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Abstract
Historically, the inflation was introduced to solve the problems of the Bing-Bang theory, i.g. flatness, horizon and
multipole problem, however, it has another important characteristic, it generates a primordial spectrum of density
perturbations almost scale invariant and of the form of a power-law, that causes anisotropies in the cosmic microwave
background (CMB) temperature and it is the seeds for large scale structure in the universe. The anisotropies of the
CMB allow us to probe the primordial power spectrum generated in an epoch of cosmological inflation. The study of
several models of inflation has been object to research in the last two decades. According to the recent results reported
by the satellite Planck the Starobinsky model V = 3

4 M2
(
1 − e−

√
2/3φ

)2
is one of the main inflationary models that

best fits with observations. The present work has the main objective to use the slow-roll solutions with the CAMB
program to obtain the angular power spectrum for the Starobinsky inflationary model and compare our results with
those reported by the satellite Planck 2018. The recreated temperature power spectrum shows small differences in
amplitude and angular scales compared with the Plank results, this differences are directly related with some changes
in the physical process observed at early Universe epoch. One of the main results is the dependence of cosmic
observables values with the shape of the temperature power spectrum, from the Starobinsky model is obtained an age
of universe of 13.798 ± 0.007 Gyr, a matter and baryon density of Ωm = 1.315 ± 0.0015, Ωbh2 = 0.0223 ± 0.0004,
respectively. Also, the scalar spectral index shows a value of nt = 0.9653 ± 0.0004. Finally, we motivate the study
of the most intensive peaks of the angular power spectrum, in order to observe better the dependencies of cosmic
parameters with the amplitude of the peaks.

Keywords: Inflation, angular power spectrum, Starobinsky potential, cosmic parameters.
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Abstract
Históricamente, la inflación se introdujo para resolver los problemas de la teoría de Bing-Bang, tales como, el

problema de planitud, el problema de horizonte y el problema de monopolos magnéticos. Sin embargo, tiene otra
característica importante, genera un espectro primordial de perturbaciones de densidad casi invariantes de escala,
y de la forma de una ley de potencia, la cual provoca anisotropías en la temperatura de la radiación de fondo de
microondas (CMB) y es la semilla para la formación de grandes estructuras en el universo. Las anisotropías del CMB
nos permiten sondear el espectro de energía primordial generado en una época de inflación. El estudio de varios
modelos de inflación ha sido objeto de investigación en las últimas dos décadas. Según los recientes resultados
reportados por el satélite Planck, el modelo de Starobinsky V = 3

4 M2
(
1 − e−

√
2/3φ

)2
es uno de los principales

modelos inflacionarios que mejor se ajusta con las observaciones. El presente trabajo tiene como objetivo principal
utilizar las soluciones slow-roll con el programa CAMB para obtener el espectro de potencia angular para el modelo
inflacionario de Starobinsky, y comparar nuestros resultados con los reportados por el satélite Planck en 2018.
El espectro de potencia de temperatura recreado muestra pequeñas diferencias en amplitud y escalas angulares en
comparación con los resultados de Plank, estas diferencias están directamente relacionadas con algunos cambios
en los procesos físicos observados en la época del Universo temprano. Uno de los principales resultados es la
dependencia en los valores de los observables cósmicos con la forma del espectro de potencia de temperatura. Del
modelo de Starobinsky se obtiene una edad del universo de 13.798 ± 0.007 Gyr, una materia y densidad bariónica
de Ωm = 1.315 ± 0.0015, Ωbh2 = 0.0223 ± 0.0004, respectivamente. Además, el índice espectral escalar muestra
un valor de nt = 0.9653 ± 0.0004. Finalmente, motivamos el estudio de los picos más intensivos del espectro de
potencia angular, con el fin de observar mejor las dependencias de los parámetros cósmicos con la amplitud de los
picos.

Keywords: Inflación, espectro de potencia angular, potencial de Starobinsky, parámetros cósmicos.
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Chapter 1

Introduction

The origin and evolution of our Universe always has been a topic that has aroused curiosity in us, this curiosity has
functioned as the main fuel for the creation and improvement of the theories around the early Universe that we know
at present. Since, the prediction by Alpher and Herman3 in 1984 and the discover in 1965 by Penzias andWilson4 of
the Cosmic Microwave Background Radiation (CMB), has become one of the most important observational probes
of the Big-Bang theory. The CMB is a relic from the recombination epoch which occurs 370,000 years after the big
bang5. After the discovery of the CMB, the Big-Bang model of cosmology was established and the Universe has a
isotropic and homogeneous nature, i.e, the Friedmann universe.

Immediately after the discovery of the CMB, the cosmologist started to look to distortions in the isotropy in the
CMB radiation, which are referred as anisotropies. This born from the assumption that the structure in the Universe
comes from small initial fluctuations by gravitational instability6. The first evidence of the cosmic anisotropies
was a dipole which was reveal at 19697, and in the late 80s was knew that temperature fluctuations correspond
to (∆T/T ) . 10−4, discarding a purely baryonic universe and favoring a universe in which a sufficient amount
of dark matter is needed. Later, in 1989 the NASA satellite COBE8 was launched and successfully measure the
CMB spectrum and found the CMB fluctuations on the level of 10−5. This observation was the pioneer to future
experiments with similar objectives, e.g, Boomerang, ACBAR and ACT. But, in 2001 the WMAP9 and in 2009 the
Planck1 mission was launched, showing with high precision the temperature fluctuations and the slight polarization
which is generated on the last scattering surface by Thomson scattering. The temperature fluctuations are observed
and analysed in the angular power spectrum, which Bond and Efstathiou10 proposed to use the multipole component
as an observational quantity, which is widely used at present.

The temperature fluctuations are generated by individual physical processes in the expanding Universe. However,
is possible separate the fluctuations of the CMB in three parts with their corresponding physics. The first process
was proposed by Sach and Wolfe11 in 1967, which consist in a simple redshift of CMB photons due to the density
fluctuations at the last scattering surface. This effect is mainly observed at large angular scales. The second effect
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2 1.1. PROBLEM STATEMENT

is referred as acoustic oscillations. Before recombination photons, electron and protons are coupled and can be
treated as a mixed compressive fluid and the density fluctuations in this fluid are acoustic waves. Therefore, the
perturbations of the mixed fluid star to oscillate once they cross the sound horizon12. In the CMB spectrum the
acoustic oscillations are only observed within angular scales corresponding to the sound horizon. The third effect
was pointed out by Silk in 1968 and is present on small scales, consist in density fluctuations of photons that are
damped away due to diffusion. The present work follows the same distribution in order to analyse the changes in the
physical process at report a different CMB temperature power spectrum.

Some cosmic parameters and observables, i.g. Ωbh2 , Ωm, nt and ns, has a direct dependence on the CMB
temperature spectrum. Theoretically, the shape of the temperature power spectrum depends of the cosmological
model that is used to obtain it. The present work recreates the spectrum with a the Starobinsky inflationary model
into the slow-roll approximation, in order to observe how well the Starobinsky model can describe the physics of our
early Universe. The analysis presented in this work shows how small changes in the temperature power spectrum
are related with different values of cosmic parameters and observables, also this changes are related with small
differences in physical processes at inflationary epoch. The natural units (c = ~ = 1) are used in the whole work for
simplify calculations.

1.1 Problem Statement
The standard Big-Bang theory became popular after the discovery of the cosmic microwave background radiation
(CMB). However the theory do not match with the present standard model of particles by the monopole problem,
also present other difficulties (the flatness problem, the horizon problem, and others). This problems are solved by
inflation theory, in which are used different inflationary models, the most popular are based in a potential energy
density V(φ) of some scalar field φ, e.g. the chaotic model, hilltop model, natural inflation model, etc. Some of these
models are disadvantaged by recent Planck1 data, but the models with low amount of tensor perturbations, i.e. small
values of tensor-to-scalar ratio r are favored. One of the models that overcomes this constraints are the Starobinsky
inflationarymodel, however themodel has tomatchwith the present observables, like cosmic anisotropies and cosmic
parameters. For this reason, one of the main results of this thesis is the estimation of some cosmic observables, as
the tensor nt and scalar ns spectral index, the running of both terms, the matter Ωm and the baryon Ωbh2 density and
age of the Universe.

1.1.1 Recreation of the temperature power spectrum

The CMB shows an average temperature T = 2.72K at almost every frequency. However, one of the main results of
inflation theory was reveal small temperature fluctuations present in the CMB,which are a snapshot of the distribution
of matter at early Universe. The temperature power spectrum characterizes the sizes of the temperature fluctuations
as a function of the multipole moment and the angular scale. The most recent results reported by Planck1 satellite,
shows a very accurate measure of the temperature power spectrum. From this, the inflationary models can be judged
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by how well they recreate the temperature power spectrum. For this reason in the present work, in order to test the
inflationary Starobinsky model into the slow-roll approximation, the temperature power spectrum will be recreated
and compared to the Plank data reported at today.

1.2 General and Specific Objectives
The overall objective of thiswork is reproduce theCMB temperature power spectrumwith the Starobinsky inflationary
model into the slow-roll approximation using the CAMB13 code. The accurate recreation of the temperature power
spectrum with the Starobinsky model can be used to show how well the model is able describe the early Universe
and validate the robustness of the model. After the recreation of the temperature power spectrum, the analysis and
discussion around the three main regions of the spectra will be presented, in order to show how small differences
in the amplitude and position of the spectra implies changes in the physics that governs the early evolution of our
Universe. The study of the dependence of different cosmic parameters (scalar index, matter and baryon density and
age of Universe) with the shape of the temperature power spectrum should be coherent with the previews literature,
in order to "test" the results and the procedure that was followed in this work.

1.3 Outline
This work is split into four chapters, in which are given the details of the investigation performed and the physical/-
mathematical principles behind them. The first chapter presents the history and the importance around the CMB
temperature power spectrum which is the main result of this work.

The second chapter is Methodology, where is explained the theoretic context around the CMB temperature spec-
trum. From how the theory of big-bag present three main problems that inflation are able to solve, to the slow-roll
approximation, how the Starobinsky inflationary model shows as a solid candidate to describe the physics of our
early Universe and finally the emerge of the temperature anisotropies from the quantum fluctuations and how the
power spectrum is a main tool to describe the CMB anisotropies.

The third one, Results & Discussion will address the recreated CMB temperature power spectrum with the
Starobinsky inflationary model into the slow-roll approximation, Also the analysis of the respective main regions
that compose the spectrum.

And finally, in the Conclusions and Outlook chapter the results and discussion around the temperature power
spectrum obtained, will be summarized, also a quick view to future research in this topic is presented.



Chapter 2

Methodology

2.1 The cosmological model and its problems

2.1.1 The standard Big-Bang theory

The standard Big-Bang theory is based in the premise of modern cosmology, that tell us that the Universe is isotropic
and homogeneous at large scale14. This premise are encoded in the Friedman-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)
[

dr2

1 − kr2 + r2(dθ + sin2 θdφ2)
]
, (2.1)

where a(t) is the scale factor that describes the relative expansion of the Universe15; normalized a(to) = 1 at the
present moment16 . The spatial curvature is described by the constant k and can take three values, k = 1 for positive
spatial curvature universe, k = 0 for spatially flat universe and k = −1 for negative spatial curvature universe16. The
spatial variables (t, r, θ, φ) are in polar coordinates.

The properties of the Universe depends of the material within it, for this case the source is consider as a perfect
fluid with pressure p(t) and energy density ρ(t)15. The equation of state with the form p = p(ρ) relate both quantities
and the most popular cases are15

p =
ρ

3
, radiation,

p = 0, matter,

p = −ρ, cosmological constant Λ.

(2.2)

The dynamics of the evolution of the Universe are described by the Einstein equations in general relativity17.
The Einstein tensor relates the local space-time curvature with the local energy18, and is defined as

Gµν = Rµν −
1
2

gµνR = 8πGTµν − Λgµν, (2.3)

5



6 2.1. THE COSMOLOGICAL MODEL AND ITS PROBLEMS

where Rµν, R, Tµν, G, Λ are the Ricci tensor, Ricci scalar, energy momentum tensor, gravitational constant and
cosmological constant respectively. The gravitational constant G are related with the mass of Planck Mpl, the speed
of light c and the Planck’s constant ~, by the relation17 Mpl = (~c5/G)1/2. Remember, that natural units (c = ~ = 1)
are used for simplify the calculations.

For solving the Einstein equations for the FRW metric 2.1, the Ricci scalar has the form

R =
6[k + ȧ2(t) + a(t)ä(t)]

a2(t)
, (2.4)

and

gµν =


−1 0 0 0
0 a2(t)

1−kr2 0 0
0 0 a2(t)r2 0
0 0 0 a2(t)r2 sin2 θ

 . (2.5)

The energy momentum tensor for a perfect fluid is defined as

Tµν = (ρ + P)UµUν + Pgµν, (2.6)

where U is the 4-velocity vector field of the fluid19.

Equations of state

Running the sub-indices µ and ν and replacing (2.4), (2.6) and (2.5) in (2.3), give us the Friedmann equation

H2 =

( ȧ
a

)2
=

8π
3M2

pl

ρ −
k
a2 , (2.7)

the acceleration equation
ä
a

= −
4π

3M2
pl

(ρ + 3p), (2.8)

and the the fluid equation15

ρ̇ + 3H(ρ + p) = 0, (2.9)

where H is the Hubble parameter. The value of H at the present moment is known as the "Hubble constant"16,
according to the measurement of Hubble telescope20 has a value of

H0 = H(t0) =

( ȧ
a

)
t=t0

= 70.012.0
−8.0km s−1Mpc−1. (2.10)

The Friedmann equation (2.7) can be written in terms of the density parameter Ω

Ω − 1 =
k

a2H2 , (2.11)
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where
Ω =

ρ

ρc
. (2.12)

The critical density ρc is defined for a given value of the Hubble parameter16 H , as

ρc =
3H2M2

8π
, (2.13)

and from the relation (2.12) is observed that for spatially flat Universe k = 0, the critical density should be the same
that the energy density (ρ = ρp). For the same case (k = 0), the Friedman equation (2.7) takes the form

H2 =
3π

3M2
pl

ρ, (2.14)

and (2.12), comes to
Ω = 1. (2.15)

The solution for the fluid equation (2.9) has the form

ρ ∝ a−3(1+p), (2.16)

replacing the three cases of (2.17) in this solution (2.16), is obtained

ρ ∝ a−4, radiation,

ρ ∝ a−3, matter,

ρ ∝ a0, cosmological constant Λ.

(2.17)

The equations of states (2.7), (2.8) and (2.9), are the three key equations with describes how the Universe expands16.

2.1.2 Flatness problem

The flatness problem is often consider as the most impressive issue in the standard cosmology model21. As we saw
in the last section, the spatial curvature of the universe is related with the density parameter Ω by equation (2.11)16.
The caseΩ = 1 is an unstable equilibrium point, meaning that small deviations from this value would have significant
effects on the curvature of the universe15. If the early universe was flat this value should be the same or very close
to 117. The problem is that in the standard big-bag theory the a2H2 term of (2.11) decreases at time of radiation or
matter domination epoch, this indicates that Ω tends to move way from unity with the expansion of universe17.Then,
the relation between Ω and time t are

|Ω − 1| ∝ t, during radiation domination, (2.18)

and
|Ω − 1| ∝ t2/3, during dust domination.15 (2.19)

Thus, for obtain the correct spatial-geometry is required the value of:
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• |Ω − 1| = |Ω0 − 1|t/t0 at the present (t0 ≈ 13.787 Gyrs).

• |Ω − 1| ≤ 10−3 at decoupling epoch (t ≈ 1013 sec).

• |Ω − 1| ≤ 10−16 at nucleosynthesis epoch (t ≈ 1 sec).

• |Ω − 1| ≤ 10−64 at the Planck epoch (t ≈ 10−43 sec).15

There is no reason to prefer a Universe with critical density, hence |Ω−1| should not necessary be exactly zero15.
From this, at early times the value of |Ω − 1| is not fine-tuned extremely close to zero to reach the actual value
observed15.

2.1.3 Horizon problem

The horizon problem is related with the premise of the large scale homogeneity22. The photons that we observe in
the Cosmic Microwave Background (CMB) were emitted at the time of decoupling17. This process occurred in a
spherical surfaces named the "surface of last scattering"15. The current proper distance to the last scattering surface
is

dp(t0) = c
∫ t0

tls

dt
a(t)

. (2.20)

From the above equation is observed that the current proper distances to the last scattering surface is slightly smaller
than the current horizon distance, since the scattering of the CMB photons occurred a long time ago (tls � t0)16.
From this is observed that two points separated by 180° on the last scattering surface are so far from each other that
they are causally disconnected16, meaning that they not had time to share properties, e.g. temperature. The essential
problem is that at observe the CMB the photons distributed on the whole sky have nearly the same temperature
T0 ≈ 2.7255 K at the present15. Therefore, the Big Bang model is not able to explain how the temperature of opposite
directions of the sky are approximately the same15.

2.1.4 Monopole problem

The Grand Unified Theories (GUT) in particle physics refers to the theories that attempt to unify the three forces
of the Standard Model (SM), i.e. strong force, weak force and electromagnetic force15. These theories describes
a symmetry phase at high temperatures (t ≈ 1032 K) in the early stages of the Universe15. The decrease of the
temperature causes different phase transitions that break the symmetry of the early stages15, this beak of symmetry
leads to the production of "unwanted relics" as monopoles, cosmic strings, and topological defects23. If monopoles
exist is expected that behave as a matter component and are diluted slower than radiation, meaning that they would
dominate the present universe24. The main problem is that the existence of this monopoles violates the current
observations, since the scientist have not yet discovered any magnetic monopole24.
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2.2 Inflation
The most simple definition of inflation is any epoch during which the scale factor of the Universe is accelerating14,
i.e.,

ä > 0. (2.21)

The condition (2.21) makes that the comoving Hubble length 1/(aH), which is consider the most important charac-
teristic scale of the expanding Universe14, is decreasing with time,

d
dt

(
1

aH

)
< 0. (2.22)

This characteristic (2.22) is the key to solve the big bang model problems, as we going to see in this section. From the
acceleration equation (2.8) the condition for inflation can be rewritten in terms of the material to drive the expansion,
with Λ = 0 is founded,

ρ + 3p < 0. (2.23)

In standard cosmology is assumed that ρ is always positive15, thus to satisfy the condition (2.23) is necessary
a pressure p negative, which is independent of the Universe curvature. A wide range of behaviors satisfy the
inflationary condition25. The most classical is when p = −ρ, then the solution for the scale factor is

a(t) ∝ exp(Ht). (2.24)

The inflation is a phenomenon at occurs at early Universe, which ends after certain time and later the convectional
behavior of big bang theory continues25. The big bang theory is not replaced by the inflation theory, on the contrary
both theories work together to describe the early Universe.

2.2.1 Solution to the flatness problem

The flatness problem is solved with inflation, from the exponential growth at this epoch, see Eq. (2.24), then

|Ω − 1| ∝ e−2Ht, (2.25)

meaning that the differences betweenΩ an 1 decreases exponentiallywith time16. Comparing the density parameter at
the beginning of the exponential inflation (t = ti) with the density parameter at the end of inflation (t = t f = ti +N/H),
is founded

|Ω(t f ) − 1| = e−2N |Ω(ti) − 1|, (2.26)

where N is the number of e-foldings16. The above equations shows that at inflation epoch Ω is moved extremely
closed to 1, if is close enough, then at the present time Ω will maintain the value very close to 1.25 Inflation solves
this problem fairly easy, since obtaining the sufficient of inflation to achieve this objective is not difficult.
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2.2.2 Solution to the horizon problem

Prior the inflationary epoch the horizon distance dhor(t) at time t is defined by16

dhor(t) = a(t)c
∫ t

0

dt
a(t)

, (2.27)

at the beginning inflation was

dhor(t) = aic
∫ ti

0

dt
a(t/ti)1/2 = 2cti, (2.28)

and at the end of the inflation was

dhor(t f ) = aieNc
(∫ ti

0

dt
a(t/ti)1/2 +

∫ t f

ti

dt
aiexp[H(t − ti)]

)
. (2.29)

To large number of e-foldings the horizon size at the end of inflation comes to

dhor(t f ) = eNc(2ti + H−1), (2.30)

meaning that at the epoch of exponential inflation the horizon size grow exponentially. The comoving Hubble length
1/(aH) suffers a great reduction during the inflation, causing that the region which would have visible before inflation
started was much bigger than the region that is observed after inflation25. But, after inflation the comoving Hubble
length begins to grow faster. The condition to solve the horizon problem is∫ tdec

t∗

dt
a(t)
�

∫ t0

tdec

dt
a(t)

, (2.31)

ensuring that photons can travel much further before decoupling than it can afterwards25. Hence the thermal
equilibrium observed at present can be produced by the causal physics. According to Andrew R. Liddle14 the
number of e-foldings should be N ≥ 60 to achieve this solution to the horizon problem.

2.2.3 Solution to the monopole problem

According to Alan Guth26 one of founders of inflation theory the monopole problem was one of the main reasons
to develop the theory. The problem is solved from the fact that the energy density of the universe decreases very
slowly (& a−2), during the inflation. In the other hand, the energy density of massive particles decreases much
faster (∼ a−3).17 If the monopoles was created before or during inflation, then the density of monopoles decrease
exponentially, meaning that the probability of finding a single monopole at present is extremely low16.

2.2.4 Scalar fields in cosmology

Inflation is able to solve successfully the pro blems of the big bang model, but to obtain a inflationary epoch is
necessary a peculiar material with negative pressure (p < 0). Such material is a scalar field φ(~r, t) that describes
zero spin particles and usually is called inflaton14. The premise that the Universe is isotropic and homogeneous at
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large scales allows to neglect the dependencies of ~r of the scalar field to analyze just the temporal evolution of the
field φ(t). Generally the scalar field have an associated potential energy V(φ)16, which is the responsible to drive the
exponential expansion of the universe17.

The inflationary field minimally coupled to gravity has the action

S =

∫
d4x
√
−gL =

∫
d4x
√
−g

[
1
2
∂µφ∂

µφ − V(φ)
]
, (2.32)

where L is the Lagrangian density associated. In order to obtain the expressions to energy density and pressure, the
corresponding energy-momentum tensor is defined by

Tµν = ∂µφ∂νφ − gµνL. (2.33)

Solving and running the indices of (2.33), the energy density and pressure of a homogeneous scalar field (∇φ = 0)
in the FRW metric are defined by

ρφ =
1
2
φ̇2 + V(φ), (2.34)

pφ =
1
2
φ̇2 − V(φ). (2.35)

Note that the scalar field cannot have a equation of state that relates ρ and p because different values of energy
density can be associated with different values of pressure, since the energy density is distributed in different ways
between the kinetic and potential energy14.

Equations of motion

The equations of motion for a spatially flat universe (k = 0) are obtained replacing Eqns. (2.34) and (2.35) into the
Friedmann equation (2.7) and fluid equation (2.9) giving

H2 =
1

3Mpl

[
V(φ) +

1
2
φ̇2

]
, (2.36)

and
φ̈ + 3Hφ̇ = −

dV
dφ

. (2.37)

During the inflation the energy density and pressure satisfied the condition for inflation14, providing that φ̇2 <

V(φ). Therefore a flat potential is required to reach the sufficient amount of inflation17. The curvature term in the
Friedmann equation can be neglected once the inflation stars.

2.3 Slow-roll approximation
The standard strategy to solve inflation with an scalar field is the slow-roll approximation14. The conditions that
this strategy imposes are φ̇2 � V(φ) and φ̈ � V ′(φ) or equivalently φ̈ � 3Hφ̇. From this conditions is observed that
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inflation acquires a big dependence on the potential energy of the scalar field. The name of slow-roll becomes from
the fact that the conditions make the scalar field slowly rolling down its potential15. The approximation reduce the
equations (2.37) and (2.36) to

H2 '
V(φ)
3Mpl

, (2.38)

and
3Hφ̇ ' −V ′(φ). (2.39)

The slow-roll approximation requires the the definition of two parameters,

εV = M2
(

V ′

V

)2

, (2.40)

and
ηV = M2

(
V ′′

V

)
, (2.41)

where εV and ηV are called the slow-roll parameters27. The first measures the slope of the potential and the second
the curvature25. In order to the slow-roll approximation will be valid the the slow-roll parameters must accomplish
two conditions which are

εV � 1 and |ηV | � 1. (2.42)

As we say this conditions are necessary for the slow-roll approximation, but they are not sufficient conditions14,
since they only restrict the form of the potential and the scalar field can has a large velocity25.

The condition for inflation can be directly related with the condition of the slow-roll , to observe this the condition
of inflation can be rewritten as

ä
a

= Ḣ + H2 > 0. (2.43)

Notice that the condition is easily satisfied if Ḣ is positive. Otherwise is required

−
Ḣ
H2 < 1. (2.44)

The above equation can be expressed with term of the slow-roll equation (2.40), obtaining

−
Ḣ
H2 '

M2

2

(
V ′

V

)
= εV , (2.45)

meaning that the inflation is guaranteed if the slow-roll condition is reached (εV � 1)14. The inflation models
should reach this conditions, but also should be able to give a way of end the inflation. To achieve this the slow-roll
parameters are usefully , since when εV and ηV are equal to the unity the inflation finishes17.
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2.3.1 Amount of inflation

The amount of inflation is defined by the number of times that the scale factor a power expands during the inflation,
typically this is called the number of e-foldings N, defined as

N(t) = ln
a(tend)

a(t)
, (2.46)

where tend is the time at the end of the inflation. This can be expressed in terms of the scalar field potential:

N =

∫ tend

t
Hdt '

1
Mpl

∫ φ

φend

V
V ′

dφ, (2.47)

from this expression the amount of inflation can be calculatedwithout solving the equations ofmotion for expansion14.
From the CMB the number N that favorites inflation and solve the horizon and flatness problem should be N ≥ 6028.

2.4 Starobinsky inflationary model
The motivation to use the Starobinsky model of cosmic inflation born from the recent results from the Planck29

mission andWMAP30, where inflationary potentials with small values of r < 0.11 (tensor-to-scalar ratio) are favored
including the Starobinsky potential31. This alternative scenario of inflation was develop with higher-derivative
R2 quantum gravity corrections32, meaning that the Ricci scalar R is the responsible to drive inflation from the
beginning. The R + R2 model, also called Starobinsky model is defined by the action

S =
M2

2

∫
d4x
√
−g

(
R +

1
6m2 R2

)
, (2.48)

where m is the inflation mass and is the only parameter. Later, the expression (2.48) is rewritten in the "linear"
representation33, obtaining

S =

∫
d4x
√
−g

(
M2

2
R +

1
m

Rψ − 3ψ2
)
, (2.49)

where is observed that integrating out ψ, results in reverting to original theory. By means of the conformal
transformation given by34

gµν = f ′(R)gµν =

(
1 +

2ψ
mM2

)−1

gµν, (2.50)

the equivalent scalar field version of the Starobinsky model is obtained,

S =

∫
d4x
√
−g

[
M2

2
R −

1
2
∂µφ∂

µφ −
3
4

M4
plm

2
(
1 − e−

√
2/3φ/Mpl

)2
]
. (2.51)

From the above expression is observed that in the right part of the expression the Starobinsky potential appears for
first time, which is rewritten as

V(φ) =
3
4

M2
(
1 − e−

√
2/3φ

)2
, (2.52)
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where M = 1.13x10−5Mpl
35 and Mpl = 1, for the purposes of this work.

ϕ

V(ϕ) 

Reheating Slow-roll inflation

Figure 2.1: Starobinsky potential V(φ) = 3
4 M2

(
1 − e−

√
2/3φ

)2
for inflation, the red dashed delimit the regions of

reheating and slow roll inflation. (Adapted from: R. Casadio)36.

From Fig 2.1 is observed that the scalar potential is non-negative and stable and has a minimum at φ = 0
corresponding to the Minkowski vacuum37. The scalar field potential V(φ) increases exponentially for φ < 0, and
reach a constant value 3

4 M2 for φ → ∞ resulting in a plateau of positive height that results in the slow-roll of the
inflation37.

2.4.1 Equations of motion with Starobinsky model

The scalar potential of the energy density (2.34) and pressure equation (2.35) can be replaced by the Starobinsky
potential, obtaining

ρφ =
1
2
φ̇2 +

3
4

M2
(
1 − e−

√
2/3φ

)2
and pφ =

1
2
φ̇2 −

3
4

M2
(
1 − e−

√
2/3φ

)2
. (2.53)
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The Friedmann equation (2.36) and the fluid equation (2.37) with the Starobinsky potential are expressed as

H2 =
1

3Mpl

[
3
4

M2
(
1 − e−

√
2/3φ

)2
+

1
2
φ̇2

]
, (2.54)

and

φ̈ + 3Hφ̇ = −

√
3
2

M2e−
√

2/3φ
(
1 − e−

√
2/3φ

)
. (2.55)

Remember that the slow-roll approximation is used to describe the inflation, meaning that the above equations are
reduced to

H2 '
M2

√
3

(
1 − e−

√
2/3φ

)
, (2.56)

and

3Hφ̇ ' −2

√
2
3

M2
(
1 − e−

√
2/3φ

)
. (2.57)

Notice that above expressions are dependent of the scalar field, its first derivative and the scale factor. The scalar
field solution for the Friedmann equation is38

φsr(t) '

√
3
2

ln
[
1
9

(
e−
√

2/3φini − 4
√

3M2t
)]
, (2.58)

and the solution to the scale factor is defined by

asr(t) ' Exp
[

M2t
√

3
−

3
4

ln
(
e−
√

2/3φini
)

+
3
4

ln
(
e−
√

2/3φini −
4M2t

3
√

3

)]
. (2.59)

In Chapter 3 the scalar field solution are presented in term of e-folding number N, for this the solution is obtained
from the relation (2.47), in order to express the tensor and scalar spectra indices in terms of N.

2.5 The CMB angular power spectrum

2.5.1 Primordial cosmic fluctuations

Inflation becomes a popular theory not only for solving the problems of the standard Big-Bang model, also provide a
explanation for the production of the first density perturbations which are consider as the "seeds"39 for the large scale
structure and the anisotropies that are observed in the CMB at present. These fluctuations arises from the quantum
fluctuations in the inflaton field about the vacuum fluctuation14, driving the fluctuations to scales much larger than
the Hubble horizon15. Then, the amplitude of the perturbations can not be modified and is say that they are frozen39.

The inflationary field produce two types of fluctuations, the scalar or curvature perturbations that are related with
the matter in the Universe and are responsible of the large scale structure observed today, and the tensor perturbations
that are associated with the generation of primordial gravitational waves15. Despite, the tensor perturbations have
no effect on the structure formation, these are important in the CMB anisotropies that are observed today40.
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2.5.2 Temperature anisotropies

The Cosmic Microwave Background (CMB) shows an average temperature (thermal equilibrium) T = 2.72K over
a large range of frequencies41. However, exist small temperature anisotropies at the O(10−5) which come from the
primordial perturbations42. This small deviations in the temperature, are defined by a dimensionless quantity43

Θ(n̂) =
T (n̂) − 〈T 〉
〈T 〉

, (2.60)

where T is the temperature and n̂ is the direction in the sky in comoving polar coordinates n̂ = (θ, φ).

The temperature fluctuations are projected in a 2D spherical surface, for this reason usually the temperature
field is expanded using spherical harmonics. The spherical harmonics form a complete orthonormal set on the unit
sphere43 and are defined as

Ylm =

√
2` + 1(` − m)!

4π(` + m)!
Pm
` (cosθ)eimφ, (2.61)

where Pm
` are the Legendre polynomials, the indices ` = 0, 1, ...,∞ and−` ≤ m ≤ `. Formally ` is called themultipole

moment and are related with a given angular scale in the sky α by α = π/` (in degrees). Later the temperature
fluctuations field is expanded using the functions

Θ(n̂) =

`=∞∑
`=0

∑̀
m=−`

almYlm(n̂), (2.62)

where

alm =

∫ π

θ=−π

∫ 2π

φ=0
Θ(n̂)Y∗lm(n̂)dΩ. (2.63)

From this, the power spectrum of the fluctuations CT
` can be defined as the variance of the harmonic coefficients

〈alma∗l′m′〉 = δ``′δmm′CT
` , (2.64)

where the delta functions δ``′ and δmm′ arises from the isotropy of Universe43. The number of independent m modes
are limited to (2` + 1) of these for each multipole. The power spectrum can be rewritten as

CT
l =

1
2` + 1

∑̀
m=−`

〈|alm|
2〉. (2.65)

From the above expression is notable that an error in the estimation of any givenCT
` of ∆CT

` =
√

2/(2` + 1), meaning
that our estimations in the average value is dependent of how many points we have on the sample. This is called the
cosmic variance43. From the inflation theory, the temperature fluctuations are Gaussian with mean zero and variance
given by CT

` , meaning that the power spectrum characterize the statistics of the temperature fluctuations field43.

Usually in the temperature power spectrum CT
` is observed that the multipole moment begins in ` = 2 and goes

to `max. The reason to exclude the first two multipole moments (` = 0 and ` = 1) is that the first (` = 0) is simply the
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average temperature over the whole sky43 and by the definition (2.62) it should average to zero. The second dipole
term (` = 1) is affected by the our own motion across space43, since the blueshift and redshift effect of the coming
photons creates an anisotropy at this scale which "dominates over the intrinsic cosmological dipole signal"43. High
values of multipole moments ` are related with the resolution of the data, as is observed in Figure 2.2

ILC l = 2

l = 3 l = 4

l = 5 l = 6

l = 7 l = 8

Figure 2.2: Maps of power spectrum modes ` = 2 to ` = 8 computed from full-sky fits to the ILC map, shown at
top left. (Credit: NASA / WMAP Science Team)44.

2.5.3 The power spectrum in terms of tensor and scalar spectral index

The power spectrum is a valuable tool to characterize the properties of the fluctuations of the inflation field. The
primordial spectra of scalar and tensor perturbations are expanded around a pivot scale45 k that is usually represented
by k∗, and are defined by

PR(k) = As

(
k
k∗

)ns−1+ 1
2 dns/d ln k ln(k/k∗)+ 1

6 d2ns/d ln k2(ln(k/k∗))2+...

, (2.66)
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Pt(k) = At

(
k
k∗

)nt+
1
2 dnt/d ln k ln(k/k∗)+...

, (2.67)

where As, At is the scalar, tensor amplitude respectively and ns, nt, dns/d ln k, dnt/d ln k, and d2ns/d ln k2 are
the scalar, tensor spectral index, the running of the scalar, spectral index, and the running of the running of the
scalar spectral index, respectively. With the primordial spectra of the scalar and tensor perturbations defined, the
tensor-to-scalar ratio is given by

r =
Pt(k∗)
PR(k∗)

. (2.68)

In the slow-roll regime the scalar and tensor power spectra for a single field model is defined by46

PR(k) '
2

3πM6
pl

V3

V ′2
, (2.69)

and
Pt(k) '

16V
3πM4

pl

, (2.70)

in which is considered the power spectra up to the lowest powers of the slow roll parameters46. Later, using the
relation

d
d ln k

' −M2
pl

V ′

V
d

dφ
, (2.71)

obtained from the power spectra expansion, is possible to compute the scalar and tensor spectral indices and their
corresponding running terms in terms of the slow-roll parameters εV and ηV , obtaining:

nt(k) ' −2εV , (2.72)

ns(k) ' 1 − 6εV + 2ηV , (2.73)
dnt(k)
dn ln k

' 4ηVεV − 8ε2
V , (2.74)

dns(k)
dn ln k

' 16ηVεV − 24ε2
V − 2ξ2

V , (2.75)

d2ns(k)
dn ln k2 ' 192ε3

V − 192ε2
VηV + 32εVη

2
V + 24εVξ

2
V − 2ηVξ

2
V − 2$3

V , (2.76)

where

ξ2
V =

M4V ′(φ)V ′′′(φ)
V2(φ)

, and $3
V =

M6V ′(φ)2V(φ)′′′′

V(φ)3 . (2.77)

The tensor-scalar ratio is defined in terms of slow-roll parameters, by

r =
Pt(k∗)
PR(k∗)

' 16εV ' −8nt. (2.78)



Chapter 3

Results & Discussion

The CMB temperature (TT) power spectrum CT
` shows the temperature fluctuations in the cosmic microwave

background at different angular scales in the sky47. The CMB temperature power spectrum can be divided and
analyzed in three parts, each part dominated by a different physical process of the early Universe. Those regions
correspond to: (a) Angular scales larger than the causal horizon size at decoupling (` < 90). This part is called the
“Sachs-Wolfe plateu”11.(b) The acoustic peak region with multipole moment between 90 and 900 (90 < ` < 900)
and (c) The Silk damping region with multipole moment bigger than 90048 (` > 900).
In this chapter is presented the CMB temperature (TT) power spectrum obtained with a Starobinsky inflationary
potential V = 3

4 M2
(
1 − e−

√
2/3φ

)2
in a slow-roll approximation, the spectrum is compared with the recent data

reported by the Planck’s satellite. First, the entire TT power spectrum is presented and analyzed. Subsequently, each
of the three part named above is presented and analyzed individually. Finally, how the scalar and tensor spectral
indices and their corresponding running terms with the Starobinsky potential in the slow-roll approximation were
obtained and used in the CAMB13 code to obtain the CMB temperature power spectrum.

3.1 Angular power spectrum with Starobinsky potential into a slow-roll
approximation

The cosmicmicrowave background (CMB) radiation plays a important role in cosmology, since give us a clear picture
of the early Universe. Later, the discovery of temperature anisotropies of the CMB by the Cosmic Background
Explorer (COBE) satellite49,help to construct and improve models that describe the evolution of the Universe. These
anisotropies can be defined as a point to point variations of temperature across the sky on the CMB1 and are at 10−5

level42. The angular TT power spectrum CT
` help us to studying those anisotropies at different angular scales.

As we saw in the last section Chapter (2), the definition of the power spectrum becomes from the spherical harmonic
expansion:

Θ(n̂) =
∑
`m

Θ`mY`m(n̂), (3.1)

19
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where the index ` corresponds to anisotropies at scale 180/` 42. The importance of the TT power spectrum is that
help to understand and describe the physical processes in the early Universe, also is used to improve the estimation
of different cosmic parameters50.

— — — ————————————————

—

—

—

—
—

—

—

—
—

—
—

—

——

—

——

—

—
——
——
—
——————
——————————————

— — — ————————————————

—

—

—

—
—

—

—

—
—

—
—

—

——

—

——

—

—

——
——
—
—
——
———
—
—————————————

Planck

Starobinsky

5 10 50 100 500 1000
0

1000

2000

3000

4000

5000

6000
90° 18° 1° 0.2° 0.1°

Multipole moment [ ℓ ]

T
em
pe
ra
tu
re
flu
ct
ua
tio
ns

[
μ
k2
]

Angular Scale

Figure 3.1: In dashed gray line the CMB temperature power spectrum reported from Planck satellite47, in black solid
line the CMB temperature power spectrum obtained with Starobinsky potential in a slow-roll approximation,with
their respective uncertainties (red) increased by a factor of 1000. The multipole moment (`) and angular scale in
logarithmic scale, the temperature fluctuations in micro kelvins (µk2).

The interest in the CMB angular power spectrum increases in the last century, many mission and projects studied
the CMB anisotropies, but three missions are the most relevant. First, the COBE satellite launched in 1989, later
his successor the Wilkinson Microwave Anisotropy Probe (WMAP) satellite launched in 200151. Later in 2009,
the Planck satellite launched by ESA1 recollected the data from the CMB anisotropies, giving in 2013 an accuracy
angular power spectrum that agrees with the actual ΛCDM model1.
We compare our TT power spectrum obtained from our model (Starobinsky model) with the Planck satellite data,
since the data reported by Planck satellite is more accurate and recent than the COBE and WMAP data. The com-
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parison between both TT power spectrum are presented in Figure 3.1. We can notice that the TT power spectrum
that we obtain compared with the Planck satellite TT power spectrum looks similar in all the regions. But, the power
spectrum that we obtained shows lower values almost in the whole range. The bigger differences are presented in the
acoustic peak region (90 < ` < 900), since the Starobinsky model shows smaller temperature fluctuations, resulting
in a smaller peaks than the Planck satellite data.

As we saw the TT power spectrum shows how the temperature anisotropies or "fluctuations" are distributed
across the sky. The Starobinsky model with an slow-roll approximation give us a TT power spectrum that shows
lower temperature anisotropies at almost every multipole moment (` ≥ 7), this behavior are related with the values
of cosmic parameters, as we show in the next sections.

3.1.1 Relative error and percentage of relative error

In general a good cosmological model can be judged by how well it can reproduce the CMB power spectrum
observed1.
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Figure 3.2: Relative error of TT power spectrum obtained from Starobinsky model with slow-roll approximation.
The values of Planck satellite are tacked as the real values.
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As is showed in Figure 3.1 the Starobinsky model reproduce a "good" CMB power spectrum, since the values
of the temperature fluctuations are very related with the values that we observe from the Planck satellite, this is
confirmed in Figure 3.2 and Figure 3.3, where is showed the relative error and the the relative error in percentage
respectively, between both spectrum.
The relative error oscillates between 0 and 0.15 in the whole spectrum Figure 3.2 and the percentage of relative
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Figure 3.3: Percentage of relative error of TT power spectrum obtained from Starobinsky model with slow-roll
approximation. The values of Planck satellite are tacked as the real values.

error show values lower than 25% Figure 3.3 , reaffirming that the Starobinsky model reproduce an accurate TT
power spectrum and the model is capable to describe the evolution of our Universe. The Sachs-Wolfe Plateu region
and Acoustic Peak region shows slower oscillations of relative error than the Silk Damping region. Therefore, the
biggest values of relative error observed are in the Silk Damping region (` > 900), more precisely at the end of the
TT power spectrum (` > 1500), meaning that at high multipole moment the uncertainty of our model increases.
As we say, in the Acoustic Peak region the difference in the temperature fluctuations are bigger between the Starobin-
sky model spectrum and the Planck satellite spectrum, but the small values of relative error and percentage of
relative error (< 12%) indicates that this differences are not big enough to reject the results with our model in that
region. The qualitatively and quantitatively analysis shows that the Starobinsky inflation model describes very well
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the temperature fluctuations that are presented in the early Universe.

3.2 “Sachs-Wolfe plateu” region (` < 90)
The “Sachs-Wolfe plateu” region Figure 3.4 correspond to large angular scales (θ > 2). In this TT spectrum region the
primordial temperature fluctuations are presented48.The temperature power spectrum shape in this region is mainly
dominated by the Sachs-Wolfe effect and the early integrated Sachs-Wolfe effect52. The Sachs-Wolfe effect refers to
the spatial fluctuations in the gravitational potential at the time of decoupling that caused a shift in the frequency
of photons, varying their temperature52.The early integrated Sachs-Wolfe effect is responsible of the evolution of
gravitational potentials, which changed the energy of photons between recombination and present52.

— — — — — — —————————————

—

— — — — — — —————————————

—

Planck

Starobinsky

1 2 5 10 20 50
0

1000

2000

3000

4000

5000

6000
90° 18°

Multipole moment [ ℓ ]

T
em
pe
ra
tu
re
flu
ct
ua
tio
ns

[
μ
k2
]

Angular Scale

Figure 3.4: "Sachs-Wolfe plateu" region obtained from Starobinsky potential with slow-roll approximation in black
solid line with uncertainties increment by a factor of 1000."Sachs-Wolfe plateu" region reported by Planck satellite
in gray dashed line.
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The TT power spectrum reproduced by the Starobinsky model are qualitatively the same at large scales (θ ≥ 35)
as the TT power spectrum observed by the Planck satellite. In the other hand at small angular scales (θ < 35) the TT
power spectrum that we reproduced begins to show lower temperature fluctuations. At analysing the entire region we
observe in Figure 3.2 and Figure 3.3 the smaller values of relative error (< 7) meaning that the Starobinsky model
describes with high accuracy the primordial fluctuations observed in the CMB.

The TT power spectrum reproduced in this region by the Starobinskymodel in a slow-roll approximation describes
a inflationary epoch. The Planck satellite provides strong support for the inflationary models1, meaning that our
model is good candidate to describe the evolution of early Universe. The behavior of this region evolved first linearly
and then non-linearly, this may indicate that our Universe must have started as a very homogeneous substance.

3.3 “Acoustic Peak” region (90 < ` < 900)
The "Acoustic Peak" region presented in Figure 3.5 is of high interest since the first and the most higher peak are
presented in this region, also the peaks and troughs are directly related with the values of cosmic parameters53.The
"Acoustic Peak" region represent the temperature fluctuations that interact with the gravitational potential produced
by dark matter48. The name of this region comes from the presence of "acoustic oscillations" that are produced by
the high densities of dark matter that attracted photons and baryons to a gravitational potential well and compressed
them, until the pressure of the the fluid composed by photons and baryons was highly enough to counteract gravity
and drive the fluctuations apart; then the gravity could again compress the fluid and enhance the high densities52.
This region are composed by three peaks and two troughs. their position and amplitude that Starobinsky model and
Planck satellite reports are presented in Table 3.1. The first peak in the TT power spectrum is attributed to the first
mode of oscillating sound waves in the coupled photon-baryon fluid, reaching the maximum temperature and density
as the Universe recombines1.The second peak are related with a "rarefaction" phase of an acoustic wave, meaning
that the acoustic wave can compress and rarify at the same conformal time that it takes the plasma to compress over
the acoustic horizon40. The third peak appears from the second harmonic of the first peak48.

The position (multipole moment `) and amplitude (temperature fluctuations µk2) are directly related, with: the
age of the Universe, the mass density Ωm, the baryon density Ωbh2, and the scalar index ns

48.The position of the
first peak is directly correlated with the age of the Universe53. The Starobinsky model reproduces the first peak at
221` and Planck satellite report the first peak at 220`, meaning that the age of the universe that Starobinsky model
describe should be different. The age of the universe that report Planck satellite in 2018 results is 13.797 ± 0.023
Gyr1 and our model give us an age of 13.798 ± 0.007 Gyr, as is showed in Table 3.2, confirming our assumption.
According to Lyman A.Page of Princeton university and collaborator of the WMAP mission: "increasing Ωm de-
creases the first peak height"48, as is observed in Figure 3.5 and Table 3.1 the Starobinsky model give us a lower
value of amplitude in the first peak. The amplitude of the second peak depends of the same parameters (Ωm, Ωbh2,
ns) as the first peak48, meaning that higher values of Ωm affects the height of the second peak. Similar behavior is
presented by the baryon density, since at increasing the baryon density Ωbh2 decreases the amplitude of the second
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Figure 3.5: Comparison between the Acoustic Peak region obtained from Starobinsky model and the Acoustic Peak
region reported by Plank satellite. The Starobinsky model data in black solid line, with uncertainties increases by a
factor of 1000. Planck satellite data in gray dashed line.

and third peak in this region48. From this, we can assume that our model reports higher values of mass density Ωm

and baryon density Ωbh2. This assumption is confirmed, since our model give as a value of Ωm ≈ 0.3158 ± 0.001
and Ωbh2 ≈ 0.02238 ± 0.00044 Table 3.2 ,while the Planck results reports a value of Ωm ≈ 0.3153 ± 0.007 and
Ωbh2 ≈ 0.02237± 0.000151. Lyman A.Page explains that at increasing the baryon density, the inertia in the photon-
baryion fluid increases, resulting in lower amplitudes in the second and third peak of the "Acoustic region"48.In the
other hand, the increase of mass density decrease the amplitude of the first peak due to the additional mass loading
of the baryon-photon fluid48.

The dependence of ns in the amplitude of the peaks comes from the overall slope of the CMB power spectrum,
meaning that increasing ns increases the height of the second peak relative to the first peak48. The value of ns

Table 3.2 and the differences in the amplitude of the first and second peak that we reproduce with the Starobinsky
model Table 3.1 agrees with this statement.
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Extremum Multipole [`] Amplitude [µk2]
Starobinsky model
Peak 1 221 5343.62±0.067
Trough 1 411 1590.24±0.076
Peak 2 537 2428.63±0.063
Trough 2 674 1665.86±0.076
Peak 3 814 2412.49±0.050
Planck Satellite
Peak 1 220 5730.14±39
Trough 1 411 1722.75±20
Peak 2 537 2593.81±23
Trough 2 674 1804.44±14
Peak 3 814 2542.08±17

Table 3.1: Peaks of the CMB TT power spectra in the "Acoustic Peak" region recreated by the Starobinsky model
and reported by Planck satellite1.

To summarize this section, the TT power spectrum that we reproduce with the Starobinsky model in a slow-roll
approximation shows that lower values in the amplitude of the peaks are correlated with different values of some
cosmic parameters (Age, Ωm, Ωbh2 and nt) and small changes in the physical process that dominates this region. The
values of: age of Universe, matter density Ωm ,baryon density Ωbh2 and scalar index nt, obtained from Starobinsky
model are presented in Table 3.2. The different value in the age of the Universe (13.798 ± 0.007) that we obtain is
attributed from the different location (` = 221) of the first peak in the TT power spectrum. The amplitude of the
first peak in the TT power spectrum that we reproduce shows a smaller value than the amplitude of the first peak
that Planck satellite reports, obtaining higher values of matter density, meaning that additional mass was loaded
in the photon-baryon fluid at recombination. Also, the smaller amplitude shows a smaller temperature limit at
recombination. The smaller amplitudes of the second and third peak that our model shows are attributed to the
increment of inertia in the photon-baryon fluid due to the increment in the baryon density. Finally, the higher value
of scalar index ns influence in the amplitude of the three peaks present in this region, since ns comes from the overall
slope of the CMB power spectrum.

3.4 “Silk Damping" region (` > 900)
This region is the result of approach the epoch of decoupling, when the diffusion of photons in the primordial
plasma occurs54. This effect causes that the anisotropies are exponential damped, making the universe itself more
uniform55 . The shape of the damping tail of the TT power spectrum is sensitive to changes in baryon density Ωbh2,
increasing Ωbh2 makes that the damping tail shifts to smaller angular scales56. The damping tail obtained from our
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Cosmic Paramenter Symbol Starobinsky Planck
Age of Universe (Gyr) Age 13.798 ± 0.007 13.797 ± 0.023
Matter density Ωm 0.3158 ± 0.0015 0.3153 ± 0.0073
Baryon density Ωbh2 0.02238 ± 0.0004 0.02237 ± 0.0001
Scalar index ns 0.9653 ± 0.0004 0.9649 ± 0.0042

Table 3.2: Cosmic parameters obtained from the Starobinsky model compared with the cosmic parameters reported
by Planck1.

model shows a small shift in at smaller angular scales (` > 1500), see Figure 3.6, also the higher value of Ωbh2, see
Table 3.2, showing that our model agrees with theory. The shift on the damping tail at increasing Ωbh2 is attributed
to a photon-baryon fluid more tightly coupled at recombination making the mean free path of photons shorter56.
Even though this region shows qualitatively almost a identical TT power spectrum between our model and the data
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Figure 3.6: Silk Damping region reproduced by the Starobinsky potential with slow-roll approximation black solid
line, uncertainties in red and increment by a factor of 1000. Silk Damping region reported by the Planck satellite in
gray dashed line.
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observed Figure 3.6, the bigger relative error Figure 3.2 of the entire TT power spectrum is presented in this region.
From this we can deduce that not only our recreated Silk Damping region has a considerable uncertainty (> 10), also
this region is observed with high accuracy from Plank satellite.

3.5 Methodology
In order to obtain the results presented in Chapter 3, the scalar and tensor spectral indices, their respective running
values and the tensor-to-scalar ratio was computed to subsequently use the CAMB code. First, to get scalar and
spectral indices with the Starobinsky potential V = 3

4 M2
(
1 − e−

√
2/3φ

)2
in a slow-roll approximation, the inflation

field φ in terms of e-folding number N should be found. For a single field model, N is defined as

N(φ) =

∫ te

t
H(t)dt = M−2

pl

∫ φ

φe

V
V ′

dφ, (3.2)

where te and φe denotes the end of inflation. At solving the integral equation the approximated inflation field obtained
from the Starobinsky potential is defined as

φ(N) '

√
3
2

ln
4N
3
. (3.3)

As we saw in the Chapter 2 the slow-roll parameters are defined as follows46

εV =
M2

pl

2

(
V ′

V

)2

and ηV = M2
(

V ′′

V

)
. (3.4)

Replacing (3.4) in the scalar and tensor spectral indices and their corresponding running terms, i.e., (2.72), (2.73),
(2.74), (2.75) and (2.76), we get the scalar and tensor spectral indices and their corresponding running terms in terms
of the Starobinsky potential and their derivatives. The next step is replacing the inflation field in terms of N (3.3) in
the Starobinsky potential and its derivatives, obtaining the following expressions for the slow-roll parameters:

εV =
3

4
(
1 − 3

4N

)2
N2

, (3.5)

ηV = −
8(−3 + 2N)
(3 − 4N)2 , (3.6)

also,
ξ2

V '
64(−3 + N)
(−3 + 4N)3 and $3

V ' −
256(−6 + N)

(3 − 4N)4 . (3.7)
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Paramenter Symbol Starobinsky Planck
Tensor spectral index nt −0.00042 ± 0.906 −0.0045 ± 0.0067
Scalar spectral index ns 0.9653 ± 0.0004 0.9649 ± 0.0042
Running of tensor spectral index dnt

dn ln k −0.000014 ± 0.012 -
Running of scalar spectral index dns

dn ln k −0.00060 ± 0.53 −0.0013 ± 0.012
Running of running of scalar spectral index d2ns

dn ln k2 −0.00002 ± 0.99 0.022 ± 0.012
Tensor-to-scalar ratio r <0.005 <0.11

Table 3.3: Values of scalar and tensor spectral indices, their corresponding running indices and tensor-to-scalar ratio,
obtained from the Starobinsky model in a slow-roll approximation and reported by Planck satellite1 2.

The scalar and tensor spectral indices and their respective running expressions computed in terms of N, are:

nt ' −
3

2
(
1 − 3

4N

)2
N2

, (3.8)

ns '
(−15 + 4N)(1 + 4N)

(3 − 4N)2 , (3.9)

dnt(k)
dn ln k

' −
768N

(3 − 4N)4 , (3.10)

dns(k)
dn ln k

' −
128N(9 + 4N)

(3 − 4N)4 , (3.11)

d2ns(k)
dn ln k2 ' −

512N(27 + 4N(33 + 8N))
(3 + 4N)6 , (3.12)

where the Plank mass has a value of 1 (M = 1). The tensor to-scalar ratio r in terms of N is giving by

r '
12(

1 − 3
4N

)2
N2

. (3.13)

The e-folding number that we use was 60 (N = 60), since is the value that favors the inflation epoch in the early
Universe. The values that we obtain for the scalar and tensor spectral indices, their corresponding running terms and
the tensor-to-scalar ratio are obtained Table 3.3 .

Finally, the values presented in Table 3.3 are placed in the CAMB code, specifically in the params.ini file. From
lines 84 to 88 of params.ini file were modified adding the values that we obtained.

# I n i t i a l power spec t rum , amp l i t ude , s p e c t r a l i n d e x and runn ing . P i v o t k i n
Mpc^{ −1}.
i n i t i a l _ p owe r _num = 1
p i v o t _ s c a l a r = 0 . 05
p i v o t _ t e n s o r = 0 .05
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s c a l a r _amp ( 1 ) = 2 . 1 e−9
s c a l a r _ s p e c t r a l _ i n d e x ( 1 ) = 0 .96539
s c a l a r _ n r u n ( 1 ) = −0.000606132
s c a l a r _ n r u n r u n ( 1 ) = −0.0000213479
t e n s o r _ s p e c t r a l _ i n d e x ( 1 ) = −0.000427282
t e n s o r _ n r u n ( 1 ) = −0.0000146056

After run the code the TT power spectrum data was obtained in a test_scalCls.DAT file and was plotted.



Chapter 4

Conclusions & Outlook

In this work, we reproduce the CMB temperature power spectrum with the Starobinsky inflationary model into the
slow-roll approximation Figure 3.1. The TT power spectrum was divided in three parts: (a) “Sachs-Wolfe plateu”
region (` < 90), (b) the acoustic peak region (90 < ` < 900) and (c) The Silk damping region (` > 900). Each part
was described and interpreted independently.

From the accurate reproduction of the TT power spectrum and the relative small value of tensor-to-scalar ratio
(r < 0.005) is observed that the Starobinsky model into the slow-roll approximation is able to describe the early
universe and its evolution. As we saw in Chapter 3, the differences between the amplitude values obtained from
our model and the values that Planck satellite reports, affects directly to the cosmic parameters: age of universe,
mass density Ωm, baryon density Ωbh2, spectral index ns and tensor-to-scalar ratio r. The differences in the cosmic
parameters values are related with small changes in the physics that the TT power spectrum describes.

The “Sachs-Wolfe plateu” region shows the lower differences between the TT power spectrum that we obtained
and that Planck reports, meaning that the Starobinsky model describes with high accuracy the primordial fluctuations
in the CMB. Also, the Starobinsky model and Planck data reported favors the presence of a inflationary epoch in
early Universe. The Acoustic Peak region shows bigger differences in the amplitude of the peaks that are presented
in this region. This differences are related with the value of matter and baryon density obtained from our model
(Ωm ≈ 0.3158 ± 0.001 and Ωbh2 ≈ 0.0223 ± 0.0004). Form this we interpret that there was an additional load of
mass and an increment in the inertia in the photon-baryon fluid at recombination epoch also the limit temperature is
smaller in this epoch. The peaks and troughs that we obtain and those that report Planck satellite are located at the
same multipole moment, except for the first peak that in Starobinsky TT power spectrum are located at 221`. From
the theory this affects to the age of the universe, this is confirmed by the Starobinsky model giving a universe age of
13.798 ± 0.007. The Silk Damping region in the TT power spectrum reproduced by the Starobinsky model shows a
sift to smaller angular scales, that is attributed to a photon-baryon fluid more tightly coupled at recombination and
the decrease in Ωbh2 ≈ 0.0223 ± 0.0004. Finally, the higher value of the scalar index (ns ≈ 0.9653 ± 0.0004) reduce
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the whole amplitude of the reproduced TT power spectrum, since it comes from the overall slope of the CMB power
spectrum.

For future work is proposed the fit of the peaks and troughs of Acoustic peak region and Silk damping region
in order to obtain theoretical values of cosmic parameters for the Starobisnky inflationary model into the slow-roll
approximation. The process present in this work to obtain the temperature power spectrum can be reproduced with
other inflationary models to verify its reliability.
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