2.8 Scanning Tunneling Microscopy (STM)
One method to study the structure of surfaces is the STM technique. It consists in approximating a sharp tip into a
sample, e.g., a surface, and then measuring various properties with spacial resolution at the atomic scale70. Then,
the experimental realization of an STM probe, as indicated by Hofer et al.71 consists of instrumentation into an
ultra-high vacuum (UHV) chamber of less than 10−9 Torr (∼ 1.310−7 Pa). Furthermore, the frame of this scheme is
damped, so that the external vibrations to the system of study are minimized. We can see a general arrangement of
the STM experiment in figure (2.2)71. The main components for performing STM are a sample holder; a piezotube
that holds the STM tip; an electronic feedback loop; and a computer for recording and monitor the experiment71.

The tip for performing STM can be made of a pure metal such as tungsten or iridium, a metal alloy as PtIr, or a
metal base coated with 10-20 layers of a material as Fe or Gd ∗∗∗ on tungsten. This tip will be at around less than 0.1
Å from the sample (which should be metallic †††), then a bias voltage is applied and the electrons from the tip can
tunnel into the surface (or vice-versa). Therefore, the tip can be moved in the x, y, and z directions very precisely,
based on a feedback mechanism that adjusts the tip height by approaching or not the tip to the sample in a way that
the tunneling current remains constant70.

Notice that the tunneling current is sensitive to the tip-sample distance, therefore to measure the current yields
information about the surface topography. Usually, the tunneling currents are between 10 pA and 10nA21. Now, to
model the current via first principles, Bardeen proposed a theory in 1961. It establishes a relation among the current,
local Fermi levels, the density of electronic states, and the spacial overlap between the wave functions21. Then, in
Hartree atomic units we can write21

I = 2π
∑

i

∑
j

f (ET,i − ET,F)[1 − f (ES , j − ES ,F)]|Mi j|
2δ(ET,i − ES , j) , (2.154)

∗∗∗Gd holds for Gadolinium
†††A noticeable drawback of the STM technique is that the sample has to be conducting. In the case of insulator samples, a few monolayers of

the insulator on a metal base are grown.



34 2.8. SCANNING TUNNELING MICROSCOPY (STM)

where ET,i and ES , j are the single-particle eigenvalue of the tip (T) and the sample (S) respectively. ET,F and ES ,F

are the local Fermi levels in the tip and the sample respectively. ET,F and ES ,F are balanced via a voltage V , so that

ES ,F − ET,F = V , (2.155)

where we have assumed that the source of voltage has the positive end on the tip. Hence, if a negative bias is applied,
electrons can tunnel from the tip to the sample.

Furthermore, f is a function known as the Fermi-Dirac thermal occupation probability function. It is written as

f (E) =
1

exp(E/kBT ) + 1
, (2.156)

where kB is the Boltzmann constant and T is the temperature. f (E) is the probability that on average an electronic
state with energy E is occupied at a temperature T . Besides, as we are dealing with electrons in a crystalline system
when using f (E) we are assuming that particles are indistinguishable and non-interacting; and one particle is allowed
in each quantum state21,72.

In equation (2.154) the sum ∑
i

f (ET,i − ET,F) , (2.157)

holds for the number of electrons that tunnel across the vacuum gap, which are proportional to the number of
occupied electron states in the tip. On the other hand, the tunneling of the electrons is permitted only if the states
on the other side are unoccupied, then the current is proportional to the number of unoccupied states in the sample
given as21 ∑

j

[1 − f (ES , j − ES ,F)] . (2.158)

The term Mi j represents the matrix elements of the current operator, it is expressed as21

Mi j =
1
2

∫
dS · (ψ∗T,i∇ψS , j − ψS , j∇ψ

∗
T,i) , (2.159)

where ψT,i and ψS , j are the single-particle wave functions of electrons in the tip and the sample respectively. The
integral run over the surface that separates the sample from the tip21.

Finally, the function δ(ET,i−ES , j) is only non-zero ifET,i ≈ ES , j so that the energy of the electron is conserved in the
tunneling process21. A really nice resource regarding STM images is available at70 http://www.fz-juelich.
de/pgi/pgi-3/microscope.

2.8.1 Tersoff-Hamann Approximation of the Bardeen Model

Tersoff and Hamann in 1985 assumed that the tip is spherical, therefore the matrix element Mi j is proportional to the
magnitude of the sample’s wave function at the center of a sphere rT

21, then we have

Mi j = C · ψS , j(rT ) , (2.160)

http://www.fz-juelich.de/pgi/pgi-3/microscope
http://www.fz-juelich.de/pgi/pgi-3/microscope
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where C is a constant. The tunneling current can be simplified as21

I = C ·
∑

j

|ψS , j(rT )|2δ(ES , j − ES ,F) . (2.161)

The previous equation implies that the current decreases exponentially when the tip is taken apart from the sample.
Then, considering the DFT theory, we can perform STM calculations based on the Kohn-Sham eigenstates φ j,

and its eigenvalues ε j, so that21

ψS , j(r) = φ j(r), ES , j = ε j . (2.162)

One important remark at this point is that the Kohn-Sham eigenstates are just auxiliary functions and do not have
physical meaning. However, these KS work and are widely used21.

2.9 Vibrations of periodic crystals: phonons

2.9.1 Initial considerations

To understand this section I follow the heuristic approach presented by Giustino21. This implies that first I will
explain some important concepts and then write some generalizations. Good knowledge about solid state physics is
expected.

As a starting point let us consider that the vibrations at the atomic level imply small variations in the positions
of the nuclei. Hence, we can write the time-dependent position of each nucleus RI(t):

RI(t) = R0
I + uI(t) , (2.163)

where R0
I is the equilibrium position, and uI(t) is the displacement. We can use the The Born-Oppenheimer (or

adiabatic) approximation explained in section (2.2). Then, we are allowed to write the Newton’s equations:

MI üI = −
∂U
∂uI

, (2.164)

where MI are the atomic masses, U is the total energy, and

üI =
d2uI

dt2 . (2.165)

Regarding the total energy, we can make a Taylor expansion in the atomic displacements uI till second order:

U(R1, . . . ,RM) = U0 + uIα
∂U
∂RIα

+
1
2

∂2U
∂RIα∂RJβ

uIαuJβ , (2.166)

where RIα denotes the I-th nucleus along the Cartesian direction α. U0 is the total energy of the nuclei at their
equilibrium positions. Notice that,

−
∂U
∂RIα

= MI
d2RI

dt2 = FI , (2.167)
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is the force acting on the I-th nucleus.
A really important term is the second partial derivatives of the total energies with respect to the coordinates of

the nuclei, evaluated at the equilibrium positions21. These expressions are known as the Born-von Karman force
constants K, and are defined as

KIα,Jβ =
∂2U

∂RIα∂RJβ
. (2.168)

Computationally, these types of expressions involving derivatives can be solved by finite-differencemethods. Besides,
note that U can be determined through DFT calculations.

Then, if we consider the equilibrium configuration of the system, the force for each nucleus will be zero, i.e.,
F1 = · · · = FM = 0. Therefore, equation (2.166) becomes

U = U0 +
1
2

KIα,JβuIαuJβ , (2.169)

which is known as the harmonic approximation.
After some mathematics we can obtain the Newton’s equations for the nuclei in the harmonic approximation21:

MI üIα = −KIα,JβuJβ . (2.170)

We can define the mass-weighted displacements υIα as

υIα = M1/2
I uIα . (2.171)

Then, if we divide both sides of equation (2.170), then multiply the right hand side by M1/2
J M−1/2

J , and replace the
definition (2.171) we obtain the equation of motion for the mass-weighted displacements:

ϋIα = −
KIα,Jα

(MI MJ)1/2 υJβ . (2.172)

From here, we can define another important term know as the dynamical matrix DIα,Jβ:

DIα,Jβ =
KIα,Jβ

(MI MJ)1/2 . (2.173)

Then, eqn. (2.172) becomes
ϋIα = −DIα,JβυJβ . (2.174)

It is usual to use the symbol ν instead of Iα. This means that the labels for Iα (M1;M2;M3) now will be
represented by ν (3M − 2;3M − 1;3M) correspondingly. Notice that M holds for the number of nuclei and α for the
Cartesian coordinates, then α can run till 3. In consequence, the dynamical matrix DIα,Jβ has 3M × 3M entries.

Equation (2.174) represents a coupled linear system of second-order differential equations, we can re-write them
as

d2v
dt2 = −Dv , (2.175)

where v is a three dimensional vector with components υIα. Then, we can proceed to diagonalize the dynamical
matrix by means of

det(D − ω2I) = 0 . (2.176)

By definition, D is a real and symmetric matrix21. As a consequence:
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• D can be diagonalized by an orthogonal matrix E. This means that E holds the condition EET = I.

• The eigenvalues of D are real numbers.

From all these definitions, we note that the columns of E are namedmass-weighted normal modes of vibration,
or just vibrational eigenmodes. Usually, the corresponding eigenvalues are denoted as ω2

ν , and their square roots ων
are known as normal frequencies of vibration21. Now, let us consider the matrix Q containing all the eigenvalues
ων. In this manner, we have an eigenvalue problem, this is

DE = EQ2 . (2.177)

If we replace this expression into eqn. (2.175), and multiply by ET at both sides, we get

d2

dt2 (ET v) = −Q2(ET v) . (2.178)

Defining w = ET v, we can write
ẅ = −Qw (2.179)

or
ẅν = −(ω2

ν)wν , (2.180)

where ν = 1, . . . , 3M.
From here, the solution uIα(t) to each differential equation can be written as the sum of sines and cosines:

uIα(t) = M−1/2
I

∑
ν

Eν[Aνcos(ωνt) + Bνsin(ωνt)] , (2.181)

where Aν and Bν are constants to be determined by initial conditions, and Eν represents the matrix elements of E.
Till here, all these considerations will give a good insight about more general results in crystalline systems.

2.9.2 Generalizations

To obtain more general results, we have to apply the previous framework to a system that is periodic. Then, the
nuclear positions RI are written as21:

RI = Rl + τs , (2.182)

where Rl represents a unit cell of the crystal ‡‡‡. τs is the position of the nucleus within the unit cell. Now, we can
re-label I by means of I = (l, s) and J = (l′, s′). Then, the Born-von Karman force constants can be written as

Klsα,l′ s′β =
∂2U

∂(Rlα + τsα)∂(Rl′β + τs′β)
. (2.183)

Then, the equation of motion is
Msülsα = −Klsα,l′ s′βul′ s′β , (2.184)

‡‡‡Notice that Rl is a Bravais lattice vector described in section 2.7.1
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where ul′ s′β(t) is the instantaneous displacement of an atoms s in unit cell l along the Cartesian direction α21. A
general expression for propagating waves is given by

ulsα(t) = u0
sαei[q·(Rl+τs)−ωt] , (2.185)

where u0
sα is a constant.

If we use the previous equation, replace it into the equation of motion (2.184), and as done exactly in the previous
section, i.e., defining

υ0
sα = M1/2

s u0
sα (2.186)

and the dynamical matrix for lattice vibrations

Dsα,s′β(q) =
1

(MsMs′ )1/2

∑
l

eiq·Rl eiq·(τs′−τs)K0sα,ls′β , (2.187)

we get: ∑
s′,β

Dsα,s′β(q)υ0
s′β = ω2υ0

sα, , (2.188)

where ω represents the phonon frequency, and υ0
sα is known as the polarization vector of the phonon mode.

Notice that in relation to the initial approach in the previous section (2.9.1) we have the dependence of the
dynamical matrix on the wave vector q and the presence of an exponential factor. However, we have to deal again
with an eigenvalue problem. Remember that the dynamical matrix is a 3n × 3n (n being the number of atoms in the
unit cell) Hermitian matrix and hence its eigenvalues ω2 are real73.

Therefore, when performing DFT calculations and aiming to study vibrations we have to evaluate the dynamical
matrix. This can be done by density functional perturbation theory; or the other way (which we consider in this thesis)
is by computing the matrix of force constants (2.183), then via a Fourier transform according to eqn. (2.187) obtain
the dynamical matrix. Hence, the box considered for simulating the system must be large so that we accommodate
the wavelength λ = 2π/|q| , so we use a supercell with various unit cells21.

Furthermore, the general solution ulsα is given by

ulsα = M−1/2
s

∑
ν

∫
BZ

dq Esα,ν(q)eiq·(Rl+τs)[Asα(q)e−iωqνt + Bsα(q)eiωqνt ] . (2.189)

Notice this equation has the same structure as eqn. (2.181), then the constants Asα and Bsα may be determined
by initial conditions, and Esα,ν represents the matrix elements of E defined previously.

With the previous results we are able to compute the phonon band structure which yields results that can be
compared with experiments such as neutron or X-ray scattering73. Furthermore, we can compute the phonon density
of states, defined as73

g(ω) =
1
N

∑
nq
δ(ω − ωnq) , (2.190)

where N is the number of unit cells in the crystal and n is the band index.



CHAPTER 2. THEORETICAL BACKGROUND 39

Besides, we can determine the specific phonon DOS projected along a unit direction vector n̂73. This is written
as

gk(ω, n̂) =
1
N

∑
nq
δ(ω − ωnq)|n̂ · υsα

nq|
2 . (2.191)
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Initial guess:
n0(r)→ v0

e f f (r)

Solve Schrodinger equations:(
∇2

2 + v j
e f f (r)

)
φ

( j+1)
i (r) = ε

( j+1)
i (r)

Determine the new density:

n( j+1)(r) =
N∑
i=i
|φ

( j+1)
i (r)|2

and new effective potential vnew
e f f (r)

Do vnew
e f f (r) and v j

e f f (r) differ
by more than ε � 1?

No

Yes

Mixing scheme :
v( j+1)

e f f (r) = α v j
e f f (r) + (1 − α) vnew

e f f (r)
with α ∈ [0, 1]

Ready

Figure 2.1: Flow chart diagram (adapted from ref.23) of a self-consistent cycle to solve the Kohn-Sham equations. We
defined ve f f (r) = Vext(r) + VH(r) + VXC(r). This diagram can also be used for solving the Hartree and Hartree-Fock
equations. In general, we use an initial guess of the solution, and make various iterations that yield a new density
and a new effective potential. This is performed till the difference of the new result and the previous one is in terms
of a certain reasonable tolerance ε. Remember that it is equivalent to consider the convergence either of the potential
ve f f (r) or the density n(r)28.
Notice that the step involving the mixing scheme is really important for achieving convergence in complex DFT
calculations. This scheme is aimed to damp oscillations of ve f f (r) when performing various iterations. The formula
presented here shows the most simple mixing scheme in which we assume a linear combination of the initial v j

e f f (r)

plus the new vnew
e f f (r) to yield v j+1

e f f (r), so that it can enters in a new cycle.
When dealing with meta-GGAs, e.g. SCAN, we have to take into account the kinetic energy density and hence
a mixing scheme is necessary so that our calculations are able to converge. There are two main types of mixing
schemes: the Broyden29 and the Pulay30 approaches. If we work with VASP, it has already implemented both
schemes28,31. Actually, in VASP there is even the possibility for performing a preconditioning process before
entering into the main self-consistency cycle, so that the computations converge without difficulty32.
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Figure 2.2: Adapted from Ref.71. Setup of a scanning tunneling microscope (STM). The tip is mounted on
a piezotube, which is deformed by applied electric fields. This deformation translates into lateral and vertical
manipulation of the tip. Via an electronic feedback loop, the position of the tip is adjusted according to the tunneling
current (constant-current mode), and a two-dimensional current contour is recorded. This contour encodes all the
information about the measurement. Courtesy of M. Schmid (Schmid, 1998).





Chapter 3

Methodology

The calculations were performed using the plane wave Vienna ab initio simulation package (VASP)74. Core electrons
were described with projector augmented wave (PAW) potentials, where the potential for the Nb atoms was generated
in the electron configuration [Kr]4d45s1, Li in [He]2s1 and S in [Ne]3s23p4, where square brackets denote the core
electron configurations. Then, following the systematic procedure provided at the end of section (2.7.6): A kinetic
cutoff energy of 600 eV was adopted to expand the wave functions in a basis set of plane waves in combination with
a k-point mesh with separation of 0.025 Å−1 to converge the total energy to < 1 meV/f.u. (f.u.=formula unit). Next,
all the structures were fully relaxed until the forces in each atom is < 0.01 eV Å−1.

In addition, as the NbS2 and LiNbS2 compounds are layered materials then van der Waals interactions have to be
considered properly; for this reason, the SCAN+rVV10 functional of Peng et al.42 that included the vdW dispersions
was considered. Furthermore, computations with the hybrids Heyd-Scuseria-Ernzerhof (HSE) were performed.
Various flavors of HSE were considered: HSE06, HSE12, and HSE12s. Refer to section (2.6.3.7) for specific details
about the hybrids, and to section (2.6.3.4) for more about SCAN and SCAN+rVV10. It is important to stress here
that we did not use HSE06+GW due to the size of the systems considered here as the computational requirements
surpassed our available computational power.

After the convergence of the cut-off energy and k-points, we fitted the energies to Birch-Murnaghan equation
(see section (2.7.7)) and found the minimum of the function E(V). With this information we were able to compute
the bulk modulus and the lattice parameters. Then, we were able to compute various surface systems according
to the slab model. The STM images were computed using Tersoff-Hamann approximation as implemented in the
bSKAN software75,76.

Furthermore, for computing the phonon band structure we setup a calculation as implemented in Phonopy
software. We set a supercell of 2 × 2 × 1 and calculated the forces with the SCAN+rVV10 functional. The path of
the wave vectors was determined with the Materials Studio software. For plotting the band structure we used the
software sumo, created by Ganose, Jackson, and Scanlon77.

43
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3.1 VASP details
Following what was explained in section 2.7, here we describe the files needed for running VASP, and its respective
outputs.

3.1.1 VASP inputs

To run VASP we need to prepare carefully the next input files: INCAR, POSCAR, KPOINTS, POTCAR.

3.1.1.1 INCAR

The INCAR file provides the information about several parameters that indicate the program “what to do and how
to do it”78. INCAR can have as an input a myriad of parameters which describe the routines that are going to be
used such as the cutoff energy, the tag of the exchange-correlation energy functional, some tags of corrections, and
so on. Sometimes when we do not set a certain tag (e.g., the cutoff energy), VASP has the missing information in
the POTCAR file, however one has to be very careful with every tag that is left as default by VASP. See an example
in Fig. (3.1).

SYSTEM = linbs2 !this is the name of the system we study

#%%%%%%%%%% ELECTRONIC RX %%%%%%%%%%%%%%%%%%%%%%%%%%%%

ISMEAR = 0 ; SIGMA = 0.01 ! -5 insulators & final energy 1 rx in metals

LREAL = auto

PREC = Accurate

ENCUT = 600

LORBIT = 11 ! use this for PDOS

NEDOS = 3001

EMIN=-20

EMAX=12

#%%%%%%%%%% FUNCTIONAL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

METAGGA = SCAN

LMIXTAU = T

LASPH = T !use for LDA+U, hybrid or meta-GGA in f- and 3d-elements

#%%%%%%%%%% DIPOLE CORRECTIONS %%%%%%%%%%%%%%%%%%%%%%%

#IDIPOL=3 ! 3 is for surfaces

#LDIPOL= T

Figure 3.1: INCAR example file. The tags are always in capital, the comments are followed by the symbols # and !.
For the meaning of each tag it is advisable to see the VASP documentation in https://www.vasp.at/wiki/
index.php/The_VASP_Manual.

https://www.vasp.at/wiki/index.php/The_VASP_Manual
https://www.vasp.at/wiki/index.php/The_VASP_Manual
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3.1.1.2 POSCAR

POSCAR contains the lattice geometry and the ionic positions79. In Figure (3.2) I present an example.

3.1.1.3 KPOINTS

In all the calculations of this thesis, we only use the Monkhorst-Pack method, which is implemented in VASP and is
the most used in calculations48. Hence, we supply the number of k-points subdivisions N1, N2, and N3. The file for
k-points has to be stated as in Fig. (3.3).

3.1.1.4 POTCAR

The POTCAR file contains the pseudopotential for each atomic species used in the calculation80, number of valence
electrons, atomic mass, and so on. If there are several atoms, we have to concatenate all the POTCARs corresponding
to each element into one POTCAR. VASP owners have the ability to provide, modify, and create the POTCAR files,
therefore it is not possible to show one example of this type of files. In the case of LiNbS2 we can make the POTCAR
file in this form80:

username:∼$ cat ~/pot/Nb/POTCAR ~/pot/S/POTCAR ~/pot/Li/POTCAR >POTCAR

where pot is the name of the folder containing all the POTCAR files, and cat is the command for concatenate
in a Unix system. A very important remark is that the order that we concatenate the files must remain in the
POSCAR file too.

When dealing with the SCAN functional, it is very important that the POTCAR files we choose include
information about the kinetic energy density of the core-electrons. To check this condition, we must do this81:

username:∼$ grep kinetic POTCAR

The result of the previous command have to yield the following lines:

kinetic energy-density

mkinetic energy-density pseudized

and for PAW datasets with partial core corrections, another line appears too:

kinetic energy density (partial)

These lines appear for every atom, this means that for LiNbS2 POTCAR we should have the previous lines
repeated three times.
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1 Nb S Li : sym194

2 0.991893950738816

3 3.3841795743891363 -0.0000000000000009 -0.0000000000000000

4 -1.6920897871945662 2.9307854823893997 0.0000000000000000

5 -0.0000000000000000 0.0000000000000000 12.9422483576345666

6 Nb S Li

7 2 4 2

8 Selective dynamics

9 Direct

10 -0.0000000000000000 -0.0000000000000000 0.2500000000000000 T T T

11 0.0000000000000000 0.0000000000000000 0.7500000000000000 T T T

12 0.3333330000000032 0.6666669999999968 0.1275256213968238 T T T

13 0.3333330000000032 0.6666669999999968 0.3724743786031759 T T T

14 0.6666669999999968 0.3333330000000032 0.6275256213968240 T T T

15 0.6666669999999968 0.3333330000000032 0.8724743786031760 T T T

16 -0.0000000000000000 -0.0000000000000000 0.0000000000000000 T T T

17 -0.0000000000000000 -0.0000000000000000 0.5000000000000000 T T T

Figure 3.2: POSCAR example file for the bulk LiNbS2 system. For more details it is advisable to see the VASP
documentation in https://www.vasp.at/wiki/index.php/The_VASP_Manual. Exactly as stated in
the VASP documentation79: The first line is treated as a comment line (you should write down the name of the
system). The second line provides a universal scaling factor (lattice constant), which is used to scale all lattice vectors
and all atomic coordinates. On the following three lines the three lattice vectors defining the unit cell of the system
are given (first line corresponding to the first lattice vector, second to the second, and third to the third). The sixth line
specifies the constituting elements (in the order how they appear in the POTCAR file). The seventh line supplies
the number of atoms per atomic species. The eighth line switches to selective dynamics (only the first character
is relevant and must be S or s). The ninth line is the type of coordinates we are working with: either Cartesian or
Direct. Furthermore, we can provide extra flags for each atom signaling whether the respective coordinate(s) of this
atom will be allowed to change during the ionic relaxation. This setting is useful if only certain shells around a
defect or layers near a surface should relax. Hence for each coordinate we can set either T (holding for True) or F
(holding for False). True means that we allow the coordinate to move, whereas False means the coordinate is fixed
or constrained.

https://www.vasp.at/wiki/index.php/The_VASP_Manual
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1 kpoints LiNbS2, dk=0.025 1/Ang

2 0 ! number of k-points = 0 -> automatic generation

scheme

3 Gamma ! generate a Gamma centered grid

4 14 14 3 ! subdivisions N_1, N_2 and N_3 along recipr. latt. vectors

5 0 0 0 ! optional shift of the mesh (s_1, s_2, s_3)

Figure 3.3: KPOINTS example file for the bulk LiNbS2 system. For more details it is advisable to see the VASP
documentation in https://www.vasp.at/wiki/index.php/The_VASP_Manual. The first line is just a
comment.

3.1.2 VASP outputs

There is a myriad of outputs that VASP yields, nevertheless the most important are:

3.1.2.1 CONTCAR

This file has the same structure as the POSCARfile. The difference is that CONTCAR provides the updated geometry
of a calculation.

3.1.2.2 OUTCAR

The OUTCAR file yields detailed information about the performed calculations such as: a summary of the input
parameters, forces on the atoms, local charges and magnetic moments, timing of computations, etc.

3.1.2.3 OSZICAR

This file provides a summary of all the results such as the convergence of the total energy, free energies, etc.82.

3.1.2.4 DOSCAR

DOSCAR contains the total and integrated density of states (DOS) and optionally the local partial DOS (PDOS)82.

3.1.2.5 WAVECAR

This file stores the wave function coefficients in binary form. This is a very heavy file, it could represent a few
gigabytes of storing.

https://www.vasp.at/wiki/index.php/The_VASP_Manual
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3.2 Computational implementation of Bardeen theory: bSKAN 3.6 soft-
ware

To computationally produce STM images it is possible to use VASP itself, it is just a matter of modifying the INCAR
file with the accurate parameters, nevertheless, bSKAN ∗ (created by W. A. Hofer76) is a software that allows to
perform STM calculations with input files that follow the VASP format. It is implemented to work in parallel with
big computational architectures. Besides, bSKAN considers the Bardeen theory and we can modify the inputs so
that we use for instance the Tersoff-Hamann approach.

3.2.1 bSKAN inputs

bSKAN works in accordance with VASP, hence we need the following files:

• WAVECAR, an output of VASP.

• ASAMPLE, the same file as the CONTCAR. We just have to copy the CONTCAR file into ASAMPLE.

• INCAR, the one we used for the VASP calculations but adding the following line of figure (3.4):

1 #%%%%%%%%%% For STM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 STM = \$zval \$zval2 0.052918 -60 \$evalmin \$evalmax \$Fermi level

3

Figure 3.4: Line to be added to the original INCAR file.

• INSCAN, which gives technical details about the STM simulations such as the number of grid points and the
bias voltage. An example is shown in Fig. (3.5).

• STM file, which possesses the information of the unit cell we are studying, such as the k-points and G vectors.
This file is generated automatically after invoking bSAKAN in a program with all the inputs.

3.2.2 bSKAN outputs

bSKAN software yields various output files regarding the information of the calculation just performed. The most
important output files are:

• OUTSCAN, following the purpose of OUTCAR with important information about the STM simulation.
∗To understand well the program bSKAN it is recommended to read the documentation 76 and Ref. 75
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1 #STM simulation for linbs2 (001) 2x2

2 TERSOFF

3 # NUMERICAL

4 LIMITS = -0.05 0.05

5 GRIDPOINTS = 70

6 BIAS VOLTAGE = 1.5

7 # CELL = 1.0 1.0

8 NKELDYSH = 1

9 PIVOT = 0.0000 0.0000 ! pivot (lower left corner) point

10 TOP = 0.0000 0.0000

11 ZVACUUM = 45.456099999999999

12 CURRENT = 0.0

Figure 3.5: INSCAN file example.

• CURRENT. This file is a set of a 3D grid mesh resulting from the simulation. There are points that simulate
the actual STM tomography in the x, y, and z direction. To plot this grid of points is a challenge, one should
aim to interpolate a function in 3D that will allow to plot the STM simulation.

3.3 Implementation for computing phonons: Phonopy
Phonopy is an open source program created by Atsushi Togo73 that is suited to compute vibrations, and also allows
to work along with the outputs of various DFT programs, i.e., it is possible to work in accordance with VASP. A
part of Phonopy implementation follows the theory just described in the previous section. It is recommended to
review its theoretical documentation at https://phonopy.github.io/phonopy/formulation.html#
second-order-force-constants.

Then, in this thesis we follow what is described in the Phonopy documentation as VASP & phonopy calculation,
available at https://phonopy.github.io/phonopy/vasp.html#vasp-interface.

The first requirement for the program to work is a POSCAR file. Nevertheless, we have to consider a file that
provides the updated geometry of a calculation, i.e, we have to work with the CONTCAR file. This means that we
have to copy a CONTCAR into a POSCAR so that Phonopy can read the file:

username:∼$ cp CONTCAR POSCAR

Then, we need to create supercells of our system (following what was explained at the end of sec. (2.9)). For
instance, we can create (2 × 2 × 1) supercells with the next command:

https://phonopy.github.io/phonopy/formulation.html#second-order-force-constants
https://phonopy.github.io/phonopy/formulation.html#second-order-force-constants
https://phonopy.github.io/phonopy/vasp.html#vasp-interface
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username:∼$ phonopy -d --dim="2 2 1"

After the execution of the previous command we obtain as output the next files:

• POSCAR-00i, where i runs from 1 to 4, i.e., we have 4 POSCARs now. These files are different with slight
changes in the coordinates.

• SPOSCAR, which has the same structure as a standard POSCAR.

• ‘phonopy_disp.yaml’ file, which indicates detailed information about the supercells just created.

More specifically, as stated in Phonpy documentation: SPOSCAR is the perfect supercell structure, ‘phonopy_disp.yaml’
contains the information on displacements, and ‘POSCAR-{number}’ are the supercells with atomic displacements.
‘POSCAR-{number}’ corresponds to the different atomic displacements written in ‘phonopy_disp.yaml’.

Then, we have to calculate the sets of forces with VASP, hence we need to prepare a special INCAR as shown
in fig. (3.6). The main objective is to generate the files named ‘vasprun.xml’. Notice that in the local directory
we are working on, we need to create a different folder for each ‘POSCAR-{number}’ that will produce a particular
‘vasprun.xml’. Following the notation on Phonopy documentation, the folders containing the ‘vasprun.xml’ files are
named ‘disp-{number}’.

Till this part we have completed the so-called pre-process in Phonopy calculations. Then, in the post-process:

1. Force constants are calculated from the sets of forces.

2. A part of dynamical matrix is built from the force constants.

3. Phonon frequencies and eigenvectors are calculated from the dynamical matrices with the specified q-points.

Once we have have the folders ‘disp-{number}’ with their respective ‘vasprun.xml’, we can type the command
shown in fig. (3.7).

Then, we need to create the appropriate files according to the calculation we need Phonopy to perform. For
isntance, by setting a file named ‘mesh.conf’ we can then obtain the density of states (DOS) and thermal properties.
By setting the file ‘band.conf’(Fig.(3.8)) we can then obtain the band structure of our system (this is the frequency
vs. the wave vectors of the BZ). Also, by creating the file ‘pdos.conf’ (Fig.(3.9)) we can obtain the projected density
of states.

Once created the needed files, we can then proceed to execute the calculations and obtain the plots. If we want
to compute the band structure, then we type the command of fig. (3.10).

Notice that Phonopy yields the plot in Python format by default. If we want to make our own plot of the band
structure, the file ‘band.yaml’ is produced (after the execution of the command of fig. (3.10)) so that we can handle
it.

We can also compute the projected density of states with the command shown in fig. (3.11). Again, Phonopy
will produce a plot, but if we want to deal with the graph by ourselves we can see that the file ‘projected_dos.dat’ is
yielded after executing the command aforementioned.
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1 SYSTEM = linbs2

2 ISMEAR=0 ; SIGMA=0.01 ! use this for accurate DOS insulators

3 LREAL = F

4 PREC = Accurate

5 ENCUT = 600

6 EDIFF = 1E-08

7 NGX= 82 !multiple 1.5*standard

8 NGY= 82 !multiple 1.5*standard

9 NGZ= 108

10 ALGO = N !N more accurate

11 LMAXMIX=4

12 LCHARG= F

13 #%%%%%%%%%% FUNCTIONAL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14 METAGGA = SCAN

15 LUSE_VDW = .TRUE.

16 BPARAM = 15.7

17 LMIXTAU = T

18 LASPH = T !use for LDA+U, hybrid or meta-GGA in f- and 3d-elements

19 #%%%%%%%%%% PARALLELISATION STAMPEDE %%%%%%%%%%%%%%%%%%%%%%%

20 NCORE=24 ! this is total cores per node

21 NSIM=4 ! use 1 in supercomputers

22 KPAR=4

Figure 3.6: INCARfile working with Phonopy. Here is also shown the tags that invoke the functional SCAN+rVV10.

username:∼$

phonopy -f disp-001/vasprun.xml disp-002/vasprun.xml disp-003/vasprun.xml

Figure 3.7: Phonopy command for calculating the sets of forces. This is written in the file ‘FORCE_SETS’.
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1 ATOM_NAME = Nb S Li

2 DIM = 2 2 1

3 BAND= 0 0 0 0 0 1/2 -1/3 2/3 1/2 -1/3 2/3 0 0 0 0 0 1/2 0 0 1/2 1/2 -1/3 2/3

1/2

4 BAND_LABELS = $\Gamma$ A H K $\Gamma$ M L H

5 FC_SYMMETRY = .TRUE.

6 #FORCE_CONSTANTS = READ

Figure 3.8: ‘band.conf’ file for LiNbS2.

1 ATOM_NAME = Nb S Li

2 DIM = 2 2 1

3 MP = 15 15 15

4 PDOS = 1 2, 3 4 5 6, 7 8

5 #PDOS = AUTO

6 GAMMA_CENTER = .TRUE.

7 FC_SYMMETRY = .TRUE.

8 #FORCE_CONSTANTS = READ

Figure 3.9: ‘pdos.conf’ file for LiNbS2.

username:∼$ phonopy -p band.conf

Figure 3.10: Phonopy command for calculating the band structure.

username:∼$ phonopy -p pdos.conf

Figure 3.11: Phonopy command for calculating the projected density of states (PDOS).



Chapter 4

Results & Discussion

4.1 Bulk Niobium Sulfide NbS2

The first systemwe studied is the NbS2 as shown in fig. (4.1); in the following section we present the DFT simulations
of this crystal. The NbS2 has a S-Nb-S layered structure with an hexagonal arrangement along the plane.

Figure 4.1: Atomic structure of NbS2. The atoms in yellow (blue) are sulfur (niobium) atoms. On the left, side
perspective view of NbS2. On the right, top view of NbS2, it has a honeycomb-like shape; the faded atoms are lower
than the clear ones. The blue line delimits the unit cell.

We started the calculations computing the convergence of the cut-off energy (fig. (4.2)) and the k-points (fig.
(4.3)). After that we obtained the fit for NbS2 data using the Birch-Murnaghan equation of state (fig. (4.4)).

53
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Figure 4.2: Cut-off energy convergence for bulk NbS2. Here the energies start to converge to less than 1 meV/f.u.
from 500 eV, hence I choose 600 eV for the calculations.
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Figure 4.3: k-points separation length convergence for bulk NbS2. Notice the en energy E is inside a range much
less than 1 meV/atom. Therefore, we chose 0.025 Å−1 of separation length, which corresponds to the set of k-points
14 × 14 × 3.

The SCAN + rVV10 computed optimal crystallographic parameters are listed in Table 4.1 and compared with
experimental values.

Considering the previously SCAN+rVV10 structure, we computed the Partial Density of States (PDOS) showing
that NbS2 is metallic. The results given by the SCAN+rVV10 functional are similar to the ones yielded by HSE06.
It can be seen in Fig. (4.5) and Fig. (4.6) the obtained PDOS performed by the SCAN+rVV10 and the HSE06
functionals, respectively. It is possible to notice that the lower valence band for the HSE06 is shifted lower in energy
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Table 4.1: Computed SCAN+rVV10 crystallographic data for NbS2, u, v,w are the fractional coordinates. Within
parenthesis are the experimental values; in addition, the system is observed to be metallic in agreement with our
calculations.

property Calculated ( SCAN+rVV10)
Space group P63/mmc

a = b(Å) 3.334 (3.310)
c(Å) 12.058 (11.890)

α = β(◦) 90
γ(◦) 120

Volume (Å3) 116.050 (112.815)
B0(GPa) 34.72
sites u v w
Nb(1) 0.0000 0.0000 0.7500
Nb(2) 0.0000 0.0000 0.2500
S(1) 0.6667 0.3333 0.6212
S(2) 0.3333 0.6667 0.3788
S(3) 0.3333 0.6667 0.1212
S(4) 0.6667 0.3333 0.8788
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Figure 4.4: Fit of the Birch-Murnaghan equation of state for NbS2.

in comparison to the SCAN+rVV10 calculation; nonetheless both electronic structures show basically the same
features.

In the following lines we describe the electronic structure of NbS2 as computed by HSE06. The lower valence
band (LVB) located within the energy range -15.6 to -13.2 eV is basically composed by S-3s states with a minor
contribution of Nb-4d states, this band shows a main peak at -13.2 eV. The band ranging from -6.8 eV to +1.9 eV has
a mixture of S-3p and Nb-4d+5s states. The Fermi level cut this band where we observe a nearby peak at -0.2 eV; this
has mainly a character of Nb-4d with minor contribution of S-3p states. Finally, the upper conduction band (UCB)
ranging from 2.8 eV to 4.6 eV is formed by a mixture of Nb-4d and S-3p with two main peaks at 3.5 eV and 4.2
eV. All these results are in agreement with what has been observed experimentally and in other calculations8,11,83–87.
For detailed information about the PDOS see the Appendix A, Fig. (A.1). In addition, the band structure of NbS2

was also computed using the HSE06 functional as displayed in Fig. (4.7).

4.2 Bulk LiNbS2

LiNbS2 is the main study of this thesis, in the following sections I will describe the main results obtained for this
material. The atomic structure of LiNbS2 is presented in figure (4.8). Taking into account the previous structure
of NbS2, we can think about the idea of intercalated atoms in between the S-Nb-S layers. Then, if we intercalate
lithium atoms, we can obtain LiNbS2. First we computed the convergence of the cut-off energy (as in shown in
figure (4.9)), the convergence of the k-points length separation (see figure (4.10)). Then we fitted the data to the
Birch-Murnaghan equation of state for LiNbS2, shown in fig (4.11). These calculations were performed with the
SCAN+rVV10 functional.
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Figure 4.5: Partial density of states of bulk NbS2 computed with SCAN+rVV10. The Fermi level is centered at 0
and represented with the blue line. Consider that the superposition of yellow and cyan colors produces an effect of
light green color; this color effect is also in the PDOS figures in this thesis.
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Figure 4.6: Partial density of states of bulk NbS2 computed with HSE06. The Fermi level is centered at 0 and
represented with the blue line.

4.2.1 Stability of various LiNbS2 symmetries

There are various symmetries in which bulk LiNbS2 could be arranged. We present the results of the calculations
performed with SCAN + rVV10 for the symmetry groups P63/mmc IT No. 194, C2/m IT No. 12, R3̄m IT No.
166, and Cmcm IT No. 63. This can be seen in Table (4.2) and it is noteworthy that the most stable configuration is
P63/mmc IT No. 194. Evidently, the P63/mmc symmetry group is the most stable. Although the band gaps are not
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Figure 4.7: HSE06 computed band structure for the NbS2 along the high symmetry points. Nb bands are plotted in
red, whereas S bands are in blue. The system is metallic, i.e., there is no bandgap. The metallic character is due to
the Nb-4d orbitals which produce a band that crosses several times the Fermi level within the BZ.

Figure 4.8: Bulk NbS2 (on the left) goes through intercalation of Li atoms, producing the bulk LiNbS2 atomic
structure (on the right). The atoms in yellow (blue) are sulfur (niobium), and the ones in purple are lithium.

accurate, this analysis provide a clear understanding about stability.
In Table (4.2) is the detailed information about the lattice parameters for various symmetries of LiNbS2. Also

a figure of the unit cell with the angle γ is showed in Figure (4.12). Notice the subtle energetic change of the
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Figure 4.9: Cut-off energy convergence for bulk LiNbS2. Here the energies start to converge at 600 eV, hence I
choose 600 eV. Notice the energy E is inside a range less than 1 meV/f.u.
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Figure 4.10: k-points separation length convergence for bulk LiNbS2. Notice the energy E is inside a range much
less than 1 meV/f.u. Therefore, we chose 0.025 Å−1 of separation length, which corresponds to the set of k-points
14 × 14 × 3.

angle γ: the most stable structure is when γ = 90◦, if γ < 90◦ we obtain symmetry 63a, whereas if γ > 90◦ we
obtain symmetry 63b, which shows high energy. It is remarkable and interesting that just by a change of ∼ 0.001◦

in γ we obtain different symmetries. Changes in the angles α, β, and γ ∗ are also reflected in changes on the
internal coordinates of some atoms; what we found is that the most suitable parameter to understand these changes
in symmetry for No. 194 and No. 63 are the angles.

∗It is defined as: α, the angle between b and c; β the angle between a and c; and γ, the angle between a and b.
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Figure 4.11: SCAN+rVV10 computed EOS using the Birch-Murnaghan for LiNbS2 with symmetry P63/mmc.

Figure 4.12: γ angle of the LiNbS2 unit cell for the P63/mmc (194) symmetry, it is marked with dashed yellow lines
(a and b), and with a continuous yellow line passing through 3 lithiums. A subtle change in this angle and we get a
symmetry No. 63 as described in Table(4.2). The picture is an upper view of a 2x2 cell of LiNbS2 where the black
lines denotes the unit cell.

In Table (4.3) it is displayed the SCAN+rVV10 predicted crystallographic properties of the most stable system
with symmetry P63/mmc.
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Table 4.2: SCAN + rVV10 computed lattice parameters and energies of bulk LiNbS2.

Symmetry Group ∆E (meV/f.u.) α = β(◦) γ(◦) a = b(Å) c(Å) V0 (Å3) B0 (GPa) Eg(eV)

P63/mmc (194) 0.0 90 120 3.357 12.837 125.27 87.46 0.80
Cmcm (63a) 0.1 90 119.998 3.7575 12.830 125.26 87.29 0.80
C2/m (12) 137.0 104.514 59.988 3.357 13.431 125.45 86.73 0.82
R3̄m (166) 136.8 14.823 14.823 13.010 13.010 125.51 86.07 0.82

Cmcm (63b) 278.0 90 120.008 3.357 12.880 125.70 85.60 0.89

4.2.2 PDOS calculations with SCAN+rVV10 and HSE

We also performed simulations using the SCAN+rVV10 and the HSE functionals to study the PDOS of LiNbS2.
We used the framework of HSE0644, but also tried two variations of the HSE functional known as HSE12 and
HSE12s45. Interestingly, the LiNbS2 system has a band gap which has been observed experimentally to be 1.3 eV16.
The most accurate value of band gap was provided by HSE12. We can see the summary of the results in table 4.4,
the PDOS by SCAN + rVV10 (Fig. 4.13), HSE06 (Fig. 4.14) and HSE12 (Fig. 4.15).

The computed electronic structure of LiNbS2 using the above mentioned functionals shows similar features
except by the value of the band gap. In the following lines, we describe the electronic structure computed by HSE12
since it provides the best prediction of the band gap.

The lower valence band (LVB) located within the energy range -17.5 to -14.98 eV is mainly composed by S-3s
states with a minor contribution of Nb-4d states, this band shows a main peak at -15.44 eV. The band ranging from
-8.62 eV to -2.55 eV has a mixture of S-3p and Nb-4d states with a tiny contribution of Li-2s. Then, there is a band
from -2.17 eV till the Fermi level that is formed principally by Nb. Notice there is a band gap of around 1.27 eV
until the upper conduction band (UCB) which appears ranging from 1.27 to 3.4 eV that consists of Nb-4d, S-3p and
a tiny contribution of Li-2s. Three peaks appear at around 2.16 eV, 2.56 eV, and 2.93 eV. The band gap that has been
obtained is in accordance to experiment. Finally, the band structure for LiNbS2 is shown in Fig. (4.16).

It is remarkable the presence of one peak around 2 eV. Niobium contributes with states due to the d orbitals
(dxy, dyz, dxz, dx2−y2 , eg, t2g), Sulfur add to the peak with the p orbitals (py, px), and Lithiumwith the p orbitals (py, pz).
For detailed information about the PDOS see the Appendix A, Fig. (A.2).

4.2.3 The LiNbS2(001) surfaces

To study the LiNbS2(001) surfaces we used the slab model. There are several possibilities of arrangements as the
material could be ending either with lithium or sulfur. Furthermore, the positions of the superficial atoms could be
in different positions and there could even be defects. First, we present the results of the LiNbS2 (001), specifically
we made the calculations with 5 layers and a vacuum of 15 Å. We fixed the positions of the 2 bottom layers and
allowed to relax the three remaining ones. We chose 5 layers as we have performed various calculations for various
numbers of layers (such as 4, 6, and 7) and consequently from 5 layers it is possible to obtain reasonable and reliable
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Table 4.3: Computed SCAN+rVV10 crystallographic data for LiNbS2 with symmetry P63/mmc; the u, v,w are the
fractional coordinates.

property Calculated ( SCAN+rVV10)
Space group P63/mmc

a = b(Å) 3.357
c(Å) 12.837

α = β(◦) 90
γ(◦) 120

Volume (Å3) 125.27
B0(GPa) 87.46
sites u v w
Nb(1) 0.0000 0.0000 0.7500
Nb(2) 0.0000 0.0000 0.2500
S(1) 0.6667 0.3333 0.1275
S(2) 0.3333 0.6667 0.3725
S(3) 0.3333 0.6667 0.12755
S(4) 0.6667 0.3333 0.8725
Li(1) 0.0000 0.0000 0.0000
Li(2) 0.0000 0.0000 0.5000

Table 4.4: Calculations for LiNbS2 using SCAN + rVV10 and HSE. We calculated the partial density of states and
consequently the band gap Eg

Functional Band gap (eV)
SCAN+rVV10 0.88

HSE06 1.21
HSE12s 1.02
HSE12 1.27

Experimental 1.3
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Figure 4.13: Partial density of states of bulk LiNbS2 computed with SCAN+rVV10. The Fermi level is centered at
0 and represented with the blue line.
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Figure 4.14: Partial density of states of bulk LiNbS2 computed with HSE06. The Fermi level is centered at 0. The
peaks provided by HSE06 are very similar to the spectrum provided by SCAN + rVV10.

results of the surfaces †. Besides, we chose the mesh of k-points 14× 14× 1 and make calculations of slabs 1x1 and
2x2 ‡.

†Some plots for several layers are presented in the appendix A, figs. (A.3) and (A.4)
‡1x1 and 2x2 refers to the periodic extension of the slab in the a and b direction. Then, if we have for instance a 2x2 extension, this means

that we have repeated the cell twice in a and twice in b. The figures of every structure are presented so that it is very clear how the the system was
arranged.
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Figure 4.15: Partial density of states of bulk LiNbS2 computed with HSE12. The Fermi level is centered at 0 and
represented with the blue line. This is the most accurate description of the band gap.
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Figure 4.16: SCAN + rVV10 computed band structure for LiNbS2 along the high symmetry points. Nb bands are
plotted in red, S bands are in green, and Li bands are in blue. The valence band maximum (VBM) lies in Γ and is
represented by a dark green circle. The conduction band minimum (CBM) is between K and Γ and is represented by
a dark red circle. As we used the SCAN + rVV10 functional, the band gap is around 0.88 eV. Also, as the VBM and
CBM are not in the same high symmetry k point, the bandgap is indirect.
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4.2.4 The LiNbS2(001)-1 × 1 surfaces with lithium on top

We present the results for one slab of 5 layers with the top filled with lithium. Notice we considered a vacuum of 15
Å in all the slabs. Also, there is the possibility for changing the position of the lithium along the surface, therefore
we present the results for several cases. In general, the top most layer of all these systems will have an arrangement
of S-Nb-S-Li, going from within to the external part of the slab.

4.2.4.1 The LiNbS2(001)-1 × 1 Li-terminated pristine

The arrangement of this system is the original expansion of the bulk for a surface system. The PDOS of the top most
layer and the atomic structure for this system are shown in fig. (4.17). This surface has a metallic character. Near
EF we observe a peak at -0.22 eV that is composed by Nb-4d with a contribution of S-3p and Li-2s. We also observe
an occupied subband ranging from -2.6 to -1.1 eV that is mainly composed of Nb-4d. Finally, the unoccupied band
has a main peak at 1.7 eV composed mainly of Nb-4d and minor contributions of S-3p and Li-2p.
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Figure 4.17: The LiNbS2(001)-1 × 1 Li-terminated pristine surface. a) PDOS of the system, the Fermi level is
centered at zero. b) Top view of the slab, c) Side view of the first layer of the slab. The atoms in: purple are Li,
yellow are S, and light blue are Nb; the uppermost atoms are in full color, otherwise they are faded. The blue solid
lines represent the limits of the unit cell.

4.2.4.2 The LiNbS2(001)-1 × 1 Li-terminated bridge

The arrangement of lithium bridge consists in moving the Li atom just in the middle of a niobium and a sulfur. The
PDOS and the atomic structure for this system are shown in fig. (4.18). The surface shows a metallic character and
is very similar to the previous case Li-terminated pristine. However, subtle differences exist: near EF we observe a
smooth decaying curve (instead of a peak) from 0 eV to -0.22 eV, this region is composed mainly by Nb-4d with a
contribution of S-3p and Li-2s. We also observe an occupied subband ranging from -2.6 to -0.9 eV that is composed
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principally of Nb-4d and S-3p . Finally, the unoccupied band has two peaks at 0.93 eV and 1.45 eV respectively,
composed of Nb-4d and minor contributions of S-3p and Li-2p.
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Figure 4.18: The LiNbS2(001)-1×1 Li-terminated bridge surface. a) PDOS of the system, the Fermi level is centered
at zero. b) Top view of the slab, c) Side view of the first layer of the slab. The atoms in: purple are Li, yellow are S,
and light blue are Nb. The blue solid lines represent the limits of the unit cell.

4.2.4.3 The LiNbS2(001)-1 × 1 Li-terminated above surface S site

This arrangement consists in moving the Li atom just above the nearest S atom. The PDOS of the topmost layer
and the atomic structure for this system is shown in fig. (4.19). This surface shows a metallic character. What is
interesting about this system is that around EF , from -1.58 eV to +3.46 eV there is an almost constant contribution
of Li-2p states. In this context, we have an occupied band ranging from -1.58 eV to EF with one peak at -0.80 eV
and another at -0.30 eV composed principally of Nb-4d and a tiny contribution of S-3p. On the other hand, we have
an unoccupied band from EF to +3.46 eV (continuous to the previous one) with a mean peak around 2.4 eV and a
main composition of Nb-4d and S-3p.

4.2.4.4 The LiNbS2(001)-1 × 1 Li-terminated above subsurface S site

This system is constructed by moving the Li atom just above a S atom that is in the sub-surface, i.e., a sulfur in a
lower layer than the topmost one. The PDOS of the topmost layer and the atomic structure for this system is shown in
fig. (4.20). This surface shows a metallic character. Interestingly, all the occupied bands resemble almost the same
peaks shown in the surface LiNbS2(001)-1 × 1 Li-terminated pristine, fig. (4.17). The mean features in this present
case are that around EF there is a small peak at -0.22 eV that is composed by Nb-4d with a contribution of S-3p and
Li-2s. Again, there is a subband ranging from -2.53 to -0.87 eV that is mainly composed of Nb-4d and presents just
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Figure 4.19: The LiNbS2(001)-1 × 1 Li-terminated above surface S site. a) PDOS of the system, the Fermi level is
centered at zero. b) Top view of the slab, c) Side view of the first layer of the slab. The atoms in: purple are Li,
yellow are S, and light blue are Nb. The blue solid lines represent the limits of the unit cell.

one peak at around -1.91 eV. Furthermore, the unoccupied band has three main peaks at 0.8 eV, 1.15 eV, and 1.57 eV
formed principally by Nb-4d and minor contributions of S-3p and Li-2p.
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Figure 4.20: The LiNbS2(001)-1x1 Li-terminated above subsurface S site. a) PDOS of the system, the Fermi level
is centered at zero. b) Top view of the slab, c) Side view of the first layer of the slab. The atoms in: purple are
Li, yellow are S, and light blue are Nb. The uppermost atoms are in full color, otherwise they are faded. The blue
solid lines represent the limits of the unit cell. In addition, notice the side view c) looks very similar to the bridge
arrangement in fig. (4.18). The difference is that the Li is further than it appears just above a S atom that is in the
second layer (not shown in the figure)
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4.2.4.5 Energy of the LiNbS2(001)-1 × 1 surfaces with lithium on top

In our calculations we also determined the value of the energies of all the systems described previously. The summary
is presented in the Table (4.5). The most stable structure is Li-terminated pristine, this means that to move the lithium
from the original lithium pristine position is not energetically favorable.

Table 4.5: Total energy for every LiNbS2(001)-1x1 surface Li on top as described in section (4.2.4).

System ∆E (eV)
pristine 0.000
bridge 0.012

above subsurface S 0.118
above surface S 0.522

4.2.5 LiNbS2 (001)-2 × 2 surface reconstruction Li-terminated

After the calculations in LiNbS2 (001)-1 × 1 surfaces, we explored the slabs with 2 × 2 reconstruction. This is done
to take into account defects in the surfaces. Here I describe various cases of arrangements for 2 × 2 surfaces with Li
atoms filling the top of the slab with an arrangement of the form S-Nb-S-Li, going from within to the top of the slab.

4.2.5.1 LiNbS2 (001)-2 × 2 Li-terminated pristine

This system is a 2 × 2 extension of the the structure analyzed in section (4.2.4.1), so both systems are equivalent.
The PDOS of the topmost layer and the atomic structure for this system is shown in fig. (4.21). This surface presents
a metallic character and is very similar to the 1 × 1 extension, nevertheless some differences appear. Just almost
centered in EF we observe a peak that is composed by Nb-4d with a contribution of S-3p and Li-2s. We also observe
an occupied subband ranging from -2.6 to -0.86 eV that is mainly composed of Nb-4d. Finally, the unoccupied band
has several peaks at 0.9, 1.27, 1.55, and 1.97 eV composed mainly of Nb-4d and minor contributions of S-3p and
Li-2p.

4.2.5.2 LiNbS2 (001)-2 × 2 Li-terminated pristine with one Li-vacancy

The arrangement of this structure consists of a surface taking out one Li from the LiNbS2 (001)-2 × 2 Li-terminated
pristine surface. The PDOS of the topmost layer and the atomic structure for this system is shown in fig. (4.22).
The surface shows a metallic character. One interesting feature is one peak, composed mainly of Nb-4d and Li-2s,
that is exactly at EF . We also observe one subband ranging from -2.44 eV to -0.6 eV formed mainly by Nb-4d and
a few states of S-3p. Finally, there is an unoccupied band consisting of two peaks at 1.1 eV and 1.66 eV composed
principally of Nb-4d and tiny contributions of S-3p and Li-2s.
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Figure 4.21: LiNbS2 (001)-2 × 2 Li-terminated pristine surface. a) PDOS of the system, the Fermi level is centered
at zero and is represented with the blue line. b) Top view of the slab, c) Side view of the first layer of the slab. The
atoms in: purple are Li, yellow are S, and light blue are Nb. The uppermost atoms are in full color, otherwise they
are faded. The blue solid lines represent the limits of the unit cell.

(a) (b) (c)

-15 -10 -5 0 5
0

5

10

15

20

E-EF (eV)

P
D

O
S

(s
ta

te
s
/e

V
)

— Total

— Nb

— S

— Li

Figure 4.22: LiNbS2 (001)-2 × 2 Li-terminated pristine with one Li-vacancy surface. a) PDOS of the system, the
Fermi level is centered at zero and is represented with the blue line. b) Top view of the slab, c) Side perspective
view of the first layer of the slab, notice that now we have just three Li atoms on the topmost part of the surface. The
atoms in: purple are Li, yellow are S, and light blue are Nb. The uppermost atoms are in full color, otherwise they
are faded. The blue solid lines represent the limits of the unit cell.
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4.2.5.3 LiNbS2 (001)-2 × 2 Li-terminated pristine with three Li-vacancy

The arrangement of this structure consists of a surface taking out two Li from the arrangement of Li pristine. The
PDOS of the topmost layer and the atomic structure for this system is shown in fig. (4.23). This surface displays a
metallic character. Notice that as we have less Li atoms, there is no presence of Li-2s states; remember that in the
system of just one vacancy of Li shown in fig. (4.22), there was one peak exactly at EF with a considerable amount
of states of Li, this peak now disappears. Also, there was one occupied subband, and one unoccupied subband. It
turns out that these two bands now are shifted to the right, so that there is one subband formed by Nb-4d and S-3p
states ranging from -1.45 eV to EF with a peak exactly at EF and another one at -0.64 eV. On the other hand, the
occupied band ranges from 1.16 to 3.26 eV and presents two peaks at 2.42 eV and 2.72 eV. This band is composed
mainly of Nb-4d and S-3p states.
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Figure 4.23: LiNbS2 (001)-2 × 2 Li-terminated pristine with three Li-vacancy surface. a) PDOS of the system, the
Fermi level is centered at zero and is represented with the blue line. b) Top view of the slab, c) Side perspective
view of the first layer of the slab, notice that now we have just one Li atom on the topmost part of the surface. The
atoms in: purple are Li, yellow are S, and light blue are Nb. The uppermost atoms are in full color, otherwise they
are faded. The blue solid lines represent the limits of the unit cell.

4.2.6 LiNbS2 (001)-2 × 2 S-terminated

Here I describe various cases of arrangements for 2 × 2 surfaces with S atoms filling the top of the slab. This means
that we took out all the Li atoms that were on the top. Hence, the arrangement of atoms from within to the top are
S-Nb-S.
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4.2.6.1 LiNbS2 (001)-2 × 2 S-terminated pristine

The arrangement of LiNbS2 (001)-2 × 2 S-terminated is a slab without lithium on the surface. The PDOS of the
topmost layer and the atomic structure for this system are shown in fig. (4.24). This surface shows metallic character.
Around EF there is an occupied subband composed principally of Nb-4d and S-3p, there is one peak at -0.73 eV.
Also, there is an occupied band states with a peak at -0.42 eV. Also, there is an unoccupied band formed by Nb-4d
and a minor contribution of S-3p states, this band ranges from 1.22 to 3.6 eV and has 3 peaks at 2.12, 2.50, and 3.00
eV.

Furthermore, if we compare this system with the one that had three vacancies of Li, fig. (4.23), both PDOS are
very similar. For instance, one similarity is the peak at -0.42 eV, though now it has around twice the states of Nb-4d.
What is observed is that if we take out completely the Li atoms, Nb-4d states will predominate around EF in the
occupied band. On the other hand, the unoccupied band will have less density of states composed mainly of Nb-4d.
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Figure 4.24: LiNbS2 (001)-2 × 2 S-terminated pristine. a) PDOS of the system, the Fermi level is centered at zero
and is represented with the blue line. b) Top view of the slab, c) Side view of the first layer of the slab, notice that
now we have no Li atoms on the topmost part of the surface; the Li atoms in the bottom correspond to the second
layer of the slab. The atoms in: purple are Li, yellow are S, and light blue are Nb. The uppermost atoms are in full
color, otherwise they are faded. The blue solid lines represent the limits of the unit cell.

4.2.6.2 LiNbS2 (001)-2 × 2 S-terminated with one S-vacancy

The basis of this system is the previous one in section (4.2.6.1) with the surface terminated in sulfur, nevertheless,
we now take out one atom of sulfur. The PDOS of the topmost layer and the atomic structure for this system are
shown in fig. (4.25). This surface shows a metallic character. Around EF , there is an occupied subband mainly with
states of Nb-4d and a tiny contribution of S-3p, there is one peak at -0.73 eV. Also, there are two occupied subbands
mainly composed of Nb-4d states. The first one ranges from EF to 0.79 eV and one peak at 0.1eV. The other one
ranges from 0.8 to 3.5 eV with two peaks at 1.12 and 2.35 eV.
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Figure 4.25: LiNbS2 (001)-2 × 2 S-terminated with one S-vacancy. a) PDOS of the system, the Fermi level is
centered at zero. b) Top view of the slab. c) Perspective side view of the first layer of the slab, notice that now we
have no Li atoms on the topmost part of the surface and one sulfur less than in the pristine case; the Li atoms in the
bottom correspond to the second layer of the slab. The atoms in: purple are Li, yellow are S, and light blue are Nb.
The uppermost atoms are in full color, otherwise they are faded. The blue solid lines represent the limits of the unit
cell.

4.2.7 Simulated constant current STM images

We simulated the constant current STM images (topography mode) for surfaces LiNbS2(001) − 2 × 2 Li-terminated
[fig. (4.21)] and LiNbS2(001) − 2 × 2 S-terminated [fig. (4.24)] using the Tersoff-Hamann approximation.

In fig. (4.26) is displayed the computed STM image for LiNbS2(001) − 2 × 2 Li-terminated surface with
Vbias = −2.54 V (occupied states) and +1.1 V (unoccupied states). The topography for both voltages show similar
topology, the bright spots are located on the position of the topmost Li atoms and the darker spots locate the position
of the superficial S atoms. In fig. (4.27) is shown the computed partial charge density integrated from -2.54 eV
to EF , this shows that 2s states from the surface Li atoms protrude into the vacuum resulting in the bright spots in
the STM image, though the Li 2s-orbitals contribution is not very significant. Furthermore, it is noticeable the 3pz

S orbitals’ contribution, though they do not protrude very significantly. Despite the main contribution of Nb-4dz2

states in the PDOS within the sub-band 2.54 eV below EF , these states are not probed by the STM due to geometric
position of these atoms that are beneath the surface S atoms.

In fig. (4.28) is displayed the computed STM image for LiNbS2(001) − 2 × 2 S-terminated surface with
Vbias = −0.56 V (occupied states) and +1.1 V (unoccupied states). The topography for both voltages show similar
topology, the bright spots are located on the position of the topmost S atoms and the dark spots locate the position
of the subsurface Nb atoms. In fig. (4.29) is shown the computed partial charge density integrated from -0.56 eV
to EF , this shows that 3pz states from the surface S atoms protrude into the vacuum resulting in the bright spots in
the STM image. It is important to stress that despite the main contribution of Nb-4dz2 states in the PDOS within the
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Figure 4.26: DFT-SCAN+rVV10 computed filled states STM image of LiNbS2 (considering Li on top) with
Vbias = −2.54V (left), and computed empty states STM image Vbias = 1.1V(right). The atoms in yellow (purple) are
sulfur (lithium). Niobium atoms are not visible as they are under Li.

Figure 4.27: Computed partial charge density of occupied states within the range -2.54 eV to EF . The blue surface
corresponds to an iso-density of 2.45 × 10−3e/Å3. The Nb, S and Li atoms are represented by spheres cyan, yellow
and violet, respectively. The dark lines denotes the slab supercell.

sub-band 0.56 eV below EF , these states are not probed by the STM due to geometric position of these atoms that
are beneath the surface S atoms.

4.2.8 Bulk LiNbS2 phonon band structure

The SCAN+rVV10 computed phonon band structure and the phonon density of states (DOS) of LiNbS2 is shown
in fig. (4.30). Notice that the phonon band structure are very similar in both systems. There are some bands in
which the frequency approaches to zero linearly as they approach to Γ, these bands are named acoustic for they are
responsible of the propagation of the sound in the material. On the other hand the remaining bands are known as
optical as their vibrations can exchange energy with an electromagnetic field21. We decided to compute phonons
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Figure 4.28: DFT-SCAN+rVV10 computed filled states STM image of LiNbS2 (considering S on top) with Vbias =

−0.56V (left), and computed empty states STM image Vbias = 1.1V(right). The atoms in yellow (light blue) are
sulfur (niobium). In this case, lithium atoms are not visible.

Figure 4.29: Computed partial charge density of occupied states within the range -0.56 eV to EF . The light-blue
surface corresponds to an iso-density of 7 × 10−3e/Å3. The Nb, S and Li atoms are represented by spheres cyan,
yellow and violet, respectively. The dark lines denotes the slab supercell.

for structures as they are energetically very close. The calculations show no negative frequencies suggesting this
computed phase is stable.
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Figure 4.30: Phonon band structure and DOS (in units of states/(THz-atom)) of bulk LiNbS2. Following Table (4.2),
in the left we present the bands for the most stable system P63/mmc (194). In the right, the results for Cmcm (63a)
system are shown.





Chapter 5

Conclusions & Outlook

In this thesis we have described the electronic structure of NbS2, proving that this system is metallic. To analyze
NbS2 we have used the SCAN+rVV10 and HSE06 functionals, both yielding similar results. Hence, SCAN is
proven to work well with NbS2 at lower computational cost than HSE06. This fact suggests that working with SCAN
for studying other TMDs as MoS2 would be an interesting testing ground for the capabilities of this state-of-the-art
functional.

Furthermore, it is possible to add Li atoms among the layers of NbS2 obtaining LiNbS2. We studied thoroughly
the electronic structure and the stability of LiNbS2, specifically the symmetry P63/mmc (194). In the case of the
bulk system, there is a bandgap of around 1.3 eV, obtained experimentally. In our work, we computed the best
description of the bulk LiNbS2 bandgap by means of the hybrid HSE12, getting 1.27 eV and therefore overcoming
HSE06, HSE12s, and even SCAN. This is a highlight which suggests that HSE12 can be used for obtaining very
accurate results in relation to HSE06. Also, we computed the band structure of LiNbS2 with the SCAN+rVV10
functional, identifying an indirect bandgap.

In addition, we discovered that one should be very careful with the possible symmetries of LiNbS2: a slightly
perturbation in the unit cell angle γ produces that the symmetry changes abruptly. Then, a very meticulous
specification of the atomic positions in the initial unit cell before starting all the calculations is highly recommended.
Also, notice that SCAN can present problems of convergence when dealing with cells that are large. In this case,
one can try to make modifications of the internal routines implemented in VASP to overcome the problem, and/or
make a tiny perturbation in one of the positions that have been specified. Again, a double-check for changes in
the symmetry is recommended. One remarkable result was obtained via phonon band structure calculations of the
bulk systems P63/mmc (194) and Cmcm (63a). It turns out that no negative frequencies exist, suggesting that both
systems are stable and can physically exist.

We also performed calculations of the LiNbS2 (001) surface based on the most optimal structure obtained for the
bulk LiNbS2 system, i.e., we based the construction of our slabs on the P63/mmc (194) structure. We calculated the
PDOS of various possible arrangements of surfaces: changing the position of the topmost lithiums, without lithiums,
and changing the position of the topmost sulfurs. Besides, we built some defects, taking out some topmost atoms.
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What is remarkable is that in all the cases the surface behaviour is metallic. Furthermore, we were able to calculate
the energies of the surfaces, nevertheless it is not possible to affirm which structure of all the considered ones is the
most stable due to the fact that the surface is not stoichiometric. Further studies to understand the stability of the
LiNbS2 (001) surfaces are needed. In this context, the combination of theoretical studies along with experiments
will allow to understand better the bulk and LiNbS2 (001) surfaces stability.

We alsowere able to compute the constant current STM images (topographymode) for surfacesLiNbS2(001)−2×2
Li-terminated and LiNbS2(001) − 2 × 2 S-terminated using the Tersoff-Hamann approximation, obtaining several
images for occupied and unoccupied states. Besides, we calculated the partial charge density for each surface, so that
we were able to understand the STM results. It turns out that the topology of both the occupied and unoccupied states
for all the analyzed surfaces is very similar. Nevertheless, when we have Li as the topmost atom, its 2pz orbitals
contribution is the one that protrudes the most along with 3pz S orbitals. On the other hand, when we consider S as
the topmost atom, its 3pz orbitals provide the main contribution for the observed image. In general, we can affirm
that we are working in the limit of the possible resolution for STM, therefore an analysis with other techniques such
as AFM is needed in order to truly understand the LiNbS2(001) surfaces. Via this type of techniques it could even
be possible to discover which of the two surfaces analyzed here is the most stable.

One remarkable aspect regarding the electronic structure of bulk NbS2 is a bandgap opening of around 1.3 eV
when we intercalate Li atoms in between the S-Nb-S layers. Since NbS2 has a potential application in quantum
computing due to effects of charge and spin fluctuations15, then LiNbS2 could be considered for future works and
applications in this emerging field. Furthermore, the value of the bandgap in the bulk LiNbS2 (1.3 eV) is in the range
of infrared whereas the surface (001) is metallic, suggesting potential applications in optoelectronics.

Moreover, analysis of superconductivity in both NbS2 and LiNbS2 is needed. This could yield an entire field of
more applications. Even more, an analysis of phase transitions should be considered in further studies. It can also
be interesting to explore via DFT other intercalations of NbS2 with elements such as Na, K, Rb, and Cs. Finally, it
is important to remark that exploring new layered compounds similar to NbS2 and LiNbS2 is a promising field but
also challenging from the experimental and theoretical point of view.
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Figure A.1: Detailed density of states of NbS2 computed with HSE06. The states of every orbital are shown. The
horizontal axis is the E − EF(eV) and the vertical axis are States/eV. In the electronic version is possible to zoom for
high resolution.
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Figure A.2: Detailed density of states of LiNbS2 computed with HSE12. The states of every orbital are shown. The
horizontal axis is the E − EF(eV) and the vertical axis are States/eV. In the electronic version is possible to zoom for
high resolution.
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Figure A.3: LiNbS2 2x2 surface with Li on top, case Li pristine. PDOS for each layer of the slab; the Fermi level is
centered at zero and is represented with the blue line. The top plot is the first layer, and as we go down, we good
deep into the surface and consequently have a bulk behavior.
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Figure A.4: LiNbS2 2x2 surface with S on top, case S pristine. PDOS for each layer of the slab; the Fermi level is
centered at zero and is represented with the blue line. The top plot is the first layer, and as we go down, we good
deep into the surface and consequently have a bulk behavior.
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AE all electron 30

BO Born-Oppenheimer 5
BZ Brillouin zone 25

DFT density functional theory ix
DOS density of states 47

GGA general gradient approximation ix

HF Hartree-Fock xi, 8, 10
HK Hohenberg-Kohn xi, 11
HSE Heyd-Scuseria-Ernzerhof hybrid functional ix

KS Kohn-Sham 14

PAW Projector Augmented-Wave xi, 30
PDOS partial density of states 47

SCAN strongly constrained and appropriately normed meta-generalized-gradient approximation (meta-GGA) ix
STM scanning tunneling microscopy 2

TMD transition metal dichalcogenides 1

VASP Vienna ab initio Simulation Package ix

xc exchange-correlation 15
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