

UNIVERSIDAD DE INVESTIGACIÓN DE

TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO:

A Data Marketplace System for Prediction and Statistical

Analysis over Sensitive Data

Trabajo de integración curricular presentado como requisito para la

obtención del título de Ingeniero en Tecnologías de la Información

AUTOR:

Serrano Palacio Nicolás Enrique

TUTOR:

Ph.D. Cuenca Lucero Fredy

Urcuquí, abril 2021

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Urcuquí, 20 de abril de 2021
SECRETARÍA GENERAL

(Vicerrectorado Académico/Cancillería)
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES

CARRERA DE TECNOLOGÍAS DE LA INFORMACIÓN
ACTA DE DEFENSA No. UITEY-ITE-2021-00004-AD

A los 20 días del mes de abril de 2021, a las 14:30 horas, de manera virtual mediante videoconferencia, y ante el Tribunal
Calificador, integrado por los docentes:

Presidente Tribunal de Defensa Dr. ANTON CASTRO , FRANCESC , Ph.D.

Miembro No Tutor Dr. LOPEZ RIOS, JUAN CARLOS , Ph.D.

Tutor Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D.

El(la) señor(ita) estudiante SERRANO PALACIO, NICOLAS ENRIQUE, con cédula de identidad No. 0105501878, de la
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES, de la Carrera de TECNOLOGÍAS DE LA INFORMACIÓN,
aprobada por el Consejo de Educación Superior (CES), mediante Resolución RPC-SO-43-No.496-2014, realiza a través de
videoconferencia, la sustentación de su trabajo de titulación denominado: A DATA MARKETPLACE SYSTEM FOR
PREDICTION AND STATISTICAL ANALYSIS OVER SENSITIVE DATA , previa a la obtención del título de INGENIERO/A EN
TECNOLOGÍAS DE LA INFORMACIÓN.

El citado trabajo de titulación, fue debidamente aprobado por el(los) docente(s):

Tutor Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D.

Y recibió las observaciones de los otros miembros del Tribunal Calificador, las mismas que han sido incorporadas por el(la)
estudiante.

Previamente cumplidos los requisitos legales y reglamentarios, el trabajo de titulación fue sustentado por el(la) estudiante y
examinado por los miembros del Tribunal Calificador. Escuchada la sustentación del trabajo de titulación a través de
videoconferencia, que integró la exposición de el(la) estudiante sobre el contenido de la misma y las preguntas formuladas
por los miembros del Tribunal, se califica la sustentación del trabajo de titulación con las siguientes calificaciones:

Tipo Docente Calificación
Presidente Tribunal De Defensa Dr. ANTON CASTRO , FRANCESC , Ph.D. 9,5

Tutor Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D. 10,0

Miembro Tribunal De Defensa Dr. LOPEZ RIOS, JUAN CARLOS , Ph.D. 10,0

Lo que da un promedio de: 9.8 (Nueve punto Ocho), sobre 10 (diez), equivalente a: APROBADO

Para constancia de lo actuado, firman los miembros del Tribunal Calificador, el/la estudiante y el/la secretario ad-hoc.

SERRANO PALACIO, NICOLAS ENRIQUE
Estudiante

Dr. ANTON CASTRO , FRANCESC , Ph.D.
Presidente Tribunal de Defensa

Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D.
Tutor

FRANCESC
ANTON CASTRO

Signé électroniquement par
FRANCESC ANTON CASTRO
cn=FRANCESC ANTON CASTRO, ou= ENTIDAD DE
CERTIFICACION DE INFORMACION, o= SECURITY
DATA S.A. 1, c= EC
Date: 2021.04.20 15:54:31 ECT

Firmado electrónicamente por:

FREDY ENRIQUE
CUENCA LUCERO

Firmado electrónicamente por:

NICOLAS ENRIQUE
SERRANO PALACIO

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Dr. LOPEZ RIOS, JUAN CARLOS , Ph.D.
Miembro No Tutor

MEDINA BRITO, DAYSY MARGARITA
Secretario Ad-hoc

DAYSY MARGARITA
MEDINA BRITO

Firmado digitalmente por DAYSY
MARGARITA MEDINA BRITO
Fecha: 2021.04.20 15:50:51 -05'00'

Firmado electrónicamente por:

JUAN CARLOS
LOPEZ RIOS

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 2 Graduation Project

Autoŕıa

Yo, Nicolás Enrique Serrano Palacio, con cédula de identidad 0105501878, declaro
que las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y
conceptualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y her-
ramientas utilizadas en la investigación, son de absoluta responsabilidad de el autor del
trabajo de integración curricular. Aśı mismo, me acojo a los reglamentos internos de la
Universidad de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, marzo del 2021.

Nicolás Enrique Serrano Palacio
CI: 0105501878

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer ii Graduation Project

Autorización de publicación

Yo, Nicolás Enrique Serrano Palacio, con cédula de identidad 0105501878, cedo a la
Universidad de Tecnoloǵıa Experimental Yachay, los derechos de publicación de la presente
obra, sin que deba haber un reconocimiento económico por este concepto. Declaro además
que el texto del presente trabajo de titulación no podrá ser cedido a ninguna empresa edi-
torial para su publicación u otros fines, sin contar previamente con la autorización escrita
de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este tra-
bajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto en el
Art. 144 de la Ley Orgánica de Educación Superior.

Urcuqúı, Marzo del 2021.

Nicolás Enrique Serrano Palacio
CI: 0105501878

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer iv Graduation Project

Dedication

”To all developers and computer scientists. I hope one day this work help us to build
more privacy preserving technology for the benefit of humanity and the planet.”

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer vi Graduation Project

Acknowledgments

Thanks to you, the readers, the ones that have follow my journey through all this time and
the ones who just joined me today. To my family who have supported me in this incredible
journey through science, entrepreneurship and friendship. To my professors, the ones that
have showed me the true power of conviction and solidarity by giving us the opportunities
to succeed in many fields and trips. To my friends with whom we have share incredible
adventures in and off campus. To Majo who has been by my side supporting me in crazy
situations.

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer viii Graduation Project

Abstract

A data marketplace is a system that enable trading among those who expect to monetize
their data and those interested in gaining insights from the acquired data. In exchange
for a payment, it is possible to buy advertising, demographics, public health, business
intelligence and sensor data from a data owner via a data marketplace. Unfortunately,
the paradigm that drives current marketplaces suffers from data leakage: one who buys
data can, in principle, resell the acquired data as many times as he wants, even despising
non-disclosure agreements.

Just as copyright ownership confers the author exclusive right to use his work, thus
preventing others from commercializing it without the author’s consent, we strongly believe
that data owners should also have exclusive right on the data they struggle to collect, clean
and store.

Not content with trusting in the good faith of the data buyers, we have developed a
privacy-preserving data marketplace system, which allows to sell data that can be com-
puted, though not unveiled. First, an owner provides encrypted data to a buyer, who can
perform arbitrary operations on this encrypted data as if it were regular data. Thanks
to homomorphic encryption, the encrypted results obtained in the buyer-side can then be
decrypted in the owner-side, in a second and definitive data exchange.

The implementation uses an homomorphic encryption scheme for arithmetic of approx-
imate numbers; making it a non deterministic solution. The final results have a small noise
bounded by a constant B that depends on the used encryption parameters. Therefore, this
work should be used for statistical and prediction analysis that would not require exact
results.

This research has built a functional data marketplace and tested it with two toy exam-
ples that allowed us to verify that data buyers can do both: calculate aggregate values and
train a logistic regression-based prediction model from an encrypted data set. The capa-
bility for preventing data misappropriation might foster a paradigm shift in data trading.

Keywords: Data Marketplace, Private Computation, Homomorphic Encryp-
tion, Decentralized Ledgers, Machine Learning, etc.

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer x Graduation Project

Resumen

Un mercado de datos es un sistema que permite una transacción entre aquellos que desean
monetizar sus datos y aquellos interesados en conseguir información de los datos adquiri-
dos. A cambio de un pago, es posible comprar datos de publicidad, demograf́ıa, salud
pública, inteligencia de negocios y sensores en un mercado de datos. Lamentablemente,
el paradigma dominante de los mercados de datos actuales sufre de filtración de datos: el
que compra datos puede, en teoŕıa, revender esos datos múltiples veces incluso ignorando
un acuerdo de confidencialidad.

Al igual que la propiedad intelecual confiere derechos exclusivos al autor, y por lo tanto
previene que la invención sea comercializada sin su consentimiento, nosotros creemos que
los dueños de los datos debeŕıan tener propiedad exclusiva sobre los datos que colectan,
limpian y almacenan.

Hemos desarrollado un sistema de mercado de datos que preserva la privacidad de
los mismos al permitir vender datos que pueden ser computados pero no descubiertos.
Primero, un vendedor env́ıa datos encriptados a un cliente, quien computa operaciones
arbitrarias en datos encriptados como si fueran datos regulares. Gracias a la encriptación
homomórfica, los resultados obtenidos del lado del comprador pueden ser desencriptados
en el lado del vendedor en un segundo y definitivo intercambio de datos.

Contamos con un prototipo funcional y lo hemos probado con dos diferentes ejemplos
que nos permitieron verificar el uso del mismo en: un cálculo de valores agregados y
un entrenamiento de un modelo de predicción basado en regresión loǵıstica con datos
encriptados. La capacidad de prevenir filtración de datos podŕıa cambiar el paradigma de
la venta de datos.

Palabras Clave: Mercado de Datos, Computación Privada, Encriptación Ho-
momórfica, Libros Descentralizados, Aprendizaje de Máquina, etc.

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xii Graduation Project

Contents

Dedication v

Acknowledgments vii

Abstract ix

Resumen xi

Contents xiii

List of Tables xvii

List of Figures xix

1 Introduction 1
1.1 Background . 1
1.2 Data Marketplaces . 2
1.3 Contribution . 3

1.3.1 Specific Objectives . 3
1.3.2 Target Users . 3

2 Homomorphic Encryption 5
2.1 Background . 5
2.2 Mathematical Definitions . 5

2.2.1 Ring . 5
2.2.2 Homomorphism . 6

2.3 Homomorphic Encryption Schemes . 7
2.3.1 Partial Homomorphic Encryption 7
2.3.2 Somewhat Homomorphic Encryption 7
2.3.3 Fully Homomorphic Encryption . 8

2.4 CKKS Encryption . 9
2.4.1 Key generation algorithm . 11
2.4.2 Encoding and decoding algorithm 12
2.4.3 Encryption and decryption algorithm 12

xiii

School of Mathematical and Computational Sciences Yachay Tech University

2.4.4 CKKS recap . 14
2.4.5 Operations on ciphertexts . 14

2.5 Existing Implementations . 17
2.5.1 Microsoft SEAL . 17
2.5.2 NuCypher . 17
2.5.3 CrypTen . 17
2.5.4 HElib . 18

2.6 Current Trends . 18
2.6.1 Circuits Approach . 18
2.6.2 Function Approximation Approach 19
2.6.3 Client-Server Communication Approach 20
2.6.4 Enclaves Approach . 21
2.6.5 Multi Party Computation Approach 22

3 Decentralized Ledger 23
3.1 Background . 23

3.1.1 Byzantine Generals Problem . 23
3.1.2 Blockchain . 24

3.2 Types of Ledgers . 25
3.2.1 Bitcoin . 25
3.2.2 Ethereum . 27
3.2.3 Hyperledger . 28
3.2.4 IOTA . 29

3.3 Smart Contracts . 30
3.3.1 Concept . 30
3.3.2 Programming Languages . 31
3.3.3 Challenges . 31

4 Related Works 35
4.1 IOTA Data Marketplace . 35
4.2 Ocean Protocol . 36
4.3 Sterling . 37

5 Methodology 41
5.1 System Architecture . 41

5.1.1 Payment . 42
5.1.2 Workflow . 42
5.1.3 Result validation . 43
5.1.4 Target Users . 44

5.2 Used Hardware . 45
5.3 Software Requirements . 45

6 Results 47
6.1 Toy Examples . 47

6.1.1 Calculating the average lifetime of a business 47
6.1.2 Predicting the average lifetime of a business 48

Information Technology Engineer xiv Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

6.2 Computation Times . 50

7 Conclusion 53
7.1 Future Works . 53

7.1.1 Ciphertext Growth . 54
7.1.2 Comparisons . 54
7.1.3 Data Visualization . 55

Bibliography 57

Appendices 61

A Glossary 63

B Installation 65
B.1 Server Installation . 65
B.2 Client Installation . 66

Information Technology Engineer xv Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xvi Graduation Project

List of Tables

6.1 Computation times for calculating the average lifetime of a business (toy
example 1). 51

6.2 Computation times for predicting the average lifetime of a business (toy
example 2). 51

xvii

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xviii Graduation Project

List of Figures

1.1 Representation of a private seller-side marketplace tool 2

2.1 Homomorphism between a ring C and a ring U 7
2.2 Bootstrapping’s explanation where a secret key is used to decrypt a cipher-

text and squash its size while keeping it encrypted from the end user . . . 9
2.3 CKKS workflow . 10
2.4 Learning-With-Errors problem . 11
2.5 Stone-Weierstrass theorem example . 19
2.6 A client-server approach workflow . 20
2.7 A enclave workflow . 21
2.8 Multi-party computation between multiple independent clients 22

3.1 Byzantine Generals’ problem . 24
3.2 Block structure in the blockchain . 25
3.3 A decentralized ledger (blockchain) distributed along the participantes (nodes

or miners) . 26
3.4 Bitcoin logo . 27
3.5 Ethereum logo . 27
3.6 Change from state 1 to state 2 in the Ethereum’s virtual machine 28
3.7 Hyperledger logo . 28
3.8 IOTA logo . 29
3.9 Tangle technology workflow . 29
3.10 Results of compiling a smart contract source code 30

4.1 IOTA Data Marketplace Advertisement . 35
4.2 IOTA Data Marketplace workflow . 37
4.3 Ocean Protocol workflow . 38
4.4 Sterling Data Marketplace workflow . 39

5.1 The data marketplace (DMP) system architecture 42
5.2 The data marketplace system workflow . 44

6.1 Mean calculation workflow . 49
6.2 a) Logistic regression model. b) Encrypted model 50
6.3 Model training workflow . 50

7.1 Process to create a ML model . 55

xix

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xx Graduation Project

Chapter 1

Introduction

1.1 Background
A couple of years ago, I was asked to visit Ortiz Corporation headquarters for a business
meeting. A couple of friends and I had founded a startup called Innomaps that focused
on providing business intelligence to small businesses and entrepreneurs through the use
of data and machine learning. We gathered data from different sources and structured it
in a way that was easy for the machine learning algorithms to process it. The corpora-
tion’s representatives were interested in our refined data sets for their internal management
strategies and were willing to pay us for it.

At Innomaps, we were excited to work with a corporation so we immediately decided
to take the deal. Just after the meeting, when we talked to the corporation’s software
department about the technical details, the following question arised: Who should share
what? Should Innomaps give away its raw data to the corporation? Or, should
the corporation give Innomaps the source code with which Innomaps data is
to be processed?

On the one hand, Innomaps data sets took time and resources to be collected and
structured in an easy-to-fetch database. All this work had a cost and if we shared the data
sets, we were risking that corporation (or their employees) could sell again the data sets
by a simple copy-paste action, to other data buyers without Innomaps receiving a penny
for it.

On the other hand, the corporation had developed its own back-end application to get
the information they needed from our data set. This was their private property and if they
passed it to us to compute their results, they were risking that we could use or sell the
code later. There was also the risk that we could intentionally or non-intentionally run the
wrong code and send them wrong results.

Thus, we reached a point of conflicting interests. None of the parties wanted to disclose
and risk their confidential property but both of the parties wanted the deal to happen: the
corporation needed the data sets for a proper management strategy and Innomaps needed
to be sure that the sold data was not going to be resold without our consent.

This is the story behind the motivation of this thesis. we wanted to find a way in which
both parties could protect their confidential property and allow a data sharing transaction

1

School of Mathematical and Computational Sciences Yachay Tech University

to happen. So that the answer of Who should share what? would be No one has to
share anything.

1.2 Data Marketplaces
Nowadays data trading is supported by data marketplaces, which are tools that can be
used to commercialize data with other stakeholders [1]. There are three main categories
of data marketplaces: private, consortium-based and independent [2].

Figure 1.1: Representation of a private seller-side marketplace tool

There are different types of data marketplaces depending on who manages the software:
the buyer, the seller or an intermediary[2]. Since the data marketplace proposed in this
thesis is to be managed by Innomaps, it will be formally classified as a seller-side data
marketplace system (see Figure 1.1).

Through this marketplace, Innomaps is able to sell data (e.g. location, lifetime, number
of customers of a business, etc.) in a peer-to-peer manner.

More deeply, the buyer has to send a petition through a back-end application –a Python
program using a set of APIs located and described in Innomaps webpage. Right after,
Innomaps will send encrypted data to the buyer. Given that Innomaps is the only one
who owns the decryption key, the buyer will never be able to decypher nor sell the data.
That does not mean the data is useless. The buyer can still perform arbitrary operations
with the encrypted data to obtain an encrypted result (e.g. a single encrypted value or
an array of encrypted values). Once the encrypted result is decrypted, the final result is
the same as if all the operations were performed on regular data. That is the idea behind
homomorphic encryption.

Information Technology Engineer 2 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

The back-end application runs on the buyer’s computer; it connects to Innomaps twice:
(1) to ask for data and (2) to ask for decryption of the encrypted result. The payment
and potential reimbursements are managed by a software called descentralized ledger, a
neutral agent in charge of tracking the state of the buyer-seller interaction.

This work is organized as follow: Chapter 2 describes the theoretical background of
homomorphic encryption which allows operations over encrypted data. Chapter 3 describes
the theory behind decentralized ledgers used as an unbiased supervisor of the process.
Chapter 4 describes similar related works and implementations. Chapter 5 discuses the
methodology used to build the data marketplace system. Chapter 6 analyzes results from
two different examples. Chapter 7 synthesize the work and discuses challenges as future
works.

1.3 Contribution
This research will contribute to the field of data sharing by proposing a technological
infrastructure that allows a trustworthy collaboration among data sellers and data buyers.
We developed a black box where buyers can extract information from the data they are
paying for, whereas sellers do not have to disclose their data.

1.3.1 Specific Objectives
1. Ensure the seller original dataset is not discoverable.

2. Ensure the buyer can compute primitive operations over the seller dataset to perform
statistical analysis.

3. Ensure the two parties respect the buying agreement in the process.

4. Ensure no third party or intermediary is directly involved in the process.

1.3.2 Target Users
The target users for this data marketplace system are data scientists, business analysts,
database administrators or people with medium programming skills, who would like to
extract information from a private data set belonging to an external stakeholder.

It is expected that users of the proposed system have some basic knowledge of the
Python programming language because they would build a back-end application to interact
with the encrypted data using this popular language [3]. This programming language
was selected because it has a low-learning-curve that developers can take advantage when
learning how to use the proposed solution. The encryption library is also available in C++
for more experienced developers [4].

Information Technology Engineer 3 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 4 Graduation Project

Chapter 2

Homomorphic Encryption

2.1 Background
Homomorphic encryption refers to the idea of operating over encrypted data and obtaining
the result after decryption. The first ones to mention it were Ronald L. Rivest and Leonard
Adleman in 1978 [5], the same ones who proposed the RSA public key cryptosystem.
On their article entitled On Data Banks and Privacy Homomorphisms [5] they lay out
some core ideas for the development of an homomorphic cryptosystem that would allow
”encrypted data to be operated on without preliminary decryption of the operands”. Since
then, there were theoretical contributions to the field and some schemes were created
(Partial or Leveled schemes) but none of them seem practical until the contribution from
Craig Gentry to bootstrap the system [6] and make a Fully Homomorphic Encryption
scheme practical in real life.

In the following sections the concepts of homomorphic encryption such as the mathe-
matical definition, schemes and implementations will be discussed.

2.2 Mathematical Definitions

2.2.1 Ring
According to [7], a ring R is a set together with two binary operations ⊕ and ⊗ (called
addition and multiplication) satisfying the following axioms:

1. (R,⊕) is an abelian group

2. ⊗ is associative: (a⊗ b)⊗ c = a⊗ (b⊗ c) for all a, b, c ∈ R

3. the distributive laws hold in R are:

for all a, b, c ∈ R

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) and a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
.

5

School of Mathematical and Computational Sciences Yachay Tech University

2.2.2 Homomorphism
Let U be a ring with two operations ⊕ and ⊗. Let C be another ring with two operations
⊕′ and ⊗′. A homomorphism between U and C exists if and only if there is a function φ
such that:

φ : U → C

φ(s1 ⊕ s2) = φ(s1)⊕′ φ(s2)
φ(s1 ⊗ s2) = φ(s1)⊗′ φ(s2)

where s1, s2 ∈ U and φ(s1), φ(s2) ∈ C [7].

The operations performed in one ring are preserved in the other ring. In a homomorphic
encryption scheme, the function φ could be considered the encryption function; while its
inverse φ−1 could be considered the decryption function. It is worth noting that in order
for the encryption scheme to work, φ−1 should exist and:

φ−1(φ(si)) = si [5].
Homomorphic encryption focuses on preserving the additive and multiplicative func-

tions between rings of plaintexts and ciphertexts when applying the encryption and de-
cryption operations [8]. For an illustrative example refer to Figure 2.1. The sets of the
rings can be numerical (integers, complex, etc) or non-numerical (polynomials, matrices,
etc).

For a toy example of how computations can be performed over encrypted data and the
result will be preserved thanks to homomorphic encryption, consider the following:

U =< {u1, u2, . . . }; � >

C =< {c1, c2, . . . }; �′ >

u1, u2 : data values to operate

encryption : encoding function U → C

decryption : decoding function C → U

� : additive or multiplicative operation in U

�′ : additive or multiplicative operation in C

c1 = encryption(u1)

c2 = encryption(u2)

c3 = c1 �′ c2 : operation executed by buyer

decryption(c3) = u1 � u2.

The Homomorphic encryption cryptosystems can be prime-factorization-based (used in
cryptosystems such as RSA [9], Diffie–Hellman [10], etc), discrete-logarithm-based (e.g.:

Information Technology Engineer 6 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Elliptic-curve [11]) or lattice-based constructions. The last one appear to be quantum
resistant as the time of writing [12]).

Figure 2.1: Homomorphism between a ring C and a ring U

2.3 Homomorphic Encryption Schemes
A homomorphic encryption scheme defines which operations can be performed over en-
crypted data and how many times these operations can be applied. Particularly, any
Boolean circuit can be represented using XOR (addition) and AND (multiplication) gates
[13] therefore most homomorphic encryption schemes focus on defining the additive or mul-
tiplicative functions as core primitives because they are functionally complete over finite
sets [13] and can be used to build more complex functions (complex circuits, function
composition and even function approximation using series or polynomials).

There are three schemes: partial homomorphic encryption, somewhat homomorphic
encryption and fully homomorphic encryption.

2.3.1 Partial Homomorphic Encryption
This scheme refers to cryptosystems that can operate just one operation over encrypted
data in an unlimited number of times. In the [13] survey, Acar et al. describe in more
detail multiple Partial Homomorphic Encryption examples that either have the additive
function or the multiplicative function defined.

A specific and interesting example of this type of scheme is the Paillier cryptosystem
[14]. Pascal Paillier, the author, introduces an innovative probabilistic encryption scheme
based on the composite residuosity problem and build an homomorphic encryption cryp-
tosystem with interesting additional properties. The system not only can perform additive
operations between ciphertext-ciphertext and plaintext-ciphertext, but also multiplicative
operations between plaintexts and ciphertexts. This make it practical for real use cases
[13].

2.3.2 Somewhat Homomorphic Encryption
The Somewhat Homomorphic Encryption schemes specify cryptosystems that allow some
types of operations a limited number of times [13]. It is worth nothing that since the

Information Technology Engineer 7 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

appearance of homomorphic encryption in 1978 [5], researchers and contributors have been
trying to achieve a Fully Homomorphic Encryption; therefore the Somewhat Homomorphic
Encryption schemes are just an attempt to allow multiple operations in unlimited number
of times. The problem with the examples under this scheme is the ciphertext growth when
operating specific functions (in most cases present in [13] multiplication) making the result
corrupted at the moment of decryption.

The ciphertext growth occurs because every pair of encrypted messages already have
some level of noise to protect them against attacks (e.g.: semantic attacks) and when
multiplying these messages together, the noise is also multiplied making the result more
difficult to clean from its noise.

2.3.3 Fully Homomorphic Encryption
In 2009, Craig Gentry [6] found a way to solve the ciphertext growth problem. He
proposed a bootstrapping technique that would allow the cryptosystem to decrypt the
messages, perform the operations and encrypt it again without leaking any information in
the process. This bootstrapping technique was possible thanks to a squashing method that
allow any arbitrary-sized ciphertext to be reduced to a depth level that the bootstrapping
technique could handle. After squashing, the bootstrapping involved a recrypting procedure
of the ciphertext by the use of another set of keys provided by the encrypting stakeholder
[13].

For a visual example imagine a jewelry factory owner that wants its employers to
transform gold pieces into jewelry. She is afraid the employers would steal her gold pieces
so she decides to give them gloveboxes with lock to manufacture the jewelry inside. The
problem she faces now is that the gloveboxes start to fill and her employees are not able
to keep working. To solve it, she decides to build a complex pipeline of gloveboxes better
described by Gentry himself [15]: ”She gives a worker a glovebox, box #1, containing
the raw materials. But she also gives him several additional gloveboxes, where box #2
contains (locked inside) the key to box #1, box #3 contains the key to box #2, and so on.
To assemble an intricate design, the worker manipulates the materials in box #1 until the
gloves stiffen. Then, he places box #1 inside box #2, where the latter box already contains
the key to box #1. Using the gloves for box #2, he opens box #1 with the key, extracts
the partially assembled trinket, and continues the assembly within box #2 until its gloves
stiffen. He then places box #2 inside box #3, and so on. When the worker finally finishes
his assembly inside box #n, he hands the box to the factory owner”.

The problem with Gentry’s bootstrapping solution is that is not always feasible in real
world scenarios because of its computational complexity. Therefore, the Fully Homomor-
phic Encryption schemes have been subdivided in two:

Leveled Homomorphic Encryption

These cryptosystems try to imitate a Fully Homomorphic Encryption by setting parameters
high enough to avoid a considerable ciphertext growth and therefore allow its users to
compute safely multiple operations in limited number of times.

Information Technology Engineer 8 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.2: Bootstrapping’s explanation where a secret key is used to decrypt a ciphertext
and squash its size while keeping it encrypted from the end user

Truly Fully Homomorphic Encryption

These cryptosystems have tried and succeeded in implementing Gentry’s bootstrapping
technique or a similar solution. Therefore, these cryptosystem are considered Fully Homo-
morphic Encryption schemes because it allows to compute multiple operations in unlimited
number of times.

2.4 CKKS Encryption
In this work, the Homomorphic Encryption for Arithmetic of Approximate Numbers im-
plementation proposed by Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song
[4] will be used. This implementation is called HEEAN because of the article’s title initials
and also called CKKS because of the authors initials. They implemented both a Leveled
Fully Homomorphic Encryption scheme and a Fully Homomorphic Encryption scheme. The
implementation used in this work is a Python wrapper library created by the OpenMined
organization [16] for the C++ Microsoft Simple Encrypted Arithmetic Library (SEAL)
which contains the CKKS [4] scheme.

As the name states, the encryption works with approximate numbers and not their
real value. For this reason, the use of the CKKS encryption is limited to statistical or
prediction application which does not require complete precision. It is worth mentioning
that CKKS is the only fully homomorphic encryption that works over real numbers and

Information Technology Engineer 9 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

not only integers.
In overview, CKKS has the following phases:

1. Generating the public and private key for the encryption process

2. Grouping data as a vector a = (a1, a2, a3, ...) or as a set of vectors (e.g.: matrix)

3. Encoding the vector as a polynomial p(x) = c0 + c1x
1 + c2x

2 + . . . + cnx
n which

is directly related to the vector of the previous step. More information about this
relationship is provided at section 2.4.2.

4. Encrypting the polynomial coefficients to obtain the ciphertext

5. Performing the desired operations on the ciphertext

6. Decrypting the polynomial coefficients (the ciphertext)

7. Decoding the polynomial as a vector

CKKS uses polynomials instead of vectors because they provide an efficient and more
secure way to compute operations. It also makes it easy to interact with polynomials
representing function approximations. [17] [4]

Figure 2.3: CKKS workflow

The CKKS encryption used in this work is an asymmetric encryption scheme; this
means that the data owner is able to encrypt data using a public key and only decrypt it
using a private key. The owner would share the public key with others but keep the private
key secret. Anyone with access to the private key would be able to decrypt the data [4].

Next, we continue with detailed explanations of each of the encryption and decryption
phases of CKKS.

Information Technology Engineer 10 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.4.1 Key generation algorithm
CKKS is based on the Ring Learning-With-Error problem [18]. To understand this prob-
lem, consider the simpler Learning-With-Error version. A vector m of size n can be
encrypted by adding the expression As+ e which represents a matrix-vector multiplication
between matrix A and vector s and an addition of vector e. So the encrypted vector would
be b = m+ (As+ e). The origin of these elements is as follows:

1. A: is a matrix whose elements have been uniformly sampled from Zq (which represent
the set of integers modulo q. q can be a very large element).

2. s: is our secret n-sized vector which can be select as a random vector or a vector
specified by the user.

3. e: is a n-sized vector containing small errors (usually guassian noises). These errors
would be added to the plaintext vector and are supposed to be small enough to
not represent a major difference between the decrypted ciphertext and the plaintext
(ũ = u).

The security of the problem depends on the difficulty to find As+ e (or also −As+ e)
having A but not having s (secret vector) nor e (small noises vector).

Figure 2.4: Learning-With-Errors problem

The Ring Learning-With-Error problem is exactly the same as the Learning-With-
Error problem but it uses an algebraic ring. In the CKKS scheme, this algebraic ring
is the polynomial ring Zq[X]/(XN + 1) (the set of all polynomials with integers-modulo-
q coefficients, modulo the cyclotomic polynomial XN + 1). It is worth mentioning that
integers-modulo-q is defined as Zq = {0, 1, 2, ..., q−1}. So all A, s and e can be interpreted
as polynomials rather than vectors and matrices. This change allows for more efficient not
quadratic but linear key size and also for a multiplication complexity reduction from O(n2)
to O(nlog(n)) because it can be done using more efficient methods than the matrix-vector
multiplication [4].

To conclude the private key is the secret polynomial s and the public key is the tuple
(−As+ e,A).

Information Technology Engineer 11 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.4.2 Encoding and decoding algorithm
As previously mentioned, a polynomial would be needed to take advantages of the Ring
Learning-With-Error problem so an encoding algorithm to transform a vector to a poly-
nomial is needed.

It is easier to understand the decoding process first rather than the encoding one.
To transform a polynomial to a set of numbers (vector), we can evaluate the polynomial
using each of the N unity roots of the cyclotomic polynomial XN + 1. A possible more
efficient solution would be to calculate the eigenvalues of the quotient algebra of the ring
of polynomials by the ideal generated by the cyclotomic polynomial. This alternative
approach is part of future works and therefore not considered to be implemented in this
proposed system.

So a polynomial p(x) would be decoded to the vector:

v = (p(ξ1), p(ξ3), . . . , p(ξ2N−1)) = (v1, v2, . . . , vN)

with ξ2n−1 as the n-th unity root of the cyclotomic polynomial.

More informally, a function σ can be defined as follows:

σ : Cq[X]/(XN + 1)→ ZN
q

σ(p(x)) = (p(ξ1), p(ξ3), . . . , p(ξ2N−1))

Consequently, to encode a vector to a polynomial, the inverse σ function is needed. A
linear equation would better represent this situation with:

V : the Vandermonde matrix of ξ2i−1 with i = 1, 2, . . . , N

c : the polynomial coefficients vector (c1, c2, c3, ...)

a : the vector to encode or decode (a1, a2, a3, ...)

V c = a would help to decode the polynomial to a vector

V −1a = c would help to encode the vector to a polynomial

It should be recalled that the domain of σ is Cq[X]/(XN +1) and the integers-modulo-q
coefficient polynomials are needed to take advantages of the integers polynomials ring. In
order to transform this domain, the CKKS scheme uses a coordinate-wise random rounding
process which was proposed in the Toolkit for Ring-LWE Cryptography [19]. To avoid
numbers’ losses in the rounding process, the vector elements are multiplied by a constant
∆ that depending on its value, it gives a 1

∆ precision.

2.4.3 Encryption and decryption algorithm
After having encoded our vector (µ) into an integers-modulo-q coefficient polynomial and
having created our public (p) and private (s) keys, the encryption and decryption algo-
rithms of our plain encoded vector are:

Information Technology Engineer 12 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

p : Public key tuple (−As+ e, A)

s : Private key polynomial

Encryption enc[µ] : (µ, 0) + p = (µ− As+ e, A) = (c1, c0)

Decryption dec[(c1, c0)] : c1 + c0s = µ− As+ e+ As = µ+ e ≈ µ̂

µ+ e ≈ µ̂

The error (e) makes the encryption scheme an approximate arithmetic scheme while also
making it hard to break. This error is sampled from a Gaussian distribution of standard
deviation σ = 3.2 [4]. It is worth pointing out that the error is needed for the LWE hard
assumption problem used to built the CKKS cryptosystem [4] [18]. The error is considered
small enough to state that the decrypted result is an approximated value to the true result
[4]. Therefore this work should be used only for statistical and prediction analysis.

Certain operations over encrypted data could make the error grow and therefore make
the approximation of µ̂ to µ obsolete. Leveled Homomorphic Encryption (choosing en-
cryption parameters high enough to not worry avoid error grow) and Fully Homomorphic
Encryption (using a bootstrapping technique which decrypts, eliminates the noise (error)
and encrypts again the ciphertext without letting the user see the decrypted data) are two
current solutions to this problem [13] [6].

The TenSEAL library (a python wrapper of Microsoft implementation) used in this
work does not have a bootstrapping technique implemented for CKKS yet. This issue is
already part of the roadmap as a future implementation but on the time of writing, it has
not been done [20]. Therefore, this work is using a Leveled Homomorphic Encryption with
a possible opportunity to become a Fully Homomorphic Encryption thanks to the future
bootstrapping implementation [20].

Information Technology Engineer 13 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.4.4 CKKS recap
To recap, the CKKS encryption and decryption method go as following:

Let a = (a1, a2, ..., an) ∈ Rn be a unencrypted element
Let b = b0 + b1x+ b2x

2 + ...+ bn−1x
n−1 be an encrypted element

Let c ∈ Cq[X]/(XN + 1) be the second component of the public key

Let σ : Cq[X]/(XN + 1)→ RN be the decoding function described in 2.4.2
Let σ−1 : RN → Cq[X]/(XN + 1) be the encoding function described in 2.4.2

Let enc : Cq[X]/(XN + 1)→ [Cq[X]/(XN + 1)]2 be the encryption function described in 2.4.3
Let dec : [Cq[X]/(XN + 1)]2 → Cq[X]/(XN + 1) be the decryption function described in 2.4.3

ckks encryption : RN → [Cq[X]/(XN + 1)]2

ckks encryption(a) = enc(σ−1(a))
ckks decryption : [Cq[X]/(XN + 1)]2 → RN

ckks decryption(b, c) = σ(dec(b, c))

From now on in this work, the term enc will refer to ckks encryption and the term
dec will refer to ckks decryption. It is worth pointing out that the term plaintext refers
to an unencrypted element and the term ciphertext refers to an encrypted element. The
element could be a number, a vector or a polynomial. In the following sections of this
work, plaintext elements would refer to vectors unless otherwise specified, and ciphertext
elements would refer to polynomials unless otherwise specified.

2.4.5 Operations on ciphertexts
The following algorithms are used to operate over ciphertexts:

1. Plain-Cipher Addition:

Let a, b ∈ Rn be plaintext vectors
enc(a) = (c1, c0)

enc(a) + b := (c1 + b, c0)

dec(c1 + b, c0) = c1 + b+ c0s

= c1 + c0s+ b

≈ a+ b

Information Technology Engineer 14 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2. Cipher-Cipher Addition:

Let a, b ∈ Rn be plaintext vectors
enc(a) = (c1, c0) and enc(b) = (c′1, c′0)
enc(a) + enc(b) := (c1 + c′1, c0 + c′0)

dec(c1 + c′1, c0 + c′0) = (c1 + c′1) + (c0 + c′0)s
= c1 + c′1 + c0s+ c′0s

= c1 + c0s+ c′1 + c′0s

= (c1 + c0s) + (c′1 + c′0s)
≈ a+ b

3. Plain-Cipher Multiplication:

Let a, b ∈ Rn be plaintext vectors
enc(a) = (c1, c0)

enc(a) ∗ b := (bc1, bc0)

dec(bc1, bc0) = bc1 + bc0s

= b(c1 + c0s)
≈ b ∗ a

Information Technology Engineer 15 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4. Cipher-Cipher Multiplication:

Let the encrypter be the one who encrypts the elements
Let a, b ∈ Rn be plaintext vectors

enc(a) = (c1, c0) and enc(b) = (c′1, c′0)

enc(a)enc(b) := (d0, d1) + d2

p
evk

where:
d0 = c1c

′
1

d1 = c0c
′
1 + c1c

′
0

d2 = c0c
′
0

evk = (−a0s+ e0 + ps2, a0) is a tuple given by the encrypter
a0 is an uniformly sampled polynomial given
e0 is a small uniformly sampled error polynomial
p is a big integer

dec((d0, d1) + d2

p
evk) = dec((c1c

′
1, c0c

′
1 + c1c

′
0) + c0c

′
0

p
(−a0s+ e0 + ps2, a0))

= dec((c1c
′
1, c0c

′
1 + c1c

′
0) + (−c0c

′
0

p
a0s+ c0c

′
0

p
e0 + c0c

′
0

p
ps2,

c0c
′
0

p
a0))

= dec(c1c
′
1 −

c0c
′
0

p
a0s+ c0c

′
0

p
e0 + c0c

′
0

p
ps2, c0c

′
1 + c1c

′
0 + c0c

′
0

p
a0)

= c1c
′
1 −

c0c
′
0

p
a0s+ c0c

′
0

p
e0 + c0c

′
0

p
ps2 + (c0c

′
1 + c1c

′
0 + c0c

′
0

p
a0)s

= c1c
′
1 −

c0c
′
0

p
a0s+ c0c

′
0

p
e0 + c0c

′
0

p
ps2 + c0c

′
1s+ c1c

′
0s+ c0c

′
0

p
a0s

= c1c
′
1 + c0c

′
0

p
e0 + c0c

′
0s

2 + c0c
′
1s+ c1c

′
0s

= c0c
′
0s

2 + (c0c
′
1 + c1c

′
0)s+ c1c

′
1 + (c0c

′
0

p
e0)

= (c1 + c0s)(c′1 + c′0s) + (c0c
′
0

p
e0)

= dec(enc(a), s) dec(enc(b), s) + (c0c
′
0

p
e0)

= ab+ (c0c
′
0

p
e0)

≈ ab when p is a big integer and e0 is a small error

CKKS is a Leveled Fully Homomorphic Encryption scheme so an unlimited types of
operations should be allowed. The addition and multiplication operations already let the
user have a subtraction (negative addition) and a division (multiplication by its respective
decimal value 1

2 = 0.5) operations. These 4 primitive operations allow for more com-

Information Technology Engineer 16 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

plex functions using function approximations (logarithm, exponent, sigmoid, evaluation
functions over a specific domain and more) [13].

2.5 Existing Implementations
The following section describes existing implementations related to homomorphic encryp-
tion and other privacy preserving systems.

2.5.1 Microsoft SEAL
Microsoft is developing an open source C++ library called Simple Encrypted Arithmetic
Library or SEAL. According to its 2017 manual, ”SEAL was created for the specific goal
of providing a well-engineered and documented homomorphic encryption library, with no
external dependencies, that would be easy to use both by experts and by non-experts with
little or no cryptographic background” [20]. The library implements two homomorphic
encryption schemes:

• BFV (Brakerski, Gentry, and Vaikuntanathan) scheme that provides modular arith-
metic to be performed on encrypted integers [21].

• CKKS (Cheon-Kim-Kim-Song) scheme that allows additions and multiplications on
encrypted real or complex numbers, but yields only approximate results [21].

The library successfully accomplish its goal in the C++ programming language field
but thanks to the widespread use of Python [3], the Open Mined community [16] decided
to create a python wrapper [22] (called TenSEAL) for most of the SEAL library functions
making both the C++ memory efficiency and the Python simplicity available together for
users of the wrapper.

2.5.2 NuCypher
NuCypher is a crypto-startup that provides multiple privacy services focused on decen-
tralized applications [23]. One of its services is a python library for Fully Homomorphic
Encryption (including a bootstrapping implementation) called NuFHE which uses CUDA
and OpenCL [24].

They have been focusing on building a Key Management System for symmetric and
asymmetric encryption used in applications. Therefore, they give as much flexibility as
possible to the developers by making the Fully Homomorphic Encryption implementation
work with bytes directly.

2.5.3 CrypTen
The Facebook AI Research division open-sourced the CrypTen library in October 2019.
According to its press release, this library is an easy-to-use framework built on PyTorch
to facilitate research in secure and privacy-preserving machine learning [25].

Information Technology Engineer 17 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

This implementation primarily uses Secure Multi Party Computation (SMPC) as its
encryption scheme [26]. As the name itself states, this encryption scheme is useful for
multiple parties or stakeholders involved in the data processing phase. Applications that
uses multiple data sources and need them to be private/encrypted can take advantage of
the functionalities of SMPC.

2.5.4 HElib
HElib is an open-source C++ library that implements the BGV scheme with bootstrap-
ping and the Approximate Number scheme of CKKS, along with many optimizations to
make homomorphic evaluation run faster, focusing mostly on effective use of the Smart-
Vercauteren ciphertext packing techniques and the Gentry-Halevi-Smart optimizations
[27].

This thesis work uses the TenSEAL python wrapper to perform all its homomorphic en-
cryption operations. The decision to use this implementation over the ones described above
is because of its immense and helpful community, extensive tutorials and documentation,
state-of-the-art implementations and active development.

2.6 Current Trends
In the following section, the current homomorphic encryption trends are described. The
term trends refers to the multiple pathways or branches the privacy preserving research
(which includes homomorphic encryption) is heading. It was important to consider these
trends in the implementation phase of this thesis work in order to choose the one that fit
the goal.

As Rivest stated in the first mention of homomorphic encryption [5], this type of
encryption would not allow comparison operations such as smaller than, larger than, equal
to. The premise was that if the user is able to perform any of this operations, he or she
would have more probabilities to guess the real value. This is one of the main problems of
homomorphic encryption and most of the trends described below were proposed to solve
this challenge.

2.6.1 Circuits Approach
With the comparison problem in mind, this trend has been focused on redefining specific
algorithms that use comparison operations in order to make them run in an homomorphic
encryption setting. For example, the following standard algorithm:

1 if number == 5:

2 result = number + 3

3 else:

4 result = number + 2

can be translated into an homomorphic encryption circuit like:

Information Technology Engineer 18 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

1 comparison = (number -5)

2 # This variable would be encrypted

3

4 result = (1- comparison)(number + 3) + (comparison)(number + 2)

5 # The result would depend on the value of the comparison variable

This circuit approach is interesting and can be used with this thesis work but it involves
a deep knowledge of the algorithm that is going to be executed and can take some time to
translate from standard code into homomorphic encryption circuits.

2.6.2 Function Approximation Approach
This approach mainly involves the comparison operations again. The idea behind it is to
build function approximations that could give the user the desired result of a compari-
son operation. According to the Stone–Weierstrass theorem, all mathematical continuous
functions on specific interval [a, b] can be approximated by one or more polynomials to any
degree of precision. [28].

This approach can be easily used in this thesis work implementation because of the
polynomial features of the CKKS wrapper. The user needs to know the polynomial ap-
proximation of the desired function and also the interval (minimum and maximum values)
that contains the data to be analyzed.

Figure 2.5: Stone-Weierstrass theorem example

Information Technology Engineer 19 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.6.3 Client-Server Communication Approach
To solve the comparison operations problem of homomorphic encryption, some implemen-
tations of the academic field propose a Client-Server communication approach. The process
is as follows:

1. Server sends encrypted data to client

2. Client orders the system to perform a comparison operation

3. Client system computes the difference between the encrypted data and the compar-
ison criteria

4. Client system sends the difference result to the server

5. Server system checks if values are greater than, smaller than or equal to zero and
creates a boolean vector with Trues (1) and Falses (0)

6. Server system sends the boolean vector to the client

7. Client can see the results of the comparison operation

Figure 2.6: A client-server approach workflow

The issue with this approach is that it ignores Rivest’s caveat of comparing encrypted
values [5] and therefore the system becomes vulnerable for data leakage. Another impor-
tant issue is the overhead time spend in the client server communication protocol. This
issue could be solved in the future by trusting technology improvements on speed and
efficiency of communication protocols [29].

Information Technology Engineer 20 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.6.4 Enclaves Approach
The enclaves approach is based on using secure environment extensions from the CPU
architecture to compute in a confidential manner where all other running software is con-
sidered malicious (kernel, hypervisor, etc) [30].

The most common enclaves nowadays are the Intel Software Guard Extensions (SGX)
which are implemented in the CPU architecture. This hardware establishes a secure con-
tainer, and the user uploads the desired computation and data into the secure container.
The trusted hardware protects the data’s confidentiality and integrity while the computa-
tion is being performed on it [30].

Figure 2.7: A enclave workflow

Another similar/related solution is Oblivious RAM which implements a privacy-preserving
RAM memory fetching method by compiling an algorithm into a new one that preserves the
input-output behaviour but the memory access interactions are different from the original
algorithm. [31]

This approach allows for a private data computation without the processing overhead
of homomorphic encryption. It creates a black box that the user can use to insert data to
compute and the machine would not be able to see it. The problem it presents is that one
of the stakeholders involved in the data transaction needs to have an Intel SGX powered
hardware, Oblivious RAM compiler or similar in order to create the secure container.
This limitation is considerable in multiple scenarios where the data seller does not have
the enough resources to invest in the appropriate hardware or to rent resources with the
required enclaves from a cloud provider.

Information Technology Engineer 21 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.8: Multi-party computation between multiple independent clients

2.6.5 Multi Party Computation Approach
The privacy-preserving machine learning trend has been heavily based on homomorphic
encryption and multi party computation. The later is powered by encrypting and splitting
the data into different equal sets and send it to different parties (stakeholders or users).
The encryption scheme allows for operations to be executed independently in different
parties computers and later on join it together to recover the final result [16].

This approach can be used in machine learning scenarios where the data can be or is
segmented in different clients nodes. The issue with this approach is that more than two
parties (or stakeholders) are needed in order to successfully implement it, therefore the
multi party computation does not accomplish this thesis goal.

Information Technology Engineer 22 Graduation Project

Chapter 3

Decentralized Ledger

3.1 Background

3.1.1 Byzantine Generals Problem
Imagine yourself as a byzantine general in the middle of the night getting ready to attack
an enemy city at the dawn of tomorrow. You are on one of the four hills surrounding the
city and your other general comrades are in the other three left. A couple of days before
arriving to the city, you were together in a strategic meeting where you all realized that
the attack could be successful if, and only if, the four of you attacked at the same time,
otherwise you would fail and your respective legions would be killed in action.

Right now, at midnight you decided to confirm that the other generals would authorize
the attack at dawn and you send a messenger to each one of the hills. Each messenger has
the risk of being intercepted by the enemy or being lost in the route. Even if a messenger
arrives to the other general post, the messenger could be an impostor that gives the general
contrary information.

In this scenario the question that arise is: How do you get consensus from all the
generals in order to attack or not attack at dawn? [32] This was an open question for
programmers and computer scientists until an anonymous source called Satoshi Nakamoto
came up with a solution: the blockchain [33]. The solution for the Byzantine generals
would involve each general having a notebook with the attack strategies written on it (to
attack/not to attack). The notebook would have to be respected at all time and in case of
modification, all generals would have to get into an unanimous consensus. This notebook
can also be called ledger.

What does all of this has to do with a data marketplace system? By solving the
Byzantine Generals Problem, blockchain allows for a communication protocol that works
without a central authority managing everything. And because this thesis goal was to
provide a two stakeholder trustable transaction without the presence of an intermediary,
the blockchain technology is the right fit for it.

23

School of Mathematical and Computational Sciences Yachay Tech University

Figure 3.1: Byzantine Generals’ problem

3.1.2 Blockchain
In the middle of the global financial crisis of 2008, an anonymous author called Satoshi
Nakamoto proposed a new architecture for a peer-to-peer electronic cash system in order
to avoid the weaknesses of the trusted based model used until then by all financial institu-
tions (e.g. banks) [33]. His idea was to create a digital system in which non-reversible
transactions could happen between two peers without the need of a trusted third-party
intermediary.

The blockchain is a digital ledger that registers every transaction happening on the
system (in this case, the data transactions). It is a set of consecutive blocks.

Each block is composed of a hash, a bunch of data and a signature (Figure 3.2). The
hash is a long hexadecimal number intended to uniquely identify each block and its inner
content. If the content changes, then the hash would change, showing that something is
different from the registered block. The previous hash showed in Figure 3.2 refers to the
hash of the previous block. The data is information about something (it could be money
transactions, it could be data states, etc). The signature is the owner’s proof to validate
the use or modification of the data.

In order to avoid centralization and a single point of failure, the digital ledger is dis-
tributed across the people who support the system. These people can be divided in two:

Information Technology Engineer 24 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

nodes (computers) which only keep track of the registered transactions and miners (com-
puters) who actively validate transactions therefore creating new blocks.

To validate each block, miners have to solve a mathematical puzzle as part of the
consensus algorithm used. When a miner successfully solve this problem, it sends the
answer to the others miners notifying them the puzzle completion. If the majority of
miners is able to verify the solution, the block is added to the blockchain and the miner is
rewarded with an amount of created bitcoin.

The validation process takes time to complete therefore each block contains multiple
data or transaction registers instead of just one data register per block.

The new generated block is connected to the one before by adding the hash of the
previous block. That is why the name of block chain.

Figure 3.2: Block structure in the blockchain

The reason behind the Decentralized Ledger term comes up because the architecture
distributes the ledger (blockchain) to multiple nodes (computers) connected to the system
rather than having a single digital ledger on a centralized node.

Blockchain technology powers most of the current cryptocurrencies and some of them
provide a platform for developers to use the decentralization feature in their applications
by using special programs over the blockchain called Smart Contracts.

3.2 Types of Ledgers
There are different types of decentralized ledger technologies available at the market. The
following section describes the most popular ones and their uses.

3.2.1 Bitcoin
The concept of Bitcoin appeared in 2008 in the same paper that presented blockchain for
the first time [33]. Bitcoin can be considered the first application of blockchain technology
by using a digital ledger where all bitcoin transactions are recorded and a consensus algo-
rithm is used every ten minutes approximately to add a new block of transactions. Each
participant (people who uses bitcoin) has a unique address which stores the participant’s
bitcoins.

Information Technology Engineer 25 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 3.3: A decentralized ledger (blockchain) distributed along the participantes (nodes
or miners)

The consensus algorithm used in Bitcoin is called Proof of Work (PoW) and is based
on a computational challenge that is hard to get the answer but very easy to verify it. The
basic idea behind it is:

1. A new set of transactions (block) needs to be added to the blockchain.

2. The information of the block (who is sending bitcoin, who is receiving bitcoin and
how much is being sent), the hash of the previous block, the timestamp, the miner
address account and a random value (called nonce) are concatenated and inserted
into a hash function (in Bitcoin’s case it is the SHA256).

3. The new generated hash needs to have at least n zeroes at the beginning of the
string with n being a consensus criteria based on the amount of current miners and
computer power in the system.

4. If the previous condition is not met, then the nonce value is changed and the hash
generation process repeats again until a solution is found. This process is the hard-
to-solve computational challenge of the PoW algorithm.

Information Technology Engineer 26 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 3.4: Bitcoin logo

5. The solution hash is easily verified by inserting the information of the block, the
hash of the previous block, the timestamp, the miner address account and the nonce
into the hash function. It needs to be verified by the other miners in order to reach
consensus and approve the block creation in the network.

The problem with PoW is the computational resources wasted in solving the consensus
challenges. At the time of writing, Bitcoin has been criticized for consuming more energy
per year than Ireland [34].

Another issue with the Bitcoin protocol is the difficulty to write applications over its
blockchain [35]. The Bitcoin protocol is specifically designed to be a peer-to-peer cash
system rather than a platform for multiple and diverse applications.

3.2.2 Ethereum

Figure 3.5: Ethereum logo

After Bitcoin appearance, a young programmer called Vitalik Buterin saw the poten-
tial of the blockchain technology and the decentralization feature. That is why he started
working on a blockchain protocol that would simulate a quasi-Turing-complete decentral-
ized machine were programs could be executed. In 2015, the Ethereum project was finally
released and since then has been growing in developers community and technical improve-
ments [36].

As previously stated, Ethereum simulates a quasi-Turing-complete machine (called
Ethereum Virtual Machine or EVM) in every node in the system that stores the state
of the multiple programs executed at a given time. For explanation purposes imagine an
object (like a Python dictionary or a JSON object) stored in a cloud server. Users can read

Information Technology Engineer 27 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

or modify its content with the right permissions. Users can also send cryptocurrency to
this object. The caveat is that this cloud server is not a single machine but it is duplicated
in the multiple nodes participating in the Ethereum network.

Figure 3.6: Change from state 1 to state 2 in the Ethereum’s virtual machine

The Ethereum protocol currently uses PoW as its consensus algorithm but it is in the
middle of the transition to a Proof of Stake algorithm which reduces the energy waste and
makes the whole protocol more accessible for miners without large and expensive mining
hardware.

This blockchain protocol was choosen for this thesis work because of its large developers
community, extensive tutorials and promising growth opportunities. Nowadays it is the
second most famous blockchain platform in the market and its constantly growing by
improving its inner technology [37].

3.2.3 Hyperledger

Figure 3.7: Hyperledger logo

Blockchain protocols such as Bitcoin or Ethereum are called public blockchains because
anybody can join the network and participate in the process as nodes or miners. For more

Information Technology Engineer 28 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

complex blockchain applications that deal with private or sensitive information, a public
blockchain is not a viable solution because all information stored in the blockchain is public
to all nodes and miners in order to properly validate and verify transactions.

Hyperledger is a set of open-source blockchain tools and frameworks hosted by the Linux
Foundation to develop and deploy non-public blockchains called permissioned blockchains.
Fabric is the main system of the Hyperledger set that allows entreprises to take advan-
tages of the decentralization feature in non-totally-trustable business settings (e.g.: inter-
corporations interactions, internal departments transactions, etc) without compromising
the confidential information of its users [38].

A drawback of Hyperledger is that all nodes and participants have to be previously
approved by a specific authority therefore making the decentralization feature a bit oscure.
The previously described issue is the main reason why this blockchain technology was not
selected for this thesis work.

3.2.4 IOTA

Figure 3.8: IOTA logo

IOTA uses another type of decentralized technology than blockchain, called tangle. The
idea behind the tangle is that each user performing a transaction in the system has to first
validate two previous transactions before registering his/her transaction. In this way, the
ledgers looks more like a circular tangle with multiple available edges than a chain with a
single available edge [39].

Figure 3.9: Tangle technology workflow

Information Technology Engineer 29 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

The tangle technology improves the energy consumption issue of the blockchain tech-
nology and also allows for a high latency and throughput for transactions.

The IOTA community is growing but has yet not created a strong documentation
and extensive tutorials to use its platform. It was worth mentioning this cryptocurrency
because of the related data marketplace system that the IOTA community has released
and was considered as a possible tool for this thesis work.

3.3 Smart Contracts

3.3.1 Concept
As mentioned above, blockchain is a decentralized ledger that provides an underlying struc-
ture for applications to be run on top of it. These applications have one or more scripts
that are executing on the blockchain and are called smart contracts. The term comes
because the script is guaranteed to be executed after being successfully deployed in the
blockchain infrastructure and it can be viewed itself as an agreement (or contract) that
would be executed without the need of human supervision (smart) [40].

To sum up, a smart contract is a piece of code that can be executed on top of a
blockchain. Although, blockchain developers made it easier to write smart contracts using
high-level languages, there are some restrictions worth to be mentioned in the following
subsection.

Most of smart contract compilers output the following files that are useful for deploying
the smart contract on the blockchain and for interacting with it from any client node.

Figure 3.10: Results of compiling a smart contract source code

Information Technology Engineer 30 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Bytecode

The smart contract bytecode is the raw low-level machine code that gets executed in the
blockchain nodes when a smart contract is deployed. It contains all the smart contract
data and the functions that are to be executed when needed or requested [40].

ABI

A smart contract Application Binary Interface (ABI) file specifies how to interact with the
deployed smart contract. It is a set of declarations that specify what functions are available,
what are the functions names and what inputs each function needs to be executed correctly
[36].

3.3.2 Programming Languages
On the Bitcoin era, it was possible to develop a smart contract on top of the Bitcoin
blockchain but the developer had to understand the low-level language Bitcoin Script that
interacted with the blockchain in order to register transactions [35]. The Ethereum era
brought with it a new paradigm focused on decentralized application and multiple high
level languages appeared to help developers deploy smart contracts in a secure and fast
way [36]. Today, there is a diverse group of smart contracts programming languages for
the diverse blockchain infrastructure it spans (Ethereum, Hyperledger, Cardano, etc). For
this thesis, the two most used and famous programming languages in the Ethereum space
were considered:

• Solidity: is a Javascript-like programming language. Nowadays it is the most used
programming language in the Ethereum space thanks to its flexibility, low-level in-
teraction and accessibility with the blockchain. The developers using Solidity can use
all the data types available and create complex procedures to be executed [41]. This
feature has allowed experienced programmers to build high level applications with
complex functioning but also has allowed critical bugs that have ended in catastrophic
situations [42].

• Vyper: is a Python-like programming language that was created to implement the
Python philosophy principles such as simplicity and readability [43]. This language
was selected to build the smart contract of this thesis work because it allowed a quick
learning of its functioning and prevents identified bugs that other languages do not
prevent.

The description and code of the smart contract implemented in this thesis work is
detailed in the Methodology section.

3.3.3 Challenges
When deploying smart contracts into the blockchain, various challenges appear. The de-
velopers have to be aware of them in order to build secure, functional and efficient decen-
tralized applications.

Information Technology Engineer 31 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Limited Patching

The immutability feature of the blockchain creates a barrier for developers to patch their
code in case of bugs and errors. This is caused because after deploying a smart contract
into the blockchain, it is impossible to make any changes on it that were not previously
foreseen. This challenge is not a bug but a feature but still causes problems to programmers
who have to think more deeply about their code and vulnerabilities before deploying their
smart contracts.

To solve this issue, multiple smart contract analysis tools such as Smartcheck [42] have
appeared in the space. These tools allow developers to identify critical bugs on their code
but they would not automatically identify them all. Another solution is a testnet (testing
network) available to deploy and test smart contracts. These tesnets simulate the real
blockchain networks but with fictional smart contracts and cryptocurrencies [40].

For this thesis work, the Ropsten testnet was used to test and deploy the smart contract
of the data marketplace. The network allows for multiple tries and testing without spending
real cryptocurrency in the process of deploying and interacting with the smart contract.

Privacy Concerns

The decentralization feature of the blockchain allows anyone to check and validate all in-
teractions and transactions happening on the network. Even though this open auditability
guarantees the correct execution of the smart contracts, it also creates a privacy challenge
for sensitive information sent to and stored on the blockchain.

In order to mitigate the privacy issues that could come up in a decentralized application,
developers have opted to use the pseudo-anonymous nature of the users address. This
means that any user can privately run or have sensitive information on the blockchain if
nobody knows which user address it is using. So a user who wants to perform a private
transaction can use a different address than the one he or she usually uses.

Another way to solve privacy concerns is to create application architectures that make
the private computations or sensitive information processing on the clients and only send
a final encrypted, hashed or obscured result to the blockchain to register the operation.

There is extensive bibliography which addresses the smart contract privacy concerns
challenges and multiple solutions that have arose like Zether [44] and Hawk [45].

Gas Restriction

The smart contracts deployed on a blockchain have to be executed by all the network’s
nodes in order to have a synchronized state machine that hold the same states in all nodes
and therefore hold the correct state of the blockchain. The gas concept was introduced
to avoid infinite smart contracts executions that could cause the nodes to run indefinitely
and therefore take down the system [36].

To run any smart contract operation on the blockchain, developers and users send a
cryptocurrency amount to the system that is distributed to the network’s nodes performing
the operation. If an interaction runs out of gas, the execution is stopped and reversed
(depending on the blockchain system). This way the network’s nodes are guaranteed that
all smart contract execution would be finite and they would be rewarded for it.

Information Technology Engineer 32 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

An important feature of the Vyper language that prevents developers to write code that
halt at a specific time, is that Vyper does not have loop operations (such as for or while)
[43].

Node Connectivity

The blockchain is a network of independent nodes that run and register all operations
performed by the smart contracts and therefore the applications using that blockchain.
In order to communicate with it, the user would have to have a running node that can
at least read and send requests/operations. In the Ethereum blockchain, these nodes are
called Ethereum Clients and sometimes required a moderate computer knowledge to set it
up.

A company called Infura [46] provides a fast solution for developers to avoid having
to set up their own nodes and instead use one of the Infura nodes already connected to
the blockchain. Their services abstract away all the infrastructure and node management
tasks for developers to help them focus on their application core logic. The company has
a free plan that allows:

• Ethereum Mainnet and Testnets access

• 100,000 blockchain requests per day

• 3 different projects

• Community support forum

Information Technology Engineer 33 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 34 Graduation Project

Chapter 4

Related Works

There are multiple data marketplaces solutions in the market nowadays. The following
list of related data marketplaces systems has been selected because of its similarities with
the system proposed in this thesis and its reputation. It should be pointed out that there
are multiple academic and theoretical proposals for a data marketplace system in the
related bibliography [47][48][49][50] that have not made it into the list because of its early
development and proof-of-concept phases.

4.1 IOTA Data Marketplace

Figure 4.1: IOTA Data Marketplace Advertisement

In 2017, the IOTA foundation launched the first Data Marketplace platform using the
tangle technology described in the Blockchain chapter. From then until now they have

35

School of Mathematical and Computational Sciences Yachay Tech University

more than 70 organizations signed up and they are still in the test phase of their system
according to their website [51].

The main objective of the platform is to provide a way for organizations and individuals
to offer their data (usually generated by IoT hardware such as Smart Fridges, Smart
TVs, sensors, etc) to any stakeholder interested on it. The platform has a transparent
and no-third-party mechanism to perform the transaction allowing the seller to receive
compensation for his/her data contribution while the buyer acquires access to more data
for his/her purposes. The functioning is the following:

1. The seller prepares a web server with an API that would authenticate requests and
stream the data if they are accepted using a Mask Authenticated Messaging protocol
to encrypt the communication layer.

2. The buyer acquires the data using IOTA cryptocurrency and is able to read the
encrypted data stream of the seller.

3. The buyer perform the desired operation with the acquired data.

In this platform, the data received by the buyer is unencrypted so a malicious buyer
could buy the data one time and sell it later at a lower price in unlimited occasions. It
is worth nothing that because the data is usually coming from IoT devices, then chunks
of data might not be worth enough for potential new buyers so the malicious buyer would
have to continuously acquire data from the seller.

The IOTA Data Marketplace is still a prototype and further development is needed in
order to offer a scalable and reliable solution for the data industry.

4.2 Ocean Protocol
Ocean Protocol is a set of open-source tools to deploy data marketplaces that use data
tokens based on the ERC-20 tokens that simulate a cryptocurrency environment and trans-
actions on the Ethereum network [52].

The foundation who built it was aiming for a data marketplace system where users could
commercialize their data while maintaining its control (totally opposite of today’s Big-Tech
companies that collect user data, profit from it and do not distribute to its owners).

The set contains multiple tools such as an Automated Market Marker to set prices for
the offered data sets, a Compute-to-Data feature that performs computations on private
data in the owner premises and send the result to the buyer, and others [52].

A huge challenge for the Compute-to-Data feature is the integrity of the computation
in the On-premises data servers. The buyer does not have a guarantee that its desired
computation was performed correctly because a malicious data seller could have sabotage
the execution. At the same time, the buyer does not have a guarantee that the offered
data is correct and does not have considerable errors or noises. One of these challenges is
addressed in the Methodology section while the other is left for future work.

Even though the Ocean Protocol community is growing at a fast rate, the documenta-
tion for understanding and implementing solutions was not clear enough to be used in this
thesis work.

Information Technology Engineer 36 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.2: IOTA Data Marketplace workflow

4.3 Sterling
The Oasis Labs was cofounded by a PhD. Dawn Song, a Computer Science professor at UC
Berkeley. The goal of the labs is to provide tools for controlling and sharing data. The Oasis
Blockchain Platform [53] implements trusted-execution-environment (TEE) technology to
guarantee data privacy in all operations performed on the platform. This blockchain allows
developers to built multiple applications on top of it, one of them directly relates to the
goals of this thesis work: Sterling [54].

Sterling is a data marketplace that uses the Oasis blockchain in order to guarantee data
privacy for its users. The buyer pays for the data access which is sent to the blockchain
at the same time the buyer sends the algorithm to proccess it. The TEE blockchain nodes
input the encrypted data, its decryption key and the processing algorithm in the TEE,
perform the computation and output the final result to the buyer. In the whole process,
the TEE enclave nature does not allow the blockchain nodes and neither the buyer to see
the decrypted data [54].

The Sterling data marketplace security depends on the security of the TEE enclaves
that requires its blockchain nodes to have before joining the network. It is a hardware-based
solution for the data privacy problems described in previous sections.

Information Technology Engineer 37 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.3: Ocean Protocol workflow

Information Technology Engineer 38 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.4: Sterling Data Marketplace workflow

Information Technology Engineer 39 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 40 Graduation Project

Chapter 5

Methodology

This chapter describes the implementation of the data marketplace system proposed in
this thesis work. It combines homomorphic encryption and decentralized ledger; the first
is to avoid data leakage by maintaining the result when operating over encrypted data;
the second, to guarantee a correct purchase process without intermediaries. The system is
divided in two main parts: the seller (server) and the buyer (client).

The buyer buys data from the seller and sends the payment to the decentralized ledger
which is acting as an intermediary. The seller sends encrypted data to the buyer who would
compute it in her own machine. After finishing the process, the buyer sends the encrypted
result to the buyer for decryption. The seller sends the decrypted result to the buyer and
request his payment to the decentralized ledger.

The code has been open-sourced by the author and can be found at the Github Repos-
itory: https://github.com/NicoSerranoP/HEsystem or can be directly installed using
pip as described in the later chapter.

5.1 System Architecture
The data marketplace system is based on a client-server architecture where the seller or
data provider would set up a web server to continuously offer its data and multiple buyers
would be able to request test data and real data to run their private algorithms in their
local machines. The three main phases are:

1. Request encrypted data

2. Perform computations over encrypted data

3. Request final result

Note that the client has to perform two request to the server (to ask for encrypted data
and to ask for the decrypted result). This is because the server is the only one with the
encryption keys.

41

https://github.com/NicoSerranoP/HEsystem

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.1: The data marketplace (DMP) system architecture

5.1.1 Payment
The payment process would be controlled by a decentralized ledger (a.k.a. smart con-
tract) which would initially receive the buyer's payment and would track every step of
the transaction. If all steps are completed correctly, the smart contract would send the
buyer's payment to the seller. The buyer and the seller would use the Infura service to
communicate with the decentralized ledgers. It is possible to set a direct communication
channel between the stakeholders and the decentralized ledgers but it is not in the scope
of this work.

Each data set is assocciated with a smart contract, which includes the price, the guar-
antee value, the data APIs links and the defined functions to register buyer and seller
interactions. This helps organize the interactions between sellers and buyers. For example
a buyer would be able to buy multiple data sets at the same time from the same seller
without confusing the decentralized ledger with the transaction's steps.

If the seller wants to offer different portions of the data set, the seller would have
to consider each portion as a new data set therefore creating a new smart contract and
providing new APIs for interactions.

5.1.2 Workflow
The workflow of a given transaction between a seller and a buyer would be the following:

1. Seller sets a web server which showcase a simple website with all the required in-
structions for potential buyers to follow (an example HTML website is provided to
modify it according to the seller specifications). This is an once-in-a-lifetime event.

2. Buyer visits the seller's website to learn about the available data and its costs. In
this website the buyer can also find technical instructions for fetching the encrypted
data.

3. Buyer sets up a Python environment with the data marketplace system package
installed.

Information Technology Engineer 42 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4. Buyer can access to a small data sample (for free) or to a large data sample with
particular buyer-defined features (for a payment) through the package functions.

5. Normally, the buyer first wants to test her back-end program with a small data
sample. For this, he can access for free to a small data sample by using the appropriate
APIs.

6. After checking her back-end program runs correctly with test data, the buyer has to
change the code so that it can now fetch real data. This also involves a payment,
which depends on the data price indicated in the informative website of the first step.

7. Buyer runs the code which performs the following steps:

(a) Ask for the seller's web API address (HTTP url).
(b) Retrieves the smart contract information linked to the requested data.
(c) Pays the data price to the smart contract.
(d) Ask the web API to retrieve data
(e) The web API checks the smart contract status to confirm whether it is safe to

send data to the buyer. If confirmed, the web API sends the data to the buyer.
(f) The buyer's code processes the data and sends the encrypted result to the seller's

web.
(g) The seller's web checks that the results follows the specified standards and sends

the decrypted result to the client.
(h) The buyer receives the results
(i) The smart contract checks that all the steps have been completed and deposits

the seller the data price it received from the buyer steps before. Then it resets
the buyer register to allow him/her to buy the data again.

8. Buyer receives the final results of her computation and the seller receives the data
payment.

In case of a problem in the middle of the transaction process, the buyer can reclaim
its payment and cancel the transaction. The smart contract would then check which steps
have been completed and allow the refund only before the buyer receives the decrypted
result. This helps to protect the seller from malicious buyers trying to trick him.

5.1.3 Result validation
When the buyer request for the result decryption, the seller has to validate it does not leak
the data set. For example, imagine a malicious buyer that request encrypted data and ask
for the decryption of the whole set. The buyer would be able to get the plain data to sell
it or reuse it later.

In order to avoid this problem we exploit the fact that the data exchange is always
based on arrays. First, the seller sends an array of encrypted data to the buyer; then, the
buyer returns an array of encrypted results to the seller.

Information Technology Engineer 43 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.2: The data marketplace system workflow

In fact, our proposed anti-leakage validation consists on comparing both array sizes. If
the size of the array sent by the buyer is larger than a secure threshold calculated dividing
the seller array by a known constant, the decrypted result is not sent and the buyer is
notified that the current solutions does not match the security parameters.

The cost of each data transaction prevents the scenario where the malicious buyer buys
and decrypts multiple portions of the original data sets. For example, if the data set is
400 records long, the threshold is 10 and the cost of the transaction is $ 20 then the buyer
would have to buy 40 times in order to get the complete plain data set. This means that
the buyer would end up paying $800 and this scenario might not be worth it for him. It is
noticeable that the security of the data set is directly proportional to the data set length.
If the length is large enough then the scenario where a malicious buyer gets the whole plain
data set is unlikely.

5.1.4 Target Users
The users (buyers and sellers) of the proposed data marketplace system would require
medium to deep knowledge about computer science in order to use the python packages
or set up the web server. Configuration instructions and tutorials are provided in the
repository.

Information Technology Engineer 44 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

5.2 Used Hardware
The data marketplace system has been deployed and executed in a local machine with the
following features:

• Operating System: Windows 10 Home

• RAM Memory: 16 GB

• Processor: Core i7 6th Generation 2.60Ghz (4 cores)

• GPU: Nvidia GeForce GTX 970M 3GB

The server application has been tested in a Heroku free-tier machine and it is designed
to be used in any other hosting platform which allows the software requirements described
below.

5.3 Software Requirements
In order to test and use the data marketplace system, both buyers and sellers have to meet
the following software conditions:

1. Programming Language: Python 3.6+

2. Dependencies: Authorization to install python modules and libraries one by one
or by installed all dependencies enumerated in the requirements.txt file in the
repository.

3. Package Installer: The buyer user needs authorization to install the data market-
place module (hesystem) using the package installer pip.

4. Dataset: The seller needs a dataset on the server machine which could be fetched
from a database application or by any file recognized by Python (CSV, Excel, JSON,
etc). It is worth nothing that in order to use a dataset different than the default
Postgres database configured in the server example, the user would have to change
the proper changes to the application code.

Information Technology Engineer 45 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 46 Graduation Project

Chapter 6

Results

This chapter discusses code examples to validate the correct functioning of the proposed
data marketplace system. It shows the computation times required to run the examples
and the pending challenges for the current data marketplace implementation.

6.1 Toy Examples
The data marketplace system developed in this thesis allows for multiple types of compu-
tations. The following examples were selected in order to prove that the data marketplace
system works correctly but they are not the only operations in the system.

The first example is a mean calculation and the second one is a Machine Learning
model training. The code for each one can be found at the /tutorials directory in the
repository.

6.1.1 Calculating the average lifetime of a business
In the first example, a buyer, who expects to open a business downtown (for example a
restaurant) is interested in knowing the average lifetime of the restaurants in a given area
of the city in order to make a decision (for example how much to invest in his endeavor). To
accomplish his goal, the buyer exploits the database of Innomaps, the seller. As mentioned
before, Innomaps owns a database, which includes the locations, annual revenues, creation
date and a wide assortment of business-related variables of many companies of Ecuador
(and eventually the world).

In order to trade data, the buyer and Innomaps must play the roles of client and server
in the proposed data marketplace system. Therefore, the buyer must install the client
application in his local computer, whereas Innomaps has to do the same with the server
application (see Annex B for detailed instructions). But that is not all. It is essential
for the buyer to develop by itself a back-end program for processing the encrypted data
received from the server. In this case, the back-end program must calculate the average of
several inputs that will be sent from the server as an array of encrypted data.

The buyer has to check on an informative website previously set up by the seller in order
to find the payment procedure and additional technical details such as the data requests

47

School of Mathematical and Computational Sciences Yachay Tech University

APIs, the test data requests APIs and the result requests APIs. To start the transaction,
the buyer pays the data price to an intermediary (the smart contract) which would store
the payment until the whole process is perform correctly. The smart contract tracks every
possible state of the data trade, e.g. the buyer has paid, the seller has send encrypted
data, the buyer has requested the final result, the seller has sent the decrypted result and
the buyer has received the final decrypted result.

The back-end program starts by requesting data through an specific API. It does not
have to decrypt the numbers received from the server. Whoever develops the back-end
program can pretend that he is working with regular numbers, forgetting the fact that
the numbers are encrypted. The average obtained by the back-end program can only be
decrypted in a second data exchange with the server: the back-end program send the
encrypted average to Innomaps, who decrypts it and send it back to the client. Only
in that moment, the client gets what he wanted: the average lifetime of a restaurant,
represented as a regular number. At the same time Innomaps notifies the smart contract
that the transaction has been completed successfully and receives the payment. Since only
Innomaps has the decryption keys, the client will never be able to see the raw data stored
in the server.

The described workflow in Figure 6.1 allows both the buyer and Innomaps to enjoy
benefits. Innomaps can breathe a sigh of relief; the client will never be able to see Innomaps
real data; thus preventing him from reselling private data to other data seekers behind
Innomaps’ back. On the other hand, the buyer can perform any computation with the
encrypted Innomaps’ data, but Innomaps will never know what the buyer did; thus, the
effort put into developing the back-end application can never be exploited by Innomaps.

In case that the buyer could not finish the transaction and did not receive the decrypted
final result, he can start a litigation by notifying the smart contract. It will check whether
the transaction failed, in which case it would repay the money to the buyer.

As it can be seen, the proposed data market system allows information extraction
by maintaining data and computation separated into two: a client (the buyer) and a
server (Innomaps). Homomorphic encryption makes the trick possible by maintaining the
computations over encrypted data after decrypting the result.

Unfortunately, every benefit comes with a cost. For every operation with encrypted
data performed on the client side, some noise is introduced in the result. This is due
to the nature of Homomorphic Encryption that adds a small random noise every time it
encrypts a number. The buyer has to consider his limitation when building his back-end
program. Nowadays there is a new proposed solution to this problem called bootstrapping
(and discussed in detail in Chapter 2) but the current used library has not implement it
yet.

6.1.2 Predicting the average lifetime of a business
In the second example, a buyer, say an Artificial Intelligence startup, wants to create a
tool to help business owners predict their business lifespan by analyzing some variables
such as location, annual revenues, creation date among others.

The startup employees develop a basic logistic regression model which takes multiple
attributes and predicts the average lifetime of a business. This model is considered the
startup’s intellectual property so they do not want it to share with anyone. Also the model

Information Technology Engineer 48 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 6.1: Mean calculation workflow

has been trained and tested with a small data set and therefore its overall accuracy may
not have reach its maximum potential.

On the other hand, a seller, in this case Innomaps, has a considerable amount of data
that would be useful for the startup to train their model.

The workflow that would allow the startup to train their model using Innomaps data
set can be seen in Figure 6.3 and is described below.

The startup access Innomaps website and finds the right data set to feed their predicting
model. As in the previous case, after paying for the data to an intermediary, a.k.a. small
contract, the startup can request data to Innomaps through an adequate API from within
a back-end program.

The back-end program will receive arrays of encrypted data from Innomaps. Each
array will be used as an input to the logistic model (see Figure 6.2 a). This means that
each array will be multiplied by the model weights, add to the bias and passed through a
sigmoid function.

After performing the training, the model would end up with the weights and the bias
encrypted as indicated in Figure 6.2 b. This model is called encrypted model. As part of
the payment, the startup has the right to ask Innomaps to decrypt the encrypted model.
To do this, the back-end program has to send an array containing the weights plus the bias
(all the data that needs to be decrypted) to Innomaps.

After receiving the decrypted result, the back-end program in the client would put
it back into the model in order to obtain a non-encrypted model which would be useful
for future predictions. At this time, the startup has been able to train their own logistic
regression model using encrypted data from Innomaps and obtaining a ready-to-use, non-
encrypted model without having to see Innomaps data.

From the foregoing, it seems that the buyer can try to steal Innomaps data by returning
the same encrypted array to the server and asking for decryption. This is not possible.

Information Technology Engineer 49 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 6.2: a) Logistic regression model. b) Encrypted model

The proposed datamarket place includes a simple but secure mechanism to identify such
malicious attempts. The size of the array to be decrypted has to be a fraction of the size
of the array sent initially to the client. The fraction is a parameter of the marketplace.

Figure 6.3: Model training workflow

6.2 Computation Times
The following table describes the computation times taken by the toy examples. Even
though the homomorphic encryptions, decryptions and operations increase the computa-
tion time significantly, the privacy and data accessibility obtained by using this system
allow for a broader use of private data.

Information Technology Engineer 50 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Operation Time (seconds)

Plain vector sum 0
Encrypted vector sum 0.153

Table 6.1: Computation times for calculating the average lifetime of a business (toy
example 1).

Operation Time (seconds)

Plain model training 0.002
Encrypted model training 119.91

Table 6.2: Computation times for predicting the average lifetime of a business (toy example
2).

Information Technology Engineer 51 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 52 Graduation Project

Chapter 7

Conclusion

We are living in the era of data science and machine learning where data is becoming an
extremely valuable asset. This asset needs to be processed before being useful for developers
and researchers; the whole data’s value chain involves work and resources therefore making
the final result a costly item for the owner. With the data marketplace system proposed
in this thesis work, the data owner would be able to offer his/her data for an amount of
money, without compromising the privacy of the data set. The buyers are able to use data
to extract information without seeing the raw data set thanks to homomorphic encryption.
Unlike other data marketplace systems, this one involves only two participants (the buyer
and the seller) without the need of an intermediary or third-party.

The data marketplace system has been proved with two different use cases and further
development would improve the existing implementation, some specific open challenges and
future work have been discussed in the previous chapter. All the system implementation
is open-source and accessible for everyone to comment, use and improve while preserving
their data sets privacy.

The answer to the question of Who should share what? is No one thanks to
homomorphic encryption, distributed ledgers and this work.

7.1 Future Works
Nevertheless, the training phase comes with some challenges. The first one is that the
startup developers have to find a way to make the sigmoid function work with encrypted
number. This is solved by creating a function approximation using polynomials that would
work over a defined range. In case the startup decides to change the model (for example
to a neural network or a bayesian classifier) then they would have to approximate the
corresponding functions again. The second challenge is that the noise introduced by the
Homomorphic Encryption process could grow and affect the final result. In the current
implementation, this challenge can be solved by implementing the right amount of opera-
tions or asking the seller to modify the encryption parameters that are used to create the
encryption keys (such as polynomial length, coefficients, etc). In the future, this challenge
could be overcome by using a method called bootstrapping, described in chapter 3.

The proposed data marketplace system comes with multiple challenges that can be a

53

School of Mathematical and Computational Sciences Yachay Tech University

stepping-stone for future works.

7.1.1 Ciphertext Growth
The homomorphic encryption scheme used in this system (CKKS) adds a small random
noise to each number encryption. This noise will grow in each operation performed over the
encrypted number, say an addition or a multiplication. As expected, some operations (like
multiplication) would grow the noise faster than others (like addition). The noise growth
implies that the underlying encrypted number (called ciphertext) also grows therefore
generating a decrypted result different than expected.

All operations performed using the data marketplace system can increase the ciphertext
length and therefore only a limited number of operations can be performed. To solve this
challenge the seller could modify the initial encryption parameters (such as the polynomial
size or the polynomial coefficient) in order to make each operation have less impact over
the noise but making it more computational intensive. In this case, the seller would need
a medium cryptography knowledge to set the right parameters.

A future solution is the implementation of the bootstrapping technique in the SEAL
library. This method would decrypt and reencrypt the encrypted value in a given time in
order to take out the noise. The raw value would not be visible to anyone thanks to an
advanced play using two encryption keys in the same value. This solution is currently in
the SEAL library road map[20].

7.1.2 Comparisons
As state by Rivest et al. in the first mention of homomorphic encryption [5] it is not
possible to simultaneously preserve security and give the system the ability of performing
comparisons against known constants.

For example, suppose that an homomorphic encryption scheme has the ability to com-
pare encrypted values with known constants (numbers). An encrypted value could be 6
(encval). A malicious buyer could compare: encval > 10, the scheme would indicate False.
Then the buyer would divide the known constant in half (5) and compare: encval > 5,
the scheme would indicate True. The buyer would then change the comparison operator
and add half of the known constant to the value: encval < 7.5, the scheme would indicate
True. The buyer would substract half of the previously added half of the known constant:
encvalue < 6.25, the scheme would indicate True. The buyer would continue the process
until having a small enough interval that will indicate him the real value: 6.

At the beginning of this work a comparison method was proposed but after analyzing
this challenge the proposal was discarded.

The alternative used for some comparison operations using this data marketplace sys-
tem is function approximation. For example, the logistic regression model in the second toy
example uses the sigmoid function to determine the outcome of the model in training. The
function acts as a comparison operation because it determines which values are accepted
and which ones are not given a threshold. The sigmoid function was approximated as a
polynomial in a specific range using the Stone-Weierstrass theorem.

Information Technology Engineer 54 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

In case of changing the model, the user would have to approximate again the sigmoid
function in the desired range to perform a correct training.

7.1.3 Data Visualization
Many times the buyer needs to know important properties of the data before start using
it (e.g. its statistical distribuition, the presence of outliers, etc.) [55]. This is a problem
because such properties cannot be determined from encrypted data.

A potential solution may be that the seller’s server could have multiple APIs to ask for
data with different specifications (normalized data with outliers, normalized data without
outliers, standarized data with outliers, standarized data without outliers, etc). The prob-
lem with this solution is that the seller needs to built as many APIs as data combinations
exists making it hard to maintain and scale.

A future work to solve this challenge would involve building data visualization tools
that do not leak the data itself and inform the buyer about the data set characteristics.

Figure 7.1: Process to create a ML model

Information Technology Engineer 55 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 56 Graduation Project

Bibliography

[1] M. Balazinska, B. Howe, and D. Suciu, “Data markets in the cloud: An opportunity
for the database community,” Proceedings of the VLDB Endowment, vol. 4, no. 12,
pp. 1482–1485, 2011.

[2] F. Stahl, F. Schomm, G. Vossen, and L. Vomfell, “A classification framework for data
marketplaces,” Vietnam Journal of Computer Science, vol. 3, no. 3, pp. 137–143, 2016.

[3] Stack Overflow, “Developer survey,” Stack Overflow, Tech. Rep., feb 2020, available
at https://insights.stackoverflow.com/survey/2020.

[4] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arithmetic
of approximate numbers,” in International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 2017, pp. 409–437.

[5] R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “On data banks and privacy homo-
morphisms,” Foundations of secure computation, vol. 4, no. 11, pp. 169–180, 1978.

[6] C. Gentry, “A fully homomorphic encryption scheme http://crypto. stanford.
edu/craig/,” Ph.D. dissertation, thesis. pdf, 2009.

[7] D. S. Dummit and R. M. Foote, Abstract Algebra. Wiley Hoboken, 2004, vol. 3.

[8] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,
“Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy,” in International Conference on Machine Learning, 2016, pp. 201–210.

[9] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120–126,
1978.

[10] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions on
Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[11] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48, no.
177, pp. 203–209, 1987. [Online]. Available: http://www.jstor.org/stable/2007884

[12] R. A. Perlner and D. A. Cooper, “Quantum resistant public key cryptography: a
survey,” in Proceedings of the 8th Symposium on Identity and Trust on the Internet,
2009, pp. 85–93.

57

http://www.jstor.org/stable/2007884

School of Mathematical and Computational Sciences Yachay Tech University

[13] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic encryption
schemes: Theory and implementation,” ACM Computing Surveys (CSUR), vol. 51,
no. 4, pp. 1–35, 2018.

[14] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,”
in International conference on the theory and applications of cryptographic techniques.
Springer, 1999, pp. 223–238.

[15] C. Gentry, “Computing arbitrary functions of encrypted data,” Communications of
the ACM, vol. 53, no. 3, pp. 97–105, 2010.

[16] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and J. Passerat-
Palmbach, “A generic framework for privacy preserving deep learning,” arXiv preprint
arXiv:1811.04017, 2018.

[17] D. Huynh, “Cryptotree: fast and accurate predictions on encrypted structured data,”
arXiv preprint arXiv:2006.08299, 2020.

[18] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors
over rings,” in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2010, pp. 1–23, easy-to-understand blogs can
be found in https://blog.openmined.org/ckks-explained-part-1-simple-encoding-and-
decoding/.

[19] ——, “A toolkit for ring-lwe cryptography,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, 2013, pp. 35–54.

[20] H. C hen, K. Laine, and R. Player, “Simple encrypted arithmetic library-seal v2. 1,”
in International Conference on Financial Cryptography and Data Security. Springer,
2017, pp. 3–18.

[21] Microsoft. (2017) Seal repository. [Online]. Available: https://github.com/microsoft/
SEAL/tree/master

[22] O. Mined. (2020, jul) Tenseal. [Online]. Available: https://github.com/OpenMined/
TenSEAL

[23] M. Egorov, M. Wilkison, and D. Nuñez, “Nucypher kms: Decentralized key manage-
ment system,” arXiv preprint arXiv:1707.06140, 2017.

[24] NuCypher. (2019, feb) A gpu implementation of fully homomorphic encryption on
torus. [Online]. Available: https://github.com/nucypher/nufhe/releases

[25] F. A. R. Division. (2019, oct) Crypten: A new research tool for secure
machine learning with pytorch. [Online]. Available: https://ai.facebook.com/blog/
crypten-a-new-research-tool-for-secure-machine-learning-with-pytorch/

[26] ——. (2019, oct) Crypten repository. [Online]. Available: https://github.com/
facebookresearch/crypten

Information Technology Engineer 58 Graduation Project

https://github.com/microsoft/SEAL/tree/master
https://github.com/microsoft/SEAL/tree/master
https://github.com/OpenMined/TenSEAL
https://github.com/OpenMined/TenSEAL
https://github.com/nucypher/nufhe/releases
https://ai.facebook.com/blog/crypten-a-new-research-tool-for-secure-machine-learning-with-pytorch/
https://ai.facebook.com/blog/crypten-a-new-research-tool-for-secure-machine-learning-with-pytorch/
https://github.com/facebookresearch/crypten
https://github.com/facebookresearch/crypten

School of Mathematical and Computational Sciences Yachay Tech University

[27] S. Halevi and V. Shoup, “Algorithms in helib,” in Advances in Cryptology – CRYPTO
2014, J. A. Garay and R. Gennaro, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2014, pp. 554–571.

[28] L. De Branges, “The stone-weierstrass theorem,” Proceedings of the American Math-
ematical Society, vol. 10, no. 5, pp. 822–824, 1959.

[29] M. M. Waldrop, “More than moore,” Nature, vol. 530, no. 7589, pp. 144–148, 2016.

[30] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint Arch., vol.
2016, no. 86, pp. 1–118, 2016.

[31] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious
rams,” Journal of the ACM (JACM), vol. 43, no. 3, pp. 431–473, 1996.

[32] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” in Con-
currency: the Works of Leslie Lamport, 2019, pp. 203–226.

[33] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Bitcoin, Tech. Rep.,
2019.

[34] M. J. Krause and T. Tolaymat, “Quantification of energy and carbon costs for mining
cryptocurrencies,” Nature Sustainability, vol. 1, no. 11, pp. 711–718, 2018.

[35] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol: Analysis
and applications,” in Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2015, pp. 281–310.

[36] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[37] P. Fairley, “Ethereum will cut back its absurd energy use,” IEEE spectrum, vol. 56,
no. 1, pp. 29–32, 2018.

[38] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al., “Hyperledger fabric: a
distributed operating system for permissioned blockchains,” in Proceedings of the thir-
teenth EuroSys conference, 2018, pp. 1–15.

[39] B. Kusmierz, “The first glance at the simulation of the tangle: discrete model,” IOTA
Found. WhitePaper, pp. 1–10, 2017.

[40] E. Foundation. Ethereum online documentation. [Online]. Available: https:
//ethereum.org/en/developers/docs/

[41] C. Dannen, Introducing Ethereum and solidity. Springer, 2017, vol. 1.

[42] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and
Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart contracts,” in Proceed-
ings of the 1st International Workshop on Emerging Trends in Software Engineering
for Blockchain, 2018, pp. 9–16.

Information Technology Engineer 59 Graduation Project

https://ethereum.org/en/developers/docs/
https://ethereum.org/en/developers/docs/

School of Mathematical and Computational Sciences Yachay Tech University

[43] V. E. Team. (2018) Vyper repository. [Online]. Available: https://github.com/
vyperlang/vyper

[44] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, “Zether: Towards privacy in a smart
contract world,” in International Conference on Financial Cryptography and Data
Security. Springer, 2020, pp. 423–443.

[45] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts,” in 2016 IEEE Sym-
posium on Security and Privacy (SP), 2016, pp. 839–858.

[46] (2020) Infura. [Online]. Available: https://infura.io/

[47] K. Mǐsura and M. Žagar, “Data marketplace for internet of things,” in 2016 Interna-
tional Conference on Smart Systems and Technologies (SST), 2016, pp. 255–260.

[48] G. S. Ramachandran, R. Radhakrishnan, and B. Krishnamachari, “Towards a decen-
tralized data marketplace for smart cities,” in 2018 IEEE International Smart Cities
Conference (ISC2), 2018, pp. 1–8.

[49] K. R. Özyilmaz, M. Doğan, and A. Yurdakul, “Idmob: Iot data marketplace on
blockchain,” in 2018 Crypto Valley Conference on Blockchain Technology (CVCBT),
2018, pp. 11–19.

[50] M. Travizano, C. Sarraute, M. Dolata, A. M. French, and H. Treiblmaier, Wibson: A
Case Study of a Decentralized, Privacy-Preserving Data Marketplace. Cham: Springer
International Publishing, 2020, pp. 149–170. [Online]. Available: https://doi.org/10.
1007/978-3-030-44337-5 8

[51] I. Foundation. (2017) IOTA data marketplace website. [Online]. Available:
https://data.iota.org/

[52] T. O. P. Foundation. (2018) Ocean protocol whitepaper. [Online]. Available:
https://oceanprotocol.com/technology/roadmap#papers

[53] O. Labs. (2020) The oasis blockchain platform. [Online]. Available: https:
//oasisprotocol.org/papers

[54] N. Hynes, D. Dao, D. Yan, R. Cheng, and D. Song, “A demonstration of sterling: a
privacy-preserving data marketplace,” Proceedings of the VLDB Endowment, vol. 11,
no. 12, pp. 2086–2089, 2018.

[55] J. W. Tukey, Exploratory data analysis. Reading, MA, 1977, vol. 2.

[56] T. E. Foundation. (2015, feb) Web3 documentation. [Online]. Available: https:
//web3js.readthedocs.io/en/v1.3.0/

Information Technology Engineer 60 Graduation Project

https://github.com/vyperlang/vyper
https://github.com/vyperlang/vyper
https://infura.io/
https://doi.org/10.1007/978-3-030-44337-5_8
https://doi.org/10.1007/978-3-030-44337-5_8
https://data.iota.org/
https://oceanprotocol.com/technology/roadmap#papers
https://oasisprotocol.org/papers
https://oasisprotocol.org/papers
https://web3js.readthedocs.io/en/v1.3.0/
https://web3js.readthedocs.io/en/v1.3.0/

Appendices

61

Appendix A

Glossary

• Data marketplace system: Refers to the system being developed in this thesis if
not explicit indicating otherwise.

• Stakeholder: Refers to a person, group of people, organization or business. In other
words: an entity involved in the transaction

• Seller: Refers to the stakeholder who is offering the data

• Buyer: Refers to the stakeholder who is acquiring or requesting the data

• Private data: Refers to a confidential, private or sensitive data set. Usually would
be the data set involved in the transaction

• Data set: Refers to a structured set of data. Usually has a table structure

• Encrypted data: Refers to the hidden/encrypted data set

• Decentralized Applications: Refer to applications that do not rely on a central-
ized server to offer its services or products. P2P systems, blockchain applications
and others count as Decentralized Applications.

• Distributed ledger: Refers to a virtual notebook that keeps the transaction status
and can be accessed by any of the stakeholders. It is hosted in the blockchain

• Plaintext: Data that has not been encrypted (e.g.: original data)

• Ciphertext: Data that has been encrypted (e.g.: encrypted data)

• Ring: An algebraic structure that contains a set and two arithmetic operations
(addition and multiplication)

• Cryptosystem: A set of algorithms to provide a particular service. They usually
include a key generation algorithm, encryption algorithm and decryption algorithm.

• Web3: Is a collection of libraries that allow you to interact with a local or remote
ethereum node using HTTP, IPC or WebSocket [56].

63

School of Mathematical and Computational Sciences Yachay Tech University

• API: An Application Programming Interface (API) is an interface to interact with
a specific software or server.

Information Technology Engineer 64 Graduation Project

Appendix B

Installation

In order to install and use the data marketplace system, two stakeholders need to be involve.
One should act as the data seller (following the Server Installation instructions) and the
other one should act as the data buyer (following the Client Installation instructions). It
is worth mentioning that a stakeholder can be a seller and a buyer at the same time by
installing the tool-kits in different machines.

B.1 Server Installation
The following steps have to be taken in order to install the web app in with the informative
website and the data APIs for the seller’s server:

1. Open the terminal and move to the desired directory to be installed.

2. Download the server repository from https://github.com/NicoSerranoP/HEsystem.

3. Change the data details and urls in the /templates/data.html file according to the
seller’s specific information.

4. Create an /info/user_info.txt file with the user information such as address,
private key and endpoint url

5. Create an /info/contract_info.txt file with the contract details such as meta link,
test link, test result link, data link, result link, num rows, value, expiration time and
condition.

6. Install the dependencies in the requirements.txt file by executing pip install -r requirements.txt.

7. Set up the environment variables for the Postgres database connection by executing
set DATABASE_URL=postgresql://postgres:postgres@localhost:5432/basic-provider
(Windows) or $env:DATABASE_URL=postgresql://postgres:postgres@localhost:5432/basic-provider
(Linux).

8. Start the web server by executing flask run

65

https://github.com/NicoSerranoP/HEsystem

School of Mathematical and Computational Sciences Yachay Tech University

Some file modifications in the app.py file or the HTML files in the templates directory
are needed in order to use different settings that the default ones (ex: Postgres database,
Flask web server, etc).

The repository is configured to be run in a Heroku free-tier plan but it can be modified
to be run in any cloud or hosting platform with the hardware and software requeriments
described in the methodology section.

B.2 Client Installation
The following steps are required to install the tools to interact with a seller’s data market-
place system from a Python code.

1. Create a Python virtual environment to avoid confusion with other packages and
dependencies by executing python -m venv environment_name and activate it by
executing cd environment_name/Scripts/ && ./ activate

2. Install the hesystem package by executing pip install hesystem

3. Use one of the .py files in the /tutorials directory to understand how to operate
the encrypted data

Information Technology Engineer 66 Graduation Project

	Dedication
	Acknowledgments
	Abstract
	Resumen
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Data Marketplaces
	Contribution
	Specific Objectives
	Target Users

	Homomorphic Encryption
	Background
	Mathematical Definitions
	Ring
	Homomorphism

	Homomorphic Encryption Schemes
	Partial Homomorphic Encryption
	Somewhat Homomorphic Encryption
	Fully Homomorphic Encryption

	CKKS Encryption
	Key generation algorithm
	Encoding and decoding algorithm
	Encryption and decryption algorithm
	CKKS recap
	Operations on ciphertexts

	Existing Implementations
	Microsoft SEAL
	NuCypher
	CrypTen
	HElib

	Current Trends
	Circuits Approach
	Function Approximation Approach
	Client-Server Communication Approach
	Enclaves Approach
	Multi Party Computation Approach

	Decentralized Ledger
	Background
	Byzantine Generals Problem
	Blockchain

	Types of Ledgers
	Bitcoin
	Ethereum
	Hyperledger
	IOTA

	Smart Contracts
	Concept
	Programming Languages
	Challenges

	Related Works
	IOTA Data Marketplace
	Ocean Protocol
	Sterling

	Methodology
	System Architecture
	Payment
	Workflow
	Result validation
	Target Users

	Used Hardware
	Software Requirements

	Results
	Toy Examples
	Calculating the average lifetime of a business
	Predicting the average lifetime of a business

	Computation Times

	Conclusion
	Future Works
	Ciphertext Growth
	Comparisons
	Data Visualization

	Bibliography
	Appendices
	Glossary
	Installation
	Server Installation
	Client Installation

		2021-05-27T19:44:41-0500
	NICOLAS ENRIQUE SERRANO PALACIO

		2021-05-27T19:46:42-0500
	NICOLAS ENRIQUE SERRANO PALACIO

