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ceptualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y herramientas
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tegración curricular. Aśı mismo, me acojo a los reglamentos internos de la Universidad de
Investigación de Tecnoloǵıa Experimental Yachay.
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Urcuqúı, Febrero del 2021.

Renzo Sebastián Caamaño Mayorga
CI: 1726083718

Firmado electrónicamente por:

RENZO SEBASTIAN
CAAMANO MAYORGA



Dedicatoria

Para mi mejor amigo Sebastian Villareal. Algún d́ıa nos volveremos a encontrar para jugar a
la play y la compu. Me contarás sobre la Historia y yo te hablaré de teoremas.
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al mirar sus ojos. Lo que más me dolió de la pandemia fue el no comer con ella, no verla leer
comics, o escuchar sus preguntas infinitas. Me partió el corazón no poder estar con ella. Sin
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Resumen

En este trabajo, presentamos la teoŕıa detrás de la criptograf́ıa de curva eĺıptica (ECC) y
la criptograf́ıa basada en isogenia. Comenzamos con una rápida introducción a la teoŕıa de
la complejidad y la criptograf́ıa. Damos una descripción detallada de las curvas eĺıpticas y
discutimos cómo se utilizan para crear protocolos seguros. Presentamos la fortaleza de este
esquema y también sus debilidades con respecto a la computación cuántica. Para mostrar la
necesidad de otros protocolos, revisamos algunos conceptos básicos de Computación Cuántica y
presentamos cómo el algoritmo cuántico de Shor rompe ECC. A partir de entonces, examinamos
la rica teoŕıa de las isogenias entre las curvas eĺıpticas ordinarias y supersingulares para terminar
con protocolos criptográficos que utilizan estas isogenias para crear sistemas criptográficos post-
cuánticos.

Palabras Clave : curvas eĺıpticas, isogenias, criptosistemas de clave pública cuántico-
resistentes, Algoritmo de Shor.
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Abstract

In this work, we present the theory behind Elliptic Curve Cryptography (ECC) and Isogeny-
based cryptography. We start with a quick introduction to Complexity Theory and Cryptog-
raphy. We give a detailed description of elliptic curves and discuss how they are used to create
secure protocols. We present the strength of this scheme and also its weaknesses regarding
quantum computation. To show the necessity for other protocols, we review some basic con-
cepts of Quantum Computing and present how Shor’s Quantum Algorithm breaks ECC. Then,
we survey the rich theory of isogenies between ordinary and supersingular elliptic curves to end
with cryptographic protocols, that use these isogenies to create post-quantum cryptographic
systems.

Keywords : elliptic curves, isogenies, quantum-resistant public-key cryptosystems,
Shor’s Algorithm.
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Chapter 1

Introduction

If and when large quantum computers become practical, all currently widely deployed meth-
ods for public-key cryptography will break. So, it is of extreme importance to develop, test,
and deploy new algorithms to have quantum-resistant encryption methods, [CCJ+16]. One
class of quantum-resistant encryption methods are the isogeny-based encryption and key ex-
change methods, which are ordinary isogeny Diffie-Hellman (OIDH), supersingular isogeny
Diffie-Hellman (SIDH), and commutative SIDH (CSIDH), [PCZH19]. Most post-quantum en-
cryption schemes require much longer keys to maintain current levels of protection. Isogeny-
based encryption uses the shortest keys of any proposed post-quantum encryption methods.
Isogeny-based encryption can be understood as an update from Elliptic curve cryptography
(ECC). ECC is a public-key cryptosystem that relies on group properties of elliptic curves over
finite fields and the difficulty of the discrete logarithm problem. However, quantum computers
could solve the elliptic curve discrete logarithm problem efficiently, and so ECC is not quantum
resistant. Isogeny methods are based on networks of isogenies between elliptic curves.

In Chapters 4 and 7, we give definitions for regular maps, Abelian varieties, elliptic curves
and isogenies. For now let E1 and E2 be Abelian varieties of the same dimension over a field
K. An isogeny between E1 and E2 is a non-constant rational map defined everywhere, i.e., a
morphism, that maps the identity point on E1 to the identity point on E2, [Mum08]. Elliptic
curves are Abelian varieties, [Ols72], and isogenies between elliptic curves create equivalence
classes of elliptic curves over the same field, [Coh06], which are the key behind all of the pro-
tocols that we will discuss.

Isogeny based cryptography is a demanding topic because of its cross-disciplinary nature
and the abstract mathematical concepts that support it, [Cos19]. For these reasons, it is dif-
ficult for newcomers to obtain a broad overview of the most important techniques and results
of the field. That is why our purpose in this thesis is to introduce the background material
in complexity theory, quantum computing, cryptography, and algebraic geometry necessary to
understand isogeny based cryptography. This is done at a level comprehensible to readers in
senior years of Mathematics or Computer Science; a remarkable result since most of the works
published in this area are in the master level and beyond.

The present work is structured in a linear story way. The idea is to present the concepts one
by one and construct a plot for the necessity of isogeny based cryptography. In Chapter 2, we

1



School of Mathematical and Computational Sciences YACHAY TECH

make a summary of Computational Complexity; with special attention to complexity classes,
and highlighting the importance of efficient algorithms to solve computational problems. In
Chapter 3, we cover the basic aspects of Cryptography and we develop a more detailed descrip-
tion of Public Key Cryptography and the Discrete Logarithm Problem. Chapter 4 is about the
mathematical background of Ellipictic curves. In Chapter 5, we focus on Elliptic Curve Cryp-
tography (ECC), its advantages, and weaknesses. Chapter 6 is an introduction to Quantum
Computing and, we explain how Shor’s Algorithm breaks Elliptic Curve Cryptography. Finally,
Chapter 7 is the development of Isogeny’s theory and how it provides a framework to produce
quantum-resistant encryption methods. In particular, we describe the SIDH/SIKE protocol, a
candidate for the postquantum cryptography standardization process by NIST, which is based
on the problem of finding isogenies between two elliptic curves.

Throughout this work we will use some concepts from Field and Galois Theory. Many of
these are defined in the text itself or in footnotes. However, the ones that require further
development are defined in the Appendix A. In order not to lose the continuity of the work, we
will refer when necessary to this appendix for the interested reader.
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Chapter 2

Computational Complexity: A tale of
efficiency

Almost all concepts in modern cryptography have definitions around computational complexity.
All the protocols, algorithms, and services that we use are carried by computers, thus we need to
take into account the study of what kind of problems are solvable by computers, and if there is
a way to find such solution in an efficient way. This chapter serves as a glossary of definitions
that will appear in the next chapters. In Section 2.1, we explain what is a computational
problem and we describe the two big families of computational problems: search and decision
problems. We continue in Section 2.2, defining the concept of algorithms and what we mean
when we say that an algorithm solves a problem or computes a function. Section 2.3 gives an
overview of Turing machines, which are an abstract model of computation, and let us define
complexity classes, which are covered in Section 2.4, and are the key concept behind many
cryptographic definitions.

2.1 Computational Tasks

Computational complexity is the study of the time and space resources required to solve com-
putational problems. A computational problem is a problem that a computer can solve. The
two fundamental types of computational tasks are search problems and decision problems.

2.1.1 Search Problems

A search problem consists of finding an object (or a set of objects) that matches specific criteria
in a given space (or set of spaces). For example, you are asked to search for the password of
an encrypted system.

In the following definition, the potential solver is a function, and the set of possible solutions
associated with each of the various instances (search criteria) are “packed” into a single binary
relation.

Definition 2.1.1. (solving a search problem, [Gol03]): Let R ⊆ {0, 1}∗×{0, 1}∗1 and R(x) :=
{y : (x, y) ∈ R} denote the set of solutions for the instance x. A function f : {0, 1}∗ →

1The notation {0, 1}∗ refers to the space of finite strings in the alphabet {0, 1}, including the empty string.

3



School of Mathematical and Computational Sciences YACHAY TECH

{0, 1}∗ ∪ {⊥} solves the search problem of R if for every x, the following holds: if R(x) 6= ∅
then f(x) ∈ R(x) and otherwise f(x) = ⊥. 2

In cryptography many times we only have one solution, so the search problems that have a
special interest are the ones having a unique solution (for each possible instance). Finding the
prime factorization of a composite number, used in RSA cryptography, is an example of this
kind.

2.1.2 Decision Problems

A decision problem is a question of the existance of an effective computational procedure for
deciding the truth of falsity of any instance of a parametric statement, [oM]. For example,
the problem of determining the primality of a natural number. A case related with search
problems above is the case of the set instances having a solution; that is, for any binary relation
R ⊆ {0, 1}∗ × {0, 1}∗ we consider the set {x : R(x) 6= ∅}. Indeed, being able to determine
whether or not a solution exists is a prerequisite to being able to solve the corresponding search
problem. Intuitively, the problem consists of deciding if some object (or objects) match specific
criteria.

Definition 2.1.2. (solving a decision problem, [Gol03]): Let S ⊆ {0, 1}∗. A function f :
{0, 1}∗ → {0, 1} solves the decision problem of S (or decides membership in S) if for every
x, it holds that f(x) = 1 if, and only if, x ∈ S.

2.2 Algorithms

To rigorously define computation, we need to specify some model of computation, which is a
concrete definition of computing environments and a class of rules that can be applied to them.
There are different models and all of them try to be an abstraction of a real computer. In this
work, we are going to use two models of computation: Turing machines and Quantum circuits.
Quantum circuits are discussed in Chapter 6. Turing machines are the classical framework
where complexity theory is founded, thus specific algorithms are formalized by corresponding
Turing machines, [Gol15].

When we say that a computer can solve a task, we mean that there is an algorithm that
computes the function associated with the task. In other words, an algorithm A computes the
function fA : {0, 1}∗ → {0, 1}∗ defined by fA(x) = y if, when invoked on input x, algorithm
A halts with output y. For decision and search problems we say that algorithm A solves the
search problem of R or decides membership in S if fA solves the search problem or decides
membership. We will always associate an algorithm A with the function fA computed by it;
that is, we write A(x) instead of fA(x), [Gol15].

2The symbol ⊥ denotes an indication that something is wrong, in the case of a search problem, it says that
there is no solution in the search space.
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2.3 Turing Machines

This section provides a rough description of the model of Turing machines. This is done only
to provide a concrete model that supports the study of algorithms and their complexity. A
good introduction to Turing Machines and Computational Complexity Theory can be found in
[Pap94].

The model of Turing machines tries to capture the limitations and abilities of a real-life
computer. In essence, a computational task can be solved by a real-life computer if, and only
if, it can be solved by a Turing machine. To describe Turing Machines as a valid model of
computation we need to specify the set of possible environments, the set of computation rules,
and the effect of applying such a rule on an environment, [Gol15].

� The main component in the environment of a Turing machine is an infinite sequence
of cells, called the tape of the Turing machine, each capable of holding a single symbol
member of some finite set Σ that contains the set of bits {0, 1}. This sequence starts at
a leftmost cell and extends to infinity to the right. The environment also contains the
current location of the machine on this sequence and the internal state of the machine
(which is a member of a finite set Q).

� The main component in the Turing machine itself is a finite function called the transition
function, which is defined over the set of all possible symbol-state pairs. This function
is a mapping from Σ × Q to Σ × Q × {−1, 0,+1}, where {−1,+1, 0} corresponds to a
movement instruction (“left”, “right” and “stay”, respectively). In addition, the ma-
chine’s description specifies an initial state and a halting state, and the computation of
the machine halts when the machine enters its halting state.

� A single computation step of such a Turing machine depends on its current location on the
tape, on the contents of the corresponding cell, and on the internal state of the machine.
The transition function reads the current content and internal state and determines a new
symbol-state pair as well as a movement instruction. The machine modifies the contents
of the said cell and its internal state accordingly and moves as directed.

In other words, a Turing machine can be thought of as computing functions from the
non-negative integers to the non-negative integers (using its bits representation); the initial
configuration of the tape is used to represent the input of the function, and the final state of
the tape is used to represent the output of the function, [MAN10].

We use the model of Turing machines for its simplicity. However, the Church-Turing Thesis
asserts that nothing is lost by considering this model.

The Church-Turing Thesis. A function can be computed by some Turing machine if,
and only if, it can be computed by some machine of any other “reasonable and general” model
of computation. These other models can even be more ‘capable’ Turing machines; we can con-
sider multiple tapes, two-way infinite tapes, or let them be non-deterministic.

To see the power of Turing machines, we can emulate a random-access machine (RAM)
with one. This model very closely resembles the basic central processing unit (CPU) register
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memory paradigm behind the design of modern computers. An abstract RAM consists of an
infinite number of memory cells, each capable of holding an integer, a finite number of simi-
lar registers, one designated as the program counter, and a program consisting of instructions
selected from a finite set. This set can contain, for instance, the read(j) instruction, which
reads the contents from the jth address on the memory and places it in register zero. Other
instructions include: reset(rj), increment(rj) and add(r1, r2). The actions of such instructions
are clear by their name and observing that rj is an index of a register. To emulate a RAM
machine with a Turing machine we only need to hold the input, the contents of all registers,
and the contents of the memory cells that were accessed during the computation. Thus, at each
time, the Turing machine’s tape contains a list of the RAM’s memory cells that were accessed
so far as well as their current contents. When we emulate a RAM instruction, we first check
whether the relevant RAM cell appears on this list, and augment the list by a corresponding
entry or modify this entry as needed, [Gol15].

To end this section, we present an advanced model of the basic Turing machine; the Nonde-
terministic Turing machine. This model is necessary to define the class NP later. Additionally,
in cryptography and quantum computation we will mostly work with probabilistic algorithms
so we need a nondeterministic model for those.

A nondeterministic Turing machine is similar to a standard Turing machine except for
the fact that it does not have a single, uniquely defined next action, but a set of possible
subsequent actions. So, the transition function is not a function anymore but a relation ∆ ⊂
(Σ×Q)× [Σ×Q×{−1, 0,+1}]. That is, for each symbol-state combination of the tape, there
may be more than one appropriate next steps, [Pap94].

2.4 Time Complexity: Complexity classes

Having fixed the model of computation we turn to the study of the algorithms and computa-
tional problems. We focus on algorithms that halt on each input. To study these algorithms,
we consider the number of steps taken by the algorithm on each possible input. This number
of steps is a function called the time complexity of the algorithm: that is, tA : {0, 1}∗ → N is
called the time complexity of algorithm A if, for every x, on input x algorithm A halts after
exactly tA(x) steps. We are interested in the worst-case scenario, i.e., we consider TA : N→ N
defined by TA := maxx∈{0,1}n{tA(x)}. Sometimes we refer to TA as the time complexity of A,
[Gol15].

Let us see how we can count the number of steps an algorithm needs to solve a problem
using an example:

Example 2.1. Bob has a a boolean function of n binary digits f (f : {0, 1}n → {0, 1}), that is
either constant or balanced (a function that outputs 0 on exactly half inputs and 1 on the other
half). Alice wants to know what kind of function Bob has.
This is a computational problem since there is an algorithm that solves it. Alice can send
2n−1 + 1 different strings to Bob. Then Bob will use its computer to compute the values of his
function for all the strings and return the results to Alice. Alice then knows the outcome of half
plus one of the possible strings, hence she knows exactly the nature of Bob’s function, [MAN10].
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We said that Alice needs to send 2n−1 + 1 strings to Bob to be sure that the function is
constant or balanced. Of course, she can know this result before sending all the strings. In fact,
suppose that Alice sends Bob the strings s1 and s2, if Bob returns f(s1) = 1 and f(s2) = 0,
then Alice will know that the function is balanced and she is done. With only two strings sent,
she has solved the problem. However, suppose f(s1) = f(s2) = 0, then Alice can not know yet
if the function is constant or not, so she needs to send s3. If f(s3) = 1 then the function is
not constant so it is balanced and we are done, but there is the chance that again f(s3) = 0 so
Alice will need to send another string. In fact, since the function can be constant or balanced,
Alice could have sent 2n/2 = 2n−1 and have obtained 0 for all of them. So, she does not know
yet the solution, but sending the string s2n−1+1 will give her the nature of the function; since if
the output is 0, then the function must be constant because she is already in the other half of
the strings. On the other hand, if the output is 1, then the function is balanced for the same
reason, [MAN10]. In summary, if tA(n) represents the number of evaluations that Alice makes,
it must lie between 2 and 2n−1 + 1, that is,

2 ≤ tA(n) ≤ 2n−1 + 1.

This last bound justifies the use of asymtotic notation to study the time complexity of al-
gorithms and problems. Asymptotic notation can be used to summarize the essential behavior
of a function. This notation can be used to summarize the essence of how many time steps it
takes a given algorithm to run, without carrying too much about the exact time count, [MAN10].

Let f and g be functions from N to N. We write ’f(n) is in the class of functions O(g(n))’,
or just ’f(n) is O(g(n))’, if there are positive integers c and n0 such that, for all n ≥ n0,
f(n) ≤ cg(n). In a informal way this means that f grows as g or slower. If the opposite
happens, that is, if g(n) ∈ O(f(n)), we write ’f(n) is in the class of functions Ω(g(n))’. Finally,
f(n) is said to be Θ(g(n)) if f is O(g(n)) and f is Ω(g(n)). The Big Theta notation, Θ, means
that f and g grow at the same rate, [Pap94]. In order to summarize the essential behavior of
an algorithm A, we apply asymptotic notation to the function TA defined before.

In Example 2.1, we saw that Alice determines the nature of Bob’s function in time O(2n)
and also Ω(1), where 1 here is the constant function f(n) = 1 for all n ∈ N.

As stated at the beginning of this chapter, Complexity theory is not concerned with the
time complexity of a specific algorithm. It is rather concerned with the time complexity of a
problem, assuming that it is solvable at all (by some algorithm). The time complexity of a
problem is the time complexity of the fastest algorithm that solves this problem. Moreover,
analogous to asymptotic notation, we are interested in upper and lower bounds on the time
complexity of algorithms that solve the problem. Formally, a certain problem Π has complexity
T if it has time complexity at least T , in other words, if it is in Ω(T ), [Gol15].

Assuming a given model of computation, if a computational problem can be solved in time
O(p(n)), where p(n) is a polynomial, we shall say that the problem can be solved in polynomial
rate of growth and this is equivalent to say that the problem has an acceptable time require-
ment to be solved. In other words, the problem can be solved ‘efficiently’ if it has a polynomial
rate of growth. In contrast, a problem is regarded as hard, intractable or infeasible if the best
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possible algorithm requires exponential rates such as 2n or n!, [Pap94].

The dichotomy between polynomial and nonpolynomial time bounds and its relation with
efficient and non-efficient computations is rather vague. “There are efficient computations that
are no polynomial, and polynomial computations that are not efficient in practice”, [Pap94].
For example, an algorithm that solves a problem using 2n/100 operations is probably more use-
ful than one which runs in n100 operations. However, the use of polynomial time-bound as a
measure for efficiency is justified, among other reasons, by the Cobham-Edmonds Thesis.
As stated before, the complexity of a problem depends on the specific model of computation in
which algorithms that solve the problem are implemented. The Cobham-Edmonds Thesis as-
serts that the variation in time complexity in any two models of computation are polynomially
related. That is, a problem has time complexity t in some model of computation if, and only if,
it has time complexity poly(t) in the model of (single-tape) Turing Machines. For a discussion
of this topic we recommend [GJG79].

To divide problems that have efficient algorithms from the ones that have not, we use the
concept of complexity classes. Complexity classes are better understood with the formalism
of formal languages. A language L over the alphabet Σ is a subset of the set Σ∗ of all (fi-
nite) strings of symbols from Σ. In this framework of thought, the decision problems that we
discussed earlier can be seen as questions about if a string of bits corresponds to a specific
language. A language L is decided by an algorithm if the latter can decide whether an input x
is a member of the language L or not. A problem is in TIME(T (n)) if there exists a classical
algorithm which decides whether a candidate x is in the language in time O(T (n)), where n is
the length of x. A problem is said to be solvable in polynomial time if it is in TIME(nk) for
some finite k. The collection of all languages which are in TIME(nk), for some k, is denoted
P. P is a complexity class, [MAN10].

A complexity class is specified by several parameters: the model of computation, the mode
of computation, a resource to bound, and abound. We have already discussed the model and
the mode of computation. The resource that we care to bound is the time complexity of a
problem. A complexity class is a set of all languages decided by some algorithm M , and such
that, for any input x, M expenses at most T (|x|) units of time [Pap94]. Another complexity
class of importance is the class NP which is the collection of problems that have efficiently
verifiable solutions. Its formal definition uses nondeterministic Turing machines, namely, NP is
the union of all problems in NTIME(nk). Where NTIME(f(n)) is the set of problems solved
by a nondeterministic Turing Machine. A problem is said to be solved by a nondeterministic
machine if there is some sequence of nondeterministic choices that solves the problem. Other
choices may result in no solution, [Pap94].

Obviously P⊂NP, since deterministic machines form a subclass of the nondeterministic
ones; but the problem of finding whether P=NP is the biggest challenge in Computer Science,
[For09]. Many problems in cryptography, rely on the assumption that P 6=NP.

When working with nondeterministic algorithms we would like to bound the error of ob-
taining a bad solution or no solution at all, hence we define the class BPP (bounded-error
probabilistic time) that contains all the problems solvable by a probabilistic Turing Machine in
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polynomial time with an error probability bounded away from 1/3 for all instances. BPP class
is important for us because Quantum Computation has opened new models of computation
and thus new complexity classes like BQP which is the quantum analog of BPP. Problems in
BQP are problems that can be solved by quantum computers in bounded-error probabilistic
polynomial time.

The last complexity class that we present is the set of NP-complete problems. These
problems can be thought as the ’hardest’ problems in NP in the sense that solving a NP-
complete problem in time t allows any other problem in NP to be solved in time O(poly(t)).
This also means that if any NP-complete problem had a polynomial-time solution then, it
would follow that P=NP.
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Chapter 3

Cryptography: The art of making
codes

Cryptography is a part of a bigger discipline called Cryptology, which is an all-inclusive term
that includes cryptography, cryptoanalysis, and the interaction between them, [KS19],. Cryp-
toanalysis refers to the science behind breaking cryptosystems, i.e, to discover what is behind
a codified information, [PP10], where Cryptography is the science of developing a system to
hide information so that only the intended recipient of the information can understand, [KS19].
Cryptography can then be divided into three main branches, [PP10]:
Symmetric Algorithms occur when two parties have a secret key to encrypt and decrypt
information.
Asymmetric (or Public-key) Algorithms differ from the former as here, the parties have
two keys; one private for each of the parties and one public known by all.
Cryptographic Protocols deal with the application of symmetric and asymmetric algorithms.
An encryption algorithm, or cipher, is like a machine that transforms plaintext (ordinary read-
able text not hiding any information) into ciphertext (text that, apparently, does not mean
anything). This machine requires a control given by a secret key. Mathematically, we can say
that a cipher is a function e : A → B, where A is the set of the possible plaintexts and B is
the set consisting of the enciphered messages, that depends on the secret key k and maps a
plaintext m in A to a ciphertext c in B, [Sma16], i.e,

c = ek(m).

Of course, we need a way to revert this process and this is called decryption or decipherment,
which mathematically means that there is a function d : B → A that converts the ciphertext c
in plaintext m, [Sma16], i.e.,

m = dk(c).

It is obvious that the functions c and d are public, so the secrecy of m given c is given totally
by the secrecy of k, [Sma16]. In more general terms, the secret key k can belong to a set of
keys K that can contain public and private keys. If a key is uniquely known by the two parties
looking to exchange information, the encryption algorithm belongs to the family of Symmetric
Algorithms. On the other hand, if the encryption function e depends on a public key u and
a private key r1, i.e., eu,r1(m) = c, and the decryption function d depends on the same public
key u and in its own private key r2, i.e., du,r2(c) = m; we say that this algorithm belongs to the
family of Asymmetric Algorithms.
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As written in [BCC08], the most convenient alphabet used for plain text and ciphertext is the
set of integer numbers, which are more suitable to the description of the transformations, and
in our digital world, more easily treated by computers. Moreover, the functions e and d must
be bijective and inverse of each other if we want to be able to find the original message given a
codified one. Of course, this procedure depends on the used keys. In particular dk ◦ek(m) = m.

3.1 Symetric Cryptography

Let us suppose there are two users, Anna and Balto, who want to communicate over an insecure
channel. There is also another user of the channel called Osiris, who wants to know the secrets
between Anna and Balto’s communication (Fig. 3.1).

Figure 3.1: Communication over insecure channel

Since the channel is insecure, it is easy for Osiris to obtain the message m that Anna is
sending to Balto. This is called eavesdropping. To keep Osiris outside the communication,
Anna and Balto decide to use symmetric cryptography. Anna encrypts her plaintext m using
a symmetric algorithm, yielding the ciphertext c. Balto receives this ciphertext and decrypts
it (Fig. 3.2). Since the channel is insecure, Osiris is still receiving the message, but now it is
ciphered into the ciphertext c, and a good encryption algorithm will make it almost impossible
for him to decrypt it. However, in order for Balto to decrypt the message encrypted by Anna,
he needs the key of encryption k, this key must be sent through a secure channel. Because, if
not, Osiris will have access to the key and therefore decrypt the message by himself. This shows
us, that the strength of a symmetric algorithm relies entirely upon how secure is our channel
for key-transmission, and how good is our method to keep safe the common key, between Anna
and Balto from Osiris.
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Figure 3.2: Symmetric-key cryptosystem

One could argue that a more secure approach will be having secret encryption and decryption
algorithms, but these kinds of systems failed because they cannot be tested using cryptanalysis
tools. Here, it is important to recall Kerckhorffs’ Principle, postulated by Auguste Kerckhoffs
in 1883, [PP10].

Definition 3.1.1. Kerckhoffs’ Principle
A cryptosystem should be secure even if the attacker knows all details about the system, with
the exception of the secret key. In particular, the system should be secure when the attacker
knows the encryption and decryption algorithms.

In the system that we have discussed, the deciphering procedure is not difficult. If you
know the enciphering method and the key used, you are done. In this case, we say that the
deciphering function is symmetric to the enciphering function, i.e., is its inverse, [BCC08].
In our global and internet-connected world, it is difficult for users such as Anna and Balto to
create a secure channel to send their secret keys. For example, Anna and Balto can live miles
away and even don’t know each other, so a better approach must be taken. This is where
Asymmetric Cryptosystems appear and the family where Elliptic Curve and Isogeny-based
Cryptography live.

3.2 Public Key Criptography

In Public Key Cryptography we use ciphers that allows both the encryption employed and the
enciphering key to be made public without revealing the deciphering method. For the receiver
of the encrypted message to be able to decipher in a reasonably short time the ciphertext, he
or she would need to possesses more information, besides the public one. Without this private
information, deciphering a message would require a time exceedingly long and so would it be
unfeasible to do it.

The mathematical model that we use for this scenario is the notion of one-way function.

Definition 3.2.1. (Informal definition [Rob11]) A one-way function is a function for which
computation in one direction is straightforward, while computation in the reverse direction is
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far more difficult. (See Fig. 3.3)
(Formal definition [Rob11]) A function f : {0, 1}∗ → {0, 1}∗ is called (strongly) one-way if
the following conditions hold:

1. Easy to compute: There exists a (deterministic) polynomial-time algorithm A such that
on input x algorithm A outputs f(x) (i.e., A(x) = f(x)).

2. Hard to invert: For every probabilistic polynomial-time algorithm A′, every positive poly-
nomial p(·), and all sufficiently large n’s,

Pr[A′(f(Un), 1n) ∈ f−1(f(Un))] <
1

p(n)
.

Where Un denotes a random variable uniformly distributed over {0, 1}n. Hence, the
probability in the second condition is taken over all possible values assigned to Un and all
possible internal coin tosses of A′, with uniform probability distribution. Note that A′ is
not required to output a specific preimage of f(x), [Gol03].

Figure 3.3: One-way functions: an illustration.

In the formal definition of (strongly) one-way functions, the input 1n given to the inverting
algorithm A′ is the length, in binary notation, of the desired output. As written in [Gol03],
we make this convention to rule out the possibility that a function will be considered one-way
merely because it drastically shrinks its input, and so the inverting algorithm just does not
have enough time to print the desired output.

The existence of these (strongly) one-way functions implies that there are efficient pro-
cesses that are hard to reverse in complexity terms. Hence, the existence of security encryption
schemes implies that there are tasks that can be performed by non-deterministic polynomial-
time machines, yet cannot be performed by deterministic polynomial-time machines. Therefore,
a necessary condition for the existence of one-way functions is that NP not be contained in
BPP (and thus P 6= NP ), [Gol03].

P 6= NP is a necessary but not sufficient condition for the existence of one-way functions.
Because, if we have that the breaking of some encryption scheme is NP-complete, this only
implies that this encryption scheme is hard to break in the worst case, but not necessarily in
most cases. Thus, security requires hardness in most cases, or at least “average-case hardness”,
[Gol03].
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Finally, because we want someone to understand our secret message we need “to generate
hard instances together with auxiliary information that will enable us to solve these instances
fast”, [Gol03]. Because, if not, the intended recipients of the message will not have a computa-
tional advantage over the adversary. In summary, the existence of secure encryption schemes,
and so the existence of one-way functions, implies the existence of an efficient way to generate
instances with corresponding auxiliary input such that: 1) it is easy to solve these instances
given the auxiliary input, but, 2) it is hard on the average, to solve these instances when not
given the auxiliary input, [Gol03].

In the definition of one-way functions given earlier, we made a very strong requirement for
them to be one-way. Namely, any efficient algorithm has negligible success in inverting them.
We will now see that this is not necessary, since we can only require that all efficient inverting
algorithms fail with some noticeable property, and then convert them to acquire the hardness
alluded to in the earlier discussion, [Gol03]. Before giving this Weak One-Way functions defi-
nitions, few words concerning the notions of negligible and noticeable probability are in order.

We say that the success probability of an algorithm is negligible if, as a function of the input
length, the success probability is bounded above by every polynomial fraction. Thus, repeating
the algorithm polynomially (in the input length) will always yield a new algorithm that also
has negligible success probability. On the other hand, we say that a function γ : N → R is
noticeable if there exists a polynomial p(·) such that for all sufficiently large n′s, it holds that

µ(n) >
1

p(n)
, [Gol03].

Definition 3.2.2. (Weak One-Way Functions [Rob11]): A function f : {0, 1}∗ → {0, 1}∗
is called weakly one-way if the following conditions hold:

1. Easy to compute: As in the definition of a strong one-way function.

2. Slightly hard to invert: There exists a polynomial p(·) such that for every probabilistic
polynomial-time algorithm A′ and all sufficiently large n′s,

Pr[A′(f(Un), 1n) /∈ f−1(f(Un))] >
1

p(n)
.

As mentioned in [Gol03], we can always work with strong, weak one-way functions that are
length-regular, i.e, do not shrink there inputs by more than a polynomial amount. So, we can
give the inverting algorithms only f(x) as input.

Extensive research and failed attempts to find efficient inverting algorithms have to lead
to several candidates for one-way functions. These include Integer factorization, decoding of
random linear codes, the subset-sum problem, and the discrete logarithm problem, [Rob11].
For this work, we focus on the Discrete Logarithm Problem which is the base for the
security of Elliptic Curve Cryptography.

3.3 The Discrete Logarithm Problem

The material in this section is based on [WXWM15].
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Definition 3.3.1. Let m ≤ 1 and a ∈ N, such that gcd(a,m) = 1 (gcd refers to greatest
common divisor). The smallest positive integer d such that ad ≡ 1 (mod m) is called an
exponent of a modulo m (it is also called an order, or a period), denoted by δm(a). If
δm(a) = ϕ(m)1, then a is called a primitve root of 1 modulo m.

Definition 3.3.2. Let g be a primitve root in Z∗p. For any element y ∈ Z∗p, there is a unique
x, with 1 ≤ x < p− 1 such that gx ≡ y (mod p). We call x the discrete logarithm modulo
p of y with respect to the base g.

Thus, given y ∈ Z∗p and a base g ∈ Z∗p, the Discrete Logarithm Problem (DLP) is to find x.
1 ≤ x < p − 1 such that gx ≡ y (mod p). Clearly, given 1 ≤ x < p − 1, finding y ∈ Z∗p such
that gx ≡ y (mod p), is not difficult; however, so far there is no polynomial-time algorithm for
its inverse problem. This is of course in the classical computational setting, we’ll see that this
is not true for quantum computing. The best algorithm known to solve the DLP is the NFS,
[BCC08], (the number field sieve method); whose asymptotic time estimation is

e(1.923+O(1))(ln(p))1/3(ln(ln(p)))2/3 .

Other useful definitions, which are related to the DLP, in group signatures and traceable
blind signatures, are given below.

Definition 3.3.3. Let g, h ∈ Z∗p be unrelated primitive roots of p (i.e., the discrete logarithm
of g with respect to h is unknown). For any a wih gcd(a, p) = 1, we represent a as a ≡ gαhβ

(mod(p)), then (α, β) is called a representation of a modulo p with respect to the bases
g, h.

This definition extends to an arbitrary number of primitives.

Definition 3.3.4. Let g1, g2, · · · , gs ∈ Z∗p be unrelated primitive roots of p. For any a wih
gcd(a, p) = 1, we represent a as

a ≡ gα1
1 gα2

2 · · · gαss (mod p),

then (α1, α2, · · ·αs) is called a representation of a modulo p with recpect to the bases
g1, g2, · · · , gs.

To end this section, we introduce an assumption that is related to a discrete logarithm
problem.

Definition 3.3.5. (Diffie-Hellman Problem) Let g be a generator of the cyclic group Z∗p. For
any a, b ∈ Z∗p such that

a ≡ gx (mod p), b ≡ gy (mod p),

with unknown x, y, the Diffie-Hellman problem is to find c such that c ≡ gxy (mod p).

The Diffie-Hellman problem (DH problem) is used to assess the security of Diffie-Hellman
key exchange protocol. It is believed that the DH problem is hard and is related to the discrete
logarithm problem as follows. If the discrete logarithm problem can be solved in polynomial
time, then the DH problem can also be solved in polynomial time. We’ll see that Elliptic Curve
Cryptography relies on its own version of the discrete logarithm problem and thus in its version
of DH protocol.

1ϕ(m) is the Euler Function, i.e., the number of positive numbers that are smaller than m and coprime to
m.
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3.4 Digital signatures

At the beginning of the chapter, we said that cryptography is not a modern field, however,
computers and the internet have had such an impact on communication, and securing that
communication, that it seems like modern cryptography is a new thing every day. One of
the revolutions in modern cryptography that came with computers was digital signatures. As
written in [Gol03], the notion of digital signature did not exist in the pre-computerized world.
The need for such credentials arose with the introduction of computer communication where
parties need to commit themselves to proposals and/or declarations they make.

Encryption and signature methods were related because of the “digitalization” of both and
the introduction of the computational-complexity approach to security. A scheme for digital
signatures requires, [Gol03]:

� that each user be able to efficiently generate his or her signature on documents of his or
her choice,

� that each user be able to efficiently verify whether or not a given string is a signature of
another specific user on a specific document, and

� that no one can efficiently produce the signatures of other users to documents that those
users did not sign.

A digital signature that obeys these requirements is called unforgeable. Schemes for unforge-
able digital signatures can be constructed using the same computational assumptions as used
in the construction of private-key encryption methods, [Gol03]. A concept related to digital
signature is the task of message authentification.

Message Authentification

We have mentioned that, no matter what encryption scheme we are working on, we make the
communication over a channel. Suppose this channel is insecure and an adversary is monitoring
it and may alter the messages sent to the channel. The parties communicating through this
insecure channel wish to authenticate the messages they send so that the intended recipient
can discriminate between an original message from a modified one. A scheme for message
authentification requires, [Gol03]:

� that each of the communicating parties be able to efficiently generate an authentification
tag for any message of his or her choice,

� that each of the communicating parties be able to efficiently verify whether or not a given
string is an authentication tag for a given message, and

� that no external adversary be able to efficiently produce authentication tags to messages
not sent by the communicating parties.

From the requirements of both, digital signatures and message tags, it is clear that digital
signatures provide a solution to the message-authentification problem. However, a message-
authentification scheme does not necessarily constitute a digital-signature scheme.
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3.5 Cryptographic Hash Functions

An essential building block for cryptographic applications is hash functions. Cryptographic
hash functions map input strings of arbitrary length to short fixed-length output strings. They
can be used in many applications like computing short unique identifiers of messages (e.g.,
for digital signatures), as one-way functions to hide messages, to commit a string in a pro-
tocol, and for key derivation. Some common hash functions are SHA-1, SHA-2, and SHA-3,
[Til11],[EM17].

Mathematician 17 Final Grade Project



Chapter 4

Elliptic Curves

In this chapter, we introduce the theory of elliptic curves over arbitrary fields. We define the
Weierstrass normal form, the addition law, and the multiplication formulas. In the last section,
we define isogenies and endomorphisms.

4.1 Weierstrass normal form

Let us recall some basic facts from algebraic geometry. These facts are presented as in [SS03]
and [Sil09].

Definition 4.1.1. a) Let K be a field and K denote its closure (refer to Appendix A for an
introduction to Field Theory). The affine n-space is An := Kn

. The affine n-space over
K is An(K) := Kn.

b) Two elements (x0, . . . , xn), (x′0, . . . , x
′
n) ∈ An+1(K) are equivalent if there exists a non-zero

λ ∈ K with
xi = λx′i for i = 0, . . . , n.

It’s not difficult to see that this defines an equivalence class of (x0, . . . , xn). It is written
as [x0 : · · · : xn].

c) The projective n-space is

Pn := {[x0 : · · · : xn] ∈ Kn+1
: not all xi = 0},

the projective n−space over K is

Pn(K) := {[x0 : · · · : xn] ∈ Kn+1 : not all xi = 0}.

d) A polynomial F ∈ K[X, Y, Z] is called homogeneous of degree d, with d ∈ N, if

F (λX, λY, λZ) = λdF (X, Y, Z) for all λ ∈ K.

e) A polynomial f(X, Y ) ∈ K[X, Y ] of total degree d can be homogenised by defining

F (X, Y, Z) := Zdf

(
X

Z
,
Y

Z

)
∈ K[X, Y, Z].

18
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A homogeneous polynomial F (X, Y, Z) ∈ K[X, Y, Z] can be dehomogenised by defining

f(X, Y ) := F (X, Y, 1) ∈ K[X, Y ].

f) A plane projective algebraic curve over K is the set of roots in K of a non-constant
homogeneous polynomial F (X, Y, Z) ∈ K[X, Y, Z],

C := C(F ) = {[x : y : z] ∈ P2 : F (x, y, z) = 0}.

We define
C(K) := C(F )(K) = {[x : y : z] ∈ P2(K) : F (x, y, z) = 0}.

the set of K-rational points of C. A point at infinity of this curve is a point P = [x : y :
z] ∈ C with z = 0.

g) A plane affine algebraic curve over K is the set of roots in K of a non-constant polynomial
f(X, Y ) ∈ K[X, Y ],

C := C(f) = {(x, y) ∈ A2 : f(x, y) = 0}.
We define

C(K) := C(f)(K) = {(x, y) ∈ A2(K) : f(x, y) = 0},
the set of K-rational points of C.

h) Let C = C(f) be a plane affine algebraic curve over the field K. The quotient field of
K[X, Y ]/(f) is called the function field of C, and it is denoted by K(C).

i) Let C and C ′ be two irreducible algebraic plane curves, and u, v ∈ K(C). The map
ϕ(P ) = (u(P ), v(P )) is defined at all points P of C where both u and v are defined; it
is called a rational map from C to C ′, if ϕ(P ) ∈ C ′, for every P ∈ X at which ϕ is defined.

A rational map ϕ : C → C ′ is birational, or is a birational equivalence of C to C ′ if ϕ
has a rational inverse. In this case we say that C and C ′ are birational, or birationally
equivalent.

Let C = C(F ) be a plane projective algebraic curve defined by the homogeneous polynomial
F (X, Y, Z). Let f be the dehomogenised polynomial f(X, Y ) = F (X, Y, 1). Then the plane
affine algebraic curve C(f) together with the points at infinity correspond to the projective
curve C(F ). Using this correspondence we consider in this thesis the points at infinity as
additional rational points on the affine curve.

Definition 4.1.2. An equation of the form

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

with a1, a2, a3, a4, a6 ∈ K is a long Weierstrass normal form.

The projective long Weierstrass normal form is given by

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

Here we have one point at infinity: O = [0 : 1 : 0]. In affine representation, this is the point
O = (∞,∞).
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Definition 4.1.3. We consider an equation in long Weierstrass normal form with coefficients
a1, a2, a3, a4, a6 ∈ K. The Tate values are

b2 := a2
1 + 4a2,

b4 := 2a4 + a1a3,

b6 := a2
3 + 4a6,

b8 := a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 := b2
2 − 24b4,

c6 := −b3
2 + 36b2b4 − 216b6.

Furthermore, the discriminant is

∆ := −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

and the j-invariant

j :=
c3

4

∆
.

These constants satisfy the relations

4b8 = b2b6 − b2
4 and 123∆ = c3

4 − c2
6.

Using Tate values, if char(K) 6= 2 (see Appendix A), we can simplify a long Weierstrass
normal form by completing the square. Thus the substitution

Y 7→ 1

2
(Y − a1X − a3)

produces an equation of the form

Y 2 = 4X3 + b2X
2 + 2b4X + b6,

where
b2 = a2

1 + 4a4, b4 = 2a4 + a1a3.

If further char(K) 6= 2, 3, then the substitution

(X, Y ) 7→
(
X − 3b2

36
,
Y

108

)
eliminates the X2, yielding the simpler equation

Y 2 = X3 − 27c4X − 54c6. (4.1)

Definition 4.1.4. Let a plane algebraic curve C be defined by the polynomial equation
f(X, Y ) = 0. Then P = (x0, y0) ∈ C is a singular point of C if, and only if,

∂f

∂X
(x0, y0) = 0 and

∂f

∂Y
(x0, y0) = 0.

The singular point is a double point, if only the first partial differentials vanish. A double point
is a node, if the point has two different tangents, a cusp if the two tangents coincide. A curve
without singular points is called nonsingular.
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Proposition 4.1. Curves given by an equation in long Weierstrass normal form have the
following classification:

(i) The curve is nonsingular ⇐⇒ ∆ 6= 0. Otherwise the curve is singular with exactly one
singular point.

(ii) The curve has a node ⇐⇒ ∆ = 0 and c4 6= 0.

(iii) The curve has a cusp ⇐⇒ ∆ = 0 and c4 = 0.

In cases (ii) and (iii), there is only the one singular point.

Proof. Let E be a curve given by the long Weierstrass normal form

E : f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0.

First we show that the point at infinity is never singular. Thus we use the projective long
Weierstrass normal form

F (X, Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3

= 0

and we study the point O = [0, 1, 0]. We have that

δF

δZ
(O) = 1 6= 0,

so we see that O is a nonsingular point of E.

Next, suppose that E has a singular point at P0 = (x0, y0). The substitution

x = x′ + x0 y = y′ + y0

leaves ∆ and c4 invariant, so without loss of generality we may assume that E is singular at
(0, 0). Then

a6 = f(0, 0) = 0, a4 =
δf

δx
(0, 0) = 0, a3 =

δd

δy
(0, 0) = 0,

so the equation for E takes the form

E : f(x, y) = y2 + a1xy − a2x
2 − x3 = 0.

This equation has associated quantities

c4 = (a2
1 + 4a2)2 and ∆ = 0.

By definition, E has a node (respectively cusp) at (0, 0) if the quadratic form y2 + a1xy− a2x
2

has distinct (respectively equal) factors, which occurs if, and only, if the discriminant of this
quadratic form satisfies

a2
1 + 4a2 6= 0 (respectivley a2

1 + 4a2 = 0).
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This proves the “only if” part of (ii) and (iii).

To complete the proof of (i)-(iii), it remains to show that if E is nonsingular, then ∆ 6= 0.
To simplify the computation, we assume that char(K )6= 2 and consider a Weierstrass equation
of the form

E : y2 = 4x3 + b2x
2 + 2b4x+ b6.

The curve E is singular if, and only if, there is a point (x0, y0) ∈ E satisfying

2y0 = 12x2
0 + 2b2x0 + 2b4 = 0.

Thus, the singular points are exactly the points of the form (x0, 0) such that x0 is a double root
of the cubic polynomial 4x3 + b2x

2 + 2b4x+ b6. This polynomial has a double root if, and only
if, its discriminant 16∆, vanishes. This completes the proof of (i)-(iii). Moreover, since a cubic
polynomial cannot have two double roots, E has at most one singular point.

An elliptic curve over K is a nonsingular curve of genus 1 over K together with one K-
rational point. The equation for such a curve can be transformed to a long Weierstrass normal
form. The specified K-rational point is then transformed to the point at infinity.

Definition 4.1.5. An ellipitic curve over K, denoted E|K, is a curve given in long Weier-
strass normal form over K with non zero discriminant (and the specified point at infinity).

As an example consider the ellptic curve F : U3 +V 3 = 1. This curve has a point at infinity
OF , which can be seen by using the projective representation:

F : U3 + V 3 = W 3, OF = [1 : −1 : 0].

The transformation

U =
6

X
+

Y

6X
, V =

6

X
− Y

6X

yields the Weierstrass equation

EF : Y 2 = X3 − 432,

where OF transforms to O = [0 : −1 : 0].

When working with variable transformations between Elliptic Curves, we are interested in
transformations which map a Weierstrass normal form into another one. The following is the
unique variable transformation that does this,

X = u2X ′ + r, Y = u3Y ′ + u2sX ′ + t,

where u, r, s, t ∈ K with u 6= 0, [Sil09]. The inverse transformation is

X ′ =
1

u2
(X − r), Y ′ =

1

u3
(Y − sX + sr − t).
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These transformations are birational. We then have

ua′1 = a1 + 2s,

u2a′2 = a2 − sa1 + 3r − s2,

u3a′3 = a3 + ra1 + 2t,

u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st,

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1,

u2b′2 = b2 + 12r,

u4b′4 = b4 + rb2 + 6r2,

u6b′6 = b6 + 2rb4 + r2b2 + 4r3,

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4,

u4c′4 = c4,

u6c′6 = c6,

u12∆′ = ∆,

j′ = j. (4.1)

Two equations in Weierstrass normal form are isomorphic if there is such a birational
transformation between them.

Theorem 4.1. Let E|K be an elliptic curve, char(K) 6= 2, 3. Then there exists a birational
transformation ψ : E → E ′ to a curve E ′|K of the form

E ′ : Y 2 = X3 + AX +B, (4.2)

with A,B ∈ K. We say that the curve has a representation in short Weierstrass normal form.

We have already give the proof of this fact in (4.1).

The discriminat and the j-invariant of an Elliptic curve in short Weierstrass normal form
are

∆ = −16(4A3 + 27B2), j =
−123(4A)3

∆

The only birational transformations which leave short Weierstrass normal form invariant
are of the form

X = u2X ′, Y = u3Y ′,

for u ∈ K∗. We then have

u4A′ = A, u6B′ = B, u12∆′ = ∆.

When working with elliptic curves, and later with isogenies, we will see that the j-invariant
is a powerful tool to characterize them, the reason is given in the following proposition.

Proposition 4.2. Two elliptic curves in Weierstrass normal form are isomorphic over K if,
and only if, they have the same j-invariant.

Proof. ⇒ We have already proved this fact in (4.1).
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⇐ First, assume that char(K) 6= 2, 3. Let E and E ′ be two curves given in short Weierstrass
normal form:

E : Y 2 = X3 + AX +B, E ′ : (Y ′2) = (X ′)3 + A′X ′ +B′.

Assume that j = j′. We know that the only birational transformations that leave short
Weirstrass normal form invariant are

X = u2X ′, Y = u3Y ′.

Thus, computing u will give us the desired isomorphism. We have

j = j′,

(4A)3(4(A′)3 + 27(B′)2) = (4A′)3(4A3 + 27B2),

A3(B′)2 = (A′)3B2.

If A = 0 then B 6= 0, hence A′ = 0 and B′ 6= 0. Thus we take u =
(
B
B′

)1/6
.

If B = 0 then A 6= 0, hence B′ = 0 and A′ 6= 0. In this we can take u =
(
A
A′

)1/4
.

If AB 6= 0 then A′B′ 6= 0. Indeed, if A′B′ = 0, then A′ = 0 and B′ = 0, hence ∆′ = 0,
which is excluded. We have

(A′)3B2 = A3(B′)2 ↔ B2

(B′)2
=

A3

(A′)3
↔
(
B

B′

)1/6

=

(
A

A′

)1/4

.

Thus, we can take u =
(
A
A′

)1/4
=
(
B
B′

)1/6
.

Moreover, we can always find an elliptic curve having a specific j-invariant = j0, for any
j0 ∈ K.

Proposition 4.3. For each j0 ∈ K there exists an elliptic curve defined over K with j−invariant
j0.

Proof. Assume that j0 /∈ {0, 1728} and consider the curve

E : y2 + xy = x3 − 36

j0 − 1728
x− 1

j0 − 1728

A simple calculations yields

∆ =
j2

0

(j0 − 1728)3
j = j0.

This gives the desired elliptic curve (in any characteristic) provided that j0 6= 0, 1728. For
j0 = 0, 1728 we use the curves

E : y2 + y = x3, ∆ = −27, j = 0,

E : y2 = x3 + x, ∆ = −64, j = 1728.
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4.2 The addition law

Elliptic curve cryptography is based on the fact that the points on elliptic curves form an (ad-
ditive) abelian group. In this section, we give the addition law of this group and its arithmetic
and geometric interpretations.

Let E|K be an elliptic curve given in (long) Weierstrass normal form over any field K. The
set of rational points of E over K is

E(K) = {(x, y) ∈ E : x, y ∈ K} ∪ {O},

where O is the point at infinity.
Let us enunciate some properties that allow us to define the addition law of points on elliptic
curves.

Theorem 4.2. a) A line intersects an elliptic curve in exactly 3 points (counting multiplic-
ities).

b) Let C and C ′ be two cubic curves over an infinite field K intersecting in exactly nine points
in P(K). If C ′′ is a plane cubic curve over K going through eight of the intersection points,
then it goes through the ninth.

The proof of this is not difficult, but, though interesting, is tangential to the topic of this
work, so we omit it and refer the reader to [Ful08].

We can define a binary operation, +, over an elliptic curve E|K, we shall see that (E(K),+)
forms an Abelian group; this structure is the base to construct elliptic curve cryptographic
systems, [HMV04].

Definition 4.2.1 (Addition of points). Let P,Q ∈ E, let L be the line through P and Q (if
P = Q, let L be the tangent line to E at P ), and let R be the third point of intersection of L
with E. Let L′ be the line through R and O. Then L′ intersects E at R, O and a third point.
This third point is P +Q, [Sil09].

Figure 4.1: Geometric interpretation of the addition of two points in an elliptic curve
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Theorem 4.3. The set (E(K),+) is an additive Abelian group with the point at infinity O as
the identity element.
If K is a number field, the group E(K) is called the Mordell-Weil group of E over K.

Proof. � (Binary operation and commutativity) It is clear that for P1, P2 ∈ E(K) we have
P1 + P2 ∈ E(K). It is also obvious that P1 + P2 = P2 + P1

� (Identity element) Let P ∈ E(K), then the third point intersecting the line through P
and O is P again. Now, the line through P and O is the same as above thus, P +O = P .
Since this is valid for all P ∈ E(K) it follows that O is the identity element.

� (Inverses) Let P ∈ E(K). Let P ′ be the third point of intersection of the line through P
and O with the curve. Then P + P ′ = O, therefore P ′ = −P .

� (Associativity) Let P1, P2, P3 ∈ E(K). We have to show that

(P1 + P2) + P3 = P1 + (P2 + P3);

which is equivalent to prove that

−((P1 + P2) + P3) = −(P1 + (P2 + P3)).

We define the following lines (secants or tangents if two of the points coincide):
L1: line through P1 and P2. This line intersects the curve in the third point −(P1 + P2).
L2: line through P3 and (P1 + P2). This line intersects the curve in the third point
−((P1 + P2) + P3).
L3: line through (P2 + P3) and O, This line intersects the curve in the third point
−(P2 + P3).
L′1: line through P2 and P3. This line intersects the curve in the third point −(P2 + P3).
L′2: line through P1 and (P2 + P3). This line intersects the curve in the third point
−(P1 + (P2 + P3)).
L′3: line through (P1 + P2) and O, This line intersects the curve in the third point
−(P1 + P2).
Then we define the cubic curves

C := L1 ∪ L2 ∪ L3, C ′ := L′1 ∪ L′2 ∪ L′3.

The curves C and E have no common components (because C is a union of 3 lines). From
(4.2) we have that such curves have exactly 9 common points. For the curves C and E
these are the points

O, P1, P2, P3, (P1 + P2),−(P1 + P2), (P2 + P3),−(P2 + P3),−((P1 + P2) + P3).

The curve C ′ intersects at the first 8 of the common points of C and E. Therefore C ′

intersects also at the 9-th common point. On the other hand, C ′ has exactly 9 common
points with E:

O, P1, P2, P3, (P1 + P2),−(P1 + P2), (P2 + P3),−(P2 + P3),−(P1 + (P2 + P3)).

Hence
−((P1 + P2) + P3) = −(P1 + (P2 + P3)).
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Computationally speaking we need to define the addition of points in coordinate terms.

Theorem 4.4. (Addition theorem) Let E|K be an elliptic curve over the field K in long Weier-
strass normal form and let P1 = (x1, y1), P2 = (x2, y2) ∈ E(K). Then

a) −P1 = (x1,−y1 − a1x1 − a3).

b) If x1 = x2 and y2 + y1 + a1x1 + a3 = 0, i.e. if P1 = −P2, then

P1 + P2 = O.

c) Let P1 6= P2. Define

λ =
y2 − y1

x2 − x1

,

υ =
y1x2 − y2x1

x2 − x1

= y1 − λx1,

if x1 6= x2, and

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

,

υ =
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

= y1 − λx1,

if x1 = x2.

Then P1 + P2 = P3 = (x3, y3) with coordinates

x3 = λ2 + a1λ− a2 − x1 − x2,

y3 = −(λ+ a1)x3 − υ − a3 = λ(x1 − x3)− y1 − a1x3 − a3.

Proof. We write

E : f(X, Y ) = Y 2 + a1XY + a3Y −X3 − a2X
2 − a4X − a6 = 0.

a) The line L through P1 = (x1, y1) ∈ E(K) and O is

L : X = x1.

We compute the intersection point P ′1 = (x1, y1) ∈ E(K) and E:

f(x1, Y ) = Y 2 + (a1x1 + a3)Y − (x3
1 + a2x

2
1 + a4x1 + a6)

= (Y − y1)(Y − y′1)

= Y 2 + (−y1 − y′1)Y + y1y
′
1.

Comparing coefficients, we see that

y′1 = −y1 − a1x1 − a3.

The third intersection point of L with E is therefore

P ′1 = (x1,−y1 − a1x1 − a3).

With Theorem 4.3, this point P ′1 is equal to −P1.
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b) follows from a).

c) We assume that P1 6= −P2. First let x1 = x2, which means that P1 = P2. The tangent in
P1 at E is

L : fX(x1, y1)(X − x1) + fY (x1, y1)(Y − y1) = 0

with the partial derivatives

fX(x1, y1) = −(3x2
1 + 2a2x1 + a4 − a1y1), fY (x1, y1) = 2y1 + a1x1 + a3.

The assumption of P1 6= −P2 implies fY (x1, y1) 6= 0. Therefore we write

l : Y =
−fX(x1, y1)

fY (x1, y1)
(X − x1) + y1

=
−fX(x1, y1)

fY (x1, y1)
X +

x1fX(x1, y1) + y1fY (x1, y1)

fY (x1, y1)

= λX + υ

with λ and υ as in the theorem.
In the other case, i.e. if x1 6= x2 and thus also P1 6= P2, the line through P1 and P2 is

L :
Y − y1

X − x1

=
y2 − y1

x2 − x1

.

Therefore we have

L : Y =
y2 − y1

x2 − x1

X +
y2 − y1

x2 − x1

(−x1) + y1 = λX + υ

with λ and υ as in the theorem.

In both cases the line through P1 and P2 is given by the equation

L : Y = λX + υ

. The third intersection point of the line L with E is a point P ′3 = (x′3, y
′
3) (by assumption

P ′3 6= O). We now compute this intersection point:

f(X,λX + υ) = (λX + υ)2 + a1X(λX + υ) + a3(λX + υ)−X3 − a2X
2 − a4X − a6

= −X3 + (λ2 + a1λ− a2)X2 + (2λυ + a1υ + a3υ − a4)X + (υ2 + a3υ − a6)

= −(X − x1)(X − x2)(X − x′3)

= −X3 + (x1 + x2 + x′3)X2 + (−x1x2 − x1x
′
3 − x2x

′
3)X + x1x2x

′
3.

Comparing coefficients, we see that

x′3 = λ2 + a1λ− a2 − x1 − x2.
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Since P ′3 is a point of L, one has
y′3 = λx′3 + υ.

Te point P ′3 is a point of L, one has

y′3 = λx′3 + υ.

The point P3 = (x3, y3) = P1 +P2 is −P ′3. According to a) this point has the coordinates

x3 = x′3 = λ2 + a1λ− a2 − x1 − x2,

y3 = −y′3 − a1x
′
3 − a3 = −(λ+ a1)x3 − υ − a3.

All elliptic curve cryptosystems use the elliptic curve operation on a point P to yield a new
point Q that will serve as the ciphertext, [Rey17].

For m ∈ Z we write

mP for


∑m

j=1 P if m > 0,

O if m = 0,∑−m
j=1(−P ) if m < 0.

πC(i) =

{
π(i) if i /∈ C,
π(ij+1) if i = ij ∈ C.

This operation is called Integer Multiplication of Elliptic Curves. We can be sure that the point
mP = (x, y) is in the elliptic curve E and its coordinates x and y in the field F , thanks to
the properties of groups and fields. Thus, if we use a finite field F , for example, Zp = F (with
p a prime number), we have finite points (a, b) that satisfy the equation corresponding to E,
moreover, since Fp is a partition of Z, we are working only with integer values, thus, a computer
can make these operations in a predictable, feasible and precise way, three fundamental things
in any cryptographic system.

As an example, consider the elliptic curve

E : Y 2 = X3 + 1

over Q. This curve has a Q-rational point P = (2,−3). Using the formulas above we get

2P = (0,−1), 3P = (−1, 0), 4P = (0, 1), 5P = (2, 3), 6P = O.

Notice that 5P = −P and the point P has order 6.

In elliptic curve cryptography, we have to add points by the addition law. We have differ-
ent methods for the representation of points on elliptic curves which lead to different addition
formulas. We need to choose methods that have the smallest amount of computing time. We
denote the computing times for taking the inverse in the field K by I, for multiplication in K by
M , and for squaring in K by S. In the study of the complexity of these algorithms, we neglect
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addition, subtraction, and multiplication by a small field constant. We denote t(P1 + P2) to
the computing time for an addition of two different points, the computing time for doubling by
t(2P ).

We have already shown the addition formulas for the affine representation of the long Weier-
strass normal form. In cryptography, we use fields with characteristic > 3 or 0, so elliptic curves
can be transformed into short Weierstrass normal form

E : y2 = x3 + ax+ b. (4.3)

We consider the affine representation on the short Weierstrass normal form. Let

P1 = (x1, y1), P2 = (x2, y2) ∈ E, P1 6= −P2.

Then, P1 + P2 = (x3, y3) is

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1

with

λ =


y2 − y1

x2 − x1

if P1 6= P2,

3x2
1 + a

2y1

if P1 = P2.

We have t(P1 +P2) = I + 2M + S, t(2P1) = I + 2M + 2S. For the projective representation, if

E : Y 2Z = X3 + a4XZ
2 + a6Z

3

is the projective elliptic curve and

P1 = [x1 : y1 : z1], P2 = [x2 : y2 : z2] ∈ E, P1 6= P2.

Then P1 + P2 = [x3 : y3 : z3] with

x3 = bc,

y3 = a(b2x1z2 − c)− b3y1z2,

z3 = b3z1z2,

where

a := y2z1 − y1z2,

b := x2z1 − x1z2,

c := a2z1z2 − b3 − 2b2x1z2,

if P1 6= P2 and

x3 = 2ab,

y3 = a(4c− d)− 8y2
1b

2,

z3 = 8b3,

Mathematician 30 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

where

a := a4z
2
1 + 3x2

1,

b := y1z1,

c := x1y1b,

d := a2 − 8c,

if P1 = P2. Here we obtain t(P1 + P2) = 12M + 2S, t(2P1) = 6M + 5S.
For this work, we will only consider elliptic curves given in short Weierstrass normal form

(4.3). Hence, a curve E over a field K is completely determined by the points a, b ∈ K.

4.3 Elliptic Curves over finite fields and Supersingular

curves

When working with elliptic curve cryptosystems we work with curves over finite fields. For
what follows, let p be a prime number, k ∈ N, q = pk, and Fq be the finite field with q elements.

The following definition introduces a central aspect behind isogeny based cryptography:
torsion groups. We also give characterizations of such groups and classify the curves according
to them.

Definition 4.3.1. Let E|K be an elliptic curve and n ∈ N. The set

E[n] := {P ∈ E : nP = O}

is called the set of n-division points of E, or the n-torsion group of E. The K-rational
n-division points of E are

E(K)[n] := {P ∈ E(K) : nP = O}.

Hence E[n] = E(K̄)[n] for the algebraic clousure K̄ of K.

Proposition 4.4 ([Law08]). Let p = char(K) and consider m such that (m, p) = 1. Then:

E[m] ∼= Z/mZ× Z/mZ. (4.4)

For the remaining case of m = pe, e ∈ Z+, two types of behaviour occur. Either

E[pe] = Z/peZ× Z/peZ, e = 1, 2, 3, ... (4.5)

in which case E is said to be ordinary, or

E[pe] = O, e = 1, 2, 3, ... (4.6)

in which case E is said to be supersingular.

Supersingular elliptic curves are essential to the best isogeny based cryptographic protocol.
The former can be seen as a characterization. For its definition, we need to introduce the
Frobenius endomorphism (refer to Appendix A for a definition of endomorphism).
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Definition 4.3.2. Let E|Fq be an elliptic curve over the finite field Fq. The q-Frobenius
endomorphism ϕq : E → E is given by

ϕq(x, y) = (xq, yq), ϕq(O) = O.

As ϕq ∈ End(E) for elliptic curves E|Fq, it follows that elliptic curves over finite fields always
have complex multiplication.

Some properties of the q-Frobenius endomorphism are given in the next theorem.

Theorem 4.5. Let E|Fq be an elliptic curve and ϕq the q-Frobenius endomorphism.

a) Let P ∈ E. Then
P ∈ E(Fq) ⇐⇒ ϕq(P ) = P.

b) The endomorphism ϕq is purely inseparable, i.e., the field extension Fq(E)/Fq(E)q is
purely inseparable1.

c) The degree of ϕq is deg(ϕq)= q.

d) There exists an integer t = tq such that

ϕ2
q − tϕq + q = 0,

that is to say that, for all P ∈ E, we have the equation

ϕ2
q(P )− tϕq(P ) + qP = O.

This integer is called the trace of the q-Frobenius endomorphism.

e) The trace t of the q-Frobenius endomorphism is linked with the number of rational points
by the relation:

#E(Fq) = q + 1− t,

where |t| ≤ 2
√
q.

Definition 4.3.3. Let E|Fq be an elliptic curve over a finite field of characteristic p with
|E(Fq)| = q+1−t. The curve is called supersingular if p|t. A curve which is not supersingular
is called ordinary.

In cryptography, we do not use this definition of supersingular, rather we use the following
characterizations.

Theorem 4.6. Let E|Fq be an elliptic curve.

a) The curve is supersingular if, and only if, End(E) is the maximal order in a quaternion
algebra.

1A purely inseparable extension of fields is an extension k ⊆ K of fields of characteristic p > 0 such that
every element of K is a root of an equation of the form xq = a, with q a power of p and a in k.
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b) If char(Fq) = 2 or 3, the curve is supersingular if, and only if, j(E) = 0.

A proof of this Theorem can be found in [BBS06].
Another useful characterization for supersingular fields in prime fields is given by the fol-

lowing corollary of Theorem 4.5 c).

Corollary 4.1. Let E/Fq be an elliptic curve. Then E is supersingular if, and only if,
#E(Fp) = p+ 1.
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Chapter 5

Elliptic Curve Cryptography

This chapter presents the most used algorithms, protocols, and problems associated with the use
of elliptic curves in cryptography. We provide a description of how Elliptic Curve Cryptography
(ECC) works, its current limitations, and future prospects.

5.1 Elliptic curve cryptography: History and its place

in modern cryptography

Up until the 1970s, cryptography was all done symmetrically. When asymmetric methods were
needed because of some of the reasons we discussed in previous chapters, Diffie, Hellman, and
Merkle demonstrated the existence of such public-key cryptographic methods in 1976 [DH76].
They suggested a protocol now called Diffie-Hellman-Merkle Key Exchange, [Hel02], which is
based on the Diffie-Hellman problem (3.3.5).

A year later, in 1977, Ron Rivest, Adi Shamir, and Leonard Adleman proposed another
asymmetric encryption scheme, the famous RSA, [Adl78]. The security of RSA is based on the
discrete factoring problem.

Definition 5.1.1. (Discrete factoring problem) Given a positive natural number N , a
factor of two large primes p and q, find p and q.

The easy mathematics behind this problem allowed RSA to become the first public key
algorithm to go into wide use, and is still adopted in many modern protocols. RSA improves
DFM by providing signatures, and long term private keys. However, the factoring problem
has sub-exponential algorithms, [Pom87], and thus, the increase in computational power has to
lead to the growth of RSA-key sizes at a similar rate, which is inconvenient for example when
working with embedded computer systems such as smartphones, [Sha04].

Victor Miller and Neal Koblitz introduced elliptic curve cryptography in 1985. Indepen-
dently, they developed the idea of using elliptic curves as the basis of a group for the discrete
logarithm problem, [Kob87] ,[Mil85]. Elliptic curve cryptography quickly gained interest be-
cause it provides more security with smaller key sizes. The NSA has Elliptic curve as its
standard suite B algorithm for both encryption and signature, [Sha04].
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5.2 Representing messages as points on Elliptic Curves

The procedure given in this section comes from [SS03].

Assume that a text unit consists of integers mi such that 0 ≤ mi < M , M ∈ N. Let k ∈ N,
p ∈ P, p > 2, q = pk, and q > Mk. We choose an elliptic curve given in short Weierstrass form
E : Y 2 = X3 + a4X + a6 over Fq so that j = 0 if p = 3. There are two steps to represent the
text units as points on E(Fq):

a) The elements in {1, ...,Mk} are represented as elements of Fq using their p-adic represen-
tation:
Let N ∈ {1, ...,Mk}. Then there are integer numbers ni such that:

N =
k−1∑
i=0

nip
i, 0 ≤ ni < p.

On the other hand, using the euclidean division algorithm, take an integer mi satisfying
0 ≤ mi < M , such that

N = mik + j

with 1 ≤ j < k.
The field Fq is given as Fq ∼= Fp[x]/(f(x)), where f(x) is any polynomial irreducible over
Fp and of degree k. We assign to N = mik + j the element

xmi,j :=
k−1∑
i=0

niX
i (mod f(X)).

Conversely, from an element x ∈ Fq we can recover the parameters mi, j which define a
number 1 ≤ N = mik + j ≤Mk. Let

0 6= x =
k−1∑
i=0

niX
i (mod f(X)).

Since N < pk = q, by construction we have

1 ≤ N ≤Mk ⇐⇒ 0 ≤ N − 1 < Mk ⇐⇒ 0 ≤
⌊
N − 1

k

⌋
< M.

Hence we get the parameters

mi :=

⌊
N − 1

k

⌋
, j := N −mk.
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It remains to show that 1 ≤ j < k:

1 = N − N − 1

k
k

≤ N −
⌊
N − 1

k

⌋
k

= j

=
N − 1

k
k −

⌊
N − 1

k

⌋
k + 1

<

(⌊
N − 1

k

⌋
+ 1

)
k −

⌊
N − 1

k

⌋
k + 1

= k + 1.

b) Representation of the numbers 0 ≤ mi < M as points in E(Fq):
To represent a number mi as a point in E(Fq), we first consider the number

N = mik + 1.

In Part a) we determined the element xmi,1 ∈ Fq corresponding to N . Now we test if
x3
mi,1

+ a4xmi,1 + a6 is a square in Fq. If this is the case, there exists an ymi,1 ∈ Fq such
that

y2
mi,1

= x3
mi,1

+ a4xmi,1 + a6.

Then mi is assigned the point (xmi,1, ymi,1). Otherwise consider the number N = mik+ 2
and repeat the method.
In this way we consider successively all numbers mik + j for j = 1, 2, .... until we have
found a point (xmi,j, ymi,j). If j > k and no points is found, we have to pick another
curve.
For any x ∈ Fq, we have, in principle, q possibilities for the value

x3 + a4x+ a6.

Only for 1
2
|E(Fq)| of these values we get a point on E(Fq). So the probability that x leads

to a point is
|E(Fq)|

2q
≈ 1

2
.

By Hasse’s estimate, we know that (
√
q − 1)2 ≤ |E(Fq)| ≤ (

√
q + 1)2. Therefore, for a

given mi, the probability that mik+ 1,mik+ 2, ...,mik+ k lead to no point is about 2−k.
From a point P = (x, y) ∈ E(Fq), which represents the number mi, we obtain mi by using
the method of Part a) for x.

5.3 Elliptic Curve Diffie-Hellman and elliptic curve dis-

crete logarithm problem

Elliptic curve Diffie-Hellman is a key exchange protocol. Its security is based on the difficulty
of the discrete logarithm problem for elliptic curves.
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Definition 5.3.1. (Discrete logarithm problem on elliptic curves [SS03]) Let E|Fq be
an elliptic curve over a finite field Fq and let P ∈ E(Fq) be a point of E over Fq. The discrete
logarithm problem on E is the question if, to a given point Q ∈ E(Fq), there exists an
integer n with Q = nP and if one can compute this n.

In practice, and recommended by security agencies, we usually work with finite fields of the
form Zp, with p prime, or Z2n , with n positive integer. The agencies also suggest “good” curves
and “good” base points in a way we shall later explain. All of these suggestions are based on
making it difficult to solve the discrete logarithm problem.

The scheme proposed for Diffie-Hellman applied to elliptic curves work as follows.

1. Alice and Bob would like to communicate over a secured channel using elliptic curves.
First Alice and Bob agree on a set of domain parameters required to set up the Elliptic
Curve protocol, namely:

� The order q of the finite field Fq
� An elliptic curve E : y2 = x3 + ax + b; with a, b ∈ Fq, defined over Fq. This is, a

point (x, y) ∈ F2
q is in the curve E if, and only if, y2 ≡ x3 + ax+ b mod q.1

� A ‘base’ point P ∈ E(Fq) which generates a subgroup of E.

� The order k of P .

� The cofactor h of the group generated by P , i.e., the positive integer such that
hk = |E(Fq)|.

The procedure to generate these parameters is computationally expensive; so Alice and
Bob will (and should) use pre-computed parameters suggested by security agencies.

2. Having agreed on a set of parameters, Alice and Bob now have access to two types of
keys:

� A private key n ∈ N.

� The corresponding public key Q = nP .

Both Alice and Bob generate a key-pair (n,Q = nP ). Let (nA, QA) and (nB, QB) be their
pairs respectively.

3. Alice and Bob exchange their public key over a potentially insecure channel. An eaves-
dropper may learn QA or QB but won’t be able to compute nA or nB, thanks to the
difficulty of the discrete logarithm problem.

4. Alice computes nA ·QB, and Bob computes nB ·QA. Alice and Bob now share the point
nAnBP . They can use the x or y coordinate of the shared point to establish a secured
symmetric channel for communication.

1E(Fq) is an abelian group where the addition law and the formulas given in last chapter still apply, though
one needs to do all the computation in mod q.
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5.4 ElGamal Method for elliptic curves

The ElGamal encryption system is an asymmetric key encryption algorithm for public-key
cryptography which is based on the Diffie Hellman key exchange. It can be defined over any
cyclic group G, [PP10].

The ElGamal method for elliptic curves works under the assumption that the discrete log-
arithm problem on elliptic curves is difficult to solve, [SS03].

In the ElGamal method, we represent the text units 0 ≤ m < M as points Pm of E(Fq).
Suppose Alice wants to send a secret message to Bob. Both decide to use a basis point P ∈
E(Fq) as the “channel of communication”, [SS03]. In practice, this basis point is public and it
has been tested to be a good point in a way that we explain later. By his side, Bob chooses a
secret integer n, which is his private key and makes the point nP public, this point is his public
key. On the other hand, Alice chooses a secret integer k, her private key, and maps the text
unit m to the pair

(kP, Pm + k(nP )).

Here, kP is Alice’s public key and Pm + k(nP ) is Alice and Bob’s shared message or the
ciphertext. (The term knP is the shared point that we got on the Diffie Hellman key exchange
protocol.) Moreover, notice that Pm + k(nP ) is a point in E(Fq) by group properties. Bob can
read the plain text m from this pair because he knows the number n, that is, he can compute

Pm = (Pm + k(nP ))− n(kP ).

Notice, that in this process, neither Alice nor Bob needs to know the private key of each other.
Moreover, a spy Eve knows neither n nor k, so normally she cannot compute the point Pm and
so decipher the message, [SS03].

Of course, this method relies upon the assumption that Eve cannot know the private keys of
Alice or Bob. That is, she cannot compute the integers n or k such that QA = kP , QB = nP .

5.5 Key pair generation using ECC

In both, the DH protocol and the ElGamal method, we need to generate the private-public pair
of keys. To obtain them we use the following algorithm provided we have a set of parameters
defined as above.

Algorithm 1 Key pair generation [HMV04]

INPUT: Domain Parameters D = (q, E, P, k, h)
OUTPUT: Public key Q, private key d.
PROCEDURE:

1: Select d ∈ [1, k − 1].
2: Compute Q = dP .
3: Return (Q, d).
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We don’t use h since we will work only with parameters already established by some security
party. Notice that for an adversary would obtain the private key d from the public keyQ, it must
solve the ECDLP. The choice of d must be arbitrary to avoid attacks. The integer multiplication
in the state 2 is what “dominate the execution time of elliptic curve cryptographic schemes”,
[HMV04]. Many algorithms compute the integer multiplication in a much more efficient way
than the one that we present, see [HMV04] Chapter 3. However, as an educational approach,
we consider this as the best way to understand the procedure. It is based on the basic repeated-
square-and-multiply methods for exponentiation, [HMV04].

Algorithm 2 Integer Multiplication of Elliptic Curves

INPUT: (q, E, P ∈ E(Fq), d)
OUTPUT: Q = mP
PROCEDURE:

1: N ← P
2: Q← O
3: b← d2 = (kt−1, ..., k1, k0)2

4: for i from 0 to t− 1 do
5: if ki = 1 then
6: Q← Q+ P
7: end if
8: P ← 2P
9: end for

10: Return Q

This algorithm is more efficient than the direct approach of adding P to itself d times.
For example, if d were a 256-bit number, then this algorithm would require a maximum of 512
elliptic-curve operations, whereas the direct method would require (at least) 2255−1 operations,
[Ent14].

5.6 Elliptic curve digital signature algorithm (ECDSA)

We can use elliptic curves to create a scheme for message authentication that satisfies the
requirements given in 3.4. The ECDSA protocol works as follows, [Woh]:

1. Alice wants to send Bob a message m. She takes a hash of m and truncates it so that it
has bit-length k, where k is the order of the base point P . Let z be the resulting truncated
hash of m.

2. Alice has its own random key-pair (nA, QA). She chooses a cryptographically secture
randome integer n from [1, k − 1], the choice of this n should be random to prevent
attacks, as we will in Section 5.8. Alice computes Q = nP . Let xA be the x-coordinate
of the point Q, modulo k. If xA = 0, then select another n.

3. Alice then calculates s = n−1(z + xAnA) mod k, where n−1 is the multiplicative inverse
of n mod k. If s = 0, go back to previous step. The pair (xA, s) forms the signature.

To verify if the message m was sent by Alice, Bob proceeds as follows:
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1. Bob computes u1 = s−1z mod k.

2. Bob computes u2 = s−1xA mod k.

3. Finally, Bob computes the point Q′ = u1P + u2QA and verifies xA = xQ′ mod n.

To see that this is a correct scheme consider the following proof of correctness.

Proof. We have that

Q′ = u1P + u2QA

= u1P + u2nAP

= (u1 + u2nA)P

= (s−1z + s−1xAnA)P (mod k)

= s−1(z + xAnA)P (mod k)

= n(z + xAnA)−1(z + xAnA)P (mod k)

= nP.

Notice that this is only possible if the message m was signed by Alice’s private key. Notice also
that Bob does not need to know Alice’s private key.

5.7 ECC versus RSA

To see the power of the ECC, let us compare it to the RSA protocol, which is the most used
cryptographic system. For a review on RSA cryptography, see [NF17].

The principal criteria that need to be satisfied by a technique of PKC are functionality,
security, and performance, [HMV04]. Both RSA and ECC provide such features and are the
most efficient algorithms in PKC, [Kum06]. However, they differ in how much security we can
obtain regarding the size of the keys generated. For example, a “key size of 160-bit ECC has an
equivalent security level with a key of 1024-bit RSA”, [BYMH13]. This is not an isolated case,
Torri and Nokoyama, [TY00] concluded that RSA security required 1024 bits for corporate use
and 2048 bits for extremely valuable keys. Hence, it is clear that ECC is more efficient than
RSA when we use the pair security/key-size as the parameter of comparison. To see this in
more detail, consider the table given below.

Table 5.1: Key Size Ratio for RSA and ECC with equivalent security level [Age09]

Key size
Key size ratio

Security Level
(bits)

Ratio of Cost
RSA ECC
1024 160 7:1 80 3:1
2048 224 10:1 112 6:1
3072 256 12:1 128 10:1
7680 384 20:1 192 32:1
15360 521 30:1 256 64:1
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Table 5.7 shows the key sizes used in RSA and ECC, the level of security (in bits) that each
key provides, the ratio between the sizes of the keys, and the ratio of cost to obtain such keys.
It is clear that ECC is a better option when we are working with embedded systems like mobile
devices, electronic cards, etc. This is because in such systems the restrictions of memory are
noticeable; so smaller keys are more effective since it requires fewer hardware resources. In
fact, the transmission of smaller keys requires; less memory for storage, low cost of arithmetic
computation, and low bandwidth, [Lau04].

Nevertheless, there are certain difficulties for ECC implementation in hardware and soft-
ware, [BYMH13]. For example, the implementation of ECC in software requires higher power
consumption than in hardware, [PKS09]. And of course, it is the fact the ECDLP could have
a feasible solution (unlikely) and this will destroy this public-key scheme. However, efficient
EC arithmetic algorithms need to improve in order to maximize the application of ECC in
the smaller embedded systems. Moreover, the promise of quantum computation puts elliptic
curve cryptography into a problem, and all other cryptosystems based on the discrete loga-
rithm problem, since it has been shown that there are quantum algorithms that solve the DLP
in polynomial time, [Sho99]. Even more, it turns out that quantum computers are better at
breaking elliptic curve cryptography than RSA. Pross and Zalka, [PZ03] found that a 160-bit
elliptic curve cryptographic key could be broken on a quantum computer using around 1000
qubits while factoring the security-wise equivalent 1024 bit RSA modulus would require about
2000 qubits.

Before getting into quantum computing and quantum attacks on ECC, let us discuss some
classical attacks that threaten ECC.

5.8 Classical attacks on ECC

Recall from Section 5.4, that the difficulty of the ECDLP and thus, the security of ECC
protocols depends on the finite field Fq, the elliptic curve E and the basis point P . Let
us describe what classes of elliptic curves should not be used for cryptosystems and a brief
overview of some of the classical algorithms that try to break ECC.

For arbitrary finite Abelian groups, Pohlig and Hellmann showed that the DLP on finite
abelian groups can be reduced to the DLP on finite abelian groups of prime power order. Thus,
we can solve the DLP for the subgroups of primer order first, then apply this result to solve
the DLP for the subgroups of primer power order to finally solve the DLP for the whole group
using the Chinese Remainder Theorem, [PH06]. Hence, we require that the group of points
to use should have at least one subgroup of large prime order. If the group order is not too
large we can solve the DLP associated with it, using methods like the bay step-giant step or
λ-method suggested by Pollard, [SS03] &[Pol00].

For the specific case of DLP on elliptic curves over finite fields, there are methods such as
MOV-attack, [LMS+04], and the method of Frey and Ruck, [Gal01]. In particular, MOV-attack
reduces the DLP on elliptic curves to that on finite fields, if the smallest value of l such that
ql ≡ 1 (mod m) is not too large. This result eliminates the use of supersingular curves since, if
a curve is supersingular, it follows that

m = |E(Fq)| = q + 1− t with t2 = 0, q, 2q, 3q, or 4q.

In the cases t2 = 0, q, 2q, 3q there exists a j, 1 ≤ j ≤ 6, with qj ≡ 1 (mod m).
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Other curves that we need to avoid are anomalous elliptic curves. An elliptic curve E|Fq is
called anomalous if the trace of the Frobenius endomorphism is 1. Smart, Satoh, and Araki,
[KM00] proposed the use of p-adic elliptic logarithm to directly solve the DLP for anomalous
elliptic curves.

In summary, let E|Fq be an elliptic curve with m = q + 1− t = |E(Fq)|. For E to be used
in elliptic curve cryptography, the following properties are required:

� The group E(Fq) should have a subgroup of large prime order.

� The curve E should not be anomalous (i.e. q 6= m).

� The smallest value of l such that ql ≡ 1 (mod m) should be large. (This condition removes
curves with t = 0, t = 2 (for q ∈ P), and supersingular curves.)

For specific ECC protocols, there are also other security issues that we need to take care of.
In 5.6, we mentioned that the number n ∈ [1, k − 1], that Alice uses for signing her message,
needed to be random. The reason for this, is given by the following proposition.

Proposition 5.1. Let n be a number in [1, k − 1] for the signature algorithm ECDSA. If n is
fixed, then we can recover the private key nA from Alice’s signature.

Proof. Let (r1, s1) and (r2, s2) be two signatures Alice made on two different messages, using
the same “random” number n. Since r = xQ, where Q = nP , then since n is fixed, we have
r1 = r2. We also know that s1 − s2 = n−1(z1 − z2) mod n, where z1 and z2 are the hashed
truncated versions of the respective messages. Thus we obtain n = (z1− z2)(s1− s2)−1 mod n.
The private key can thus be recovered:

nA ≡ r1(s1n− z1) mod n.

n does not need to be fixed for ECDSA to be insecure. In 2011, Sony suffered an attack
on its ECDSA for using a vulnerable pseudo-random number generator for the seed n in the
ECDSA signature scheme, which led to a similar attack to what is described above, [Woh].

Another possible security issue is that the elliptic curve in our protocol may have been built
with a backdoor2. However, it is possible to check that a curve was generated randomly, which
suggests that it would have been difficult to make it weak on purpose, [Woh].

Proposition 5.2. Curve parameters generated by a hash function are verifiably random.

Proof. Given a random seed S, it is possible to generate parameters a and b (describing the
elliptic curve E in short Weierstrass form) using a hash of s, H(s). Then, an arbitrary function
can generate a and b from H(s). The idea is that given the parameters and the seed, one can
check that the parameters came from that seed. However, specifying a certain seed for desired
parameters requires to inverse the hash function, which is computationally very hard.

2A “backdoor” in computing is a method of bypassing the normal method of authentication. In cryptography
specifically, a backdoor would allow an intruder to access the encrypted information without having the correct
credentials. The backdoor would either a) allow the intruder to guess the access key based on the context of
the message or b) allow the intruder to present a skeleton key that will always grant him access [Won16].
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To finish this section, let us describe the best known classical algorithm for breaking elliptic
curve cryptosystems: Pollard’s ρ algorithm.

Suppose Q = nP . Let k be the order of the subgroup generated by the point P . Pollard’s ρ
algorithm can find n from Q and P in time roughly O(

√
k), which is exponential in the number

of bits of k.

The first step in Pollard’s ρ is to find integers a, b, c, d such that aP + bQ = cP + dQ,
where (a, b) 6= (c, d). We could try to run over all possible randomly selected pairs and find
the integers in O(k2) running time. A more efficient method, Floyd’s cycle, lives at the heart
of Pollard’s ρ and is the key to solve ECDLP.

Algorithm 3 Floyd’s cycle finding algorithm
INPUT: P,Q
OUTPUT: (a, b, c, d)
RUNTIME: O(

√
k)

PROCEDURE:

1: Choose a random sequence S of (a, b) pairs.
2: Use pointers p1 = 0 and p2 = 0 to walk S.
3: while aP + bQ 6= cP + dQ do
4: p1 = p1 + 1
5: p2 = p2 + 2
6: (a, b) = S[p1]
7: (c, f) = S[p2]
8: end while
9: return (a, b, c, d)

Algorithm 4 Pollard’s ρ
INPUT: P, Q
OUTPUT: n
RUNTIME: O(

√
k)

PROCEDURE:

1: Use Floyd’s cycle finding algorithm to find two pairs (a, b) and (c, d) such that aP + bQ =
cP + dQ.

2: Then n = (a− c)(d− b)−1 mod k, where k is the order of the subgroup generated by P .
3: return n.

Let us prove that this algorithm gives n.
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Proof. Given two pairs (a, b) and (c, d) distinct such that aP + bQ = cP + dQ as follows:

aP + bQ = cP + dQ

aP + bnP = cP + dnP

(a− c)P = (d− b)nP
(a− c)P ≡ (d− b)nP

(a− c) ≡ (d− b)n
n ≡ (a− c)(d− b)−1.

We have shown that Pollar’s ρ breaks standard elliptic curve protocols, however, it takes
months for doing so. This is the reason to believe that elliptic curves will remain strong
before going into quantum computation. Because, as we have observed many times, quantum
computers can break the discrete logarithm problem of elliptic curves, and to see how they can
achieve such work, we turn to the study of quantum computation.
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Chapter 6

Quantum Computation

Unless stated otherwise, background material in the following chapter is collected from [MAN10].

One of the most promising advances in science and technology is the quantum model of
computation. Quantum computers could spur the development of breakthroughs in science,
mathematics, and cryptography. Until now, we have been reasoning in terms of classical com-
puting. This simple model, which we studied in Chapter 2 using Turing Machines, has already
a lot of benefits. However, as we saw with NP problems, there are challenges that today’s
systems will never be able to solve, or at least to solve efficiently. This is a good thing in
certain cases, for example, cryptography. We have mentioned that the security of elliptic curve
cryptography relies upon the fact that classical computers cannot solve the discrete logarithm
problem efficiently. Nevertheless, universal quantum computers based on the quantum me-
chanical phenomena of superposition and entanglement could be powerful enough to tackle
problems that no classical computers can solve. In fact, in 1994, Peter Shor [Sho99] described
a quantum algorithm for efficiently solving discrete logarithms over finite groups. Thus, if one
day we can construct a large-scale quantum computer that can execute such an algorithm then
it is clear that the landscape of cryptography will be forever changed. In this section, we give
an introduction to quantum computing, how to develop quantum algorithms and how Shor’s
algorithm works. With respect to the complexity of quantum algorithms we use assymtotic no-
tations O′,Ω′,Θ′ as defined in the classical setting but with respect to to the quantum setting.
For example, a problem is in O′(p) where p is a polynomial, if there is a quantum algorithm
that solves the problem in polynomial time.

6.1 Overview of Quantum Computing

Quantum computation is the study of tasks that can be accomplished using quantum mechan-
ical systems. Quantum mechanics was first discovered in 1920 as a way to explain physical
phenomena that classical physics failed to do. Since its discovery, quantum mechanics has been
an indispensable part of science and technology. Quantum mechanics is a mathematical frame-
work for the construction of physical theories. Quantum computation was born as a way to
satisfy the desire of physicists to better understand quantum mechanics. Many results in quan-
tum mechanics are not intuitive, so one of the goals of quantum computation is to develop tools
that sharpen our intuition about quantum mechanics. Physicists developed the idea of quantum
computation to try to control quantum systems instead of just understand them. Conversely,
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the ability to control quantum systems leads to a better application of quantum computation,
[MAN10]. Today we have small quantum computers in some tech companies like Amazon or
Google, [TQ19], however, these systems are only capable of doing dozens of operations on a few
quantum bits (the unit of information for quantum computation). We also have programming
languages and libraries to develop real quantum algorithms, but their use is focused on doing
theoretical research, [WVMN19]. Nevertheless, one field where quantum computing has ready
to go applications is cryptography. For example, we mentioned in Chapter 3 that Symmetric
cryptosystems rely on the secure transmission of keys, quantum mechanics can be used to do
key distribution in such a way that Alice and Bob’s security cannot be compromised. To do this
we exploit the quantum mechanical principle that observation, in general, disturbs the system
being observed. To understand how quantum computing works, we need to define its unit of
information, the qubit.

6.2 Quantum Bits

In classic computation, the basic unit of information is the bit. A bit is an element that can be
in two states: 0 and 1. We can observe the state in which the bit is. In quantum computation,
the basic unit of information is the qubit. A qubit is a mathematical object with certain specific
properties that try to simulate some properties of quantum systems. A qubit can be in states
|0〉 and |1〉 or in a combination of them, called superposition. The symbol |·〉 corresponds
to the braket notation, also called Dirac notation, which is used in quantum mechanics to
denote vectors in a complex vector space. Thus, the mathematical model of a qubit is the
following:

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
,

For a qubit in superposition, we mean:

|ψ〉 = α |0〉+ β |1〉 ,

with α, β ∈ C, such that |α|2 + |β|2 = 1. α and β are called amplitudes. It is clear that the
set {|0〉 , |1〉} is a basis of C2. When we observe the state of a qubit it will always be in state
|0〉 with probability |α|2 or in state |1〉 with probability |β|2. Nevertheless, even if we cannot
know the exact state of a qubit; qubit states can be manipulated and transformed in ways that
lead to observation outcomes that depend distinctively on the different properties of the state.
Another way to express the observation of a qubit is to say that we measure the qubit. We have
defined the qubit as an abstract mathematical object, however, qubits are real. Similar to bits,
they can be realized with many physical phenomena; for example, the two different polarization
of a photon, the alignment of a nuclear spin in a uniform magnetic field, and as two states of
an electron orbiting a single atom. We are not going to discuss the physical interpretation of
qubit nor the physical implementation of quantum computers.

Another useful way to represent a qubit is through the Bloch sphere. As explained in
[Gle05], we can express a quantum state in the following way:

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 .
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Figure 6.1: Bloch sphere representation of a qubit

The real numbers θ and φ define a point on the unit three-dimensional sphere. We’ll see that
many operations on qubits can be understood as rotations of this sphere. Of course, a qubit is
not enough to do useful computation so we need to introduce systems of multiple qubits. With
n qubits, there are 2n computatioanl basis states denoted |0 · · · 0〉 , |0 · · · 1〉 , · · · , |1 · · · 1〉. Each
computational basis state corresponds to a basis vector of C2n given by:

∣∣a(2),n

〉
=


0...
1...
0

 ,

where a(2),n is the n-bit representation of the integer 0 ≤ a ≤ 2n− 1 in binary base; and
∣∣a(2),n

〉
is a complex vector in C2 with all entries 0, except at position a where there is 1 (counting
from 0). Morover, a n-qubit system can also be in superposition specified by 2n amplitudes,

α0 |0 · · · 0〉+ · · ·α2n−1 |1 · · · 1〉 ,

where αi ∈ C for all 0 ≤ i ≤ 2n − 1, such that |α0|2 + · · ·+ |α2n−1|2 = 1.

The mathematical expression for n-qubit systems is to express basis states as a tensor
product of basic states of the components. The tensor product of two one qubit states is given
by the Kronecker product. We say that a set of qubits is in product state if its state can
be expressed as the tensor product of the states of its components. For example, the state
|01〉 = (0, 1, 0, 0) is the Kronecker product of |0〉 |1〉. If a set of qubits is not in product state,
it is in entangled state.

6.3 Quantum gates

Changes occurring to a quantum state can be described using the language of quantum compu-
tation. A quantum computer is built from a quantum circuit containing wires and elementary
quantum gates to carry around and manipulate quantum information. Quantum gates need
to act linearly and preserve the norm. Thus quantum gates can be described using unitary
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matrices.

This result implies that every quantum gate is reversible, which does not hold for classical
gates. For example, analogous for the classical NOT gate. It takes the state |0〉 to the state
|1〉, and vice versa. On a state in superposition, it acts linearly.

X ≡

[
0 1
1 0

]
,

X

[
α
β

]
=

[
β
α

]
.

The NOT gates belong to the family of Pauli gates:

σ1 = σx = X ≡ P1 ≡

[
0 1
1 0

]
,

σ2 = σy = Y ≡ P2 ≡

[
0 −i
i 0

]
,

σ3 = σz = Z ≡ P3 ≡

[
1 0
0 −1

]
.

Three other quantum gates that will play a large part in what follows, the Hadamard gate
H, phase gate S, and n/8 gate T.

H =
1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, T =

[
1 0

0 e
iπ
4

]
.

The Pauli matrices give rise to three useful classes of unitary matrices when they are expo-
nentiated, the rotation operators about the ’x’, ’y’, and ’z’ axes.

Rx(θ) ≡ e−θX/2 = cos
(
θ/2
)
I − i sin

(
θ/2
)
X =

[
cos
(
θ/2
)
−i sin

(
θ/2
)

−i sin
(
θ/2
)

cos
(
θ/2
) ] , (6.1)

Ry(θ) ≡ e−θY/2 = cos
(
θ/2
)
I − i sin

(
θ/2
)
Y =

[
cos
(
θ/2
)
− sin

(
θ/2
)

sin
(
θ/2
)

cos
(
θ/2
) ] , (6.2)

Rz(θ) ≡ e−θZ/2 = cos
(
θ/2
)
I − i sin

(
θ/2
)
Z =

[
e−iθ/2 0

0 eiθ/2

]
. (6.3)

These rotation matrices allow us to construct any unitary operator.

Theorem 6.1 (Z-Y decomposition for a single qubit, [MAN10]). Suppose U is a unitary oper-
ation on a single qubit. Then, there exists real numbers α, β, γ and δ such that

U = eiαRz(β)Ry(γ)Rz(δ).
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In fact, this results works for any non-parallel real unit vectors in three dimensions m̂ and
n̂:

U = eiαRn̂(β)Rm̂(γ)Rn̂(δ).

In the last equation, we have that if n̂ = (nx, ny, nz) then

Rn̂(θ) ≡ e−iθn̂·~σ/2 = cos
(
θ/2
)
I − i sin

(
θ/2
)
(nxX + nyY + nzZ),

where ~σ denotes the three component vector (X, Y, Z) of Pauli Matrices.
The utility of the last theorem lies in the following corollary, which is the key to the con-

struction of controlled multi-qubit unitary operations.

Corollary 6.1. Suppose U is a unitary gate on a single qubit. Then, there exists unitary
operators A, B, C on a single qubit such that ABC = I and U = eiαAXBXC, where α is
some overall phase factor.

The prototypical controlled operation is the controlled-NOT. the CNOT gate has two input
qubits, known as the control qubit and the target qubit, respectively. In terms of the computa-
tional basis, the action of the CNOT is given by |c〉 |t〉 → |c〉 |t⊕ c〉; that is, if the control qubit
is set to |1〉 then the target qubit is flipped, otherwise the target qubit is left alone. Thus, in
the computational basis |control, target〉 the matrix representation of the CNOT is

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


For controlled arbitrary gates, suppose U is any unitary matrix acting on some number n
of qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a
controlled-U gate. Such a gate has a single control qubit, indicated by the line with the
black dot, and n target qubits, indicated by the boxed U . If the control qubit is set to 0
then nothing happens to the target qubits. If the control qubit is set to 1 then the gate U is
applied to the target qubits. If there is just one target qubit t, the operation of this gate is
|c〉 |t〉 → |c〉U c |t〉.

6.4 Quantum Algorithms

The power of quantum computing comes from the power of quantum algorithms. First of
all, we have that any classical circuit can be replaced by an equivalent circuit containing only
reversible elements. Any classical reversible circuit has an equivalent quantum circuit, thus
quantum computers are capable of, at least, do the same things that classical computers do.
However quantum computers can solve efficiently, at least in theory, problems that classical
computers cannot solve in a polynomial way. This is because of quantum parallelism.

Quantum parallelism is a fundamental feature of the most powerful quantum algorithms.
It allows quantum computers to evaluate a function f for many different values of x simul-
taneously. For example, let f : {0, 1} → {0, 1} be a function with a one-bit domain and
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range. Consider a two-qubits quantum gate which starts in-state |x, y〉 and transforms it into∣∣x, y ⊕ f(x)
〉
. The qubits are called registers: the first register is called the ’data’ register,

and the second the ’target’ register. The mapping Uf : |x, y〉 →
∣∣x, y ⊕ f(x)

〉
is unitary and

thus the quantum gate is well defined. The computation of f is given by a black box, but it
can be shown that given a classical circuit that for computing f there is a quantum circuit of
comparable efficiency which computes the transformation Uf on a quantum computer.

Figure 6.2: Quantum circuit for evaluating f(0) and f(1) simultaneously.

Figure 6.2 shows the circuit that applies Uf to an input not in the computational basis.
The data register is prepared in the |+〉 state. Applying Uf gives the state:∣∣0, f(0)

〉
+
∣∣1, f(1)

〉
√

2
.

This state contains information about both f(0) and f(1); in a way we have evaluated f(x)
for two values of x simultaneously, this feature is what we call ’quantum parallelism’. This
is not the same as parallel computing, where multiple circuits each built to compute f(x) are
executed simultaneously, here a single f(x) circuit is employed to evaluate the function for
multiple values of x simultaneously, by using the ability to be in a superposition of different
states that quantum computers have. We can generalize this result to function on an arbitrary
number of bits, by using the Hadamard transform. This transformation is just n Hadamard
gates acting in parallel on n qubits. In summary, quantum parallelism enables all possible
values of the function f to be evaluated simultaneously. Nevertheless, this parallelism is not
immediately useful because when we measure the state

∑
x

∣∣x, f(x)
〉

we will only obtain only
f(x) for a single value of x. Thus, quantum algorithms require the ability to extract information
about more than one value of f(x) from superposition states. To see how this may be done, let
us describe a quantum algorithm to solve the problem given in Example 2.1.

The Deutsch-Jozsa algorithm

Let us recall the statement of the problem we want to solve: Bob has a boolean function of
n binary digits f (f : {0, 1}n → {0, 1}), that is either constant or balanced (a function that
outputs 0 on exactly half inputs and 1 on the other half). Alice wants to know what kind of
function Bob has. We saw in chapter 2 that Alice may only send Bob one value of x in each
letter. We showed that Alice will need at worst 2n/2 + 1 queries to Bob. If Bob and Alice were
able to exchange qubits, and Bob computes f using a unitary transformation Uf , then Alice
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could achieve her goal in just one sending, using the following algorithm.

Algorithm 5 Deutsch-Jozsa

INPUT: A black box Uf performs the transformation |x〉 |y〉 → |x〉
∣∣y ⊕ f(x)

〉
, for x ∈

{0, ..., 2n − 1} and f(x) ∈ {0, 1}. f is either constant or balanced.
OUTPUT: 0 if, and only if, f is constant.
RUNTIME: One evaluation of Uf . Always succeeds.
PROCEDURE:

1: |0〉⊗n |1〉 . initialize state

2: → 1√
2n

∑2n−1
x=0 |x〉

[
|0〉−|1〉√

2

]
. create superposition using Hadamard gates

3: →
∑

x(−1)f(x) |x〉
[
|0〉−|1〉√

2

]
. calculate function f using Uf

4: →
∑

z

∑
x

(−1)x·z+f(x)|z〉√
2n

[
|0〉−|1〉√

2

]
. perform Hadamard transform

5: → z . measure to obtain final output z

Alice has n register qubits to store her query in, and a single qubit register which she will
give to Bob, to store the answer in. She first prepares her query and answer register in a
superposition state. She sends these states to Bob and he will evaluate f(x) using quantum
parallelism and save the result in the answer register. Alice then interferes with states in
the superposition using a Hadamard transform on the query register and makes a suitable
measurement to determine the nature of f . The quantum circuit that performs this algorithm
is given in Figure 6.3.

Figure 6.3: Quantum circuit implementing Deutsch-Jozsa algorithm.

Let us explain how the states change in every step of this circuit. We start with the input
state

|ψ0〉 = |0〉⊗n |1〉 (6.4)

The system of n qubits |0〉⊗n is the query register and the state |1〉 is the answer register. We
apply a Hadamard transform to the query register and a Hadamard gate to the answer register,
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obtaining

|ψ1〉 =
∑

x{0,1}n

|x〉√
2n

[
|0〉 − |1〉√

2

]
. (6.5)

The query register is now a superposition of all values in the domain of f , and the answer
register is in an evenly weighted superposition of 0 and 1. Now, Bob, uses its black box to
evaluate the function f , giving

|ψ2〉 =
∑
x

(−1)f(x) |x〉√
2n

[
|0〉 − |1〉√

2

]
. (6.6)

Alice now has a set of qubits in which the result of Bob’s function evaluation is stored in the
amplitude of the qubit superposition state. She then interferes terms in the superposition using
a Hadamard transform on the query register to obtain,

|ψ3〉 =
∑
z

∑
x

(−1)x·z+f(x) |z〉√
2n

[
|0〉 − |1〉√

2

]
. (6.7)

Alice now observes the query register. The amplitude for the state |0〉⊗n is
∑

x(−1)f(x)/2n.
This amplitude changes depending on whether f is constant or balanced. If f is constant the
amplitude for |0〉⊗n is +1 or -1, depending on the constant value f(x) takes. Since the state
|ψ3〉 is unitary all other amplitudes must be zero, and a measurement of this state will yield
0s for all qubits in the query register. On the other case, if f is balanced then the positive
and negative contributions to the amplitude for |0〉⊗n cancel, leaving an amplitude of zero, and
measurements must yield a 1 on at least one qubit in the query register.
This problem shows the power of quantum algorithms. In fact, we have shown that we can solve
the problem with one evaluation of the function f compared to the classical requirement for
2n−1 + 1 evaluations. The most important thing to remember here is how quantum algorithms
work. Since we cannot access directly the states in superposition we need to try to pass the
information in the states to its amplitudes; because amplitudes can be observed and studied.
The most famous quantum algorithms that use this method are based upon quantum versions
of the Fourier transform; in fact, the quantum algorithm to solve the Elliptic Curve Discrete
Logarithm Problem belongs to this family.

6.5 The quantum Fourier transform and Shor’s Algo-

rithm

In this section, we develop the quantum Fourier transform, which is the key ingredient for
the quantum discrete logarithm algorithm. The quantum Fourier transform is an efficient
quantum algorithm for performing a Fourier transform of quantum mechanical amplitudes. The
most important feature of the Quantum Fourier transform is that, it enables phase estimation,
which is the approximation of the eigenvalues of a unitary operator. A generalization of phase
estimation called hidden subgroup problem, is the base to an efficient quantum algorithm for
the discrete logarithm problem.
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The quantum Fourier transform

The quantum Fourier transform on an orthonormal basis |0〉 , ..., |N − 1〉 is defined to be a
linear operator with the following action on the basis states,

|j〉 → 1√
N

N−1∑
k=0

e2πijk/N |k〉 . (6.8)

The action on a state in superposition is

N−1∑
j=0

xj |j〉 →
N−1∑
k=0

yk |k〉 , (6.9)

where the amplitudes yk are the discrete Fourier transform of the amplitudes xj. To implement
this transformation on quantum circuits, we need to show that this transformation is unitary,
this is direct by letting j and m be quantum states from an orthonormal basis, and computing
the inner product of its transformations:

〈m|j〉 →

 1√
N

N−1∑
n=0

e2πimn/N 〈n|

 1√
N

N−1∑
k=0

e2πijk/N |k〉


=

1

N

N−1∑
n,k=0

e−2πimn/Ne2πijk/N 〈n|k〉

=
1

N

N−1∑
n,k=0

e2πi(jk−mn)/Nδn,k

=
1

N

N−1∑
k=0

e2πi(jk−mk)/N

=
1

N

N−1∑
k=0

e2πi(j−m)k/N

= δj,m.

Thus we can implement the Quantum Fourier Transform as a valid quantum gate. Before
doing that, let us introduce some notation. For the remainder of this chapter, let N = 2n,
where n is some integer, and the basis |0〉 , ..., |2n − 1〉 is the computational basis for an n qubit
quantum computer. The state |j〉 has a binary representation j = j1j2...jn and we adopt the
notation 0, jljl+1... |jm〉 to represent the binary fraction jl/2 + jl+1/4 + ... + jm/2

m−l+1. This
notation let us give a product representation to the quantum transform:

|j1, ..., jn〉 →
(|0〉+ e2πi0,jn |1〉)(|0〉+ e2πi0,jn−1jn |1〉) · · · (|0〉+ e2πi0,j1j2···jn |1〉)

2n/2
. (6.10)

Notice that, for a quantum circuit to apply the quantum transform we need to apply controlled
notations over each factor state. Let us denote Rk to the unitary transformation given by

Rk ≡

(
1 0

0 e2πi/2k

)
. (6.11)

Mathematician 53 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Using controlled-Ri and Hadamard gates we can create aN efficient circuit for the quantum
Fourier Transform (Figure 6.4)

Figure 6.4: Quantum circuit that applies the quantum Fourier transform over the state |j〉.
Notice that at the end the output of each bit component of j is reversed, so we need to apply
swap gates at the end to reverse the order of the qubits.

Some top classical algorithm for computing the discrete Fourier transform, such as the
Fast Fourier Transform (FFT), need to use Θ(n2n) gates for 2n element. In contrast, this
quantum algorithm needs only Θ′(n2) gates for performing the quantum Fourier transform on
the same number of elements. In summary, there is an exponential saving when working with
quantum algorithms rather than classical ones. Unfortunately, we cannot use the quantum
Fourier transform to speed up the computation of the classic Fourier transform. This is again
because measurement operation destroys quantum information; there is no way of determining
the Fourier transformed amplitudes of the original state. Also, a general method to efficiently
prepare the original state to be Fourier transformed is not known. The algorithms that use this
computation of Quantum Fourier Transform make a more subtle application of it.

Phase estimation

A usual computational problem is determining the eigenvalue of a unitary operator U . The
eigenvalues of unitary operators have the form e2πiφ, where φ ∈ R. The eigenvector associated
with this value is denoted |u〉. Hence, phase estimation consists in finding φ given U and
|u〉. In practice, we do not need the exact value of φ, and our goal is just to estimate it with
arbitrary precision. To perform the estimation we must assume that we have available black
boxes (oracles) capable of preparing the state |u〉 and performing the controlled U2j operation,
for suitable natural numbers j.
The quantum phase estimation procedure uses two registers. The first register contains t qubits
in the state |0〉. The election on t depends on:

1. how good our estimation must be;

2. the probability of success for the phase estimation procedure.

The second register begins in the state |u〉 and contains as many qubits as necessary to store
|u〉. Phase estimation is performed in three stages:

1. We apply the following circuit
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Figure 6.5: First stage of the phase estimation procedure. We omit normalization factors of
1/
√

2.

This circuit1 begins by applying a Hadamard transform to the first register, followed
by the application of controlled-U operations on the second register, with U raised to
successive powers of two.
The final state of the first register is

1

2t/2

2t−1∑
k=0

e2πiφk |k〉 .

The effect of the sequence of controlled-U operations is to take the state |j〉 |u〉 to |j〉U j |u〉.

2. The second stage of phase estimation is to apply the inverse quantum Fourier transform
on the first register.

3. The third stage of phase estimation is to read out the state of the first register by doing
measurements on the computational basis.

The output of the measurement is an approxiomation to φ accurate to t−
⌈
log
(
2 + 1/2ε

)⌉
bits,

with probability 1− ε.

To see that this algorithm works, suppose φ may be expressed exactly in t bits, as φ =
0.φ1...φt. Then the state resulting from the first stage of phase estimation may be rewritten

1

2t/2
(|0〉+ e2πi0.φt |1〉)(|0〉+ e2πi0.φt−1φt |1〉) · · · (|0〉+ e2πi0.φ1φ2···φt |1〉).

Notice that this is similar to what we obtain when applying QFT to a quantum state, thus
the second stage of phase estimation is to apply the IQFT. But comparing the last state with
the product form for the Fourier transform, we see that the output state form the second stage

1Recall that the sum of all amplitudes in a quantum state must be equal to 1, thus, the powers of 1/
√

2 are
the normalization constantn to make sure the state/eigenvector is a unit vector.
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is the product state |φ1 · · ·φt〉. A measurement in the computational basis, therefore, gives us
φ exactly.

In summary, the phase estimation procedure let us estimate the phase φ of an eigenvalue of a
unitary operator U , given the corresponding eigenvector |u〉. The key feature of this algorithm
is the ability of the inverse Fourier transform to perform the transformation

1

2t/2

2t−1∑
j=0

e2πiφj |j〉 |u〉 →
∣∣∣φ̃〉 |u〉 ,

where
∣∣∣φ̃〉 denotes a state which is a good estimator for φ when measured.

Algorithm 6 Quantum phase estimation

INPUT: A black box which performs a controlled-U j operation for integers j, (2) an eigenstate
|u〉 of U with eigenvalue e2πiφu , and (3) t = n+

⌈
log(2 + 1/2ε)

⌉
qubits initialized to |0〉. (ε > 0

is arbitrary and is the tolerance of the algorithm.)
OUTPUT: An n-bit approximation φ̃u to φu.
RUNTIME:O′(t2) operations and one call to controlled-U j black box. Succeds with probabily
at least 1ε.
PROCEDURE:

1: |0〉 |u〉 . initial state

2: → 1√
2t

∑2t−1
j=0 |j〉 |u〉 . create superposition

3: → 1√
2t

∑2t−1
j=0 |j〉U j |u〉 = 1√

2t

∑2t−1
j=0 e2πijφu |j〉 |u〉 . apply black box

4: →
∣∣∣φ̃u〉 |u〉 . apply inverse Fourier transform

5: → φ̃u . measure first register

Order finding

An application of the phase estimation procedure is the Order finding algorithm. This is the
base case for a big family of problems where the Discrete Logarithm problem lives. It is also
worth noticing that order finding implies the factoring problem and so efficient algorithms for
order finding and factoring are a threat to RSA public-key cryptosystems since they can be
used to break those.

For positive integers x and N , x < N , such that gcd(x,N) = 1, the order of x modulo N is
defined to be the least positive integer r such that xr = 1 (mod N). The order finding problem
is to determine the order for some specified x and N . In classical computation, this problem is
believed to be hard. In the quantum world, the algorithm form order-finding is just the phase
estimation algorithm applied to the unitary operator

U |y〉 ≡
∣∣xy (mod N)

〉
, L = dlogNe;
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with y ∈ {0, 1}L. The eigenstates for this operator have the form:

|us〉 ≡
1√
r

r−1∑
k=0

exp

[
−2πisk

r

] ∣∣∣xk mod N
〉
,

for integers 0 ≤ s ≤ r − 1. The phase of the eigenstate associated to |us〉 is s/r Thus, phase
estimation procedure allows us to obtain, with high accuracy, the term s/r and from this we
can obtain r using classical algorithms such as continued fraction expansion.

As we wrote earlier in order to apply phase estimation we need to be able to compute
the operator U and to prepare one of its eigenstates. In the case of order finding, the former
issue can be solved using modular exponentiation (a classical algorithm), with which we can
implement the entire sequence of controlled-U2j operations applied by the phase estimation
procedure using O(L2) gates. For the latter issue, instead, we rely on the fact that

1√
r

r−1∑
s=0

|us〉 = |1〉 .

Hence, if we use t = 2L + 1 +
⌈
2 + 1

2ε

⌉
qubits in the first register, and prepare the second

register on the state |1〉, it follows that for each s in the range 0 through r − 1, we will ob-
tain an estimate of the phase φ ≈ s/r accurate to 2L+1 bits, with probability at least (1−ε)/r.

About the cost of this algorithm, we can say that the Hadamard transform requires O′(L)
gates, and the inverse Fourier transform requires O′(L2) gates. The major cost in the proper
quantum circuit actually comes from the modular exponentiation which uses O′(L3) gates.
The continued fraction algorithm adds O′(L3) gates to obtain r. Thus, the total cost of this
algorithm is O′(L3).

Algorithm 7 Quantum order-finding

INPUT: A black box Ux,N which performs the transformation |j〉 |k〉 → |j〉
∣∣xjk mod N

〉
, for

x co-prime to the L−bit number n, (2) t = 2L + 1 +
⌈
log
(
2 + 1/2ε

)⌉
qubits initialized to |0〉,

and (3) L qubits initializaed to the state |1〉.
OUTPUT: The order r, of x modulo N .
RUNTIME: O′(L3) operations. Succeds with probabily O(1).
PROCEDURE:

1: |0〉 |1〉 . initial state

2: → 1√
2t

2t−1∑
j=0

|j〉 |1〉 . create superposition

3: → 1√
2t

2t−1∑
j=0

|j〉
∣∣∣xj mod N

〉
≈ 1√

r2t

r−1∑
s=0

2t−1∑
j=0

e2πisj/r |j〉 |us〉 . apply Ux,N

4: → 1√
r

r−1∑
s=0

∣∣∣ ˜s/r
〉
|us〉 . apply inverse Fourier transform to first register

5: → ˜s/r . measure first register
6: → r . apply continued fraction algorithm
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Period-finding

In the next section, we will see that the Discrete Logarithm problem is just the problem of
period finding but in two variables, hence it is a good thing to study this problem and how it
is related to the order finding problem. Suppose f is a periodic function with range {0, 1} and
unknown period 0 < r < 2L, where x, r ∈ {0, 1, 2, ...}. Assume you have a quantum black box
U which performs the unitary transform U |x〉 |y〉 → |x〉

∣∣y ⊕ f(x)
〉

(where ⊕ denotes addition
modulo 2), then there is a quantum algorithm which solved the problem of finding r using one
query, and O(L2) other operations.

Algorithm 8 Quantum period-finding

INPUT: A black box U which performs the transformation U |x〉 |y〉 = |x〉
∣∣y ⊕ f(x)

〉
, (2) a

state to store the function evaluation, initialized to |0〉, and (3) t = O(L + log
(
1/ε
)
) qubits

initialized to |0〉.
OUTPUT: The period r of f .
RUNTIME: One use of U , and O′(L2) operations. Succeds with probabily O(1).
PROCEDURE:

1: |0〉 |0〉 . initial state

2: → 1√
2t

2t−1∑
x=0

|x〉 |0〉 . create superposition

3: → 1√
2t

2t−1∑
x=0

|x〉
∣∣f(x)

〉
≈ 1√

r2t

r−1∑
l=0

2t−1∑
x=0

e2πilx/r |x〉
∣∣∣f̂(l)

〉
. apply U

4: → 1√
r

r−1∑
l=0

∣∣∣ ˜l/r
〉 ∣∣∣f̂(l)

〉
. apply inverse Fourier transform to first register

5: → ˜l/r . measure first register
6: → r . apply continued fraction algorithm

Notice that this algorithm is almost the same as the quantum algorithm for order-finding,
the key step is step 3, in which we introduce the Fourier transform of f(x).

∣∣∣f̂(l)
〉
≡ 1√

r

r−1∑
x=0

e−2πilx/r
∣∣f(x)

〉
(6.12)

In step 3, we use the approximation sign because 2t may not be an integer multiple of r in
general. This is not a problem since this issue is taken into account by the phase estimation
bounds. To the state in step 3, we apply the inverse Fourier transform and we obtain an
estimate of the phase l/r, where l is chosen randomly, in step 4. Finally, r can be obtained
using a continued fraction algorithm.
This algorithm works because we exploit a property of the quantum Fourier transform called
shift-invariance. Namely, suppose we are in N dimensions and given a state of the form

|φ〉 =

N/r−1∑
n=0

c |l + nr〉 ,
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where |c| =
√
r/N . We say that is state is a periodic state with period r and offset l. Applying

the Fourier transform to this period state, we obtain∣∣∣φ̃〉 =
r−1∑
m=0

αm
∣∣mN/r〉 ,

where |αm| =
√

1/r for all m. This state is also periodic, in the following sense: the amplitudes
αm can have nontrivial phases, but they are all of equal weight, and the offset is zero. Thus, if
we measure this state on the standard computational basis, we are guaranteed to get a multiple
of N/r.

Shor’s quantum algorithm for solving the ECDLP

The principal references for this section are [Sho99], [PZ03] and [RNSL17]. First, let us justify
some notations and assumptions. We are going to denote quantum states as |n〉 where n is any
positive number or 0, computationally speaking this should be understood in its bit represen-
tation, for example, |4〉 = |100〉, this notation is for educational purposes and will be useful to
understand the algorithm in a better way. We assume that the order of the base point used in
the ECDLP is prime and we know it. This is true for the cases standardized for cryptographic
use. Finally, we assume that we can implement the quantum Fourier transform of arbitrary
order γ ∈ N, this is, over an arbitrary number of qubits. Later we will give a real circuit with
a QFT of order 2n because is easier to implement and under certain circumstances, the result
of the algorithm is going to be good.

We are given an instance of the ECDLP as described in Section 5.3.1. Let P,Q ∈ E(Fq)
such that Q is an element of the subgroup generated by P ; our goal is to find the integer
m ∈ {0, ..., r − 1}, where r is the order of P , such that Q = mP . Shor’s algorithm proceeds as
follows.

1. Two registers initialized in the |0〉 state. A third register called the “accumulator” register
is initialized with the neutral element O.

2. A Hadamard transform is applied to each qubit in the first two registers resulting in the
sate

1

r

r−1∑
k,l=0

|k, l〉 .

3. Conditioned on the content of the register holding the label k or l, we add the corre-
sponding multiple of P and Q, respectively:

1

r

r−1∑
k,l=0

|k, l〉 7→ 1

r

r−1∑
k,l=0

|k, l〉 |kP + lQ〉 .

Imagine that we measure the last register (which is not necessary). Then we will obtain
a random element αP of the group generated by P , where α is between 0 and r-1. We
will then find the first two registers in a superposition of all k, l with

kP + lQ = kP + l(mP ) = αP.
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Because the order of P is r, this is equivalent to

k + lm ≡ α (mod r).

Thus for each l there is exactly one solution, and so the state of the first two registers is:

1√
r

r−1∑
l=0

|α−ml, l〉

4. The third register is discarded and a quantum Fourier transform QFTr is computed on

each of the two registers. Hence, the state |k〉 is send to
∣∣∣k̃〉 and the state |l〉 is send to∣∣∣l̃〉 with probability amplitude 1

r
exp
(

2πi(kk̃ + ll̃)/r
)

. This is, we take the state |k, l〉 to

the state
1√
rr

r−1∑
k̃,l̃=0

r−1∑
l=0

exp
(

2πi((α−ml)k̃ + ll̃)/r
) ∣∣∣k̃, l̃〉 .

The sum over l is easy to calculate. It gives r exp
(

2πiαk̃/r
)

if l̃ ≡ mk̃ (mod r) and

vanishes otherwise. Thus we get:

1√
r

r−1∑
k̃=0

exp
(

2πiαk̃/r
) ∣∣∣k̃, l̃ = mk̃ mod r

〉
.

5. We measure the state of the first two registers. We see now that the probability of
measuring a basis state is independent of α, thus it does not matter which α we measured
above. By measuring we obtain a pair k̃, l̃ from which we can calculate m = l̃(k̃)−1 mod r
as long as k̃ 6= 0. (Here is why we assume that r is prime, if not we would require gcd(k̃, r)
= 1.)

Algorithm 9 Shor’s algorithm for DLPEC

INPUT: A point Q = mP ∈ E(Fq).
OUTPUT: The natural integer m.
PROCEDURE:

1: |0〉 |0〉 |O〉 . initial state

2: → 1

r

r−1∑
k,l=0

|k, l〉 |O〉

=
1√
r

r−1∑
l=0

|α−ml, l〉
∣∣(α−ml)P + lQ

〉
. create superposition in the first two registers

3: → 1√
rr

r−1∑
k̃,l̃=0

r−1∑
l=0

exp
(

2πi((α−ml)k̃ + ll̃)/r
) ∣∣∣k̃, l̃〉

=
1√
r

r−1∑
k̃=0

exp
(

2πiαk̃/r
) ∣∣∣k̃, l̃ = mk̃ mod r

〉
. QFT computed on each of the two

registers
4: → k̃, l̃ = mk̃ mod r . measure the first two registers
5: → m . Compute m using k−1
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As stated before, in practice we replace each of the two QFTr’s with a quantum Fourier
transform of order 2n, because this is easy to implement. Proos and Zalka [PZ03] showed in
detail how to implement this algorithm. They found out that a smaller quantum computer
can solve the problem of the discrete logarithm of elliptic curves, more easily than the problem
of integer factorization. Roettler, Naehrig, Svore, and Lauter [RNSL17] gave precise quantum
resource estimates for this algorithm over prime fields. The quantum circuit that they imple-
mented is shown in Figure 6.6. They also supported Proos and Zalka results and concluded
that ECC seems like an easier target than RSA.

Figure 6.6: Shor’s algorithm to solve the discrete logarithm problem on elliptic curves. The
circuit decomposes into three parts: (i) the Hadamard transform on the left, (ii) a double scalar
multiplication (implemented as a cascade of conditional point additions), and (iii) the quantum
Fourier transform QFT and subsequent measurement in the computational basis at the end.

In summary, Shor’s algorithm poses a serious threat to elliptic curve cryptography. While
quantum computers remain mostly theoretical, if one day we can build quantum computers
with a practical number of qubits, then Elliptic Curve Cryptography would become obsolete.
Hopefully, elliptic curves can still be useful in other protocols that seem to be quantum-resistant.
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Chapter 7

Isogeny based cryptography

In 2006, Rostovtsev and Stolbunov, [RS06], suggested a Diffie-Hellamn-Merkle key exchange
protocol using elliptic curves isogenies. This protocol was later discarded as a subexponential
quantum algorithm to break it was found in 2014. Nevertheless, De Feo, Jao, and Plut found in
2014, [DFJP14], that isogenies of supersingular elliptic curves can be used to create quantum-
resistant cryptosystems. In this chapter, we develop the background theory of isogenies and we
explain how to use isogenies of supersingular curves to create quantum-resistant cryptosystems.
In this final chapter, we develop the mathematical theory behind isogenies, we show the relation
with complex numbers and lattices to finish with some cryptographic protocols that are based
on isogenies between elliptic curves.

7.1 Background on Isogenies

Unless stated otherwise, background material in the following section is collected from [SS03].

Definition 7.1.1. Let E1, E2 be elliptic curves over a field K.

a) A morphism from E1 to E2 is a rational map which is defined at every point of E1.

b) An isogeny from E1 to E2 is a non-constant morphism which maps O on E1 to O on E2.

c) A isogeny φ : E1 → E2 leads to an injection of function fields

φ∗ : K(E2)→ K(E1), f 7→ f ◦ φ.

The isogeny φ is called separable (purely inseparable) if, and only if, the finite exten-
sion K(E1)|φ∗(K(E2)) is separable (purely inseparable).

d) For a non-constant isogeny φ : E1 → E2 define the degree of φ as

deg (φ) := [K(E1) : φ∗(K(E2))],

the separable degree of φ as

degs(φ) := [K(E1) : φ∗(K(E2))]s,

and the inseparable degree of φ as

degi(φ) := [K(E1) : φ∗(K(E2))]i.

For the zero isogeny 0 we define deg(0) := 0.
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We have defined the degree of an isogeny as its degree as a rational map. Thus, for separable
isogenies, to have degree l means to have a kernel of size l. Moreover, every separable isogeny
of degree greater than 1 can be factored into a composition of isogenies of prime degree over
Fq, [Cou06].

Definition 7.1.2. Let E|K be an elliptic curve over a field K. The set of all isogenies from E
to E forms the ring of endomorphisms End(E) of E.

Proposition 7.1. Let φ : E1 → E2 be an isogeny of degree d. There exists a unique isogeny
φ̂ : E2 → E1 with

φ̂ ◦ φ = d (= multiplication with d on E1),

φ ◦ φ̂ = d (= multiplication with d on E2).

The isogeny φ̂ is called he dual isogeny to φ. One has

deg(φ̂) = deg(φ).

Proposition 7.2. Let φ : E1 → E2 be a non-constant isogeny. Then, for every Q ∈ E2,

|φ−1(Q)| = degs(φ),

where | · | denotes the size of the set. In particular

|ker(φ)| = degs(φ).

If φ is separable then
|ker(φ)| = deg(φ).

An important family of endomorphisms is the set of multiplication maps.

Proposition 7.3. Let E|K be an elliptic curve and m ∈ Z. The multiplication map corre-
sponding to m is defined as

[m] : E → E, P 7→ mP.

a) The map m is an endomorphism on E. Therefore the ring of integers Z is a subring of
the endomorphism ring End(E).

b) If gcd(m, char(K)) = 1 or if char(K) = 0 then, the endomorphism m is separable.

c) For the degree one has
deg(m) = m2.

d) The endomorphism m is its own dual isogeny:

m̂ = m.

Theorem 7.1. Let E|K be an elliptic curve over a field K. Then the endomorphism ring of E
is one of the following rings:

� End(E) = Z,
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� End(E) is isomorphic to an order in an imaginary quadratic field,

� End(E) is isomorphic to an order in a quaternion algebra.

Recall from Theorem 4.5. that if End(E) is isomorphic to an order in a quaternion algebra,
then E is supersingular. On the other hand, if End(E) is isomorphic to an order in an imagi-
nary quadractic field, E is ordinary.

Since we work with Weierstrass equations, an isogeny between two elliptic curves is fully
characterized by its action on the affine models for E1 and E2. If E1/K and E2/K are two
elliptic curves in Weierstrass short form, and φ : E1(K) → E2(K) a isogeny, then, φ can be
represented as:

φ(x, y) =

(
f1(x, y)

g1(x, y)
,
f2(x, y)

g2(x, y)

)
: f1, f2, g1, g2 ∈ K[x, y]. (7.1)

Lemma 7.1. For any isogeny φ : E1 → E2, ker(φ) is finite.

Proof. Let us assume that E1 and E2 are in Weierstrass forms. From any of its affine repre-
sentations like (7.1), we see that its kernel must be a subset of the intersection of the zero sets
of g1(x, y) and g2(x, y) on E1(K). This has to be finite since E1(K) is an irreducible subset of
A2(K).

Example 7.1. Pointed isomorphisms are the simplest examples of isogenies. Let E : y2 =
x3 + ax + b, a, b ∈ K and E(d) : y2 = x3 + d2ax + d3b for d ∈ K

∗
. Then E and E(d) are

isomorphic via the pointed isomorphism

φ : E → E(d)

φ(x, y) = (dx, d
3
2x).

We use pointed isomorphisms to define an equivalence relation over isogenies.
The family of m-multiplication maps defined in 7.3 has an affine representation as :

[m](x, y) :=

(
ωm(x, y)

ψ2
m(x, y)

,
Ωm(x, y)

ψ2
m(x, y)

)
, (7.2)

where ωm,Ωm, ψm are distinguished polynomials that can be computed recursively in m. Espe-
cial attention deserve the family ψm; its roots on the locus of E are the m-torsion points E[m],
the kernel of the map [m].

Definition 7.1.3. Isogenies φ1 : E → E1 and φ2 : E → E2 are isomorphic if there is a
pointed isomorphism µ : E1 → E2 such that φ2 = µ ◦ φ1.

An important family of isogenies is the set of Frobenius morphisms. Consider E/Fq, where
char(Fq) = p, given in short Weierstrass form as y2 = x3+Ax+B. Then Ep : y2 = x3+Apx+Bp

is non-degenerate and the map
π(x, y) := (xp, yp) (7.3)

is a bijective isogeny from E to Ep. This map is known as the Frobenius morphism. Its inverse
exists but is not rational, hence this map is not an isomorphism. However, if q = pn, then the
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n-th power of the Frobenius map πq := πn fixes Fq and thus E(q) = E, and πq is an endomor-
phism known as the Frobenius endomorphism. (This is the q-Frobenius endomorphism defined
in 4.3.2).

The Frobenius map gives place to separable isogenies. These isogenies defined above are
important since certain results and algorithms only hold for them (and/or normalized isogenies
which are defined later).

Proposition 7.4. Let E1, E2 be elliptic curves. Then any inseparable isogeny ψ : E1 → E2

factors as the composition:

ψ : ψsep ◦ πr, (7.4)

where r is a positive integer and ψsep is a separable isogeny such that degs(ψ) = deg(ψ).

To define normalized isogenies, consider again φ : E1/K → E2/K; this rational map induces,
functorially, a map ψ∗ : K(E2) → K(E1), and a map ψ∗ : ΩE2 → ΩE1 , where ΩE is the 1-
dimensional K(E)-vector space of rational differential forms. Of these forms, an important one
is the invariant differential:

ω =
dy

3x2 + a
=
dx

2y
.

Proposition 7.5. Let φ : E1/K → E2/K be an isogeny, and ω1, ω2 be the respective invariant
differentials. Then

φ∗(ω2) = cω1, (7.5)

for some c ∈ K(E1).

Definition 7.1.4. If c = 1 in 7.5, then φ is said to be a normalized isogeny.

We can normalize any isogeny using pointed isomoprhisms.

Proposition 7.6. Every isogeny φ : E1 → E2 can be postcomposed with a pointed isomorphism
τ such that the composition ψ = τ ◦ φ is normalized.

Proof. Let us assume that E2 is given in short Weierstrass form. Let φ∗(ω2) = cω1. Post-
composing with an isomorphism with scaling factor µ (such that the curves are isomorphic)
changes the invariant differential ω′2 = 1

µ
ω2. Therefore, choose µ = c and apply the correspond-

ing isomorphism to E2.

Using kernels to characterize Isogenies

When working over finite subgroups of Elliptic Curves we can characterize an isogeny from its
kernel.

Proposition 7.7. Let E be an elliptic curve and let Φ be a finite subgroup of E. There is a
unique elliptic curve E ′ and a separable isogeny

φ : E → E ′ satisfying ker(φ) = Φ.
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A proof of this proposition can be found in [Sil09]. The elliptic curve E ′ in the proposition
above is often denoted by the quotient E/Φ. This notation refers to the group structure of
the quotient group of a variety. In general, the quotient of any variety by a finite group of
automorphisms is again a variety, [Sha13]. In 1971, Jacques Vélu gave explicit formulas to
compute E/Φ and its associated isogeny φ, [Vé71].
Let

E : y2 = f(x) = x3 + ax+ b

be an elliptic curve. Compute the following values:

ν =
∑

P∈Φ−{O}

f ′(P )

ω =
∑

P∈Φ−{O}

x(P )f ′(P ).

Then E/Φ is given by
E/Φ : y2 = x3 + Ax+B,

where

A = a− 5ν,

B = b− 7ω.

Finally, the isogeny φ : E → E/Φ is given by 1

φ :=

x(P ) +
∑

Q∈Φ−{O}

[x(P +Q)− x(Q)], y(P ) +
∑

Q∈Φ−{O}

[y(P +Q)− y(Q)]

 .

The curve obtained is a non-degenerate elliptic curve and φ is a normalized and separable
isogeny with kernel Φ, [Law08]. Moreover, using these formulas, if #Φ = l, where l is a positive
integer, then the algebraic complexity of computing the codomain E/Φ and evaluating the
isogeny φ on a point of E(K) is O(l) operations in K and O(lM(d)) operations in K, where
d is the degree of the minial extension F/K that contains Φ, and M : N→ N a function such
that multiplying polynomials of degree n costs M(n) base field operations, [Shu09].
An important result of φ is that it is unique up to isomorphism.

Theorem 7.2. Given a separable isogeny χ : E1 → E2 with kernel Φ, there is a pointed
isomorphism ϕ : E1/Φ→ E2 such that χ = ϕ ◦ φ, [Sut15].

This theorem asserts that φ is the unique separable isogeny with kernel Φ up to isomor-
phism. Moreover, for any inseparable isogeny χ : E1 → E2 with kernel Φ, φ is isomorphic to
χsep.

In summary, we can represent isogenies using finite subgroups of elliptic curves that serve
as the kernels. However, given Φ, where is the isogeny φ defined? To answer this, we need to
consider the Galois action on the points Φ. (Refer to Appendix A for an introduction to Galois

1X(P ) denotes the x-coordinate of the point P. Y (P ) denotes the y-coordinate of the point P.
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Theory)

Given E/K, the Galois group (refer to the Appendix) Gal(K : K) acts on points of E by
acting on their coordinates. Namely,

∀σ ∈ Gal(K : F ), ∀P ∈ K : P ∈ E ⇒ σ(P ) ∈ E.

We are interested in where the points of Φ are taken under these Galois actions for any
subgroup Φ of E, [San15].

Proposition 7.8. Consider a subgroup Φ ⊆ E(K). Then Φ is said to be F-Galois stable iff for
all P ∈ Φ, and all σ ∈ Gal(K : F ), it holds that σ(P ) ∈ Φ. The quotient isogeny φ determined
by Velu’s formula is defined over F if, and only if, Φ is F-Galois stable, [BBS06].

As a corollary of this proposition we have that the Frobenius morphism πq coincides with
the Galois action whenever K = Fq, since Gal(K : K) is generated by the Frobenius map
x→ xq, [San15].

Using isogenies to classify elliptic curves. Tate’s Theorem

Since every isogey has its dual we can define an equivalence relation of ‘being isogenous’ par-
tioning elliptic curves into isogeny classes. E1 and E2 are F -isogenous if there is an isogeny
ψ : E1 → E2 defined over F . The prefix F is important since changing the field F potentially
changes the classes, [San15].

A necessary and sufficient condition for two curves E, E ′ to be isogenous over a finite field
Fq is given by Tate’s Theorem.

Theorem 7.3 (Tate’s Theorem.). Let E/Fq, E ′/Fq be elliptic curves. Then E and E ′ are
isogenous over Fq if, and only if, #E(Fq) = #E ′(Fq), [Tat66].

7.2 Elliptic Curves over C
The study of elliptic curves was born in the field of complex analysis. Elliptic curves over
complex numbers can be parametrized by a function called Weierstrass P-function and its
derivative to define an analytic group homomorphic to the quotient of the additive group of
complex numbers C by a lattice. With this characterization, isogeny theory simplifies, [SS03].

Definition 7.2.1. a) A lattice L (in C) is the additive subgroup

L := ω1Z + ω2Z = 〈ω1, ω2〉Z

in C, generated by ω1, ω2 ∈ C which are supposed to be linearly independent over R. The
generators ω1, ω2 are called fundamental periods of the lattice. A period parallelogram
associated to L is given by

{m1ω1 +m2ω2 : m1,m2 ∈ R, 0 ≤ m1,m2 < 1}.
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b) Let L, L′ be two lattices in C and λ ∈ C with λL ⊂ L′. Then λ induces a homomorphism

z mod L 7→ λz mod L′,

and denoted by λ :
λ : C/L→ C/L′.

Either λ = 0 or λ : C/L → C/L′ is surjective with kernel isomorphic to L′/λL. Such a
lattice homomorphism is called an isogeny.

c) Two lattices L and L′ in C are linearly equivalent, if there exists a non-zero complex
number λ such that λL = L′. This complex number induces an isomorphism λ : C/L→
C/L′.

d) For two lattices L and L′ in C with L′ ⊂ L, the index of L′ in L is defined as

[L : L′] :=
a(L′)

a(L)
,

where a(L) is the area of a period parallelogram associated to L.

The quotient structure C/L, which is a torus, has a induced group law as well as an induced
topology from the canonical projection map p : C→ C/L. From this torus we define a special
bijection ΦL to a complex elliptic curve EL, [SS03]. Define

EL : y2 = x3 + Ax+B,

where A and B are the convergent quantities

A = 15
∑

ω∈L−{0}

1

ω4
, (7.6)

B = 35
∑

ω∈L−{0}

1

ω6
. (7.7)

The bijection ΦL uses the Weierstrass P-function.

Definition 7.2.2. Let L be a lattice in C. The (classical) Weierstrass P-function associ-
ated to L is the function

P : C→ C ∪ {∞}
with2

P(L; z) := P(z) :=
1

z2
+

∑
ω∈L−{0}

(
1

(z − ω)2
− 1

ω2

)
.

This function gives a bijection ΦL : C/L→ EL defined by

ΦL(z) =

(
P(z;L),

z;L′

2

)
; (7.8)

from the torus C/L to the complex elliptic curve EL.
It is because of the P-Weierstrass function that, ΦL is not only a bijection but a group

isomorphism.

2The notation P(L; z) denotes that L is not a parameter of the function, since the domain is C, but is used
in the formula as an auxiliar parameter.
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Proposition 7.9 ([San15]). Φl is a group isomorphism C/L → EL(C) as well as an isomor-
phism of complex manifolds.

Moreover, we can relate any complex elliptic curve, different from the family EL, to complex
tori of the form C/L.

Theorem 7.4 (Uniformization Theorem [Sut15]). For every complex elliptic curve E in short
Weierstrass form, there is a lattice L such that C/L is isomorphic to E via ΦL.

Thus, we can fully identify complex elliptic curves with complex tori. From now on, let
Φ = {ΦL} refer to this overall correspondence.

In this context, isogenies between elliptic curves are the same as isogenies between lattice
quotiented fields. Let E1 = EL1 and E2 = EL2 be two complex elliptic curves. Then, an isogeny
φ : EL1 → EL2 induces a corresponding ‘isogeny’ φ∗ : C/L1 → C/L2 of tori. This is done by
φ∗ := Φ−1

L2
φΦL1 . The following commutative diagram shows this procedure:

C/L1 C/L2

EL1 EL2

ΦL1

φ∗

φ

ΦL2

Moreover, we have that φ∗ is simply a ‘multiplication by λ’ for some fixed constant λ ∈ C;
which is known as dilatation.

Theorem 7.5 ([SS03]). Let E1, E2 be elliptic curves over C corresponding to the lattices L1,
L2. Then, there is a bijection

{φ : E1 → E2, φ is an isogeny } → {λ : C/L1 → C/L2 : λL1 ⊆ L2}.

This theorem asserts that φ∗ can de described as a ’multiplication by λ’ map and that the
converse is also true, i.e., every λ ∈ C such that λL1 ⊆ L2 induces a map λ : C/L1 → C/L2

that comes from an isogeny φ in 7.2. Thus we can use the notion of isogenies defined in terms of
tori (7.2.1) interchangeably with the notion of isogenies between elliptic curves. These isogenies
define an equivalence relation on the lattice quotient fields called homothety, i.e., the complex
tori C/L1 and C/L2 are isomorphic when one lattice is a scalar of the other. Again, this
equivalence relation has its correspondence for elliptic curves.

Corollary 7.1. Φ establishes a bijective correspondence between isomorphism classes of complex
elliptic curves and complex tori, modulo the relation of homothety.

Next results will use ‘complex elliptic curve’ interchangeably to denote a complex elliptic
curve E or its torus C/L.

Definition 7.2.3. A curve C/L has complex multiplication if Z ⊂End(E).

Proposition 7.10. If a curve C/L has complex multiplication, where L = Lω1,ω2, then τ := ω2

ω1

is an imaginary quadratic number and End(E) is an order in K = Q(τ).
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For applications in cryptography, we are interested, for an order O in an imaginary quadratic
field K, in the set of isomorphism classes of complex elliptic curves with endomorphism ring O,
denoted ELLO(C). We can classify these classes once we recognized O and its ideals as lattices.
Sets that are particularly relevant are:

IO = {invertible ideals of O}, (7.9)

C/IO := {C/a|a ∈ IO}. (7.10)

Lemma 7.2. ([Sut15]) For any E ∈ C/IO, End(E) = O. Conversely every complex elliptic
curve with endomorphism ring O is isomorphic (trough homothety in their lattices) to a member
of C/IO.

This lemma let us use C/IO as a full set of representatives for EllO(C). Nevertheless, these
representatives are not in general distinct isomorphism classes of curves. In fact,

C/a ≡ C/a′ ⇐⇒ a a′ ⇐⇒ [a′] in Cl(O).

This relation let us establish the following corollary.

Corollary 7.2. Cl(O) is bijective with EllO(C), by:

[a]→ C/a, (7.11)

where a is a representative for an ideal class such that a ∈ IO. In particular, EllO(C) is finite
and its size is h(O), the class number of the order.

Moreover, Cl(O) induces, canonically, a free and transitive action on EllO(C).

∗ :Cl(O)× EllO(C)→ EllO(C)

[a] ∗ j(C/b) = j(C/a−1b).

This action comes from a ‘parent’ action, [Sut15], that works with isogenies:

? :IO × C/IO → C/IO
a ? C/b = C/a−1b.

Because b ⊆ a−1b, this action derives a quotient isogeny

φa :C/b→ C/a−1b

z mod b 7→ z mod a−1b.

The suffix a in the action denotes the fact that the kernel of this map is the set of points
annihilated by a. Using the isomorphism ϕ, this maps transforms into an isogeny:

φa : Eb → Ea−1b

Mathematician 70 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

with the a-torsion Eb[a] as its kernel. This kernel has degree N(a).

Since this action can be considered modulo relations of isomorphism, both form the acting
group and the acting space, its induced action on EllO(C) is a principal homogenenous space
for Cl(O), i.e., Cl(O)−torsor, [Sil94].

This result is valid for any field, luckily for finite fields used in cryptography, the group
action torsor reduces in the following sense.

The j invariants of EllO(C) all lie in the Hilbert class field HO, with extension degrees the
class number h(O). HO is a Galois extension of K. Therefore, we restrict the study of this
action to curves over HO and consider EllO(C) = EllO(HO). HO is a number field and so, the
theorems of During, [Koh96], come into place.

Theorem 7.6 ([Koh96]). Let Ẽ/Q̃ be an elliptic curve with endomorphism ring End(Ẽ) = O,
where O is an order in an imaginary quadratic extension K of Q. Let P be a prime ideal of Q,
over a prime p, at which Ẽ has nondegenerate reduction E. The curve E is supersingular if,
and only if, p has only one prime of K above it. It p splits in K, then let m be the conductor
of O, so that O = Z + mOK. Write m = prm0, where pr is the largest power of p dividing m.
Then the endomorphism ring of E is as follows:

1. End(E) = Z +m0OK is the order of K with conductor m0.

2. If (p,m) = 1 the map ϕ→ ϕ̃ is an isomorphism of End(Ẽ) onto End(E).

Theorem 7.7 ([Koh96]). Let E be an elliptic curve over a finite field k of characteristic p and
let ϕ be an endomorphism of E. Then, there exists an elliptic curve Ẽ defined over a number
field H, and endomorphism ϕ̃ of Ẽ, and a prime P over p in H such that E is isomorphic to
the reduction of Ẽ at P, and ϕ corresponds to a reduction of ϕ̃ under this isomorphism.

Consider a prime p that will give such an isomorphism of endomorphism rings between the
complex curves and reduced ordinary curves, i.e.,

1. p splits in the endomorphism algebra K.

2. The prime P ∈ HO over p induces a non-degenerate reduction of Weierstrass forms.

3. (p,m) = 1, where m is the conductor of the order O.

Now, let Fq be a field with q = N(P) = pf , let EllO(Fq) be the isomorphism classes
of ordinary curves defined over Fq. Then the reduction map OHO → OHO/P extends to a
reduction

g : EllO(HO)→ EllO(Fq) (7.12)

that is a bijection for most cases, [BCL08]. This reduction preserves the group actions, to see
this consider the set

EO(Fq) := {E/Fq| End(E) ∈ O}. (7.13)

Then we have the reduction of the ‘parent’ action:

? : IO × EO(Fq)→ EO(Fq)
a ? E = E/E[a]
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and, modulo isomorphims, the reduction of the induced action known as the complex multipli-
cation operator :

∗ : Cl(O)× EllO(Fq)→ EllO(Fq)
[a] ∗ j(E) = j(E/E[a])

that makes EllO(Fq) a Cl(O)-torsor. This fact is what motivated isogeny based cryptography.
As in the general case, the action ? derives an isogeny: φa : E → E/E[a] of degree N(a). In
fact, we can use ? as a valid representation for this isogeny. An important fact of this isogeny
is that it is Fq-rational, [San15].

Lemma 7.3. The isogeny φa induced by an ideal a ∈ IO is Fq-rational.

Proof. For any P ∈ E[a], and for any a ∈ a, we have that a(πE(P )) = πE(a(P )) = O since
a, πE are both in O. By the next corollary of Propositon 7.8, it follows that πE(P ) ∈ E[a]

Corollary 7.3 (Corollary of Proposition 7.8). Let E/Fq be an elliptic curve and Φ ⊆ E(Fq)
be a finite subgroup. Then the quotient isogeny φ determined by Velu’s formula is defined over
Fqr if it is the case that for all P ∈ Φ, πrq(P ) ∈ Φ.

Regarding the computational cost of computing the action ?, we have different methods.
First of all, since isogenies can be understood as lattices, we don’t need to evaluate any isogeny
but just lift E to a complex curve and compute the action there, to finally reduce it. However,
this method is not efficient where the class number h(O) is very large, which it usually is,
[San15].

A better approach is to decompose the isogeny in its prime components. Consider the
case where a decomposes into split or ramified prime ideals pi of small norm3 and with small
exponents ei, i.e.,

a = pe11 · · · penn . (7.14)

Using this ‘factorization’, we can evaluate φa as the evaluation of the composition of the prime
degree isogenies φpi induced by the corresponding prime ideals.

When a is not smooth, the best algorithms compute an isogeny induced by a member of [a]
that is smooth. Let a′ ∈ [a] be such ideal, it differs from a by a principal ideal, i.e. a = (α)a′,
and we have efficient algorithms to compute the principal ideal and evaluate its corresponding
isogeny. Nevertheless, this approach is optimized for evaluating the star operator ?, and thus
if computing it is the only task we want to achieve we can skip the last step, [San15].

The basic step of this procedure is to evaluate an isogeny φl induced by a split prime ideal
l of small prime norm l. l is generated by (l, c+ dπe), where c, d ∈ N.

A first approach to evaluate the isogeny is to compute all l+ 1 cyclic subgroups of E[l]l and
then compute the action of l on these subgroups. The subgroup annihilated by l is the kernel

3The norm of an ideal is a generalization of a norm of an element in the field extension. This is, if a ∈ IO is
an ideal, then its norm is the size of the finite quotient field IO/a, [Jan96].
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of φl. Using Velu’s formulas we evaluate φl as a rational map.

However, since we know that the isogenies we work on are Fq-rational (7.3) we can improve
our approach ignoring isogenies that cannot be defined over Fq.

7.3 Cryptography based on Ordinary Curves

Couveignes [Cou06] in 1997 and Stolbunov [GS13] in 2009 used ordinary curves, specifically the
Cl(O)-torsor EllO(Fq), to create cryptographic schemes. They noticed that a set with group
action that satisfies certain assumptions of ‘efficient’ and ‘hard’ problems in the homogenous
space generalizes the classical dichotomy of exponentiation vs. discrete logarithm in finite
fields, and thus leads to cryptographic primitives emulating classical schemes such as the Diffie-
Hellman key exchange and Elgamal encryption.

Using Hard Homogenous Spaces for Public-key Protocols

Let us start by describing how a general G-torsor X, for a commutative group G, can lead to
creating asymmetric algorithms for cryptography.

Definition 7.3.1. A G-torsor X, for a commutative group G, based on the group action

∗ : G×X → X

is a hard homogenous space (HHS) if it meets the following general requirements. The
following computations should be computationally efficient:

1. (Group computation) Compute for any g, g−1, or for any two elements g1, g2, the product
g1g2.

2. (Random element) Find a random element g ∈ G.

3. (Membership) Test whether a given element x is contained in X.

4. (Action) Given g ∈ G and x ∈ X, compute g ∗ x.

The following problems should be computationally hard:

1. (Vectorization) Given x, y ∈ X, find the g such that g ∗ x = y.

2. (Parallelization) Given x and y = g ∗ x, respond to a challenge z ∈ X, with g ∗ z.

3. (Parallel testing) Given a challenge set x, y, z, z′ ∈ X, such that y = g ∗ x, decide if
z′ = g ∗ z.

The quality of being ‘hard’ depends on the context where the torsor is defined. For example,
since the vectorization problem can generally be solved in O(|X|1/2) computations of the group
action, we must require for |X| = |G| to have exponential size.

To see how these hard homogeneous spaces can be used in cryptography, we give three
examples of public-key primitives based on the classical Diffie-Hellman, Elgamal scheme, and
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a zero-knowledge identification protocol.

Key Exchange

This protocol generalizes the Diffie-Hellman protocol. Its security relies on the paralleliza-
tion problem associated with the space, [San15].

1. Public parameter: a basepoint x ∈ X.

2. Alice chooses a random element a ∈ G, and computes ka = a ∗ x, sending this value to
Bob.

3. Bob chooses a random element b ∈ G, and computes kb = b ∗ x, sending this value to
Alice.

4. Alice computes kAB = a ∗ kb, while Bob computes the same key kAB = b ∗ kA.

Public Key Encryption On Stolbunov’s thesis [Sto12], there is a generalization of Elgamal
scheme for public key encryption. Its security relies on the parallel testing problem associated
to the space.

1. Public parameters: Hash function H = {Hk} : X → {0, 1}w, public base point x ∈ X.

2. Key Generation: secret key sk ∈ G randomly chosen and public key pk = sk ∗ x, k ∈ K.

3. Encryption: Choose a ∈ G. Then E(m) = (c, z) := (Hk(a ∗ pk)⊕m, a ∗ x).

4. Decryption: m = D(c, z) = Hk(sk ∗ z)⊕ c.

Identification protocol

Alice proves herself (via her identity ga ∈ G) to Bob as follows. This protocol is computa-
tionally zero-knowledge where its security relies on the parallel testing problem of the associated
space, [Cou06].

1. Public parameters: public basepoint x ∈ X, public-key pk = ga ∗ x.

2. Alice chooses a random r ∈ G and computes and transmits y = r ∗ pk,

3. Bob chooses a random challenge bit b ∈ {0, 1}.

4. If b = 0, Alice reveals r and Bob checks that r ∗ pk = y. Else Alice reveals g = r ∗ ga and
Bob checks that g ∗ x = y.

Now that we know how to create cryptographic schemes using Hard Homogeneous Spaces,
let us discuss how the Cl(O)-torsor EllO(Fq) can be used as an HHS.
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The Cl(O)-torsor EllO(Fq) as a HHS

j(E) [a] ∗ j(E)

[b] ∗ j(E) [a][b] ∗ j(E)

Figure 7.1: DH-type key exchange using ordinary curves

The commutative diagram in Fig. 7.1 is the basic scheme for DH-type key exhange using
ordinary curves: A base ordinary elliptic curve given by j(E). Alice’s private key is [a] and
Bob’s private key is [b]. [a] ∗ j(E) and [b] ∗ j(E) are Alice’s and Bob’s public key respectively.
[a][b] ∗ j(E) is then their shared secret key.

There are certain conditions that must be achieved in order for EllO(Fq) be an HHS. First,
|EllO(Fq)| = h(O) needs to be exponentially large.
Now, before using EllO(Fq) to construct cryptographic protocols, we need to take into account
that the encryption process is still hard. The encryption part in all protocols requires the
ability to compute the complex multiplication operator, which is the group action of the space.
However, the best algorithms to compute it are subexponential in log

(
|∆|
)

(and polynomial in
the degree of the acting ideal), [San15]. More work is required to improve performance of these
computations.

Algorithms to compute the group action
Suppose you are given a j(E) ∈ EllO(Fq), and [a] ∈ Cl(O), you need to compute [a] ∗ j(E).

As mentioned above, the best strategy involves factoring the ideal into its prime components

[a] = [p1]e1 [p2]e2 · · · [pn]en (7.15)

where the pi are split prime ideals of small norm and ei are small exponents. Then, you
compute sequentially the action of a family of isogenies in each of these ideals. This procedure
is summarized in the following algorithms.

Algorithm 10 Compute φl for a split prime ideal l

INPUT: An elliptic curve E/Fq in Weiersrtrass form, a split prime ideal in IO l = (l, c+dπE),
where O ∼= End(E) an order in K, and l - [OK : Z[πE]]
OUTPUT: An evaluation of φl : E → E ′

PROCEDURE:

1: Construct the modular polynomial Φl(X, Y ) ∈ Fq and find the two roots j1 and j2 of
Φl(j(E), Y ) over Fq.

2: For each root, find target curves E1/Fq and E2/Fq and a prime degree isogeny algorithm
to find points P1 and P2 such that 〈P1〉 and 〈P2〉 are the kernels of the isogenies to E1 and
E2 respectively.

3: Find which points satisfies [c] + [d]πq(Pi) = O; this point Pi is the kernel of φl.
4: Use Velu’s formula for 〈Pi〉 to evaluate φl.
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Algorithm 11 Computing the complex multiplication operator

INPUT: ∆, q, [a], j(E)
OUTPUT: The element j(E ′) ∈ Ell∆(Fq) such that [a] ∗ j(E) = j(E ′).
PROCEDURE:

1: Compute a factor base F = {p1, · · · , pn} of split prime ideals of norm ≤ B for some specified
B.

2: Compute a vector e = (e1, · · · , en) of small L1 norm such that [a] = [p1]e1 [p2]e2 · · · [pn]en

3: Compute a sequence of (φ1, · · · , φn) of isogenies such that the composition φc : E → Ec of
the sequence has kernel E[pe11 · · · penn ] using Algorithm 10.

4: Return j(E).

Some comments regarding the enlisted algorithms are important. In Algorithm 10 we men-
tioned in the first step the construction of a modular polynomial. A modular polynomial of
degree N is a symmetric polynomial ΦN(X, Y ) of degree 2N + 1 in Z[X, Y ] that parameterizes
pairs of j invariants over C that are related by a cyclic N -isogeny (for any representative curves).
From this definition we get that given a curve E and a prime L, the roots of φl(j(E), X) give
the j-invariants of complex curves l-isogenous to E. In the second step of this algorithm , we
use ’Atkins-Elkies’ formulas [Sch95] for each root j′ to construct a curve E ′ and a normalized
l-isogeny E → E ′. The curve E ′ has j-invariant j′ and establishes the existence of a normalized
and separable l-isogeny φ : E → E ′.[Sch95]. Knowing both curves E, E ′. Bostan, Morain, Salvy
and Schost [BMSS08] implemented an algorithm to compute the isogeny φ in O(M(l) log(l))
operations. The output of this algorithm is a kernel polynomial, which is a polynomial in x
whose roots are exactly the x-coordinates of the points in ker(φ).

For the Algorithm 11, the important step is step 3, which is computed in time proportional
to Π|ei|N(pi)

2, thus depends on the quality of the factorization in steps 1 and 2.

In the factor base F computed in step 1 all class group elements can decompose, i.e.,

Cl(O) =
⊗
F

pi. (7.16)

The existence of F with bounded norm is justified by Minkowski’s bound [San15]. Moreover,
we can improve this bound under the Generalized Riemman Hypothesis (GRH) [Bac90].

Of course, this does not tell us how to find decomposition (7.16) for a given ideal class [a].
Thus, the search for a factor base with small norms requires a tradeoff: the more split prime
ideals we include, the more relations we can find efficiently, and the easier it is to factor with
small exponents [San15]. The first to suggest this strategy were Broker, Charles, and Lauter
on a paper from 2008 [BCL08]. Since then, many authors have presented different algorithms
for factoring, whose performance is improved for specific parameter choices and heuristics.

The search for better factoring lets to find weaknesses in the schemes based on ordinary
curves. In particular, in 2010 Jao and Soukharev [JS10], showed a way to evaluate large de-
gree isogenies between elliptic curves in subexponential time under reasonable heuristics. Their
approach was based on factoring the ideal corresponding to the kernel of the isogeny, modulo
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principal ideals, into a product of smaller primer ideals for which the isogenies can be computed
directly.

Eight years later, Jao and Sokharev together with Childs, [CJS14], gave a quantum algo-
rithm for constructing elliptic curves in subexponential time. Assuming only the GRH, they
found out that the problem of finding an isogeny between ordinary curves can be reduced to a
hidden shift problem, which is known to be solved by Kuperberg’s quantum algorithm.[Kup05].
The Hidden Subgroup Problem is one of the problems that have quantum algorithms which
achieve super polynomial speedup in the quantum setting in contrast to the classical one. For
example, Shor’s algorithm discussed in Section 6.5 solves the hidden subgroup problem over
the finite group generated by a point P of an elliptic curve.

Definition 7.3.2 (The Hidden Subgroup Problem). For a finite set S, let |S〉 denote the
state

|S〉 =
1√
|S|

∑
s∈S

|s〉 .

In the hidden subgroup problem, we have a known finite group G, a finite set S, and (black-box
access to) a function f : G → S which is constant on all (right) cosets of a hidden subgroup
H ≤ G.4 The goal is to discover H, say as a set of its generators.

The result from Childs et al, suggests that isogeny-based cryptosystems may be uncompet-
itive with more powerful quantum-resistant cryptosystems. Thus, justifying the turn to the
supersingular case.

7.4 Crytography based on Supersingular Curves

De Feo, Jao, and Plut decided to see if supersingular curves were better at resistant quantum at-
tacks. In 2014, they published a paper called “Towards quantum-resistant Cryptosystems From
Supersingular Elliptic Curve Isogenies” [DFJP14] were inspired by the protocols in the ordinary
case they designed supersingular cryptographic protocols. This is the birth of Supersingular
Isogeny Diffie–Hellman/Supersingular Isogeny Key Encapsulation SIDH/SIKE protocol which
is a candidate for the postquantum cryptography standardization process by NIST. The security
of all these schemes relies on the conjectured difficulty of finding isogenies between supersingu-
lar elliptic curves. As in the ordinary case, the idea is to transmit the images of torsion bases
under the isogeny in order to allow parties to construct a shared commutative square despite
the noncommutativity of the endomorphism ring. Contrary to the ordinary case, the fastest
known quantum attack to the protocols that will be discussed here remains exponential, since
the noncommutativity of the endomorphism ring means that the approach used in the ordinary
case does not apply.

We say that we used a shared commutative diagram as the principle behind cryptosystems
from supersingular elliptic curves isogenies, however, the endomorphism ring in the supersin-
gular case is not commutative. How is this possible? By allowing auxiliary information that is

4If a subset H of a group G is itself a group under the binary operation of G, then H is a subgroup of G,
written as H ≤ G or G ≥ H.
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conjectured not to compromise security.

7.4.1 Parameters

The protocols for supersingular settings require supersingular curves of smooth order. Notice
that these curves are avoided in the classical elliptic curve cryptography since they have easy
discrete logarithms. In this setting, we do not rely upon discrete logarithms and so these issues
do not affect us. Even more, we should have smooth order curves since they will have a large
number of isogenies that are fast to compute. Specifically, the parameters needed for our setting
are the following:

1. The characteristic of the prime subfield where the curves live of the form p = leaA l
eb
B f ± 1,

where f is a cofactor such that p is prime. These primes are dense [LO77], so for any
choice of lA, lB, eA, eB, a simple trial and error algorithm finds a prime of this form.

2. The base point E/Fp2 is a supersingular curve over Fp2 of rational cardinality (leaA l
eb
B f)2.

This curve can be computed efficiently by Broker’s algorithm [BCL08].

3. Torsion bases PA, QA of E[leAA ] and PB, QB of E[leBB ]. These can be computed efficiently
using a simple randomized algorithm that scales random points of E, and tests linear
independence via the Weil pairing [Sil09].

From this list, public parameters include: p, E, lA, eA, eB, PA, PB, QA and QB. The private
keys are cyclic subgroups 〈S〉 and 〈R〉 of the leA−1

A (lA+1) full cyclic subgroups possible in E[leAA ]
and the leB−1

B (lB + 1) full cyclic subgroups possible in E[leBB ], respectively.

All of these protocols revolve around the following commutative diagram,

E E/〈S〉

E/〈R〉 E/〈S,R〉

ψ

φ

Figure 7.2: Principle behind cryptosystems from supersingular elliptic curves isogenies

where φ and ψ are random walks in the graphs of isogenies of degrees lA and lB respectively.
Their security relies on the difficulty of finding a path connecting two given vertices in a graph
of supersingular isogenies, [DFJP14].

Since we use graphs of isogenies, few definitions regarding Graph Theory are necessary to
understand the protocols.
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7.4.2 Isogeny graphs

Let G = (V , E) be a finite graph on h vertices V with undirected edges E . Suppose G is a
regular graph of degree k, i.e., exactly k edges meet at each vertex. Given a labeling of the
vertices V = {υ1, · · · , υh}, the adjacency matrix of G is the symmetric h × h matrix A whose
ij−th entry Ai,j = 1 if an edge exists between υi and υj and 0 otherwise.
Using this labeling, we can identify functions on V with vectors in Rh, and thus A can be seen
as a self-adjoint operator on L2(V). By construction, all of the eigenvalues of A satisfy the
bound |λ| ≤ k. The trivial eigenvalue λtriv = k has constant vectors as associated eigenvectors.
Consider a family of such graphs G with h → ∞. If all non-trivial eigenvalues of their adja-
cency matrices are bounded away from the trivial one by a fixed amount, the family is said
to be a sequence of expander graphs. A Ramanujan graph is an expander graph which has
|λ| ≤ 2

√
k − 1 for any nontrivial eigenvalue which is not equal to −k, [PS88].

We use expander graphs to prove the rapid mixing of the random walk on V along the edges
E .

Proposition 7.11. Let G be a regular graph of degree k on h vertices. Suppose that the
eigenvalue λ of any constant eigenvector satisfies the bound |λ| ≤ c for some c < k. Let S be
any subset of the vertices of G, and x be any vertex in G. Then, a random walk of length at

least
log(2h/|S|1/2)

log(k/c)
starting from x will land in S with probability at least |S|

2h
= |S|

2|G| .

An isogeny graph is a graph whose nodes consist of all elliptic curves in Fq belonging to a
fixed isogeny class, up to F q−isomorphism (so that two elliptic curves which are isomorphic over
Fq represent the same node in the graph). Since isomorphic curves share j-invariant, in practice
the nodes are represented using them. Isogeny graphs have the Ramanujan property, [CFL+19].

Since every supersingular elliptic curve in characteristic p is defined over either Fp or Fp2 ,
[Sil94], we fix Fq = Fp2 as the field where we work on. In this context, in any given isogeny
class there are approximate g+1 = p

12
+1 isomorphism classes of supersingular curves, [Mes86].

Even more, all supersingular curves defined over Fp2 belong to the same isogeny class. Thus,
we define supersingular graphs in terms of isomorphisms between isogenies. For a fixed prime
value of l 6= p, the supersingular isogeny graph G is a graph whose vertices are the g iso-
morphism classes of curves, with edges given by isomorphism classes of degree-l isogenies. It
turns out that G is a connected k = l + 1-regular multigraph satisfying the Ramanujan bound
of |λ| ≤ 2

√
k − 1 for the nontrivial eigenvalues of its adjacency matrix, [CFL+19].

With this notation in mind, we are ready to present the cryptographic protocols.

7.4.3 Zero-knowledge proof of identity

Suppose Alice wants to identify herself to Bob. She decides to use isogeny based cryptography
to do this. Alice and Bob select curves E and E/〈S〉 as their road to transmit the infor-
mation. These curves are publicly known. Alice knows in secret a cyclic degree leAA isogeny
φ : E → E/〈S〉. Alice will prove to Bob that she knows a generator for 〈S〉, without revealing
it.
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Alice will use a protocol similar to the zero-knowledge proof of membership for Graph Isomor-
phism, [GMW91]. In this protocol, Alice shows that she knows a graph isomorphism G ≡ G′

by first publishing a random H such that the following diagram commutes.

G G′

H
φ ψ

and then revealing only one among ψ and φ. This protocol is perfectly zero knowledge because
the random permutation of G or G′ that Alice reveals could be easily computed by anyone
without her help.
Analogously, in the isogeny setting, Alice publishes the vertices of the diagram 7.2, and then
reveals some of its arrows. In contrast to the Graph Isomorphism protocol, this one is not
perfectly zero-knowledge since Alice needs to use her secret knowledge to compute the diagram.
However, under certain conditions, it is computationally zero-knowledge. [DFJP14].
The diagram used in this protocol is the following:

E E/〈S〉

E/〈R〉 E/〈S,R〉

φ

ψ

φ′

ψ′ (7.17)

In this diagram, 〈S〉 is the kernel of the secret isogeny φ of degree le
A

A , while 〈R〉 is a cyclic
group of order leBB . Then, to compute the diagram Alice needs to:

� Use Velu’s formulas to compute the isogeny ψ : E → E/〈R〉;

� Compute the image R′ = φ(R) and the isogeny ψ′ : E/〈S〉 → E/〈S,R〉;

� Compute the image S ′ = ψ(R) and the isogeny φ′ : E/〈R〉 → E/〈S,R〉;

The knowledge of any pair (ψ, φ′) or (ψ′, φ′) will allow anyone to compute the kernel of φ.
However, there is no obvious way to compute φ from the sole knowledge of φ′ and one of ψ
or ψ′. On the other hand, the revealing of R and φ(R) uncovers some information on the
action of φ on E[leBB ] and could potentially allow anyone to evaluate φ on the whole E[leBB ].
Nevertheless, it is conjectured that this does not compromise Alice’s secret. The whole protocol
is summarized below.
Secret paramenters: A supersingular curve E defined over Fq and a primitive leAA -torsion
point S defining an isogeny φ : E → E/〈S〉.
Public parameters: The curves E and E/〈S〉. Generators P , Q of E[leBB ] and their images
φ(P ), φ(Q).
Identification: Repeat m times:

1. Alice chooses a random primitive leBB -torsion point R and computes diagram 7.17.

2. Alice sends the curves E1 = E/〈R〉 and E2 = E/〈S,R〉 to Bob.

3. Bob selects a random bit b and sends it to Alice.
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4. If b = 0, Alice reveals the points R and φ(R′). Bob accepts if they have order le
B

B and
generates the kernels of isogenies E → E1 and E/〈S〉 → E2, respectively.

5. If b = 1, Alice reveals the point ψ(S). Bob accepts if it has order le
A

A and generates the
kernel of an isogeny E1 → E2.

Key exchange

As above, this protocol is a variation of the Diffie-Hellman protocol using diagram (7.2). The
main idea is to let Alice choose φ and Bob ψ. The method is similar to the ordinary case, but
here ideal classes no longer commute thus making the diagram no commutative and so we need
to give extra information in order to ensure that both parties arrive at the same common value.
Public parameters: A supersingular curve E0 defined over Fp2 . Bases {PA, QA} and {PB, QB}
for E0[leAA ] and E0[leBB ].
Key generation: Alice chooses two random elementsmA, nA ∈ Z not both divisible by lA, and
computes an isogeny φA : E0 → EA with kernel KA := 〈[mA]PA+[nA]QA〉. Alice also computes
the image {φA(PB), φA(QB)} ⊂ EA and sends these to Bob together with EA. Similarly, Bob
selects two random elements mB, nB ∈R Z/leBB and computes an isogeny φB : E0 → EB with
kernel KB := 〈[mB]PB+[nB]QB〉, along with the points {φB(PA), φB(QA)} which are transfered
to Alice together with EB. Both Alice and Bob compute isogenies φ′A : EB → EAB and
φ′B : EA → EBA, respectively. The kernel of Alice’s isogeny is 〈[mA]φB(PA)+[nA]φB(QA)〉. Bob
isogeny’s kernel is 〈[mB]φA(PB) + [nB]φA(QB)〉. Thus, Alice and Bob can use the j−invariant
of

EAB = φ′B(φA(E0)) = φ′A(φB(E0)) = E0/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉,

to form a secret shared key.
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Figure 7.3: Key-exchange protocol using isogenies on supersingular curves [DFJP14].

The full protocol is given in Figure 7.3, where sID denotes the unique session identifier.

7.4.4 Public-key encryption

Analogous to ElGamal encryption following from Diffie-Hellman, this pubick-key cryptosystem
is an adapation of the key-exhange protocol given in Fig.(7.1).
Setup: Choose p = leAA l

eB
B · f ± 1, E0, {PA, QA}, {PB, QB}. Let H = {Hk : k ∈ K} be a hash

function family indexed by a finite set K, where each Hk is a function from Fp2 to the message
space {0, 1}ω.
Key generation: Choose two random elements mA, nA ∈R Z/leAA Z, not both divisible by lA.
Compute EA, φA(PB), φA(QB) and choose a random element k ∈R K. The public key is the
tuple (EA, φA(PB), φA(QB), k) and the private key is (mA, nA, k).
Encryption: If you want to send a messagem ∈ {0, 1}ω using a public key (EA, φA(PB), φA(QB), k),
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choose two random elements mB, nB ∈R Z/leBB Z, not both divisible by lB, and compute

h = Hk(j(EAB)),

c = h⊕m.

The ciphertext is (EB, φB(PA), φB(QA), c).
Decryption: If you want to decipher the ciphertex (EB, φB(PA), φB(QA), c) using your private
key (mA, nA, k), compute the j−invariant j(EAB) and set

h = Hk(j(EAB)),

m = h⊕ c.

Thus obtaining the plaingtext m.

7.4.5 Algorithmic aspects

In [DFJP14], the authors give a detailed description of the algorithms used to implement these
last protocols. However, because many of these algorithms are based on the theory that we
cannot cover, we are going to summarize the work done in this field and suggest specific bibli-
ography for the interested reader.

The generation of the parameters follows from classical results. Given numbers leAA and leBB ,
it is easy to test random values of f such that p = leAA l

eB
B · f ± 1 is prime. Lagarias and Odlyzko

[LO77] provide a sufficient lower bound for the density of these primes.
Broker [BCL08] gives a detailed way to find a supersingular curve E over Fp2 with |E| = (p±1)2.
From E, using random walks on the isogeny graph we can go to a random supersingular curve
E0, or just take E0 = E. In either case, E0 has group structure (Z/(p ± 1)Z)2. A basis
{PA, QA} for E0[leAA ] can be obtained choosing a random point P ∈R E0(Fp2) and multiplying
it by (leBB · f)2 to get a point P ′. We repeat this proccess until we get a point PA = P ′ of order
leAA . The same holds for getting a point QA. Finally you need to use the Weil pairing to see if
PA and QA are independent, if not, choose another QA [Aft11].
For the protocols requiring the computation of a kernel 〈[m]P + [n]Q〉 we need any generator
of it. Without loss of generality, we can assume that m is invertible and use the generator
R′ = P + [m−1n]Q. To compute R′, we use a three-point ladder method based on Montgomery
ladders [Mon87].

The idea behind algorithm (12) is that at each iteration, the registers A,B and C contain
respectively the values [x]Q, [x + 1]Q and P + [x]Q for x equal to the leftmost bits of m−1n.
The function dadd(A,B,C) is a differential addition: it computes the sum A + B knowing
C = A−B.
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Figure 7.4: Computational structure of the construction of φ = φe−1 ◦ · · · ◦ φ0 [DFJP14].

Algorithm 12 Three-point ladder to compute P + [t]Q

INPUT: t, P,Q
OUTPUT: C = P + [t]Q
PROCEDURE:

1: Set A = 0, B = Q, C = P .
2: for i decreasing from |t| to 1 do
3: Let ti be the i-th bit of t;
4: if ti = 0 then
5: A = 2A, B = dadd(A,B,Q), C = dadd(A,C, P );
6: else
7: A = dadd(A,B,Q), B = 2B, C = dadd(B,C,Q,−P );
8: end if
9: end for

The most difficult task around these protocols is the computation and evaluation of isogenies.
Namely, given an elliptic curve E and a point R of order le, we need to compute the image curve
E/〈R〉 and to evaluate the isogeny φ : E → E/〈R〉 at some points of E. In the supersingular
case, the degree of φ is smooth, so we decompose it as a chain of l−isogenies. Set E0 = E,
R0 = R and, for 0 ≤ i < e, let

Ei+1 = Ei/(l
e−i−1Ri), φi : Ei → Ei+1, Ri+1 = φi(Ri).

Then E/〈R〉 = Ee and φ = φe−1 ◦ · · · ◦ φ0.

Both, the curve Ei+1 and the isogeny φi can be computed using Velu’s formulas once the
l-torsion subgroup 〈Ri〉 of Ei is known. The best strategy to do this is given by Figure (7.4)
for the case e = 6. Here, bullets represent points, with points on the same horizontal level
having the same order, and points on the same left diagonal belonging to the same curve.
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Dashed edges are directed top-bottom; leftward edges represent multiplication by l, and right-
ward edges represent an evaluation of an l-isogeny. The final goal is to compute all the points
in the bottom line. The best strategy to do this depends on the combinatorial structure of
the problem rather than its number-theoretic nature. We are not going to discuss more of
this, but it is important to mention that given the point [le−i−1]Ri, we can compute the ker-
nel of φi usingO(l) point additions. And then, continue using Velu’s formulas for the next steps.

Since many aspects of these protocols are computationally hard, it is important to use
models for elliptic curves that offer the fastest formulas for doubling, addition, isogeny compu-
tation, and evaluation, etc. The curves that we use in these cryptosystems are isomorphic to
twisted Edward and Montgomery curves, [BBJ+08]. Twisted Edwards curves, Ea,d : ax2 +y2 =
1 + dx2y2, have very efficient addition and doubling formulas, [BBJ+08]. Montgomery curves,
MB,A : By2 = x3 +Ax2 + x, are also good for doubling points, [Mon87], and there are efficient
formulas for isogeny evaluation of degree 2, 3 and 4 over them, [DFJP14].

7.4.6 Complexity assumptions

As before, the security of the protocols relies on the difficulty of the following problems,
[DFJP14]:

Decision Supersingular Isogeny (DSSI) problem. Let EA be another supersingular curve
defined over Fp2 . Decide whether EA is leAA -isogenous to E0.

Computational Supersingular Isogeny (CSSI) problem. Given EA and the images
φA(PB), φA(QB), find a generator RA for the kernel of φA.

Supersingular Computational Diffie-Hellman (SSCDH) problem. Given the curves
EA, EB and the points φA(PB), φA(QB), φB(PA), φB(PA), find the j-invariant of E0/〈[mA]PA +
[nA]QA, [mB]PB + [nB]QB〉.

Supersingular Decision Diffie-Hellman (SSDDH) problem. Given a tuple sampled with
probability 1/2 from one of the following two distributions:

� (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EAB), where

EAB ≡ E0/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉,

� (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EC), where

EC ≡ E0/〈[m′A]PA + [n′A]QA, [m
′
B]PB + [n′B]QB〉,

where m′A, n
′
A,m

′
B, n

′
B are chosen following the same conditions of the original ones,

determine from which distribution the tuple is sampled.

All of these problems are conjectured to be computationally infeasible. It is assumed that
DSSI and CSSI are equivalent to SSDDH. DSSP can be reduced to DSSI and it is assumed
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that is easier to solve, [DFJP14].

Most of the difficulty comes from the problem of computing an isogeny between two su-
persingular curves. The fastest known algorithm for this takes O(

√
p log2(p)) time, [LG09].

However, the curves used in the protocols have a smooth known degree and there is a lack of
literature addressing the security of the isogenies of the special form that protocols use. For
example, Sankar [San15] gives a quantum algorithm that breaks SSDDH but has exponential-
complexity in general and subexponential complexity in a particular case that can be easily
avoided. However, this is not a big threat to the schemes and even on a quantum computer,
there are no efficient algorithms to solve these problems.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

We have done an extensive review of cryptography based on elliptic curves and isogenies. We
have presented all the basic tools for understanding a subject that requires a great deal of back-
ground and advanced jargon not seen in regular undergraduate courses. In a non-traditional
way, we have included small introductions to complexity, cryptography, and quantum com-
puting for a better understanding of the protocols and their attacks. We have shown that
cryptography based on elliptic curves is useful in our classical system and in particular, it
works well for embedded systems. However, if quantum computing is achieved on a large scale,
the family of protocols based on elliptic curves will be rendered useless. Hence, the need for
isogenies-based cryptography. Isogenies between ordinary curves are vulnerable to quantum
attacks, but those based on supersingular curves offer a new family of conjecturally quantum-
resistant public-key cryptographic protocols.

8.2 Recommendations

Most of the members of this last family rely on the factorization of isogenies and the use of
isogeny graphs. This way to do things avoids the number theoretic aspects of isogenies and
elliptic curves to give attention to the structural properties of their isogeny graphs. This is
understandable since most of the current work in this area is done by people with computa-
tional sciences and discrete mathematics as their background, where graphs are very important.
However, we think that we can explore the algebraic and geometric aspects of these protocols to
achieve interesting results. Since elliptic curves are both algebraic curves and abelian groups;
and isogenies are just morphisms between them, we believe that there are algorithms coming
from Computational Algebra that could result useful. As an example, we will like to con-
sider Ritt-Wu’s Decomposition Algorithm to decompose the kernel characterizing an isogeny
into its prime components. Ritt-Wu’s algorithm consists of the decomposition of an algebraic
set into an union of irreducible varieties and the transformation of its ideal into an ascending
chain of polynomials corresponding to elimination ideals, [XCG09]. For example, suppose that
we are given elliptic curves E and E/G, where G is a finite ideal. To compute the isogeny
φ : E → E/G, we can decompose G into its prime components G1, G2, . . . and then use Velu’s
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formulas in each of the quotiented rings E/G1, E/G2, . . . to obtain their respective isogenies
and see, if the union of their images, is the same as the image of φ(E). If thise procedure results
in a feasible approach to obtain an isogeny, then this could give more insight into elliptic curves,
isogenies, and the protocols presented here.

Nevertheless, we consider that it is worthwhile to continue working on cryptographic schemes
based on isogenies between supersingular elliptic curves since they provide protocols that im-
prove upon many other quantum-resistant schemes. However, because of the advanced amount
of mathematics needed to understand these protocols, we believe it is important to make them
more accessible, such that, more mathematicians can work in this area.
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Appendix A

Fields and Galois Theory

This appendix presents concepts from Field Theory and Galois Theory used throughout the
text. It is based on Milne’s notes, [Mil20]. This appendix is not intended to replace a textbook
and should be accompanied by historical sources such as [Gal10], [MM96], and [Edw97]. We
do not give proofs for theorems or statements given here, for the interested reader, we refer to
Milne’s notes.

A.1 Basic Definitions

A.1.1 Rings

A ring is a set R with two binary operations + and · such that

(a) (R,+) is a commutative group;

(b) · is associative, and there exists an identity element 1R such that a · 1R = a = 1R · a for
all a ∈ R;

(c) the distributative law holds: ∀a, b, c ∈ R,

(a+ b) · c = a · c+ b · c,
a · (b+ c) = a · b+ a · c.

We usually omit “·” and write 1 for 1R when this causes no confusion.

A subring of a ring R is a subset S that is also a ring.

A homorphism of rings α : R→ R′ is a map such that

α(a+ b) = α(a) + α(b), α(ab) = α(a)α(b), α(1R) = 1′R

for all a, b ∈ R. A ring R is said to be commutative if multiplication is commutative. A
commutative ring is said to be an integral domain if 1R 6= 0 and the cancellation law holds
for multiplication,

ab = ac, a 6= 0, implies b = c.
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An ideal I in a commutative ring R is a subgroup of (R,+) that is closed under multiplication
by elements of R,

r ∈ R, a ∈ I,→ ra ∈ I.
The ideal generated by elements a1, . . . , an is denoted by (a1, . . . , an).

A.1.2 Fields

Definition A.1.1. A field is a set F with two composition laws + and · such that

(a) (F,+) is a commutative group;

(b) (F − {0}, ·) is a commutative group;

(c) the distributive law holds.

Thus a field is a nonzero commutative ring such that every nonzero element has an inverse.
A subfield S of a field F is a subset of F which is also a field.

Example A.1. The following are fields: Q,R,C,Fp = Z/pZ (p prime).

A homomorphism of fields is a homomorphism of rings. Such a homomorphism is always
inyective.

A.1.3 The characteristic of a field

It is easy to see that the map

Z→ F, n 7→ n · 1F := 1F + 1F + · · ·+ 1F (n copies of 1F ),

is a homomorphism of rings. For example, m · 1F + n · 1F = (m + n) · 1F because of the
associativity of addition. Therefore its kernel is an ideal in Z.

Case 1: The kernel of the map is (0), so that

n · 1F = 0 ∈ F ⇒ n = 0 ∈ Z.

Nonzero integers map to invertible elements of F under n 7→ n · 1 − F : Z → F , and so
this map extends to a homomorphism

m

n
7→ (m · 1F )(n · 1− F )−1 : Q ↪→ F.

In this case, F contains a copy of Q, and we say that it has characterisitc zero,
char(F )= 0.

Case 2: The kernel of the map is 6= (0), so that n · 1F = 0 for some n 6= 0. The smallest positive
such n will be a prime p, and p generates the kernel. Thus, the map n 7→ n · 1F : Z→ F
defines an isomorphism from Z/pZ onto the subring

{m · 1F |m ∈ Z}

of F . In this case, F contains a copy of Fp, and we say that it has characteristic p,
char(F )= p.
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A field isomorphic to one of the fields F2,F3,F5, . . . ,Q is called a prime field. Every field
contains exactly one prime field (as a subfield).

More generally, a commutative ring R is said to have characteristic p (resp. 0) if it contains
a prime field (as a subring) of characteristic p (resp. 0). Then the prime field is unique and,
by definition, contains 1R. When R has characteristic p, it is true that

(a+ b)p = ap + bp for all a, b ∈ R,

and so the map a 7→ ap : R → R is a homomorphism of rings. It is called the Frobenius
endomorphism of R. The map a 7→ ap

n
: R → R, n ≥ 1, is the composite of n copies of the

Frobenius endomorphism, and so it also is a homomorphism. Therefore,

(a1 + · · ·+ am)p
n

= ap
n

1 + · · · apnm

for all ai ∈ R.

When F is a field, the Frobenius endomorphism is injective, and hence an automorphism if
F is finite.

The characteristic exponent of a field F is 1 if F has characteristic 0, and p if F has
characteristic p 6= 0. Thus, if q is the characteristic exponent of F and n ≥ 1, then x 7→ xq

n
is

an isomorphism of F onto a subfield of F (denotes F qn).

A.1.4 Polynomial rings

Let F be a field.

The ring F [X] of polynomials in the symbol (or “indeterminate” or “variable”) X with
coefficients in F is an F -vector space with basis 1, X, . . . , Xn, . . ., and with the multiplication∑

i

aiXii

∑
j

bjX
j

 =
∑
k

∑
i+j=k

aibj

Xk.

Let I be a nonzero ideal in F [X], and let f be a nonzero polynomial of least degree in I; then
I = (f). When we choose f to be monic, i.e., to have leading coefficient one, it is uniquely
determined by I. Thus, there is a one-to-one correspondence between the nonzero ideals of
F [X] and the monic polynomials in F [X]. The prime ideals correspond to the irreducible
monic polynomials.

As F [X] is an integral domain, we can form its field of fractions F (X). Its elements are
quotients f/g, f and g polynomials, g 6= 0.

A.1.5 Extensions

Let F be a field. A field containing F is called an extension of F . An extension E of F is, in
particular, an F -vector space, whose dimension is called the degree of E over F . It is denoted

Mathematician 91 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

by [E : F ]. An extension is said to be finite if its degree is finite, and quadratic, cubic, etc., if
it is of degree 2,3, etc.

When E and E ′ are extensions of F , an F -homomorphism E → E ′ is a homomorphism
ϕ : E → E ′ such that ϕ(c) = c for all c ∈ F .

Example A.2. (a) The field of complex numbers C has degree 2 over R (basis {0, i}). (b) The
field of real numbers R has infinite degree over Q. (c) The field F (X) has infinite degree over
F ; in fact, even its subspace F [X] has infinite dimension over F (basis 1, X,X2, . . .).

A.1.6 The subring generated by a subset

An intersection of subrings of a ring is again a ring. Let F be a subfield of a field E, and let S
be a subset of E. The intersection of all the subrings of E containing F and S is the smallest
subring of E containing both F and S. We call it the subring of E generated by F and
S, and we denote it by F [S]. When S = {α1, . . . , αn}, we write F [α1, . . . , αn] for F [S]. For
example, C = R[

√
−1].

A.1.7 The subfield generated by a subset

An intersection of subfields of a field is again a field. Let F be a subfield of a field E, and let S
be a subset of E. The intersection of all the subfields of E containing F and S is the smallest
subfield of E containing both F and S. We call it the subfield of E generated by F and S,
and we denote it F (S). It is the field of fractions of F [S] in E because this is a subfield of E
containing F and S and contained in every other such field. When S = {α1, . . . , αn}, we write
F (α1, . . . , αn) for F (S). Thus, F [α1, . . . , αn] consists of all elements of E that can be expressed
as polynomials in the αi with coefficients in F , and F (α1, . . . , αn) consists of all elements of E
that can be expressed as a quotient of two such polynomials.

A.2 Galois Theory

A.2.1 Groups of automorphisms of fields

Let F be a field, and let E and E ′ be fields containing F . Recall that n F -homomorphism is
a homomorphism ϕ : E → E ′ such that ϕ(a) = a for all a ∈ F . Thus an F -homomorphism ϕ
maps a polynomial ∑

ai1···imα
i1
1 · · ·αimm , ai1···im ∈ F, αi ∈ E,

to ∑
ai1···imϕ(α1)i1 · · ·ϕ(αm)im .

An F -isomorphism is a bijective F -homomorphism. An F -isomorphism E → E is called an
F -automorphism of E. The F -automorphism of E form a group, which we denote Aut(E/F ).

Example A.3. (a) There are two obvious automorphisms of C, namely the identity map and
complex conjugation. (b) Let E = C(X). A C-automorphism of E sends X to another generator
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of E over C.

Aut(E/C) consists of the maps f(X) 7→ f
(
aX+b
cX+d

)
, ad− bc 6= 0, and so

Aut(E/C) ' PGL2(C),

the group of invertible 2× 2 matrices with complex coefficients module its centre.

A.2.2 Splitting fields

Let f be a polynomial with coefficients in F . A field E containing F is said to split f if f
splits in E[X], i.e.,

f(X) = aΠm
i=1(X − αi) with all αi ∈ E.

If E splits f and is generated by the roots of f ,

E = F [α1, . . . , αm],

then it is called a splitting or root field for f .

A.2.3 Algebraic extension and Algebraic closure

An element x of a field extension E/F is algebraic over F if it is a root of a nonzero polynomial
with coefficients in F . For example,

√
2 is algebraic over the rational numbers, because it is

a root of x2 − 2. If an element x of E is algebraic over F , the monic polynomial of lowest
degree that has x as a root is called the minimal polynomial of x. This minimal polynomial is
irreducible over F .

An algebraic extension E/F is an extension such that every element of E is algebraic over
F . For example, Q(

√
2,
√

3) is an algebraic extension of Q.

Definition A.2.1. An algebraic closure of a field F , denoted F , is an algebraic extension of
F that is algebraically closed, i.e., every non-constant polynomial in F [X] has a root in F .

A.2.4 Separable, normal, and Galois extensions

Definition A.2.2. An algebraic extension E/F is separable if the minimal polynomial of
every element of E is separable; otherwise, it is inseparable.

For example, the extension Fp(T ) of Fp(T p) is inseparable extension because T has minimal
polynomial Xp − T p.

Definition A.2.3. An extension E/F is normal if it is algebraic and the minimal polynomial
of every element of E splits in E[X].

In other words, an algebraic extension E/F is normal if, and only if, every irreducible poly-
nomial f ∈ F [X] having at least one root in E splits in E[X].

E/F is separable and normal if, and only if, the minimal polynomial of every element α of
E has [F [α] : F ] distinct roots in E.
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Theorem A.1. For an extension E/F , the following statements are equivalent:

(a) E is the splitting field of a separable polynomial f ∈ F [X];

(b) E is finite over F and F = EAut(E/F );

(c) F = EG for some finite group G of automorphisms of E;

(d) E is normal, separable, and finite over F .

Definition A.2.4. An extension E/F of fields is Galois if it satisfies the equivalent conditions
of the above Theorem. When E/F is Galois, Aut(E/F ) is called the Galois group of E over
F , and it is denoted by Gal(E/F ).
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