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Resumen
En este trabajo investigamos un proceso adaptativo de recableado de enlaces para explicar la formación de

módulos o estructura de comunidades que es comúnmente observado en varias redes naturales sociales y tecnológ-
icas. Nuestro trabajo se basa en un marco previamente propuesto para coevolución de topología y dinámica en
redes. Coevolución consiste en la coexistencia de dos procesos dinámicos en una red, cambio de estados y recableo
de enlaces entre nodos, que pueden darse con diferentes escalas de tiempo o probabilidades. Para caracterizar el
surgimiento de una estructura de comunidad desde una configuración aleatoria inicial, nosotros introducimos una
cantidad estadística correspondiente al producto del cambio de modularidad multiplicado por el tamaño promedio
normalizado del componente más grande de una red. Esta cantidad es numéricamente calculada en el espacio de
los parámetros que representan las acciones de conexión y desconexiónque constituyen el proceso de recableado
adaptativo. La estructura de comunidad surge en una red conectada para un rango de valores intermedio para estos
parámetros, denotados como fase II. Esta región separa una fase I, donde la red se mantiene aleatoria y conectada, de
una fase III, donde la red es fragmentada en componentes pequeños. Nuestros resultados muestran que la existencia
de un proceso de recableado adaptativo es suficiente para inducir la formación de comunidades en redes, incluso en
la ausencia de dinámicas de nodos. Nosotros hemos establecido una relación entre el surgimiento de comunidades y
la densidad de enlaces activos, enlaces que conectan nodos en diferentes estados en la red. Como una contribución
principal, hemos encontrado una solución analítica para la evolución de enlaces activos usando un enfoque de
campo medio. Además, basado en el marco general, hemos propuesto un nuevo modelo de coevolución, donde
un proceso de recableado adaptativo es acoplado a una dinámica de formación de opiniones para nodos. En este
modelo, nodos representan agentes sociales que tienen opiniones en una escala discreta y pueden interactuar acorde
a una condición umbral, una situación típica en varios sistemas sociales. Nosotros mostramos que nuestro modelo
contiene varios modelos previos como casos especiales. Un producto útil de esta tesis es la elaboración de un
código computacional para simulaciones de modelos generales para coevolución de topología y dinámicas en redes.

Palabras claves: Redes Complejas, Sistemas Complejos, Sociofísica, Modelo de Formación de Opiniones,
Transisiones sin equilibrio.
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Abstract
We investigate a process of adaptive rewiring of links as a mechanism to explain the formation of modular or

community structure that is commonly observed in many natural, social and technological networks. Our work is
based on a previously proposed framework for coevolution of topology and dynamics in networks. Coevolution
consists of the coexistence of two dynamical processes on a network, node state change and rewiring of links
between nodes, that can take place with different time scales or probabilities. To characterize the emergence of
community structure from an initial random configuration, we introduce a statistical quantity corresponding to
the product of the modularity change times the average normalized size of the largest network component. This
quantity is numerically calculated on the space of parameters representing the actions of connection and discon-
nection that constitute the adaptive rewiring process. Community structure arises on a connected network for
a range of intermediate values of these parameters, denoted as phase II. This region separates a phase I region,
where the network remains random and connected, from a phase III region, where the network is fragmented in
small components. Our results show that the existence of an adaptive rewiring process is sufficient to induce the
formation of communities in networks, even in the absence of node dynamics. We have also established a relation
between the emergence of communities and the density of active links, links between nodes in different states in
the network. As a main contribution, we have found an analytic solution for the evolution of the density of active
links by using a mean field approximation. In addition, based on the general framework, we have proposed a novel
coevolution model where an adaptive rewiring process is coupled to a dynamics of opinion formation for the nodes.
In this model, nodes represent social agents that have opinions on a discrete-valued scale and they can interact
according to a threshold condition, a situation typical in many social systems. We show that our model contains
several previous models as special cases. A useful product of this thesis is the elaboration of a computer code for
simulations of general models for coevolution of topology and dynamics in networks.

Keywords: Complex Netwoks, Complex Systems, Sociophysics, opinion formation models, non-equilibrium
transitions.
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Chapter 1

Introduction

1.1 Complex Networks
A network is a set of elements with relations among them. These elements are called nodes or vertices and their
relations are known as links or edges. Networks can be used to represent different complex systems . These systems
can be natural objects such as the neural network of the nematode worm Caenorhabditis elegans1, food webs2–4,
cellular and metabolic networks5–8, or they can be artificial or technological structures such as collaborations,
co-authorship and citation networks of scientist9–11, the World-Wide-Web12, the Internet13, highway and subway
systems14, power grids15,16, and telephone call graphs17. Due to this generality, different approaches can be
employed to study networks and their properties in different scientific areas; for example: in Mathematics graph
theory is used to investigate topological properties of regular networks; in Physics, Statistical Mechanics is used
to studied critical phenomena and phase transitions in networks18, and in Social Sciences networks represent the
functioning of human societies, focusing on issues of centrality (which individuals are the most connected or have
the greatest influence) and connectivity (which individuals are connected through the network).

Physics and other sciences have created in recent years the general concept of complex system to describe a
diversity of natural and artificial systems. A complex system is a set of interacting elements whose collective
behavior cannot be derived from the knowledge of the properties of the isolated elements. The collective behavior
is said to emerge from the interactions between the components, without any external influence or design. These
systems commonly exhibit two properties: self-organization and emergence. The first one corresponds to the display
of organization without the application of an external organizing principle or rule. The second is the manifestation
of properties that are not present in the constituents of the system nor can be described by the superposition of
their properties. A paradigmatic example of a complex system is the brain. It is well known how a single neuron
functions. A single neuron cannot think nor have consciousness by itself, but a network of billions of them forming
the brain can give rise to thought, consciousness, and emotions.

Complex systems typically have a heterogeneous structure, a great number of agents capable of interacting
with each other at different scales and able to interact with the environment, leading to topological and dynamical
evolution of their properties in time. These agents are not necessarily identical; they can be different and interact by
different rules. The interactions between agents can be characterized as links forming a complex network, where
the topology of the connectivity is not uniform nor trivial. Complex networks are a subarea of networks applied
to complex systems . The research on natural and technological complex networks has exponentially increased in
recent years thanks to the availability of high speed computer power and the access to large databases.

1



2 1.1. COMPLEX NETWORKS

Types of networks

The simplest possible network is one where all the nodes are identical and the links represent the same relation for
all linked nodes. However, the connectivity structure of complex networks is more diverse. There can be more
that one type of node in the network, and the links can be different to represent more complex relations among the
nodes. In this manner, we can have networks where the links have direction, in the sense that a node i has a relation
with node j but the node j has no relation with node i. These type of networks are known as directed networks.
There can be also relations that are not equal among all nodes but are stronger or weaker depending on the nodes
involved. This can be represented by a weighted link, where the strength of the link is quantified. The state of the
nodes and their links can also change over time. Sophistication can be added to include these and others variations
in networks. Some examples of the different types of networks are shown in Fig.1.1.

Figure 1.1: Examples of different types of networks: (a) undirected network with only a single type of node and a
single type of link; (b) network with a number of discrete nodes and link types; (c) network with varying node and
link weights; (d) directed network in which each link has a direction. Figure adapted from Ref.19

The variability of complex networks makes it difficult to develop a strict classification. Nonetheless, certain
criteria can be used to classify them. The topology (how the nodes are connected) is a criterion that shows a
complete spectrum of networks. Ranging from highly regular networks, where all the nodes are connected to the
same number of neighbors (e.g. chains, grids, lattices and fully-connected graphs), to the opposite extreme, where
the nodes of networks are randomly connected. Erdös and Rényi20 initiated the systematical study of the properties
of random networks. They used probabilistic methods to study the properties as a function of the average number
of connections per node. They proposed a method to creating random networks that consisted of creating links
between a set of N nodes, prohibiting multiple connections, until having K links. These random networks are
denoted by GER

N,K . An alternative method to creating random networks, consists of connecting each possible pair
of nodes with a probability 0 < p < 1. These networks are denoted by GER

N,p. The structural properties found in
GER

N,p networks vary as functions of p. The critical probability pc = 1
N , that corresponds to the mean degree (i.e.

number of links that a node shares) of the network 〈k〉c = 1, shows typical features of a second order transition in
the network structure. The statistical properties found in these networks have been rigorously proven21–23. In the
present thesis, we employ this method to generate random networks.

Real-world networks have been shown to be not random, since they do not possess the same properties as random
networks, nor are they regular or uniform. Rather, networks in the real world lie between these two extremes.
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1.2 Real-world networks
The investigation of real-world networks has revealed statistical properties common to most of them that lie between
those of ordered lattices and completely random networks. This was shown by the works of Watts and Strogatz24

on small-world networks, and that of Barabási and Albert25 on scale-free networks, two of the most influential
scientific papers of recent times in the area .

1.2.1 Small-world networks

Real-world networks from a variety of contexts are characterized by having, on the average, short paths between
any two nodes in the network. This phenomenon is known as the small-world effect and is characterized by the
quantity L known as the mean geodesic distance between nodes of the network or mean length,

L =
1

1
2 N(N + 1)

∑
i> j

di, j, (1.1)

where N is the size of the network and di, j is the geodesic distance or shortest number of links from node i to node
j. A network is called a small-world if the quantity L scales logarithmically, or slower, with network size for fixed
mean degree. It is often said that a network is small-world if the mean length is much smaller than the size of the
system, L � N

The small-world phenomenon was already suggested by sociologist Stanley Milgram26 in his 1960s social
experiment. The experiment consisted of sending letters to specific individuals by passing them from person to
person. The people involved could only pass the letter to one of their first-name acquaintances. The experiment
showed that the documents that arrived to the target individuals took only about six people. This experiment started
the idea of the "six degrees of separation", which states that any two people in the world can be connected by just six
other people on the average, that would be equivalent to have L = 6. This idea has been rigorously investigated in
several social networks, such as in theMSN Microsoft 27 that involved about 240 million people and 30.000 million
conversations, showing an L = 6.6; and in the social network Facebook 28 that contains 721 million users with
around 69 million connections and shows a mean length L = 4.74. Many different, unrelated networks actually
show the small-world effect, such as power grids, the neural network of the wormC. Elegans24, but especially social
interaction and collaboration networks. These networks have been widely studied in the literature; for example:
collaboration network of film actors24,29–31, where actors are linked if they have appear in a film together; networks
of company executives32–34, where they are linked if they appear in the same board of directors; networks of
coauthorship among scientists35–40, where scientists are linked if they have coauthored at least one paper; sport
leagues, where players are connected if they have played on the same team41; coappearance networks41–43, linked
if the individuals are mentioned in the same context; and networks of sexual contacts44 (Fig.1.2).

Figure 1.2: Representation of a network of sexual contacts. Population size N = 2810 (ages 18 − 74); mean length
L = 6; Figure adapted from Ref.45
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Amechanism for the formation of small-world networks was proposed byWatts and Strogatz24. In this method,
we start with N nodes arranged in a circle, where each node is connected to k neighbors. In a clockwise sense, and
with a probability 0 < p < 1, we chose a node and a link to one of its neighbors and we move this link to another
node in the ring chosen at random. Duplication of links is avoided. This process is repeated until all nodes have
been visited. This method allows one to construct networks ranging from highly regulars networks (p = 0) up to
completely random ones (p = 1).

Figure 1.3: Networks obtained by the method of Watts and Strogatz24 with parameters N = 20 and k = 4. This
method creates networks ranging from highly regular for p = 0 and random ones for p = 1. The rewired links are
in light blue. Small-world networks form for intermediate values of the probability p. Figure adapted from Ref.24.

Small-world networks also have the property of high clustering coefficient (defined as the fraction of the actual
links present in the network compared to all-to-all coupling) like regular networks and at the same time they have
characteristic short path lengths between any two nodes like random graphs. The structural properties of the
resulting networks can be characterized by the mean geodesic distance, that is a global property, and the clustering
coefficient, that is a local property, as a function of the rewiring probability p. This is shown in Fig. 1.4. We can see
that the mean geodesic distance L(p) drops quickly as the probability p increases, corresponding to the small-world
property. Nonetheless, the clustering coefficient C(p) remains near the value 1 as L(p) decreases, which indicates
that the transition to the small-world regime is pretty much imperceptible at a local level.

Figure 1.4: Normalized mean geodesic distance and clustering coefficient as functions of the rewiring probability p.
The values L(0) and C(0) correspond to the values of these quantities for a regular lattice, respectively. The values
obtained are the average over 25 realizations of initial random conditions for the network. Label SW indicates the
region where a small-world network appears. network size N = 100, with mean degree 〈k〉 = 4. Figure adapted
from Ref.24.
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Note that a few random, long-range connections suffice to produce the small-world effect. Small-world networks
have great interest because they facilitate the transmission of information. For example, they are relevant in the
spreading of infectious diseases, with implications for vaccination strategies and the evolution of virulence46–48.

1.2.2 Scale free networks

It has also been found that many real-world networks possess nodes with different number of links, with a preference
of certain nodes over others. This is manifested as a non-uniform distribution of links per node. Very often in
real-world networks, many nodes have a few links and few nodes display many links. This can be measured by the
degree probability distribution P(k). These distributions are characterized as power laws (scale free) distributions,
P(k) ∼ k−γ, with γ between 2 and 3. Thus, the distribution P(k) shows a long tail with values far from the mean
value. This drastically differs from the degree distributions of random networks, that are binomials or Poissonian
distributions, as seen in Fig.1.5.

Figure 1.5: Examples of random and scale-free networks distributions. (a) Degree distribution for a random
network. (b) Degree distribution for a scale-free network. (c) Network of highways in the USA shows a Poissonian
degree distribution. (d) Network of airports in the USA has a degree distribution that follows a power law.

These networks are known as scale free networks, and have been widely studied in the literature18,25,49–51. Some
examples are shown in Fig. 1.6, where the cumulative degree distribution versus the degree is plotted for several
networks. Panels (a), (b), and (c) show power-law degree distributions, as indicated by their straight-line on the
doubly logarithmic scales, corresponding to scale-free networks. Panel (d) has a power-law tail, but deviates from a
power-law behavior for small degree value. Panel (e) appears to have a truncated power-law degree distribution, or
possibly two separated power-law regimes with different powers. Barabási and Albert25 proposed a mechanism of
preferential attachment to explain the emergence of scale-free networks. These networks are formed as the result of
the evolution of a network where new nodes entering tend to connect preferentially to the already most connected
nodes in the network ("the rich get richer").

These networks have been shown numerically12,52 and analytically53,54 to be less susceptible to random error
link failures, but more susceptible to targeted attacks. In fact, few nodes dominate the connectivity of the network,
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forming hubs that the majority of the nodes are attached to. Then, any random failure would most probably affect
the nodes with low degree, with negligible effect over the network. In contrast, targeted attacks over the hub nodes
could break the network completely. These effects have been studied in relation to the resilience of systems such
as the Internet55, the design of therapeutic drugs8, and metabolic networks8,56.
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Figure 1.6: Cumulative degree distributions for six different networks. The horizontal axis for each panel is
the node degree k and the vertical axis is the cumulative probability distribution of degrees. The networks are:
(a) a 300 million nodes subset of the World Wide Web, circa 1999 from Ref.12; (b) the Internet at the level of
autonomous systems, April 1999 from Ref.57; (c) the interaction network of proteins in the metabolism of the
yeast S. Cerevisiae58;(d) citations between 1981 and 1997 to all papers cataloged by the Institute for Scientific
Information11; (e) the collaboration network of mathematicians39; (f) the power grid of the western United States24;
Figure adapted from Ref.19

1.3 Community structure
Another common topological characteristic of real-world networks is that they show modules and organization
in their structures. These modules are groups of nodes that have a high number of links within the groups and



CHAPTER 1. INTRODUCTION 7

low number of links outside them. This feature is known as community or modular structure and the groups as
communities. It has been shown that most social networks have a modular structure59,60. Detecting communities
and their boundaries allows us to classify nodes accordingly to their roles within the network, instead of just the
statistical properties of the network.

Communities are groups or nodes that have similar properties or functions within the network. In this manner,
we can expect that, for example, communities in the Worldwide Web might correspond to sets of web pages on
related topics61; communities in social networks might correspond to social units62; communities in a citation
network might correspond to related papers on a single topic11; communities in a metabolic network can suggest
that groups of nodes can perform different functions with some degree of independence63,64. The existence of
communities in the Human Disease Network (Fig.1.7) suggests that certain health conditions have the same origin.
The study of the community structure can give us insight into the dynamics and collective functioning of complex
networks.

Figure 1.7: The human disease network. It consists of 944 diseases with at least one link to other diseases and 576
diseases form the giant component. This network is small-world, scale-free, and possesses community structure.
Figure adapted from Ref.65

Two important remarks need to be made about community detection. First, the aim of community detection is
to identify the modules in networks mainly based on their topology. Second, even though the idea of community
is intuitive, there is not a unique definition for it. The latter remark has lead to the creation of various definitions
for the concept of community, and thus different methods to detect them. These definitions can be classified into
three main categories66: (i) local definitions that try to identify communities based on the nodes that are part of
subdivisions of a network and its immediate neighbors, disregarding their relation to the rest of the network; (ii)
global definitions that consider communities as building blocks of the network that can be identified in relation to
the other communities of the network; (iii) definitions based on node similarity that focus on how similar nodes are
to each other according to certain local or global criteria to establish communities. In this thesis, we shall use a
global definition of communities for their detection according to the Louvain method67 that will be explain in more
detail in the following Sections. This type of method compares a null model with partitions of the original network
according to certain criteria to evaluate how good the partitions are.
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1.3.1 Importance of communities in real social networks

Empirical knowledge shows that people tend to be divided into groups along their interests, age, social status,
occupation, opinions, political views, etc. It has been found that there is some correspondence between these groups
and communities in networks67,68. A good example can be seen in Fig. 1.8. This figure represents communities
found in a mobile phone network from Belgium. Belgium has two main coexisting linguistic communities, so it
would be expected that the communities detected in this network should have a high level of linguistic homogeneity.
The network contains about 2 million customers along with some demographic information such as sex, age,
language, and the postcode of the place where they live. This network was analyzed in Ref.67 by applying their
own community detection method known as the Louvain algorithm. The community detection algorithm shows
two clusters with communities that are highly linguistic homogeneous. It was found that in the 36 communities
with more than 10.000 individual, more that 85% of their member speak the same language.

Figure 1.8: Communities in a Belgian mobile phone network. This network contains about 2 million customers.
The size of the nodes represents the number of individuals in a community, and its colour represents the main
language spoken in each community; being light blue for Dutch and orange for French. Two clusters emerge,
each with homogeneous language. Between them there is an intermediate community with less apparent language
separation that can be seen in higher resolution in the zoomed section. Figure adapted from Ref.67.

Similarly, it is expected that detection of communities in other real social networks are related to certain
subdivisions based on common features of the individuals that are part of them. Figure. 1.9 shows some examples
of real social networks and how these subdivisions have been proposed. For instance, the Zachary’s karate club
network (Fig.1.9(a)) and the Southern Women Event Participation data set (Fig.1.9(b)) where the communities are
expected to be related to friendship and/or acquaintance among members. Other examples are the collaboration
network between scientist working at the Santa Fe Institute (Fig.1.9(c)), and the citation patterns in the Small World
literature (Fig.1.9(d)) the detected communities are related to the research area of their participants. For other
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real social networks it may be unknown or difficult to find the trait that leads to the formation and detection of
communities. For example, the communities found in Lusseau’s network for bottle-nose dolphins in Fig.1.9(e) do
not correspond to known demographic information of its individuals.

Elucidating the community structure in social networks relevant for the demographic identification of network
components or modules, as well as for understanding the propagation of opinions and diseases69.

Figure 1.9: Community structure in social networks. (a) Zachary’s karate club network, adapted from Ref.70. (b)
Southern Women Event Participation data set, adapted from Ref.71. (c) Collaboration network between scientists
working at the Santa Fe Institute, adapted from Ref.62. (d) Citation patterns in the small-world research literature,
adapted from Ref.72. (e) Lusseau’s network of bottle-nose dolphins, adapted from Ref.73

1.3.2 Detection of communities in networks

Several methods for the detection of communities in networks have been proposed in the literature. They can be
classified according to how they work, as follows.

Graph partitioning (Fig.1.10(a)) consists of dividing the nodes of a network into g groups of predefined size
such that the links between the groups are minimal. It is necessary to specify beforehand the number of clusters
for this method. This may be a problem since it is unusual to know the number of groups or communities a priori.
Then it is necessary to make some reasonable assumption about the number and sizes of the communities.

Hierarchical clustering (Fig.1.10(b)) is used when networks show hierarchical structures; for example the
networks can display different levels of grouping such that small groups are included into larger clusters, and these
clusters can be included into even larger ones, and so on. For these methods, it is necessary to define a similarity
measurement between nodes, such as degree mean geodesic distance between nodes, etc. Then, similarity is
measured for all pairs of nodes, no matter if they are connected or not. Finally, groups are made by one of two
iterative methods: (1) clusters are merged if they have sufficiently high similarity, or (2) clusters are divided by
removing links between nodes with low similarity. The first one is a bottom-up approach and the second one
is a top-down approach. These methods create many partitions, so it is necessary to establish certain criteria or
condition to select one of the partitions. Hierarchical clustering does not require the number nor the sizes of the
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clusters, but it does not have an intrinsic criterion to discriminate between the partitions created.
Partitional clustering (Fig.1.10(c)) is another method in which the number of clusters must be given at the

beginning. This method considers a metric space. Here, each node is a point and distances are defined between
points in function of a dissimilarity measurement for nodes. This method divides the point in g clusters such that
a cost function based on the distances between points is minimized or maximized. This cost function can be the
mean geodesic distance in the clusters, the diameter of the cluster (largest distance between two points), or the
largest distance to a centroid in the cluster, among others. This method has the same problem as the graph partition
method; since it is necessary to know the number of clusters beforehand. Also, this method can be difficult to
implement since the selection of a metric space can be natural for some networks, but not for others.

Figure 1.10: Examples of methods for the detection of communities in networks. (a) Graph partitioning method
on a network with two groups of equal size; the dash lines divides the two communities found. (b) Dendrogram
of the hierarchical clustering method. Each dashed line denotes a partition of communities found. (c) Partitional
clustering method on a network with three communities; each point represents a node and each community is
established by the optimization of a cost function of their distance.

Divisive algorithms can be used to detect communities based on the elimination of links that connect those
communities. For this, it is necessary to establish a property or set or properties that allow their identification.
These algorithms are similar to the top-down ones for hierarchical clustering, but here the links removed are
inter-cluster links and not the links between nodes with low similarity. The inter-cluster links and the links between
nodes with low similarity are not necessarily the same.

Figure 1.11: Example of link with high edge-betweenness centrality value. In a network with eight nodes and
twelve links, the red link that connects the two red nodes shows the higher value for edge-betweenness centrality
among all nodes. Figure adapted from Ref. 74.
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One of the most popular algorithms was introduced by Girvan and Newman62,75. This method selects links
according to their values of edge-betweenness centrality (Fig.1.11), which is defined as the number of shortest paths
that go though a link. The removal of these links will result in the partition of the network into densely connected
sub-networks. The Girvan and Newman method consists of the iteration of these steps:

Start

Compute central-
ity for all links.

Remove links with
largest centrality

Recalculate centralities
on the new graph

Is it the best
partition?

Stop

yes

no

This method gives partitions of the original network, but similarly to hierarchical clustering, it does not give
a criterion for the best partition. For this, it is necessary to introduce some quantity that can evaluate how good a
partition is. Newman and Girvan75 introduced a quantity that evaluated the quality of a network partition. This
quantity is known as modularity and it compares the number of links inside the modules of a partition against the
expected number of links of random networks with the same size and degree, also known as a null model.

By choosing the modularity as a quality function, the community detection problem becomes an optimization
problem. The number of possible partitions in a network increases at least exponentially with its size, complicating
the problem of modularity optimization as the network size increases. Another problem is that the modularity
value of a partition does not have a meaning by itself. It is necessary to compare it with the modularity expected
for a random graph of the same size76, since this one can have high modularity values due to fluctuations77.

There are algorithms focused on modularity optimization that find good approximations to the real solution,
since it is not feasible to measure the modularity for all the possible partitions of a network due to the scaling of
the partitions with the size of the network. One of such algorithms was introduced by Blonde et al.67, and it is the
one used in the this thesis. In our case, the specific value of the modularity is not important, since we introduce the
concept of change of modularity.
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1.4 Research problem
As we have seen, the origin of small-world networks was explained by Watts and Strogatz24 through a process
of random rewiring of links that generates long-range connections. A small fraction of long-range interactions is
enough to induce the small-world phenomenon. Similarly, a mechanism of preferential attachment was proposed
by Barabási and Albert25 to explain the emergence of scale-free networks, whose probability distribution of links
follows a power law. However, although some scenarios have been explored, understanding the mechanisms that
lead to the formation of communities in networks remains a problem of much interest69.

We shall see in Chapter 2 that many natural, social, and technological networks are not static; it often occurs
that both the connections between the nodes and their state variables, affect each other and evolve in time. These
systems exhibit coevolution of their topology and dynamics.

Our research is motivated by the following question: how does a community structure arise in networks? In this
thesis we shall investigate the problem of the formation of communities in the context of coevolutionary dynamics
in networks. We also address the question of the influence of the node dynamics on the emergence of community
structure in networks.

The research field on complex systems is very recent in Ecuador. In this context, this thesis represents a first
contribution by a student to new interdisciplinary research lines at Yachay Tech University, mainly Network Science
and Sociophysics. The concepts and techniques developed here can be applied to the analysis of networks in social
groups and communities in Ecuador. We have elaborated a computational code for characterizing statistical and
topological properties of general networks. This code can be employed by other researchers in our country that are
interested in the study of complex systems and computational social science

1.5 General and Specific Objectives

General objective of this thesis

Our main objective is to investigate a process of adaptive rewiring of links, in the context of coevolution
dynamics, as a mechanism to explain the emergence of community structure in networks.

Specific objectives of this thesis

1. To investigate the relationship between the formation of communities and the evolution of the number
of active links in the network, i.e., links that connect two nodes in different states.

2. By using a mean field approximation, investigate an analytic approach for the evolution of the density
of active links in a network.

3. Characterization of the collective properties of a network as a function of the parameters that describe
the process of adaptive rewiring; in particular identify rewiring parameter values for which a community
structure emerges.

4. To investigate an opinion formation problem in coevolutionary networks, where interacting social agents
have opinions on a discrete-valued scale. We address the following questions: Under what conditions
do their opinions converge? Can communities emerge in such networks?
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5. To develop an efficient computer code for simulations of a general model of coevolution of topology
and dynamics in networks.

1.6 Outline of this thesis
This thesis is organized into five chapters. Chapters 1 and 2 correspond to the introductory part, where the main
concepts and theoretical basis are reviewed. Chapters 3 and 4 contain our contributions and results; they include
our research of an adaptive rewiring process as a mechanism for the formation of community structure in networks
and the investigation of an opinion formation model with coevolution dynamics on networks. We end with chapter
5, where conclusions and suggestions for future work are stated.

• Chapter 1: Introduction. This chapter presents a short review of the wide topic of complex networks,
focusing on the main common properties that have been found in real-world networks: small-world effect,
scale-free distribution, and community structure. Our research problem and objectives of this thesis are also
presented in this chapter.

• Chapter 2: Theoretical Framework andMethodology. This chapter reviews the concept of coevolutionary
dynamics in networks. It presents the theoretical framework onwhich we base our research. Here we describe
concepts and statistical quantities that we use to characterize the collective properties of the systems that we
investigate in the next chapters. In particular, the tools employed to measure the modularity of networks is
discussed.

• Chapter 3: Adaptive rewiring and the emergence of community structure in networks. Here we propose
and investigate an adaptive rewiring process as a mechanism for the emergence of community structure in
networks. We relate the decrease in the number of active links, that connect nodes in different states, to the
formation of modular structures. Here we present an analytic mean field approach to the evolution of the
density of active links in adaptive rewiring. This chapter contains main results of our research.

• Chapter 4: A coevolution model with node dynamics. In this chapter we apply the general framework
for coevolution of topology and dynamics to a model of opinion formation. We propose and investigate a
model of social dynamics where agents have opinions on a discrete-valued scale and their connections change
according to the adaptive rewiring process studied in Chapter 3. We show that several previously proposed
models in the literature can be derived as special cases of this model.

• Chapter 5: Conclusions and Outlook. In this chapter, we summarize and further discuss the results of this
thesis. We also provide an outlook of future research that can be motivated from this work.





Chapter 2

Theoretical Framework and Methodology

2.1 Framework for coevolution of topology and dynamics in networks
Many networks observed in nature and society are not static. Actually, many natural and technological complex
systems can be represented as dynamical networks of interacting elements, or nodes, where the connections between
the elements and their state variables evolve simultaneously55,78–81. The links describing the interactions between
nodes can vary their strengths or appear and disappear as the system evolves on diverse timescales. Inmultiple cases,
these variations in the topology of the network arise from a feedback effect of the dynamics of the states of the nodes:
the network changes in response to the evolution of those states which in turn determines the modification of the
network. Systems that possess this coupling between the topology and states have been denoted as coevolutionary
dynamical systems or adaptive networks78–80. The collective behaviors emerging in coevolutionary systems depend
on the competition between the time scales of these two coexisting processes: the dynamics of states of the nodes
and the dynamics of the network connections. Coevolution has been investigated in the context of spatiotemporal
dynamical systems, such as neural networks82,83, coupled map lattices84,85, motile elements86, game theory78,79,87,
spin dynamics88, epidemic propagation89–92, and models of social dynamics93–98.

Figure 2.1: Schematic representation of a coevolutionary or adaptive dynamical system. On the one hand, the
interaction dynamics of the nodes changes their state variables and affects the connections between nodes (network
topology). On the other hand, modifications of the connections in the network influence the states of the nodes.
Figure adapted from Ref.80

A general framework for the description of coevolution in dynamical systems was proposed by Herrera et al.
in 201199. In this model, it is assumed that the process by which a node changes its state and the process by which
a node change its neighbors, called adaptive rewiring, have their own dynamics. Furthermore, each process can
occur with its own time scale or probability, independently from the other.

15
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A coevolutionary system can be described by the coexistence of a rewiring process that takes place with a
probability Pr, and a process of node state change that occurs with a probability Pc. Then, the premises of the
model are:

1. A specific coevolution model is given by a functional relation f (Pr, Pc) = 0.

2. A rewiring process consists of two actions: disconnection and connection between nodes.

In this way, the general dynamics of the system can be characterized on the space of the parameters (Pr, Pc).
Then, a coevolution model consists of a functional relationship f (Pr, Pc) = 0 between the probabilities Pr and Pc

that corresponds to a curve on this space. The function f (Pr, Pc) = 0 expresses the coupling between the processes
of node state change and rewiring of links between nodes. Different models of coevolution can be represented by
different functional relations between the probabilities Pr and Pc.

Any rewiring process in a network can be seen as consisting of two basic actions: connection (“attraction") and
disconnection (“repulsion") between nodes. It is assumed that either action, disconnection or connection , takes
place by some mechanism of comparison of the states of the nodes. Both connecting and disconnecting interactions
between nodes, based on some comparison of their states, are often found in social relations, biological systems,
and economic dynamics80,81,93,98. These actions may represent discrete connection-disconnection events, or to
continuous increase-decrease strength of the links, as in weighted networks.

The disconnection action can be characterized by a parameter d ∈ [0, 1], that measures the probability that two
nodes in identical states become disconnected, and such that 1 − d is the probability that two nodes in different
states disconnect from each other. Similarly, the connection action can be characterized by another parameter
r ∈ [0, 1] that expresses the probability that two nodes in identical states become connected, and such that 1 − r
is the probability that two nodes in different states connect to each other99. Then, any rewiring process subject to
disconnection-reconnection actions between nodes can be characterized by a pair of values d and r on the space of
parameters (d, r). This rewiring process guarantees the conservation of the total number of links in the network.

In the context of social dynamics, the phenomena of homophily (the tendency to interact between nodes of
similar states) and heterophily (the tendency to interact between nodes of different states) can be naturally described
on the plane (d, r). Homophily is maximum (and heterophily is minimum) for the values (d = 0, r = 1), while
the maximum of heterophily (and the minimum of homophily) corresponds to (d = 1, r = 0). Diverse coexisting
degrees of these two phenomena can be characterized as the parameters d and r are varied on the (d, r) plane.

Figure 2.2: The space of parameters (d, r) displays the possible adaptive rewiring processes that can take place on
a network in the model of Herrera et al.99. The point (d, r) = (0.5, 0.5) corresponds to a totally random rewiring,
regardless of the states of the nodes. The points (d, r) = (1, 0) and (d, r) = (0, 1) represent the limits of total
heterophily (affinity to different ones, tolerance for diversity) and total homophily (affinity for equals, intolerance
for diversity), respectively. The arrow signals the transition between these two limits along the diagonal d = 1 − r.
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Within this general framework, many coevolutionmodels that have appeared in the literature can be characterized
as special cases. For example, a functional relation Pc = 1−Pr and a rewiring process (d = 0.5, r = 1) corresponds
to the model in Ref.94; the same coupling relation and a rewiring process (d = 0, r = 1) was used in Ref.95, while
the rewirings employed in Refs.96–98 can be regarded as type (d = 0, r = 0.5). Note that only the rewiring process
(d = 0.5, r = 0.5) is completely independent of the states of the nodes.

(a) (b)

Figure 2.3: Examples of adaptive rewiring processes. (a) Rewiring (d = 0.5, r = 1): node i is disconnected
from neighbor m chosen at random, and then connected to a node l that shares the same state of i. (b) Rewiring
(d = 0, r = 1): node i is disconnected from neighbor j in a different state, and then connected to a node l that shares
the same state of i.

As an application of the general framework, Ref.99 considers a random network of N nodes having mean degree
〈k〉. Let νi be the set of neighbors of node i, possessing ki elements. The state variable of node i is denoted by
gi. For simplicity, assume that the node state variable is discrete, that is, gi can take any of G possible options.
The states gi are initially assigned at random with a uniform distribution. Therefore there are, on the average, N/G
nodes in each state in the initial random network. Consider a system characterized by some node dynamics with
probability Pc and subject to a rewiring process with probability Pr, which may be coupled by a functional relation
f (Pc, Pr) = 0. Assume that the actions of the rewiring process are described by parameters (d, r).

Then, the coevolution dynamics in this system is given by iterating these three steps99:

1. Choose at random a node i such that ki > 0.

2. With probability Pr, apply the rewiring process (d, r): select at random a neighbor j ∈ νi and a node l < νi. If
the edge (i, j) can be disconnected according to the rule of the disconnection action and the nodes i and l can
be connected according to the rule of the connection action, break the edge (i, j) and create the edge (i, l).

3. With probability Pc, apply the node dynamics.

Step 2 describes the rewiring process that allows the acquisition of new connections, while step 3 specifies the
process of node state change. It has been verified that the collective behavior of this system is statistically invariant
if steps 2 and 3 are interchanged100.

Many different node state dynamics can be considered in step 3 within this framework for coevolutionary
systems. Some examples in the area of social dynamics are: dynamics of opinion formation such as bounded
confidence models101, imitation rules such as voter models94,102–105, and cultural influence106.

Note that if Pr = 0, we have a static network where only the interaction dynamics among nodes can change
their state. Alternatively, if Pc = 0, the states of the nodes are kept fixed; only the connections between nodes
can change. We shall investigate the case Pc = 0 in Chapter 3. As we will show, the presence of an adaptive
rewiring process alone is sufficient to induce the formation of community structure in networks. In Chapter 4 we
propose and investigate a coevolution model with both coexisting processes, an opinion formation node dynamics
and adaptive rewiring, Pc , 0, Pr , 0.
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2.2 Characterization of community structure in networks
In order to characterize the presence of community structure in networks we shall use two statistical quantities. The
first quantity corresponds to the measure of modularity, based on partitions of the network into non-overlapping
communities. The second quantity is the normalized size of the largest component in the network. A similar
quantity also used was the normalized size of the largest domain in the network. We call a domain a set of
connected nodes that share the same state.

2.2.1 Modularity

Since the definitions of communities may vary; several methods based on modularity optimization have appeared
in the literature that take into account different aspects of communities or modular structures66. In the present
work, we shall employ the well-known algorithm proposed by the Louvain group67, which displays higher speed
and precision than some other methods. This method partitions a network into non-overlapping communities. Then
these communities are joined in order to optimize the value of the following parameter introduced by Newman75

Q =
1

2m

∑
i j

(
Ai j −

kik j

2m

)
δ(cic j) (2.1)

where ci corresponds to the community that node i was assigned, Ai j is the i j-element in the adjacency matrix of
the network, that is 1 if nodes i and j are connected, or 0 otherwise. The total number of links is m = 1

2
∑

i j Ai j and
ki is the degree of the edge i.

This parameter compares the value of the fraction of links that falls inside the communities against the expected
same value if the links were assigned randomly, considering the sizes of the communities and the degrees of the
nodes. The quantity Q can take values in the interval [−1, 1].

2.2.2 Largest component and largest domain

A subgraph or component of a network is a set of connected nodes, regardless of the states of their state variables.
We denote by S m the the average normalized (divided by N ) size of the largest component or connected subgraph
in the system. This quantity is bounded to the range [0, 1] and provides a measure of the integrity of the network.
A value S m = 1 corresponds to a large connected network, while a value S m ≈ 0 indicates a fragmented network
formed by several separated small components or subgraphs.

In contrast, a domain is defined as a set of connected nodes on a network that share the same state variable.
There can be many different domains in a network. A homogeneous collective state, also called an ordered state,
occurs when all the elements in a system are in the same state. A disordered or inhomogeneous state takes place
when several domains coexist in a system. We characterize the homogeneous or ordered collective state in a system
by considering the normalized size (divided by the size of the system) of the largest domain present in the network,
denoted by S g.

In practice, we use an recursive algorithm that searches for the states of the neighbors of a given node, and then
does the same search for each one of the neighbors that have the same state, keeping track of the visited nodes. At
the end, the algorithm returns the number of nodes that share the same state as the first one. Then we repeat the
search again on a node that has not been visited, until all the nodes in the network have been searched. Then, we
obtain a set of numbers that correspond to the sizes of the different domains in the network, from which we select
the largest one. This value is divided by the size of the network to normalize it, which yields S g. Then, the limit
S g ≈ 1 corresponds to one large domain and it characterizes an ordered state. The limit S g ≈ 0 is associated with
the presence of several domains of small size, and it characterizes a disordered system.
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For node dynamics based on imitation of states, such as the voter model, the largest subgraph may coincide
with the largest domain in a network, i. e., S m = S g.





Chapter 3

Adaptive rewiring and the emergence of
community structure in networks

3.1 How do communities arise in networks?
Aswe have seen in the Introduction, many natural and technological systems exhibit network structures characteristic
of small worlds, scale free, or communities. In some cases, the characteristic properties of these three complex
networks may coexist in a system. Watts and Strogatz24 proposed a mechanism to explain the origin of small
world networks, based on a process of random rewiring of links that creates long-range connections. Even a
small fraction of long-range interactions produce a decrease in the mean length of a network while keeping a high
clustering coefficient , thus leading to the small-world phenomenon. A mechanism of preferential attachment was
provided by Barabási and Albert25 to explain the emergence of scale-free networks. Preferential attachment is a
dynamical process by which new nodes entering a network have greater probability to connect to nodes already
having more connections than to connect with nodes possessing few connections. This process creates a probability
distribution of links that displays a power law. However, although some scenarios have been proposed, investigating
the mechanisms for the formation of communities in networks remains an open problem107.

In any case, the emergence of characteristic topological structures in a network requires some rewiring process
that modifies the properties of the links between nodes. Links can appear and disappear, or their strength can
change, as a consequence of a rewiring process. Two kinds of rewiring processes leading to the formation of
structures in networks can be distinguished100: i) rewirings based on local connectivity properties regardless of
the values of the state variables of the nodes, denoted as topological rewirings; and ii) rewirings that depend on
the state variables of the nodes, where the link dynamics is coupled to the node state dynamics, called adaptive
rewirings. From this point of view both mechanisms, for the origin of small-world networks proposed by Watts
and Strogatz, and for the formation of scale-free networks introduced by Barabási and Albert, belong to the class
of topological rewiring processes.

In this Chapter, we investigate the emergence of community structure in networks induced by a mechanism of
adaptive rewiring, that corresponds to the second class of rewiring processes. We shall show that the dynamics
of adaptive rewiring alone is sufficient to explain the emergence of communities. With this aim, we consider
the adaptive rewiring process in the general framework for coevolutionary systems from Ref.99 and described in
Chapter 2. Thus, we shall assume no node dynamics; that is Pc = 0, such that the states of the nodes do not change
in time. Community structure in networks with fixed states for the nodes are commonly observed, for example, in
many large cities where neighborhoods representing communities are established according to ethnic features or
national origin.

21



22 3.2. ADAPTIVE REWIRING PROCESSES IN NETWORKS

We shall show that the formation of communities is associated with a decrease in the number of active links in
the system, i.e., links that connect two nodes in different states. By using a mean field approach, we have found an
analytic solution for the evolution of the density of active links in the network.

3.2 Adaptive rewiring processes in networks
To investigate the emergence of topological structures such as communities through an adaptive rewiring process,
we begin by considering a random network of N nodes denoted by i = 1, 2, 3, . . . ,N. Let νi be the set of neighbors
of node i, possessing ki elements. We call 〈k〉 = (1/N)

∑N
i=1 the mean degree of the network, i.e., 〈k〉 is the average

number of neighbors per node. Then, the average number of links in the network is 〈k〉N/2.
The state variable of node i is denoted by gi, which is assumed to be discrete; that is, gi can take any of G

possible values, denoted in the set {1, 2, . . . ,G}. The states gi are initially assigned at random with a uniform
distribution. Since we assume no node dynamics, the average number of nodes in each state in the network will
remain at N/G.

In the general framework of Herrera et al.99, an adaptive rewiring process in a network can be described in
terms of the actions of disconnection and connection between nodes. Both actions are based on a criterion for
comparison of the states of the nodes. The model assumes conservation of the total number of links in the network;
that is, each disconnection action is followed by a reconnection between nodes. These two actions are characterized
by the parameters r and d , respectively. The parameter d ∈ [0, 1] represents the probability that two nodes in
identical states become disconnected, so that 1 − d is the probability that two nodes in different states disconnect
from each other. Similarly, the parameter r ∈ [0, 1] is the probability that two nodes in identical states become
connected, and 1 − r is the probability that two nodes in different states connect to each other. Then, a specific
adaptive rewiring process is denoted by a pair of values (d, r).

The dynamics of a rewiring process (d, r) on a network is defined by iterating the following algorithm:

Start

Choose a node i
such that ki > 0

select randomly a
neighbor j ∈ νi

Is g j = gi?
with probability d break
the link between i and j

with probability
(1 − d) break the

link between i and j

select at random
a node l < νi

Is gl = gi?
with probability
r connect i and l

with probability
(1 − r) connect i and l

Stop

yes no

yes no
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A time step corresponds to N iterates this algorithm.

3.3 Analytic mean field approach to adaptive rewiring
A link in the network is called active if it connects nodes in different states, while a link connecting nodes in the
same state is said inert. Let n(t) be the number of active links in the network at time t. Then the average fraction
or the density of active links in the network at a given time is the number of active links divided by the average
number of links in the network; that is,

ρ(t) = n(t)
2〈k〉
N

. (3.1)

Therefore, the fraction of inert links in the network at time t is (1 − ρ(t)).
In a mean field description, the system is assumed homogeneous. Then, the probability that a given link is active

at a time t can be approximated by the average density of links ρ(t). Then, the change ∆n in the number of active
links in one iteration can be calculated as follows. The probability that an inert link between node i and node j ∈ νi

is randomly selected and becomes active after one update is d(1− r). Since the average fraction of inert links in the
network is (1 − ρ), then the average increase in the number of active links in one update is ∆n+ = d(1 − r)(1 − ρ).
Similarly, the probability that an active link between node i and node j ∈ νi is randomly selected and becomes inert
after one update is r(1−d). Then, since ρ is the average fraction of active links in the network, the average decrease
in the number of active links in a time step is ∆n− = r(1 − d)ρ. Thus, the change in the number of active links in
one update will be

∆n = ∆n+ − ∆n− = d(1 − r)(1 − ρ) − r(1 − d)ρ. (3.2)

From Eq. (3.1), we have n =
〈k〉N

2 ρ. Thus, the change in the number of active links can be expressed as

∆n =
〈k〉N

2
∆ρ. (3.3)

Then, we can write
∆ρ =

2
N〈k〉

[d(1 − r)(1 − ρ) − r(1 − d)ρ]. (3.4)

Then, the change in the average density of active links in a single time interval ∆t = 1/N, in the limit N → ∞, can
be expressed by the following differential equation,

dρ
dt

=
2
〈k〉

[
d(1 − r)(1 − ρ) − r(1 − d)ρ

]
. (3.5)

Note that Eq. (3.5) can be seen as a balance equation for the fraction of active links, where the first term on the
right hand-side is associated with the increase in the number of active links, while the second term corresponds to
the decrease of active links. This competition between creation and destruction of active links is responsible for the
emergence of complex topological properties in an dynamical network, such as modular or community structures.

Equation (3.5) can be written as
dρ
dt

=
2
〈k〉

[
d(1 − r) − (d + r − 2rd) ρ

]
. (3.6)

The solution of Eq. (3.5) is
ρ(t) = ρ∗ − (ρ∗ − ρ0)e−

2
〈k〉 (d+r−2rd)t, (3.7)

where ρ0 is the initial density of active links in the network, and

ρ∗ =
(1 − r)d

r + d − 2dr
(3.8)

is the stationary or asymptotic solution of Eq. (3.5) for t → ∞.
Note that if the initial density ρ0 > ρ∗, then the density ρ(t) decays to the value ρ∗. Conversely, if ρ0 < ρ∗, the

density ρ(t) increases up to the value ρ∗.
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3.3.1 Stability analysis of the fixed point solution

Equation (3.5) can be expressed as
dρ
dt

= f (ρ∗), (3.9)

where
f (ρ) =

2
〈k〉

[
d(1 − r) − (d + r − 2rd) ρ

]
= 0. (3.10)

The fixed point or stationary solution ρ = ρ∗ of Eq. (3.9) is given by the condition

dρ
dt

∣∣∣∣∣
ρ∗

= f (ρ∗) = 0. (3.11)

That is,
f (ρ∗) =

2
〈k〉

[
d(1 − r) − (d + r − 2rd)ρ∗

]
= 0, (3.12)

which yields
ρ∗ =

(1 − r)d
r + d − 2dr

. (3.13)

The stability of the fixed point solution can be analyzed by considering the behavior of a small perturbation ∆ρ

of it, in the form
ρ(t) = ρ∗ + ∆ρ(t). (3.14)

Substitution in Eq. (3.9) gives
d
dt

(ρ∗ + ∆ρ) = f (ρ∗ + ∆ρ). (3.15)

By employing a Taylor expansion of the right-hand side, we obtain

�
�
�7

0
dρ∗

dt
+

∆ρ

dt
=��

�*0
f (ρ∗) + f ′(ρ∗)∆ρ + O(∆ρ2) (3.16)

Then, neglecting second and higher order powers of the small perturbation ∆ρ, we get the equation

∆ρ

dt
= f ′(ρ∗)∆ρ (3.17)

which has the solution
∆ρ(t) = ∆ρ(0)e f ′(ρ∗)t. (3.18)

Therefore, the perturbation ∆ρ(t) decreases in time if f ′(ρ∗) < 0, and therefore the fixed point solution ρ∗ is stable.
Alternatively, the fixed point is unstable if f ′(ρ∗) > 0, indicating that the perturbation grows in time.

Then, the fixed point ρ∗ is linearly stable if the following condition is fulfilled,

d f
dρ∗

=
2
〈k〉

(2rd − d − r) < 0. (3.19)

That is,
d + r − 2dr > 0. (3.20)

Condition Eq. (3.20) for the stability of the fixed point ρ∗ is satisfied for d ∈ (0, 1), r ∈ (0, 1). The points
(d, r) = (1, 0) and (d, r) = (0, 1) in a rewiring process correspond to extreme heterophily and extreme homophilly,
respectively.
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3.3.2 Time evolution of the density of active links

Figure 3.1 shows our mean field analytic solution ρ(t) in Eq. (3.7) (red line) as a function of time for several rewiring
processes (d, r). The stationary, asymptotic solution ρ∗ is generally reached for short times. For comparison, Fig. 3.1
also displays the time evolution of the fraction of active links calculated from numerical simulations on random
networks. The errors are about 10%. Thus, the mean field solution provides a reasonable description of the adaptive
rewiring dynamics in the system.
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Figure 3.1: Evolution of the density of active links as a function of time for different rewiring processes (d, r) on
different initial networks. The red continuous line is the analytic solution Eq. (3.7) and the blue dots correspond to
the density of active links calculated from numerical simulations. The simulations were performed on networks with
parameters: N = 3200, 〈k〉 = 4 and G = 320. (a) (r, d) = (0.9, 0.1), initial random network. (b) (r, d) = (0.5, 0.5),
initial random network. (c) (r, d) = (0.2, 0.8), initial network with community structure. (d) (r, d) = (0.2, 0.8),
initial network with medium density of active links.

3.3.3 Density of active links on rewiring space

Figure 3.2(a) shows the analytic stationary density of active links ρ∗ on the space of rewiring parameters (d, r),
given by Eq. (3.13)

ρ∗ =
(1 − r)d

r + d − 2dr
. (3.21)

For each point (d, r) on this plane, the value ρ∗ is displayed by means of a color code indicated by a bar to the right
of the figure. Darker colors correspond to smaller values of ρ∗, while lighter colors represent higher values of ρ∗.

The curves of constant density (“isothermal") ρ∗(d, r) = C = constant, are given by

d =
Cr

(1 − r) + C(2r − 1)
. (3.22)
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Figure 3.2(b) shows the numerical calculation of the asymptotic density of active links on the space of parameters
(d, r), for a random network characterized by N = 3200, 〈k〉 = 4, and G = 320 possible states per node.
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Figure 3.2: (a) Analytic stationary density of active links ρ∗ on the space of parameters (r, d). “Isothermal" curves
for constant ρ∗, Eq. (3.22), are indicated by dashed lines. b) Asymptotic density of active links on the space (d, r),
calculated from numerical simulations on a random network characterized by N = 3200, 〈k〉 = 4, and G = 320.
Each data point shown corresponds to the average over 100 realizations of initial conditions on the network. For
both panels, the values of the density are represented as heat maps; the corresponding color code bars are displayed
on the right side in each case.

We call Eabs = |ρ∗−ρ| the absolute error between the analytic solution ρ∗ and the asymptotic value of the density
of active links ρ calculated from numerical simulations. Figure 3.3(a) shows the absolute error Eabs = |ρ∗ − ρ| on
the space of parameters (d, r). In Fig. 3.3(b), the quantities ρ∗ and ρ are plotted as functions of r for values of d
along the diagonal d = 1 − r.
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Figure 3.3: Absolute error between the analytic solution ρ∗ and the numerical value ρ obtained solution for the
asymptotic density of active links.(a) Absolute error Eabs = |ρ∗ − ρ| on the space of parameters (d, r). Network
parameters are N = 3200, G = 320, 〈k〉 = 4. (b) Quantities ρ∗ (red circles •) and ρ (blue squares �) as functions of
r along the diagonal d = 1 − r. Each data point shown corresponds to the average over 100 realizations of initial
conditions on the network.

The analytic model is a mean field approximation that assumes infinite size and complete homogeneity of the
density of active links for all values of parameters (d, r). These simplifying assumptions are not achieved in the
simulations, especially for some parameters. Thus, one should not expect complete agreement between the mean
field model and the simulation for all parameter values. The region of parameters d → 1, r → 0, corresponds to
heterophily, where connections between nodes in different states are strongly favored and sustained. There is little
probability that nodes in equal states connect. Then, one should expect ρ → 1 in this region, as the simulation
actually shows. Similarly, the region d → 0, r → 1 describes homophily, where connections between equals
become highly probable, which implies ρ→ 0, as seen in the simulation. In either limit, heterophily or homophily,
the system reaches a more homogeneous density of active links, as it is assumed in the mean field approach. The
mean field approximation gives ρ∗ = 1 and ρ∗ = 0 in these two limits respectively, providing a good agreement
with the simulations in these regions, as shown in Fig. 3.3(a)-(b).

In the region d = r, the actions of disconnection and connection actions between equal nodes have the same
probability, as well as these actions have equal probability for nodes in different states. Then one may expect that,
on the average, half of the links between should be active, giving a homogeneous density ρ = 0.5. Actually, the
simulations give values close to ρ = 0.5 along the region r = d, while the mean field model exactly yields ρ∗ = 0.5
for r = d. Thus, the errors along the line d = r are small, as Fig. 3.3(a) shows.

The analytic model deviates from the simulation for parameter values outside these regions, where the rewiring
actions produce a network possessing a less homogeneous distribution of active links.

3.4 Adaptive rewiring and emergence of communities in networks
As we have mentioned, a main objective of the this thesis is to investigate how a process of adaptive rewiring
can induce the formation of communities in networks. We assume the rewiring process based on connection-
disconnection actions proposed in the general framework for coevolutionary dynamics in networks of Ref.99.

Homophilic rewiring processes, where d → 0 and r → 1, favor the connections between nodes in similar states,
and therefore reduce the number of active links in the network. In finite systems, such processes may lead to the
fragmentation of the network. We characterize the integrity of a network by calculating the average normalized
(divided by N ) size of the largest component or connected subgraph in the system, regardless of the states of the
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nodes, denoted by S m. Figure 3.4 shows the quantity S m numerically calculated for an initial random network on
the space of parameters (d, r). We see that, along some critical curve on this plane, S m exhibits a transition from a
regime having a large connected component, for which S m ≈ 1, to a fragmented state consisting of small, separated
components, for which S m ≈ 0.
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Figure 3.4: Average normalized size S m of the largest subgraph on the plane (r, d). Network parameters are
N = 3200, 〈k〉 = 4, G = 320. Each data point shown corresponds to the average over 100 realizations of initial
random conditions for the network.

We also investigate the presence of modular structure in the network on the plane (d, r). As a measure for the
formation of modular structure, we define the quantity ∆Q ≡ Q(t → ∞) − Q(0) as the modularity change, where
Q(0) is the modularity of the initial random network and Q(t → ∞) is the stationary modularity of the network for
asymptotic times, both calculated through the Lovain’s community detection algorithm67. Then, a value ∆Q = 0
reflects the subsistence of the initial random topology, while ∆Q > 0 indicates an increase in modularity with
respect to the initial random network, independently of the absolute values of Q.

Figure 3.5 displays the modularity change ∆Q, averaged over several realizations of initial conditions for a
random network, on the space of parameters (d, r). By comparing Figs. 3.4 and 3.5, we see that parameters for
which ∆Q > 0 include values (d, r) where the network is fragmented. The Lovain algorithm considers a network
with separated subgraphs as communities, assigning maximum modularity to it. Thus, ∆Q alone cannot effectively
distinguish the existence of connected module from a fragmented network; both situations yield ∆Q > 0.
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Figure 3.5: Modularity change ∆Q numerically calculated on the plane (d, r). The values of ∆Q are indicated by a
color code bar on the right. Network parameters are N = 3200, 〈k〉 = 4, G = 320. Each value shown corresponds
to the average over 100 realizations of initial random conditions for the network.
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To elucidate the formation of communities in the network, we plot in Fig. 3.6 the density of active links ρ, the
average normalized size of the largest subgraph S m, and the modularity change ∆Q, as functions of r , numerically
calculated for rewiring parameters along the diagonal d = 1 − r.
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Figure 3.6: Density of active links ρ (orange circles •), average normalized size of the largest subgraph S m (blue
squares �), and modularity change ∆Q (green triangles H ), as functions of r , calculated along the diagonal
d = 1− r. Network parameters are N = 3200, 〈k〉 = 4, G = 320. Each point shown corresponds to the average over
100 realizations of initial random conditions for the network.

A fragmented network possesses values S m ≈ 0, a maximum increase of modularity ∆Q, and ρ = 0. In similar
fashion, community structure is characterized by the presence of a large connected component (S m ≈ 1), with an
increase of modularity with respect to the initial random network (∆Q > 0), and with a small number of active
links (ρ � 1). This situation occurs for intermediate values of r in Fig. 3.6. Then, Fig. 3.6 suggests a criterion
for discerning and characterizing the emergence of community structure. We consider the product ∆Q × S m as a
statistical quantity that measures the presence of communities in a network. If ∆Q× S m ≈ 0, there is no increase in
modularity or the network is fragmented. In either case, no community structure exists in the network. In contrast,
a large value of the product ∆Q×S m signifies that a community structure has arisen on a connected large subgraph.

Figure 3.7(a) shows the quantity ∆Q×S m calculated on the space of parameters (d, r). The “half-moon" colored
region, labeled II, corresponds to values ∆Q × S m > 0 that indicate the range of rewiring parameters d and r for
which a modular structure emerges in the system. The boundaries of this modularity region can be seen as curves
of constant density ρ∗ on the plane (d, r), as in Fig. 3.2(a).
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Figure 3.7: (a) Quantity ∆Q×S m calculated on the space of parameters (d, r). The values of ∆Q×S m are indicated
by a color code bar on the right. (b) ∆Q × S m as a function of r for parameters along the diagonal d = 1 − r.
Network parameters in each panel: N = 3200, 〈k〉 = 4, G = 320. Each point shown corresponds to the average
over 100 realizations of initial random conditions for the network.
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Three regions, associated with different structures or “phases" of the network, can be distinguished on the
space of parameters (d, r) in Fig. 3.7(a): (I) a region where a large random subgraph persists, characterized by
∆Q = 0, S m ≈ 1; (II) a region where communities emerge on a connected graph, corresponding to ∆Q > 0, S m ≈ 1;
and (III) a regionwhere the network is fragmented in small separated components; characterized by∆Q > 0, S m ≈ 0.

The product ∆Q × S m as a function of r along the diagonal d = 1 − r is shown in Fig. 3.7(b). Community
structure takes place on region II for intermediate values or r and d . As mentioned in Fig. 2.2, moving along the
line d = 1 − r describes a continuous transition between the points of total heterophily or tolerance (d, r) = (1, 0)
and total homophily or intolerance (d, r) = (0, 1). Near these points, ∆Q × S m ≈ 0. No community structure can
be sustained close to either situation. Instead, Fig. 3.7(b) revels that communities can arise from an initial random
network for intermediate values of the rewiring parameters d and r .

We recall that active links connect nodes in different communities that have distinct states, while inert links
connect nodes in the same state within a community. As we mentioned, a community structure is characterized by
S m ≈ 1 and ρ � 1, which means a large density of inert links, 1 − ρ, that belong to communities. Then, we may
consider the product S m × (1 − ρ) as an indicator of modular structure. Fig. 3.8(a) shows the product S m × (1 − ρ)
on the plane of parameters (d, r). A colored region where S m × (1 − ρ) , 0 can be seen in Fig. 3.8(a); this
region approximately coincides with the “half-moon" region where community structure emerges in Fig. 3.7(a).
Figure 3.8(b) shows S m × (1 − ρ) as a function of r along the diagonal line d = 1 − r. Again, community structure
appear for intermediate values of r and d . The quantity ∆Q × S m, that includes the modularity change ∆Q,
provides a more precise measurement of community structure. However, a valuable insight into the formation of
communities can be gained by considering the product S m × (1 − ρ) that is numerically simpler to calculate than
S m × ∆Q.
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Figure 3.8: (a) Quantity S m × (1 − ρ) on the plane (d, r). The values of S m × (1 − ρ) are indicated by a color code
bar on the right. (b) S m× (1−ρ) as a function of r for parameters along the diagonal d = 1− r. Network parameters
in each panel: N = 3200, 〈k〉 = 4, G = 320. Each point shown corresponds to the average over 100 realizations
of initial random conditions for the network. Labels I, II, and III, indicate the three phases of the network.Label I
corresponds to the persistence of random network structure, label II corresponds to the emergence of community
structure and label III indicates the fragmentation of the network.

Figures 3.7(a) and 3.8(a) reveal the relationship between the density of active links and the emergence of
community structure in a network. Since active links connect different domains, when their density is low, the
majority of links must lie inside the different domains coexisting on the large connected network. Therefore, there
must exist several domains inside which nodes are highly connected, with fewer connections between different
domains. This is the main characteristic of a modular or community structure in a network. The formation of
communities in the “half moon” region on Fig. 3.7(a) requires the presence of more homophily than heterophily



CHAPTER 3. ADAPTIVE REWIRING AND THE EMERGENCE OF COMMUNITY STRUCTURE IN
NETWORKS 31

(that is, r > d) in the interactions between agents, but not too much homophily (that is, r < 1) that would lead to
fragmentation of the network.

Figure 3.9 displays the corresponding network configurations resulting from numerical simulations with pa-
rameters in regions I, II, and III on the space of rewiring parameters (d, r) in Fig. 3.7(a).

Figure 3.9: Asymptotic network configurations for the three regions of the space of rewiring parameters (d, r)
indicated in Fig. 3.7(a). Fixed network parameters: N = 150, G = 6. (I) connected random network; (II)
community structure; (III) fragmented network.

In summary, in this Chapter we have characterized the formation of communities in a network by the statistical
quantity ∆Q × S m on the space of parameters (d, r) for connection and disconnection that describe an adaptive
rewiring process. We have shown that an adaptive rewiring process, even in the absence of node dynamics, can give
rise to a community structure in a network in an intermediate region on the space of parameters (d, r). Furthermore,
we have identified the topological phases for the network on this space: a large connected graph, a community
structure, and a fragmented state. As we shall see in Chapter 4, this phase diagram on the space of of parameters
(d, r) allows one to predict the emergence of communities and the fragmentation of a network, when coevolution
with dynamics for the states of nodes is considered.





Chapter 4

A coevolution model with node dynamics

4.1 Coevolution model of discrete opinions with interaction threshold on
networks

As an application of the general model for coevolutionary dynamics99 presented in Chapter 2, in this Chapter we
shall investigate a system where both processes, adaptive rewiring and node dynamics, coexist and are coupled on
a network. Thus, in contrast with the previous Chapter where there was no dynamics for nodes (Pc = 0), here the
nodes can interact and change their states as the system evolves.

The node dynamics we shall use are motivated by the following opinion formation problem of wide interest: if
the social agents that rate a product or service on a discrete-valued scale interact on a real or virtual network, under
what conditions do their opinions converge? Furthermore, can communities emerge from such interactions?

Valued or ranked opinions of individuals are common in social systems. For example, many companies and
institutions often ask their costumers to evaluate the quality of a product or the level of satisfaction with a service
through some valuation method. Typically, companies use a Likert scale108 that includes a number of options
or answers for a question, from “strongly agree" to “strongly disagree". This system of qualification consists of
discrete, valued opinions expressed as integer numbers, 1, 2, . . . ,G, where 1 (“strongly agree") and G (“strongly
disagree") represent the extreme values that the opinion about a subject can take. Companies such as Amazon,
Ebay, Mercado Libre, banks, car dealers, mobile phone, fast foods, e-commerce, among others, employ these kinds
of opinion surveys to improve their services and profits. The political spectrum on the left–right dimension can also
be classified with this scheme; for example: 1 (extreme left), 2 (center-left), 3 (center), 4 (center-right), 5 (extreme
right). In many cases, the discrete opinion value is expressed by some symbol or a number of "stars".

Figure 4.1 illustrates two situations where valued opinions of users are considered on different scales.
Various models of discrete-valued opinion dynamics have been employed in the sociodynamics literature109,110.

Here we use the node interaction dynamics of Ref.111 that can be considered as a discrete version of the bounded
confidence opinion model of Deffuant et al.101.

Thus, we define a coevolution model of discrete-valued opinions with a threshold for interaction as follows.
Consider N agents or nodes forming a network with mean degree 〈k〉 . Let gi be the state of opinion of agent i,
where gi can take any of the G integer values in the scale {1, 2, 3, . . . ,G}. Define a threshold for interaction between
agents by a parameter U that can take a value in the set {1, 2, 3, . . . ,G}. The parameter U can be interpreted as the
degree of tolerance or openness to interactions that agents possess. For simplicity, we assume homogeneity, i. e.;
the threshold value U is the same for all agents in the system. The states gi are initially assigned at random with
a uniform distribution in the set {1, 2, 3, . . . ,G}. We set a rewiring process characterized by the connection and
disconnection parameters (d, r).
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4.1. COEVOLUTION MODEL OF DISCRETE OPINIONS WITH INTERACTION THRESHOLD ON

NETWORKS

Figure 4.1: (a) Customer reviews of a product on Amazon’s platform on a scale from 1 toG = 5, with N = 552, 720
entries. (b) Viewers ratings for the movie The Shawshank Redemption (1994) on the Internet Movie Database
(IMDb) on a scale from 1 to G = 10, with N = 2, 357, 076 entries.

Then, the coevolutionary dynamics of the system consists of iterating the following steps:

1. Choose a node i such that ki > 0.

2. With probability Pr apply rewiring process (d, r): (i) select randomly a neighbor j ∈ νi; if g j = gi with
probability d break the link between i and j; if g j , gi with probability (1 − d) break the link between i and
j. (ii) select at random a node l < νi; if gl = gi, with probability r connect i and l; if gl , gi, with probability
(1 − r) connect i and l.

3. With probability Pc = 1 − Pr, choose randomly a node j ∈ νi. If If |gi − g j| ≤ U, set gi = g j. If |gi − g j| > U,
nothing happens.

Step 2 describes the adaptive rewiring process (d, r) that allows the acquisition of new connections. Step 3
specifies the coupling between the processes of rewiring and node dynamics according to the relation Pc = 1 − Pr;
the process of node state change is such that the states of the connected nodes become similar if the threshold
condition is fulfilled. Different coevolution models with this node dynamics can be investigated by considering
different rewiring parameters (d, r) or different coupling functions Pc = f (Pr).

Note that this type of node dynamics based on imitation or copying is absorbing. This means that the number
of states existing in the system decrease in time. A stationary state is reached in a finite time for a finite system.

The total number of links in our network and the total number of possible opinions G are fixed. In the limit of
large system size, the model thus has four parameters: the mean degree 〈k〉 , the mean number of nodes holding a
particular opinion N/G, the rewiring probability Pr, and the threshold value U. Although the interaction threshold
U is an integer number, it is convenient to express this quantity normalized respect to the number of possible
options G . Then, we define the normalized threshold for interaction as u ≡ U/G, such that u ∈ (0, 1]. We shall fix
〈k〉 and N/G and study the collective behavior of the system in terms of the parameters Pr and u.
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The algorithm for this process is illustrated in the next flow diagram:

Start

Choose a node i
such that ki > 0

select randomly a
neighbor j ∈ νi

Is g j = gi?
with probability d break
the link between i and j

with probability
(1 − d) break the

link between i and j

select at random
a node l < νi

Is gl = gi?
with probability
r connect i and l

with probability
(1 − r) connect i and l

choose randomly
a node j ∈ νi

|gi − g j| ≤ U

set gi = g j

stop

with probability Pr

yes no

yes no

with probability Pc with probability Pc

4.2 Network fragmentation
Let us assume the coevolution model of Sec. 4.1 with a rewiring process with parameters (d, r) = (0.5, 1) in region
III of Fig. 3.7(a). Rewiring parameters in region III favor the fragmentation of the network. The fragmentation
phenomenon is controlled by the time scale of the rewiring process, expressed by the probability Pr. Whereas, the
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chosen dynamics for the nodes, based on an imitation rule that depends on the threshold value u, tends to increase
the number of connected nodes with equal states, promoting the formation of domains. Recall that a domain is a
set of connected nodes or subgraph where all members of the subgraph share the same state.

To characterize the collective behavior of the system ensued from the competition between the two processes,
we employ, as a statistical order parameter, the average normalized size of the largest domain in the system, denoted
by S g. Figure 4.2 shows the quantity S g calculated as a function of parameters (Pr, u).
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Figure 4.2: Average normalized size S g of the largest domain on the space of parameters (Pr, u) for the coevolu-
tionary system with Pc = 1 − Pr and discrete-valued opinion node dynamics with G = 160. Rewiring parameters:
(d = 0.5, r = 1). Network parameters are N = 1600, 〈k〉 = 4. The values of S g are indicated by a color code bar on
the right. Each data point shown corresponds to the average over 25 realizations of initial random conditions for
the network.

Figure 4.2 displays two main regions on the plane (Pr, u), resulting from the competition between the node
dynamics and the rewiring process: (i) a (yellowish) region where S g ≈ 1, corresponding to the presence of a
large domain or a homogeneous state; and (ii) a (blue) region where S g ≈ 0, signaling the existence of a network
fragmented in small domains or a disordered state. By varying the parameters Pr and/or u on this plane, the system
can exhibit a continuous transition between these two collective states or phases. Fragmentation of the network
occurs for large values of the probability Pr; that is, when the rewiring process is faster that the node dynamics that
takes place with probability Pc = 1 − Pr. Alternatively, a consensus or homogeneous collective state is achieved
when the tolerance threshold u of the social agents is large enough and their connections change at a low rate Pr.

The phase diagram of Fig. 4.2 is quite general; it contains, as special cases, various opinion formation models
with discrete states previously investigated. For example, the case u → 0 implies that no opinion changes take
place. Then, we have the model of adaptive rewiring without node dynamics from Chapter 3, where the domains
have small average size S g = G/N < 1. Other cases will be considered next.

4.3 Limiting case u = 1

Consider a fixed interaction threshold value u = 1 in Fig. 4.2. Then, the node dynamics becomes a complete
imitation or copying endeavor between neighbors, regardless of the values of their opinion states. This is just the
interaction rule for the well-known voter model where the opinion options are analogous to spin states. Then,
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the case u = 1 in Fig. 4.2 becomes a coevolutionary voter model with G equivalent options104. This is actually
the coevolution model of Holme and Newman94. We obtain this model with (d, r) = (0.5, 1) as a special case by
rewriting step 3 in the algorithm of Sec. 4.1 as follows:

3. With probability Pc = 1 − Pr, choose randomly a node j ∈ νi and set gi = g j.
Figure 4.3(a) shows the average normalized size of the largest domain S g as a function of the rewiring probability

Pr, calculated with the modified step 3, equivalent to the condition u = 1.
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Figure 4.3: (a) Average normalized size of the largest domain S g as a function of the rewiring probability Pr for
the coevolutionary system with Pc = 1 − Pr and discrete-valued opinion node dynamics. Fixed parameters are:
G = 320, u = 1, (d, r) = (0.5, 1). Network parameters are N = 3200, 〈k〉 = 4. Each point corresponds to the
average over 100 realizations of initial random conditions for the network. (b) Standard deviation σ(S g) about the
mean value S g as a function of the probability Pr. The deviation σ(S g) is calculated over 100 realizations of initial
random conditions.

The quantity S g in Fig.4.3(a) exhibits transition at a critical value P∗r , from a regime having a large domain for
Pr < P∗r , to a fragmented state consisting of small domains for Pr > P∗r , characterized by S g ≈ 0. The critical point
P∗r = 0.46 for the fragmentation transition is estimated by the value of Pr for which the largest standard deviation
or fluctuation of the mean value S g occurs, as shown in Fig.4.3(b). The transition becomes better defined in the
large system limit N → ∞. Holme and Newman94 found the critical point value P∗r = 0.458 by performing a finite
size scaling analysis.
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4.4 Limiting case Pr = 0

Consider the discrete valued opinion dynamics with interaction threshold on a fixed network. This corresponds to
the line Pr = 0 along the u variable on the plane in Fig. 4.2, independently from the the parameters (d, r). This
model has been actually studied on several fixed networks in Ref.111. Here we derive it as a limiting case of our
general coevolution model when Pr = 0.

Thus, in the algorithm for the coevolutionary dynamics of Sec. 4.1 we delete step 2 and fix Pc = 1 in step 3;
that is, the node dynamics is always applied on the random network. In this case, no fragmentation of the network
takes place. Figure 4.4 shows the average normalized size of the largest domain S g as a function of the normalized
threshold value u for a random network.
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Figure 4.4: Average normalized size of the largest domain S g as a function of the threshold u for the discrete-valued
opinion model with G = 320 on a fixed random network (Pr = 0). Network parameters are N = 3200, 〈k〉 = 4.
Each point corresponds to the average over 100 realizations of initial random conditions for the network.

For values of the interaction threshold below a value uc = 0.09 the system reaches a state of disorder, in the
sense that a diversity of opinions coexist, characterized by S g ≈ 0. For values u > uc the quantity S g increases as
opinions converge, up to the value S g = 1 that corresponds to a homogeneous or ordered state. The value uc = 0.09
represents a critical value for a continuous non-equilibrium transition between these two collective states or phases
in the system. Notice that the simple majority S g = 0.5, where one domain occupies half of the network, is reached
in Fig. 4.4 at the value of the interaction threshold u = 0.25.

In general, the critical value uc depends on the topology of the network. For a fully connected network, where
each node is linked to all other nodes in the system, it has been shown111 that uc = 0; that is, no disordered phase
appears.

The ordered and disordered phases can be nicely visualized on a fixed two-dimensional network for different
values of the interaction threshold u above and below the corresponding critical value, as shown in Fig. 4.5.
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(a) (b)

Figure 4.5: Visualization of the resulting patterns for the discrete-valued opinion model with G = 100 on a fixed
(Pr = 0) two-dimensional network (or lattice) with Von Neumann neighborhood and periodic boundary conditions
(ki = 4,∀i), for two different values of the threshold u. Contiguous nodes with the same color belong to the same
domain. Network size is N = 50×50. The critical value for a two-dimensional lattice, found in Ref.111, is uc = 0.23
(a) u < uc, disordered phase where several domains coexist (S g ≈ 0). (b) u > uc, ordered, homogeneous phase
where only one domain emerges (S g = 1).

4.5 Emergence of community structure in coevolutionary networks
We have found in Chapter 3 that rewiring processes corresponding to parameters (d, r) in region II of Fig. 3.7(a)
lead to the emergence of community structure in networks. In this Section we investigate the coevolution model
of Sec. 4.1 with rewiring parameters (d, r) = (0.35, 0.65), just in region II. The probability Pr regulates the time
scale of this rewiring process and also controls the time scale of the node dynamics through the coupling relation
Pc = 1 − Pr. Thus, by varying Pr, we should expect to promote the formation of communities in the network.

As in Chapter 3, to characterize the emergence of community structure on a connected network, we need two
statistical quantities: the average normalized size of the largest connected subgraph, regardless of the states of the
nodes, S m; and the modularity change with respect to the initial random network, ∆Q. We have obtained S m ≈ 1
for all values of parameters (u, Pr), indicating that the network always remains connected. The product S m × ∆Q,
that characterizes the appearance of modular structure, is shown on the space of parameters (u, Pr) in Fig. 4.6.
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Figure 4.6: Quantity S m×∆Q on the space of parameters (u, Pr) for the coevolution model with rewiring parameters
(d, r) = (0.35, 0.65). The values of S m×∆Q are indicated by a color code. Initial network parameters are N = 1600,
〈k〉 = 4, G = 160. Each point is the average over 50 realizations of initial random conditions for the network.



40 4.5. EMERGENCE OF COMMUNITY STRUCTURE IN COEVOLUTIONARY NETWORKS

Figure 4.6 exhibits twomain regions on the plane (u, Pr): (i) a (yellowish) regionwhere the product S m×∆Q > 0,
corresponding to the formation of modular structures on a connected network; (ii) a (blue) region where S m×∆Q→
0, indicating that no modular structures have arised from the initial random network. By varying the parameters
Pr or u on this space, the system can experience a continuous transition between these two states or phases of the
network topology.

Figure 4.7(a) shows the average normalized size of the largest connected subgraph S m and the product S m ×∆Q
as functions of the rewiring probability Pr, with fixed interaction threshold value u = 1. Figure 4.7(b) shows S m

and the product S m ×∆Q as functions of the interaction threshold u, with fixed rewiring probability value Pr = 0.4.
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Figure 4.7: (a) S m (blue squares �) and S m × ∆Q (right vertical axis, yellow circles •) as functions of the rewiring
probability Pr, with fixed value u = 1. (b) S m(blue squares �) and S m × ∆Q (right vertical axis, yellow circles •)
as functions of the interaction threshold u, with fixed value Pr = 0.4. Rewiring parameters are (d, r) = (0.35, 0.65).
Network parameters are N = 3200, G = 320, 〈k〉 = 4. In both panels, each point corresponds to the average over
100 realizations of initial random conditions for the network.

Recall from Sec. 4.3 that the case u = 1 corresponds to the node dynamics of the Holme-Newman coevolution
model94. However, now the rewiring parameters (d, r) = (0.35, 0.65) belong to region II where communities emerge
and, therefore, no fragmentation of the network occurs. This is reflected by the value S m ≈ 1 independently of Pr

in Fig. 4.7(a). That said, the quantity S m × ∆Q increases from 0 above the parameter value Pr = 0.5, signaling the
onset for the formation of community structure in a connected network. Thus, Fig. 4.7(a) reveals that an adaptive
rewiring process with connection-disconnection parameters in region II can induce the emergence of communities
in a network even in coexistence with an absorbing node dynamics.

Figure 4.7(b) shows a continuous transition from a network with community structure S m×∆Q > 0 to a random
network, as the threshold u is increased. These results can be understood as follows. For values u → 0, nodes
do not change their states very often, which is equivalent to having mainly rewiring in the network, analogous to
Pr → 0. Since the rewiring parameters (d, r) = (0.35, 0.65) belong to region II, communities emerge due to the
dominant rewiring process. Thus, S m × ∆Q increases for small values of u. For larger values of u, nodes are more
likely to copy states from their neighbors, and therefore the system becomes more homogeneous while the network
remains random. This leads to the decrease of the product S m × ∆Q as u increases.



Chapter 5

Conclusions & Outlook

As described in the Introduction, the small-world phenomenon in networks has been explained by a mechanism of
random rewiring that creates a number of long-range connections24, while a preferential attachment process gives
rise to the scale-free property in networks25. In this thesis, we have investigated a process of adaptive rewiring of
links as a mechanism to explain the formation of the community structure that is commonly observed in real-world
networks.

We have employed the general framework proposed in Ref.99 for the study of the phenomenon of coevolution in
dynamical networks. Coevolution consists of the coexistence of two processes on a network, node state change and
rewiring of links between nodes, that can take place with different time scales represented by probabilities Pr and
Pc, respectively. A specific coevolutionary model can be expressed by a functional coupling relation f (Pr, Pc) = 0.
In this framework, the process of adaptive rewiring can be described in terms of two actions: connection and
disconnection between nodes, both represented by parameters based on some criteria for comparison of the nodes
state variables. In a social context, these actions allow for the description of diverse behaviors such as inclusion-
exclusion, homophily-heterophily, and tolerance-intolerance, in terms of probability parameters r and d .

We have shown that the existence of adaptive rewiring is sufficient to induce the formation of community
structure in networks, even when the states of the nodes are fixed; i.e., in the absence of node dynamics. A
main result of this thesis is that we have successfully characterized the presence of communities in the network
by introducing the combined statistical quantity ∆Q × S m, corresponding to the product of the modularity change
times the average normalized size of the largest subgraph in the system. A ∆Q × S m > 0 indicates the formation of
a community structure. We have calculated this quantity on the space of the rewiring parameters (d, r). We have
shown that community structure arises on a connected network for a range of intermediate values of parameters d
and r on this plane. This region, that we have denoted as phase II, separates a region where the network remains
random and connected (phase I) from a region where the network is fragmented in small separated components
(phase III).

We have also established a relation between the emergence of communities and the density of active links in
the network by comparing the quantity ∆Q × S m with the product S m × (1 − ρ). Communities are characterized by
a low density of active links ρ. A high density of active links is associated with a random network where nodes
in different states are randomly connected, while a fragmented network possesses no active links. We consider a
main contribution of this thesis the finding of an analytic solution for the evolution of the density of active links in
a network, by using a mean field approximation.

The framework of Ref.99 also allowed us to propose a novel coevolution model where a dynamics of opinion
formation for nodes is coupled to an adaptive rewiring process. In this model, the nodes representing social agents
have opinions on a discrete-valued scale and they can interact according to a threshold condition. This system of
valued opinions is typical of many social, political, and business situations. We showed that our model is quite
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general and that it contains several previous models as special cases. Our main result has been to show that the
adaptive rewiring process still determines the properties of the emerging network in the presence of node dynamics;
rewiring parameters values in region II of the (d, r) plane lead to the occurrence of communities, while rewiring
parameters in region III of that plane induce the fragmentation of the network. The node dynamics occurring
with a probability Pc = 1 − Pr just modulates the outcome determined by the adaptive rewiring process. In this
sense, the phase diagram on the space of parameters (d, r) can predict the behavior of the network structure in a
coevolutionary dynamical system.

Finally, a useful and important product of this thesis has been the elaboration of our own computer code for
simulations of a general model for coevolution of topology and dynamics in networks. This code was run and
proven to be efficient on the new High Performance Computing (HPC) cluster of CEDIA.

In all cases considered, we have limited our investigation to the situation where the number of connections in
the coevolving network is conserved. This condition is expressed in step 2 of the general coevolution algorithm,
where both actions of connection and disconnection always occur. This condition can be generalized by considering
different time scales for each of these actions. This will allow for the study of coevolutionary dynamical networks
with no conservation of the total number of links.

Other extensions to be investigated in the future include the consideration of variable connection strengths, the
inclusion of preferential attachment rules for the connection action, and the influence of different node dynamics,
such as differential equations or chaotic elements, on the collective behavior of the system.
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Glossary of Symbols and Terms

G Number of possible states for a node in a network. 17, 22, 33, 34, 37, 51

N Number of nodes that are part of a network. 2–4, 17, 18, 22, 27, 33, 51

Pc Probability for the node dynamic process to happen. 16, 17, 35, 41

Pr Probability for the rewiring process to happen. xv, 16, 17, 34–37, 39–41

S g Normalized size of the largest domain in a network. xv, 18, 36–38

S m Normalized size of the largest component in a network. xv, 18, 28, 29, 39, 40

∆Q Modularity change. xv, 28–30, 39

〈k〉 Average number of neighbors that a node has in a network. 17, 22, 33, 34

ρ Density of active links. xv, 23, 26, 27, 29, 41

ρ∗ Analytic stationary density of active links. xv, 23–27, 29

d Probability that two nodes in identical states become disconnected. 16, 22, 26, 29, 30, 34, 35, 41

r Probability that two nodes in identical states become connected. 16, 22, 26, 27, 29, 30, 34, 35, 41

u Normalized threshold value for the discrete-valued opinion model. xv, xvi, 34, 36, 38–40, 51

active link Link that connects two nodes with different states. xi, xv, 12, 13, 22, 23, 25–27, 29, 30, 41

clustering coefficient Fraction of the actual links present in the network compared to all-to-all coupling. xv, 4, 21

community Groups of nodes that have a high number of links within the groups and low number of links outside
them. xi, 7–10, 12, 18, 21–23, 27–31, 33, 39–42

complex system Set of interacting elements whose collective behavior cannot be derived from the knowledge of
the properties of the isolated element. 1, 12, 15

degree Number of links that a node shares. 2, 4–7, 9, 17, 18, 22, 33, 34, 50

domain Set of connected nodes on a network that share the same state variable. xv, 18, 19, 30, 36–39

geodesic distance Shortest number of links that separates one node from another in a network. xv, 3, 4, 9, 10

graph Visual representation of a network. 1, 2, 4, 11

49



50 Glossary of Symbols and Terms

inert link Link that connect two nodes with the same states. 23, 30

modularity quantity that evaluated the quality of a network partition by comparing the number of links inside the
modules of a partition against the expected number of links of a null model. xi, 11, 13, 18, 28–30, 39, 41

network Set of elements (known as nodes or vertices) with relations (also know as links or edges) among them.
xi, xv, 1–13, 15–18, 21–23, 25, 27–31, 33, 36–42, 49–51

null model Random networks with the same size and degree as a network with certain structure. 7, 11

subgraph Set of connected nodes in a network also known as a component of a network. xv, 18, 19, 27–30, 36,
39–41



Appendix A

Computer code used for the coevolution of
topology and dynamics in networks

We have developed our own computer code for the coevolution of topology and dynamics in networks used in this
work. This code was written in the C programming language. The following program creates an Erdös–Rényi
random network with N nodes, whose states are uniformly and randomly assigned from the G possible options.
Then, the program applies the coevolution dynamics according to the five parameters Pr, Pc, r, d and u. All the
parameters, along with the size of the system, the number of possible states, the number of realizations and the
number of iterations of the dynamic, are defined in the code. The outputs of the program are four files. The first
two files correspond to the link representation of the network and to the states of the nodes before the dynamics is
applied. The last two files correspond to the link representation of the network and the states after the dynamics is
applied. All the statistical quantities calculated in this thesis were performed over those four files.

1 #include <math.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5 #include <pthread.h>

6 #include <stdbool.h>

7 #include<unistd.h>

8 #include <gsl/gsl_rng.h>

9 #define MAX_THREADS 64

10

11 /*This function returns a random int between 0 and RAND_MAX*/

12 unsigned long int rand_int(void *ptr){

13 gsl_rng *rng_r=(gsl_rng*)ptr;

14 return gsl_rng_get(rng_r);

15 }

16

17 /*This structures contains all the variables of the system*/

18 struct Inputs{

19 int N;

20 int time;

21 int k;

22 int G;

23 int runs;

24 int size;

25 float d;

26 float r;

51
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27 float U;

28 float Pr;

29 float Pc;

30 unsigned int thread_id;

31

32 };

33

34 /*This function saves a file with the all the links of the network, the char name[] is the

name of the file*/

35 void print_links(int *matrix, int N,char name[]){

36 FILE *fptr;

37 fptr=fopen(name,"w");

38 fprintf(fptr,"%d\n",N);

39 for (int i=0;i<N;i++){

40 for (int j=i+1;j<N;j++){

41 if (*(matrix+i*N+j)==1){

42 fprintf(fptr,"%d %d\n",i,j);

43 }

44 }

45 }

46 fclose(fptr);

47 }

48

49

50 /*this function is does the rewiring process of disconnection and reconnection*/

51 void rewire(float d, float r,int *matrix, double *list_states , int N, int node,void *ptr_rng_r

){

52 gsl_rng *rng_r=(gsl_rng*)ptr_rng_r;

53

54 /*Here we find all the neighbors of our node*/

55 int nodes_same_state=0;

56 int nodes_different_state=0;

57 int index_same_state[N];

58 int index_different_states[N];

59

60 int disconnect_index=-1;

61 int reconnect_index=-1;

62

63 for (int i=0;i<N;i++){

64 if (*(matrix+node*N+i)==1){

65 if (*(list_states+node)==*(list_states+i)){

66 index_same_state[nodes_same_state]=i;

67 nodes_same_state++;

68

69 }

70 else{

71 index_different_states[nodes_different_state]=i;

72 nodes_different_state++;

73

74 }

75 }

76 }

77

78 /*Here we choose the neighbor that will be disconnected from our node*/

79 double d_rand=(double)rand_int(rng_r)/gsl_rng_max(rng_r);

80

81 if (d_rand <=d){

82 if (nodes_same_state >0){
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83 int temp=rand_int(rng_r)%nodes_same_state;

84 disconnect_index=index_same_state[temp];

85 }

86 }

87 else{

88 if (nodes_different_state >0){

89 int temp=rand_int(rng_r)%nodes_different_state;

90 disconnect_index=index_different_states[temp];

91 }

92 }

93

94 /*Here we find all the nodes in the network that are not connected to our node*/

95 int nodes_same_state_disconnected=0;

96 int nodes_different_state_disconnected=0;

97 int index_same_state_disconnected[N];

98 int index_different_states_disconnected[N];

99

100 for (int i=0;i<N;i++){

101 if (*(matrix+node*N+i)==0 &&node!=i){

102 if (*(list_states+node)==*(list_states+i)){

103 index_same_state_disconnected[nodes_same_state_disconnected]=i;

104 nodes_same_state_disconnected++;

105 }

106 else{

107 index_different_states_disconnected[nodes_different_state_disconnected]=i;

108 nodes_different_state_disconnected++;

109 }

110 }

111 }

112

113 /*Here we choose the node to connect to */

114 double r_rand=(double)rand_int(rng_r)/gsl_rng_max(rng_r);

115

116 if(r_rand <=r){

117 if (nodes_same_state_disconnected >0){

118 int temp_node=index_same_state_disconnected[rand_int(rng_r)%

nodes_same_state_disconnected];

119 reconnect_index=temp_node;

120 }

121 }

122 else{

123 if (nodes_different_state_disconnected >0){

124 int temp_node= index_different_states_disconnected[rand_int(rng_r)%

nodes_different_state_disconnected];

125 reconnect_index=temp_node;

126 }

127 }

128

129 /*In order to maintain the number of links constant we do the connection and reconnection

together only if it is possible*/

130 if (reconnect_index!=-1 && disconnect_index!=-1){

131 *(matrix+node*N+disconnect_index)=0;

132 *(matrix+disconnect_index*N+node)=0;

133 *(matrix+node*N+reconnect_index)=1;

134 *(matrix+reconnect_index*N+node)=1;

135 }

136 }

137
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138 /*this function saves a file with the states of the nodes. The first value corresponds to the

node 1, the second to the node 2 and so on*/

139 void print_states(double *list_states ,int N,char name[]){

140 FILE *fptr;

141 fptr=fopen(name,"w");

142 for (int i=0;i<N;i++){

143 fprintf(fptr, "%lf ",*(list_states+i));

144 }

145 fclose(fptr);

146 }

147

148

149 /*This function saves the adjacency matrix of the network*/

150 void print_matrix(int *matrix, int N,char name[],char mode[]){

151

152 FILE *fptr;

153 fptr=fopen(name,mode);

154

155 for (int i=0;i<N;i++){

156 for (int j=0;j<N;j++){

157 fprintf(fptr,"%d ",*(matrix+i*N+j));

158 }

159 fprintf(fptr,"\n");

160 }

161

162 fclose(fptr);

163 }

164

165

166 /*This function is in charge of the node dynamic, in this case a discrete -valued opinions

model*/

167 void node_dynnamics(float U,int *matrix, double *list_states , int N, int node,void *ptr_rng_r)

{

168 gsl_rng *rng_r=(gsl_rng*)ptr_rng_r;

169

170 int number_neighbors=0;

171 int index_neighbors[N];

172

173 for (int i=0;i<N;i++){

174 if (*(matrix+node*N+i)==1){

175 index_neighbors[number_neighbors]=i;

176 number_neighbors++;

177 }

178 }

179 /*Here we compare the states of the nodes and apply the node dynamic*/

180 if (number_neighbors >0){

181 int node_2=rand_int(rng_r)%number_neighbors;

182 if(fabs((double)(*(list_states+node)-*(list_states+index_neighbors[node_2]))) <=U ){

183 *(list_states+node)=*(list_states+index_neighbors[node_2]);

184 }

185 }

186

187 }

188

189 /*This function does the time evolution of the network*/

190 void evolution(float Pc, float Pr, float U,float d, float r, int *matrix, double *list_states ,

int N,int n_evol,void *ptr_rng_r){

191 gsl_rng *rng_r=(gsl_rng*)ptr_rng_r;
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192

193 for (int t_step=0;t_step<n_evol;t_step++){

194

195 int node=rand_int(rng_r)%N;

196 /*Here we check if the choose node has neighbors for the dynamic*/

197 int n_neighbors=0;

198 for (int i=0;i<N;i++){

199 if (*(matrix+node*N+i)==1){

200 n_neighbors++;

201 }

202 }

203

204 if (n_neighbors >0){

205

206 double temp_Pr=(double)rand_int(rng_r)/gsl_rng_max(rng_r);

207 if (temp_Pr <=Pr){

208 rewire(d,r, matrix,list_states , N,node, rng_r);

209 }

210 double temp_Pc=(double)rand_int(rng_r)/gsl_rng_max(rng_r);

211 if (temp_Pc <=Pc){

212 node_dynnamics(U,matrix, list_states , N, node,rng_r);

213 }

214 }

215 }

216 }

217

218 /*this function calculates and the average degree of the network*/

219 float average_k(int *matrix,int N){

220 int sum_k=0;

221 for (int i=0;i<N;i++){

222 for (int j=0;j<N;j++){

223 if(*(matrix+i*N+j)==1){

224 sum_k++;

225 }

226 }

227 }

228 return (float)sum_k/N;

229 }

230

231

232 /*this function does all the runs with the fixed variables*/

233 void section(void *ptr){

234 struct Inputs *inputs=(struct Inputs*)ptr;

235

236 int N=(*inputs).N;

237 int time=(*inputs).time;

238 int k=(*inputs).k;

239 int G=(*inputs).G;

240 int runs=(*inputs).runs;

241 int size=(*inputs).size;

242 float d=(*inputs).d;

243 float r=(*inputs).r;

244 float U=(*inputs).U;

245 float Pr=(*inputs).Pr;

246 float Pc=(*inputs).Pc;

247 unsigned int thread_id=(*inputs).thread_id;

248 const gsl_rng_type * rng_T;

249 gsl_rng *rng_r;
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250 gsl_rng_env_setup();

251 rng_T = gsl_rng_rand48;

252 rng_r = gsl_rng_alloc(rng_T);

253 gsl_rng_set(rng_r,thread_id);

254

255 int T_steps=N*time;

256

257 /*here all the tuns are done*/

258 for (int run=0;run<runs;run++){

259

260 char info_1[20];

261 sprintf(info_1,"Pr_%d_run%d",thread_id ,run);

262 /*here we created the matrix for the network and the list for the states*/

263 int *matrix;

264 double *list_states;

265

266 /*Here we calculate the probability to created a Erdos Reyni random network as

function of p*/

267 double p=(double)k/(N-1);

268

269 matrix=(int*)calloc(N*N,sizeof(int));

270 list_states=(double*)calloc(N,sizeof(double));

271

272 /*Here we give the nodes a discrete state chose randomly from the G possible

options*/

273 for (int i=0;i<N;i++){

274 *(list_states+i)=(double)(rand_int(rng_r)%G)/G;

275 }

276

277 char name_states_initial[50]="states_i_";

278 char name_states_final[50]="states_f_";

279

280 strcat(name_states_initial ,info_1 );

281 strcat(name_states_final ,info_1 );

282

283 /*In this part we fill the adjacent matrix depending of p*/

284 for (int i=0;i<N;i++){

285 for (int j=i+1;j<N;j++){

286 double r=(double)rand_int(rng_r)/gsl_rng_max(rng_r);

287 if (r<=p){

288 *(matrix+i*N+j)=1;

289 *(matrix+j*N+i)=1;

290 }

291 else{

292 *(matrix+i*N+j)=0;

293 *(matrix+j*N+i)=0;

294 }

295 }

296 }

297 char name_links_initial[50]="links_i_MD_";

298 char name_links_final[50]="links_f_MD_";

299

300 strcat(name_links_final ,info_1);

301 strcat(name_links_initial ,info_1);

302

303 /*Here we save the network and states before the evolution*/

304 print_links(matrix, N, name_links_initial);

305 print_states(list_states ,N,name_states_initial);
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306

307 /*Here we do the time evolution of the network*/

308 evolution(Pc,Pr,U,d,r, matrix,list_states , N,T_steps,rng_r);

309

310 /*Here we save the network and states after the evolution*/

311 print_links(matrix, N, name_links_final);

312 print_states(list_states ,N,name_states_final);

313

314

315 free(matrix);

316 free(list_states);

317 }

318

319 gsl_rng_free (rng_r);

320 printf("Thread id: %d out of %d threads done\n",thread_id ,MAX_THREADS);

321

322 }

323

324 /*The main function is in charge the parallelize the code so it can be run with multiple

threads*/

325 void main(){

326

327 /*size and definition correspond to the number of data points wanted*/

328 struct Inputs inputs[MAX_THREADS];

329 int size=MAX_THREADS;

330 float definition=(float)1/size;

331

332 /*Here there are the parameter that are going to be send to each thread*/

333 /*Here, the variables that must change can be set to different values for example Pr and

Pc in this case*/

334 for (int thread=0;thread<MAX_THREADS;thread++){

335 inputs[thread].N=3200;

336 inputs[thread].time=10000;

337 inputs[thread].k=4;

338 inputs[thread].G=320;

339 inputs[thread].runs=100;

340 inputs[thread].size=size;

341 inputs[thread].d=0.35;

342 inputs[thread].r=0.65;

343 inputs[thread].U=1.0;

344 inputs[thread].thread_id=(unsigned int)thread;

345 inputs[thread].Pr=definition*thread;

346 inputs[thread].Pc=1-definition*thread;

347 }

348

349 /*Here, all the threads are created and run*/

350 pthread_t thread_ids[MAX_THREADS];

351 for (int thread=0;thread<MAX_THREADS;thread++){

352 pthread_create(&thread_ids[thread],NULL,(void*)&section ,(void*)&inputs[thread]);

353

354 }

355

356 /*Here, all the threads are joined*/

357 for (int thread=0;thread<MAX_THREADS;thread++){

358 pthread_join(thread_ids[thread],NULL);

359 }

360

361 }


	List of Figures
	Introduction
	Complex Networks
	Real-world networks
	Small-world networks
	Scale free networks

	Community structure
	Importance of communities in real social networks
	Detection of communities in networks

	Research problem
	General and Specific Objectives
	Outline of this thesis

	Theoretical Framework and Methodology
	Framework for coevolution of topology and dynamics in networks
	Characterization of community structure in networks
	Modularity
	Largest component and largest domain


	Adaptive rewiring and the emergence of community structure in networks
	How do communities arise in networks?
	Adaptive rewiring processes in networks
	Analytic mean field approach to adaptive rewiring
	Stability analysis of the fixed point solution
	Time evolution of the density of active links
	Density of active links on rewiring space

	Adaptive rewiring and emergence of communities in networks

	A coevolution model with node dynamics
	Coevolution model of discrete opinions with interaction threshold on networks
	Network fragmentation
	Limiting case u=1
	Limiting case Pr=0
	Emergence of community structure in coevolutionary networks

	Conclusions & Outlook
	Bibliography
	Glossary of Symbols and Terms
	Computer code used for the coevolution dynamics

		2021-05-31T17:12:59-0500
	RONALD ANDRES CARDENAS SABANDO


		2021-05-31T17:13:28-0500
	RONALD ANDRES CARDENAS SABANDO




