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Resumen 
La melanina tiene un rol biológico importante, aunque su sobreproducción y acumulación 

están asociadas a algunas enfermedades que van desde problemas cutáneos como el melasma 

hasta la enfermedad de Parkinson. La sobreproducción de melanina se debe a un aumento del 

número de melanocitos o de la actividad de las enzimas melanogénicas. Los melanocitos están 

regulados principalmente por la enzima tirosinasa que cataliza los dos pasos más importantes 

para la producción de pigmentos. Esto hace que la oxidorreductasa sea el principal objetivo para 

inhibir la producción de melanina. Actualmente, existen algunos inhibidores de la tirosinasa (TI) 

que se utilizan para el tratamiento de diversos trastornos de la piel. Sin embargo, los TI actuales 

estan asociados a algunos problemas por su alta citotoxicidad, mutagénesis, efectos no 

duraderos, entre otros. Por lo tanto, es clara la necesidad de Tis nuevos, más eficaces, de amplio 

espectro, más segura y más duradera efecto. Los métodos "in vitro" existentes para encontrar 

nuevos inhibidores son costosos y de eficacia limitada. El presente estudio se enfocará en 

desarrollar un estudio teórico con un protocolo de acoplamiento molecular que utiliza por 

primera vez un panel diverso de tirosinasas y permite el descubrimiento de nuevos TI utilizando 

un sistema experto. Aquí, desarrollamos modelos de clasificación con técnicas de aprendizaje 

automático basados en variables de panel de acoplamiento molecular de tirosinasa. 

Desarrollamos e integramos todo este flujo de trabajo en el software gratuito disponible SiLis-

PREENZA para la predicción de TI. Además, hicimos una actualización de los inhibidores de 

tirosinasa conocidos de 701 a 2514 reportados hasta ahora. Este informe será útil para mejorar el 

proceso de búsqueda de inhibidores de tirosinasa para buscar nuevos agentes despigmentantes 

para el tratamiento de trastornos de hiperpigmentación. Los compuestos identificados como 

inhibidores podrían usarse para limitar los experimentos "in vitro" primero con experimentos 

fenotípicos hasta llegar a las células del melanoma. 

Palabras Clave:  Inhibidor de tirosinas, Acoplamiento Molecular, Autodock-Vina, Aprendizaje 

automatico, Modelos predictivos, WEKA, SiLis-PREENZA Software, Cribado virtual, Productos 

Naturales 
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Abstract 
Melanin has an important biological role, although their overproduction and 

accumulation are associated with some diseases going from skin problems as melasma to 

Parkinson's disease. The overproduction of melanin is due to an increase in the number of 

melanocytes or melanogenic enzyme activity. The melanocytes are regulated mainly by the 

tyrosinase enzyme, which catalyzes the two most important steps to produce pigments. This 

makes the oxidoreductase the principal target to inhibit melanin production. Currently, there are 

some tyrosinase inhibitors (TIs) used for the treatment of various skin disorders. 

Nevertheless, the current TIs had associated some safety problems such as their high 

cytotoxicity, mutagenesis, non-lasting effects, among others. Therefore, the need for new, more 

effective, broad-spectrum, safer, and longer-lasting protection of TIs is clear. The existing "in 

vitro" methods to find new inhibitors are expensive and with limited efficacy. The present study 

will focus on developing a theoretical study with a molecular docking protocol that uses a 

diverse panel of tyrosinases for the first time and allows the discovery of new TIs using an expert 

system. Here, we developed classification models with machine learning techniques based on the 

tyrosinase panel's molecular docking. We developed and integrated all this workflow into free 

available software SiLis PREENZA for the prediction of TIs. 

Furthermore, we made an update of the known tyrosinase inhibitors of 701 to 2514 

reported so far. This report will help enhance the process of finding tyrosinase inhibitors to seek 

novel depigmenting agents for the treatment of hyperpigmentation disorders. The compounds 

identified as inhibitors could be used to narrow "in vitro" experimentations first with phenotypic 

experiments until they reach melanoma cells. 

 

 

Key Words: Tyrosinase Inhibitor, Molecular Docking, Autodock-Vina, Machine Learning, 

Predictive Model, WEKA, SiLis-PREENZA Software, Virtual Screening, Natural Product 
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ABSTRACT 

Melanin has an important biological role, although their overproduction and 

accumulation are associated with some diseases going from skin problems as melasma to 

Parkinson's disease. The overproduction of melanin is due to an increase in the number of 

melanocytes or melanogenic enzyme activity. The melanocytes are regulated mainly by the 

tyrosinase enzyme, which catalyzes the two most important steps to produce pigments. This 

makes the oxidoreductase the principal target to inhibit melanin production. Currently, there are 

some tyrosinase inhibitors (TIs) used for the treatment of various skin disorders. 

Nevertheless, the current TIs had associated some safety problems such as their high 

cytotoxicity, mutagenesis, non-lasting effects, among others. Therefore, the need for new, more 

effective, broad-spectrum, safer, and longer-lasting protection of TIs is clear. The existing "in 

vitro" methods to find new inhibitors are expensive and with limited efficacy. The present study 

will focus on developing a theoretical study with a molecular docking protocol that uses a 

diverse panel of tyrosinases for the first time and allows the discovery of new TIs using an expert 

system. Here, we developed classification models with machine learning techniques based on the 

tyrosinase panel's molecular docking. We developed and integrated all this workflow into free 

available software SiLis PREENZA for the prediction of TIs. 

Furthermore, we made an update of the known tyrosinase inhibitors of 701 to 2514 

reported so far. This report will help enhance the process of finding tyrosinase inhibitors to seek 

novel depigmenting agents for the treatment of hyperpigmentation disorders. The compounds 

identified as inhibitors could be used to narrow "in vitro" experimentations first with phenotypic 

experiments until they reach melanoma cells. 
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GLOSSARY      
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1. INTRODUCTION  

Melanins are pigments present in several organs such as hair, eyes, ears, brain, and skin1. 

This polymer is produced in the melanocytes2 by a process known as melanogenesis,3 which 

includes the synthesis and distribution of the pigment in the epidermis4. Melanin plays a crucial 

role in absorbing light to protect skin against damaging DNA effects of ultraviolet radiation 

(UV), absorbing free radicals, protect against reactive oxygen species (ROS)5, and alters the 

synthesis of vitamin D36. Although melanin's excessive production is associated with several 

hyperpigmentation problems7 like melasma, freckles, senile lentigines5, over-tanning, age spots1, 

pigmented acne scars8, ephelides 9, and so on. Some of the more relevant causes of melanin 

production are the exposition to the sun, which stimulates epidermal melanocytes, or drug-

induced such as minocycline, amiodarone, oral contraceptives, and anticancer drugs or post-

inflammatory conditions like a side-effect of laser treatment4. Other factors that also induce 

melanogenesis are alpha-melanocyte-stimulating hormone, melanocortin 1 receptor, and agouti-

related protein10. 

The principal focus to treat these problems is tyrosinase (polyphenol oxidase), a 

glycosylated oxidative enzyme that catalyzes two crucial steps in melanin biosynthesis. First, the 

hydroxylation of a monophenol like L-tyrosine into L-DOPA, a catechol (monophenolase 

activity) and the second the o-oxidation of catechols L-DOPA into o-dopaquinone (diphenolase 

activity), which is further oxidized to form melanin8. Tyrosinase has a binuclear active site with 

two copper ions and one oxygen molecule,11 in which the copper ions are coordinated by six 

histidines residudes12 and play a crucial role in the activity of the enzyme. Tyrosinase is widely 

spread in yeast 13, bacteria, fungi, plants, and mammals, especially humans5. Therefore, the 

tyrosinase inhibitors are highly searched for skin-whitening, anti-browning in fruits, and even 
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used to treat melanomas because they act as an adjuvant 5. Furthermore, it was discovered that 

the over-production of tyrosinase in the Central Nervous Systems (CNS) leads to increased 

dopaquinone levels resulting in neural damage significantly contributing to Parkinson's disease 

(PD)3.  

Nowadays, several compounds are reported as tyrosinase inhibitors (TIs). For instance, 

hydroquinone is one of the most famous standard skin-whitening6. Although, it has several safety 

issues due to it could generate ROS and permanently damage melanocytes. The reason why it 

has been banned from the European Union and is just recommended under dermatologic 

prescription14,15. Another well-known tyrosinase inhibitor is kojic acid, a fungal metabolite, 

which is more widely used in cosmetics; however, it also has side-effects associated with it 

dermatitis, sensitization, and carcinogenicity 14. Some other tyrosinase inhibitors have been 

identified; nevertheless, most of them had problems related to toxicity16, low activity, poor target 

selectivity3, dermatitis, irritation, leukoderma, hypochromic, ochronosis, between others2. 

Nevertheless, many of them are used as the baseline for the discovery of new tyrosinase 

inhibitors. 

The necessity of finding new potent tyrosinase inhibitors with no side-effects and 

permanent results is precise. The clinical and industrial demand for TIs is increasing, and one 

key step in finding new TIs is the virtual screening16 that will help narrow the bioactive 

compounds, and the cost of "in vitro" experimentation will be lower. Several literature reports 

used pharmacophore models 7,17,18, Quantitative Structure Activity Relationship  (QSAR) 9,19–21, 

and molecular docking22–24 in the virtual screening process. Molecular docking shows excellent 

potential for predicting the action mode in the interaction and binding sites of molecules that are 

important in drug discovery and therefore, it decreases the experimentation cost and allows the 
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study of interactions at a molecular level25 Nonetheless, many docking studies use one or few 

tyrosinases to develop the predictive models. None of them uses human tyrosinase since there is 

not currently an X-ray diffraction model of it. Some uses models of human tyrosinase, but any of 

them uses tyrosinase-related proteins (TRP).  

 Some of the present authors of this report worked previously with predictive models for 

TIs using QSAR models. They use data of 701 active compounds reported with tyrosinase 

activity. This is the most extensive data reported so far, and that has a broad application domain; 

however, that work was done in 201126,27. Since then, several TIs had been reported, and other 

predictive models had been made, although any study had included big data that used a broad 

application domain. Most of the models use small data, congeneric, related to family compounds 

and just a few models include an application domain. Some reports like Pillaiyar 2018 did a 

review of the TIs reported, including 141 molecules classified by families28, even though the 

purpose of that work is informative and not have been used for predictive purposes. It is 

necessary to increase the applicability domain from previous works that include the new TIs 

reported in the last 10 years and update the active TIs.… 

The present study will develop a molecular docking protocol that uses a diverse panel of 

tyrosinases that allows the discovery of new TIs using an expert system. We aim to use software 

to search new TIs of the ocean of natural products because most of the TIs reported with the 

highest activity are from this origin. For this purpose, we used molecular docking to build 

models to predict the inhibitory activity. Here we will use a broad panel of tyrosinase proteins, 

tyrosinase-related proteins, and human tyrosinase model. This panel of tyrosinases allows us to 

study the diversity and make a generic screening process with Autodock-Vina. We propose 

software that helps make the docking with the panel and qualitative and quantitative predictive 
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models based on docking and facilitating the clustering process. This software is used to find "in 

silico" new TIs.  Furthermore, this study made an update of the known TIs, considering the last 

10 years.  

 

2. MATERIALS AND METHODS 

2.1 Protein Structure Preparation 

The seventy-seven three-dimensional (3D) available structures of tyrosinase and 

tyrosinase-related protein (TRP)  structures of X-ray crystal diffraction from ten species (four 

from bacteria, two from fungus, three from plants, and one from humans) were retrieved from 

RCSB protein database (http://www.rcsb.org/pdb/home/), and one homologous model of human 

tyrosinase was obtained from the Protein Model Database5 (http://srv00.recas.ba.infn.it/PMDB/). 

A total of nineteen of these proteins, which contain crystal ligand structures, were selected for re-

docking studies. AutoDock Tools 1.5.6 software was used for preparing the proteins for docking. 

This process consisted of removing water molecules and other ligands, adding the polar H-

atoms, and converting the 3D structures from PDB to PDBQT format29. 

2.2 Ligand Structure Optimization 

Structures were drawn with the program MarvinSketch 19.2230, the addition of H-atoms 

and generation of 3D coordinates of the structures were made with ToMoCoMD-CARDD31 

program using 3D-RDkit by using a MMFF94 force field32. The conversion from mol to PDBQT 

was made with Open Babel GUI  2.4.133 

2.3 Docking Parameters  

To establish the best docking parameters, a set of experiments were carried out. The first 

experiment aims to determine the use of ions and water in the active site because both play an 

http://www.rcsb.org/pdb/home/
http://srv00.recas.ba.infn.it/PMDB/
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important role in the activity of the enzyme34. For doing this, we docked 3 proteins that had the 

same kojic acid ligand from two different species Bacillus megaterium (PDB: 3NQ1, 5I38) and 

Homo sapiens (PDB 5M8M). So, we created four variants with the tyrosinase proteins (with 

water molecules, without water molecules, with ions, and without ions) and compared which 

variant gets a better fit in the active site to determine in which conditions the docking was the 

most appropriate. The details of the comparison are on Supplemental Material (SM) at SM1_A. 

The second exploration was done to determine the exhaustiveness, which controls how 

comprehensive is the search to find the best pose for the ligand. The higher the exhaustiveness 

the results are conclusive, and also more time is invested and therefore for docking a huge 

amount of data the computational expense will be high35. The time increases linearly with the 

exhaustivity and the probability of finding the global minimum as well. Although the search is 

from the same seed, large exhaustiveness does not guarantee the global minimum, so it is 

preferred to take different runs with different seeds that increase the likelihood of finding the 

pose with minimum energy. The computational cost of an exhaustive search is high due to the 

time invested in each calculation and in this case finding the best pose36.  

We want to find the best exhaustiveness in which the results are conclusive and do not 

require much computational expense for docking data libraries. So, we took twelve proteins from 

two species with different ligands Bacillus megaterium (PDB: 4P6R, 4P6S, 4P6T, 5I3A, 5I38, 

50AE, 6EI4, 6QXD) and Homo sapiens (PDB: 5M8M, 5M8N, 5M8O, 5M8P) and we varied the 

exhaustiveness for 30, 50, 90 and 100. We examined the minimum exhaustiveness at which the 

docking has consensus results for the tree runs carried, in other words, the exhaustiveness at 

which the three runs find the best pose. The results of this experiment are given as 

supplementary material at SM1_B. 
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2.4 Self-Docking Studies  

 In this study, we measured the docked poses' ability to resemble the crystallographic 

orientations of the ligands. This experiment took 19 tyrosinase proteins that were reported with 

their ligands from 3 different species, one from Agaricus bisporus (PDB: 2Y9X), ten from 

Bacillus megaterium (PDB: 3NQ1,4P6R, 4P6S, 4P6T, 5I3A, 5I3B, 5I38, 50AE, 6EI4, 6QXD) 

and eight from Homo sapiens (PDB: 3KAN, 5M8M, 5M8N, 5M8O, 5M8P, 5M8Q, 5M8R, 

5M8T). Each protein was docked with the 11 different ligands present in the crystallization of 

the different tyrosinases. The root means square deviation (RMSD) of the poses obtained from 

the docking and the crystallized structure were calculated using the LigRMSD 1.0, a free web-

server that calculates RMSD among identical or similar compounds using as reference the 

crystallized ligand. The strict distance was considered to compare the crystal and dock poses that 

consider matching identical atoms and bonds37. The results of all the calculations are present in 

SM2.  

2.5 Selection of tyrosinase panel  

A set of 42 PDBs were selected, and one extra homology model of human tyrosinase was 

found in the Protein Model Database (see SM3_A for a detailed description of the PDBs). From 

this set, several proteins were selected based on the diversity of ligands and species, aiming to 

provide a wide range of tyrosinase protein representations. To reduce this panel of tyrosinase 

proteins, a cluster analysis (CA) was carried. The CA helps make a profound and complementary 

comparison of the tyrosinase proteins; a tree-based CA was used. Here, we used the docking 

affinities calculated with Autodock-Vina for 88 ligands identified as strong, intermediate, and 

weak TIs based on experimental data with a reported half inhibitory concentration (IC50  ) see 

SM3_B, which indicate how much of the drug is needed to inhibit tyrosinase activity by half38. 



   11 
  

These 88 ligands were docked according to the docking parameters established in the previous 

section against the proteins selected. We performed in STATISTICA software hierarchical 

agglomerative clustering using Ward's method and the squared Euclidean distance as an 

amalgamation rule and proximity function, respectively39. The description of the final panel of 

13 proteins discovered is in Table 1, and the PDBQT and the configuration files are given as 

SM3_C. 

Table 1 comes about here 

2.6 Predictive Models 

Fourteen data sets (denoted as D1-D14) from 15 reports were selected to build predictive 

models and calibrate the scoring function for regression and classification using Waikato 

Environment for Knowledge Analysis (WEKA) software 3.9.4 40. Data from one to twelve were 

used in their papers for building predictive models or did a molecular docking study. These data 

had less than 100 compounds and the majority of them focused on one specific family of 

compounds7,9,17–22,24,41–43. Data thirteen, D13, is an actual literature review of the 144 TIs (91 

with reported activity). This review explores various family compounds, so the data is varied and 

their application domain28. Finally, D14 was extracted by QSAR models of two papers of one of 

the authors of this study26,27. This is a compilation of 1422 molecules of the two papers with 701 

active TIs. This is the most extensive data reported so far because even tyrosinase reviews just 

reported around 150 molecules 16,44–47 and some reported predictive models were built with less 

than 100 compounds like the ones of D1-D12 used here, further details about data are in Table 2. 

D14 also has a broad application domain due to the diversity and quantity of molecules present.  

Table 2 comes about here 

Finally, we also elaborated a final data set D15, a recompilation of the reported tyrosine 

inhibitors from around 185 articles of the last 10 years, and it was used as an external validation 
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to assess the models. It is essential to highlight that D15 does not have any common molecules 

with D14. Although, it contains all the molecules from the data D1-D13. The compilation of D14 

and D15 is available on SM4_D15, and it can be further used for future studies on the field of 

TIs. A detailed description of all the data previously described is in Table 2.  

First, every molecule was docked against the panel of 13 proteins selected (see Table 1) 

in the previous step. From the three-run docked procedure 4 parameters were calculated for 

every molecule and protein, which are: 1) the average of the nine best affinity positions 2) the 

maximum affinity, 3) the minimum affinity, and 4) leader efficiency, which is the average 

affinity divided by the number of heavy atoms. All these parameters were used as the 

independent variables for the training of the predictive models.  

2.6.1 Regression Models 

For the regression models, the variables were the 4 docking parameters of the 13 proteins 

and the activity like IC50, inhibition constant (ki), or % of inhibition, see SM4. The regression 

models were built to predict the values of activity, and based on the numeric prediction, a class 

was assigned according to some cut-offs (see SM4-BP for a detailed description of the 

breakpoints to each data set). 

First, the wrapper selection of WEKA attributes was applied to obtain subsets of different 

variables that can predict the activity. The wrapper selection evaluates attribute sets by using a 

learning scheme48. Six different Machine Learning (ML) classifiers (Gaussian Processes, Linear 

Regression, Support Vector Machine for Regression (SMOreg), K-nearest neighbors' classifier 

(IBK), M5' model tree algorithm and Random Forest) and 3 different Search Method (Genetic 

Search, Greedy Stepwise, and Particle Swarm Optimization Search (PSO)) were used to form the 

subsets. The configurations of the ML techniques were set as default in WEKA software. From 



   13 
  

this procedure, we obtained all the possible subsets to evaluate the regression. The training 

assessment was performed with Cross-Validation 10, Split 66, and All training set. 

The prediction ability was evaluated by considering the correlation coefficient (CC) and 

mean absolute error (MAE). In the case of being necessary it was applied meta-classifiers to 

improve the scores of the models. We used Additive Regression, Bagging, Stacking, and Voting 

varying for the meta-classifiers and using the same six ML techniques used for building the 

models. The best two models for each data set for regression were selected for further evaluation. 

The SDF file, model, detailed description, and statistics of the models selected can be found in 

SM4.  

2.6.2 Classification Models 

The classification models were done with the same independent variables as regression 

models. In general, compounds with an IC50 less than 10 uM or ki less than 4.7 were considered 

active and the rest inactive (see SM4-BP). Then, we made the attribute selection with 7 

classifiers (Naïve Bayes, Fisher's Linear Discriminant function (FLDA), Logistic, John Platt's 

sequential minimal optimization algorithm for training a support vector classifier (SMO), K-

nearest neighbors' classifier (IBK), The minimum-error attribute for prediction, discretizing 

numeric attributes(1R), and Random Forest) and the same 3 search methods used for regression 

models.   

We obtained all the different subsets, and we evaluate performance in classification based 

on the 3-test options mentioned in the former section. The main statistical parameters taking into 

consideration were Accuracy (Q), Matthews Correlation coefficient (MCC), area under the 

Receiver Operating Characteristic (ROC) curve, Precision-Recall Curve (PRC), Precision, False 

Positive (FP) rate, and True positive (TP) rate statistics49,50. After selecting the best subsets, the 
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meta classifiers were applied to improve the performance of the models. The meta-classifiers 

used were AdaBoost M1, Bagging, Stacking, and Voting, with the rules of combination of each 

case. Then the best two models were selected for each data set for further evaluation (see SM4).  

2.6.3 External Validation 

Finally, the best models for regression and classification of every data set were tested 

against external data of 1813 compounds (D15) to provide further assessment of the robustness 

and the predictive power of the models' performance. These 1813 molecules were docked and 

then validated against the models considering three different activity breakpoints 1, 10, and 30 

uM. The cutoff of 1 was to build a more restrictive model and, therefore, can accurately 

discriminate between active and inactive. The breakpoint of 10 is because most of the models 

were built with that threshold for activity, and the breakpoint of 30 was chosen because it was 

the breakpoint activity of D14, which is the largest data. 

2.6.4 Consensus Models 

To improve the individual models' predictive power, several consensus models were 

developed to enhance the classification. Consensus approaches aim to combine and fuse the 

outcome from different sources to increase the outcome reliability compared to individual 

models51. Instead of finding the best model, the aim was to find the best subset of individual 

classifiers that predict the external data D15. To find the best consensus models, several 

combinations of the best predictive performance models were done, taking into consideration de 

accuracy (Q), kappa statistic, and F1 score. The combinations were done for all three breakpoints 

and were evaluated for all of them. The combination rule was made manually by the majority 

voting process without supervision. The best two consensus models were selected for each 

activity breakpoint (denoted as D15_P01A, D15_P01B, D15_P10A, D15P_10B, D15_P30A, 
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D15_P30B). These consensus models improve the outcome of predictions of the base models. 

The statistics of all the consensus models generated for each breakpoint are available on SM5. 

2.7 Software Development 

We developed a software freely available named SiLis-PREENZA, the acronym for 

DRY- in silico - Screening & Prediction of Effects of Inhibitors on Enzyme Activity all the 

process previously described since docking until consensus predictive models are implemented. 

Therefore, the process of finding TIs is automated. This software was implemented in Java 1.8 

programing language; hence, it is a cross-platform software. For developing the SiLis PREENZA 

software Open Babel 3.033, RDKit52 AutoDock Vina53, WEKA40, 2D QuBiLS-MAS54, QuBiLs-

MIDAS31 toolkits were used for the manipulation of structures, docking, predictive models, and 

clustering.  

2.8 Prospective Virtual Screening 

This software was used for the prospective screening in which we use eight data sets for 

screening and the discovery of new TIs. We selected data that was identified as natural products 

since the main known TIs are from natural origin like kojic acid discovered from a fungus 

Aspergillus flavus55, arbutin a phenolic compound found in some plants56,57, ascorbic acid a 

vitamin commonly found in fruits58, mimosine a natural amino acid found in plants59 among 

others. These data sets were denominated as S1-S8. The screening data summary is in Table 3, 

and the SDF of all the data is on SM6. 

Table 3 comes about here 

Finally, all the molecules were passed through all the predictive models used for the 

consensus models, and the selection of possible tyrosinase inhibitors was carried considering 2 

rules. The first rule is that the molecules should be active for the two consensus models for 1 uM 

breakpoint, or it could be active for one model of 1 but active for both models of 10uM.  
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2.8.1 Cluster Analysis  

After selecting the active molecules for the consensus models, we carried out cluster 

analysis, also implemented on SiLis-PREENZA software, of the virtual hits to suggest the 

diverse ones for experimentation. The cluster analysis was made using the k-means and 

hierarchical methods that take variables 50 descriptors, 25 topological 2D QuBiLS-MAS54 and 

25 Geometrical 3D QuBiLS-MIDAS31 descriptors. The number of clusters selected was 20, and 

we searched for similar molecules and have the same chemical core to just select one 

representative.  

After this, we carried out a second cluster analysis with the virtual hits selected to form 

the natural products data and all the reference compounds reported as tyrosinase inhibitors that 

are the 701 positive inhibitors of D14 and all the 1813 compounds D15 a total of 2514 reported 

TIs. We carried out the cluster analysis with Che-S Mapper software60 with the k-cascade 

algorithm with CDK descriptors, and we selected 30-60 clusters. Then we compared the 

molecules to the reported ones to select the molecules that represent new cores. The Table of the 

detailed selection procedure is available on SM7.  

The final corroboration was done by docking again the selected hits by 3 repetitions and 

selecting just the ones that were active at least by two docking runs of the models of 1uM. From 

this selection we search for the availability of compounds in PubChem database. Finally, we 

selected some of the best virtual hits and compared them with the docking of the 4 known TIs 

arbutin, hydroquinone, kojic acid, and mimosine. We compared their binding affinities and the 

patron of residues interactions using Protein-Ligand Interaction Profiler that detects and visualize 

interactions among protein and ligands61 

 

3. RESULTS AND DISCUSSION  
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3.1 Docking Parameters 

 The conditions of docking parameters were established based on the experiments 

described in the material and methods section. All the docking runs were performed with 

Autodock-Vina 4.2.653. We obtained that conserving the metal ions and removing water 

molecules suit the best ligands from the first experiment. From the second experiment, we 

obtained that the best exhaustiveness is 30. Therefore, we conclude that the binding site 

comprises two copper ions or two zinc ions depending on the crystal structure. The docking site 

for the ligands on tyrosinase structures is defined by establishing a cube at the protein's active 

site in the geometric center of the co-crystalized ligand, with dimensions of 40x40x40 Å, and 

employing a grid box spacing of 0.375 Å. Three runs are needed for each compound with 

exhaustiveness equal to 30, energy range 3, and the first 20 positions with the highest values of 

binding affinity are rescued; see SM1 for more details. 

3.2 Self-docking  

Molecular Docking validation was done with the self-docking or redocking, which was 

done comparing the ligands' crystal pose and the poses docked. The results revealed that the 

docked poses resemble great the experimental ones. For instance, in the PDB 5M8M the 

redocking of the kojic acid and the crystalized kojic acid have an RMSD of 0.25 (see Figure 1). 

The RMSD obtained to support the docking protocol's accuracy and even it is better than other 

reports that their RMSD for kojic acid in the PDB 3NQ1 is 1.3622. 

Figure 1 comes about here 

 For illustrative purposes, the best poses obtained from the main inhibitors from both 

Bacillus megaterium and Homo sapiens are shown in Figure 2. These results showed the 
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reliability of using the docking protocol to reproduce the ligands' experimental conformations in 

the enzyme tyrosinase or TRP.  

Figure 2 comes about here 

3.3 Discovering the Tyrosinase Panel  

Initially, several tyrosinase proteins were proposed 47 (see SM3_A). So, we first filter 

tyrosinases considering the resolution, diversity, crystallization, resolution, and 29 proteins. All 

these proteins were docked against the 11 ligands found crystallized in PDBs, and then the 

cluster analysis allows us to select just 17 proteins. To decrease the panel, even more, 88 ligands 

classified as strong, intermediate, and weak were docked with Autodock-Vina, and the average 

of the best nine docking positions was used to make a cluster analysis (see SM3_B). The results 

of the CA using Ward's methods are shown in a dendrogram of Figure 3.  

Figure 3 comes about here 

We analyzed just the clades that directly related two leaves for selecting the proteins 

based on the CA and their dendrogram. The first clade with two leaves we have 5OAE and 5I38, 

both proteins are from Bacillus megaterium and have ligands. Although 5I38 had better 

resolution than 50AE and their ligand is a recognized TI, so we selected this protein.  In the 

second clade with two leaves, we had 5M8R and 3KAN both are from Homo sapiens, but 3KAN 

is the only protein of TRP2, so it was selected. We found 5M8O and 5M8M in the third clade, 

and we selected 5M8M based on the Euclidean distances. We found the four clades the proteins 

6HQI and 5Z0D; both were from different species, but 5Z0D has better resolution so it was 

chosen. The last paired clade had the proteins PM0079416 and 6ELS, the first one is the model 

of human tyrosinase, and the second is from Malus domestica (apple). In this case, both were 
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representative and diverse; we selected both proteins. Finally, the proteins that were not paired in 

a clade were directly selected, such as 6QXD, 3NQ1, 5M8Q, 5ZRD, 3W6W, 5CE9, and 2Y9X. 

Thirteen proteins were selected to constitute the tyrosinase panel considering their 

representability from the point of view of the structure, affinity with docking, and origin. The 

PDBs ID and species of these proteins are 2Y9X (Agaricus bisporus), 3KAN (Homo sapiens), 

3NQ1 (Bacillus megaterium), 3W6W (Asperugillus oryzae), 5CE9 (Juglans regia), 5I38 

(Bacillus megaterium), 5M8M (Homo sapiens), 5M8Q (Homo sapiens), 5Z0D (Streptomyces 

castaneoglobisporus), 5ZRD (Burkholderia thailandensis), 6ELS (Malus domestica), 6QXD 

(Bacillus megaterium), and PM0079416 (Homo sapiens. A detailed description of the PDBs 

selected is in Table 1, and the PDBQT was deposited with the configuration file in SM3_C. This 

is the first time that someone uses a broad and diverse panel of tyrosinases to make docking that 

includes tyrosinases from several species, tyrosinase-related proteins, and a model of human 

tyrosinase.   

3.4 Scoring Function Calibration & Predictive Models  

Classification and Regression models aim to predict if a compound is a tyrosinase 

inhibitor (ACTIVE) or not (INACTIVE). For doing this, we use a data set with 52 independent 

variables (4 derived affinity docking variables of the 13 proteins) plus their respective response 

variable (e.g., IC50) to build the models. The Wrapper function of WEKA was first used to 

generating small subsets. Models of data from 1 to 13 were developed with compounds reported 

with some tyrosinase activity, and Models of D14 with compounds reported as active in the 

literature and inactive as never tested against tyrosinase. Approximately 50 models of 

classification and regression were selected with the best predictive power for 14 data sets 
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described in the former section. The summary of each regression model and classification and 

their performance with their data is in Table 4. 

Table 4 comes about here 

The predictive models presented here had in general better performances than the models 

reported in the original papers where the molecules come from. For instance, the D1_RA model 

had a square correlation coefficient (CC) of 0.8898 for cross-validation 10, and the original 

model reported a CC of 0.7457 for the test set, it is important to note that although both statistics 

are not the same, both are the type of evaluation which leaves one group of molecules to validate 

the model and the rest to build it. Just model of D8 has similar statistics like the ones reported 

here, and in that case, they reported a CC for cross-validation 10 of 0.74 with 13 outliers20 and 

our model has a CC of 0.7428 but with just 3 outliers considered. These values indicate that our 

model has a higher CC and even taken into consideration a high variation of the molecules. The 

table with a detailed comparison of our models and the original is available on SM4_C.  

3.4.1 External Evaluation 

To evaluate the real power of prediction of the models developed it was probed against 

external data which we denominate D15 that has 1813 compounds and represent the known 

space of tyrosinase inhibitors of the last 10 years without taking into consideration all the 701 

active molecules present in D14. The top results of the evaluation of these models by the 3 

activity breakpoints are in Table 5.  

Table 5 comes about here 

The model that best predicts for 1 as the activity breakpoint is D10RB with an accuracy 

of 0.846 and then D3RA with an accuracy of 0.837. Although the accuracy is relatively high, the 

kappa statistic is very low; for D10RA the model predicts all the molecules as inactive, and like 
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the D15 with breakpoint 1 has few actives, it has a higher score. Based on kappa statistic D7CB 

with an accuracy of 0.71 and D13CB with an accuracy of 0.547, the best ranked and considering 

the F1 active score D8CA with 0.413 and D13CB are the best ranked. It means that these models 

are not good at recovering the active molecules.  

For the breakpoint of 10, the top models considering accuracy are D10RB with 0.629 and 

D3RA with 0.628. Nevertheless, it happens the same problem for the activity breakpoint of 1, 

and the models best ranked for kappa are D7CB with 0.614 and D7CA with 0.58, and 

considering F1 active score is D12RA and D12CB with accuracy 0.371 and 0.397 respectively.  

Finally, for breakpoint of 30, the best models in accuracy and kappa statistic are D8CA 

and D7CB with 0.547 and 0.544 respectively of accuracy. If the active and inactive compounds 

are balanced, the best models based on the kappa statistic and accuracy are the same. 

Furthermore, the best models considering F1 active scores are D12RA and D2CB with 0.494 and 

0.514 accuracy. As the results have shown, the individual models do not predict D15 very well; 

the highest accuracy is that the models predict most compounds as inactive, and therefore 

various active compounds are lost. To solve this problem, consensus models were created to 

improve the models' statistics for the 3 breakpoints. 

3.4.2 Consensus models 

Several combinations considering the models with the best parameters were done to each 

breakpoint to improve the performance of the models (see Table 5). There were choose two 

consensus models for each breakpoint that improve the accuracy, kappa statistic, and F1 active 

score. The best two models for 1 uM are one of 9 variables denominated D15_P01A with an 

accuracy of 0.782 and D15_P01B with an accuracy of 0.697, which relatively has lower 

accuracy of the best individual models although their statistics are improved. For the breakpoint 
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of 10, there are 2 models, one or 9 variables D15_P10A with an accuracy of 0.65 and D15_P10A 

with 0.601, the model D15_P10A had higher accuracy than the best individual model of 10, and 

their statistics are good also. Finally, for the threshold of 30, the consensus models of 7 and 9 

variables (D15_P30A and D15_P30B, respectively) were selected with 0.549 and 0.591 as 

accuracy, which is better than the best individual models reported.  

3.5 SiLis-PREENZA Software for the discovery of new TIs  

The SiLis-PREENZA Software is composed of a friendly desktop user interface (see 

Figure 4), and the procedure can be summarized in 5 steps: (1) The selection of the data that can 

be in SDF or MOL files. The data could be in 2D or 3D structures, in the case of 2D the software 

also can generate the 3D structure in step (2) Generation of 3D Structures with RDKit52 that uses 

two different force fields: i) Molecular Mechanic Force Field (MMFF94) or ii) Universal Force 

Field (UFF). (3) Selection of the predictive models. In this step, we could select the proteins for 

docking, the predictive models of classification, including D15 models or regression. Here we 

can also select the applicability domain and the time out function (set as 10 min by default). (4) 

Selection of Clustering methods. This step was implemented to evidence the resemblance among 

molecules with cluster analysis. We can select 3 types: i) Simple expectation maximization, ii) 

K-means, or iii) Hierarchical. The clustering can be done with 25 topological 2D descriptors or 

25 geometrical 3D descriptors, and lastly, step (5) Selection of the folder to save the results. 

Figure 4 comes about here 

The time-out function was implemented because docking is a time-requiring step, and 

depending on the complexity of a molecule, it could take days to dock to one protein. The 

function was implanted for optimizing the docking procedure and the time spent in this step. The 

docking of one molecule against one protein is estimated based on 5 CDK descriptors nAtom, 
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nHBDon, TopoPSA, XLogP, nRotB, which corresponds to the number of atoms, number of H-

Atoms as Donors, Topological Polar Surface Area, partition coefficient, and the number of 

Rotatable bonds, respectively. The function is an assemble of 3 ML techniques that estimate the 

average time. If the estimation is specified over time, then the molecule will not be docked, and 

time will be saved with overcomplicated molecules. We used 65 molecules of different 

complexity for modeling this function, and we measure the time invested in docking of different 

tree proteins. For more details about the time-out function, see SM4-TO. After applying this 

function the 10% of molecules were not docked in 65 molecules, and for the prospective 

screening of natural products, 12.5% of molecules were not docked.   

After the screening, an interface for the processing of the results is shown, and the folder 

with all the files and procedures involved is generated where we can rescue any file that we want 

from docking, predictive models, or clustering. Moreover, D13, D14, and D15 used for modeling 

in this study are available as sample tests in the first step.  The software presented here can be 

used for screening for tyrosinase inhibitors quickly and automatically and includes many 

functions like docking predictive models and clustering being the first of its class in the field of 

tyrosinase inhibitors. 

3.6 Prospective Virtual Screening  

Natural products are critical in drug discovery because they contain scaffold diversity and 

structural complexity62. So, if we want to find new scaffolds of TIs, natural products are one of 

the main compound's pools for prospective screening. In addition to that, several TIs are from 

natural origin, making the Natural products' database ideal to find new TIs. We selected 

extensive data of natural products for prospective screening employing SiLis-PREENZA 

Software for all the reasons mentioned before. We used the models D15_P01A, D15_P01B, 
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D15_P10A, and D15P_10B to select the virtual hits based on 2 rules: i) active for both models 

D15_P01A and D15_P01B or ii) active for one model of 1 and both, D15_P10A, and 

D15P_10B. 

The screening process results of each data and the virtual hits are presented in Table 3 

and the output of the software for the models is on SM6. In general, several active compounds in 

each data set in average 64 molecules from which the second rule selected 11. However, to find 

new TIS it is necessary to select just the molecules that represent new scaffolds. For this purpose, 

we carried out two cluster analyses to maximize the molecules' diversity with the smaller number 

of molecules.  

The first cluster analysis was among the virtual hits of the 8 natural products data sets 

(512 in total). This CA was done by two hierarchical and k-means using the SiLis PREENZA 

software (See SM7_A). Based on both CA, we selected 129 molecules markedly different (see 

Table 3 for more details). 

After obtaining the virtual hits that were markedly different among them, we need to 

compare them with tyrosinase inhibitors' available space. Hence, we carried out a second cluster 

analysis with 2514 molecules (active of D14 and D15) and 129 virtual hits. This CA was done 

using CheS Mapper 60 with CDK descriptors. The software selected 30 clusters, and the active 

virtual hits were present in 22 clusters (See SM). CheS Mapper software arranges compounds in 

a 3D space, in which the spatial proximity reflects their similarity60 as can be observed in Figure 

5. So, to determine the compounds similar to the virtual hits, visual analysis was carried out.  

Figure 5 comes about here 

Cluster 1 contains 29 molecules, and 2 of them (7%) are virtual hits. We looked for the 

closest neighbor of the reference compounds and compared the structures. If the structures are 
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different, they are selected as a virtual hit, but the virtual hit is not chosen if the structures are 

similar. For instance, in cluster 1 the first virtual hit was different from the closest neighbor 

reported with an IC50 of 19.2028 and it was selected as a virtual hit. On the other side, the other 

virtual hit was the duplicate of Dodecandioic acid (the reference compound), so it was not 

selected, see Figure 6. 

Figure 6 comes about here 

The same analysis was employed for all the clusters and virtual hits; see SM7_C for the 

detailed comparison of all VH with their closet neighbor. After this, the initial data was reduced 

to 87 compounds predicted with tyrosinase activity and that have a different scaffold from the 

reported TIs. The prominent representatives by a cluster of the virtual hits are in Figure 7. 

Figure 7 comes about here 

The final filter selection of compounds was done using SiLis-PREENZA Software, in 

which we pass again the 87 compounds for all D15 and regression models. D15 models were 

used to select just the molecules that in the tree runs continue to be active, and the regression 

models were done to calculate the average IC50 to have an idea of the best virtual leads. From 

these studies we reduce the virtual hits to 57 compounds, in which 8 molecules were always 

active for all the D15 models, these compounds were prioritized for comparative studies plus two 

compounds that were active in the tree repetitions for models of 1 uM and that their average 

IC50, minimum and maximum for the regression models was the lowest. The final virtual leads 

were searched in the PubChem database to look if they already are reported as a TIs or other 

related purposes and many of them did not have any biological test or patent, and the ones that 

had reported activity was not related to tyrosinase the table with a detailed description is on 

SM8_A 
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 In general, our fished molecules had higher affinity values than the 4 TIs used for 

comparative studies. The docking affinity of our 10 lead compounds ranges from -5.2 to -6.93 on 

average for the model of Human Tyrosinase (see_SM8_B). These docking values indicate stable 

enzyme-substrate interactions and better docking scores of previous virtual hits found by the 

QSAR model which range from -5.8169 to -473329.  Other studies reported affinity values 

ranged from -5.50 to -9.81 and all of them had IC50 for tyrosinase inhibition reported17, which 

suggests that our virtual hits are within the range of TIs and are reliable for further 

experimentation against tyrosinase. 

The fished molecules also had similar interaction patterns with the four know TIs and 

with the residues found experimentally in crystal structures that are interacting with inhibitors 

(see SM8_C). For instance, the crystal structure of PDB:2y9x from Agaricus bisporus with an 

inhibitor tropolone that has interactions with 3 key residues 283VAL, 263HIS, and 264PHE63, 

these residues are interacting as well with the know TIs and in the case of prioritizing virtual 

leads had interactions with the same residues. In fact, Liridine known as compound 80 has 

hydrophobic interactions with 228VAL, 264 PHE, 283VAL, and hydrogen bond with 244HIS 

(see Figure 8). In the case of PDB:3nq1, a tyrosinase from Bacillus megaterium with kojic acid, 

there are reported interactions with 197PHE, 201PRO, 205ASN, and 209ARG64 and compound 

80 has hydrophobic interactions with 197PHE, 201PRO, 205ASN, hydrogen bonds with 

209ARG, 218VAL and π-Stacking with 209ARG. As we can see all the residues reported 

experimentally are interacting with compound 80.  

Figure 8 comes about here 

In the case of tyrosinase of Homo sapiens the crystal structure of a TRP1 (PDB:5m8m) is 

also crystallized with kojic acid and has interactions with 381HIS, 374ARG, and 394SER65, and 



   27 
  

Compound 80 present hydrophobic interactions with 378ASN, 381HIS, and 382LEU, hydrogen 

bonds with 362TYR and 374ARG which show an alike pattern of interactions. Finally, the model 

of human tyrosinase does not have a ligand, so we compared the interactions with 4 known TIs. 

Liridine had hydrophobic interactions with 85HIS and 260VAL. In the case of the 4 TIs used for 

comparative purposes here, all have hydrophobic interactions with 260VAL, and just arbutin and 

mimosine interacted with 85HIS. The same analysis was done for the other fished hits and using 

the 13 proteins of the panel (see SM8_C), and we found that there are similar interactions among 

them and the 4 TIs, which suggests that our fished hits are suitable candidates to proceed to 

experimentation and probe tyrosinase inhibitory properties.  

 

4. CONCLUDING REMARKS 

TIs are highly searched because they can be used in the cosmetic, food, and medical 

industry due to their presence in several organisms. The search for new tyrosinase inhibitors is 

evident because, so far, any TIs are safe, with long-lasting results, and potent. One of the focal 

points in this search was the natural products due to many reported TIs are from this origin.  In 

this context "in silico" approaches are essential because it reduces the financial cost and the time 

of the exploration.  

In this report, we used molecular docking with a broad panel of tyrosinases and machine 

learning techniques to build predictive models capable of identity TIs. We developed an expert 

system named SiLis-PREENZA that internally implements the workflow of different toolkits 

that employing models based on molecular docking allow us to predict the activity against the 

tyrosinase enzyme. The developed models were used for prospective screening of natural 

products and were able to identify possible TIs that are diverse in structure from the previous 
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reported TIs and therefore are worthwhile to the made inhibitory assay with them. Here, we also 

made an update of the know tyrosinase inhibitors, so there is an increase in the applicability 

domain. The outcomes developed in this study can be further use to find new tyrosinase 

inhibitors. 

5. FUTURE OUTLOOKS 

Regarding the good behavior that this computational approach brings through SiLis-

PREENZA, we seek to make inhibitory essays of the molecules selected by the models like TIs, 

which are the most differences from reference molecules find, and in the ultimate instance that 

are cheap. Furthermore, we will implement QSAR models in the software as well to predict TIs 

Supplementary Materials:  

The Supporting Information is available free of charge on  
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7. ANNEXES 

TABLES 

Table 1. List of 13 tyrosinases and Tyrosinase Related Proteins (TRP) of the panel proposed for docking. 
PDB ID Description DOI Year Resolution Ligand Organism Enzyme 

form 
Metal 
ions 

2y9x Tyrosinase 10.2210/pdb2Y9X/pdb 2011 2.78 Tropolone Agaricus bisporus deoxy Cu 

3kan TRP 2 10.2210/pdb3KAN/pdb 2011 1.13 4IPP Homo sapiens   

3nq1 Tyrosinase 10.2210/pdb3NQ1/pdb 2010 2.3 Kojic Acid Bacillus megaterium met Cu, Zn 

3w6w Tyrosinase 10.2210/pdb3W6W/pdb 2013 1.39   Aspergillus oryzae holo-pro Cu 

5ce9 Tyrosinase 10.2210/pdb5CE9/pdb 2015 1.8   Juglans regia met Cu 

5i38 Tyrosinase 10.2210/pdb5I38/pdb 2016 2.6 Kojic acid  Bacillus megaterium met Cu 

5m8m TRP 1 10.2210/pdb5M8M/pdb 2017 2.65 Kojic Acid Homo sapiens   Zn 

5m8o TRP 1 10.2210/pdb5M8O/pdb 2017 2.5 Tropolone Homo sapiens   Zn 

5m8q TRP 1 10.2210/pdb5M8Q/pdb 2017 2.85 Kojic Acid Homo sapiens 
 

Zn 

5z0d Tyrosinase 10.2210/pdb5Z0D/pdb 2018 1.16   Streptomyces 

castaneoglobisporus 

deoxy Cu 

5zrd Tyrosinase 10.2210/pdb5ZRD/pdb 2018 2.3   Burkholderia thailandensis   Cu 

6els Tyrosinase 10.2210/pdb6ELS/pdb 2019 1.35   Malus domestica   Cu 

6qxd Tyrosinase 10.2210/pdb6QXD/pdb 2019 2.32 JKB Bacillus megaterium   Cu 

PM0079

416 

Model of human 

tyrosinase (*) 

N/A 2014 
  

Homo sapiens met 
 

Method: X-ray diffraction excepting (*) 

 

http://dx.doi.org/10.2210/pdb2Y9X/pdb
http://doi.org/10.2210/pdb3W6W/pdb
http://dx.doi.org/10.2210/pdb5CE9/pdb
http://dx.doi.org/10.2210/pdb5I38/pdb
http://dx.doi.org/10.2210/pdb5M8M/pdb
http://dx.doi.org/10.2210/pdb5M8O/pdb
http://dx.doi.org/10.2210/pdb5M8Q/pdb
http://dx.doi.org/10.2210/pdb6ELS/pdb
http://dx.doi.org/10.2210/pdb6QXD/pdb
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Table 2. Summary of the data used for building and evaluation of the tyrosinase panel and the predictive models  
 

(a)All the cases models of classification and regression were developed except D5 AND D10 

(b) Modesl developed in the original studies 

 

DATA Molecules Comments Activitya Model typeb References 
D1 36 The data was divided into 3 

categories for classifier 
models to resemble the 
original paper. 

IC50 3D QSAR 
pharmacophore 
models 

7 

D2 26  IC50 3D QSAR 
Pharmacophore-
Based Virtual 
Screening 

41 

D3 20  %Ih 
20ug 

3D QSAR 9   

D4 9  IC50 Molecular 
docking  

22 

D5 44  Ki Ensemble-
Based Virtual 
Screening 

 42 

D6 48  IC50 Pharmacophore 
models and 
virtual 
screening 

18 

D7 56  IC50 3D-QSARs   .19 
D8 43  IC50 QSARs 20 
D9 15  %Ih 50 

uM 
Molecular 
Docking 

43 

D10 9  IC50 Molecular 
Docking s 

24 

D11 17  IC50 Pharmacophore 
model 

17 

D12 33  IC50 3D-QSARs 21 
D13 93 Review paper IC50  28 
D14 1422  IC50 QSARs 26,27 
D15 1813  IC50  This study 
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Table 3 : Summary of the Screening Data with the virtual hits and cluster analysis results 

Screenin
g Data Name Reference Molecules  

3D 
Structures 
No 
Generated 

 Molecules 
Do Not 
Pass The 
Time Out 
10 Min Docked 

Virtual 
Hits  

Virtual 
Hits After 
First 
Cluster 
Analysis 

Reference 

S1 
Killer and other 
collections 800 41 48 711 

75(16)
* 

18(2) http://www.msdiscovery.com/natprod.html 

S2 
African Drug 
Base 885  82 803 56(8) 

19(1) 66 

S3 HIM-herbal 663  126 537 69(11) 15(0) 67 

S4 NPACT 1423  222 1201 89(16) 16(1) 68,69 

S5 Nubbe 588  94 494 81(14) 
24(1) https://nubbe.iq.unesp.br/portal/nubbe-

search.html 

S6 Specs 1496  158 1338 
117(17
) 

30(2) https://www.specs.net/ 

S7 INDOFINE 144  23 121 11(3) 3(1) https://indofinechemical.com/ 

S8 
Selleck Natural 
Products 144  14 130 12(3) 

4(0) https://www.selleckchem.com/screening/natural
-product-library.html 

Total 6143 41 767 5335 
512(88
) 129(8) 

 

Average 767.875 5.125 95.875 
666,87

5 64(11) 16.125(1) 
 

*The number in parentesis are referred to the molecules that were selected as active for the second rule 
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Table 4: Summary of the results of the models with  test of 10 cross-validation  
  Regression Models Classification Models 
Data Model 

variant 
R2 MAE Machine 

Learning 
Technique 

Docking 
Parameters 

Tyrosinase 
proteins 

Q(%)  MCC Machine Learning 
Technique 

Docking 
descriptor
s 

Tyrosinas
e proteins  

D1 A 0.8898 28.2814 IBK 3 2 91.6667 0.868 IBK 3 3 
 B 0.8546 40.7042 SMOreg 6 4 94.4444 0.914 Stacking Classifiers: 

Logistic, IBK, 1R 
Metaclassifier: LDA 

3 3 

D2 A 0.6798 6.6499 SMOreg 6 4 92.3077 0.846 Stacking Classifiers: 
NaiveBayes, FLDA, 
Logistic 
Metaclassifier: 
NaiveBayes 

6 5 

 B 0.5513 8.2089 Linear 
Regression 

7 5 88.4615 0.772 Random Forest 2 2 

D3 A 0.7874 2.1567 SMOreg 4 3 100 1 FLDA 6 5 
 B 0.8059 2.1268 Additive 

Regression 
with 
Gaussian 
Processes 

4 3 100 1 Logistic 6 4 

D4 A 0.9598 3.855 IBK 4 4 100 1 IBK 2 2 
 B 0.9471 3.4726 SMOreg 2 2 100 1 FLDA 2 2 
D5 A 0.7501 2.3519 SMOreg 8 7      
 B 0.7822 2.2829 Additive 

Regression 
with 
Gaussian 
Processes 

8 7      

D6 A 0.8508 37.4137 Random 
Forest 

2 2 87.5 0.507 IBK 3 3 

 B 0.8515 34.1298 Additive 
Regression 
with 

2 2 89.5833 0.579 AdaBoost M1 with 
Random Forest 

3 3 
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Random 
Forest 

D7 A 0.7944 4543.55
28 

IBK 2 2 100 1 Logistic 6 6 

 B 0.8034 4945.26
52 

SMOreg 9 6 98.2143 0.960 FLDA 8 7 

D8 A 0.7423 15.653 SMOreg 6 4 76.7442 0.560 IBK 3 3 
 B 0.7347 16.0873 SMOreg 8 6 81.3953 0.640 Stacking Classifier 3 3 
D9 A 0.8102 8.7793 SMOreg 5 4 93.3333 0.853 Random Forest 1 1 
 B 0.8093 8.1805 Additive 

Regression 
with 
Gaussian 
Processes 

5 4 100 1 Adaboost M1 with LDA 5 5 

D10 A 0.7131 49.2231 SMOreg 3 3      
 B 0.7383 45.7662 Bagging 

with 
SMOreg 

3 3      

D11 A 0.9266 12.231 SMOreg 4 3 100 1 FLDA 5 4 
 B 0.9571 9.5399 SMOreg 3 2 94.1176 0.887 IBK 5 5 
D12 A 0.8745 1.6529 Staking 

Classifiers 
Gaussian 
Processes, 
SMOreg, 
IBK 
Metaclassifi
er: IBK 

7 5 100 1 FLDA 5 3 

 B 0.8734 1.5307 Staking 
ClassifiersLi
near 
Regression, 
SMOreg, 
MP5 
Metaclassifi
er: SMOreg 

7 5 96.9697 0.696 Logistic 1 1 

D13 A 0.8052 30.1996 SMOreg 7 6 80.6452 0.610 Random Forest 5 4 
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 B 0.8037 29.7797 Staking 
Classifiers 
Gaussian 
Processes, 
IBK, MP5 
Metaclassifi
er: MP5 

9 7 78.4946 0.568 SMO 13 6 

D14 A      79.4655 0.589 Stacking Classifiers: 
FLDA, IBK, Random 
Forest 
Metaclassifier: Logistic 

21 12 

 B      79.2546 0.586 Stacking Classifiers: 
SMO, IBK, Random 
Forest 
Metaclassifier: Logistic 

17 11 

 

  



   40 
  

Table 5: Statistics of the best base and consensus models of the validation with D15 taking in consideration accuracy, kappa statistic, 
and F1 Active Score for the 3 breakpoints 

Models/IC50 Accuraccy 

Correctly 
Classified 
Instances 

Incorrectly 
Classified 
Instances 

Kappa 
statistic 

Average 
Recall 

Average 
Precision 

Recall -> 
Inactive 

Recall -> 
Active 

Precision 
-> 
Inactive 

Precision 
-> Active 

F1 
precision 

Breakpoint of 1uM 
D10RB 0.846 1533 280 0 0.5 0.423 1 0 0.846 0 # 
D3RA 0.837 1517 296 0.02 0.506 0.549 0.984 0.029 0.847 0.25 0.051971 
D7CB 0.71 1287 526 0.082 0.55 0.536 0.781 0.318 0.862 0.21 0.252955 
D13CB 0.547 992 821 0.053 0.548 0.525 0.547 0.55 0.869 0.181 0.272367 
D8CA 0.413 748 1065 0.032 0.537 0.522 0.357 0.718 0.874 0.169 0.273601 
D15_P01A 0.782 1417 396 0.12 0.557 0.564 0.882 0.232 0.863 0.264 0.404 
D15_P01B 0.697 1264 549 0.114 0.574 0.549 0.752 0.396 0.872 0.226 0.359 
Breakpoint of 10uM 
D10RB 0.629 1141 672 0 0.5 0.315 1 0 0.629 0 # 
D3RA 0.628 1139 674 0.009 0.504 0.55 0.985 0.022 0.631 0.469 0.042029 
D7CB 0.614 1113 700 0.104 0.548 0.563 0.802 0.295 0.659 0.467 0.361588 
D7CA 0.58 1052 761 0.101 0.55 0.55 0.666 0.435 0.667 0.434 0.434499 
D12RA 0.371 672 1141 0 0.5 0.185 0 1 0 0.371 0.541211 
D12CB 0.397 719 1094 0.017 0.511 0.546 0.068 0.954 0.716 0.376 0.539405 
D15_P10A 0.65 1179 634 0.141 0.562 0.619 0.904 0.219 0.663 0.574 0.615 
D15_P10A 0.601 1090 723 0.162 0.583 0.58 0.655 0.51 0.694 0.465 0.557 
Breakpoint of 30uM 
D8CA 0.547 991 822 0.097 0.549 0.554 0.393 0.704 0.577 0.531 0.553 
D7CB 0.544 986 827 0.081 0.54 0.556 0.806 0.275 0.533 0.58 0.556 
D12RA 0.494 895 918 0 0.5 0.247 0 1 0 0.494 0.661312 
D12CB 0.514 932 881 0.039 0.52 0.587 0.08 0.96 0.67 0.504 0.660984 
D15_P30A 0.549 995 818 0.104 0.553 0.582 0.253 0.853 0.637 0.527 0.577 
D15_P30B 0.591 1072 741 0.18 0.59 0.594 0.691 0.489 0.581 0.607 0.594 
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Figure 1. Representation of the re-docking runs of TRP1 of Homo sapiens (grey) and Tyrosinase of Bacillus megaterium (turquoise). 
Crystalized conformation of mimosine, kojic acid (KA), tropolone, hydroquinone, SVF is shown in red, yellow, purple, orange, and 
black, respectively. The best-docked pose is depicted in green. The zinc and copper ions are presented as blue and orange spheres, 
respectively. I) 5M8N chain A complex-mimosine, run 1, pose 1, dock affinity -6.1, and RMSD strict 1.21 II) 5M8M chain A 
complex-KA, run 3, pose 7, dock affinity -5.0, and RMSD strict 0.25. III) 5M8T chain A complex-tropolone, run 2, pose 8, dock 
affinity -5.4, and RMSD strict 0.4. IV) 5I38 chain A complex-KA, run 3, pose 5, dock affinity -5, and RMSD strict 0.76. V) 5I3B 
chain A complex-hydroquinone, run 2, pose 4, dock affinity -5.1, and RMSD strict 1.29. VI) 5OAE chain A complex-SVF, run 3, pose 
9, dock affinity -6.4, and RMSD strict 2.07. A) Global cartoon representation B) Surface representation C) Residues in the interacting 
at 5 Å  
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Figure 2. Representation of Tyrosinase and TRP with several ligands. TRPs cartoons from H. sapiens are in grey (PDB ID: 5M8T, 
5M8M, 5M8M), from B. megaterium are in cyan (PDB ID: 5OAE, 5I3B, 5I38), and from A. bisporus is in yellow (PDB ID: 2Y9X). 
The zinc and copper ions are presented as blue and orange spheres, respectively. The co-crystalized positions are in green. 
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Figure 3. Dendrogram illustrating the results of the CA of the 17 tyrosinases and TRPs. From this CA, 13 PDBs were selected as 
representative and diverse: 2Y9X, 3KAN, 3NQ1, 3W6W, 5CE9, 5I38, 5M8M, 5M8Q, 5Z0D, 5ZRD, 6ELS, 6QXD, and PM0079416. 
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Figure 4. Screenshots of the SiliS-PREENZA software: (step 1) interface to select compounds in SDF or MOL files; (step 2) 
generation of 3D structures in the case the data is in 2D; (step3) interface to select and show the information of the predictive model(s) 
to be used of classification or regression, as well as to select the proteins for docking (s). There could also select to compute the 
applicability domain(s) and the time-out function; (step 4) Selection of the clustering method(s) and the descriptors used for it; and 
(step 5) interface for the processing of the results obtained.  
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Figure 5. Ches-S clustering in 30 groups of the 131 virtual hits selected and the 2514 reference molecules of TIs. The Virtual hits 
were compared and grouped into 22 clusters. The colors indicate compounds grouped by structural difference. The compounds 
marked inside each cluster are the virtual hits.  
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Figure 6. Pseudo-dendrogram (decision-making process) of virtual hits and their closest neighbor of Cluster 1.
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Figure 7. Schematic representation of the TIs more representative and the main virtual hits of 
each cluste



   49 
  

 



   50 
  

Figure 8: Representation of the virtual lead Liridine ID: ZINC0033812 docked against tyrosinases from Agaricus bisporus 
(PDB:2Y9X), Bacillus megaterium (PDB:3NQ1), Homo sapiens (PDB:5M8M and PM0079416) the last ones are TRP1 and a model 
of human tyrosinase respectively. Docked conformations of liridine, Arbutin, hydroquinone, kojic acid is shown in bright orange, 
hotpink, orange, yellow and brown respectively. A) Global cartoon representation B) Surface representation C) Residues in the 
interacting at 4 Å D) virtual lead with for 4 known tyrosinase inhibitors E) Representation of the molecular forces interacting with the 
lead compound  


