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trabajo de integración curricular. Aśı mismo, me acojo a los reglamentos internos de la
Universidad de Investigación de Tecnoloǵıa Experimental Yachay.
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Abstract

In this capstone project we prove the existence of a non-trivial solution to the following
quasi linear boundary value problem.{

−ε2∆pu(x) + V (x)|u(x)|p−2u(x)− |u(x)|q−1u(x) = 0, x ∈ RN

u(x) → 0, as |x| → ∞, (Gε)

where
∆pu = div(|∇u|p−2∇u)

and
1 < p < q + 1 < p∗, (1)

with

p∗ =


pN

N − p
, if N ≥ 3;
∞, if N = 1, 2.

Additionally, we assume that

V ∈ C(RN) is non-negative and (C)
lim
|x|→∞

V (x) =∞. (L)

By rescaling as v(x) = u(εβx), x ∈ RN , β ∈ R , (Gε) is equivalent to−∆pu(x) + Vε(x)|u(x)|p−2u(x)− |u(x)|q−1u(x) = 0, x ∈ RN ,

u(x)→ 0, as |x| → ∞.
(Eε)

By working on the manifold defined by

Mε =
{∫

RN
|u(x)|q+1dx = 1

}
we prove the existence of a non-trivial solution by applying the direct method of Calculus
of Variations. We minimize the functional Jε :Mε ⊆Wε → R, given by

Jε(u) = 1
p

∫
RN

[
|∇u(x)|p + Vε(x)|u(x)|p

]
dx. (2)

The regularity of the functional, the completeness ofMε and the fact that Jε satisfies the
Palais-Smale condition, allow us to prove the existence of a critical point on the manifold
that corresponds to a non-trivial solution for (Gε).

Keywords: Nonlinear Schrödinger equation, critical frequency, p-Laplacian, existence,
Calculus of Variations.
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Resumen

En este proyecto de titulación se demuestra la existencia de soluciones no triviales para el
siguiente problema cuasi lineal con valores de frontera.{

−ε2∆pu(x) + V (x)|u(x)|p−2u(x)− |u(x)|q−1u(x) = 0, x ∈ RN

u(x) → 0, |x| → ∞, (Gε)

donde
∆pu = div(|∇u|p−2∇u)

y
1 < p < q + 1 < p∗, (3)

con

p∗ =


pN

N − p
, si N ≥ 3;
∞, si N = 1, 2.

Adicionalmente, asumimos que

V ∈ C(RN) es no negativo y (C)
lim
|x|→∞

V (x) =∞. (L)

Mediante el rescalamiento v(x) = u(εβx), x ∈ RN , β ∈ R, (Gε) es equivalente a−∆pu(x) + Vε(x)|u(x)|p−2u(x)− |u(x)|q−1u(x) = 0, x ∈ RN ,

u(x)→ 0, |x| → ∞.
(Eε)

Al trabajar en una variedad definida por

Mε =
{∫

RN
|u(x)|q+1dx = 1

}
demostramos la existencia de una solución no trivial por el método directo del Cálculo de
Variaciones. Minimizamos el funcional Jε :Mε ⊆Wε → R, dado por

Jε(u) = 1
p

∫
RN

[
|∇u(x)|p + Vε(x)|u(x)|p

]
dx. (4)

La regularidad del funcional, la completitud de Mε y el hecho de que Jε satisface la
condición de Palais-Smale, nos permite demostrar la existencia de un punto cŕıtico en la
variedad para el funcional que a su vez corresponde a una solución no trivial para (Gε).

Palabras clave: Ecuación de Schrödinger no lineal, frecuencia cŕıtica, p-Laplaciano,
existencia, Cálculo de Variaciones.
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Chapter 1

Introduction

The evolution of physics from understanding the universe through Newton’s laws and Clas-
sical Mechanics to the introduction of Quantum Mechanics and the famous Schrödinger’s
equation, required remarkable developments in several fields of mathematics. The moti-
vation of the present project is to prove the existence of a ground state for a quasi linear
Schrödinger equation.

We will be particularly interested in a non-linear variant of the Schrödinger equation,
which in its original form is written as

i~
∂Ψ
∂t

(x, t) + ~
2∆Ψ(x, t)− V0(x)Ψ(x, t) + |Ψ(x, t)|p−1Ψ(x, t) = 0, (SchrE)

where
~ = 6.62607015× 10−34J Hz−1

denotes the Plank constant and i is the imaginary unit. A function

Ψ(x, t) = e−iEt/~v(x)

is a standing wave solution of (SchrE) if and only if v is such that

1
2~

2∆v(x)− (V0(x)− E)v(x) + |v(x)|p−1v(x) = 0, x ∈ RN . (1.1)

For the study of the semi-classical limit of (SchrE), the behavior of solutions as ~ ap-
proaches zero, is usually rewritten as

ε2∆v + V (x)v + |v|p−1v = 0 x ∈ RN

lim
|x|→∞

v(x) = 0, (1.2)

where
ε2 = ~2

2 and V (x) = V0(x)− E.

In (1.2) it is also assumed that N ≥ 3 and p+ 1 ∈ (2, 2∗) with 2∗ = 2N
N−2 .

There has been numerous studies carried out under the assumption of positivity over
the potential V and p = 2. These works use different approaches based either on the

1
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variational method, the Lyapunov-Schmidt reduction or a combination of both. Some of
these works are [8], [9], [14], [32], [16] and [1].

The works [4] and [5] change the assumption of a positive potential and consider instead
{x ∈ RN / V (x) = 0} 6= ∅ and p = 2. [4] studies the existence and qualitative properties of
standing wave solutions of the non-linear Schrödinger equation (SchrE) for small ~. In [4] it
is also shown that there exists a positive standing wave which is trapped in a neighborhood
of an isolated component of {x ∈ RN / V (x) = 0} and whose amplitude goes to 0 as ~→ 0.
By rewriting (1.1) as

ε2∆v + V (x)v + vp = 0 v > 0, x ∈ RN

lim
|x|→0

v(x) = 0, (1.3)

the existence of localized solutions for (1.3) under suitable conditions for the potential V is
proved in [4] (Sec. 2). This is done by rephrasing the original problem as a minimization
problem for the energy functional

Iε(u) =
∫
RN
ε2|∇u|2 + V u2 dx (1.4)

under the constraint
∫
RN |u|p+1 dx = 1. In such case, a solution of (1.3) is called a least-

energy or ground state solution if it minimizes (1.4). In order to prove the existence of such a
solution, in [4] the concentration-compactness lemma of Lions, [20], is used. Moreover, the
authors noticed that the asymptotic profiles of localized solutions depend in a very delicate
way on some local properties of an isolated component of the set where V vanishes. Hence,
by denoting with A the isolated component of the zero set of V , three cases are identified.

1. The flat case: where int(A) is non-empty.
2. The finite case: where A is a single point and V behaves like a finite-order poly-

nomial near A.
3. The infinite case: where A is a single point and V is exponentially flat near A.
Alternative approaches to those adopted in [4] have been explored in recent works. For

instance, in [12] where the flat case is considered, the equation (1.2) together with its limit
problem

∆u+ |u|p−1u = 0, in Ω, (1.5)
with boundary condition u = 0 on ∂Ω, where Ω = int{x ∈ RN : V (x) = inf V = 0} is
assumed to be non-empty, connected and smooth. By considering V (x)→∞ as |x| → ∞,
a Ljusternik-Schnirelman scheme is used to prove the existence of infinitely many solutions.
This work motivated several studies that explore similar approaches considering different
assumptions. A numerical approach to the one-dimensional flat case was developed in [26].
Moreover, the N -dimensional finite and infinite case studied in [27] and [25] obtained anal-
ogous results to those presented in [12] in terms of existence, multiplicity and asymptotic
behavior of solutions.

In this work we study a generalization problem (1.3), where we replace the Laplacian
operator with the p-Laplacian operator and prove the existence of a non-trivial solution
by working as in [10]. Specifically, for ε > 0, we consider the following boundary value
problem.{

−ε2∆pu(x) + V (x)|u(x)|p−2u(x)− |u(x)|q−1u(x) = 0 x ∈ RN

u(x) → 0 as |x| → ∞, (Gε)

Mathematician 2 Graduation Project
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where
∆pu = div(|∇u|p−2∇u)

and
1 < p < q + 1 < p∗,

with

p∗ =


pN
N−p , if N ≥ 3;
∞, if N = 1, 2.

Additionally, we will assume that

V ∈ C(RN) is non-negative and (C)
lim
|x|→∞

V (x) = +∞. (L)

This document is organized as follows:

• In Chapter 2, we present the mathematical framework where we will work on. First,
we recall fundamental results from Functional Analysis; namely, the concepts of
metric spaces ans their properties together with an introduction of bounded linear
operator theory. A review of Lebesgue and Sobolev spaces is also provided. Then,
some topics from calculus of variations and its relation with non-linear analysis for
PDE’s are considered. Here the notions of differentiability and the Euler-Lagrange
equation are presented in order to introduce the existence of minimizers, the Palais-
Smale condition and the Mountain Pass Theorem in the context of the variational
approach for solving PDE’s. Lastly, the p-Laplacian operator is introduced.

• In Chapter 3, first we proof some preliminary results about the properties of the space
and functional realted to the weak formulation of our problem. Once these properties
are obtained, we state the main theorem of this work and present its proof.

• In Chapter 4, we sate some conclusions and recommendations.

Mathematician 3 Graduation Project
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Chapter 2

Mathematical framework

2.1 Topics of Functional Analysis
In this section we give a brief overview of some topics of Functional Analysis that are
relevant for our work. The section is structured as follows: first, we recall fundamental
concepts for Banach spaces; then, we cover the main theorems about Lebesgue spaces;
finally, we will introduce Sobolev spaces and embedding theorems.

2.1.1 Preliminaries
In this part we review the notion of ”space” going from general to more specific. For this
subsection our main guides are [15] and [24].

Definition 2.1.1 (Metric space). A metric space is a pair (X, d), where X is a non-void
set, whose elements x will be called points, and d : X ×X −→ R verifies, for x, y, z ∈ X,

0 ≤d(x, y) <∞ (M1)

d(x, y) = 0 ⇐⇒ x = y. (M2)

d(x, y) = d(y, x). (M3)

d(x, y) ≤d(x, z) + d(z, y). (M4)

Let x0 ∈ X and r > 0, generic and fixed. We define

B(x0, r) = {x ∈ X / d(x, x0) < r}, (2.1)
B(x0, r) = {x ∈ X / d(x, x0) ≤ r}, (2.2)
S(x0, r) = {x ∈ X / d(x, x0) = r}, (2.3)

referred to as ball, closed ball and sphere of center x0 and radius r, respectively.
We say that U ⊂ X is open iff

∀x ∈ U,∃r > 0 : B(x, r) ⊂ U. (2.4)

5
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We also say that K ⊂ X is closed iff Kc = X \K is open. It is clear that balls are open
sets and closed balls are closed sets. Its important to point out that the terminology of
open sets and closed sets comes from the more abstract notion of topological space. Let’s
recall this definition.

Definition 2.1.2 (Topological space). Let X 6= ∅ and T a family of subsets of X. We say
that T is a topology on X iff the following conditions hold

∅ ∈ T ∧ X ∈ T ; (T1)

∀A,B ∈ T : A ∩B ∈ T ; (T2)

∀(Aλ)λ∈Λ ⊂ T :
⋃
λ∈Λ

Aλ ∈ T . (T3)

In this case, the pair (X, T ) is called a topological space. The elements of T are referred
as open sets and their complements, closed sets.

The following theorem states that a the metric induces a topology in the space X. We
shall denote the topology of the d-open sets, defined by (2.4), as Td.

Theorem 2.1.3. Let (X, d) be a metric space. Then the sets which are open in the metric
sense form a topology.

Proof. Let (X, d) be a metric space and Td the collection of sets defined by (2.4).

(T1) By vacuity, ∅ ∈ Td. Also, it is obvious that X ∈ Td.

(T2) Let A,B ∈ Td, generic. Then, if A ∩B = ∅ then A ∩B ∈ Td by (T1). Otherwise, let
x ∈ A ∩B. Then we have that

∃r1, r2 : B(x, r1) ⊂ A ∧ B(x; r2) ⊂ B.

Cleary, for r ≤ min{r1, r2}, x ⊂ B(x, r) ⊂ A ∩B and consequently (T2) holds.

(T3) Let A = ⋃
λ∈Λ Aλ with (Aλ)λ∈Λ ⊂ Td. Then, for any fixed x0 ∈ A we have that there

exist λ0, r0 such that x0 ⊂ B(x0, r0) ⊂ Aλ0 ⊂ A. This concludes the proof.

Given a topological space (X, T ), we say that V ⊆ X is a neighborhood of the point
x0 ∈ X iff

∃U ∈ T : U ⊆ V.

We denote
N (x0) = {V ⊆ X / V is a neighborhood of x0}.

We also say that F ⊆ N (x0) is a fundamental system of neighborhoods or local basis of x0
iff

∀V ∈ N (x0),∃W ∈ F : W ⊆ V (2.5)

Mathematician 6 Graduation Project
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In particular, we say that a fundamental system is open iff all its elements are open sets.
Based on the concepts of open and closed sets, we define some concepts that will be

constantly used throughout this text. Let (X, d) be a metric space and A ∈ X. We define
the interior of A, int(A), as the biggest open set contained in A. Analogously, we define
the closure of A, A, as the smallest closed set that contains A. Using these sets, we
also define the boundary of A as ∂A := A \ int(A). We will now present a fundamental
definition for our further study.

Let M ⊂ X, (X, d) metric space. The set M is said to be dense in X if

M = X. (2.6)

Moreover, X is said to be separable if it has a countable and dense subset.

Remark 2.1.4. (Density) Point (2.6) is equivalent to

∀x ∈ X, ∀ ε > 0,∃m ∈M : d(x,m) < ε. (2.7)

A concept that is essential to metric spaces is that of completeness. Before introducing
this concept, we have to provide a couple of concepts related to sequences.

Definition 2.1.5 (Convergence of a sequence. Cauchy sequence). A sequence (xn)n∈N in
a metric space (X, d) is said to converge to some limit x ∈ X iff

∀ε > 0, ∃N = N(ε) ∈ N : n > N =⇒ d(xn, x) < ε (2.8)

In this case we write, lim
n→∞

xn = x or simply xn −→ x. A sequence (xn)n∈N is said to be
Cauchy (or fundamental) iff

∀ε, ∃N = N(ε) ∈ N : n,m > N =⇒ d(xm, xn) < ε (2.9)

The space X is said to be complete if every Cauchy sequence in X converges to some
element x ∈ X.

We are interested in working in complete spaces because they have nicer properties than
incomplete spaces (e.g. convergence of Cauchy sequences). A very important fact is that
any arbitrary incomplete metric space can be ”completed”. Before formally understanding
the completion process, we need to familiarize ourselves with the concept of isometric
spaces.

Let (X, d), (Y, ρ) be metric spaces. Then:

(a) A mapping T : X → Y is said to be an isometry if it preserves distances, i.e.,

∀x, y ∈ X : ρ(Tx, Ty) = d(x, y). (2.10)

(b) Moreover, the space X is said to be isometric to Y iff T is a bijective isometry. Thus,
spaces X, Y are called isometric spaces.
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It is clear that isometric spaces can be understood as two copies of the same abstract
space and differ only by the nature of their elements. As we can notice from Definition
2.1.5, the convergence of a sequence is not an intrinsic property of the sequence itself but
depends of the space on which the sequence lies.

Theorem 2.1.6 (Completion). For a metric space (X, d) there exists a complete metric
space (X̃, d̃) which has a subspace W such that:

(i) X and W are isometric, and

(ii) W = X̃.

Moreover, X̃ is unique except for isometries.

The proof of Theorem 2.1.6 is quite lengthy and can be found e.g. in [15] and [24].
Let’s recall that a linear space is a set provided with elements called vectors and two

closed algebraic operations: addition of vectors and multiplication by scalars. A linear
space where these operations are considered by the metric produce a richer space, namely
a normed space. As a result, the following generalization of the size of a vector is
introduced.

Definition 2.1.7 (Normed space. Banach space.). Let V be a linear space. We say that
‖·‖ : V → R is a norm on V iff

∀x ∈ V : ‖x‖ ≥ 0; (N1)

∀x ∈ V : ‖x‖ = 0 ⇐⇒ x = 0; (N2)

∀x ∈ V, ∀α ∈ R : ‖αx‖ = |α| ‖x‖ ; (N3)

∀x, y ∈ V : ‖x+ y‖ ≤‖x‖+‖y‖ (Triangle inequality). (N4)

Then we say that (V,‖·‖) is a normed space. A metric d is induced by the by

d(x, y) =‖x− y‖ .

Whenever the space (X, d) is complete, we say that X is a Banach space.

To finish this subsection, we recall a concept that characterizes norms that can be
compared.

Theorem 2.1.8 (Norm equivalence). Let ‖·‖ ,‖·‖0 be norms on a vector space X. We say
that they are equivalent iff

∃ c1, c2 > 0, ∀x ∈ V : c1‖x‖0 ≤‖x‖ ≤ c2‖x‖0 . (2.11)

Here, the topologies induced by the norms coincide, i.e., T‖·‖ = T‖·‖0
.
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Remark 2.1.9 (Norms on finite dimensional spaces). Let X be a finite dimensional vector
space, i.e., dim(X) <∞. Then, all norms on X are equivalent.

To conclude we present a useful inequality presented in [19].

Proposition 2.1.10. Let 1 ≤ p ≤ 2. Then

∀ a, b ∈ RN :
∣∣∣|b|p−2b− |a|p−2a

∣∣∣ ≤ 22−p|b− a|p−1, (2.12)

where | · | denotes the usual Euclidean norm on RN :

∀ a ∈ RN : |a| = |(a1, ..., a2)| =
 N∑
i=1

a2
i

1/2

.

2.1.2 Bounded linear operators
In the same way as we consider real valued functions over the real line R in elementary
calculus, we would like to consider mappings over more general spaces such as metric and
normed spaces. In the specific case where we consider a mapping over a normed space, we
would call this mapping an operator. For this subsection our main references are [15], [24]
and [11].

Let’s recall the concept of linear subspace. Let X be a linear space and Y a non-empty
subset of X. We say that Y is a linear subspace of X iff

∀u, v ∈ Y, ∀ a, b ∈ R : au+ bv ∈ Y.

In this context, we will need operators that preserve the operations of the linear space in
the sense of the following definition. Let X, Y be real linear spaces and D a linear subspace
of X. We say that T : D ⊆ X −→ Y is a linear operator iff

∀x, y ∈ D, ∀α ∈ R : T (αx+ y) = αTx+ Ty. (2.13)

Assume now that X, Y are normed spaces. We say that T is bounded iff

∃c > 0, ∀x ∈ D : ‖Tx‖ ≤ c‖x‖ . (2.14)

Moreover, we define the norm of the operator T, ‖T‖ , as the infimum of the values c such
that (2.14) holds, i.e.,

‖T‖ = inf(OT ), where OT = {c > 0 / ∀x ∈ D : ‖Tx‖ ≤ c‖x‖}. (2.15)

Remark 2.1.11. Note that by taking infimum in (2.14) we get

∀x ∈ D : ‖Tx‖ ≤‖T‖‖x‖ . (2.16)

In the following lemma, we recall an alternative formula to calculate the norm of a
bounded linear operator and also show that this norm satisfies all conditions from Definition
2.1.7.

Mathematician 9 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Lemma 2.1.12 (Norm of an operator). Let T be bounded. Then

(i) An equivalent definition of (2.15) is given by

‖T‖ = sup
x∈D\{0}

‖Tx‖
‖x‖

, (2.17)

so that
‖T‖ = sup

‖x‖=1
‖Tx‖ (2.18)

(ii) The norm defined in (2.15) satisfies (N1) - (N4).

Proof. (i) Let x ∈ D \ {0} such that ‖x‖ = α, α > 0. Set y = (1/α)x. Then, by the
linearity of T and (2.17) we have that

‖T‖ = sup
x∈D\{0}

1
α
‖Tx‖ = sup

x∈D\{0}

∥∥∥∥∥∥T
(

1
α
x

)∥∥∥∥∥∥ = sup
‖y‖=1
‖Ty‖ .

(ii) By (2.17) we have that:
(N1) is trivial. (N2) holds since we have that‖0‖ = 0 and if we assume‖T‖ = 0 then

(∀x ∈ D : Tx = 0) =⇒ T = 0.

By (i), property (N3) also follows since

‖αT‖ = sup
‖x‖=1

|α|‖Tx‖ = |α|‖T‖ , ∀α ∈ R.

Finally by (i), for x ∈ D, (N4) follows from

sup
‖x‖=1

∥∥(T1 + T2)x
∥∥ = sup

‖x‖=1
‖T1x+ T2x‖ ≤ sup

‖x‖=1
‖T1x‖+ sup

‖x‖=1
‖T2x‖ .

This concludes the proof.

Let T 6= 0 be a bounded linear operator as in (2.14). Given x, y ∈ D, since D is a
subspace of the linear space X, we have that x − y ∈ D. Let ε > 0, generic. Since T is
bounded we have that

‖Tx− Ty‖ ≤‖T‖‖x− y‖ . (2.19)
Let’s choose δ = ε/‖T‖ and assume that ‖x− y‖ < δ. Thus, (2.19) implies that

‖Tx− Ty‖ <‖T‖ δ < ε. (2.20)

From (2.20) it is clear that the boundedness of T implies it’s continuity.

By Lemma 2.1.12, we already know that (2.15) is a norm. We denote L(X, Y ) as the
normed space of all bounded linear operators from the normed space X into a normed
space Y . The following theorem states a condition for the completeness of such space.
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Theorem 2.1.13 (Completeness of L(X, Y )). If Y is a Banach space, then L(X, Y ) is
also a Banach space.

Proof. We have to prove that every Cauchy sequence of L(X, Y ) is convergent.

(i) Let (Tn)n∈N ⊆ L(X, Y ) be a generic Cauchy sequence. Then for every ε > 0 there is
N ∈ N such that n,m > N implies

‖Tn − Tm‖ < ε.

Therefore, for any x ∈ X,

‖Tnx− Tmx‖ =
∥∥(Tn − Tm)x

∥∥ ≤‖Tn − Tm‖‖x‖ < ε‖x‖ , (2.21)

so that for every x ∈ X, the sequence (Tnx)n∈N ⊆ Y is of Cauchy. The completeness
of Y that

∀x ∈ X, ∃!Tx ∈ Y : lim
n→∞

Tnx = Tx. (2.22)

(ii) By (2.22) we have found an operator T : X −→ Y . Let’s prove that T is linear. Let
x, y ∈ X,λ ∈ R be generic. By the linearity of Tn we have that

T (λx+ y) = lim
n→∞

[λTnx+ Tny] = λ lim
n→∞

Tnx+ lim
n→∞

Tny = λTx+ Ty.

Since x, y, λ were arbitrary, we proved that T is linear.

(iii) If we pass to the limit with m→∞ in (2.21), then for n > N and any x ∈ X,∥∥(Tn − T )x
∥∥ ≤ ε‖x‖ , (2.23)

which implies Tn − T ∈ L(X, Y ), n > N . Since L(X, Y ) is a linear space, the last
provides T ∈ L(X, Y ).

(iv) By (2.23) we have that for n > N

‖Tn − T‖ < ε.

Since ε was chosen arbitrarily, we have proved that Tn → T as n→∞.

To finish our overview of operators let’s recall the concept of a functional. We call
functional an operator whose range is either on R (or C). Notice that all the previous
theorems also apply to functionals. Specifically, since the space L(X,R) is so important
we will call it the dual space of X and use the following notation:

X∗ = L(X,R). (2.24)

Notice that (2.24) is always a Banach space by Theorem 2.1.13.
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Remark 2.1.14 (Duality product). Assume X is normed space, x ∈ X and η ∈ X∗. It’s
usual to find the notation

η(x) = 〈η, x〉 (2.25)

where 〈·, ·〉 : X∗ ×X −→ R is called the duality product in X.

One of the most important concepts in Functional Analysis is that of reflexivity. Let
X be a normed space, x ∈ X and let’s define a mapping

ϕx : X∗ −→ R
η 7−→ 〈ϕx, η〉 = 〈η, x〉.

Clearly, ϕx ∈ X∗∗ and ‖ϕx‖X∗∗ =‖x‖. The cannonical mapping is

J : X −→ X∗∗

x 7−→ J(x) = ϕx. (2.26)

Lemma 2.1.15 (Cannonical embedding). The cannonical mapping given in (2.26) is an
embedding of the normed space X into its bidual X∗∗, i.e., its an isomorphism between X

and its image through the cannonical mapping J(X) ⊆ X∗∗.

Proof. The linearity of J follows from the linearity of ϕx, i.e.,

∀α, β ∈ R,∀x, y ∈ X : ϕαx+βy(η) = η(αx+ βy) = αη(x) + βη(y) = αϕx(η) + βϕy(η).

In particular, ϕx − ϕy = ϕx−y, so that∥∥∥ϕx − ϕy∥∥∥ =
∥∥∥ϕx−y∥∥∥ =‖x− y‖ .

The previous shows that J is an isometry. Also, from (N2) it follows that it is injective.
Hence, since J is bijective if we restrict the codomain to its image J(X), the required result
follows.

In general, J will not be surjective. However, when this does happen we say that the
space X is reflexive, i.e., X is reflexive iff

J(X) = X∗∗.

Once we have defined the dual space of a normed space X, we can define a new kind of
convergence.

Definition 2.1.16 (Weak convergence). Let X be a real Banach space and (un)n∈N ⊆ X

a sequence. We say that (un)n∈N converges weakly to some u ∈ X, written

un ⇀ u ⇐⇒ ∀η ∈ X∗ : 〈η, un〉 → 〈η, u〉. (2.27)

Additionally,
‖u‖ ≤ lim inf

n→∞
‖un‖ (2.28)
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Remark 2.1.17 (Weak topology σ(X,X∗)). The convergence in (2.27) is actually the
characterization of the convergence in the weak topology on X, σ(X,X∗). This is the
smallest topology for which all the elements of X∗ are still continuous. In particular,
σ(X,X∗) ⊆ T‖·‖, i.e., all the weak open sets are open in the topology induced by the norm.

The following theorem establishes a connection between reflexive Banach spaces and
weak convergence.

Theorem 2.1.18 (Weak compactness). Let X be a reflexive Banach space and suppose
the sequence (xn)n∈N ⊆ X is bounded. Then, there exists a subsequence (xnk)k∈N such
that

xnk ⇀ x.

Hence, bounded sequences in a reflexive Banach space are weakly precompact.

The proof of Theorem 2.1.18 can be found in [11].

2.1.3 Lebesgue spaces
In this section we recall some concepts and tools that will be of great help throughout
our study. We assume the reader is familiarized with the basic notions of measure theory,
namely, the concepts of σ-algebra, measure space, measurable sets, measurable functions,
integrable functions and Lebesgue measure (see, for example, [17]). Here our main refer-
ences are [17],[15] and [3].

Definition 2.1.19 (Space of integrable functions L1(Ω)). Let Ω ⊆ RN . We define the
space of integrable functions on Ω as

L1(Ω) :=
{
f : Ω −→ R / ‖f‖L1(Ω) :=

∫
Ω
|f(x)|dx <∞

}

Remark 2.1.20. The integral symbol in Definition 2.1.19 corresponds to the Lebesgue
integral and the symbol dx refers to the Lebesgue measure on RN .

Now, we present some fundamental theorems that involve integrable functions. In all
of the following, Ω ⊆ RN is measurable.

Theorem 2.1.21 (Monotone convergence theorem). Let (fn)n∈N ⊆ L1(Ω) be an increasing
sequence. Then there exists f ∈ L1(Ω) such that

lim
n→∞

fn(x) = f(x), a.e. x ∈ Ω

and
lim
n→∞

∫
Ω
fn(x)dx =

∫
Ω
f(x)dx.
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Lemma 2.1.22 (Fatou’s Lemma). Let (fn)n∈N ⊆ L1(Ω) be a sequence of nonnegative
functions. Then f(x) := lim inf

n→∞
fn(x) is integrable and

lim inf
n→∞

∫
Ω
fn(x)dx ≥

∫
Ω
f(x)dx.

Theorem 2.1.23 (Dominated convergence theorem). Let (fn)n∈N ⊆ L1(Ω) and assume
that it converges to some f pointwise a.e. If there exists G ∈ L1(Ω) such that

∀n ∈ N : |fn(x)| ≤ G(x),

then
|f(x)| ≤ G(x) and lim

n→∞

∫
Ω
fn(x)dx =

∫
Ω
f(x)dx.

Theorem 2.1.24 (Fubini). Consider Ω1,Ω2 ⊆ RN , measurable, and let f ∈ L1(Ω1 × Ω2).
If f ≥ 0, then the following 3 integrals are equal:

∫
Ω1×Ω2

f(x, y)d(x, y) =
∫

Ω2

(∫
Ω1
f(x, y)dx

)
dy =

∫
Ω1

(∫
Ω2
f(x, y)dy

)
dx.

For a function f ∈ C(RN) we define its support as

supp(f) = {x ∈ RN / f(x) = 0}

We denote the space of continuous functions with compact support as

C0(RN) = {f ∈ C(RN) / supp(f) is compact }. (2.29)

Theorem 2.1.25 (Dense subspace of L1(Rn)). The space C0(RN) defined in (2.29) is
dense in L1(RN), i.e.,

∀f ∈ L1(RN),∀ε > 0, ∃g ∈ Cc(RN) : ‖f − g‖L1(Ω) ≤ ε.

Theorem 2.1.25 says that elements of L1(RN) can be approximated by continuous and
compactly supported functions in RN . The previous results are the most important ones
from Measure Theory and their proofs can be found e.g. in [17] and [3].

Now we introduce the Lebesgue spaces, also known as Lp spaces. It is necessary to
review the properties of these spaces since they will be used for further results at the end
of this section. Our main guide to the study of these spaces is [3].
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Definition 2.1.26 (Lp(Ω)). Let p ∈ R, 1 < p <∞; we set

Lp(Ω) :=
{
f : Ω −→ R / f is measurable and |f |p ∈ L1(Ω)

}
with

‖f‖Lp =‖f‖p :=
(∫

Ω
|f(x)|pdx

)
.

The case when p =∞ is special and requires a different definition.

Definition 2.1.27 (L∞(Ω)). We define

L∞(Ω) :=

f :→ R

∣∣∣∣∣∣∣
f is measurable and
∃C > 0 : |f(x)| ≤ C a.e. on Ω


with

‖f‖L∞(Ω) =‖f‖∞ = inf{C / |f(x)| ≤ C > 0 a.e. on Ω}

For proving that ‖·‖p , 1 < p < ∞, is indeed a norm, we will need Hölder’s inequality.
Before providing the proof of this very useful result, we first recall a couple of important
concepts.

Remark 2.1.28 (Conjugate exponent). Let 1 ≤ p ≤ ∞. We define p′, the conjugate
exponent of p, by

1
p

+ 1
p′

= 1.

Remark 2.1.29 (Young’s inequality). Let 1 < p <∞. Then we have that

∀a, b ≥ 0 : ab ≤ ap

p
+ bp

′

p′
(2.30)

Inequality 2.30 follows directly from the concavity of the function ln on (0,∞):

ln
ap
p

+ bp
′

p′

 ≥ 1
p

ln(ap) + 1
p′

ln(bp′) = ln(ab).

Theorem 2.1.30 (Hölder’s inequality). Let Ω ⊆ RN , measurable. Assume that f ∈ Lp(Ω)
and g ∈ Lp′(Ω) with 1 ≤ p ≤ ∞. Then fg ∈ L1(Ω) and

‖fg‖1 ≤‖f‖p‖g‖p′ . (2.31)

Mathematician 15 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Proof. Let f ∈ Lp(Ω), g ∈ Lp′(Ω), generic. If f = 0 or g = 0, (2.31) immediately follows.
Hence, lets assume that f 6= 0 and g 6= 0.

i) Let’s first assume that p = 1. Thus,∫
Ω
|f(x)g(x)|dx ≤‖g‖∞‖f‖1 .

This immediately implies fg ∈ L1(Ω) and (2.31) holds. An analogous reasoning
provides the result if p =∞.

ii) Now, let’s assume that 1 < p <∞. From (2.30), we have that

|f(x)g(x)| ≤ 1
p
|f(x)|p + 1

p′
|g(x)|p′

=⇒
∫

Ω
|f(x)g(x)|dx ≤ 1

p
‖f‖pp + 1

p′
‖g‖p

′

p′ (2.32)

Inequality (2.32) implies that fg ∈ L1(Ω). Now, by replacing f with λf, (λ > 0) in
(2.32) it follows that ∫

Ω
|λf(x)g(x)|dx ≤ 1

p
‖λf‖pp + 1

p′
‖g‖p

′

p′ ,∫
Ω
|f(x)g(x)|dx ≤ λp−1

p
‖f‖pp + 1

λp′
‖g‖p

′

p′ . (2.33)

By choosing λ =‖f‖−1
p ‖g‖

p′/p
p and recalling Remark 2.1.28, inequality (2.33) becomes

∫
Ω
|f(x)g(x)|dx ≤ 1

p
‖f‖p+1−p

p ‖g‖p
′(1−1/p)
p′ + 1

p′
‖f‖p‖g‖

p′(1−1/p)
p′

≤
(

1
p

+ 1
p′

)
‖f‖p‖g‖p′

≤‖f‖p‖g‖p′

Since f, g were chosen arbitrarily, the required result follows.

The following remarks are extensions of Theorem 2.1.30. They shall be used in the
following chapter.

Remark 2.1.31 (Extension of Hölder’s inequality). Assume (fi)ki=1 s.t. fi ∈ Lpi(Ω), 1 ≤
i ≤ k with

1
p

= 1
p1

+ 1
p2

+ ...+ 1
pk
≤ 1.

Then the product f = f1f2...fk belongs to Lp(Ω) and

‖f‖p ≤‖f1‖p1
‖f2‖p2

...‖fk‖pk .
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Theorem 2.1.32. (Interpolation inequality) Let Ω ⊆ and f ∈ Lp(Ω)∩Lq(Ω), 1 ≤ p ≤ q ≤
∞. Then f ∈ Lr(Ω), ∀r ∈ [p, q]. Moreover,

‖f‖r ≤‖f‖
α
p‖f‖

1−α
q where 1

r
= α

p
+ 1− α

q
, α ∈ [0, 1] (2.34)

The next result can be found in [29]. It will be crucial in a future proof.

Theorem 2.1.33 (Hölder’s inequality for 0 < p < 1). Let 0 < p < 1 and let f, g > 0 be
functions in Lp(Ω) and Lp′(Ω), respectively. Then we have∫

Ω
f(x)g(x) dx ≥

(∫
Ω
f(x)p dx

)1/p (∫
Ω
g(x)p′ dx

)1/p′

, (2.35)

unless
∫

Ω
g(x)p′ dx = 0. Moreover, note that p′ < 0.

Now we have all the necessary tools to prove that the functionals given in Definitions
2.1.26 and 2.1.27, are actually norms. The next theorem then states that for 1 ≤ p ≤ ∞
the space Lp(Ω) is a normed space.

Theorem 2.1.34 (Lp(Ω) is a normed space). Assume 1 ≤ p ≤ ∞, then Lp(Ω) is a vector
space and ‖·‖p is a norm.

Proof. i) Cases p = 1 and p =∞ are trivial.

ii) Assume p ∈ (1,∞) and f, g ∈ Lp(Ω), arbitrary. We will only show that the triangle
inequality holds since the other norm properties can be easily verified. Since | · | is a
norm on R, by (N4) we have that

|f(x) + g(x)|p ≤
(
|f(x)|+ |g(x)|

)p ≤ 2p
(
|f(x)|p + |g(x)|p

)
.

This implies that f + g ∈ Lp(Ω). Moreover, we notice that

‖f + g‖pp =
∫

Ω
|f(x) + g(x)|p−1|f(x) + g(x)|dx

≤
∫

Ω
|f(x) + g(x)|p−1 (|f(x)|+ |g(x)|

)
dx

≤
∫

Ω
|f(x) + g(x)|p−1|f(x)|dx+

∫
Ω
|f(x) + g(x)|p−1|g(x)|dx, (2.36)

and by Remark 2.1.28 we observe that

|f + g|p−1 ∈ Lp′ since p′(p− 1) = p.

Therefore, by Theorem 2.1.30 and inequality (2.36) we have that

‖f + g‖pp ≤‖f + g‖p−1
p

(
‖f‖p +‖g‖p

)
.

This concludes the proof.
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The following theorem states that the Lebesgue spaces with the norms in Definitions
2.1.26 and 2.1.27 are complete normed spaces, i.e., Banach spaces. The proof of the
following theorem can be found in [3], Sec. 4.2.

Theorem 2.1.35 (Fischer-Riesz). Lp(Ω) is a Banach space for any p, 1 ≤ p ≤ ∞.

Analogously to the case of the space of integrable functions L1(Ω) in Theorem 2.1.25,
we would like to have a dense subspace of Lp(Ω) whose elements are easier to handle.
To conclude with our short overview of Lp(Ω) spaces and their properties, we recall the
following density theorem.

Theorem 2.1.36 (Dense subspace). Let Ω ⊂ RN be an open set. Then, C∞c (Ω) is dense
in Lp(Ω) for any 1 ≤ p <∞.

We conclude with the following summary of the properties of Lebesgue spaces. The
detailed study of each of the following cases and the corresponding proofs can be found in
[3].

Reflexive Separable Dual space
Lp with 1 < p <∞ YES YES Lp

′

L1 NO YES L∞

L∞ NO NO Strictly bigger than L1

Table 2.1: Summary of the main properties of the Lp spaces.

2.1.4 Sobolev spaces
Once we have defined the Lebesgue spaces (Lp spaces), we are in position to define the
Sobolev spaces. These spaces are of particular interest as a common framework for the
study of partial differential equations. In this section, we will present some basic concepts
and theorems about these spaces that will be useful for the development of our work. Our
main reference is [3].

Definition 2.1.37 (Sobolev space W 1,p(Ω)). Let Ω ⊂ RN be an open set and let 1 ≤ p ≤
∞. The Sobolev space W 1,p(Ω) is defined by

W 1,p(Ω) :=

u ∈ Lp(Ω)

∣∣∣∣∣∣∣∣
∃g1, g2, ..., gn ∈ Lp(Ω) such that∫

Ω
u
∂ϕ

∂xi
= −

∫
Ω
giϕ, ∀ϕ ∈ C∞c (Ω), ∀i = 1, 2, ..., N


In the context of Definition 2.1.37, for u ∈ W 1,p(Ω) we denote ∂u

∂xi
:= gi and

∇u =
(
∂u

∂xi
, ...,

∂u

∂xN

)
.
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The space W 1,p(Ω) is equipped with the norm

‖u‖1,p =‖u‖p +
N∑
i=1

∥∥∥∥∥ ∂u∂xi
∥∥∥∥∥
p

or the equivalent norm

‖u‖∗1,p =
‖u‖pp +

N∑
i=1

∥∥∥∥∥ ∂u∂xi
∥∥∥∥∥
p

p

1/p

, 1 ≤ p <∞.

In the following proposition, we state some properties of the Sobolev space W 1,p(Ω)
that depend on p.

Proposition 2.1.38. Let Ω ⊂ RN be an open set. Then, we have that:

i) 1 ≤ p ≤ ∞ =⇒ W 1,p(Ω) is a Banach Space.
ii) 1 < p <∞ =⇒ W 1,p(Ω) is reflexive.

iii) 1 ≤ p <∞ =⇒ W 1,p(Ω) is separable.

Once we have defined the Sobolev space W 1,p(Ω), we can define more general Sobolev
spaces. Let m ≥ 2 be an integer and 1 ≤ p ≤ ∞. We inductively define

Wm,p(Ω) =
{
u ∈ Wm−1,p(Ω); ∂u

∂xi
∈ Wm−1,p(Ω) ∀i = 1, 2, ..., N

}
. (2.37)

Remark 2.1.39. We also state a characterization of Sobolev spaces Wm,p(Ω) using the
standard multi-index notation,

Wm,p(Ω) =

u ∈ L
p(Ω)

∣∣∣∣∣∣∣∣∣∣
∀α with |α| ≤ m,∃gα ∈ Lp(Ω) such that
∫

Ω
uDαϕ = (−1)|α|

∫
Ω
gαϕ, ∀ϕ ∈ C∞c (Ω)


where α = (α1, ..., αN), αi ∈ N∗, i = 1, ..., N , and

|α| =
N∑
i=1

αi and Dα = ∂|α|ϕ

∂xα1
1 ...∂x

αN
N

.

Analogously as we did for m = 1, we define Dαu := gα. Moreover, the space Wm,p(Ω)
equipped with the norm

‖u‖Wm,p =
∑

0≤|α|≤m
‖Dαu‖p

is a Banach space.
From the definition of the Sobolev spaces, it is clear that they are subspaces of Lebesgue

spaces. Hence, similarly to the case of a Lebesgue space (Theorems 2.1.25, 2.1.36), we
would like to find a dense subspace in a Sobolev space whose elements are easier to handle.
In order to do this, it is often convenient to work first in W 1,p(RN). The following theorem
and proposition will provide such space.
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Theorem 2.1.40 (Linear Extension Operator). Assume Ω ⊂ RN of class C1 with Γ
bounded (or else Ω = RN

+ ).Then, there exists a linear extension operator

P : W 1,p(Ω) −→ W 1,p(RN) (1 ≤ p ≤ ∞)

s.t. that for all u ∈ W 1,p(Ω),

(i) Pu|Ω = u,

(ii) ‖u‖Lp(Rn) ≤ C‖u‖Lp(Ω) ,

(iii) ‖u‖W 1,p(RN ) ≤ C‖u‖W 1,p(Ω) ,

where C = C(Ω).
The proof of Theorem 2.1.40 is classical and can be found on [3], Sec.9.2. It uses

extensions by reflection, local charts and the partition of unity lemma. A very useful
and direct result from the previous theorem says that smooth and compactly supported
functions in RN are dense in W 1,p(Ω).

Corollary 2.1.41 (Density in W 1,p(Ω)). Assume Ω ⊆ RN of class C1 and let u ∈ W 1,p(Ω)
with 1 ≤ p <∞. Then

∃(un) ⊂ C∞c (RN) : u|Ω −→ u in W 1,p(Ω),

i.e., C∞c (RN) functions restricted to Ω are dense in W 1,p(Ω).

Embedding theorems

In this section we deal with the following question: if we have some u ∈ Wm,p(Ω), for
what range of values of q does one have u ∈ Lq(Ω)? The next couple of theorems answer
this important query. We advise the reader to pay special attention to the nature of the
domain in the following results.

Theorem 2.1.42 (Sobolev, Gagliardo, Nirenberg). Let 1 ≤ p < N . Then

W 1,p(RN) ⊂ Lp
?

, where p? is given by 1
p?

= 1
p
− 1
N
, and (2.38)

∃C = C(p,N),∀u ∈ W 1,p(RN) : ‖u‖p? ≤ C‖∇u‖p . (2.39)
A detailed proof of Theorem 2.1.42 can be found in [3]. The following Corollary extends
the previous result.

Corollary 2.1.43. Let 1 ≤ p < N . Then

∀q ∈ [p, p?] : W 1,p(RN) ⊂ Lq(RN)

with continuous injection, i.e.,

∃C = C(p,N),∀‖u‖q ≤ C‖u‖W 1,p
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Proof. Let q ∈ [p, p?], generic. Then for some α ∈ [0, 1] we have that

1
q

= α

p
+ 1− α

p?
.

Let u ∈ W 1,p(RN), generic. From (2.30) and (2.34) it follows that

‖u‖q ≤‖f‖
α
p‖f‖

1−α
p? ≤‖u‖p +‖u‖p? .

Theorem 2.1.42 implies that
‖u‖q ≤ C‖u‖W 1,p .

This concludes the proof.

Before presenting the next result, we recall the following definitions.

Definition 2.1.44 (Compact linear operator. Compact embedding). Let X and Y be
normed spaces. An operator T : X → Y is called a compact linear operator if T is
linear and if for every M ⊆ X bounded, the image T (M) is relatively compact, i.e.,

T (M) is compact.

Moreover if X ⊆ Y and Y is Banach, we say that X ⊂ Y with compact embedding if the
identity operator I : X → Y is compact.

Now, we have the necessary concepts to conclude this section with a very important
embedding theorem.

Theorem 2.1.45 (Rellich-Kondrachov). Assume that Ω ⊆ RN is of C1 class and bounded.
Then, we have the following compact embeddings:

W 1,p(Ω) ⊂ Lq(Ω) ∀q ∈ [1, p?), where 1
p?

= 1
p
− 1
N
, if p < N

W 1,p(Ω) ⊂ Lq(Ω) ∀q ∈ [p,∞), if p = N

W 1,p(Ω) ⊂ C(Ω) if p > N

In particular, for any combination of N and p we have that W 1,p(Ω) ⊂ Lp(Ω) with compact
embedding.

The proof of Theorem 2.1.45 can be found e.g. in [3] and [11]. In other words, for the
appropriate exponents, a bounded sequence in a Sobolev space has a Lebesgue convergent
subsequence. This will be of critical importance for applications in the study of linear and
non-linear partial differential equations.
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2.2 Some topics from Calculus of Variations
In the last two sections we briefly studied normed spaces and their properties on a very
general context. We also defined the Banach spaces Lp,Wm,p and studied some properties
of these specific spaces. In this section, we present concepts that will allow us to study
functions over Banach spaces in a very simple way. We will first recall some basic calculus
of variations theory. After this, we will present some more sophisticated results that shall
be used later in this text. For this section we used [24, 23, 7, 13] as our main sources.

2.2.1 Fundamentals of calculus on normed spaces
In this subsection we want to extend the concept of derivative of a real valued function over
R and consider analogous concepts for mappings between normed spaces. These notions
of calculus on normed spaces is necessary for understanding some important results from
the area of calculus of variations. All the ideas and concepts that follow can be found in
greater detail in [23, 7, 13].

Since the following definitions share a very similar context, from now on we consider
E,F to be normed spaces, O ⊂ E open and f : O ⊂ E −→ F . Let a ∈ O a point and
u ∈ E a direction. If the limit

∂uf(a) = lim
t→0

1
t
[f(a+ tu)− f(a)] (2.40)

exists, then we call (2.40) the directional derivative of f at a in the direction u.

Assume that ∂uf(a) exists for any direction u ∈ E. If

∃ f ′G(a) ∈ L(E,F ), ∀u ∈ E : ∂uf(a) = f ′G(a)u (2.41)

then we say that f is Gateaux differentiable at a. Moreover, since f ′G(a) in (2.41) is
unique, then it is referred to as the Gateaux differential of f at a.

For the next kind of differentiability we need to introduce the concept of a small o. Let
O ⊂ E −→ F such that g(0) = 0. If there exists a mapping ε : B(0, r) ⊂ E −→ F such
that

lim
h→0

ε(h) = 0, (o1)

g(h) =‖h‖ ε(h), (o2)

then we write g(h) = o(h) and say that g is a small o of h. Notice that from the previous
definition, if g(h) = o(h) then by (o1) and (o2) it follows that

lim
h→0

1
‖h‖

g(h) = lim
h→0

∥∥g(h)
∥∥

‖h‖
= 0. (o3)

Since the quotients in (o3) converge, we know that g(h) converges faster to zero than the
norm of h when h→ 0. This is an important fact to define strong differentiability.
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Definition 2.2.1 (Fréchet differential). Let a ∈ O be a point. If

∃φ ∈ L(E,F ),∀h ∈ E : a+ g ∈ O =⇒ f(a+ h)− f(a) = φ(h) + o(h), (2.42)

then we say that f is differentiable (or Fréchet or strongly differentiable) at a.
If it is differentiable at all points of its domain, we simply say that it is differentiable.

Proposition 2.2.2. The bounded linear operator in (2.42) is unique.

Proof. Let ϕ ∈ L(E,F ) such that

f(a+ h)− f(a) = ϕ(h) + o(h) (2.43)

for any h ∈ E such that a+ h ∈ O. Since O is open, by 2.4 we have that

∃r > 0 : B(a, r) = a+B(0, r) ⊂ O

Hence, from (2.42) and (2.43) we have that

∀h ∈ B(0, r) : φ(h) +‖h‖ ε1(h) = ϕ(h) +‖h‖ ε1(h), (2.44)

where
lim
h→0

εi(h) = 0, i = 1, 2. (2.45)

Let u ∈ E, generic. If u = 0, then by linearity the required result immediately follows.
Let’s consider u 6= 0 and choose some N ∈ N such that

∀n ∈ N : n > N =⇒ hn := 1
n
· 1
‖u‖

u ∈ B(0; r).

By (2.44) it follows that

φ(hn)− ϕ(hn) =‖hn‖
(
ε2(hn)− ε1(hn)

)
.

Since φ, ϕ ∈ L(E,F ) we have that(
1
n
· 1
‖u‖

)
(φ(u)− ϕ(u)) =

(
1
n
· 1
‖u‖

)
‖u‖

(
ε2(hn)− ε1(hn)

)
.

By passing to the limit with n→ 0 and considering (2.45), we obtain

φ(u) = ϕ(u).

Since u was chosen arbitrarily, we have proved 2.2.2.

Remark 2.2.3 (Fréchet differential). By Proposition 2.2.2, we rewrite (2.42) as

f(a+ h)− f(a) = f ′(a)h+ o(h)

where f ′(a) ∈ L(E,F ) is the Fréchet differential of a at u.
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Remark 2.2.4 (Variation). Whenever f is a functional, i.e., F = R then by (2.24) we
have that f ′(a) ∈ E∗ and it is sometimes referred to as the variation of f at a.

From (2.40), (2.41) and Definition 2.2.1 we have the following implications:

Fréchet differentiable =⇒ Gateaux differentiable =⇒ Existence of partial derivatives.

This motivates the denomination of strong differential (Fréchet differential) since the im-
plications above are not reversible in general.

For real valued functions on RN , we say that a function is of class C1 if it is differentiable
and all its partial derivatives are continuous. In the context of functionals, we have the
following definition.

Definition 2.2.5 (Mapping of class C1). We say that f : O → F belongs to the class
C1(O, F ) iff f is differentiable and the function

f ′ : O ⊆ E −→ L(E,F ) is continuous.

Alternatively, we simply say that f is of class C1 if there is no confusion.

Now let us consider again the case when F = R. The next proposition presented in
[31] states a condition under which a Gateaux differentiable functional is of class C1.

Proposition 2.2.6. If f : O → R has a continuous Gateaux derivative on O then
f ∈ C1(O,R).

If f : O ⊆ E −→ R, and there exists a point x ∈ O such that

∀y ∈ O : f(x) ≤ f(y) (f(x) ≥ f(y)),

then we say that x is a point of local minimum (maximum). Whenever, O = E we say it
is a global point of minimum (maximum) and in the case the inequality above is strict we
say x is a strict point of minimum (maximum). A point of either minimum or maximum
is called a point of extremum. If f is differentiable at z ∈ O, then we say that z is a
critical point of f . The following theorem relates the concepts of extremum and critical
point.

Theorem 2.2.7 (Extremums and critical points). Let E be a normed space, O ⊆ E and
f : O −→ R. Assume that

(i) f has a local extremum at x ∈ O, and

(ii) f is differentiable at x.

Then x is a critical point of f, i.e.,
f ′(x) = 0.

The proof for Theorem 2.2.7 can be found e.g. in [7]. From what we have just seen, a
point of local extremum is also a critical point. However, the converse is false.
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2.2.2 The elementray problem of calculus of variations and the
Euler-Lagrange equation

For many applications, one is interested in minimizing (or maximizing) the value of func-
tionals defined over some functional space. As we mentioned in the last section, we can
find such points by studying the variation of the functional in question. Before formally
introducing the main concepts of this section, let us first look at a concrete example of a
classical variational problem.

Example 2.2.8 (The brachistochrone problem). This problem consists in finding the
minimum-time path that follows a particle moving between two fixed points under the in-
fluence of gravity without friction. The following scheme illustrates the problem at hand.

Figure 2.1: A simple scheme for the brachistochrone problem, [23]

Since we want to minimize the time it takes to travel from A to B, we need to find
the ”curve” that describes the optimal path. This curve will be represented by a function
u ∈ C1(RN). Taking in consideration the law of conservation of energy and the Pythagoras
theorem, the time functional for the situation shown in Figure 2.1 will be given by

T : E −→ RN

u 7−→ T (u) = 1
2g

∫ xb

0

√√√√1 + u′(x)2

u(x) dx,

where g denotes the gravitational acceleration constant and

E = {u ∈ C1([0, xb]) / u(0) = 0 and u(xb) = yb}. (2.46)

Finally, observe that the time functional T is bounded from bellow:

inf
u∈E

T (u) ≥ 0.

Let us generalize the problem shown in Example 2.2.8. Let F ∈ C2([a, b]× R× R). A
generic element of the domain will be denoted by (x, u, ξ). The partial derivatives of F
will be denoted as

Fx = ∂F

∂x
, Fu = ∂F

∂u
, Fξ = ∂F

∂ξ
, etc.
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We will be particularly interested in functionals of the form

J : M ⊆ C1([a, b]) −→ R

y 7−→ J(y) =
∫ b

a
F (x, y(x), y′(x))dx. (2.47)

A functional of the form (2.47) is known as the Lagrangian functional and M is the
set of admissible functions and is defined as

M = {u ∈ C1([a, b]) / u(a) = A ∧ u(b) = B}, (2.48)

Notice the resemblance of M to E from (2.46) in Example 2.2.8.

Remark 2.2.9 (Admissible increments). Notice that (2.48) is not a linear space in general.
Let’s define the set of admissible increments as

J 1([a, b]) = {h ∈ C1([a, b]) / h(a) = h(b) = 0} (2.49)

It is clear that J 1([a, b]) is a linear subspace of C1([a, b]) and that

M + J 1 ⊆M ,

i.e., if we add an admissible increment h to an admissible function u then u+ h ∈M .

Returning to our initial goal of minimizing or maximizing a functional, let’s recall that
any maximization problem can be stated as a minimization one. Hence, the elementary
problem of the Calculus of Variations is mathematically posed as follows:

Find y0 ∈M such that
J(y0) = inf

u∈M
J(u),

or in short,
inf{J(y) / y ∈M }. (EPCV)

Let J be a Lagrangian functional of the form (2.47) and let’s assume that y ∈M is a
point of minimum of J . Then, by Theorem 2.2.7 it follows that

∀h ∈J 1 : J ′(y)h = 0. (2.50)

Any point that satisfies (2.50) is called an extremal. Notice that an extremum is also an
extremal but an extremal is not necessarily a point of extremum. This condition leads us
to a differential equation known as the Euler-Lagrange equation.

Theorem 2.2.10 (Euler-Lagrange Equation). Let y0 ∈M be a point of extremum of the
Lagrangian functional (2.47). Then, y0 is the solution of the Euler-Lagrange equation

Fu(x, y(x), y′(x))− d

dx
Fξ(x, y(x), y′(x)) = 0, x ∈ [a, b] (E-L)
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Proof. Let y ∈ M , h ∈ J 1, generic. Let’s find J ′(y)h. Since F is of class C2, we have
that for any x ∈ [a, b] and any u, ξ, ε1, ε2 ∈ R

F (x, u+ ε1, ξ + ε2)− F (x, u, ξ) = Fu(x, u, ξ)ε1 + Fξ(x, u, ξ)ε2 + o(ε1) + o(ε2).

Hence, we have that

J ′(y)h =
∫ b

a
[Fu(x, y(x), y′(x))h(x) + Fξ(x, y(x), y′(x))h′(x)]dx (2.51)

Now, since y0 ∈M is a point of extremum of J , it is also an extremal and (2.50) implies
that

∀h ∈J 1([a, b]) :
∫ b

a
[Fu(x, y0(x), y′0(x))h(x) + Fξ(x, y0(x), y′0(x))h′(x)]dx = 0. (2.52)

Lemma 4 of Chapter 1 in [13] and (2.52) imply that

∀x ∈ [a, b] : Fu(x, y0(x), y′0(x)) = d

dx
Fξ(x, y0(x), y′0(x)),

i.e., y0 is a solution of (E-L).

To conclude this section, we present the isoperimetric problem. In many applications
of the calculus of variations, we face problems that not only impose boundary conditions
but also additional subsidiary conditions or side constraints. Thus we will consider a new
set of admissible functions,

M = {w ∈ C1([a, b]) / w(a) = A ∧ w(b) = B ∧K(w) = l} (2.53)
with l ∈ R prescribed and

K(w) =
∫ b

a
G(x,w(x), w′(x))dx (2.54)

where G ∈ C2([a, b] × R × R). In this new case, and admissible increment will be any
h ∈ C1([a, b]) such that

h(a) = h(b) = 0 ∧ K(w + h) = l.

The next result states a necessary condition for the constrained problem to have a
solution and its proof can be found in [13] (Sec.12, Theorem 1).

Theorem 2.2.11 (Euler). Let J be as in (2.47). Assume that

(i) y ∈M is a point of extremum of J, and

(ii) y ∈M is not an extremal of K.

Then there exists a Lagrange multiplier, λ ∈ R, such that y is an extremal of the functional
L : M −→ R given by

L(w) = J(w) + λK(w)

i.e., it satisfies
Φu(x, y(x), y′(x))− d

dx
Φξ(x, y(x), y′(x))

where
Φ = F + λG
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2.3 Variational and non-linear topics for PDE’s
In this section, we shall see how the previous tools are used to solve partial differential
equations. A partial differential equation (PDE) is an equation that involves a function of
two or more independent variables and some of the function’s partial derivatives in respect
to said variables. Using the standard multi-index notation, already used in the Sobolev
spaces section for denoting partial derivatives, we can represent a PDE as

F (Dku(x), Dk−1u(x), ..., Du(x), u(x), x) = 0, x ∈ Ω, (2.55)

where k ≥ 1, Ω ⊆ RN , and

F : Rnk × Rnk−1 × ...× RN × R× Ω −→ R

is called a kth-order PDE. The function u : Ω −→ R that satisfies (2.55) is a solution of
the PDE.

We classify a PDE according to its linearity as follows. Given a PDE of the form (2.55),
we say that it is:

(i) Linear if ∑
|α|≤k

aα(x)Dαu = f(x), (2.56)

for given functions aα(|α ≤ k|), f , i.e., F is linear with respect to u and its derivatives.
Moreover, if f = 0 then the linear PDE is homogeneous.

(ii) Semilinear if ∑
|α|=k

aα(x)Dαu+ a0(Dk−1u, ..., Du, u, x) = 0, (2.57)

i.e., F is non-linear with respect to u but linear for its derivatives.

(iii) Quasilinear if∑
|α|=k

aα(Dk−1u, ..., Du, u, x)Dαu+ a0(Dk−1u, ..., Du, u, x) = 0, (2.58)

i.e., F is linear for the highest order derivatives of u.

(iv) Fully non-linear if it depends non-linearly upon the highest order of derivatives.

There is no general method for solving PDE’s. The ideas and methods applied vary
depending on the structure of the problem. One thing that can be said in most occasions
is that non-linear PDE’s are harder to solve than linear PDE’s. This section will be mainly
concerned with the necessary ideas used to study non-linear PDE’s following the ideas from
[11].

Let’s assume that we wish to find the solution u of the PDE represented by

F (u) = 0, (2.59)
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where F denotes a (possibly non-linear) partial differential operator. Now let’s assume
that the operator F is the ”derivative” of an appropriate ”energy” functional J , i.e.,

F = J ′. (2.60)

Then solving the PDE (2.59) is equivalent to finding the critical points of J as defined in
(2.60). Let’s assume now that J has a form similar to

J(w) =
∫

Ω
L(x,w(x), Dw(x))dx, (2.61)

where L = L(x, u, ξ) = L(x1, ..., xN , u, ξ1, ..., ξN). If y is a minimizer of J , then y will also
be an extremal, i.e., a solution of the Euler-Lagrange equation associated to J ,

Lu(x, y,Dy)−
N∑
i=1

(Lξi(x, y,Dy))xi = 0, x ∈ Ω.

In order to elucidate this approach, we provide some examples of the previous process.

Example 2.3.1 (Minimal surfaces). Let

L(x, u, ξ) = (1 + |ξ|2)1/2, so that J(w) =
∫

Ω
(1 + |Dw|2)1/2dx

is the area of the graph of the function w : Ω −→ R. The associated Euler-Lagrange equation
is

n∑
i=1

(
uxi

(1 + |Du|2)1/2

)
xi

= 0 in Ω. (2.62)

This partial differential equation is the minimal surface equation. The expression on
the left side of (2.62) is n times the mean curvature of the graph of u. Thus, a minimal
surface has zero mean curvature.

Example 2.3.2 (Non-linear Schrödinger equation). Let p ≥ 1, N ∈ N,Ω ⊆ RN open
connected with smooth boundary, and T ∈ C(Ω) non-negative. We look for solutions of −∆u(x) + T (x)u(x)− |u(x)|p−1u(x) = 0 x ∈ Ω

u(x) = 0 x ∈ ∂Ω,
(2.63)

which is the Euler-Lagrange equation associated to the functional

J(u) = 1
2

∫
Ω
|∇u(x)|2 + T (x)|u(x)|2dx

with the restriction
‖u‖Lp+1(Ω) = 1.

Thus, a critical point of J weakly verifies (2.63), which serves e.g. to model systems of
a very large number of particles interacting at very low temperatures, like Bose-Einstein
condensates.
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We conclude this section with the concept of manifold.

Definition 2.3.3 (Manifold). Let X be a Banach space and I a set of indices. A topo-
logical space M is a Ck manifold modelled on X if

∃ {Ui}i∈I open covering of M and

ψi : Ui → X family of mappings

such that the following conditions hold:

Vi = ψi(Ui) is open in X,

ψi is a homeomorphism between Ui and Vi, and

ψj ◦ ψ−1
i : ψi(Ui ∩ Uj)→ ψj(Ui ∩ Uj) is of class Ck.

For further information on manifolds we refer the reader to [2].

2.3.1 Ground state solutions
In this subsection we state some conditions that will ensure that J as in (2.61) has indeed
a minimizer, at least within an appropriate Sobolev space. Let 1 < p <∞. Let’s define

A := {w ∈ W 1,p(Ω) / ∀x ∈ ∂Ω : w(x) = g(x)}, (2.64)

for some function g, as the class of admissible functions (notice the similarity to (2.48)).
Clearly, if g = 0 then A = W 1,p

0 (Ω). We are interested in ensuring that J is bounded and
that it attains its infimum through some compactness property. The most effective way to
ensure boundedness from bellow is to hypothesize that J(w) ”grows rapidly as |w| → ∞”.
This motivates the following definition.

Definition 2.3.4 (Coercivity). Let’s assume that

∃α > 0, β ≥ 0,∀(x, u, ξ) ∈ Ω× R× RN : L(x, u, ξ) ≥ α|ξ|p − β.

Therefore,
∃δ > 0 : J(w) ≥ δ‖Dw‖pp − γ, (2.65)

where γ := β|Ω|. Thus I(w)→∞ as ‖Dw‖p →∞.

In general, the previous condition is not enough to ensure that our integral functional
J attains its infimum. To further develop on this, let’s assume that

m := inf
w∈A

J(w), (2.66)

and choose functions un ∈ A, n ∈ N, such that

J(un)→ m as n→∞. (2.67)
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A sequence verifying (2.67) is called a minimizing sequence. Let’s assume that J
is coercive. Then, from (2.65) it follows that the minimizing sequence lies in a bounded
set of the infinite dimensional space W 1,p(Ω). Notice that from our previous assumption
of 1 < p < ∞ and Proposition 2.1.38 we have that W 1,p(Ω) is reflexive. Hence, from the
boundedness of (un)n∈N and Theorem 2.27 we conclude that there is some subsequence
(unk)k∈N and u ∈ W 1,p(Ω) such that

unk ⇀ u in W 1,p(Ω). (2.68)

Moreover, from (2.68) we also have that u ∈ A. Notice that from (2.68) we cannot
deduce that

J(u) = lim
k→∞

J(unk) (2.69)

since J is not continuous with respect to weak convergence. However, the strength of
(2.69) is not really needed. Instead, the next condition suffices.

Definition 2.3.5 (Weakly lower semicontinuity). We say that J is (sequentially) weakly
lower semicontinuous on W 1,p(Ω), provided

J(u) ≤ lim inf
n→∞

J(un)

whenever
un ⇀ u in W 1,p(Ω).

Thus, if we assume that J is weakly lower semicontinuous then from (2.68) it follows
that J(u) ≤ m. Since (2.66) implies that m ≤ J(u), we can conclude that u is indeed a
minimizer.

2.3.2 Palais-Smale condition
Let J be a functional on a Banach space X. In this subsection we will assume the more
restrictive condition of J being of class C1 in the Frechét sense. We will also impose the
compactness assumption mentioned earlier: the Palais-Smale condition. For this, we follow
the ideas presented in [30](Chap. II, Sec. 2).

In the original work of Palais and Smale, this condition is stated as follows:

Definition 2.3.6 (Original Palais-Smale condition). Let S ⊂ X on which

(i) J is bounded and

(ii) ‖J ′‖ is not bounded away from zero.

Then, there is a critical point in S.

In order to work with a more convenient condition, slightly stronger than Definition
2.3.6, Struwe introduces the following concept.
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Definition 2.3.7 (Palais-Smale sequence). A sequence (un) ⊂ X is a Palais-Smale
sequence for J if

(i) ∃c > 0,∀n ∈ N : |J(un)| ≤ c, and

(ii)
∥∥J ′(un)

∥∥→ 0 as n→∞.

In terms of the previous definition, the modified compactness condition states:

Any Palais-Smale sequence has a (strongly) convergent subsequence. (P.S.)

Note that (P.S.) implies that any set of critical points of uniformly bounded energy is
relatively compact. In fact, if we were to strengthen condition 2.3.6 by this requirement,
this new condition would be equivalent to (P.S.). We have the following proposition.

Proposition 2.3.8. Assume that J has the following properties.

(i) Any Palais-Smale sequence for J is bounded in X.

(ii) It is possible to decompose J ′ as

∀u ∈ X : J ′(u) = L+K(u),

where L : X → X∗ is a fixed boundedly invertible linear map and the operator K
maps bounded sets in X to relatively compact sets in X∗.

Then J satisfies (P.S.).

Proof. Notice that if (un) is a (P.S.) sequence of J then

J ′(un) = Lun +K(un)→ 0

implies that
un = o(1)− L−1K(un)

where
o(1)→ 0 in X as n→∞.

By boundedness of (un) and compactness of K, the sequences (L−1K(un)), and hence (un),
are relatively compact.

The (P.S.) condition allows us to identify a certain family of neighbourhoods of critical
points of a functional J . For β ∈ R, δ > 0, ρ > 0 let

Jβ = {u ∈ X / J(u) < β},
Kβ = {u ∈ X / J(u) = β ∧ J ′(u) = 0},
Nβ,δ = {u ∈ X / |J(u)− β| < δ ∧

∥∥∥J ′(u)
∥∥∥ < δ},

Uβ,δ =
⋃

u∈Kβ
{v ∈ X / ‖u− v‖ < ρ}.
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Lemma 2.3.9 (PS and neighbourhoods). Assume J satisfies (P.S.). Let β ∈ R generic.
Thus, the following holds:

(i) Kβ is compact,

(ii) {Uβ,ρ}ρ>0 is a fundamental system of neighborhoods of Kβ, and

(iii) {Nβ,δ}δ>0 is a fundamental system of neighborhoods of Kβ.

Proof. (i) From (P.S.) we have that any sequence (un) ⊂ Kβ has a convergent subse-
quence. Since both J and J ′ are continuous, the limit of such subsequence lies in Kβ.
Therefore, Kβ is compact.

(ii) Clearly, any Uβ,ρ, ρ > 0, is a neighbourhood of Kβ. Let V any open neighbourhood
of Kβ. For the purpose of contradiction assume that

• ∃(ρn) ⊂ R : ρn → 0 as n→∞, and

• ∃(un) ⊂ X, ∀n ∈ N : un ∈ Uβ,ρn \ V .

Let (vn) ⊂ Kβ such that ‖un − vn‖ ≤ ρn. Point (i) implies that there is some v ∈ Kβ

such that vn → v. Hence, un → v and un ∈ V for a sufficiently large n. This is a
contradiction.

(iii) Evidently, Nβ,δ, δ > 0, is a neighborhood of Kβ. Once again for the purpose of
contradiction, assume that there is some neighbourhood W of Kβ such that

• δn → 0, and

• ∃(un) ⊂ X, ∀n ∈ N : un ∈ Nβ,δn \W .

From (P.S.) we have that un → u ∈ Kβ ⊂ W . The result follows by contradiction.

The Palais-Smale condition is a useful technical assumption that occurs frequently in
critical point theory. In the next subsection we will see how it is a key ingredient for one
of the most important minimax methods.

2.3.3 Mountain Pass Theorem
This subsection is mainly based on [28]. Minimax methods are those that characterize a
critical value c of a functional J as a minimax over a suitable class of sets.

c = inf
A∈S

max
u∈A

J(u) (2.70)

Assume that J is Fréchet differentiable and that J ′ is continuous on X, i.e., J ∈ C1(X)
where X is a real Banach space. Let Bρ := B(0; ρ) ⊂ X, ρ > 0. We will now present the
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usual version of the Mountain Pass Theorem. An important result used in the proof of
this theorem is the Deformation Theorem ([28] Appendix A.4). However, given its length
and technicalities, it will suffice to consider the following special case.

Proposition 2.3.10 (Special case). Suppose J satisfies (P.S.). For s, c ∈ R we define

Kc = {u ∈ X / J(u) = c ∧ J ′(u) = 0} (2.71)

As = {u ∈ X / J(u) ≤ s} (2.72)

If c is not a critical value of J then
∀ ε > 0,∃ ε ∈ (0, ε),∃ η ∈ C([0, 1]×X,X) :

J(u) /∈ [c− ε, c+ ε] =⇒ η(1, u) = u, (2.73)

η(1, Ac+ε) ⊂ Ac−ε. (2.74)

From this, we can now prove

Theorem 2.3.11 (Mountain Pass Theorem (MPT)). Let X be a real Banach space and
J ∈ C1(X) satisfying (P.S.). Assume:

J(0) = 0, (J0)

∃ ρ, α > 0 : J |∂Bρ ≥ α, (J1)

∃ e ∈ X \Bρ : J(e) ≤ 0. (J2)

Then J possess a critical value c ≥ α. Moreover c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

J(u), (2.75)

where
Γ = {g ∈ C([0, 1], X) / g(0) = 0 ∧ g(1) = e}.

Proof. From the definition of c it is clear that c <∞. Also, from the definition of Γ, (J0)
and (J2), we have that if g ∈ Γ, then g([0, 1]) ∩ ∂Bρ 6= ∅. Thus, by (J1) it follows that

max
u∈g([0,1])

J(u) ≥ inf
w∈∂Bρ

J(w) ≥ α,

and consequently c ≥ α. For the purpose of contradiction, let’s assume that c is not a
critical value of J . Then, by Proposition 2.3.10 with ε = α/2 yields ε ∈ (0, α/2) and η as
in the result. Choose g ∈ Γ such that

max
u∈g([0,1])

J(u) ≤ c+ ε (2.76)
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and consider h(t) := η(1, g(t)). Clearly, h ∈ C([0, 1], X). Notice that g(0) = 0 and (J0),
J(0) = 0 < α/2 ≤ c − ε, imply h(0) = 0 by (2.73). By an analogous reasoning we have
that

g(1) = e ∧ J(e) ≤ 0 =⇒ h(1) = e.

Consequently, h ∈ Γ and by (2.75)

c ≤ max
u∈h([0,1])

J(u). (2.77)

However, by (2.76), g([0, 1]) ⊂ Ac+ε so (2.74) implies

h([0, 1]) ⊂ Ac−ε ⇐⇒ max
u∈h([0,1])

J(u) ≤ c− ε, (2.78)

contradicting (2.77). This contradiction implies that c must be a critical value of J .

The intuition behind the MPT is that if a pair of points in the graph of J are separated
by a ”mountain range”, then there must be a mountain pass containing a critical point
between them (see Figure 2.2).

Figure 2.2: Diagram of Theorem 2.3.11 with Γ = ∂Bρ.

2.4 p-Laplacian operator
In this section we shall present some properties of the p−Laplacian operator, a generaliza-
tion of the well-known Laplacian operator. The classical theory developed for the regular
Laplace equation involves areas such as: Calculus of Variations, Partial Differential Equa-
tions, Calculus of Probability, etc. In a similar way, the p−Laplace equation occupies a
similar role when it comes to non-linear diffusion phenomena. Since our main problem
involves the p−Laplacian operator, we will present some important concepts and results
taken from [19] and [18].
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2.4.1 Definition
The usual Laplacian operator appears in the classical Laplace equation

∆u = ∂2u

∂x2
1

+ ∂2u

∂x2
2

+ · · ·+ ∂2u

∂x2
N

= 0.

This is the Euler-Lagrange equation of the functional,

D(u) =
∫

Ω
|∇u(x)|2dx =

∫
· · ·

∫ (∂u(x)
∂x1

)2

+ · · ·+
(
∂u(x)
∂xN

)2
 dx1 . . . dxN .

This is just the particular case p = 2, for the more general Dirichlet integral given by

I(u) =
∫

Ω
|∇u(x)|pdx =

∫
· · ·

∫ (∂u(x)
∂x1

)2

+ · · ·+
(
∂u(x)
∂xN

)2

p
2

dx1 . . . dxN . (2.79)

Definition 2.4.1. We call p-Laplace equation to the Euler-Lagrange equation correspond-
ing to (2.79), i.e.,

div(|∇u(x)|p−2∇u(x)) = 0.

Thus, we define the p-Laplace operator as

∆pu := div(|∇u|p−2∇u). (2.80)
Notice that the value of p can change. Then we have that:

(i) For p = 1 we get the Mean Curvature operator H,

H = −∆1u = −∇
(
∇u
|∇u|

)
.

(ii) For p = 2 we have the Laplace operator,

∆u =
N∑
i=1

∂2u

∂x2
i

.

(iii) If we let p→ +∞, the following equation arises

∆∞u =
N∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0.

The p-Laplace operator appears in many contexts. Some examples are:
(i) The non-linear eigenvalue problem

−∆pu = λ|u|p−2u = 0,
which generalizes the eigenvalue problem −∆u = λu.

(ii) The p-Poisson equation
∆pu = f(x).

(iii) Equations similar to
∆pu+ |u|αu = 0,

that are of interest when the exponent α is ”critical”.
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2.4.2 Eigenvalue problem
In this section we are interested in the following eigenvalue problem for the p−Laplacian.{

−∆pu− λ|u|p−2u = 0 in Ω
u = 0 on ∂Ω, (2.81)

with Ω ⊂ RN . In [21], the first eigenvalue is the nonlinear Rayleigh quotient

λ1(Ω) = min
φ∈W 1,p

0 (Ω),φ 6=0

∫
Ω
|∇φ(x)|pdx∫

Ω
|φ(x)|pdx

=

∫
Ω
|∇u1(x)|pdx∫

Ω
|u1(x)|pdx

, (2.82)

where the minimum is achieved at some u1. Notice that u1 also is a weak solution to the
Euler-Lagrange equation in (2.81).The first eigenvalue has many special properties:

(i) λ1(Ω) > 0,

(ii) λ1(Ω) is simple, i.e., its algebraic multiplicity is one, for all Ω bounded and connected,
and

(iii) u1, the associated eigenfunction, is the only positive eigenfunction for the p-Laplacian.
In order to describe how higher eigenvalues are produced, from [30] we present the

concept of genus of Krasnoselskii.

Definition 2.4.2 (Krasnoselskii Genus). Let X be a Banach space and define

A(X) := {A ∈ P(X) \ {∅} / A = A ∧ A = −A},

the class of non-void closed symmetric subsets of X. Let A ∈ A. Then γ(A) is called
the Krasnoselskii’s genus of A. It corresponds to the infimum integer k such that
there exists an odd continuous mapping from A to Rk \ {0}, i.e.,

γ(A) =


inf{k / ∃h ∈ C(A,Rk \ {0}) : h(u) = −h(−u)}, {...} 6= ∅
∞, {...} = ∅ ∨ 0 ∈ A
0, A = ∅.

(KG)

The notion of genus generalizes the notion of dimension of a linear space.
Now let Σk denote the collection of all symmetric subsets A of W 1,p

0 (Ω) such that
(i) λ(A) ≥ k, and

(ii) {u ∈ A / ‖u‖Lp(Ω) = 1} is compact.
Then according to [6], the higher eigenvalues of the p-Laplacian are given by

λk(Ω) = inf
A∈Σk

max
φ∈A

∫
Ω
|∇φ(x)|pdx∫

Ω
|φ(x)|pdx

(2.83)

and there are infinitely many of them. The fact that this minimax procedure provides
eigenvalues is explained thorugh the (P.S.) condition.
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Chapter 3

Results

3.1 Preliminaries
Let ε > 0. Consider the following quasilinearboundary value problem.{

−ε2∆pu(x) + V (x)|u(x)|p−2u(x)− |u(x)|q−1u(x) = 0, x ∈ RN

u(x) → 0, as |x| → ∞, (Gε)

where
∆pu = div(|∇u|p−2∇u)

and
1 < p < q + 1 < p∗, (3.1)

with

p∗ =


pN

N − p
, if N ≥ 3;
∞, if N = 1, 2.

Additionally, we will assume that

V ∈ C(RN) is non-negative and (C)
lim
|x|→∞

V (x) =∞. (L)

Let’s assume that u ∈ C∞0 (RN) verifies (Gε). Then, multiplying in (Gε) by u and
integrating we get

−
∫
RN
ε2[∆pu(x)]u(x)dx+

∫
RN
V (x)|u(x)|p−2u(x)2dx−

∫
RN
|u(x)|q−1u(x)2dx = 0.

Integration by parts in the first integral yields∫
RN
ε2|∇u(x)|p−2(∇u(x)·∇u(x))dx+

∫
RN
V (x)|u(x)|p−2|u(x)|2dx−

∫
RN
|u(x)|q−1|u(x)|2dx = 0,

and consequently∫
RN
ε2|∇u(x)|pdx+

∫
RN
V (x)|u(x)|pdx−

∫
RN
|u(x)|q+1dx = 0. (3.2)
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Remark 3.1.1. Equation (3.2) corresponds to the variational formulation for (Gε).

From the previous, let’s observe that the standard functional associated to (Gε), written

Γε : X → R,

is given by

Γε(u) =
∫
RN

[
ε2

p
|∇u(x)|p + 1

p
V (x)|u(x)|p − 1

q + 1 |u(x)|q+1
]
dx, (3.3)

where
X =

{
u ∈W1,p

0 (RN) / V 1/p u ∈ Lp(RN)
}
. (3.4)

Remark 3.1.2. Notice that thanks to (3.4), (3.3) makes sense and is well defined since by
Corollary 2.1.43 we have that

W1,p
0 (RN) ⊆ Lα(RN), ∀α ∈ [p, p∗],

so that, by condition 3.1,
W1,p

0 (RN) ⊆ Lq+1(RN).

Remark 3.1.3. If we had V ∈ C(RN) ∩ L∞(RN), then it would suffice

X = W1,p
0 (RN)

In what follows, we want to derive a problem equivalent to (Gε) by introducing a
scaling that will allow us to remove the ε2 factor in (Gε). Let ε > 0 and let’s assume that
v ∈ C2(RN) verifies (Gε). We shall use the scaling

v(x) = u(εβx), x ∈ RN , β ∈ R. (3.5)

Hence, by (3.5) it follows that

∇v(x) = εβ∇u(εβx),
|∇v(x)|p−2 = εβ(p−2)|∇u(εβx)|p−2,

|∇v(x)|p−2∇v(x) = εβ(p−1)|∇u(εβx)|p−2∇u(εβx)

which implies

∆pv(x) = div(|∇v(x)|p−2∇v(x))
= εβ(p−1)εβ div

(
|∇u(εβx)|p−2∇u(εβx)

)
= εβp∆pu(εβx). (3.6)

Together (3.5) and (3.6), provide

−εβp+2∆pu(εβx) + V (x)|u(εβx)|p−2u(εβx)− |u(εβx)|q−1u(εβx) = 0, x ∈ RN .
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Then, by choosing,
β = −2

p
,

y = εβx

= ε−2/px, (3.7)

we get
−∆pu(y) + Vε(y)|u(y)|p−2u(y)− |u(y)|q−1u(y) = 0, y ∈ RN , (3.8)

where
Vε(x) = V (ε−2/px). (3.9)

As a result of (3.5) and (3.6), we have that the problem (Gε) is equivalent to−∆pu(x) + Vε(x)|u(x)|p−2u(x)− |u(x)|q−1u(x) = 0, x ∈ RN ,

u(x)→ 0, as |x| → +∞.
(Eε)

Now, we present the following proposition.

Proposition 3.1.4. The functional ‖·‖ε : C∞0 (RN) −→ R given by

‖u‖ε =
(∫

RN
|∇u(x)|p + Vε(x)|u(x)|p dx

)1/p
(3.10)

is a norm.

Proof. Let u, v ∈ C∞0 (RN), generic. It is clear by (3.10) that (N1) and (N3) hold. Let’s
prove that the triangle inequality holds, i.e.,

‖u+ v‖ε ≤ ‖u‖ε + ‖v‖ε . (3.11)

By the triangle inequality in Theorem 2.1.34 and Minkowski’s inequality for finite sums
we have that

‖u+ v‖ε =
(∫

RN
|∇u(x) +∇v(x)|p + Vε|u(x) + v(x)|pdx

)1/p

=
(∫

RN
|∇u(x) +∇v(x)|pdx+

∫
RN
Vε|u(x) + v(x)|pdx

)1/p

=
(
‖∇u+∇v‖pLp(RN ) +

∥∥∥V 1/p
ε u+ V 1/p

ε v
∥∥∥p

Lp(RN )

)1/p

≤
(
‖∇u‖pLp(RN ) +

∥∥∥V 1/p
ε u

∥∥∥p
Lp(RN )

)1/p
+
(
‖∇v‖pLp(RN ) +

∥∥∥V 1/p
ε v

∥∥∥p
Lp(RN )

)1/p

=
(∫

RN
|∇u(x)|p + Vε(x)|u(x)|p

)1/p
+
(∫

RN
|∇v(x)|p + Vε(x)|v(x)|p

)1/p

= ‖u‖ε + ‖v‖ε .
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Since u, v were chosen arbitrarily, we have proved (3.11).
Finally, let’s prove that (N2) holds for (3.10). If u = 0 then clearly ‖u‖ε = 0. Con-

versely, let’s assume that ‖u‖ε = 0. Thus, it follows that∫
RN
|∇u(x)|pdx+

∫
RN
Vε|u(x)|pdx = 0,

and consequently
0 ≤

∫
RN
|∇u(x)|pdx = −

∫
RN
Vε(x)|u(x)|pdx.

The last inequality implies that
∥∥∥V 1/p

ε u
∥∥∥

Lp(RN )
= 0. Hence, it must be the case that either

u(x) = 0 ∨ Vε(x) = 0, a.e. x ∈ RN .

This, together with (C)-(L), provides that u = 0. This concludes the proof.

Remark 3.1.5. By Theorem 2.1.6 the space Wε, that results of completing C∞0 (RN) in the
norm ‖·‖ε, is a Banach space.

The following theorem will be useful to achieve our results.

Theorem 3.1.6. Assume that Vε ∈ C(RN) is non-negative and such that Vε(x)→ +∞ as
|x| → +∞. Let Wε be the Banach space that results of completing C∞0 (RN) whenever is
equipped with the norm given by

‖u‖ε =
(∫

RN
|∇u(x)|p + Vε(x)|u(x)|p

)1/p
.

Then, the embedding
Wε ⊆ Lq(RN),

is compact for all q ∈ [p, p∗[, where p∗ = pN

N − p
. For q = p∗ the embedding is continuous.

Remark 3.1.7. For p = 2 the previous result has been used in [12] and [27]. Theorem 3.1.6
is obtained by an application of the theorems on criteria for strong compactness presented
in [3]. It is obtained by compensating the non-boundedness of the domain with the property
of the potential exploding at infinity.

Let’s consider the manifold

Mε =
{
u ∈Wε /

∫
RN
|u(x)|q+1dx = 1

}
, (3.12)

and the functional Jε :Mε ⊆Wε → R, given by

Jε(u) = 1
p
‖u‖pε

= 1
p

∫
RN

[
|∇u(x)|p + Vε(x)|u(x)|p

]
dx. (3.13)
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Now, we have the following result

Proposition 3.1.8. The functional Jε is of class C1. Moreover, for all u,w ∈Mε

〈J ′ε(u), w〉 =
∫
RN
|∇u(x)|p−2∇u(x) · ∇w(x) + Vε(x)|u(x)|p−2u(x)w(x) dx (3.14)

Proof. 1. Let’s first compute the directional derivative of Jε at u ∈Mε, in the direction
h ∈Mε.

Jε(u+ th) = 1
p

∫
RN
|∇u+ t∇h|p + Vε(x)|u+ th|p dx,

d

dt
Jε(u+ th) =

∫
RN

(
|∇u|2 + t2|∇h|2 + 2t∇u · ∇h

)(p−2)/2 (
t|∇h|2 +∇u · ∇h

)
+ Vε(x)

(
|u|2 + t2|h|2 + 2tuh

)(p−2)/2 (
t|h|2 + uh

)
dx,

d

dt
Jε(u+ th)

∣∣∣∣∣
t=0

=
∫
RN
|∇u|p−2∇u · ∇h+ Vε(x)|u|p−2uh dx.

Arbitrariness of u, h implies that the Gateaux differential of Jε exists at every u ∈Mε.
We will denote it by J ′G,ε(u).

2. Let u ∈Mε, generic and fixed. Let’s define g :Mε → R as

g(h) = Jε(u+ h)− Jε(u)− 〈J ′G,ε(u), h〉. (3.15)

Let’s also define Lα : R→ R by Lα := zα with α ∈ R. A first order Taylor expansion
of Lα around some z ∈ R provides

Lα(z + ε) = Lα(z) + L′α(z)ε+ gα(ε)

= zα + αzα−1ε+ gα(ε), (3.16)

where gα(ε)→ 0 as ε→ 0, i.e. gα(ε) = o(ε). Let h ∈Mε, generic. If we denote

z1 = |∇u|2, ε1 = |∇h|2 + 2∇u · ∇h (3.17)

z2 = |u|2, ε2 = |h|2 + 2uh (3.18)

then it follows from (3.16) - (3.18) that

Jε(u+ h) = 1
p

∫
RN
|∇u+∇h|p dx+ 1

p

∫
RN
Vε(x)|u+ h|p dx

= 1
p

∫
RN
Lp/2(z1 + ε1) dx+ 1

p

∫
RN
Lp/2(z2 + ε2) dx

= 1
p

∫
RN
|∇u|p + p

2 |∇u|
p−2|∇h|2 + p|∇u|p−2∇u · ∇h+ gp/2(ε1) dx

+ 1
p

∫
RN
Vε(x)

(
|u|p + p

2 |u|
p−2|h|2 + p|u|p−2uh+ gp/2(ε2)

)
dx. (3.19)
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Therefore, from (3.15), (3.19) and the the Gateaux differential of Jε we have that

g(h) = 1
2

∫
RN
|∇u|p−2|∇h|2 + Vε(x)|u|p−2|h|2 dx+ 1

p

∫
RN
g̃(ε1, ε2) dx, (3.20)

where g̃(ε1, ε2) = gp/2(ε1) + Vεgp/2(ε2). Clearly, g(h) = o(h) and therefore the func-
tional Jε is Fréchet differentiable. Thus, we will denote it by J ′ε.

3. Let’s prove that J ′ε is continuous. Let u0 ∈Mε, generic and fixed. For any u, v ∈Mε

we have to consider two cases:

(a) If 1 < p ≤ 2, by (2.12) and (2.31) we have that∣∣∣〈J ′ε(u0)− J ′ε(u), v〉
∣∣∣ =

∣∣∣〈J ′ε(u0), v〉 − 〈J ′ε(u), v〉
∣∣∣

≤
∫
RN

∣∣∣|∇u0|p−2∇u0 − |∇u|p−2∇u
∣∣∣ |∇v|dx

+
∫
RN
Vε(x)

∣∣∣|u0|p−2u0 − |u|p−2u
∣∣∣ |v| dx

(by (2.12)) ≤ 22−p
(∫

RN
|∇u0 −∇u|p−1|∇v| dx

+
∫
RN
Vε(x)|u0 − u|p−1|v| dx

)

(by (2.31)) ≤ 22−p

(∫
RN
|∇u0 −∇u|

p(p−1)
(p−1) dx

) p−1
p

‖∇v‖Lp(RN )

+
(∫

RN
Vε(x)|u0 − u|

p(p−1)
(p−1) dx

) p−1
p
∥∥∥V 1/p

ε v
∥∥∥

Lp(RN )


(by (3.10)) ≤ 22−p

(
‖∇u0 −∇u‖p−1

Lp(RN ) +
∥∥∥V 1/p

ε (u0 − u)
∥∥∥p−1

Lp(RN )

)
‖v‖ε

≤ 23−p ‖u0 − u‖p−1
ε ‖v‖ε .

(b) Moreover, if p > 2, then (2.31) and Theorem 2.1.31 with p′′ such that

1
p

+ 1
p

+ 1
p′′

= 1,

where clearly
p′′ = p

p− 2 ,

yields
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∣∣∣〈J ′ε(u0)− J ′ε(u), v〉
∣∣∣ =

∣∣∣〈J ′ε(u0), v〉 − 〈J ′ε(u), v〉
∣∣∣

=
∣∣∣∣∫

RN
|∇u0|p−2∇u0∇v + Vε(x)|u0|p−2u0v dx−

∫
RN
|∇u|p−2∇u∇v + Vε(x)|u|p−2uv dx

∣∣∣∣
=
∣∣∣∣∫

RN
|∇u0|p−2∇u0∇v + Vε(x)|u0|p−2u0v dx−

∫
RN
|∇u0|p−2∇u∇v + Vε(x)|u0|p−2uv dx

+
∫
RN
|∇u0|p−2∇u∇v + Vε(x)|u0|p−2uv dx−

∫
RN
|∇u|p−2∇u∇v + Vε(x)|u|p−2uv dx

∣∣∣∣
=
∣∣∣∣∫

RN
|∇u0|p−2(∇u0 −∇u)∇v + Vε(x)|u0|p−2(u0 − u)v dx

+
∫
RN

(
|∇u0|p−2 − |∇u|p−2

)
∇u∇v + Vε(x)

(
|u0|p−2 − |u|p−2

)
uv dx

∣∣∣∣
≤
∫
RN
|∇u0|p−2|∇u0 −∇u||∇v| dx+

∫
RN
Vε(x)|u0|p−2|u0 − u||v| dx

+ C
∫
RN
|∇u0 −∇u|p−2|∇u||∇v| dx+ C

∫
RN
Vε(x)|u0 − u|p−2|u||v| dx(

by (2.1.31)
)

≤
∥∥∥(∇u0)p−2

∥∥∥
p′′
‖∇u0 −∇u‖p‖∇v‖p +

∥∥∥V 1/p′′
ε up−2

0

∥∥∥
p′′

∥∥∥V 1/p
ε (u0 − u)

∥∥∥
p

∥∥∥V 1/p
ε v

∥∥∥
p

+ C
∥∥∥(∇u0 −∇u)p−2

∥∥∥
p′′
‖∇u‖p‖∇v‖p + C

∥∥∥V 1/p′′(u0 − u)p−2
∥∥∥
p′′

∥∥∥V 1/p
ε u

∥∥∥
p

∥∥∥V 1/p
ε v

∥∥∥
p(

by (3.10)
)

≤

(∫
RN
|∇u0|

p(p−2)
p−2

) p−2
p

+
(∫

RN
Vε(x)|u0|

p(p−2)
p−2

) p−2
p

 ‖u0 − u‖ε ‖v‖ε

+ C

(∫
RN
|∇u0 −∇u|

p(p−2)
p−2

) p−2
p

+
(∫

RN
Vε(x)|u0 − u|

p(p−2)
p−2

) p−2
p

 ‖u‖ε ‖v‖ε
=
(
‖∇u0‖p−2

p +
∥∥∥V 1/p

ε u0

∥∥∥p−2

p

)
‖u0 − u‖ε ‖v‖ε

+ C
(
‖∇u0 −∇u‖p−2

p +
∥∥∥V 1/p

ε (u0 − u)
∥∥∥p−2

p

)
‖u‖ε ‖v‖ε(

by (3.10)
)

≤
(
‖u0‖p−2

ε ‖u0 − u‖ε + C ‖u‖ε ‖u0 − u‖p−2
ε

)
‖v‖ε .

Therefore, by parts (a) and (b), by the arbitrariness of v ∈Mε we know that∥∥∥J ′ε(u0)− J ′ε(u)
∥∥∥
M′ε
→ 0 as ‖u0 − u‖ε → 0.

Since u ∈Mε was also generic, it follows that the functional in (3.14) is continuous.

Let’s show that the critical points of Jε provide weak solutions for (Eε) and, by (3.5)
and (3.6), also for (Gε). The formula of the corresponding Lagrangian functional is given
by

Lλ(v) = Jε(v) + λ
(∫

RN
|v(x)|q+1dx− 1

)
,
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where λ ∈ R is the Lagrange multiplier. Let’s recall that

J ′ε(v) = 0 ⇐⇒


L′λ(v) = 0,∫
RN
|v(x)|q+1dx = 1.

Let’s observe that for v, w ∈Mε,

Lλ(v)w =
∫
RN

[
|∇v(x)|p−2∇v(x)∇w(x) + Vε(x)|v(x)|p−2v(x)w(x)

]
dx

−λ(q + 1)
∫
RN
|v(x)|q−1v(x)w(x)dx. (3.21)

Now if L′λ(v) = 0, then we get, by choosing w = v in (3.21),

−λ(q + 1) = pc,

where
c = Jε(v)

is the corresponding critical value. From this it follows that v is a weak solution of

∆pv(x) + Vε(x)|v(x)|p−2v(x)− pc|v(x)|q−1v(x) = 0.

Therefore, the function u defined by
v = γu,

with
|γ| = (pc)1/(p−q−1),

is a weak solution of (Eε).

3.2 Main results
Now we state the main result of this work.

Theorem 3.2.1. Let p > 1 and assume

V ∈ C(RN) is non-negative and (C)

lim
|x|→∞

V (x) =∞. (L)

Then, the problem (Gε) possesses at least one nontrivial solution.

For the proof of Theorem 3.2.1, we will need the following result that can be found on
[22].

Theorem 3.2.2 (Mawhin & Willem). Let X be a real Banach space and I ∈ C1(X)
satisfies the (P.S.)-condition. If I is bounded from below, then

c = inf
X
I

is a critical value of I.
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Proceeding as in [10], since in Proposition 3.1.8 we already proved that Jε is of class
C1 on Mε, in order to prove Theorem 3.2.1 using Theorem 3.2.2 it will suffice to show
that the conditions of boundedness from below and the (P.S.) condition hold for Jε. From
(3.13) it immediately follows that

Remark 3.2.3. The functional Jε :Mε → R, defined by Jε(u) = 1
p
‖u‖pε is bounded from

below, i.e., Jε(u)→∞ as ‖u‖ε →∞.

As in the proof from Proposition 3.1.8, we will consider the following cases: p ≥ 2 and
1 < p < 2

Lemma 3.2.4. The functional Jε from (3.13) satisfies the (P.S.) condition for p ≥ 2.

Proof. Let (un)n∈N ⊆Mε a sequence such that
(
Jε(un)

)
n∈N is bounded, and (3.22)

J ′ε(un)→ 0 as n→∞. (3.23)

We have to prove that (un)n∈N has a converging subsequence. By Remark 3.2.3, there
exists some k1 ∈ R and, by (3.22), some k2 ∈] max{0, |k1|},+∞[ such that

∀n ∈ N : k1 ≤ Jε(un) ≤ k2. (3.24)

By Theorem 3.1.6 and (3.24) we get

∃C1, C2 > 0,∀n ∈ N : ‖un‖Lp(RN ) ≤ C1 ‖un‖ε ≤ C2. (3.25)

Therefore, up to a subsequence, by (3.25) it follows that

un ⇀ u0, weakly in Mε, i.e.,

∀ η ∈M′
ε : 〈η, un − u0〉 → 0, as n→∞. (3.26)

In the view of weak convergence, we have that

〈J ′ε(un)− J ′ε(u0), un − u0〉 → 0 as n→ 0. (3.27)

Moreover, by (3.14) we know that

〈J ′ε(un)− J ′ε(u0), un − u0〉 = 〈J ′ε(un), un − u0〉 − 〈J ′ε(u0), un − u0〉

=
∫
RN
|∇un|p−2∇un · (∇un −∇u0) + Vε(x)|un|p−2un(un − u0) dx

−
∫
RN
|∇u0|p−2∇u0 · (∇un −∇u0) + Vε(x)|u0|p−2u0(un − u0) dx

=
∫
RN
〈|∇un|p−2∇un − |∇u0|p−2∇u0,∇un −∇u0〉dx

+
∫
RN
Vε(x)〈|un|p−2un − |u0|p−2u0, un − u0〉dx, (3.28)
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where in (3.28) the symbol 〈·, ·〉 denotes the euclidean inner product on RN . Let us recall
from [19] the following identity. Let a, b ∈ RN , generic. Then we have that

〈|b|p−2b− |a|p−2a, b− a〉 = |b|
p−2 + |a|p−2

2 |b− a|2 + (|b|p−2 − |a|p−2)(|b|2 − |a|2)
2 . (3.29)

Since p ≥ 2, from (3.29) we have that

〈|b|p−2b− |a|p−2a, b− a〉 ≥ 22−p|b− a|p. (3.30)

By (3.28) and (3.30) we obtain

〈J ′ε(un)− J ′ε(u0), un − u0〉 ≥ 22−p
∫
RN
|∇un −∇u0|p + Vε(x)|un − u0|p dx

= 22−p ‖un − u0‖pε . (3.31)

Together with (3.27) and (3.31) we have

‖un − u0‖pε ≤ 2p−2〈J ′ε(un)− J ′ε(u0), un − u0〉 → 0 as n→∞,

which implies that
un → u0, in Mε.

Therefore, Jε satisfies the (P.S.)-condition.

Considering the second case we present the following analogous result.

Lemma 3.2.5. The functional Jε from (3.13) satisfies the (P.S.) condition for 1 < p < 2.

Proof. We proceed exactly the same as in Lemma 3.2.4 in steps (3.22)-(3.28). Since 1 <
p < 2, the identity (3.29) provides

〈|b|p−2b− |a|p−2a, b− a〉 ≥ (p− 1)(1 + |b|2 + |a|2)
p−2

2 |b− a|2. (3.32)

From (3.28) and (3.32) it follows that

〈J ′ε(un)− J ′ε(u0), un − u0〉

≥ (p− 1)
∫
RN
|∇un −∇u0|2

(
1 + |∇un|2 + |∇u0|2

) p−2
2 dx

+ (p− 1)
∫
RN
Vε(x)|un − u0|2

(
1 + |un|2 + |u0|2

) p−2
2 dx. (3.33)

Since 1 < p < 2, we now define

q := p

2 and q′ := p

p− 2 so that 1
q

+ 1
q′

= 1. (3.34)
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Notice that since 0 < q < 1, we can apply the variant of Hölder’s inequality (Theorem
2.1.33) for q and q′ as in (3.34) for (3.33). Then by the parallelogram identity we have that

(p− 1)
∫
RN
|∇un −∇u0|2

(
1 + |∇un|2 + |∇u0|2

) p−2
2 dx

+ (p− 1)
∫
RN
Vε(x)|un − u0|2

(
1 + |un|2 + |u0|2

) p−2
2 dx.

≥ (p− 1)
(∫

RN
|∇un −∇u0|

2p
2 dx

) 2
p

(∫
RN

(
1 + |∇un|2 + |∇u0|2

) (p−2)p
2(p−2) dx

) p−2
p

+ (p− 1)
(∫

RN
Vε(x)|un − u0|

2p
2 dx

) 2
p

(∫
RN
Vε(x)

(
1 + |un|2 + |u0|2

) (p−2)p
2(p−2) dx

) p−2
p

≥ (p− 1)
(∫

RN
|∇un −∇u0|p dx

) 2
p

(∫
RN

(
|∇un|2 + |∇u0|2

) p
2 dx

) p−2
p

+ (p− 1)
(∫

RN
Vε(x)|un − u0|p dx

) 2
p

(∫
RN
Vε(x)

(
|un|2 + |u0|2

) p
2 dx

) p−2
p

≥ p− 1
2

(∫
RN
|∇un −∇u0|p dx

) 2
p
(∫

RN
|∇un −∇u0|p dx

) p−2
p

+ p− 1
2

(∫
RN
Vε(x)|un − u0|p dx

) 2
p
(∫

RN
Vε(x)|un − u0|p dx

) p−2
p

= p− 1
2

∫
RN
|∇un −∇u0|p + Vε(x)|un − u0|p dx

= p− 1
2 ‖un − u0‖pε (3.35)

Together with (3.27) and (3.35) we have

‖un − u0‖pε ≤
2

p− 1〈J
′
ε(un)− J ′ε(u0), un − u0〉 → 0 as n→∞,

which implies that
un → u0, in Mε.

Therefore, Jε satisfies the (P.S.)-condition.

By Theorem 3.2.2, Lemmas 3.2.4, 3.2.5, and Remark 3.2.3,

c = inf
Mε

Jε(u)

is a critical value of Jε, i.e., there exists a critical point u∗ ∈ Mε such that Jε(u∗) = c.
Thus, we have proved Theorem 3.2.1.
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Chapter 4

Conclusions and recommendations

4.1 Conclusions
We have proved the existence of a non-trivial ground-state solution for the following quasi
linear boundary value problem.{

−ε2∆pu(x) + V (x)|u(x)|p−2u(x)− |u(x)|q−1u(x) = 0, x ∈ RN

u(x) → 0, as |x| → ∞, (Gε)

where
∆pu = div(|∇u|p−2∇u)

and
1 < p < q + 1 < p∗, (4.1)

with

p∗ =


pN

N − p
, if N ≥ 3;
∞, if N = 1, 2.

Additionally, we assumed that

V ∈ C(RN) is non-negative and (C)
lim
|x|→∞

V (x) = +∞. (L)

By rescaling, (Gε) is equivalent to−∆pu(x) + Vε(x)|u(x)|p−2u(x)− |u(x)|q−1u(x) = 0, x ∈ RN ,

u(x)→ 0, as |x| → +∞.
(Eε)

Also, we consider the manifold

Mε =
{
u ∈Wε /

∫
RN
|u(x)|q+1dx = 1

}
, (4.2)
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and the functional Jε :Mε ⊆Wε → R, given by

Jε(u) = 1
p
‖u‖pε

= 1
p

∫
RN

[
|∇u(x)|p + Vε(x)|u(x)|p

]
dx. (4.3)

We summarize the main results as follows:

1. In the preliminaries section, in Proposition 3.1.8 we proved that the functional (3.13)
is of class C1 and that its Fréchet differential is given by (3.14). In order to determine
J ′ε, we used the Gateaux differentiability of Jε and a first order Taylor expansion. For
the continuity of J ′ε we had to consider two cases for p: 1 < p ≤ 2 and 2 < p. Some
inequalities from [19] and the extension of Hölder’s inequality from [3] were applied
for this purpose.

2. The main results section was dedicated exclusively to our main Theorem 3.2.1. The
proof of this theorem required the use of three partial results:

• Theorem 3.2.2 from [22] provided the necessary conditions for the existence of
a critical value for our functional. The completeness of Mε was already given
by the fact that ‖·‖ε is a norm, proved in Proposition 3.1.4, and Theorem 2.1.6.
The properties of the functional Jε of being C1 and bounded from bellow readily
followed by Proposition 3.1.8 and Remark 3.2.3, respectively.
• Lemma 3.2.4 shows that Jε satisfies the (P.S.) condition when p ≥ 2. Theorem

3.1.6, weak convergence and an inequality from [19] provided the required result.
This proceeding was done based on [10].
• Lemma 3.2.5 shows that Jε satisfies the (P.S.) condition when 1 < p < 2. The

proof is analogous to that of Lemma 3.2.4 with the exception that Theorem
2.1.33, the parallelogram identity and another inequality from [19] were also
required.

4.2 Recommendations
1. This work can be the first step in a more in depth study of the solutions for problem

(Gε). Additional assumptions over the zero set of the potential could lead to the
study of asymptotic profiles for solutions as in [4], [5] and [27].

2. An additional interesting problem that could benefit from what has been just pre-
sented would be a non-stationary version of problem (Gε).

3. In my opinion, the mathematics students from Yachay Tech could improve their
undergraduate research output by the inclusion in the academic plan of specific topics
dedicated to the reading and understanding of mathematics papers and publications.
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