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Resumen
Los experimentos recientes han mostrado un interés significativo en moléculas biológicas como ADN, proteínas,

oligopéptidos y aminoácidos. Tales moléculas tienen en común su estructura quiral, la simetría de reversión al

tiempo y la ausencia de interacciones de intercambio magnético. La actividad de filtrado de espín se debe a

la interacción intrínseca espín-órbita o espín-órbita acoplada a la presencia de fuentes locales fuertes de campos

eléctricos. Aquí, derivamos un modelo analítico usando un hamiltoniano de amarre-fuerte para oligopéptidos que

incluye tantas interacciones de Rashba inducidas por la unión de hidrógeno e interacciones intrínsecas. Utilizamos

un esquema plegable de la teoría de la teoría de la perturbación de primer orden y derivamos el Hamiltoniano en

espacio recíproco con términos intrínsecos y Rashbas para evaluar la actividad de filtrado del oligopéptido. Cálculos

de primeros principios usando Teoría de Función de Densidad se realizan para estudiar la estructura electrónica de

la molécula quiral y su relación con el efecto del filtrado de giros. El transporte electrónico se mide utilizando el

método de funciones de Green fuera de equilibrio para estudiar la actividad de filtrado de espin en una superficie

de oro. El acuerdo cualitativo que obtenemos con experimentos recientes muestra el importante papel desempeñado

por la unión de hidrógeno en la actividad de giro, pero falta una descripción adecuada en el contexto de primeros

principios.

Palabras claves: espintrónica, quiralidad, oligopéptido, espín-órbita, teoría de función de densidad,
amarre fuerte, transporte electrónico.
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Abstract
Recent experiments have shown significant spin activity in biological molecules such as deoxyribonucleic acid

(DNA), proteins, oligopeptides, and aminoacids. Such molecules have in common their chiral structure, time-

reversal symmetry and the absence of magnetic exchange interactions. The spin activity is then assumed to be due to

either the intrinsic spin orbit (SO) interaction or SO coupled to the presence of strong local sources of electric fields.

Herein, we derive an analytical tight binding (TB) Hamiltonian model for oligopeptides that includes both intrinsic

SO and Rashba interactions induced by hydrogen bonding. We use a lowest order perturbation theory band-folding

scheme and derive the reciprocal space intrinsic and Rashba type Hamiltonian terms to evaluate the spin activity of

the oligopeptide. Ab initio calculations are performed to study the electronic structure of the chiral molecule and

its relation to the spin filtering e�ect. Electronic transport is measured using the non-equilibrium Green’s function

(NEGF) method for studying the spin activity in a Au surface. The qualitative agreement we obtain with recent

experiments shows the important role played by hydrogen bonding in spin activity, but proper description in ab initio

context is lacking.

Keywords: spintronics, chirality, oligopeptide, spin-orbit coupling (SOC), density functional theory (DFT),
tight binding (TB), electronic transport (ET)
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Chapter 1

Introduction

In Ecuador, technologies are mostly imported and then assembled locally, leaving no actual economic interest in

the fabrication of novel devices for technological development. The demand for technologies is covered mainly

by foreign industries and by the development in technology transfer centers. However, the production of highly

specialized devices is missing from Ecuadorian industry5. This demonstrates both the need for research and

applicable innovation within these areas, and the development of materials for the fabrication of electronic devices.

High-density devices, with high speeds and low energy consumption, are in high demand for the implementation

of several new technologies. In order to achieve considerable improvement in actual current power, a universal

memory with these characteristics is required. Possible solutions will implement random access memory (RAM),

devices that can manage and store dynamically working data and machine code. Two potential solutions are magnetic

memories6 and spin-transfer torque memory7. Both technologies o�er high density storage while using a permanent

magnet on a small scale at room temperature. However, such a small-scale fabrication can be problematic for their

production.

According to Moore’s law8, the density of transistors on a chip should double every two years, as a rule of thumb.

In the industry, this principle has been historically followed by the technological development of computational

power for individual chips. However, as the size of the processor continues to shrink, electrons tend to move faster,

producing a heat source. This e�ect has jammed the circuitry in smaller areas, losing the law’s exponential growth.9.

Enormous research e�orts are now being made worldwide in order to continue following Moore’s Law, but with

fundamentally di�erent methods, even going outside of classical physics’s established technologies, such as quantum

computing. As processes are computed in physically smaller devices, quantum mechanical e�ect come into play and

may even be controlled at the atomic level. Quantum computing, which promises sub-exponential time for certain

types of calculations, is advancing to achieve quantum supremacy over classical computing by taking advantage of

quantum e�ects.

Several solutions have been raised during the years for achieving greater computational power by crafting

more powerful devices or processors. One candidate is 2D-graphene-like compounds, such as transition-metal

dichalcogenides. These atomically thin compounds are capable of being the building blocks of next-generation

1
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atomic circuits10. Another promising candidate is spintronics, which allows computing by flipping electron spins

rather than by moving electrons, thus avoiding heat production11. This opens the possibility of developing nanoscale

devices for information storage and magnetic sensing with improved performance by considering the spin as the

fundamental piece of information for computation.

In 1988, a giant magnetoresistance was found in a trilayer heterostructure composed of a thin non-magnetic layer

“sandwiched” between two ferromagnetic electrode. This was the first experimental realization of a spin valve12.

Since then, a range of applications of spintronics have arisen, from read-head devices, to non-volatile magnetic

memories (MRAM), to spin states as quantum bit, to nano-oscillators for applications in wireless networks13. As

the field has evolved, there has been a transition from the usage of inorganic metals and semiconductor-based spin

valves, to molecular-organic-based ones.

Organic molecules o�er convenient electronic characteristic, such as weak spin scattering mechanics and long

spin life time, on the order of seconds. This makes them ideal for storing and manipulating spin degrees of freedom14.

Other perks compared to inorganic conductors and semiconductors are their capability to be modified, processability,

considerably low density, and high flexibility15.

Chirality refers to a fundamental symmetry property of particles, molecules, and structures such as hands. This

is more formally described as the lack of parity symmetry. This kind of enantiomeric class of molecules shows

fascinating behavior when they react with other chiral molecules, resulting in di�erent interactions for di�erent

combinations. In spintronics, chirality plays an interesting role in determining the magnetic states within the molecule.

Since the spin can be used as an additional degree of freedom for electronic processes, the interactions between

chirality and spin contribute via an enantiomeric dependence of the electrical resistance in chiral conductors16.

The electron’s magnetic moment or spin is a quantum property induced by a magnetic field. The Pauli exclusion

principle establishes that paired electrons should have opposite spins, enabling the formation of atomic states and

chemical bond formation. Controlling spin states or orientation has proved to be a challenge. Typically, spin states

can be manipulated only by external magnetic fields or by proximity to ferromagnetic or paramagnetic materials.

In 1999, Ray et al.17 discovered spin filtering in organic chiral molecules without the use of a conventional per-

manent magnet. This e�ect is the so-called chiral-induced spin selectivity (CISS). Despite weak spin-orbit coupling

(SOC) and nonmagnetic properties, organic chiral molecules exhibit strong spin selectivity at room temperature.

Göhler et al.18 first reported the CISS e�ect in self-assembled monolayers of double-strand deoxyribonucleic acid

(dsDNA) adsorbed on Au surfaces, and its length dependence. Later, Mishra et al.19 reported spin-dependent photo-

electron transmission and electrochemical behavior on a purple membrane containing bacteriorhodopsin deposited

on gold. Further experiments shows spin-dependent electronic transport (ET) in single helical molecules20. This

behaviour seems to be typical for chiral organic molecules, and allows the manipulation of spin rather than charge

without a permanent magnet facilitating its production and minimization. Chiral molecules have received enormous

attention because of interesting features involving their ET and tunneling as a non-equilibrium process. It has

been proposed that in equilibrium, chiral molecules like deoxyribonucleic acid (DNA) or oligopeptides exhibit zero

spin-polarization in the ground state because of an enantiospecific interaction with a non-chiral surface21

Atomic spin orbit (SO) interaction, even of small magnitudes, can be produced by inelastic e�ects, resulting

in high polarization20,22–24. The qualitative explanation for spin activity, in the absence of time-reversal symmetry
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breaking interactions, may be studied from one of three theoretical perspectives. Firstly, by using tight binding

(TB) models to describe ET due to helical molecules such as oligopeptides and DNA25–27, secondly, by employing

spin dependent scattering theory23 and thirdly, by applying models that include significant SOC terms from the

metal substrate as spin filtering sources by angular momentum selections28. Although the atomic SO coupling of

carbon-based molecules is quite low (⇠ 3.5 meV), recent work has shown that helical organic molecules exhibit high

electronic polarization and spin filtering capabilities1,29–31.

Recently, important attention has been paid to electron spin polarizing properties of biological chiral molecules

such as amino acids (AAs), oligopeptides, proteins, and DNA32 18 33 34. The CISS e�ect as a spin activity can be

explained by two main interactions: time-reversal symmetry breaking35, and the atomic spin-orbit interaction22 23.

Experimentally, several techniques have been used to study the spin filtering of chiral molecules. Of these,

conductive probe atomic force microscopy (CP-AFM) is an e�ective tool to measure and characterize electrical

spin activity on the nanometer scale. Other methods, including magnetic conductive atomic force microscopy (mc-

AFM)32, spin-dependent electrochemistry (SDE),36 and spin-dependent charge polarization (SDCP)37, may be used

to measured spin-dependent conduction and spin-dependent charge polarization. Spintronics in chiral molecules

provides a powerful source of spin polarization for high-density materials. Novel applications involving chiral

molecules include light-induced magnetic devices38 and molecular semiconductor interfaces to control and detect

spin activity for quantum information applications39.

1.1 General and Specific Objectives

The general goal of this thesis is to provide a qualitative explanation of the CISS e�ect in oligopeptides through ab

initio and semi-empirical theoretical methods. Direct correlation between ab initio calculations and TB models is

somewhat lacking in the literature, due to inaccurate representations of the interactions in the TB model and at an ab

initio level. Specifically, we will employ ab initio density functional theory (DFT) and a simple semi-empirical TB

model to provide a comparative view, in order to give a better understanding of the properties of polarization through

the SO interaction between atoms. As an specific goal of this work, we want to address the length-dependence of

the spin dynamics by exploring the wavefunctions involved.

1.2 Overview

This thesis is divided into five chapters and five appendices. We begin by providing in Chapter 2 a theoretical

background to DFT, the Kohn–Sham (KS) formalism, exchange and correlation (xc) functional and a description

of the approximations most often used. Besides, linear combination of atomic orbitals (LCAO) and projector

augmented wave (PAW) are described for further understanding of theory and methods implemented in grid-based

projector augmented wave method code (GPAW), the main package used in this thesis for ab initio calculations.

Additionally, interaction theory-based in tightly bound orbitals is presented for calculating an e�ective Hamiltonian

for any periodic system. Transport calculation is also explained in the context of DFT using propagators. Finally in

this chapter, a description of oligopeptides and the physical properties of their geometry is given.
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In the third chapter titled Methodology, TB model for a chiral molecule, Spin-DFT calculations for oligopeptide,

non-equilibrium Green’s function (NEGF)-DFT method for ET are described in detail for further use in the Result

& Discussion section.

The fourth chapter, Results & Discussion has two separate parts: we present and discuss TB e�ective Hamiltonian

for a infinite oligopeptide, its Bloch Space representation and in vicinity of electronic half filling dynamics. The

second section covers the ground state of the oligopeptide in gas phase, the electronic properties of the ↵ helix

alanine oligopeptide (↵-HAO)@Au(111), and the spin resolved ET at room temperature.

Finally, in the fifth chapter, Conclusions, we state the length dependent metallic properties of oligopeptides, and

further consideration for the observation of CISS e�ect in the ab initio context. Also, we state the importance of SO

e�ects in the chiral molecule for CISS. We discusses future work covering structural and chemical considerations

for our model.

In the appendices, we present the SK parameters and the Full Hamiltonian used in the e�ective Hamiltonian, as

well as the LCAO Hamiltonian manipulation for ET.



Chapter 2

Theoretical Background

2.1 Density functional theory

2.1.1 The Schrödinger equation

According to Quantum Mechanics, any property related to the electronic structure of atoms or molecules may be

described by system’s wave function  . Both the system’s wave function  and total energy E may be obtained

by solving the time-independent Schrödinger equation, Ĥ = E . This depends on the position and spin of the

system’s Ne electrons and Nn nuclei, so that

 =  (r1, s1; r2, s2; . . . ; rNe , sNe ; R1, S 1; R2, S 2; . . . ; RNn , S Nn ), (2.1)

where ri and si are the position and spin of the ith electron, respectively, and RI and S I are the position and spin of

the Ith nuclei. The corresponding many-body Hamiltonian Ĥ may be decomposed in the form

Ĥ = T̂e + V̂ee + V̂en + T̂ + V̂nn, (2.2)

where these terms correspond to the kinetic energy of the electrons, the repulsive electron–electron interaction, the

attractive electron–nuclei interaction, the kinetic energy of the nuclei, and the repulsive nuclei–nuclei interaction,

respectively. This Hamiltonian operator may then be expressed in terms of ri, si, RI , and S I as

Ĥ = �
NeX

i=1

1
2
r

2
ri
+

NeX

i=1

NeX

j=i+1

1
|ri � r j|

�

NeX

i=1

NnX

I=1

ZI

|ri � RI |
�

NnX

I=1

1
2MI
r

2
RI
+

NnX

I=1

NnX

J=I+1

ZIZJ

|RI � RJ |
, (2.3)

where MI , and ZI are the atomic mass and number of the Ith nuclei, respectively. Herein we have employed

atomic units, equating the electron mass, proton charge, Planck’s reduced constant, and Bohr’s radius to one

(me = e = } = a0 = 1). Note that (2.3) may be defined under an appropriate boundary condition for a regular infinite

solid, then solving Ĥ = E , where E is the total energy of the system. In the following section we will show that

the final three terms of (2.2) and (2.3) may be incorporated into an external potential, yielding a purely electronic

Hamiltonian Ĥe.

5
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2.1.2 Born–Oppenheimer approximation

It is well known that protons and neutrons, as individual particles, have approximately 1800 times the mass of an

electron. In terms of kinetic energies, electrons have a much more rapid response to changes in their surroundings

with respect to the nuclei. This key observation means that the physical system may be described by fixing the

positions of the atomic nuclei and solving a purely electronic Hamiltonian. Then, for a given set of electrons moving

within the field of a set of fixed nuclei, we can find the lowest energy state, called the ground state, of the electrons.

This explicit separation of electronic and nuclear parts of the many-body Hamiltonian in (2.2) is the so-called

Born–Oppenheimer (BO) approximation40. This may be written formally as,

 (r1, s1; . . . ; rNe , sNe ; R1, S 1; . . . ; RNn , S Nn ) =  e(r1, s1; . . . ; rNe , sNe ) ⌦  n(R1, S 1; . . . ; RNn , S Nn ), (2.4)

where  e and  n are the electronic and nuclear parts of the wavefunction, respectively. The electronic motion can

be solved first, calculate the energy of the system in that configuration, and later, compute for the nuclear part in two

distinguishable stages. Due to this simplification, the many-body Hamiltonian of (2.2) may be rewritten as a purely

electronic Hamiltonian which only depends parametrically on the nuclear coordinates, resulting in

Ĥe = �

NeX

i=1

1
2
r

2
ri
+

NeX

i=1

NeX

=i+1

1
|ri � r j|

+ VR1,...,RNn
ext (r1, . . . , rNe ), (2.5)

where the external potential Vext includes interactions of the electrons with any external fields or sources. For

example, through V̂en we can model the nuclei electromagnetic interaction with the electrons, and this is accounted in

the external potential term, Vext. In this way the electronic wavefunction depends only parametrically on the ”frozen”

nuclear positions, RI . Accordingly, the ”frozen-nuclei” time-independent Schrödinger equation is

Ĥe e(r1, s1; . . . ; rN , sN) = "(R1, S 1; . . . ; RNn , S Nn ) e(r1, s1; . . . ; rNe , sNe ). (2.6)

Equation 2.6 is one solution of a collection { e} with eigenvalues {"}. Each value correspond to a solution of the

electronic potential energy of the complete system. Neglecting the kinetic energy of the nuclei, we obtain

Ĥe = Ĥe n(R1, S 1, . . . ,RNn , S Nn ) e(r1, s1, . . . , rNe , sNe )

=  n(R1, S 1, . . . ,RNn , S Nn )Ĥe e(r1, s1, . . . , rN , sN)

= "(R1, S 1, . . . ,RNn , S Nn ) .

(2.7)

In this way we may completely decouple the electronic and nuclear parts of the Hamiltonian. Moreover, the much

more massive nuclei may be essential treated as classical point particles to a high degree of accuracy. Henceforth,

we will use Ĥ,  , and E when referring to the electronic Hamiltonian Ĥe, wavefunction  e, and eigenenergies ".

Although the many-body electronic wave function provides all the information needed, its exact calculation can only

be performed for a few atoms.

2.1.3 Periodic systems

In a physical system, such as a solid or a molecule, the number of electrons can be an obstacle to obtaining a

physical description of the system, due to the correlated nature of electrons. This problem may be reformulated
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using a periodic Schrödinger equation. In the following we shall consider a system of one coordinate r for notational

convenience, however this derivation may be easily extended to a many-body wave function as well. Let us define

the shape of a cell that is repeated periodically in space in a material, the supercell, using primitive lattice vectors

a1, a2, a3. Felix Bloch41 stated that the electronic wavefunction for any system with a periodic potential, i.e., lattice,

may be expressed as a sum of plane waves products, by the same periodicity as the lattice. Mathematically,

 n,k(r) = eik·run,k(r), (2.8)

where k is a wavevector within the first Brillouin zone (BZ) and un,k(r) is a function with the same periodicity in

space as the supercell. That is, un,k(r+Rn) = un,k(r), where Rn is a lattice vector of the form Rn = n1a1+n2a2+n3a3

for integers n ⌘ {n1, n2, n3}. This theorem means that it is possible to solve a Schrödinger equation for each value of

k separately. This yields a relation of correspondence: if the system is periodic, there should also exist a periodic

external potential which is also invariant under the translation Rn
42 41,

vext(r + Rn) = vext(r). (2.9)

The unit cell is then a parallelepiped formed by the lattice vectors, and the unit cell’s volume is

⌦ = |a1 · (a2 ⇥ a3)| . (2.10)

The kinetic operator T̂e and the repulsive electron–electron interaction V̂ee in the many-body Hamiltonian remain

una�ected under the translation Rn. This means that the eigenstates of this Hamiltonian have the same translational

symmetry. We may then rewrite (2.8) and (2.9) as
"
�

1
2
r

2
r + vext(r)

#
 n,k(r) = "n,k n,k(r), (2.11)

here, the wavefunction  n,k(r) satisfy Bloch’s theorem in all the reciprocal space.

2.1.4 Reciprocal space

In the same way that we defined primitive lattice vectors a1, a2 and a3 in real space, we may define their representation

in reciprocal space as

bi = 2⇡
a j ⇥ ak

⌦
, (2.12)

where i, j, k 2 {1, 2, 3} and i , j , k. These bi form a complete set of three primitive reciprocal lattice vectors.

In (2.11), the wavevector k reflects the periodicity of the system and the integer n corresponds to independent

eigenstates of the system at di�erent eigenvalues. Moreover, for any wavevector k within the first BZ, there is

a complete set of electronic bands n. For example, the electronic band structure for any solid can be computed

by considering the eigenvalues "n,k, and plotting them across a reciprocal k-space specific path. We may restrict

consideration to k`
k` =

`1

N1
b1 +

`2

N2
b2 +

`3

N3
b3, with �

Ni

2
 `i <

Ni

2
, (2.13)
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where `i and Ni are positive integers. By applying these restrictions, we have defined the first BZ in reciprocal space.

Since the first BZ covers all the reciprocal unit cell, any k wavevector outside of these constraints has already been

included.

Many properties of a solid can be calculated by the evaluation of integrals over the BZ in reciprocal space. By

using a discrite set of k-points, we can approximate accurately to these integrals43. To illustrate this, the integral of

a function F(k) over the BZ may be approximated as

1
⌦BZ

Z

BZ
F(k)dk ⇡

X

k
wkF(k), (2.14)

here ⌦BZ is the definition of the BZ volume, and wk is the weight in the sum of the k-point k. Approximately, the

integral is similar to the weighted finite sum over the k-points of the first BZ. It is important to note that through the

application of the symmetries of the unit cell, e.g., time-reversal symmetry, we may remove equivalent k-points from

the sum by appropriately adjusting their weights wk. The resulting unit cell is the so-called irreducible Brillouin

zone (IBZ). For highly symmetric systems, we may significantly reduce the number of k-points for which we need

to perform calculations.

2.1.5 The Hohenberg–Kohn theorem

The task of computing the solution for all the electrons in a solid an molecule is computationally expensive. A

solution to this problem by calculating the total energy as a function of the electron density at one position r, i.e., 3

variables, rather than a wave function dependent on N positions ri, i.e., N variables. The electron number density

n(r) for a spin-paired system in the limit T ! 0 may be written in terms of the individual electron wavefunctions

 i(r) as

n(r) = 2
Ne/2X

i=1

 ⇤i (r) i(r), (2.15)

where the summation is over all Ne/2 doubly-occupied wavefunctions, that is, the probability of an electron occupying

an individual wave function  i(r) being located at position r. The factor of two appears because all electrons have

been assumed to doubly occupy each eigenstate of the Hamitonian. This comes from the Pauli exclusion principle,

which states that at most two electrons of opposite spin, i.e., " and #, may occupy each eigenstate of the system44.

The first Hohenberg–Kohn (HK) theorem, assert that there exists a one-to-one mapping between the ground-state

wave function and the ground-state electron density45 of a solid:

Theorem 1. The ground state of an interacting many-particle system with a given fixed inter-particle interaction is

a unique functional of its electron density ⇢(r) = �n(r).

The ground-state electron density then determines by itself all physical properties, including the wave function

and the eigenenergies, of the ground state. In this way, the ground-state energy E is a functional of the electron

density as E[n(r)], which may be obtained by knowing the inter-particle interaction or the external potential vext(r).
The proof of this theorem can be found in the Ref. 46. As the ground state functional is unique for the ground state
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density, n0(r), we can assert that

| 0i = | [n0]i . (2.16)

Such a functional dependence allows one to compute any ground state observable Ô as a density functional,

O[n] ⌘ h [n]|Ô| [n]i. (2.17)

The ground state energy, may be expressed as,

E[n] ⌘ h [n]|Ĥ| [n]i = F[n] +
Z

d3rvext(r)n(r),

where F[n] ⌘ h [n]|
⇣
T̂e + V̂ee

⌘
| [n]i,

(2.18)

as the most relevant density functional for the electronic description of a system. In (2.18) F[n] represents the

universal part of the ground state energy functional, and vext enters as an input to E[n]. Another fundamental part of

density functional theory (DFT) describes the minimum principle of the ground state energy functional E[n]. The

second HK theorem defines this important property of the functional:

Theorem 2. "The electron density that minimizes the energy of the overall functional is the true electron density

corresponding to the full solution of the Schrödinger equation"45.

As the theorem states, all electronic densities n00(r) , n0(r), where n0 is defined as its ground state density

corresponding to external potential vext,

E[n0] < E[n00] () E0 = min
n2N

E[n], (2.19)

hereN is number of all the sets set of all ground state densities for each vext. This definition is a consequence of the

so called Ritz variational principle, that refrains that the ground state | 00i for the density n00 does not match to | 0i.

For these reasons, it is possible to vary the electron density n00(r) until the energy of the functional is minimized,

reaching the ground state electron density n0(r).
The functional E[n] is only defined for the domain restricte to the electronic densities in N , as obtained by

solving (2.6)47. The energy functional can be broken into four main contributions

E[n] = T [n] + EH[n] + Eext[n] + Exc[n], (2.20)

here, T [n] is kinetic energy functional of each n, EH[n] is Hartree interaction energy functional or the so called

self interaction contribution48, Eext[n] is the external potential energy functional , and Exc[n] is the exchange and

correlation (xc) energy functional. The xc functional accounts for the complicated e�ects of the interactions not

present in T , EH, or Eext.

2.1.6 Self-consistent Kohn–Sham system

The idea of DFT is to introduce a one-electron Schrödinger equation of a system with non-interacting electrons that

has the same electron density as the real system. In other words, to create a direct mapping between the interacting
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(1) Choose Initial Guess for Density

n0(r) ! ñ(r)

(2) Build an E�ective Potential

ve�[ñ](r) = vext(r)+
Z

ñ(r0)
|r � r0|

d3r0+vxc[ñ](r)
ñ0(r) ! ñ(r)

(3) Solve for Single-Electron

Schrödinger Equation
 
�

1
2
r

2 + ve�[ñ](r) � ✏i

!
'i(r) = 0

(4) Compute the Electron Density

ñ0(r) = 2
N/2X

i

|'i(r)|2
(5) Check Self Consistent?

ñ0(r) ⇡ ñ(r)! n(r)

Output Ground State

Density n(r), Energy E0, and Forces FI

No

Yes

Figure 2.1: KS self-consistent scheme. Adapted from Ref. 50.

many-body problem and a suitable non-interacting system. We call the latter the Kohn–Sham (KS) system, as in

Ref. 49. The ground state density n0(r), as well as its corresponding energy E0 and nuclear forces FI may be found

by using self consistent field equations and density functional methods, . The KS scheme has five self-consistent

steps:

1. Define an initial, trial guess for the electron density ñ(r).
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2. The e�ective potential

ve�[ñ](r) = vext(r) +
Z

ñ(r0)
|r � r0|

d3r0 + vxc[ñ](r), (2.21)

is calculated as a function of ñ(r), here the first term correspond to the external potential for the fixed nuclei

vext(r), and the second and third term corresponds to the Hartree potential and the xc potential vxc, respectively.

3. The non-interacting picture of Schrödinger equation is solved to obtain the KS wavefunctions 'i. Then e�ective

potential ve� is used for computing the trial density ñ(r):
 
�

1
2
r

2 + ve�[ñ](r) � ✏i

!
'i(r) = 0. (2.22)

4. The newly computed KS electron number density ñ0(r) is obtained from the KS wavefunctions of the last step.

Assuming the system is spin-paired, the electronic number density may be computed by summing the N/2
lowest energy doubly-occupied wavefunctions 'i(r)

ñ0(r) = 2
N/2X

i=1

|'i(r)|2. (2.23)

5. Compare the outputted KS electron number density ñ0(r) with the electron density used in solving the KS single

electron calculation ñ(r). Steps (2), (3), and (4) are repeated self-consistently until the density is converged,

that is, both outputted and inputted densities are approximately equal within a defined accuracy. Once this is

achieved, the outputted self-consistent electron density and eigenenergies ✏i are those of the ground state of

the system, within the prescribed accuracy. This cycle is also shown in Fig. 2.1.

The KS wavefunctions 'i yield the electron density of the fully-interacting system and ✏N/2, the eigenvalue

corresponding to the highest occupied molecular orbital (HOMO), is the ionization energy. However, the KS

wavefunctions and other eigenenergies themselves have no direct theoretical connection to the wavefunctions and

eigenergies of the fully interacting system. At last, the ground state energy E0 can be used from KS scheme results

to solve for the electronic properties of the system:

E0 =

N/2X

i=1

✏i + Exc[n] �
Z

vext(r)n(r)d3r + 1
2

"

n(r)n(r0)
|r � r0|

d3rd3r0. (2.24)

The results of Kohn, Hohenberg, and Sham are remarkable for calculating the ground state of the real system by

finding a self-consistent solution to a set of single-particle equations. However, the critical complication comes from

the fact that the xc potential vxc is not known for many body systems.

2.1.7 Spin-polarized density functional theory

For non-interacting electrons, if an induced magnetic field is applied, it generates a coupling to the electron spin

and the electronic orbital current. To describe the magnetic properties of metals and even organic materials, a
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spin-DFT framework is required withing the KS scheme51. This method allows us to predict and understand the

band magnetism of electrons in molecules at finite temperature. In this DFT implementation, the spin up (") and

spin down (#) densities n",# are expressed in terms of the KS spin orbitals,

n",#(r) =
(Ne±µ)/2X

i =1

��� ",#(r)
���2, (2.25)

where Ne is the number of electrons and µ is the total magnetic moment. The KS equations in term of the orbitals

may then be written as, "
�

1
2
r

2
r + v",#e� (r)

#
 ",#n,k(r) = "",#n,k n,k(r), (2.26)

for each spin eigenenergy "",#n,k. The form of the spin dependent e�ective potential is, then

V",#e� =
1
2

Z
n",#(r0)
|r � r0|

dr + V",#ext (r) + V",#xc (r) (2.27)

where V",#xc (r) and V",#ext (r) are the xc and external potential, respectively. In an external magnetic field H, the external

potential Vext contains a magnetic field term ±(µBH) that, if is negative (positive), it will favor energetically the spin

up (down) electron compared to the minority spin down (up) electrons. The xc potential V",#xc is then defined as,

V",#xc (r) =
�Exc[n"(r), n#(r)]

�n",#(r)
. (2.28)

The xc energy can have di�erent values for each spin species, even without an external magnetic field. The total

functional or Hohenberg–Kohn–Sham spin-density functional is defined as,

E[n", n#] = T [n"] + T [n#] +
1
2

"

n"(r)n"(r0)
|r � r0|

drdr0 + 1
2

"

n#(r)n#(r0)
|r � r0|

drdr0

+
1
2

"

n"(r)n#(r0) + n#(r)n"(r0)
|r � r0|

drdr0 +
Z

V"ext(r)n"(r)d3r +
Z

V#ext(r)n#(r)d3r + Exc[n"(r), n#(r)], (2.29)

where T [n",#] is the kinetic functional, the next terms are the Coulomb functionals, the interaction energy with the

e�ective potential Ve f f and the xc energy for each spin state.

In order to solve the KS scheme, we just need to obtain the minimum of the functional in Eqs. 2.29, 2.26, by an

iterative scheme as in Fig. 2.1 to find the ground state spin matrix that yields to the ground state-energy, and find

each set of spin eigenenergies52,53.

2.1.8 Exchange and correlation functionals

Since the HK theorem guarantees the existence of vxc, it could be numerically approximated to calculate the ground

state energy, e.g., by stochastic methods54.
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Local density approximation

One of the first xc energy functionals, proposed originally by Slater55 to simplify the Hartree-Fock (HF) calculations

and first optimized by Perdew and Zunger56, is the local density approximation (LDA) xc functional. They considered

a homogeneous electron gas (HEG), so that the electron density is only a function of the density observed at its

position. The LDA xc-energy density is then computed as,

ELDA
xc [n] =

Z
✏HEG
xc (n0 = n(r))d3r. (2.30)

The LDA is simply a function of the local density, so it can be easily used in the KS scheme47,

vLDA
xc (r) =

�ELDA
xc [n]
�n(r)

. (2.31)

Physically, the vLDA
xc has an extremely short range due to its local description. Despite considering only a completely

homogeneous electron density in its construction, it has been surprisingly successful in reproducing experimental

results. The LDA itself respects the sum rule of one electron being excluded from the surroundings of other electrons.

Besides this, LDA benefits from a fortuitous error cancellation. LDA generally overestimates the correlation energy

and underestimates the exchange energy, but in such a way that these errors tend to cancel each other out.

However, LDA is known to have several disadvantages. For example, LDA tends to overestimate molecular

binding57, yielding upshifts in the orbital energy spectrum58, underestimate band gaps59, among others. Here a

band gap is defined as the energy di�erence in energy between the states associated to the conduction band minimum

(CBM) and the valence band maximum (VB).

Generalized gradient approximation

For a more complete description of non-homogeneities in the electron density, a gradient-dependent semi-local

approximation is often used. The generalized gradient approximation (GGA) is based on slow density variations

around the electron coordinates. The GGA exchange functional generally takes the form60,

EGGA
x [n] =

Z
✏HEG
x (n0 = n(r))Fx [s(r)] d3r, (2.32)

where ✏HEG
x is the exchange energy density of a HEG (⇠ n4/3), n(r) is the electron number density, Fx is an

enhancement factor, and s is the dimensionless generalized density gradient,

s =
|rn|
2kFn

, (2.33)

with kF = (3⇡2n)1/3. Eq. (2.32) is clearly spin-unpolarized, although a spin-polarized formulation may be derived61.

The enhancement factor can be used to recover the HEG limit as

Fx[s] = 1 + µs2 + . . . (s! 0). (2.34)



14 �.�. REPRESENTATIONS OF THE Kohn–Sham WAVEFUNCTIONS

Then, the correlation functional can be computed as HEG limit states, as

EGGA
c [n] =

Z
n(r)

 
✏HEG
c (n0 = n(r)) +

⇡

8kF
�
|rn(r)|2

n(r)2 + · · ·

!
d3r, (2.35)

where ✏HEG
c is the correlation energy density of the HEG and � is a coe�cient for tuning the gradient approximation.

Originally, GGA functionals were empirical, obtained by fitting experimental data, so that their applicability was

limited to specific systems. However, the gradient corrected nonlocality functional for a generalized system, the

Perdew-Burke-Ernzerhof xc functional (PBE), has a general applicability, making it suitable for DFT calculations of

systems in general61.

Perdew-Burke-Ernzerhof xc functional

PBE takes advantage over the LDA since it includes heterogeneity by adding two corrections by using the generalized

gradient functional. The PBE is defined by the two fundamental parameters empirically,

µ = 0.21951 and � = 0.0066725. (2.36)

As a result, PBE reduces significantly the over binding of the local spin-density approximation (LSDA) but over-

estimates lattice constants. The PBE xc functional has been used throughout this thesis, and further literature and

benchmarking of PBE may be found in Refs 62 and 63.

Perdew-Burke-Ernzerhof xc functional for solids

Perdew-Burke-Ernzerhof xc functional for solids (PBEsol) is a revised version of PBE-GGA that incorporates

additional equilibrium properties of dense solids and their surfaces. Specifically, PBEsol has been designed to

provide an improved description of lattice constants over PBE. To do so the main PBE parameters were modified,

µ = µGE = 0.1235 and � = 0.046, (2.37)

where µGE provides a more accurate gradient expansion for slowly varying electronic densities. This functional

reduces the dependence on error cancellation by providing accurate xc energies of surfaces. A number of tests for

solids have been performed in Ref. 64.

2.2 Representations of the Kohn–Sham wavefunctions

A wavefunction is a quantum description of the “state” of a system. As an element of a Hilbert space, it belongs

to a vector space with an inner product. Therefore, a linear combination of wavefunctions {�i} is also a quantum

description of a given system, and an appropriate basis set. In such a basis set an arbitrary wave function  (r) may

be written as,

 (r) =
X

i

ci�i(r), (2.38)
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where cn,i are the wave function coe�cients, which must satisfy the normalization condition
P

i j c⇤i c jh�i|� ji = 1, or
P

i |ci|
2 = 1 when the basis functions are orthonormal, i.e., h�i|� ji = �i j. In practice, the summation over elements

of the basis is truncated to find the solution of the KS equation, yielding a finite density matrix used to solve the

eigenvalue problem.

DFT calculations generally employ one of three methods for representing the periodic part un,k(r) of the KS

wavefunctions 'n,k(r) and the electron number density n(r): finite di�erence (FD), plane wave (PW), or linear

combination of atomic orbitals (LCAO). FD representations calculate these functions on a finite real space grid

point mesh, employing higher-order interpolation to obtain their values at intermediate points. A PW representation

instead uses the discrete Fourier transform to represent these functions in reciprocal space, ensuring they are periodic.

Finally, LCAO uses a combination of pre-determined basis sets, typically including hydrogenic-like orbitals localized

at each nucleii to represent these functions.

Since LCAO is the basis set used in the Thesis, it will be expanded further in the next sections.

2.2.1 Plane wave

For periodic systems, it is often convenient to represent the periodic part of the wavefunctions, un,k(r), from Bloch’s

theorem (2.8), using its discrete Fourier transform from in reciprocal space as functions of k rather than in real space

as functions of r. For these PW calculations we employ the reciprocal translation vector as Gm = m1b1+m2b2+m3b3

for any integers m1, m2, and m3, where m = {m1,m2,m3}. Furthermore, the periodicity of uk(r) means that the plane

wave in (2.8) can be expanded in term of a special set of PWs, so that the wavefunction  n,k(r) may be expanded as,

 n,k(r) =
X

Gm

ck+Gm ei(k+Gm)·r, (2.39)

i.e., employing a discrete Fourier transform. Solving for the kinetic energy in (2.11) we obtain

Ek,Gm = 2⇡2
|k +Gm|

2, (2.40)

where k is the wave vector describing long-range electronic behavior and Gm is the reciprocal translational vector,

which describes local behavior within the BZ. The larger the number of Gm we include, the finer the description

of the wavefunction will be. Gm allows you to described local behaviour, and the k vector allows us to assign a

long-range vectorial description to the electron’s eigenvectors, normally larger that the unit cell. It is reasonable to

expect that the lower energy solutions will be the most physically meaningful. For this reason, we employ a cut-o�

energy Ecut for the plane wave expansion of the wavefunctions, defined as,

Ecut = 2⇡2G2
cut. (2.41)

The infinite sum in (2.39) then reduces to

 n,k(r) =
X

|Gm+k|<Gcut

ck+Gm ei(k+Gm)·r. (2.42)
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In general, a finite number of sampling points in the first BZ is required for performing calculations using Bloch

waves within KS scheme. Each orbitals vary smoothly with respect to the set of k chosen, and calculations need to

be converged for each one of the sampled k-points. We employ a Monkhorst-Pack sampling65 of special66 k-points

as it is an unbiased method to select these points in an homogeneous mesh

k(n1, n2, n3) =
3X

i=1

2ni � Ni � 1
2Ni

b1, (2.43)

where ni =2 {1, . . . ,Ni} and Ni corresponds to the number of points in the bi direction.

2.2.2 Linear combination of atomic orbitals

A LCAO representation is based on the premise that molecular orbitals can be expressed as a quantum superposition

of atomic orbitals67, �⌫, so that

 n,k(r) =
NnX

I=1

⌫IX

⌫=1

cI,⌫
n,keik·r�⌫(r � RI), (2.44)

where Nn is the number of nuclei, ⌫I is the number of basis functions �⌫ and RI is the position of the Ith atom. LCAO

allows one to define the wave function locally in a natural way, making them ideal representations for transport

calculations. Although the use of LCAO cannot be systematically converged to the ground state, LCAO has proven

to be quite reliable and e�ective for describing systems with large numbers of atoms per unit cell 68, since the

computational cost scales only with the system size and is independent of any vacuum regions69. Furthermore,

the real advantage of LCAO is the use of known functions and far fewer unknown coe�cients compared to PW

methods70. The DFT package used herein, grid-based projector augmented wave method code (GPAW)71, o�ers

the possibility to work with LCAO basis sets and their generation72. A mathematical formulation of these atomic

orbitals, �⌫={n,l,m}(r), can be defined as the product of characteristic radial function Rnl(r) and spherical harmonics

Ylm(✓,') as

�nlm(r) = Rnl(r)Ylm(✓,') (2.45)

where r = {r, ✓,'} are the spherical coordinates of the hydrogenic-like particle (2.38), summation index ⌫ runs over

n, l, and m quantum numbers of the state. These basis functions are computed by solving each of the all-electron KS

equations73,74.

2.2.3 Basis sets generation for linear combination of atomic orbitals

The basis functions �nlm(r) of (2.45) are atom-centered orbitals. Hamiltonians and overlap matrices may be generated

using localized radial functions, that is, employing a radial cuto� for long-range overlaps74,75. For example, typical

radial cuto�s for LCAO calculations are rcut ⇡ 6 Å. The basis orbitals of single-⇣ (SZ) basis sets, Rnl(r), are generated

for each valence state |nli by solving the all-electron KS equations for an isolated atom using a confining potential |nli
is used. Double-⇣ (DZ) and triple-⇣ (TZ) basis sets use extra basis functions, but with the same angular momentum

for each valence state to improve their radial flexibility. To improve their description of unoccupied states, basis
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functions with the angular momentum l of the lowest unoccupied molecular orbital (LUMO) are also generated, often

implemented as Gaussian-type functions, as implemented in the Spanish initiative for electronic simulations with

thousands of atoms code (SIESTA). Such basis sets may be improved through the inclusion of polarization functions

that have higher angular momentum l functions, e.g., single-⇣ polarized (SZP) or double-⇣ polarized (DZP). Each

angular momentum l+1, are included in the polarized basis sets, where l is the angular momentum of the HOMO. As

generated in the GPAW package, the LCAO basis set for C includes two confined orbitals, two split-valence waves,

and one d-type Gaussian polarization function71. This basis set is locally orthogonal but non-orthogonal between

neighboring atomic basis sets. This means one must calculate overlaps between the atoms,
Z

�⌫(r � RI)�⌫0 (r � RJ)d3r, (2.46)

but not with in the same atom Z
�⌫(r � RI)�⌫0 (r � RI)d3r. (2.47)

2.2.4 Projector augmented wave method

In a real material, wave functions behave di�erently depending on the region of space. For example, in the interaction

or bonding region they are quite smooth, whereas near nuclei they oscillate rapidly. A solution to this di�culty is

to “cut” or partition the wave function into two parts. Specifically, by employing a partial wave expansion within

an atom-centered sphere and convenient functions outside the sphere. The partial wave and envelope functions are

matched with derivative and direct evaluation at the sphere radius. The all-electron (AE) wave functions may be

transformed into smooth pseudo (PS) wavefunctions in a new PS Hilbert space. We may define a linear operator

T T̂ that maps from a PS wave function | ̃i to the AE wave function | i,

| i = T̂ | ̃i. (2.48)

For any operator Ô, its expectation value satisfies

hÔi = h |Ô| i = h ̂|T̂ †ÔT | ̂i, (2.49)

in the PS Hilbert space. Since we require a linear transformation, we choose a particular transformation within some

augmentation region ⌦R enclosing the Ith atom a

T̂ =

NnX

I=1

T̂RI . (2.50)

This means that outside of the augmentation region the AE and PS wave functions should coincide. Then, for a

particular TRI , we define projector functions for the Ith atom p̃⌫,I that are localized in the augmentation function and

fulfill
NnX

I=1

⌫IX

⌫=1

|�̃⌫,Iihp̃⌫,I | = 1, (2.51)
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where |�̃⌫,Ii forms a partial wave expansion of the PS wave functions

| ̃⌫i = |�̃⌫,Iihp̃⌫,I | ̃i. (2.52)

The transformation of the projector augmented wave (PAW) formalism for valence wave functions is then

T̂ = 1 +
NnX

I=1

⌫IX

⌫=1

�
|�⌫,Ii � |�̃⌫,Ii

�
hp̃a

i |. (2.53)

On the other hand, core electron wave functions transform from AE Hilbert space to PS Hilbert space simirly to

valence wave functions. The frozen-core approximation for a core state c may be expressed as

| c,Ii = | ̃c,Ii + |�
a�c,Ii � | ̃c,Ii = |�c,Ii. (2.54)

In this case no projector is needed since the wave functions are the same as the partial waves. In this sense, a PS

potential can also be obtained by solving the KS equation for the PS wave function. This enhancement, by separating

the core states and valence states, allows their proper physical description and is useful for the computation of the

Coulomb potential76,77, and also allows one to work with the all-electron wavefunctions and density by using the

projectors. Another advantage of using PAW, is that it tracks the smooth and highly oscillatory wavefunction inside

the core, by considering spherical symmetry. The DFT code used, GPAW71, employs the PAW formalism for all its

calculations.

2.3 Analytical Tight binding models

As we reviewed in Section 2.2.3, LCAO is a standard model used for solving periodic potential problems, as

the basis set is formed with Bloch Waves (2.8). The method used here was first described by Bloch78, and

simplified significantly by Slater and Koster79, as an interpolation method instead of a rigorous calculation. The

first simplification is made by considering only the atomic orbitals whose energies are close to the main electronic

states we are interested in. For example, for organic molecules, 1s orbitals can be neglected, by only considering 2s
and 2p orbitals since these orbitals have the main role in the valence and conduction bands of the system. By fitting

certain energies and orbital parameters, we can avoid rather large errors due to artifacts without serious di�culties.

For this revision, the system of units will be international units. We define a Hamiltonian H as the sum of spherical

potentials located in the atom’s orbitals. Then the Hamiltonian components are defined as,

Hı |µ⌫ =
Z

 µ(r � Rı)Ĥ ⌫(r � R |)d3r, (2.55)

where (R j,Ri) are the position vector of the atom’s orbital  µ(r � R |) and  ⌫(r � R |). If the orbitals  µ,⌫ are

orthogonalized Löwdin functions80, then only non-vanishing integrals are the ones located in the neighborhood of

the given orbital; there are the so-called two-center integrals, or in the literature, Slater–Koster (SK) components23,81.

Then, the first, second or third neighbor order may be used, regarding how many constants we want to use to describe

the desired physical picture.
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Figure 2.2: SK sides A and B. The SK kinetic overlaps is defined by the three angles l= cos(↵), m= cos(�) and

n= cos(�), defined by the cosine of the angle from the principal axis to the vector joining side A and B.

2.3.1 Slater–Koster components

In practice, the SK component may be computed fairly easily following orthonormality conditions and neglecting

far orbital interactions. For example, if the wavefunction  is conformed with p orbital, we can express it as a linear

combination of orbitals p� p⇡± , where � is a covalent bond resulting from the formation of a molecular orbital by the

end-to-end overlap of atomic orbitals; and ⇡ when each atomic orbital type is an orthonormalized Löwdin function.

Thus, non-vanishing components of p orbitals are the ones when both  n and  m are of the same type, that is ���,

⇡+ � ⇡+ or ⇡� � ⇡�.

The integrals can be set up by just considering the direction cosines of the displacement R j �Ri from atom i to j, be

l, m and n, as showed in Fig. 2.2. For further reference, all the computations of SK component are derived in Ref.79.

As a matter of simplicity, SK components can be expressed in a rather simple way, by just considering the 3 spatial

coordinates of two center sites A and B, such as:

HA,µ;A,µ0 = HB,µ;B,µ0 = Vµ�µ,µ0 ,HB,µ;A,µ0 = H⇤A,µ0;B,µ =
�X

i=1

ei(R j�Ri)·kEi j
µµ0 , (2.56)

where µ, µ0 label the orbitals in the site A and B respectively, and Ei, j
µµ0 stands for hopping energy between orbitals

and � is the number of neighborns |. Now, the SK kinetic overlaps are calculated as (see Fig. 2.2),

Ei j
µ,µ0 =

⌦
µ|V |µ0

↵
= (n̂(µi)k, n̂(µ0j)

k)V�
µµ + (n̂(µi)?, n̂(µ0j)

?)V⇡
µµ, (2.57)

where V⇡,�
µµ are the SK parameters, that represent the overlap between orbital µ � µ0, normally fitted by other more

accurate methods. The projections n̂(µi)k join the two atomic enters Ri j and n̂(µi)? projections perpendicular to Ri j.

Notice that V⇡,�
µµ parameters depend strongly on the distance.
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2.3.2 Intrinsic spin-orbit coupling

In general, the magnetic moment can be defined as the electric current going around a closed loop42. In an atomic

system, the spin magnetic moment of an electron is generated by its spin

µS = �gsµBS (2.58)

where S is the spin angular momentum operator, µB is the Bohr magneton, and gs is the electron–spin g-factor42.

In the context of the low dimensional system, spin-orbit coupling (SOC) is a form of the intrinsic e�ective magnetic

field, a�ected by the spin in its rest frame. Despite not being a true magnetic field because B = 0, it can generate

spin-polarized electron current, that is, splitting of spin bands because of the spin magnetic moment induced. The

combined e�ects of the tunneling barriers and SOC can be used to implement spin transistor devices82,83. Various

successful tight binding (TB) models implementing spin orbit (SO) interaction are presented in the literature29,84–86.

The SO Hamiltonian is defined as the Larmor contribution due to the spin magnetic moment42, and the Thomas spin

precession87,

HS O = �µS · B +⌦T · S =
e

2m2
ec2 (rV ⇥ p) · S = �L · S, (2.59)

then, the electric field V of the nuclei observed by valence electrons with momentum p, e is the electron charge and

c is the speed of the light. Further simplification express the SO Hamiltonian as a direct product between S and L
corresponding to spin and orbital angular momentum operators, with a SO magnitude �.

Band splitting have being also attributed to asymmetry of the crystal potential, in addition to SO interaction, known

as Rashba e�ect88,89. Large Rashba splitting have been attributed to produce Fulde–Ferrell–Larkin–Ovchinnikov

(FFLO) states90, topological states91, and topological superconductors92. The Rashba SO interaction93 can be

described with the Hamiltonian,

HR = �R(� ⇥ p) · n̂, (2.60)

as �R is the Rashba magnitude,

�R = �
geµBE0

2mec2 , (2.61)

where E0 is the initial electric field magnitude, � = [�x,�y,�z], p = [px, py, pz] is the momentum vector, ge is

the gyro electronic constant and ⌫B is the Bohr magneton. Such electric field is responsible for breaking inversion

symmetry in the system, known as Stark e�ect, and can be written as,

HS = �E · n̂, (2.62)

where n̂ is the direction of the electron spin. The Stark e�ect is a well-known source of symmetry breaking in

spectral lines of atomic systems94, as an analog to the Zeeman e�ect95,96.

2.3.3 Derivation of the band folding method

LCAO allows us to define locally the wavefunctions of each atomic species. However, such components can only be

expressed in large matrices that scale with the system size, making it di�cult to work with analytically.
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For a set of basis functions describing the electronic structure of a physical model of several particles can be a highly

complex problem to solve analytically. However, such a problem can be solved by considering particular eigenstates

spaces, that is, choosing Hilbert sub-spaces that contain most of the dynamics of the total Hilbert space80,97,98. This

method is called the Energy-independent partitioning or Band Folding method29.

Let us first consider a Hamiltonian with two kinds of eigenstates ↵ and �, and we assume they are weakly coupled

to each other. The secular equation, in matrix form, can be written as,

0
BBBBB@

H↵↵ H↵�

H†↵� H��

1
CCCCCA

0
BBBBB@
⌫↵
⌫�

1
CCCCCA = E

0
BBBBB@
⌫↵
⌫�

1
CCCCCA , (2.63)

here, H↵↵ and H�� are the corresponding Hamiltonian of each kind of eigenstates ⌫↵ and ⌫�, and H↵� , H�↵ are their

coupling. The objective is to block diagonalize the Hamiltonian into space ↵ by finding the unitary transformation

that reduces it. Now, by solving for the eigenvalues, it is trivial to notice that

v� = (1E � H��)�1H†↵�v↵.

Then, solving (2.63) for ⌫↵, ✓
H↵↵ + H↵�

⇣
1E � H��

⌘�1
H†↵�

◆
⌫↵ = E⌫↵. (2.64)

Now, Expanding (1E � H��)�1 to first order in H��

E , we find that,

⇣
H↵↵ � H↵�H�1

�� H†↵�
⌘
⌫↵ = S E⌫↵, (2.65)

here, S =
⇣
1 + H↵�(H�1

�� )2H†↵�
⌘

is a canonical transformation in the total Hilbert Space that allow us to energy

independent partitioning. Finally, the e�ective Hamiltonian can be found as

S �1/2
✓
H↵↵ � H↵�

⇣
H��

⌘�1
H†↵�

◆
S �1/2� = E�, (2.66)

where � = S 1/2⌫↵. The physical systems based on e�ective interactions usually are useful to understand the main

physical properties. The energy-independent e�ective Hamiltonian computed by Band Folding method is particular

simple to obtain to first order and higher odd order99. This approach results in a controllable perturbation theory,

capable to described pretty accurate low dimensional systems e.g.measurement of spin orbit splitting in graphene

and proximity e�ects100.

2.4 Non-equilibrium Green’s function calculations using density functional
theory

Electronic transport (ET) calculations are important methods for understanding the chemical bond dynamics of new

molecules and materials101, responsable for the fundamental chemical process behind any redox reaction. The first

experimental realizations of molecular ET were reported in the early 2000s, where it was measured in molecular wire
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junctions102,103. The development of reliable theoretical methods for simulating ET through nano-scale junctions

became a priority because of both general scientific interest and the introduction of a new generation of molecular-

based electronics. DFT provides a convenient framework to develop reliable ab initio models for a wide range

of systems, i.e., without considering system-dependent parameters. However, most methods implemented in first-

principle calculations need to be restricted to either finite or periodic systems in equilibrium. Additionally, there is

no rigorous theory able to use a more appropriate functional104. In a real situation, a finite voltage bias is applied to

the electrons in the junction, which are then driven through the junction. This is a highly -elastic scattering through

a non-equilibrium system.

The Landauer105,106 and Büttiker107 formulation for describing the current through a finite disordered region of

non-interacting electrons forms the foundation of electronic transport calculations. At the nano-scale, the Landauer-

Büttiker conductance can be evaluated by employing a combination of the non-equilibrium Green’s function (NEGF)

method and ground-state DFT. In this section, we will be describing this method.

2.4.1 Non-equilibrium electronic transport in a contact-electrode system

In the low temperature(T ! 0) and zero bias (✏ = ✏F) limit, the linear response conductance of non-interacting

electrons going through a central region (C) connected by two ballistic leads or electrodes (L, R) is defined as,

G = G0T (✏F), (2.67)

where T (✏) is the elastic transport function, ✏F is the Fermi energy, and G0 = 2e2/h = 1/⇡ is the conductance

quantum. The elastic transport function describes the probability that an electron at a given eigenenergy ✏i is

transmitted through the junction. The retarded, Gr, and advanced, Ga, Green’s function (GF) are defined in terms

of the basis set {�i} chosen and the current, and may be expressed in term of the left and right leads and the central

region as,

(zr
S �H)Gr = 1, (2.68)

where zr = ✏ + i0+ is the pole of the retarted GF Gr, H is the Hamiltonian matrix, S is the coupling matrix and

1 is the identity matrix. The advanced GF is then simply the complex conjugate transform of the retarded GF, so

that Ga = (Gr)†. This equation describes the system as one of non-interacting electrons moving phase-coherently

through a central conductor region from a left to right leads. Meir and Wingreen108 derived a useful formula for the

transmission function using NEGF in term of the regions L �C � R,

T (✏) = Tr
h
G

r
C(✏)⌃L(✏)Ga

C(✏)⌃R(✏)
i

(2.69)

where Gr
C(✏)

⇣
G

a
C(✏)

⌘
correspond to the retarded (advanced) GF of the central (C) region basis,

G
r
C(✏) =

⇥
zr
SC �HC � ⌃L(zr) � ⌃R(zr)

⇤�1 . (2.70)

The lead self-energies ⌃L/R for the left L or right R leads in (2.69) are defined as,

⌃L/R(z) = (zSC,L/R �VC,L/R)G0
L/R(zS†C,L/R �V

†

C,L/R) (2.71)
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where VC,L/R and SC,L/R are the coupling and overlap matrices between the central region atoms and the L/R
lead, respectively, G0

L/R = [zSL/R �HL/R]�1 is the surface GF describing the semi-infinite L/R lead in terms of the

Hamiltonian and overlap of the same lead, which is calculated using a decimation technique109. The self energy is

calculated similarly using a Dyson equation110, where the GF connects the infinite sum of Feymann diagrams of the

scattering between left (L) and right (R) leads across the central (C) region. Finally,

�L/R = i(⌃L/R � ⌃
†

L/R) (2.72)

are the o�-diagonal self energies or spectral broadening matrices for each lead region111.

2.4.2 Non-equilibrium Green’s function implementation

A convenient method for using NEGF for transport calculations has been implemented by Brandbyge et al.82,112,

as described in Fig. 2.3. By considering the same three regions, L � C � R, the density, overlaps and Hamiltonian

matrix of each region may be expressed as a full Hamiltonian:

H =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

. . . VL 0 0 0
V
†

L HL VL 0 0
0 V

†

L HC VR 0
0 0 V

†

R HR VR

0 0 0 V
†

R
. . .

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

(2.73)

where HL, HR, HC are the Hamiltonian onsite matrices of the L, R and C region, respectively, and VL, VR are

the coupling matrices between the L/R lead and the C region. Notice that the interaction between leads in the

region of interest is set to zero since they are assumed to be negligible as there should be no interaction between

non-neighboring principal layers (PLs) of the leads. Also, the leads are assuming to be semi-infinite bulk along the

direction of transmission measured and electronic polarization.

The GPAW and atomic simulation environment (ASE) implement the concept of inverting the total Hamiltonian

in (2.73) as a semi-infinite matrix to obtain the GF71,113,114 with the following considerations. As shown in Fig. 2.3,

leads should include at least two PLs of metallic atoms. This means the h1 and h2 matrices (HL/R) should contain

at least two PL, and one must be a periodic part of the Hamiltonian such that there is only coupling between

nearest-neighbor PLs. To ensure we have proper interactions between the central (C) region and the electrodes or

leads, h (HC) should include at least one PL where it couples to the L/R leads. Additionally, when non-orthogonal

basis sets, such as those employed in LCAO, form the h, h1 and h2 matrices, the coupling matrices s, s1 and s2
should be provided. An important consideration is to ensure the system is isolated and su�ciently large that the

screening takes place inside the L � C � R regions due to the electrostatic potential. By using a LCAO basis in our

DFT calculations, the GPAW package can directly provide the complete LCAO Hamiltonian of the entire system

within the unit cell, which is necessary for performing NEGF calculations. Further details of this implementation

are provided in Refs. 113 and 71.
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Figure 2.3: The scattering region or junction is composed of left (L) and right (R) electrode leads and a central (C)

region, with Hamiltonians h1, h2, and h, respectively. Each junction includes at least two PL which only couple

between neighbors. In our DFT calculations we included only one PL in the left lead, manually adding a second PL

to h1 as described in Appendix D.1. The central region includes the molecule with linker group at its ends ensuring

its stability on the electrodes.

Within the DFT framework, transmission eigenchannels give a spatial understanding of the pathway of the

tunneling electron in the form of a decaying wavefunction. They are the closest trajectory representation to the

eigenstate responsible for carrying the electronic current. The shape of the eigenchannels is highly energy-dependent,

with each one generally taking the form of the energetically nearest molecular orbitals. It is also a�ected by how well

the molecule can transfer an electron, e.g., the wave function decays between atoms and molecules, the chemical

potential, and the hopping strength. To some extent, the magnitude of each orbital’s contribution can be directly

related to the product of the orbital coe�cients on the terminal atoms and inversely proportional to the energetic

separation between the orbital and the Fermi energy, ✏F
115,116. The eigenchannels provide a means for visually

di�erentiating between � and ⇡ molecular bonding and anti-bonding orbitals, which are essential for ET. However,

for saturated systems, chemical bonding frameworks may not be reflected in the eigenchannels116. The validity of

the NEGF method for modeling ET through molecular junctions based on the DFT Hamiltonian is highly dependent

on both the xc functional used and the molecule in the central region itself. More computational demanding

calculations for ET have been proposed within the quasiparticle GW framework, time-dependent density functional

theory (TDDFT), and semi-empirical methods such as the Kubo formula. However, these methods are currently

impractical computationally when compared to NEGF-DFT117–120. A more complete benchmarking overview of

NEGF-DFT using LCAO is provided in Ref. 111

2.5 Oligopeptide

An oligopeptide is defined as a short-chain peptide, that is, a polymer of amino acids (AAs) connected by an amide
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group or linkages. Generally, the term is used to describe a peptide of less than 20 to 25 AA residues121.

AAs are organic molecules that contain carboxyl (�COOH) and amino (�NH2) chemical groups, along with a

side chain or residue (�R). Depending on the composition of �R, there exist about 500 di�erent kinds of AAs.

Further classifications, such as the core structural-functional group’s locations as ↵, �, �, or �, are fundamental for

determining their chemical reactivity122.

Ala is an ↵-AA, as shown schematically in Fig. 2.4. More specifically, ala contains a methyl (�CH3) group side

chain as �R and is classified as a non-polar and aliphatic AA123.

a) b)

Figure 2.4: Structural schematics of (a) ala and (b) right-handed ↵-HAO in vacuum. C, N, O, and H atoms are

depicted as grey, blue, red, and white balls, respectively.





Chapter 3

Methodology

3.1 Tight binding model for a chiral molecule

Let’s consider a helical molecule shown at Fig. 4.1. Each orbital site ı is distributed along the y-axis, such that

ı = 1, ...,N. The position vector Rı in the fixed or global coordinate system (xyz) is described on a cylinder with

helix radii r as,

Rı = r cos[(ı � 1)�']eZ + r sin[(ı � 1)�']eX + h
(ı � 1)�'

2⇡
eY, (3.1)

where en are the unitary direction vector in the designated direction and h is the di�erence in y between turns, and

�' represents the angle between the positions of two consecutive sites. The vector that connects two sites ı and | of

the helix is R |ı = R | � Rı.
Each peptide is described with the basis set [s, px, py, pz] orbitals as |l,mli, associated to the valence electrons in

C, N and O as,

|si = |0, 0i |pxi = �
1
p

2
(|1, 1i � |1,�1i),

���py
E
=

i
p

2
(|1, 1i + |1,�1i), |pzi =

1
p

2
|1, 0i , (3.2)

then the only p-like orbitals are assumed to have an SO matrix elements29, where zp = �/2 is the magnitude of

Table 3.1: SO matrix elements between p orbitals in the local coordinate system.

|pxi |pyi |pzi

hpx| 0 �izp�
'
z izp�

'
y

hpy| izp�
'
z 0 �izp�

'
x

hpz| �izp�
'
y izp�

'
x 0

the SO interaction for p orbitals and s j are the Pauli matrix i components in the rotating coordinate system. These

27
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rotated spin operators are defined as,

�'x = � sin('i)�x + cos('i)�z,

�'y = �y,

�'z = cos('i)�x + sin('i)�z.

(3.3)

where ' is the rotation angle. There are two relevant SO interactions involve in the system, both spin active processes:

intrinsic SO interaction due to induced magnetic fields by the overlapped p orbitals. This spin activity produces ET

between ⇡-like orbitals, with intermediate steps in the � like orbitals. Spin transfer in first order of SO coupling, can

be express as,

pız ! Eı |zx ! p |
x ! zp ! p |

z, (3.4)

pız ! Eı |zy ! p |
y ! zp ! p |

z, (3.5)

here, SK overlap Eı |µµ0 computations are detailed in appendix C.

The second type of SO interaction considered in this model is originated as a result of a combined e�ect of an

e�ective electric field generated from the hydrogen bonds. Such e�ect is attributed to be Stark interaction, as the

main electric field generated the outside of the vicinity of the nuclei124.

In a helical molecule, the hydrogen bond has an important role in the stabilization of the structure of helical

molecules and high polarization125. In our model, the hydrogen bond can couple s and p orbitals in the direction of

the dipole field as,

HK = �eE · r, (3.6)

where E is the electric field (see Ref.[ 126]), r = r(sin ✓ sin', cos ✓, sin ✓ cos') is the position vector in spherical

coordinates, ✓ being the angle with Y�axis, and e is the electron charge. In the case of local coordinates, we define

the Stark contribution as,

HS = �er(Ex sin ✓ cos' + Ey cos ✓), (3.7)

where Ex,y are the electric field components in the x,y directions (red arrows in Fig.4.1), where the electric field

source is local dipole field of hydrogen bonding.

The combined e�ects of Stark and SO coupling produce Rashba SO process, described by the following ET

channels,

pız ! Eı |zs ! p |
s ! ⇠sx ! p |

x ! zp ! p |
z, (3.8)

pız ! Eı |zs ! p |
s ! ⇠sy ! p |

y ! zp ! p |
z. (3.9)

The ET paths of (3.4), 3.5 3.8 and 3.9 can be visualized as combination of hopping processes in Fig 4.1. Now, we

can construct an e�ective Hamiltonian according to Ref.23,29, when the ⇡-Hamiltonian can be treated as our main

e�ective Hamiltonian, and �-Hamiltonian as perturbation. First, we establish the Hamiltonian in the chosen basis

set of atomic orbitals,

H =

0
BBBBB@

H⇡⇡ T
T † H��

1
CCCCCA , (3.10)

here, H⇡ and H� are the structural Hamiltonians and T correspond to the connection between ⇡ and �Hilbert spaces.
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3.2 Spin-polarized calculations with linear combination of atomic orbitals
basis sets

The spin-polarized DFT calculation of ↵-HAO was performed using the GPAW package71 as described in Sec. 2.1.7.

We employed the PBE xc functional, a GGA developed by Pewdew, Burke, and Ernzerhof61. To represent the KS

wavefunctions, we employ a LCAO DZP basis set and a �-point sampling of the IBZ for a large lattice . Structural

relaxation was performed until the maximum force on the nuclei, Fmax = maxI |FI | was less than 0.05 eV/Å to obtain

the ground state of the oligopeptide. The oligopeptide was relaxed in gas phase employing non-periodic boundary

conditions (PBC), i.e., requiring the KS wavefunctions 'i and electron density ⇢ to be zero at the unit cell boundary,

with 5 Å of vacuum in the x, y, and z directions.

Due to the incommensurability in the axial or helix direction of this chiral molecule, a fully periodical cell was

not be found. However, a qualitative study of the tunneling and hopping mechanism of ET with this limitation may

be performed, by relaxing both a two-turn and three-turn oligopeptide. The main advantage of this type of study, is

the possibility of calculating qualitatively the metallic behaviour of the chiral molecule, the spin up (") and down (#)

splitting, and the ET dynamics and their dependence on the oligopeptide’s length.

3.3 Electronic transport calculations in the atomic simulation environment

The central (C) region consists of two turns of ↵-HAO and two PLs, one adjacent to each electrode. Each PL consists

of three Au(111) 5 ⇥ 6 layers, or 90 Au atoms, as shown in Fig. 3.1. As discussed in Sec. 2.4, this ensures that the

Figure 3.1: Schematic representation of the scattering region with Au(111) six layer 5⇥ 6 surface slabs as electrodes

of 180 atoms on side and the two turn ↵-HAO chiral molecule and �NH2 linker groups with chemical formula

C24N9O8H43 forming the junction. C, N, O and H atoms are shown in grey, blue, red, and white, respectively.
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overlaps between electrodes are zero. The central region is connected with the electrodes by �NH2 linker groups to

obtain chemical stability127.

NEGF-DFT calculations have proven to be e�ective at measuring ET as described in Sec. 2.4. This method

has already produced several theoretical studies of 1D electrode–molecular–electrode junction devices128–130. To

simulate the experimental setup, two physical electrodes were attached at each end to the two-turn ala oligopeptide

in order to simulate a table-top ET experiment26 19,131 132.

Since Au (111) is a diamagnetic surface, these calculations will explore the role of the chiral molecule alone as

a spin filter18 as shown in Fig. 3.1.

We performed a structural relaxation of the junction using the GPAW and ASE software packages for the

scattering region in the framework of DFT until Fmax  0.05 eV/Å was obtained. In this way we ensure the structural

stability of the junction and avoid obtaining nonphysical ET spectra. We used PBE as the xc functional, performed

spin-polarized calculations and employed scalar-relativistic pseudopotentials within the PAW methodology. The

scattering region was relaxed with PBCs in all directions. The LCAO atomic basis sets were chosen to provide a

realistic description of experimental conditions with a defined number of spherical harmonics133. Specifically, we

employed the basis sets for each species as shown in Table 3.2.

Table 3.2: LCAO basis set and number of basis functions employed for each atomic species.
Atom Basis Set # of Basis Functions

C DZP 13

O DZP 13

H DZP 5

N DZP 13

Au SZP 9

We employed a dense grid spacing of h ⇡ 0.1 Å to provide an improved description of the ground state

density, forces, and wave functions. For a realistic description of the electronic occupations, we employed a room

temperature(kBT ⇡ 25 meV) Fermi–Dirac smearing, which still produced fractional occupations near the Fermi

level.

For the structural relaxation of the scattering region the leads are “frozen”, i.e., the positions of the Au nuclei RI

are fixed and the oligopeptide is allowed to relax. We also studied the compression e�ect in the energy di�erence of

the HOMO and LUMO.
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Results & Discussion

4.1 Derivation of e�ective Hamiltonian

4.1.1 The e�ective model

Let us consider an ideal helix as shown in Figure Fig. 4.11, as we discuss in Methodology(see Sec. 3.1). The

conduction electron is assumed to be provided by the �COOH group134 attached by hydrogen bonding to the NH2

group (or site). The high polarization of the hydrogen bond induces a local electric field along the helical molecule.

The hydrogen is not parallel to the y axis, since in the real structure there is a small tilt 4 that we captured in our

model. The backbone of the oligopeptide is conformed by � bounding, i.e. s, px, py, that line tangential to the

oligopeptide shape. Meanwhile, pz orbitals point in the radial direction. This arraignment led to several ET paths as

described in 3.1. A important consideration is that ET between pz orbitals is small compared to the direct pz � pz

kinetic contribution, such that they omitted in our model.

The full Hamiltonian of our model can be written as,

H = HK + HS O + HS , (4.1)

where HK is the Kinetic term or the SK overlaps, HS O is the Spin-Orbit term and HS is the Stark interaction term.

In the Table B.1, the kinetic or LCAO overlaps are represented by Vs, Vx, Vy and Vz, later computed using Harrison

Formula70 (see Appendix A and C), site energies ✏�p and ✏⇡p correspond to bonded orbitals px,y and conduction orbitals

pz, and ✏s is the site energy of s orbitals. Using the BF method described in Sec. 2.3.3, the e�ective Hamiltonian

can be described in terms of the ⇡ and � spaces, considering the � structure as a perturbation of the ⇡ structure29.

The full Hamiltonian is presented in App. B.

Now, the Full Hamiltonian can be mapped to an e�ective Hamiltonian by considering the ⇡-structure Hamiltonian

as the most physically meaningful and �-structure as a perturbation. To achieve this, we employ an energy-

independent perturbative approach discussed in 2.66. It is similar to the Foldy-Wouthuysen transformation135,

maintaining just the first order perturbation of the Hamiltonian. As a result, we mapped a 8x8 Hamiltonian to an

31
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Figure 4.1: (a) Front view of the helical oligopeptide in the xy-plane. Here h is the helical pitch and each p-orbital

are labelled. The internal electric field caused by the hydrogen bond high polarization and the component along each

direction are shown in red. (b) Top view of the helical oligopeptide in the XZ-plane where r represents the radius of

the helix, and �' is the angle between consecutive AAs. Extracted from Torres et al.1

e�ective 2x2 Hamiltonian, without no additional corrections due to wavefunction normalization136. The Hamiltonian

in the basis of atomic orbitals for oligopeptide in (3.10) is,

H ⇡ H⇡ � T H�1
� T †. (4.2)

Then, the e�ective Hamiltonian for the ⇡-structure can be written as,

H =

0
BBBBB@

✏⇡ Vz � i((↵ + �) ⇥ s)z

Vz + i((↵ + �) ⇥ s)z ✏⇡

1
CCCCCA . (4.3)

Here, the Intrinsic SO components, up to first order, are linear in zp, and Rashba bi-linear in zp✏sy, that contribute

to the total SO interaction related to the ⇡-structure, in concordance of path considered in (3.4), 3.5, 3.8, 3.9. Then,
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there is no correction for the kinetic interaction. The intrinsic SO terms between sides i and j is given by,

H
xy
so = i(↵x�

'
y � ↵y�

'
x ) = i(↵ ⇥ s)z, (4.4)

here s is the Pauli matrix vector and ↵ is the Intrinsic SO vector in the x, y directions,

↵x =
2zpVx

✏p
, ↵y =

2zpVy

✏p
. (4.5)

Both values are considered to be characteristic to the oligopeptide, and computed as ↵x ⇠ 8.97 meV and ↵y ⇠ 10.20
meV (see appendix A.1). In the same way, the Rashba SO term have bi-linear contribution from SO and Stark

interaction,

H
ı |
R = i(�x�

'
y � �y�

'
x ) = i(� ⇥ s)z, (4.6)

here � is a vector with the Rashba SO magnitude in each component defined as,

�x =
zp(⇠sy,ı � ⇠sy, |)Vs

✏pz✏s
�

2zp✏2
py✏s⇠2

sxVx

✏2
px

⇣
⇠2

sy � ✏py✏s
⌘

2

+
2zp⇠sx⇠syVy

✏px

⇣
⇠2

sy � ✏py✏s
⌘ ,

�y = �
2izp⇠2

syVy

✏2
py✏s

+
2zp⇠sx⇠syVx

✏px

⇣
⇠2

sy � ✏py✏s
⌘ .

(4.7)

The estimated values of the contributions are �x ⇠ 0.15 meV and �y ⇠ 1.2 meV (see appendix B). Note that

second-order terms are included, due to smaller contribution of the first order of consecutive sites i and j, due to

electric dipole di�erence. Since the angle of inclination of the hydrogen bond to the helix axis is small, the electric

polarization ✏sx is negligible against ✏sy (see (3.7)).

The full e�ective SO term can be defined as HS O = Hso + HR. For later analysis, only first-order terms will

be considered. However, when mechanical deformation is studied, second-order terms in Rashba components can

become of comparable size to intrinsic SO components1.

4.1.2 Bloch Space e�ective Hamiltonian

Consider a local Cartesian coordinate system that is on top of an atom, then each atom on the chain will have the

same surrounding or system. The nearest neighbor atoms are described by the following vectors in the local system,

⌧± =
r
p

2
(ez ± ex) ±

h
4

ey. (4.8)

Only first nearest neighbors interaction are considered relevant in our model, however this can be increased to uncover

new feature of chiral molecules. Then, the Hamiltonian can be expressed as the Bloch sum of matrix elements. For
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an infinite long helix, kz = 0, the Bloch expansion can be obtained as,

H(k) =
1
N

NX

ı=1

NX

|=1

eik·Rı |h�ı|H|�|i

=
1
N

NX

ı=1

0
BBBBBB@
X

|=ı

h�ı|H|�ıi +
X

|,ı

eik·Rı |h�ı|H|�|i

1
CCCCCCA

=
1
N

NX

ı=1

(✏⇡1s + Vz f (k)1s + g(k)((↵ + �) ⇥ �'z

= ✏⇡1s + Vz f (k)1s + g(k)((↵ + �) ⇥ �'z .

(4.9)

where f (k) and g(k) the reciprocal functions associated to diagonal spin matrix 1s and �'z , respectively. Notice here

we have only taken nearest neighbor couplings and strict periodicity of the lattice turn by turn (our model). As

shown in (4.9), �ı are the orbitals per unit cell and N is the number of the unit cells in the molecule. This model

considers an approximate structure, shown in Fig. 4.1, where the angle, ��, between successive AAs is smaller than

the angle for real oligopeptides4. The latter assumption is not quite correct for real oligopeptides since there is small

incommensurability (non-periodicity in the axial direction) of the potential when one goes from one turn to the next,

omitting a small contribution to spin polarization. However, for the sake of this study, we believe the important

physical phenomena have been considered, since the Stark/Rashba contribution is not the only contributor to the spin

polarization in the molecule, as we will see later.

If we consider now a local frame that satisfies ⌘ = tan(h/r), the e�ective Hamiltonian can be expressed in one

dimension. Then, the primed one dimensional quantities can be defined as k, the one dimensional vector, proportional

to r0 = r/
p

2 + ⌘h/4, and reciprocal functions of k,

f (k) = cos
�
r0k

�
, g(k) = sin

�
r0k

�
. (4.10)

The spectra of the system can be obtained by solving the secular equation

det(H(k) � ES) = 0, (4.11)

where S is the overlap matrix and we assume that the eigenfunctions are orthogonal, such that S is the identity matrix

in SU(2). By solving the full system in the previous secular equation, we obtain the spectra of the system for the two

spin species, and is given by,

E±(k) = Vz cos
�
r0k

�
± |↵ + �| sin

�
r0k

�
, (4.12)

where each band corresponds to a di�erent spin channel.

4.1.3 Hamiltonian in vicinity of half filling

Without the lost of generality, we can consider that the electron bands are half filled when the molecule is isolated (see

Fig. 4.4). By doing the system with molecular environment, such as water or any electronic donor, the polarization
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of the molecule may changed because the electron transfer (add or withdraw) from the �COOH group to the

environment.137. Let us consider that the Fermi energy of pz orbital is ✏F = 0, just by shifting it to the origin. By

solving (4.11) only for the kinetic component at half filling, ✏F = Vz cos(kF) = 0, the Fermi vector is kF = ⇡/2. Near

the Fermi level, we consider a small perturbation q around kF , such that k = kF � q, and 0 < |q| << 1, in order to

study its physics. As a result, the Bloch expansion of the system, (4.9) can be approximated as,

H1/2(q) = ✏⇡ + Vzq + ((↵ + �) ⇥ �'z . (4.13)

The spectra of the system in Fig. 4.2 shows that the bands do not cross each other, separated by a constant gap

between spin up and spin down states of the order of |↵| ⇠ 10�2eV. In such a system, the SO interaction is not

coupled to momentum in the vicinity of K±, due to environmental doping. Nevertheless, molecular contact with an
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Figure 4.2: Kinetic spin degenerate bands with K± points(black) and a doped point (orange) taken at kF = 3⇡/5. The

values for the parameters are described in Tables A.1A.2.

environment, either a surface or surrounding structure will dope the system due to the electron and charge transfer.

Then, the energy must be shifted above the Fermil leve ✏F = 0. By expanding (4.3) around the doped energy k0 and

considering a small deviation from kF to k0 = 3⇡/5, we obtain,

Hk0 (q) = ✏⇡ + Vz

0
BBBBBBBB@

1 �
p

5
4

�

s
5 +
p

5
8

q

1
CCCCCCCCA + ((↵ + �) ⇥ �'z

0
BBBBBBBB@

1 �
p

5
4

q +

s
5 +
p

5
8

1
CCCCCCCCA . (4.14)

Here, the resulting Hamiltonian model a coupling between the momentum and the spin, such a correlation produces

a chiral term ((↵ + �) that increases approaching a crossing point at k = 0. The previous Hamiltonian, aside

from the geometrical details that determine the SO strength to within tens of meV, has the same form as that of

deoxyribonucleic acid (DNA)2 and Helicene14 similar theoretical models, and leads to polarized ET, as has been

reported experimentally131,138. Additionally, by considering the full picture as in B, or by adding more neighbors

in the TB model, the SO strength can approaches qualitatively to the experimental values of spin splitting, that is

around 0.5 eV .
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4.2 Electronic transport through ↵ helix alanine oligopeptide

We will now explore the ET through scattering region shown in Fig. 3.1. Each electrode contributes electronic

population to the system, raising the Fermi level and producing charge and electronic transfer in the density of states

(DOS).

4.2.1 Length dependence of ↵ helix alanine oligopeptide’s wavefunctions

In the gas phase, the oligopeptide exhibits di�erent near-Fermi level behavior as a function of length, as shown in

Fig. 4.3. For a two turns of ↵-HAO, the HOMO and LUMO are clearly localized on the �NH2 linker groups at the

a)

c)

b)

d)

Figure 4.3: Spatial distribution of KS wavefunctions for two turns ↵-HAO (a) HOMO and (b) LUMO, and three

turns ↵-HAO (c) HOMO and (d) LUMO. Positive and negative phases of the wavefunctions are in red and blue. C,

N, O, and H atoms are shown in grey, blue, red, and white, respectively.

ends of the oligopeptide, with a significant p and s orbital character. When we consider a longer oligopeptide, that

is, three turns of ↵-HAO, the spatial separation between the HOMO and LUMO is increased. When we stretched

the oligopeptide in the electrode setup in the z-direction, the energy gap is reduced. We find increasing the length

of the oligopeptide enhances the electronic conductance, as the electronic gap is reduced. This is consistent with

previous experimental131 and theoretical studies1. This situation may be replicated by inducing a net force, e.g., by

applying a tip loading force directly in the top of the oligopeptide in a magnetic conductive atomic force microscopy

(mc-AFM) setup.

For two turns of ↵-HAO, the HOMO and LUMO are localized mainly on the �NH2 linker groups, while for

three turns of ↵-HAO the orbitals are somewhat de-localized toward the ends of the ↵-HAO. This results shows the

important role played by the linker group in determining the ET, as well as the length dependence.

On one hand, the radius pitch between turns in the oligopeptide is increased (decreased) when compressed

(stretched), reducing (increasing) the contribution to the conductance coming from the hydrogen bonds. On the

other hand, the HOMO and LUMO separation in real space (see Fig. 4.3) is reduced, adding “through space”

conduction, which adds nothing to the spin-polarized conduction. As we showed in Sec 3.1, electronic hopping
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dominates the spin polarization in chiral molecules with intrinsic SOC, rather than electronic tunneling, which only

becomes important when the HOMO and LUMO spatial distance is short. The interplay between the preferred ET

mechanism e.g. tunneling or hopping is highly tunable by stretching and may also be adjusted by adding peptides in

the oligopeptide.

As a consequence, an increase in length is directly reflected in the conductance of the oligopeptide. As shown

in the DOS spectra of Fig. 4.4, there is a direct dependence of the electronic gap on the length or number of turns

Figure 4.4: DOS of ↵-HAO in gas phase with two (red) and three (purple) turns as a function of energy " in eV

relative to the Fermi level "F .

of the oligopeptide. We find charge is transfer from the conduction bands to the valence band as we increase the

molecule’s length. This is consistent with experiments, where the chiral conduction related to the spin polarization,

that is the spin transfer, is enhanced with the length of the chiral molecule139.
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4.2.2 Electronic transport through a ↵-HAO@Au slabs(111) junction

As discussed in Sec. 3.3, LCAO is used to describe the KS wavefunctions. The GPAW package71 allows one to

extract the full LCAO Hamiltonian and LCAO overlaps of the system in the atomic basis. Its resulting dimension is

3178 ⇥ 3178, where the first 810 atomic basis functions belong to the left (L) lead, 748 to the oligopeptide of the

central (C) region, and 1620 to the right (R) lead.

The ET, as described herein, requires an equal number of PLs in the right and left lead. Due to the computational

complexity and limits on available resources, computing the transmission function of the entire 3988 ⇥ 3988 matrix

was reduced to 3178 ⇥ 3178 by removing one PL from one of the electrodes. For more details see Appendix D.1.

We will now consider the transmission and ET properties of the junction. As is shown in Fig. 4.5, the DOS of

the junction is populated completely near the Fermi level from -1.5 to 1.5 eV. As expected, the transmission function

never goes to zero in this region, just reducing its value at the point around �0.25 eV, where the DOS is zero. The

transmission can be mainly attributed to the leads, since the HOMO and LUMO are mainly 5d orbitals of Au orbitals

localized on the (111) surface. As the levels are localized at the ends of the molecule, it has phase and also with

a small weight in the junction, the ET contribution is expected to be produced by tunneling. In order to further

checking this hypothesis, the length of the oligopeptide should be increased, so that we may expect to observe a

decrease in the raw ET from L to R Au(111) electrode.

The occupied KS wavefunctions shown in Fig. 4.6 are localized either in the oligopeptide (i), or only in one side

of the molecule. In (i), the states are only present in the chiral molecule, with a little weight in the Au(111) surface

and bulk. In the latter, the states are weighted in the Au(111) slabs, as well as only the left end of the molecule.

As a result, the ET hopping contribution is zero in this part of the spectrum, and no tunneling is possible because

of the large separation between states of the same energy. The unoccupied KS wavefunctions shown in Fig. 4.6, in

contrast, are highly weighted in the Au(111) surfaces of the electrodes, with smaller contributions on the molecule

at level (v) and (vi). In the latter, Rydberg states may be observed above the Au(111) surface of the gold slabs, that

are also responsible for ET. Levels (v) and (vi) have significantly greater weight on the molecule connected to the

right slab, also producing transport at higher energies. This is mostly due to the better absorption of the molecule on

that surface. In all of these levels, the ET can be attributed to electrode–molecule–electrode hopping. We can assert

that, as we increase the length of the oligopeptide, the hopping contribution should become increasingly important,

as electrons travel from one site to another. The transmission function does not exhibit spin polarization, since the

theoretical spin splitting may be induced by the electrode, which in this case is spin-paired28.

As a consequence, the ET anisotropy is zero under these conditions, in contradiction to some experimental

results. Some studies have suggested that the charge transport barrier between the two spin channels is on the order

of 0.5 eV132. Many reasons may be provided to explain these results. These include the shape of the initial molecule,

the short length of the oligopeptide used in this study, and the �NH2 linker groups between the molecule and the

slabs. Since scalar relativistic e�ective pseudopotentials have been used in our DFT framework, the SO e�ect may

be insu�cient to be observed in the molecule. Finally, these di�erences are perhaps due to the noble metal electrodes

employed herein, whereas an Au/Ni alloy was employed experimentally140.
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(i) (ii)

(iii)
(iv) (v)

(vi)

HOMO LUMO 

Figure 4.5: (a) HOMO and (b) LUMO pinned to the Fermi level "F of the ↵-HAO@Au(111) junction. Positive and

negative isosurfaces are shown in red and blue, respectively. (c) PDOS in eV�1 localized on the ↵-HAO molecule

(black) and Au(111) surface (yellow) and (d) transmission T (") through spin up and spin down channels through the

↵-HAO@Au(111) junction versus energy " relative to the Fermi level, "F , in eV. The eigenenergies of (i), (ii), (iii),

(iv), (v), (vi) levels shown in Fig. 4.6 are marked in (c).
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(i) (ii)-1.42 eV -1.24 eV

(iii)

(v) (vi)

(iv)0.04 eV 1.05 eV

1.65 eV 1.70 eV

Figure 4.6: Spatial distribution of the KS wavefunctions for the ↵-HAO@Au(111) junction marked in Fig. 4.5(c),

and their eigenergies in eV relative to the Fermi level "F . Positive and negative isosurfaces are shown in red and

blue, respectively.
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Conclusions and Outlook

In this work, we have presented a study of chiral-induced spin selectivity (CISS) dynamics of Oligopeptide molecule

using DFT and TB models. We calculated the ground state wave function of ↵-HAO using GPAW package. It was

found that the physical distance of HOMO and LUMO is proportional to the electronic band-gap, and depends on the

mechanical stretching and number of peptides in the molecule, as have been shown experimentally. DOS calculation

has shown that HOMO and LUMO are mostly populated by p orbitals of free electrons of N, O, and C, which is

consistent with experiments.

We performed spin-polarized calculation in ↵-HAO@Au(111) when we obtained an metallic behaviour en-

hancement proportional to the oligopeptide length, in accordance to experiments. Spin filtering capabilities where

not observed in the atomic levels of the isolated molecule nor the scattering region, suggesting the search of a

better description of this model. Additionally, we obtained a transmission function using the NEGF method. Such

transmission is attributed principally to Au d electronic states, with a significant contribution of the oligopeptide p
orbitals, mainly produced by ET hopping, in the absence of spin splitting.

We proposed a TB description of the oligopeptide. By using SK overlaps, an e�ective Hamiltonian describing

all the interactions near the Fermi level was obtained. This Hamiltonian is conformed mainly by the ⇡ structure

and � structure as a perturbation using the Down folding method. Later, we mapped this e�ective Hamiltonian to a

half-filled Hamiltonian and showed that it can produce spin splitting because of Rashba and intrinsic SO interaction.

Finally, we described the scattering problem for a similar e�ective Hamiltonian including Rashba SO interaction.

The allowed eigenfunction inside the potential suggested spin polarization produced mainly by SO e�ects.

Further research can be made among this results. CISS e�ect may be observed in the ab initio context by

considering a longer chiral molecules, using an appropriate linker group, or changing the structure. Since DFT is

an approximated method, SO e�ect could not be observed precisely in the scalar-relativistic framework, requiring

a fully relativistic description in the pseudopotentials used. Another possible study can be related to the choice of

the metallic slab and its dependence with the transmission of the chiral molecules, since Au atoms may pair the spin

state of the whole scattering region due to the proximity e�ects.

A three-body TB model can give rise important mechanics that can describe the SO paths to induce Spin
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filtering. Also, including the higher term in the band folding expansion, may modify the e�ective Hamiltonian

with new features, correcting the spin-polarized gap. We believe this kind of theoretical self consistent studies can

give light to the spin dynamics responsible of CISS e�ect in chiral molecules. As promising materials for quantum

computation application, the complete understanding of the ET is crucial for their future implementation.



Appendix A

Parameters for the e�ective Hamiltonian

We estimate the overlaps of the atomic wavefunctions using the empirical model described in ref. 70. The geometrical

structure of the oligopeptide includes four atoms per turn and it does not di�er significantly from realistic situations

where oligopeptides are not strictly periodic from one turn to the next4. Atomic and structural parameters for the

system are given in Table A.1. The SK and SO e�ective magnitudes are written in Table A.2.

Table A.1: Left column: SK parameters for s and p orbitals from2. Center column: Atomic parameters for carbon

atoms from2,3 Right column: Structural parameters used to describe the oligopeptide4. In realistic systems, �� is

di�erent than ⇡/2, but this value is used to have a commensurable system.

Parameter eV Parameter eV Parameter Å/ rad.

�pp -0.81 ✏p -8.97 r 2.3

⇡pp 3.24 ✏s -17.52 h 5.4

sp 1.84 zp 0.006 �' ⇡/2

Table A.2: Estimation of e�ective interactions for the system. Left column: Hopping interactions. Right column:

SO interactions.

Parameter eV Parameter meV

Vs 3.786 ↵x 8.97

Vx -4.143 ↵y 10.20

Vy -7.666 �x 0.15

Vz -3.265 �y 1.2
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Appendix B

Full Hamiltonian

As covered in Sec. 2.3.1, the SK components can be computed from the atomic basis s, px, py, pz of two sites i and

j, as diagonal and o�-diagonal or overlap elements.

Table B.1: The matrix elements of the full Hamiltonian in the local coordinate system corresponding to Eq 3.10.

The ⇡ and � spaces are the diagonal components while the o�-diagonal correspond to T and T † of (3.10).

|pzii |pzi j |sii |pxii |pyii |si j |pxi j |pyi j

hpz|i ✏⇡p Vz 0 �izpsy izpsx Vs Vx Vy

hpz| j Vz ✏⇡p Vs �Vx �Vy 0 �izp�
'
y izp�

'
x

hs|i 0 Vs ✏s ⇠sx ⇠sy 0 0 0
hpx|i izp�

'
y �Vx ⇠sx ✏�p 0 0 0 0

hpy|i �izp�
'
x �Vy ⇠sy 0 ✏�p 0 0 0

hs| j Vs 0 0 0 0 ✏s ⇠sx ⇠sy

hpx| j Vx izp�
'
y 0 0 0 ⇠sx ✏�p 0

hpy| j Vy �izp�
'
x 0 0 0 ⇠sy 0 ✏�p
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Appendix C

Slater–Koster integrals

The overlap Eı |µµ0 between orbitals µ and µ0 that correspond to the site ı and | respectively, can be obtained using the

Eq. ??2,14.

The unit vector of each orbital in a local coordinate system (xyz) on-site ı is given by

n̂(sı) = R̂ |ı,

n̂(xı) = � sin('ı)ex + cos('ı)ez,

n̂(yı) = ey,

n̂(zı) = cos('ı)ex + sin('ı)ez,

(C.1)

The SK terms have a dependence on the distance representing in the empirical expression in the literature70,

V⇡,�
µµ0 = 

⇡,�
µµ0
~2

mR2
|ı

, (C.2)

where m is the mass of the electron and ⇡,�µµ0 depend on the specific set of orbitals or atoms.

Without loss of generality we can assume that Eı |µµ0 = 0, where µ = {s, px, py}, because those electrons are

bonding. The SK integrals that are relevant for transport processes, in terms of general parameters of the structure,
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are the following:

Eı |zz = hzı|V |z |i =

cos[�']V⇡
pp �

r2

|R |ı|
2 (1 � cos[�'])2(V�

pp � V⇡
pp)

Eı |zx = hzı|V |x |i =

sin[�']
 
V⇡

pp �
r2

|R |ı|
2 (1 � cos[�'])(V�

pp � V⇡
pp)

!

Eı |zy = hzı|V |y |i =

�
hr
|R |ı|

2 (1 � cos[�'])( | � ı)(V�
pp � V⇡

pp)

Eı |zs = hzı|V |s |i =
r(1 � cos[�'])

|R |ı|
V�

sp.

(C.3)

Using the geometry shown in Fig. 4.1, i.e. �� = ⇡/2, the following symmetry relations are obtained:

Vz = Ei j
zz = E ji

zz = �
r2

|Rji|2
(V�

pp � V⇡
pp),

Vs = Ei j
zs = E ji

zs = Ei j
sz = E ji

sz =
r
|R ji|

V�
sp,

Vx = Ei j
zx = �E ji

zx = �Ei j
xz = E ji

xz = V⇡
pp �

r2

|Rji|2
(V�

pp � V⇡
pp),

Vy = Ei j
zy = �E ji

zy = �Ei j
yz = E ji

yz = �
rh
|Rji|2

(V�
pp � V⇡

pp).

(C.4)



Appendix D

Full linear combination of atomic orbitals
Hamiltonian construction: overlaps and
couplings

The initial LCAO Hamiltonian and the coupling matrix have 3178x3178 overlap elements. The Hamiltonian space

includes two electrodes of one and two PL respectively, as well as a two-turn ↵-HAO molecule in the central

region. The procedure described in Sec. 3.3 requires the same number of PL in the two electrodes. To achieve this

requirement, we added a copy of PL to construct a Full LCAO Hamiltonian in the top left corner of the initial LCAO

Hamiltonian. As Fig. D.1include matrix elements includes a copy of the PL in the left electrode (green), intra-PL

overlaps from the electrode of the right (marked in purple), and zero elements for the overlap matrix between inter-PL

sites or electrodes since they are needed to not have interaction between each other. This can be achieved just by

matrix manipulation. This procedure allows us to construct a Full LCAO Hamiltonian to calculate the transmission

function as the literature suggests133. The disadvantages of this manipulation are that the interaction of the PL added

to the central region is not fully accounted for.
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Figure D.1: To the left: Matrix distribution of LCAO components of the setup used in this study. To the right:

Re-arrangement of the LCAO overlap matrices, by adding one PL to the left of the scattering region. Notice that the

dimension of the LCAO Hamiltonian increase from 3178 ⇥ 3178 to 3988 ⇥ 3988, that includes LCAO site energies

and overlap terms from the added PL, to the rest of the scattering region. The purple square in the upper left corner

represent the same overlap matrices between PLs as the one present in the lower right matrix elements of PLs.
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