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Resumen 

 

La inestabilidad de Saffman-Taylor es un problema de gran relevancia en la industria petrolera. Este 

problema aparece cuando un fluido menos viscoso desplaza a uno más viscoso, como proceso de extracción 

de petróleo por inyección de agua. Esta inestabilidad da como resultado el desarrollo de estructuras de 

dedos en el frente de desplazamiento. Estas estructuras disminuyen la eficiencia de la recuperación de 

petróleo, lo que genera pérdidas económicas y de recursos. Este trabajo de investigación tiene como 

objetivo establecer los fundamentos teóricos, experimentales y computacionales para abrir una nueva línea 

de investigación en la Universidad Yachay Tech. Esta línea de investigación tiene como propósito estudiar 

el comportamiento fluidodinámico de los procesos de extracción de petróleo para proponer métodos de 

estabilización que permitan mejorar la recuperación de hidrocarburos. 

        A través de medios teóricos se desarrolló un criterio de estabilidad cuasi-2D. Para complementar el 

estudio, se revisa la correspondencia del ancho del dedo con el parámetro de control de estabilidad, y el 

tiempo de inestabilidad característico. Adicionalmente, se discute una breve propuesta de la derivación de 

un criterio de estabilidad basado en el efecto tridimensional de la curvatura transversal de la interfaz. 

        Se construyó un montaje experimental para visualizar los patrones desplazamiento en una celda de 

Hele-Shaw. Los experimentos realizados fueron los puntos de referencia para analizar la eficiencia de los 

criterios de estabilidad propuestos y desarrollar un modelo computacional en COMSOL Multiphysics que 

reproduzca los resultados experimentales. 

        Al unir los tres enfoques, los experimentos y el modelo computacional mostraron una buena 

concordancia y consistencia, con algunas diferencias en los umbrales de estabilidad. Los experimentos 

tienden a alcanzar inestabilidades más rápidamente que las simulaciones debido a las contribuciones de la 

curvatura transversal de la interfaz y otros efectos físicos ignorados en las simulaciones. El criterio de 

estabilidad resultó ser preciso para predecir el comportamiento de la interacción entre fluidos que departan 

estrictamente de interfaces planas. 

 

Palabras clave: Saffman-Taylor, COMSOL Multiphysics, criterio de estabilidad. 

 
 
 
 
 
 



 

 

Abstract 

 

 

The Saffman-Taylor instability is a problem of high relevance in the oil industry. This problem shows up 

when a less viscous fluid displaces a more viscous one, like in the water-flooding stage of the oil extraction 

process. This instability leads to finger structures in the displacement front. These structures decrease the 

efficiency of oil recovery, leading to economical and resource losses. This research work aims to address 

the theoretical, experimental and computational foundations to open a new research line at Yachay Tech 

University. This research line has as purpose to study the fluid dynamical behavior of oil extraction 

processes to propose stabilization methods that allow to enhance oil recovery. 

          Through theoretical means, a quasi-2D stability criteria is developed. To complement the theoretical 

study, it is analysed the finger width correspondence to the surface tension parameter, and the characteristic 

instability time. Additionally, it is discussed a brief proposal of the derivation of a stability criteria based 

on effect of the 3D contribution of the interface's transverse curvature. 

          An experimental set-up was built to visualize the flow patterns of interacting fluids in a Hele-Shaw 

cell. The experiments performed were the reference points to analyse the efficiency of the stability criteria 

proposed, and to develop a computational model in COMSOL Multiphysics that reproduces the 

experimental results. 

          Joining the three approaches, the experiments and the computational model showed good agreement 

and consistency, with some differences in stability thresholds. The experiments tend to reach instabilities 

faster than the simulations due to the contributions of the transverse curvature of the interface and other 

physical effects neglected in the simulations. The stability criteria turned out to be accurate in predicting 

fluid behavior of flows that depart strictly from flat interfaces. 

  

Key words: Saffman-Taylor, COMSOL Multiphysics, stability criteria. 
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Chapter 1

Introduction

When talking about interface analysis, we implicitly introduce the well-known two-phase flow in physics.

This phenomenon is of scientific and technological relevance due to its applications in many fields of

study2. It can occur in chemical, biological and industrial processes2, just to mention a few. This work

is focused on water-flooding processes in oil recovery. The goal of this procedure is to extract a relatively

large portion of the oil trapped in the reservoirs once the natural pressure can no longer drain it from the

ground. The problem with injecting water to displace oil relates to the ensuing instabilities, mainly due

to high viscosity ratios that lead to finger structures in the displacing front, and the interaction between

water/rock that causes oil trapping due towetting effects3. Our studywill focus on viscous finger formation,

which is a critical limiting factor to enhanced oil recovery3. As a consequence of these instabilities there

is poor sweep efficiency caused by physical interactions in the interface3. Our aim is to set up a model

test system to assess control strategies for these instabilities in order to improve oil recovery. That way, oil

reservoirs can be exploited more fully and efficiently, bearing in mind environmental issues4.

The importance of this study is emphasized by the use of hydrocarbons and their limited availability as

a non-renewable resource. Petroleum has shown to be a cheap and energy rich source of fuel for most kinds

of transportation. Many highly useful derivatives are also obtained from oil5. Indeed, oil has become

an essential natural resource to keep our current standard of living. Unfortunately, it is a non-renewable

1
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natural resource (at least for our lifetime) meaning that it has a time limit for us to count on it. According

to British Petroleum (BP) there are 1.65 trillion barrels of proven oil reserves on the planet, which at

our current rate of consumption represents around 47 years6. Because of the complex porous structure

and the displacement instabilities in the recovery process, using the existing methods, only an average of

30% of the oil can be extracted3. By stabilizing the displacement front, up to a 20% more oil can be

acquired3. This, in consequence, would lengthen the useful life of oil reservoirs and increase the amount

of oil available for our use.

Interface stabilization studies began around the 60s, when the boom of nuclear boiling water reactors

(BWR) appeared as new efficient energy source2. It is ironic that when new renewable energy systems

emerged, scientist also began to research ways to improve oil extraction. This is mainly due to the high

costs related to transition from hydrocarbon based fuel to renewable energies, and the oscillation of the oil

prices7. Even nowadays, it is still a challenge to move completely to renewable energies. The Institute of

Energy Research (IER) points out that for the United States the costs of transition to a 100% renewable

electric system ranges from 4.5 trillion to 5.4 trillion dollars8. In fact, it is known that the cost of energy

production related to fossil fuels is higher than the cost of most of the renewable sources9, but given that

fossil fuels dominate the market, as technology is adapted to that energy source, it is hard to adapt our

current way of living to alternate energies. Furthermore, the importance of oil does not only consist on

its function as raw material for fuel production, but it also has an important role in derived products like

asphalt, petrochemical feedstocks (plastic, wax, cosmetics, textiles...), lubricating oils, etc5. Around 13%

of the oil extracted in The USA is used to produce petrochemical feedstocks, and the other 87% is used to

produce fuel (gasoline, Diesel, jet fuel)5. In the same way, in Canada the 21% of oil extracted is used in

the production of asphalt and petrochemicals, while the rest of its production is used to generate fuel10.

Hence, even though fuel is the major component derived from crude oil, the other products have also a

high impact in our daily lives. This means that even if we move to an energetic system that does not depend

on crude oil, there is a large amount of products, that we use very commonly, that depend on petroleum,

reason for why it is important to keep looking for ways to increase its availability.

This work focuses on the stage of oil extraction involving water injection. In the petroleum industry,
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there are usually three stages. The first stage stands for natural depletion, the second stage stands for

water-flooding, pressure maintenance or gas injection, and the third stage implies the use of miscible gases,

chemicals or thermal processes11. According to Green et al.11, nowadays water-flooding is synonymous

to a secondary process, given that it is the most common procedure present in the extraction process.

This kind of processes lead to several instabilities. We will focus on the Saffman-Taylor instability which

corresponds to the formation of finger structures as a consequence of the viscosity difference between a

less viscous fluid displacing and more viscous one12. The problemwith instabilities is that “under unstable

operation conditions, the efficiency of a two-phase systems can rapidly decrease” (Ruspini, 2013)13. In oil

extraction, this lack of sweep efficiency directly affects the recovery rate, leading to an economical impact.

Many proposals to solve the problem have converged on the use of more viscous fluids to extract oil, but

it turns out to be economically unfavorable11. Other stabilization techniques include studies related to the

pore distribution14, addition a lubricating layer15, addition of surfactants and polymers to water3, flow

geometry control by variable channel thickness16, electric field interaction17, structured porous media18

and many other alternatives.

Experimental tests to assess strategies to control unstable two-phase flow can be time consuming

and expensive, reason for why it is advantageous to count on analytical and computational tools13. Our

study includes a dimensional analysis, a theoretical analysis based on Bensimon’s et al.12 review about

Saffman’s work in a quasi-2D system19, a 3D extension of the analysis in 2D12, a discussion of the finger

width in relation to a stability parameter proposed by McLean and Saffman20 and the discussion of the

critical time that it takes for the instabilities to appear. The dominant parameter to study in this research

is the surface tension parameter. A dimensionless parameter derived from Darcy’s law that establishes

the required relations between the variables that influence the stability of the front12. This parameter

determines the conditions at which the system is stable or unstable, allowing to look for a stability map.

Experimental and computational approaches are introduced to compare with our theoretical discussions.

The computational model is meant to coincide with the experimental results. If so, it can be used in future

researches to predict behaviors before constructing a proposed experimental set-up. Using the obtained

structures through computational and experimental models, we analyse the finger patterns in relation to the
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finger width and stability region proposed. Also, we discuss the importance of three-dimensional physical

effects like wettability and transverse front curvature, that should be considered to obtain more accurate

results in the computational model and the stability criteria.

The main objective of this research is to determine a stability criteria and develop a computational

model to predict fluid behavior in a Hele-Shaw cell. Once that we are able to design the experimental

set-up to generate the desired perturbations in our displacement front, we can proceed, in future work, to

study the behavior of the system in order to stabilize it. There is a large set of research proposals that

can be derived from the results of our analysis. Some of the proposals include the stabilization of viscous

fingering using nano-particles to increase the viscosity of the displacing fluid, studying the behavior of

viscous fluids interacting with a defined shape of porous media, introduction of time dependent velocity

patterns to analyze the role of accelerated input in the finger onset and shape, analysis of the stability of

the system under actual 3D considerations, among others.

This thesis project is meant to be the basis for a new research field at Yachay Tech University. Basically,

we will set the theoretical foundations that determine the stable/unstable conditions of the system, and

evidence it through experimental and computational approaches. This will allow other researchers to join

the project and develop further advances that contribute to the oil industry in Ecuador.

1.1 Problem Statement

Petroleum is a limited resource that powers most of our transportation system and provide daily life

products derivatives. It is necessary to improve the recovery process to extend its availability. In oil

recovery processes the goal is to extract as much oil as possible from the reservoirs. Given that the

water-flooding stage implies the immiscible interaction between water and oil, poor sweep efficiency and

thus low recovery rates are expected because of the viscosity ratio between fluids. The behavior of the

system can change according to the flow conditions and fluid properties. A stability criteria allow to define

regions where the initial conditions of the system could lead to a stable or unstable behavior in despite of

the viscosity ratio.
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The reservoir engineer is confronted with the problem of stabilizing the displacement front by mod-

ifying the properties of the displacing fluid and the interface. In this research we identify and play with

the possible variables that directly influence the stability of the system. Through theoretical means like

the Raleigh algorithm (dimensional analysis) we determine a dimensionless parameter in terms of these

variables, so that we can define stabilization regions. A low-cost micro-model injection system built at

Yachay Tech University allows to actually evidence the instabilities proposed theoretically. Following the

literature, the main variables to address are viscosity, surface tension, cell width, cell depth, and input

velocity among other rheological properties of the two fluid system12.

Because of the COVID-19 pandemic, the development of the experimental set-up has been limited.

In order to propose new micro-models to assess more accurate experimental instabilities, we rely on

computational simulations of the fluid flow using the CFD module of COMSOL Multiphysics. The whole

research is meant to define the regions of stability/instability to control the behavior of a system. Once

the basic tools for instability analysis are set, this project opens the opportunity for a new research field to

emerge in Ecuador in order to improve the oil extraction system.

1.2 General and Specific Objectives

The general objective is to settle a stability criteria to predict the behavior of a quasi-2D two-phase flow of

a less viscous fluid pushing a more viscous one. In order to achieve it, our specific objectives are:

• Develop a theoretical stability analysis based on Darcy’s law. Analyze which parameters affect the

stabilization of the system.

• Determine stability regions according to a dimensionless control/stabilization parameter.

• Complement the theoretical analysis by studying the finger width and characteristic time expected

for the Saffman - Taylor instabilities.

• Build an experimental set-up to visualize the displacement patterns and compare them with the ones

proposed by the theoretical analysis.
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• Build simulations in COMSOL Multiphysics. Reproduce the experimental set-up in order to build

a predictive computational model.

• Confirm the accuracy of the stability criteria by comparing the results of the theoretical, experimental

and computational approaches.

1.3 Outline of the thesis

In order to accomplish our goals, the thesis will be divided into seven chapters. The first two chapters

(this one and the one that follows) are considered to be the introductory part. Here, the main concepts and

problems are explained. Chapters 3 - 5 correspond to the methods used to perform our studies, beginning

by a theoretical analysis and complementing it with experimental-computational approaches that verifies

the proposed behavior. The last chapters review the results obtained and a meticulous discussion. We end

with the conclusions and discuss future work that can be undertaken based on our work.

• Chapter 1 (Introduction): This chapter introduces the problem of viscous flows instabilities and the

purpose of this research thesis to deal with these problems.

• Chapter 2 (Theoretical Background): This chapter reviews the necessary concepts to understand

the physics behind a two - phase flow fluid, its interaction with a porous media, the instabilities

produced in this kind of systems, and the main methods of enhanced oil recovery.

• Chapter 3 (Theoretical Stability Analysis): This chapter shows the detailed description, derivation

and discussion of the parameters proposed to study the stability of the system. This includes a

dimensional analysis based onRayleigh algorithm, the study of the surface tension parameter through

quasi-2D and 3D approaches, finger width relation to surface tension parameter, and instability

characteristic time.

• Chapter 4 (Experimental Stability Analysis): This Chapter exposes the construction, operation

and specifications of the experimental set-up. It includes an overview of the pumping system, the
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micro-model cells where the experiments are carried out, data acquirement, and an insight of relation

between the experiments and the stability maps developed from the theoretical analysis.

• Chapter 5 (Computational Model): In this chapter we see a description of the Software used to

develop the simulations (COMSOL Multiphysics), a brief introduction of the modules used, and a

description of the conditions and parameters established to replicate the experimental model.

• Chapter 6 (Analysis andResults): This chapter provides general results of the experiments/simulations

in relation to the theory.

• Chapter 7 (Conclusions & Outlook): In this chapter, a summary of the result is provided. Also

an outlook to future works that can be derived from this research.



Chapter 2

Theoretical Framework

This chapter contains a complete overview of the concepts required to understand the research project.

Here we presented basic insights on how immiscible fluids interact, define a porous medium, and the

influence of the porous medium on the two fluid system. A description of enhanced oil recovery in terms

of water - oil interplay, and a review of previous works that have contributed to the development of this

topic.

2.1 Two-phase flow systems

The study of two-phase flow began around the 50’s, given to its possible relevance to biological systems,

enhanced oil recovery, boilers, nuclear reactors, condensers, air conditioning systems, refrigeration equip-

ment, desalination plants, and many others2. Two-phase flow implies any interaction between fluids in any

state of matter: gas, liquid or solid. Some of the most common interactions are gas-liquid, liquid-liquid,

gas-solid, solid - liquid21. Depending on the type of interaction, different behaviors at the interfaces arise.

The interactions can be grouped between miscible or immiscible interfaces. The miscible fluids mix at any

proportion forming a homogeneous solution22. Instead, immiscible fluids do not mix by definition, and a

strong boundary (interface) is created between them22. These terms are normally used to describe liquids

9
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interacting, but both cases can actually occur in any phase interaction. For example water-sugar (liquid -

solid)23, CO2 - crude oil (gas - liquid)24 are miscible fluids and they do not have to be necessarily liquids.

Also solid-solid interactions with Rayleigh-Taylor instabilities occur, making features of the earth’s mantle

in geology25.

Classical fluid flows are described by Navier-Stokes Equation (NSE):

µ∇2v = ρ

(
∂v
∂t

+ v · ∇v
)

+ ∇P − ρg, (2.1)

where µ is the viscosity of the fluid, v is the velocity vector field, P is the pressure, ρ is the density, and g

is gravity. This equation is a form of Newton’s second law F= m a. It is presented in units of Force per

unit volume. The driving force of this equation is given by the pressure gradient and acceleration26. The

term between parenthesis is a representation of the total acceleration, and the left hand side is the dragging

force due to viscosity26. This equation relates the pressure and the three coordinate velocities, and needs

to be complemented with the continuity equation to fulfill the mass and energy conservation equations26.

2.1.1 Immiscible fluid flow

Two interacting immiscible fluids do not mix. They can be classified in disperse and separate flows. The

former corresponds to flows in which one of the fluids behaves as if it were particles, like bubbles, droplets,

dispersed in a second fluid27. On the other hand, the latter flow considers the study of streams of different

fluids separated by a well defined interface between them. What allows two fluids to be immiscible is

the surface tension28. This parameter can be explained in terms of inter-molecular forces. In the bulk

of a liquid, the force on a molecule is the same in all directions. On the other hand, at the interface,

the molecules are attracted to the centre of the fluid29. Hence, the surface tension not only accounts for

separating distinct fluids, but also for the rounded shape at the interfaces defining a radius of curvature.

Also, when two immiscible fluids are in contact, a pressure jump across the interface is generated due to

the surface tension3.

In oil recovery water-flooding is an immiscible process. Oil and water do not mix, enabling water to
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push on the oil thanks to the effect of surface tension. Some other industrial uses include disperse flows,

liquid extraction processes and co-extrusion flows21. In disperse flows, droplets are commonly used. A

droplet is a bubble shaped fluid flowing within another fluid, forming emulsions important in drug delivery

and bio-sensing30. In liquid extraction, the immiscible property of two fluids can be used to separate a

solute dissolved in one of the fluids by contact of the interacting fluids21. In the polymer industry it is

required to maintain superior mechanical properties. The co-extrusion principle is to inject immiscible

layers of polymers in a mold to obtain a material with specific properties31. The task in these flows is to

keep a stable interface21.

2.1.2 Two - phase immiscible viscous flow interactions in porous media

In a porous medium, the interaction between two viscous fluids is complex since it becomes a fully

multiphase flow32. There is a solid - liquid and liquid-liquid interactions, which adds several effects to

the behavior of the flow at pore and reservoir scale. At the pore-scale, physical phenomena like wetting

films, wetting behavior, contact angles, capillarity, slip or no-slip conditions on the walls, trapping, among

others show up due to the interaction of fluids with the rock32 3. Actually, at microscopical scales there is

always a degree of slip close to the surface, but it can be neglected on a large scale continuum description.

According toM. Blunt (2017)26, the pressure drop across a pore is insignificant in comparison to the one of

the whole reservoir, so that a constant density can be surmised (even for gases). Nevertheless, the physics

at the pore scale cannot always be ignored since the fluid-rock interaction is responsible of oil trapping

caused by interfacial effects3.

From a macroscopic point of view (i.e. the reservoir) the poor oil sweep is related to "permeability

heterogeneity, channeling or thief, fracture zones, and a viscous ratio" (Alvarado & Manrique, 2010)3.

Darcy’s law is used to consider the effects of flow in a porous media from a macroscopic point of

view or continuum description. This relation is derived from Navier-Stokes equation using the following

assumptions:

• In an average porous media, there is no turbulent flow. Thus fluid flow occurs at low Reynolds
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numbera, that leads to the suppression of the inertial term v · ∇v26 32.

• Constant density along the reservoir26.

• The fluids to consider are in-compressible viscous liquids, then the divergence of the velocity in

NSE vanishes and the Laplacian of pressure is zero12.

• The tangential and normal components of the fluid velocity with respect to the rigid solid walls are

also zero26. This is called a no-slip condition.

• Permeability is the parameter that relates Fluid velocity v with the driving forces (
∇P(x, y) − ρi g

)

v(x, y) = −
Ki

µi

[
∇P(x, y) − ρi g

]
(2.2)

It is important to remark that v is not an actual velocity, but it is called Darcy velocity. It is a volume

average (or coarse graining) of the flow field. According to Blunt, "it is not a real velocity, but the

volume of fluid flowing per unit area of the porous medium (and this area includes both solid and void)"

(Blunt, 2017)26. This equation allows to introduce the interaction of the porous media with the fluid by

permeability Ki. At reservoir scales, this parameter is associated to instabilities caused by channeling or

thief zones, fracture networks, viscous ratio3. Permeability is defined as the "volume of a fluid of unit

viscosity passing through a unit cross section of the medium in unit time under the action of a unit pressure

gradient" (Wool, 2005)33. In other words, it is the property of a material to let a fluid pass through it.

To replicate studies of a flow in porous media, the opaque property of the system is a drawback.

Hence, most of the studies are carried on a Hele-Shaw cell: An experimental set-up conformed by two

transparent parallel plates of length L separated by a negligible distance b32. Even though a Hele-Shaw

cell has three dimensions, the thickness of separation is very small compared to the other cell dimensions

and thus can be neglected (quasi-two dimensional system). The cell is not exaclty a porous media, but has

an associated permeability given by Ki = b2/µ. The analogue of a porous media by a Hele-Shaw cell is
aReynolds number: ratio between inertial and viscous forces in the flow 26. Re<2300: laminar flow, Re>4000: turbulent flow
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a good approximation, but it is not very accurate for immiscible flows32 and neglects wetting effects20.

Recalling the extra physical contributions that the porous structure adds to the fluid interaction (contact

angles, trapping, rock wetting, etc), a Hele-Shaw cell can not replicate them either32.

Porous media

In order to have a deeper understanding of the behavior of a liquid within a porous media, it is important

to know the basic physical elements that affect its motion. A porous medium is a material with voids

in its volume. Depending on the packing and material of the matrix, it has different properties that will

affect macroscopically and microscopically to a fluid moving through it. The most important macroscopic

properties of porous materials are the porosity, permeability and displacement capillary pressure34.

• Porosity “is the fraction of the bulk volume of the porous sample that is occupied by pore or void

space” (Dullien, 1991), so that it says how much void space there is in the sample for the fluid to be

in.

• Capillary pressure refers to the pressure difference between two interacting phases, which is needed

for one phase to push other26.

A porous media can be described in terms of the pores themselves and throats, as seen in Fig.2.1. The

pores constitute the main void spaces, and the throats are the connections between them. When a fluid

is present, we can operationally define throats and pores by the fact that the capillary pressure, is a local

maximum at throats, given that they are “the smallest regions of the pore space with the smallest radii of

curvature” (Blunt, 2017)26. On the other hand the capillary pressure is a local minimum at the center of

the pores.

2.1.3 Instabilities

In this section, we will briefly review the possible instabilities that could appear in a two phase flow

within a porous media. The main instability we consider are the Saffman-Taylor instability, snap-off and
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Figure 2.1: Pore Structure (Blunt, 2017)26

channeling. The Saffman-Taylor instability also known as viscous fingering is the one that we will focus

in this research.

Saffmann – Taylor instability

The Saffman-Taylor instability was first described in a Hele-Shaw cell12, shown in Fig 2.2. Viscosity is the

property of fluids that indicates the resistance to flow. The higher the viscosity, the harder it is for a fluid

to flow35. It plays a fundamental role in this study. When working with immiscible fluids, the viscous

contrast between the displacing and the displaced liquid is the source of the instability. At the interface, a

surface tension exists that describes the border between both fluids12. With a low surface tension, a less

viscous fluid, acting as the displacing one, can break into the other (the displaced one) due to its facility

to move, as compared to the more viscous one. If the fluids exchange roles, a fluid with higher viscosity

has a higher resistance to move than a less viscous one, so that the more viscous will not break into the

displaced one and no instability occurs. In general high viscosity of the displacing fluid and high surface

tension allows to have stability in the displacement front, while otherwise a less viscous fluid breaks into



CHAPTER 2. THEORETICAL FRAMEWORK 15

the displaced one creating growing fingering patterns in the front .

This behavior can also be explained in terms of the mobility ratio or viscosity ratio. Let the viscosity

of displaced fluid be µd and the viscosity of the injected fluid µi. The mobility ratio would be M = µd/µi.

The front will be stable (flat interface) for M<1, given that the injected fluid is more viscous and has a

higher pressure drop than the displaced one, leading to the suppression of any perturbation growth26. The

opposite case M>1 is unstable given that the pressure drop at the injected fluid is less than the displaced

one, meaning that any perturbation will grow because the injected fluid will move faster than the more

viscous fluid that surrounds it26.

Figure 2.2: Stable / unstable fluid flow. The displacement on the left has a flat interface, meaning that it is
stable (M>1). The displacement on the right has a perturbed interface (M<1).

The perturbation of the flat interface leads to finger-like structures. We will see ahead that there are

several levels of instability for these systems. The first instability corresponds to the growth of a single

finger given by the pressure difference along the interface32. Recalling the fact that the interface gets a

curvature due to surface tension, the pressure difference is the one that makes this round structure displace

and grow towards the more viscous fluid32. This process is called shielding. Depending on the conditions
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of the system, the more unstable it gets, the thinner the finger becomes. In most of the studies, the ratio

between the finger width and the cell width converges at λ → 1/219 20 12. This is the limit at which we

can evidence a single finger, from that point ahead, the finger does not get thinner anymore, but starts

splitting at the tip32. The physical explanation for this instability was given by Bensimon (1986)12: “...(the

instability)... lies in the geometry of the moving interface”. For a fixed pressure difference along a channel,

the larger gradients in pressure appear at the end of the largest perturbations, making themmove faster with

respect to the other points at the interface. In that way, “the entire system is destabilized by the motion”

(Bensimon, 1986)12.

The stability of the system can be characterized in terms of the capillary number or the surface tension

parameter, both very similar. There is actually no concrete description of the stability/control parameter12,

but the most general one is the capillary number32. The first parameter mentioned is dimensionless and act

as a control parameter12. The second parameter is the relative contribution between viscous and capillary

forces21 and plays a critical role in the stability of a two phase flow immiscible system. The single finger-

like structures are the first level of instability, for relatively small capillary numbers36. In here, surface

tension plays an important role that prevents or stabilize smaller perturbations to grow36. Then, in a more

unstabilized system, as capillary number grows and surface tension is not enough to stabilize the system,

splitting begins to occur in a periodic manner, this is called a dendritic finger. Finally, a much more

unstabilized system where capillary number is really high, and the mobility ratio is too low, the instability

is such that a finger is not even able to grow, but there is just a "continuous joining and merging of finger

branches leads to no distinct finger formation" (Guan, 2003)36, these structures are known as coalescent

fingers. The behaviors described can be evidenced in Fig 2.3.
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Figure 2.3: Unstable modes observed in random walk simulations, from Liang (1986)37. Time evolution
seen from bottom to top. a) A finger-like structure b) Dendritic fingers c) Coalescent fingers12

Oil trapping

Two main situations of interest can occur as trapping; in the first one, there is swelling snap-off, and in the

second case we have bypass phase trapping.

Oil trapping or snap-off refers to the residues of oil trapped within water in the reservoir after the

primary drainage. Basically, due to wettability and capillary effects, a blob of oil is left enclosed by water

at a pore3. According to Alvarado (2010)3, wettability is the "relative ability of one fluid to wet a solid

surface (pore surface) in the presence of a second one". This property next to capillary pressure and surface

tension governs oil snap-off. As mentioned previously, the curvature of the interface is created because

of surface tension and capillary pressure. The curved interface interacting with the pore structure through

wetting effects make the displacing fluid to adhere to the walls of the pore, advancing and trapping oil

inside3, as seen in Fig 2.4. In the interaction between fluids, depending on which one has higher wettability

to the pore, there will be a different distribution of the fluids in the matrix. “The type of wettability controls

the distribution of fluids within the rock pore space and framework” (Schön, 2015)38. So that depending

on the material of the pore structure, the system can be water-wet, oil-wet or intermediate. In a water-wet

system, water coats the rocks and oil occupies the central position at the pores. In oil-wet systems, the
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roles of oil and water are exchanged38.

Figure 2.4: “Wettability types: oil displacing in water and oil-wet reservoirs during water-flooding” Schön,
(2015)38.

In contrast to the stabilization of viscous fingers, snap - off can be stabilized by adding surfactants to

water in order to reduce surface tension and capillary number3. If surface tension is smaller, the curvature

of the interface will be less, decreasing the wettability of displacing fluid.

In bypass phase trapping it is preferable to talk about wetting or non-wetting phases. In presence

of a solid phase, one of the immiscible fluids interacting has higher attraction to the walls, that one is

the wetting phase11. In a bypass or alternate pathway in a porous network, the wetting phase tends to

invade first smaller pores due to higher capillary pressure, then leaving the larger pathway filled with the

non-wetting phase (oil), trapping it in the bypass39. This phenomena can be evidenced at Fig. 2.5.

Figure 2.5: Imbibition process with trapping in the thicker throat. Kantzas, (n.d.)39.

2.2 Enhanced oil recovery

The oil recovery process can be reduced into three main phases: primary recovery/natural depletion,

secondary recovery/pressure maintenance, tertiary recovery/enhanced oil recovery (EOR)3 11. A brief

description of these stages: The first one refers to the drilling of a well that reaches the reservoir and allows
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the natural energy to extract oil without external work3. This natural energies could be solution gas drive,

natural water drive, fluid and rock expansion, and gravity drainage11. Once the natural processes in the

reservoir are not strong enough to support oil production, the second stage is reached and the operator must

inject a liquid or gas to increase the pressure in the reservoir and drain it further. The use of immiscible

gases in the second stage used to be more popular in earlier times, nowadays water-flooding is the most

common procedure due to higher sweep efficiency11. According to V. Alvarado (2010), in the first two

stages a maximum recovery of 30-40% of the total content can be achieved3. Green (2018) also reports a

recovery efficiency of 35-50% in the first two stages11. The final stage, EOR, finally arrives where various

strategies are implemented to boost oil extraction and enlarge the lifetime of a reservoir.

The EORmethods commonly used are chemical injection, solvent injection and thermal injection. The

enhancement of oil production by these procedures will allow an increase in recovery up to a 20% more11.

All these procedures are basically fluid injection under different conditions. In general, EOR stands for

methods that allow the increase of the sweep efficiency of the in-place fluid3. As will be seen below, this

improved recovery can be achieved by increasing the mobility ratio between injected and in-place fluids

or reducing the capillary and interfacial forces in order to reduce oil saturation in soil3.

Green (2018)11 defines a classification of EOR processes in 5 categories: mobility control, chemical,

miscible, thermal, and others.

• Mobility - control: The aim is to increase the mobility ratio, such that polymers are used to thicken

water, or foams are used to reduce the mobility of gas11. Usually, in a water-flooding process there

is an unfavorable mobility ratio that leads to water fingers crossing across the oil reservoir as seen

in Fig. 2.6. Polymer - water-flooding improves the recovery given that the mobility of the polymer

solution is less than the one from water11 as evidenced in Fig. 2.6. This process mainly enhances

the macroscopic sweep rather than microscopic at the pore scale.

• Chemical: It implies the use of surfactants or alkaline agents to reduce the interfacial tension to

displace oil. In some cases, chemical processes are also considered mobility control processes, due

to the change in mobility that the chemicals produce. Depending on the reservoir, sometimes it is
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required to increase surface tension to avoid fingers formation, but in other cases it is necessary to

decrease surface tension to displace oil blobs produced by trapping11.

• Miscible: The injection of fluids that are miscible to oil like CO2. A miscible section replacing a

clear interface leads to the mobility of oil drops caused by trapping.

• Thermal: Injection or generation of thermal energy to the system. For example injecting steam or

oxygen combustion at the reservoir. This process enhances the efficiency by provoking viscosity

reduction, oil swelling and steam stripping. The disadvantage of this method is that the heated fluid

is less dense than oil and water, so it moves to the top of the reservoir, ignoring a large part of oil in

the reservoir11.

Figure 2.6: Water-flooding process and polymer injection to water-flooding.



Chapter 3

Theoretical Stability Analysis

This project involves the study of fluid dynamical systems. Specifically, we are dealing with a displacement

instability that changes over time. In this chapter we will compile some analysis based on Darcy’s law to

study the time development of a perturbation in a quasi two-dimensional interface.

Stability theory addresses the solutions of differential equations and of trajectories of dynamical systems

under small perturbations given an initial condition40. A simple wavelength dependent perturbation is

imposed on an otherwise flat interface and a solvable linear equation reflects whether the perturbation

grows or decays. The analysis can be applied to non-linear differential equations to which we don’t know

the solutions and we are not concerned with the long time behavior. Once one has the onset of the

instability, it is assumed that the behavior continues into a non-linear regime.

Here we begin by a dimensional analysis based on Buckingham theorem aiming to find a simplified

expression of all the variables that could affect to the stability of the system. As a consequence, it is

obtained a control parameter that simplifies the study of this phenomena. Then, it is discussed the study

of the two dimensional flow in a Hele-Shaw cell, based on the control parameter derived by Bensimon

et al.12. Following, it is derived the finger width correspondence to the stability parameter based on the

research work of McLean and Saffman20. Later, it is derived and discussed the characteristic time of the

instabilities. These studies provide the opportunity to understand and predict the behavior of the system

21
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and compare them with the studies developed by computational and experimental models. There is an

additional study that will not be contrasted experimentally, but will allow to provide further predictions

of the stability of the systems. This is the study of the behavior of the three dimensional case and the

assessment of its impact on the Hele-Shaw cell results.

3.1 Dimensional analysis for stabilization criteria

The equations of motion for fluids are non-linear and full analytical solutions, especially in the dynamical

regime, are difficult to come by41. The crux of dimensional analysis is to identify the important dimensional

quantities involved in the phenomenon. This is a mix between trial and error, and intuition. To perform

dimensional analysis we will use the Rayleigh algorithm and Buckingham π theorem42 to build the

important dimensionless control parameter.

These methods allow to reduce the number of variables to study. The Rayleigh’s Algorithm is used

to find a dimensionless expression out of the model’s variables42. The Buckingham Pi Theorem uses the

Rayleigh algorithm to set groups of new dimensionless variables in terms of the original ones42.

Theorem 1. Let q1, q2, q3...qn be the main variables inter-related by a set of equations. These can be

related into a single function of the form

F(q1, q2, q3...qn) = 0 or equivalently q1 = f (q2, ..., qn)

Let k be the number of fundamental dimensions, and n be the number of variables. Then j = (n − k) are

the number of dimensionless variables or Π groups that will describe a reduced functional compact form:

Φ(Π1,Π2,Π3...Πn−k) = 0 or equivalently Π1 = φ(Π2, ...,Πn−k)

The set of parameters obtained is not unique, but what matters is that they form a complete and independent

set43.
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3.1.1 Derivation of dimensionless parameter

Darcy’s equation governs fluid flow under a pressure gradient or gravitational field in a system with Darcy

velocity v(x, y), permeability Ki, fluid viscosity µi, pressure P(x, y), density ρi, and gravity g.

v(x, y) = −
Ki

µi

[
∇P(x, y) − ρi g

]
. (3.1)

In our studies we will not consider gravity, given that we will work in a horizontal displacement, then

v(x, y) = −
Ki

µi

[
∇P(x, y)

]
,

= −
b2

12µi

[
∇P(x, y)

]
,

(3.2)

where we have used the well known result Ki = b2/12 for a cell of depth b << W, the channel width. First

of all, we must set our main variables in terms of the fundamental units [M,L,T], which stand for mass,

length and time respectively. Beginning by the pressure, which can be expressed in terms of the interfacial

tension τ over length (we will consider τ to be surface tension to avoid confusions with time T) , we get

[P] =
M

LT 2 ,

=
[τ]
L
,

(3.3)

[τ] =
M
T 2 , (3.4)

[
b2

]
= L2, (3.5)

[
v(x, y)

]
=

L
T
, (3.6)
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[
µ
]

=
M
T L

, (3.7)

where the square brackets denote the dimensions of the arguments. Darcy’s law in terms of its fundamental

units would go as follows, and given that the left hand side and the right hand side should agree in their

dimensions, it follows that can follow that

L
T

=
L2

M/T L
1
L

M
LT 2 . (3.8)

Now, using the Rayleigh algorithm and the Buckingham theorem we will find the appropriate relation

for the variables involved in the stability of the system. Here we add a variable that is not included among

the previous ones, but also affects to the stability of the system, the width, W, of the channel where the

fluid goes through. Also, lets replace the velocity v by U. Power law dependencies to be found determine

combinations of dimensionless quantities obeying

WαbβτγµδU t = C. (3.9)

The fact that we are stating the equality between power of our variables and a constant, sets the condition

for the dimensionless property. Now, replacing our variables with their corresponding fundamental units,

lets find out the powers required to fulfill this property.

LαLβ
( M
T 2

)γ ( M
T L

)δ ( L
T

)ε
= C′ (3.10)

The constant C is required to be dimensionless, thus on the right hand side, the sum of the exponents of
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T, L,M should be zero, leading to the following set of equations


L : α + β + ε − δ = 0,

M : γ + δ = 0,

T : −2γ − δ − ε = 0,

(3.11)

so 
γ = −ε = −δ,

α = −β.

(3.12)

Now, simplifying we arrive at

W−βbβ
(
τ

µU

)γ
= C. (3.13)

It is evident that we have a product of two dimensionless terms, these are the Π terms described previously

in the Buckingham theorem (
b
W

)β (
τ

µU

)γ
= C, (3.14)

or (
b
W

)β/γ (
τ

µU

)
= C′. (3.15)

Finally, we see dimensional analysis cannot give us the ratio β/γ, so we have a family of combinations of the

dimensionless quantities. Below we will see that the controlling dimensionless combination corresponds

to β/γ = 2. We thus have an already have a compact dimensionless expression that will allow us to study

analytically the behavior of the system controlled by Darcy’s law in a Hele-Shaw configuration.

(
b
W

)2 (
τ

µU

)
= C′. (3.16)
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3.1.2 Discussion

The parameter obtained provides an idea of the appropriate form that a relation that contains the possible

variables that affect the stability of the system. The first term in the left hand side is know as aspect ratio,

while the second term is the capillary number. This means that in general, the most summarized relation

of the instability of the system depends on these two parameters. It is good that now there is an idea of the

form that stabilization criteria should have, save for numerical prefactors42. Thus, using this constant, we

will try to find a more explicit relation for the instability in the upcoming sections.

3.2 Stability analysis of 2D perturbed interface

A topical review by Bensimon et al.12, introduces the study of the Saffman-Taylor instability in a Hele-

Shaw cell. The review contains experiments, computational simulation and a theoretical analysis of a two

dimensional framework. The study of this system by way of stability analysis will be our major interest

in this section, so that we can guide our study to find the most suitable parameters to understand viscous

fingers. With Darcy’s law and pressure jump equation, Saffman and Taylor derived an expression to find

the parameters that directly contribute to the growth or reduction of a perturbation. It turns out that this

expression coincides with the expression derived by dimensional analysis in section 3.1. It also provides

a numerical value for the ranges of stability in terms of the control parameter.

Stability analysis begins by considering a flat interface exposed to a small perturbation A(t) of a certain

wavelength. These perturbations can lead to finger structures that can grow or be damped. Hence, the

analysis consist on finding the interplay between relevant physical parameters that govern the evolution of

the interface.

3.2.1 Perturbation of the flat interface

Consider a 2D (x,y) flat interface located along y, where the fluids displace in x direction at a velocity U,

where t is time.
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x(y) = Ut, (3.17)

A small perturbation or deviation from flatness A(t)→0 is introduced in the displacement

x(y) = Ut + A(t) cos(qy), (3.18)

where q is the wavenumber of the perturbation imposed in the y direction. In absence of the perturbation

A(t), the velocity of the fluid motion is produced by a pressure gradient U
b2/12µ as can be derived from

Eq. 3.1. By Darcy’s law, the following expression is obtained, where the displacement front is (x − Ut),

P(x, y) = P0 −
U(

b2/12µ
) (x − Ut), (3.19)

where P0 is an integration constant with dimensions of pressure. Thus, we can add a perturbation term to

this expression, due to the deviation from flatness A(t)

P(x, y) = P0 −
U(

b2/12µ
) (x − Ut) + B(x, t) cos qy, (3.20)

where B(x, t) will be found self consistently. A small parenthesis regarding to the shape of B(x, t) must be

done here. Remember that we are working with incompressible fluids, so that pressure follows Laplace’s

equation. For an incompressible fluid ∇2P = 012. This means that the special solution of B(x,t) must vary

as eqx or e−qx. Note this implies that length scales for x, y behavior is dominated by 1/q. Obviously, as

the pressure values are finite and values of x are positive, so that as x → ∞, the first proposed solution is

discarded. The last expression is then

P(x, y) = P0 −
U

b2/12µ
(x − Ut) + B(t)e−qx cos qy, (3.21)
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meaning that

∇P(x, y) = −
U

b2/12µ
− B(t)qe−qx cos qy. (3.22)

The wavenumber q can be conveniently defined as q = 2πn
W , in terms of the width of the cell W. Differ-

entiating the equation of position over time, we obtain an expression for interface velocity with a small

perturbation

Un = U + Ȧ(t) cos qy. (3.23)

Now, by expanding the pressure gradient equation 3.22 and inserting it into Darcy’s law, we obtain

Un = U +
b2

12µ
qB(t) cos qy. (3.24)

Later, stating an equality between Eq. 3.23 and Eq. 3.24, an expression to relate both perturbation

coefficients A(t) and B(t) is obtained.

Ȧ(t) = B(t)
b2

12µ
q → B(t) = Ȧ(t)

12µ
qb2 (3.25)

Bensimon et al. actually aim to obtain a full description of Ȧ(t), to state which parameters are the ones that

affect the perturbation the most. Departing from Eq. 3.20, an equation for pressure jump can be obtained

in terms of coefficients A and B, by replacing x(y) (Eq. 3.18) into it

∆P(y) =

(
U

b2/12µ
A − B

)
cos qy. (3.26)

Pressure jump ∆P(y) follows classical Gibbs-Thompson equations12. The use of the following expression

is tricky given that it is specifically for 2D frameworks. Another relation for the pressure jump across the

interface is given by

∆P(y) = −τκ ≈ −τ
d2

dy2 x(y) (3.27)

∆P(y) = −τAq2 cos qy, (3.28)
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where τ is the surface tension at the interface, and κ is the curvature experienced at that specific (x,y)

position and we have used Eq.3.18. Finally, relating Eq. 3.26 and 3.28, and replacing B(t) (Eq. 3.25) into

this relation, we obtain the expression that enables us to talk about the stability of the perturbation of the

interface is finally obtained.

(
U

b2/12µ
A − B

)
cos qy = −T Aq2 cos qy, (3.29)

(
U

b2/12µ
A −

[
Ȧ(t)

12µ
qb2

])
cos qy = −T Aq2 cos qy. (3.30)

Finally, algebraically rearranging the terms, we get the description of Ȧ in terms of the basic parameters

that will affect the stability of the system. It that tells us how A(t) changes for short time scales in the linear

regime depending on the sign of the quantity in parenthesis. For positive values, the perturbation grows,

for negative values, the perturbation is damped or not allowed to grow.

Ȧ = A
(

U
b2/12µ

− Tq2
)

b2

12µ
q, (3.31)

3.2.2 Derivation of surface tension parameter d0

The rate of change of the perturbation from a flat interface provides the stabilization coefficient d0, mostly

known as the surface tension parameter. According to equation 3.18, A is the perturbation’s amplitude

from the flat interface. Hence, for Ȧ > 0 the perturbation increases, while for Ȧ < 0 the perturbation

decreases. In the description of equation 3.31, the terms responsible for the sign of the equation is between

the parenthesis. From here, the dimensionless parameter d0 is obtained after some algebraic operations.

Using the parameter found by dimensional analysis in section 3.1, we will try to obtain the stabilization

criteria looking for the shape of the parameter described previously.

Lets begin by setting the condition for instability:

(
U

b2/12µ
− τq2

)
> 0. (3.32)
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substituting q = 2πn
W we arrive at  U

b2/12µ
− τ

(
2πn
W

)2 > 0. (3.33)

Multiplying by unity 12µU/12µU and rearranging the terms we get

(
3W2Uµ − Tb2n2π2

3W2Uµ

)
12µU

b2 > 0. (3.34)

It is easy to see two terms, the left one will turn into 1, and the right term will define d0

(
1 − d0n2

) 12µU
b2 > 0, (3.35)

such that

d0 =
π2

3

(
b
W

)2
τ

Uµ
, (3.36)

which, save for the prefactor is the combination obtained using dimensional analysis. Considering n = 1

to define the limiting wavelength between a stable and an unstable regime, a much simpler stabilization

criteria based on the dimensionless surface tension parameter is obtained where


d0 > 1, stable,

d0 < 1, unstable,
(3.37)

This criteria only defines a very general stable/unstable regime. To incorporate the wavelength of the

fingers/perturbation the criterion is 
d0 >

1
n2 , stable,

d0 <
1
n2 , unstable,

(3.38)

where n corresponds to the boundary condition of the wavelength l constrained by the width of the cell W.

Considering that the relation between the wavelength and wavenumber l = 2π/q, then, l = W/n. This n

defines the size of the discrete perturbation, as seen in Fig 3.1.
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3.2.3 Discussion

The results of this analysis arrive at the following differential equation

Ȧ = A
(

U
b2/12µ

− τq2
)

b2

12µ
q, (3.39)

where

• U: interface displacement velocity

• b: cell depth

• q: perturbation’s wave vector

• τ: surface tension

• µ: viscosity

This expression leads to a simple conclusion, in an instability, the perturbation will grow if the parenthesis

coefficient result a positive number, and it will be stable if the coefficient is less than zero. In terms of the

velocity, Bensimon et al.. suggest three cases

1. Small U: Few bumps are seen that later flatten or stabilize.

2. Intermedia te U: Present bumps that grow into stable fingers.

3. Large U: Chaotic behavior is evidenced by branching and splitting of fingers.

In their analysis, they introduce the surface tension parameter (d0) as a dimensionless control parameter,

which is inversely proportional to interface velocity

d0 =
π2

3
b2

W2

τ

µU
. (3.40)

So those parameters seem to correctly describe the behavior of the perturbed system. To be more specific,

we shall talk about the perturbations in terms of the length of the perturbation in the interface. This can
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be done thanks to this new parameter introduced. From the simplified expression we can extract very

powerful expectations for the front behavior. Prediction of different wavelength instabilities can be derived

from the differential equation

Ȧ = A
(
1 − d0n2

)
Uq, (3.41)

where the minimum value of q is given by n=1/2 (that depicts a perturbation of the size of the cell width).

Hence, we can sum up everything into the following conclusions:

1. The flat interface will be perturbed by any wavelength long as d0 < 4.

2. The flow patterns will be unstable and lead to thin finger formations as long as d0 < 1.

3. The criteria d0 < 1/n2 is a more general form to study instabilities in terms of the amplitude of the

perturbation: A=W/2n.

4. For a very long interface, the system will be unstable for perturbation of wavelengths l < W
√

d0 or

amplitude 2A < W
√

d0.

5. For very small surface tensions, the system becomes highly unstable, easy to be perturbed even for

very short wavelength perturbations.

In Fig. 3.1 we depict a simple way to understand how n is related to the size of the perturbation A, described

by d0. Basically, if d0 < 1/n2 for n=1, d0 <1 implies that the interface will be perturbed by amplitudes of

size A=W/2 or smaller. Thus, the same for the higher order perturbations.

Thanks to this criterion, we can now guide our studies by taking into account the possible instabilities

that could emerge regarding the conditions of the experiment.
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Figure 3.1: Displacement patterns. The displacement patterns can be defined by the wavelength, where
l = W/n. The size of the perturbations (fingers) will be half the wavelength. Thus, it can be related to the
cell width through A = l/2, leading to A = W/2n. Where A is the amplitude discussed in the instability
derivation.

3.3 Finger width correspondence to surface tension parameter

In the Saffman and Taylor approach discussed in section 3.2, it was not established a mathematical relation

between the surface tension parameter and the finger width. Following the work developed by McLean

and Saffman20 (MS) we look for a mathematical relation between the parameters of interest mentioned.

This derivation, is also based on a quasi-2D system that neglects the contribution of a transverse curvature

produced by the cell depth b. Here, we only take in account surface tension effects due to lateral curvature

to integrate the dependence of the finger width.

Based on Darcy’s law, and the pressure jump between both fluids at the finger’s interface, MS derived

the steady equations for a finger flowing in a channel. From these equations, a dimensionless parameter

for the surface tension can be extracted, but this time including finger width contribution.

Beginning with pressure jump equation, where R is the radius of curvature of the finger’s tip, and χ is

the contact angle of the meniscus (which is considered to be 0) we have

p0 − p =
τ

R
+

2τ
b

cos χ. (3.42)

Setting boundary conditions to the harmonic velocity potential of Darcy’s law, we have the following
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expression, where φ is the velocity potential, and θ is the angle between the tangent vector to the finger q

and the direction of movement of the finger (see MS)20.


∂φ
∂y = 0, if y = ±a ,

∂φ
∂n = U sin θ̂, if on the finger,

(3.43)

where a = W/2. The conjugate of φ defines a streamline function ψ. The relation between them depends

on the velocity, such that

vx =
∂φ

∂x
=
∂ψ

∂y
, (3.44)

and

vy =
∂φ

∂y
= −

∂ψ

∂x
. (3.45)

Now, through Darcy’s law, we can find the relation between the functions φ and ψ, and their coordinates x

and y, obtaining

ψ = Uy, φ = Ux. (3.46)

We introduce λ to describe the ratio of the finger width to the cell width, and it is introduced in order to

study the behavior. The motion of the finger will be in x+ direction, so that the velocity field behind the

finger will tend to 0. The following boundary conditions are expected

φ ∼ 0 as x→ −∞, λa < |y| < a,

φ ∼ Uλx as x→ ∞, −a < y < a,
(3.47)

In order to study the interface, it is much more convenient to work in dimensionless quantities and a

moving frame with respect to a origin set at the tip of the finger. In order to do that, McLean and Saffman

introduced a = W/2 and (1 − λ)U to make our variables dimensionless

x̂ = (x − Ut)/a, ŷ = y/a, R̂ = R/a, (3.48)
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and

φ̂ =
φ−Ux

(1−λ)Ua , ψ̂ =
ψ−Uy

(1−λ)Ua . (3.49)

By using the visual representation of our system, we can find a relation between the radial component R̂,

angular component θ̂ and φ̂, and the vector q̂

1
R̂

=
dθ̂
dŜ

=
∂θ̂

∂φ̂

∂φ̂

∂Ŝ
= q̂

∂θ̂

∂φ̂
, (3.50)

Now we need an equation for the motion of the finger with respect to the tip, in terms of q̂ and θ̂. This

expression can be derived using equations 3.50, 3.42 and 3.43. Using the definition of P = −
12µφ

b2 and the

relation from the dimensionless radial component in the equation 3.42, we get

p0 +
12µφ

b2 =
τ

R̂a
+

2τ
b
, (3.51)

where we can introduce the Eq.3.50. It is important to notice the difference between dimensionless and

dimensional terms in this derivation

p0 +
12µφ

b2 =
τ

a
q̂
∂θ̂

∂φ̂
+

2τ
b
. (3.52)

Putting all variables in terms of the dimensionless expressions described previously,

p0 +
12µ
b2

(
φ̂(1 − λ)Ua + Ux

)
=
τ

a
q̂
∂θ̂

∂φ̂
+

2τ
b
. (3.53)

Replacing x=x̂/a and p0 = 2τ
b , we obtain

φ̂ =
τb2

12µUa2(1 − λ)
q̂

dθ̂
dφ̂
−

x̂
(1 − λ)

. (3.54)
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To differentiate with respect to the dimensionless arc-length along the interface Ŝ we have to consider:

cos θ =
dx̂
dŜ

,
dφ̂
dŜ

= q̂,
dφ̂
ds

= −
1
πs
,

ds
dŜ

= −q̂πs (3.55)

Differentiating along the interface to obtain a second relation between q̂ and θ̂

dφ̂
dŜ

=
τb2

12µUa2(1 − λ)
d

dŜ

(
q̂

dθ̂
dφ̂

)
−

dx̂
dŜ

1
(1 − λ)

(3.56)

Using the relations described in Eq. 3.55

q̂ =
τb2

12µUa2(1 − λ)
d

dŜ

(
q̂

dθ̂
dφ̂

)
−

cos θ
(1 − λ)

, (3.57)

where

cos θ̂ =
τb2

12µUa2

d
dŜ

(
q̂

dθ̂
dφ̂

)
− q̂(1 − λ). (3.58)

Solving for the only derivative on the left, which is in terms of a multiplication of dependent variables

d
dŜ

(
q̂

dθ̂
dφ̂

)
=

dq̂
dŜ

dθ̂
dφ̂

+ q̂
d

dŜ

(
dθ̂
dφ̂

)
,

=
dq̂
dŜ

(
dθ̂
dŜ

dŜ
dφ̂

)
+ q̂

d
dŜ

(
dθ̂
dŜ

dŜ
dφ̂

)
,

=
dq̂
dŜ

(
1
q̂

dθ̂
dŜ

)
+ q̂

d
dŜ

(
1
q̂

dθ̂
dŜ

)
,

=
dq̂
dŜ

(
1
q̂

(−q̂πs)
dθ̂
ds

)
+ q̂

d
dŜ

(
1
q̂

(−q̂πs)
dθ̂
ds

)
,

= −πs
dθ̂
ds

dq̂
dŜ
− q̂

d
dŜ

(
πs

dθ̂
ds

)
,

= −π
d

dŜ

(
q̂s

dθ̂
ds

)
,

= π2q̂s
d
ds

[
q̂s

dθ̂
ds

]
.

(3.59)
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Thus, our equation becomes

cos θ̂ =
τb2

12µUa2π
2q̂s

d
ds

[
q̂s

dθ̂
ds

]
− q̂(1 − λ). (3.60)

The boundary conditions for our system goes as follows, where s = 0 corresponds to a point in the tail of

the finger, and s = 1 a point at the nose of the finger

θ̂(0) = π, q̂(0) = 1/(1 − λ),

θ̂(1) = π/2, q̂(1) = 0,

 (3.61)

Using the boundary conditions, we can say

θ = θ̂ − π, q = (1 − λ)q̂ (3.62)

These expressions allow us to write an equation that is not explicitly dependent on λ, such that

cos (θ + π) =
τb2

12µUa2π
2
( q
1 − λ

)
s

d
ds

[
q

1 − λ
s
dθ̂
ds

]
− q, (3.63)

By considering the trigonometric property cos (θ + π) = − cos θ and rearranging some terms we finally

obtain

− cos θ =
τb2π2

12µUa2(1 − λ)2 qs
d
ds

[
qs

dθ̂
ds

]
− q, (3.64)

where the surface tension parameter is the dimensionless factor located in the first term of the right hand

side

κ =
π2τb2

12µUa2(1 − λ)2 , (3.65)

replacing a=W/2:

κ =
π2b2τ

3W2µU(1 − λ)2 , (3.66)
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leading to a final expression

− cos θ = κqs
d
ds

[
qs

dθ̂
ds

]
− q. (3.67)

3.3.1 Discussion

The parameter κ enables us to set a relation between the stabilization criteria and the finger width. In

general, it is a good approximation to the behavior of the finger. The problem with this approximation is

that it does not consider some physical contributions. For example, it considers as if the displacing fluid

totally pushes the displaced fluid. This assumption excludes the addition of a layer of displaced fluid in

the plates due to wettability12. Actually, according to Tabeling et al. (1987)44 the film plays a crucial role

in the stability of the system, but by now we will neglect it as well.

Regarding the superficial conditions considered, this study actually brings important conclusions

• There is a dependence between the finger width and the capillary number.

• The dependence is not only based on the capillary number, but on the aspect ratio W/b describing

the same shape of the relation under a different magnitude.

• Convergence of the finger width to λ→ 1/2 as the κ → ∞.

3.4 Characteristic time for instability development

We have already talked about the instability conditions for our system and the width the fingers should

have depending on whether they are stable or not. Now, we must also consider that the formation of an

instability is not immediate, so that there should be a characteristic time for the instability to show up.

Lets keep working on the quasi two-dimensional case. Then, the study of section 3.2 should provide us

the information we need.

The instability criteria of equation 3.31 refers to the growing rate of a perturbation of amplitude A. In

the previous study we determined whether the instabilities tend to grow or dampen. In this study, we will

use the same equation to determine the characteristic time for the instability to appear or disappear.
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3.4.1 Derivation of characteristic time

Recalling the equation for the growth/dampening of an instability

Ȧ = A
(

U
b2/12µ

− τq2
)

b2

12µ
q. (3.68)

The equation can be used to determine how fast the perturbation A grows/dampens. But given that Ȧ is a

velocity, whose dimension would be L/T (length over time) and in the right hand side we have A (length)

multiplied by another factor. This factor should be of dimension 1/T . This time determines how fast A

will grow or decrease depending on the sign of tchar

Ȧ =
A

tchar
, (3.69)

where

tchar =
12µ
qb2

1(
U

b2/12µ − Tq2
) (3.70)

Using the same procedure than the one described in the derivation of the control parameter d0 at subsection

3.2.2, we can reorganize this term in terms of the surface tension parameter.

tchar =
1(

1 − d0n2) W
2πnU

. (3.71)

3.4.2 Discussion

The characteristic time determines the time required for the instability to occur under the conditions

provided. Thus, now we have enough information not only to know under which conditions is the system

unstable, but how long will take the instability to show up. The characteristic time tchar determines what

is known as critical slowing down in critical phenomena where the dynamics develops ever more slowly

as we approach a phase boundary. In Eq. 6.1 we see the same stability criteria than in Eq. 3.68, which

indicates the stability of the system. Hence, for the characteristic time wewill also see positive and negative
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values. The negative values imply that the system is already stable, and it will never reach the perturbation

amplitude defined by n, which comes form A= W/2n, as described in sec. 3.2. For positive values, the

system is allowed to grow fingers of amplitude A=W/2n or smaller. Positive values will determine the time

that a perturbation takes to grow from a flat interface.

This is an important parameter given that using this we can decide whether the conditions of the

experimental set-up are unstable enough to produce the instability within the cell, or if we need a longer

cell to let the instability develop over time.

Even more importantly, it helps to avoid wrong conclusions. If the used cell does not allow the fingers

to develop in the expected time, then we could think that there is no instability under the conditions but

actually we did not let the system enough time to develop.

3.5 Stability analysis of 3D perturbed interface

The stability analysis of the interface in a two dimensional case is important to give an idea of the behavior

of the system, and is a good approximation if the aspect ratio (W/b) is big enough. However, the Hele-Shaw

cell where experiments are performed is actually three dimensional and it is important to consider what

conclusions from realistic situations can be drawn from quasi two-dimensional systems and which cannot.

Until now, we have only considered the radius of curvature of the displacement front in the plane of motion,

but what about the interface’s other curvature transverse to the direction of the flow?12. This curvature

tends to be b/2 and actually provides a much higher contribution to the pressure jump than the radii R of

the finger. Recall that the pressure jump is in charge of the motion of the finger. It is important to use a

correct approximation for this equation12. Thus, instead of using Eq. 3.19, the following pressure jump is

suggested on Bensimon et al.

∆P =
τ

b/2

[
1 + 3.80

(
µvn

τ

)2/3
]

+
π

4
τκ. (3.72)
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The derivation follows the same procedure than the one described for the 2D system in section 3.2. The

equations differ in the use of a pressure jump that considers 3D contribution.

3.5.1 Perturbation of the flat interface

In the same way that we described in section3.2, using Darcy’s equation and the 3D pressure jump, we

obtain

Ȧ =

 U − π
4τq2 b2

12µ

1 + 0.42qb
(

T
µU

)1/3

 qA. (3.73)

3.5.2 Derivation of 3D surface tension parameter d1

Analogously to the derivation for the 2D interface, the stability of the system depends of the terms within

the parenthesis. Hence, for Ȧ > 0 the perturbation increases, while for Ȧ < 0 the perturbation decreases.

 U − π
4 Tq2 b2

12µ

1 + 0.42qb
(

T
µU

)1/3

 > 0. (3.74)

From this expression the denominator can only affect the sign depending on the movement of the interface,

U>0 or U<0, in order to simplify the expression, we can multiply by the unity U/U to obtain

(
1 −

π

4
Tq2 b2

12µU

)
U

1 + 0.42qb
(

T
µU

)1/3 > 0, (3.75)

and 1 − π4T
(
2πn
W

)2 b2

12µU

 > 0. (3.76)

Thus, again we obtain a expression for the dimensionless surface tension parameter. In order to avoid

confusions with the control parameter of the 2D case, lets call it d1.

(
1 − d1n2

)
> 0, (3.77)
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where

d1 =
π3

12

(
b
W

)2
τ

µU
. (3.78)

3.5.3 Discussion

Once again, the control parameter will determine the limit between a stable or unstable behavior. The

difference in this new control parameter is that it reaches an unstable behavior faster than the 2D case.

Actually, both cases can be related through:

d1 =
π

4
d0, (3.79)

The π/4 factor comes from the contribution of the transverse curvature of the finger. Then, we would

expect that a real 3D system reaches the instability faster than a two dimensional one.
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Experimental Procedure

In this chapter we will see the experimental set-up built to evidence the behavior deducted by the theoretical

analysis previously described. The experiment is based on the procedure suggested by Saffman and

Taylor19, where a less viscous fluid displaces a more viscous one, generating finger-like structures. Our

aim is to replicate those structures in order to evidence the instabilities desired.

In the upcoming sections we will see how the experimental set-up works, which are the most relevant

characteristics of our experiments, the available conditions that our set-up allows us to use, the procedure,

and the method for data collection.

4.1 Experimental set-up

4.1.1 Injection system

The injection system was built in the workshop at Yachay Tech University. It is based on the Open-source

syringe pump library45. The device consists on making a platform controlled by a motor-actuated rotating

screw that moves toward a syringe to inject its contents into the micro-model. Given that the platform

crosses the lead-screw perpendicularly, it moves along with the rotation (as a nut in a bolt)45. The pumping

velocity will depend on the velocity of rotation of the motor, and the size of the screw’s thread. Thicker

43
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threads are more distanced between them, so that those screws move the platform faster than those of thin

threads. In Fig 4.1 we can see the parts of the set-up.

Figure 4.1: Experimental set-up.

The injection system itself is composed by:

1. Electrical Motor. The motor provides the torque in order for the screw to displace the platform.

2. Movement platform. This platform is screwed on the rotating screw. It pushes or pulls the piston’s

tail, making it expel or absorb content into it.

3. Power supply. This part provides energy to the motor. The power supply used has an output of 12V

and 10A.
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4. Direction switch. The motor used has the option of rotating in two directions. Then, the direction

switch allows to configure the motor to make the system move forward or backwards.

5. Speed switch. The engine used has two possible settings for rotation velocity. This switch allows

to set if we want to work at the high or low speed.

6. Screw. This is the lead-screw that is attached to the rotating motor. As the screw rotates, the

platform that passes through it displaces according to the movement of the screw.

7. Micro-model cell. This cell is where the fluid is injected and the experiment is performed. It is

made of Plexiglas and is sealed to contain liquids at a pressure higher than the atmospheric pressure.

8. Piston. The piston is made from stainless steel. Its inner radii is 27.5mm. It is kept still by two fixed

platforms and the tail is allowed to move with the action of the movement platform. In that way, the

content is displaced as desired. The head of the piston is connected to a hose that drives the fluid to

the micro-model.

The set-up is composed by two pistons, in each of them we add either reference fluid 1 or fluid 2. There

are three screws available that give us different velocities to push the piston. The engine allows to set two

velocities of rotation per screw, then we should have 6 different velocities to push the piston’s content. In

Fig. 4.2 we can see the screws available to be used in the injection system.
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Figure 4.2: Lead-screws. The thread of the screw determines, along with the rotation speed of the electrical
motor, the speed of injection. Screw thread 1 is the thinnest while screw 3 is the coarsest i.e. screw 1 will
drive the slowest fluid injection while screw is used for the fastest injection rates.

To determine the velocity of displacement of the pushing platform we let the screws rotate at the two

available velocities of the motor. Then we measured the distance displaced in a minute. In Table 4.1

we can see the results of the velocities measured for each screw available in the pumping system. The

thickness of the lines in the screws are the ones that define their velocities. We will talk about the Screw 1

as the thinnest (slowest), the Screw 2 has an intermediate size and velocity, and the Screw 3 is the thickest

(fastest). It is evident that there is a velocity repeated between the screws 1 and 2, meaning that we actually

have only five different displacement velocities for the pistons.

Table 4.1: Screw velocities

Screw Velocity [m/s] Piston’s Caudal [m3/s]

1 0.000019 1.2 x10−8

0.000025 1.5 x10−8

2 0.000025 1.5 x10−8

0.00037 2.2 x10−8

3 0.000082 4.9 x10−8

0.00017 9.9 x10−8
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4.1.2 Micro-models

In order to see Saffman-Taylor instabilities, we designed micro-models based on Hele-Shaw cells ge-

ometries. The structure of the cells were based on the experiment performed by Guillen et al.46. The

micro-model geometry permits to study a specific configuration, the one that will directly affect to the

fluid flow. In the previous section we have already talked about the parameters that affect the stability of

the system. The dimensions of the cell will allow us to play with the width W and depth b of the channel

in which the interaction between the fluids occur. Setting different cell depths will let us evidence how the

system changes from a stable to an unstable regime depending on its conditions.

In Fig. 4.3 the structure of themicro-models can be seen. The three layers are constructed of transparent

Plexiglas. The thickness of the bottom and top layer is always fixed at 3mm to make them resistant to

the pressure of the system. The thickness of the middle layer is fundamental, given that this is the one

that determines the dimension of the cell depth b. We propose to work with the cell depths of b = 3mm,

b = 2mm, b = 1mm. The white circles are the perforations where we insert a set of screws that join the

three parts together into a single piece. Due to the clamping of the screws, we do not need additional

o-rings to prevent leaking, but the system is capable of working at the pressures required.

The case of the micro-model of depth b = 1mm seen in Fig. 4.4 is a special case. Given that there

were no sheets of 1mm Plexiglas at the local market, we use a 2mm layer and carved it with a laser cutter.

Then, for this prototype we have only two layers. The top layer will have the input and output entrances,

and the bottom layer contains the carved out shape of the cell at thickness b = 1mm.

Based on the prototype of Guillen et al.46, the shape of the micro-models have a triangular input and

output channels that enhances the recovery of the fluid. The dimensions of the system proposed are fixed

to 35mm in width. The length of the channel does not affect to the stability of the system, so we propose

two micro-models, the first of length 75mm, the other of length 90mm as evidenced in Fig 4.5.
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Figure 4.3: Micro-model cell design. The micro-models are composed of three layers, the top and
bottom layers seal the system, with the bottom one having input an output perforations. The middle layer
determines the boundary geometry for fluid injection. The material depicted as light blue is made of
transparent acrylic that allows to observe the behavior within the cell.
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Figure 4.4: Micro-model cell design.
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Figure 4.5: Micro-model cell design. a) The micro-model is of smaller dimension but allows to examine
the input from different front geometries, a flat one and one influenced by varying width. b) The second
micro-model is longer, it provides more time to evidence the instabilities.
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4.2 Experimental Procedure

In this experiment we expect to visualize finger instabilities in the micro-models proposed. First we need

to input the more viscous fluid to the cell, then we displace it by introducing the less viscous fluid. We have

to be careful with some details at the moment of inserting the displacing fluid into the cell. If the procedure

is not carried on carefully, unexpected behaviors like droplets, air intrusion or bubbles can appear. The

ideal procedure goes as follows:

1. Ensemble the injection system with the screw that performs the desired velocity.

2. Select the micro-model desired (b = 1mm, b = 2mm, b = 3mm).

3. Fill each piston with fluid 1 and fluid 2 depending on assay.

4. Configure the initial position of the displacement platform so that it has enough distance for the

piston’s tail to fit in.

5. Place the piston that contains fluid 1 in the injection system.

6. Connect the piston to the micro-model through a pipe.

7. Select the configuration of the speed switch. (Do you want the fast or low configuration of the

motor?)

8. Make sure the direction switch is on the forward configuration.

9. Turn on the motor.

10. Stop the motor when the micro-model is full of fluid 1.

11. Set the direction switch to the backwards configuration to move the displacement platform to the

initial position.

12. Place the piston that contains fluid 2 in the injection system.
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13. Take the micro-model and drain it slightly until there is no more fluid in the port of input.

14. Turn on the motor and let the fluid fill the pipe.

15. Connect the pipe of the piston to the micro-cell.

16. Let fluid 2 displace fluid 1.

17. Stop the motor before fluid 2 arrives to the output port.

18. Photograph the obtained pattern.

19. Repeat all the steps for the different micro-models.

If the steps are followed strictly as indicated, there won’t be any inconsistencies in the experiment. The

steps 12, 13 and 14 are crucial to obtain good results. When we first inject fluid 1 into the micro-model,

the connector port between the pipe and the micro-model is partially filled with the fluid. If we connect

the pipe of fluid 2 to the port while it still has some remnants of the other fluid, it is possible that the pipe

inject some of fluid 1 into the cell. So, we will not be pushing fluid 1 as desired, given that we would be

actually injecting fluid 2 inside of the other, leading to undesired bubbles or droplets that interfere with

our system.

Bubbles of air or water can show-up. If any of them touches the interface of displacement, a forced

instability appears, such as splitting of the interface. The air bubbles are easy to handle. If any air bubble

appears, before letting the fluid 2 displace fluid 1, put the micro-model vertically with the output at the

top, so that the density will take the bubble to the top wall and it won’t interfere with the displacement.

However, if a water bubble appears, frequently it combines with the water finger. Most frequently, the

bubbles will be small and their interface is strong, so they do not combine with the main water body

injected and it will interfere with the displacement. In that case, if a water bubble is visible, we must place

the micro-model vertically, with the output port at the bottom and the input at the top. Then, inject fluid 1

again until the water bubble goes out of the system.
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4.3 Fluid displacement velocities

The velocities discussed in the previous sections correspond to the displacement of the piston and the

volume of liquid displaced. By the flow rate equation and continuity conditions, the flow will remain

constant, while the displacement velocity will depend on the transverse area47. Then, in our case, the

velocity of the fluids will depend on the cell we are using because we are working with different depths

that lead to different transverse areas. The width of the micro-models is fixed at W = 35mm, while the

depth b changes depending on the cell. Then, the transverse area, where the displacement front occurs is

A = 0.035 x b m2. In the same way, the transverse area of the input is given by A = 0.002 x b m2, where

0.002m is the width of the input port.

In the Table 4.1, we already have the flow rates (Q) of fluid moved by the pistons. Using the flow rate

equation (4.1) and the condition of continuity for incompressible fluids, we can use the flow to determine

the input velocity and front velocity. The input velocity will be useful for the simulations performed, while

the front velocities are required to study the stability of the system.

The input velocity is given by the simple relation

v =
Q
A
. (4.1)

In Table 4.2, there are 5 front velocities available for each micro-model. Of course, the higher the

area, the slower the displacement velocity. In terms of instability, we need the fastest velocities to generate

fingers. Still, slower velocities are useful to prove that we are working on different regimes depending on

the conditions used.
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Table 4.2: Cell dimensions and available injection velocities for injection

Cell depth [m] Screw Input Velocity [m/s] Front Velocity [m/s]

b=0.001

1 0.0057 0.00034

2 0.00748 0.00043
0.01096 0.00063

3 0.02461 0.00141
0.04963 0.00283

b=0.002

1 0.00287 0.00017

2 0.00374 0.00021
0.00548 0.00031

3 0.01230 0.00070
0.02482 0.00142

b=0.003

1 0.00191 0.00011

2 0.00249 0.00014
0.00365 0.00021

3 0.00820 0.00047
0.01654 0.00094

4.4 Data acquisition

In this section, we will see what the conditions are and methods used to obtain the data we will analyze.

In order to study the stability of the system, we want to use the surface tension parameter to plot stability

maps. Then we need to determine the values of the variables involved in the surface tension parameter.

As mentioned before: viscosity, surface tension, cell depth, cell width, front velocity. The cell depth

and cell width are fixed variables, we already talked about the way to compute the front velocities. The

surface tension is in general, a value extracted from the literature, and we need to calculate the viscosity

of the fluids. The other data required to perform the stability analysis is the finger to cell width ratio. This

parameter will allow us to quantify the level of instability and compare it with the stability map.
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4.4.1 Viscosity calculation

First of all, we need to differentiate between kinematic and dynamic viscosity. As claimed by Soares

(2015)48 "dynamic viscosity is the resistance to movement of one layer of a fluid over another", while the

kinematic viscosity is the dynamic viscosity over density. It is actually a ratio between viscous and inertial

forces48.

In our studies we work with dynamical viscosity. This parameter is dependent on temperature, so it is

not enough to look for the viscosity value at the literature. Also, we are working with motor oils, so that

the properties of the oils differ between companies. this means that the viscosity of oil 15W40 is not the

same for Gulf and Amalie. Therefore, we must be specific when looking for the information. In this study

we will work with Gulf TEC Plus 20W50 and Amalie Imperial Turbo 15W40.

In oil data sheets we can usually find the kinematic viscosity at 100°C and 40°C, the density at a given

temperature, and the viscosity index. In order to calculate the viscosity at a different temperature we need

the viscosity of the fluid at two temperatures, or the viscosity at a given temperature and the viscosity

index. Using the Andrade Correlation49 we can determine the kinematic viscosity at room temperature

25°C.

Following the method proposed by Van et al. (1972)49, the viscosity is calculated by:

µ = ae
b
T , (4.2)

where µ is viscosity, T is temperature, b and a are the factors of correlation. First we find b as a function

of the temperature and viscosity of the fluid at 40°C and 100°C respectively

b =
ln µ40 − ln µ100

1
T40
− 1

T100

. (4.3)

In order to find a we use

ln a = ln µ40 −
b

T40
, (4.4)
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Then we can replace the values in the initial expression and obtain a value for the kinematic viscosity

at the desired temperature. Now, using the density of the fluid, we obtain the dynamic viscosity of the

fluids. This data is obtained from the correspondent data sheet50 51. The results for the oils to consider are

evidenced in Table 4.3.

Table 4.3: Oil data sheet

Oil Kinematic Viscosity
@100°C [cSt]

Kinematic Viscosity
@40°C [cSt]

Kinematic Viscosity
@25°C [cSt]

Density
[Kg/m3]

Dynamic Viscosity
@25°C [Pa*s]

15W40 15 118 262.57 881.13 0.2313
20W50 17.5 157.65 371.68 879.1 0.3267

4.4.2 Finger - cell width ratio

The finger to cell width ratio will allow us to compare the stability of the experimental patterns captured

by the displacement of oil with water. The size of the finger will give us a notion of the wavelength of the

perturbation that predominates in the system, the same that can be compared to the stability proposed by

the surface tension parameter.

The data is extracted from the pictures taken from the displacement of the fronts at different velocities

and cell depth in the micro-models. From the pictures taken, the measurements of the width are done using

Inkscape, an open software for image editing. We recall that the images imported are not to scale, that is

the reason why we have to measure both, the cell width and the width of the finger. Using themeasurement

tool we can obtain a precise value of the size of these parameters. In the case of the width of the finger,

in Fig. 4.6 it is evident that the width of the finger varies as it displaces along the x axis. This variable

width is caused by the interaction of the fluids with the walls at the entrance. After the displacement front

does not interact with the walls anymore, it tends to take its stationary shape. Then, we have to measure

the finger width at a distance approximately the size of the radius of curvature of the tip.

Once we make the corresponding measurements, we are not really interested on the net values, but
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Figure 4.6: Measurement of finger to cell width ratio. This is a screenshot of the software Inkscape. In the
cell, the blue line is the width of the cell we have to measure, while the red line corresponds to the width
of the finger.

on the relative size of the finger width with respect to the cell width. Then, we will be talking about the

relative finger width λ. The results of the measurements can be seen in Table 4.4. The errors related to

these measurement are portrayed in the results. The calculation of the errors of propagation are seen in

Appendix B.
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Table 4.4: Relative Finger Width

Cell depth
[m] Screw

Front
Velocity
[m/s]

Cell Width
[px]

Finger Width
[px]

Rel. Finger
Width lambda

0.001

1 0.000327514 295 290.35 0.62

2 0.000427143 293 287.75 0.6087
0.000626543 296.5 282.57 0.6

3 0.00140615 296.88 236.77 0.546
0.00283623 296.88 212.64 0.521739

0.002

1 0.000163757 296.7 259.1 0.9778

2 0.000213571 297.25 252.14 0.9565
0.000313271 296.6 227.28 0.951219

3 0.000703077 296.88 192.2 0.8148
0.00141811 296.5 176.58 0.6818

0.003

1 0.000109171 296.01 194.24 0.999

2 0.000142381 294.81 187.3 0.9787
0.000208848 295.66 181.57 0.95833

3 0.000468718 296.07 173.8 0.81405
0.00094541 295.66 167.65 0.660131

4.5 Stability Maps

Astabilitymap is used to plot regions that showdifferent behaviors according to the values of the parameters

in the system. In order to make the stability plot, we have selected W vs U in order to identify the zones

of stability. This configuration was selected because it will allow us to evidence each case of instability

with more detail. We need to evidence the cases specially in terms of the viscosity of the displaced fluid

and the thickness of the cell. Hence, by setting them as constants and plotting the interaction between W

and U it is easier to evidence the regions of stability. We are not evaluating how the width changes with

the velocity, but how stable the system is as the velocity and cell width vary. Other configurations can be

more compact and allow us to see all of our cases in a single plot, but unfortunately, it will not be clear to

evidence in detail the possible instabilities of the system. By now, relating W and U through a constant

number and using the 2D stability criteria suggested by Saffman and Taylor, the surface tension parameter
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d0, we can provide a prediction for the stability of the system by mapping

W =

√
π2b2T
3µd0

√
1
U
. (4.5)

According to our 2D analysis, described in section 3.2, the limit between a stable and unstable regimes

depends on the critical value d0 = 1. Then, fixing this parameter we can already divide our plot in two

regimes, stable or unstable. By the shape of the surface tension parameter, we know that W and U have

both an inverse contribution to d0. This means that as W and U grow, d0 decreases. From our analysis, we

also concluded that d0 < 1 stands for an unstable regime. Thus, on the top of our line plot the zone will be

unstable, while below the line plot, the system will be stable.

Figure 4.7: W - U stability diagram of µ=0.3267 Pa·s and b = 2mm. The line separating both regions
depicts the equality in Eq.4.5 for d0 =1. The yellow region is the stable zone, meaning that there are
flat fronts or fingers of amplitude A> W/2. The red region implies instabilities, or finger formation that
converges at A=W/2 or smaller amplitudes as the points get deeper into the instability region. The black
dots are the experimental values at fixed width of W = 35mm, and front velocity determined by the
injection system. Most of the dots hit the yellow region, it implies that should be wide fingers or a flat
interface evidenced. Instead, the last point is in the red region, meaning that there is already the formation
of a finger.

The Figure 4.7 is a clear example of how the stability plot works. It is important to mention that the
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deeper a point is in the unstable zone, the more unstable it gets and the faster it converges to its stationary

behavior. In order to study instabilities in more detail, we can use the more general form of the control

parameter d0 obtained from the 2D stability analysis performed in section 3.2, where d0 < 1/n2. This

definition extends the analysis in order to see what kind of instabilities can be developed. As previously

mentioned, the order of the instability can be discussed in terms of the wavelength of the perturbation. The

wavelength of the perturbation can be discretized according to the boundary conditions of the micro-model

walls. In general, the wavelength is l = W/n where the values of n are fixed at: n= 1, 3/2, 2, 5/2, etc.

Remember that actually, we are interested on the size of the perturbation, the one that is given by A = l/2,

or A = W/2n. In the following table 4.5 we can see a summary of these relations, that now will allow us

to talk about the instabilities in terms of the size of the perturbations.

Table 4.5: Influence of n into surface tension parameter

n d0 A
1 1 W/2
3/2 4/9 W/3
2 1/4 W/4

In analogy to the stability map shown in Fig. 4.7, we can study higher instabilities in the same way. In

Tab. 4.5 we can see the amplitudes of the perturbations that could appear according to the control parameter

d0. As previously discussed in section 3.2, the interpretation of d0 < 1/n2 implies that the system will

be unstable for perturbations equal or smaller than A=W/2n. To illustrate this argument, the case where

d0 = 1 is just the case of n = 1. If we replace it into A, the amplitude of the expected perturbation would be

A = W/2. Then, for d0 > 1 we expect the width of the fingers to be greater than half cell width. For points

where d0 < 1 the system is said to be unstable for perturbations equal or smaller than A=W/2, which will

lead the fingers to converge at those amplitudes. The same for the other instabilities, lets say that we plot

the stability line for n=3/2, then the higher amplitude allowed to perturb the system would be A=W/3. In

the plot, the points that hit the region above the line will tend to converge at amplitudes equal or smaller

than W/3, while the points bellow the stability line must be of higher amplitudes. Now, lets say that an
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experimental point hits an intermediate region as seen in Fig. 4.8. In the case of the given examples, the

point would be expected to converge at an amplitude between (W/2 > A > W/3 ). However, it is important

to mention that the fact that an experimental value hits in a region of instability does not necessarily means

that the finger will already have that amplitude. It just means that it will tend to converge to that state, this

will also depend on the time that the system will take to converge to the stationary state at that point.

Figure 4.8: W - U stability diagram for µ=0.3267 Pa·s and b = 2mm at different instability levels. The
blue line is the limit where a finger starts to develop and tends to converge to λ→1/2. Departing from the
orange region, instabilities that tend to converge at λ→1/3, and so on.

According to Saffman and Taylor19, and Saffman and McLean20, fingers converge at λ →1/2 and

there are no higher order perturbations. Of course, these studies were developed when the field was just

emerging. Nowadays, we know that actually the system can converge into smaller amplitudes through

front splitting52.

4.5.1 Choosing the right oil

The aim in this research is to experimentally evidence instabilities and compare the results with the

diagrams of stability. This study is made with the purpose of studying crude oil behavior under a water-

flooding extraction process. In Appendix A, there is a table containing the data of the most common crude

oils extracted around the world. There, we can see that the dynamic viscosities cover a range from 2.4cp
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to 693.8cp1. This means 0.0024Pa · s to 0.6938Pa · s. The dynamic viscosity of our displacing fluid

(water) at room temperature is approximately 0.00084Pa · s. We need a viscous contrast high enough to

evidence instabilities, but not so high to break our micro-models. Analyzing the case between two engine

oils 15W40 and 20W50, whose dynamic viscosities are µ=0.2313Pa · s and µ=0.3267Pa · s as seen in

Table 4.3. With help of the stability maps, we can evaluate the most appropriate oil to use.

By comparing the performance of both oils, it would be preferable to work with oil 20W50. At

b = 3mm there is no great difference between the behavior of the fluids, but at b = 2mm the less viscous oil

does not present many changes in its behavior, given that it is still in the stable regime. Instead, the more

viscous fluid at least hits an instability region at b = 2mm. Finally at b = 1mm, the oil 15W40 already hits

the some possible instabilities but none hits the orange region. Instead, with oil 20W50, we could expect

to reach all the desired instabilities faster than in the other case because the experimental points are further

from the instability lines.
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Figure 4.9: Stability diagram summary. The first column corresponds to the stability of oil 15W40
µ = 0.2313Pa · s, the second column corresponds to the stability of oil 20W50 µ = 0.3267Pa · s. These
are the fluid candidates to be displaced. It is evident that under the same circumstances, as expected, oil
20W50 is more unstable.



Chapter 5

Computational Approach

In this chapter we will review the computational approach carried on in this research. The experiments

are very often limited by the resources available. In our case, with a pandemic, the development of the

experimental set up has being limited by the conditions. The computational approach aims to replicate

the finger structures obtained in the experiments. Once that we are able to reproduce our experimental

results, we can use the computational model to propose new micro-models, study fluid behaviors before

performing experiments. In general, this approach will be a resource saving procedure that will prevent us

from building micro-models that do not show the desired behavior.

In this chapter we will briefly review the general features of the software COMSOL Multiphysics, de-

scribe the method used by COMSOL to simulate a two phase flow, and explain the modules, characteristics

and specific conditions set to model our system.

5.1 COMSOL Multiphysics

COMSOL Multiphysics is a powerful simulation software. It can be used for "modeling designs, devices,

and processes in all fields of engineering, manufacturing, and scientific research" (COMSOL INC.)53.

This software counts on several modules including electromagnetics, structural mechanics and acoustics,

65
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fluid flow and heat transfer, chemical engineering, multipurpose, interfacing products. Of course, we are

interested on the Fluid flow and Heat transfer module. Specifically, we require the computational fluid

dynamics (CFD)module to perform our simulations to reproduce the experiments proposed. The advantage

of COMSOL is that it allows to perform powerful simulations from a personal computer. Furthermore,

its friendly interface allows to develop simulations without previous programming skills. Still, it also has

modules that link the software to other programming software like CAD, MATLAB, EXCEL, and many

others.

At Yachay Tech University, we obtained the licence for COMSOL Multiphysics through the contest

CEPRA financed by CEDIA with the proyect:

CEPRA XIV: FLUIDOS DE PERFORACIÓN BASADOS EN BIOPOLÍMEROS Y OBJETOS 2- DI-

MENSIONALES PARA APLICACIONES EN PROCESOS DE EXPLORACIÓN Y PRODUCCIÓN

DE HIDROCARBUROS “BIOFLUID2D"

The software was purchased to support the work in this thesis, and the results obtained here will be

reported to CEDIA as part of the achievements of the approved funding.

5.1.1 CFD module

The CFD module included in COMSOL Multiphysics is quite extensive. It is useful for predicting,

understanding and designing fluid flows in open or closed systems54. Its applications are so wide that it

can simulate from laminate, multi-phase or turbulent flows under stationary or time dependent problems

in two or three dimensional spaces. The simulation provided by this module is not restricted to the

visualization of the fluid flow, but there are several measurable variables that can be selected to quantify

the obtained solution. "It gives accurate estimates of flow patterns, pressure losses, forces on submerged

objects, temperature distributions, and variations in fluid compositionwithin a system" (COMSOL INC.)54.

The simulation of fluid dynamical processes is based on the solution of partial differential equations

that define the model. In order to have good estimations of the model, it is needed to introduce the right

specifications, initial and boundary conditions of the system. The user does not introduce the equations,
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but the module already suggests the equations to be solved according to the libraries used to perform the

simulation. However, the software also let the user to personalize the equations if it is required. The

equations are solved based on stabilized finite element formulation for fluid flow, combined with damped

Newton methods54. For time-dependent problems, it uses different time-dependent solver algorithms.

In simple words, the workflow of this module consists on:

• Defining the geometry: We have to build the shape of our system where the fluid will flow.

• Select the fluids to be modeled: The libraries of COMSOL have a material section, where we can

choose predetermined fluids with their correspondent properties. However, we can also change some

properties of the fluids in order describe our actual materials.

• Select the type of flow: The CFD module has many kinds of flows that can be simulated, such as

reacting flows, reacting flows in porous media, multiphase flow, nonisothermal flow, among others.

Each of this kind of flows can also be subdivided in laminar, turbulent and many others.

• Define boundary and initial conditions.

• Define the mesh: The mesh is a discretization of the whole geometry in smaller elements55.

COMSOL has several ways to deal with the mesh building. You can either construct your own mesh,

or use a Physics-controlled mesh.

• Select a solver: The solver is the method used to solve the set of equations. COMSOL group the

solvers into studies according to the physics of the system. The most general studies are stationary

or time-dependent56.

• Visualize the results: The result node shows the data-sets, derived values, tables, and plots of the

solutions56.

The CFD module has several physic interfaces, each with specific features to build a model. These

features include the input of the fluid properties, initial conditions, boundary conditions and possible
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constraints54. The interfaces are based on the physical laws of conservation ofmass, energy, andmomentum

of the fluids. Translating these laws into partial differential equations, the system can be solved using the

initial and boundary conditions.

The CFD module has the following physic interfaces:

• Chemical species transport

– Laminar flow

– Reacting flow (laminar flow, turbulent flow)

– Reacting flow in porous media (transport of diluted species, transport of concentrated species)

• Fluid Flow

– Single - Phase Flow (creeping flow, viscoelastic flow, laminar flow, turbulent flow, etc.)

– Multiphase flow (two phase flow level set, two phase flow phase field, bubbly flow, turbulent

bubbly flow, mixture model, turbulent mixture model, euler-euler model, etc)

– Porous media and subsurface flow (brinkman equations, multiphase flow in porous media, two

phase Darcy’s law, etc)

– Nonisothermal flow (laminar flow, turbulent flow, large eddy simulation)

– High march number flow (High Mach Number flow, compressible Euler equations, etc)

– Thin-Film flow (Thin-film flow shell, thin-film flow domain, thin-film flow edge)

– Shallow water equations

• Heat transfer

– Conjugate heat transfer (laminar flow, turbulent flow).

For our purposes, we are interested in the two-phase flow, level set component. This will allow us to

compute the interaction between two fluids neglecting wetting effects with the walls. There is the option to
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use the Multi-phase flow in porous media, this option adds the influence of the solid phase corresponding

to the rock, meaning fluid-rock interactions. Nevertheless, by now we want to maintain the study based

only on the fluid-fluid interaction.

5.1.2 Laminar Two-Phase flow, level set

For two-phase flow systems can be modeled through level set interface, phase field interface, moving mesh

interface methods. These methods are specifically for two fluids separated by an interface. The level-set

method tracks the interface using fixed mesh57. This method is very efficient because it focuses only on

tracking the interface between immiscible fluids. We can use either a laminar flow or a turbulent flow. The

laminar flow faithfully models for low Reynolds numbers, while the turbulent flow better describes the

high Reynolds number regime. The model accepts incompressible or compressible fluids. This study is

necessarily conducted through a time-dependent solver, given that the interface will be constantly changing

position over time57. This method considers the differences between the viscosities and densities of the

fluids including surface tension and gravity. The module uses the Navier-Stokes equations for two fluids:

ρ
∂u
∂t

+ ρ(u · ∇)u = ∇ ·
[
−pI + µ

(
∇u + ∇uT

)]
+ Fg + Fst + Fext + F, (5.1)

and

∇ · u = 0, (5.2)

In this equation, ρ is density, u is the Darcy velocity, p is pressure, I is the identity matrix, µ is viscosity,

Fst is the force contribution due to surface tension, Fg is the contribution of gravity, Fext is a force that

arises due to an external free energy. All the forces are actually force contributions over volume. The level

set equation is used to track the interface along the geometry. With γ being the re-initialization parameter,

ε is the interface thickness controlling parameter, which is usually half of the maximum element size57.

∂φ

∂t
+ u · ∇φ = γ∇ ·

(
ε∇φ − φ(1 − φ)

∇φ

|∇φ|

)
, (5.3)
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Also, the density and dynamic viscosity are in terms of the level set function φ, where φ < 0.5 stands for

fluid 1, and φ > 0.5 for fluid 2:

ρ = ρ1 + (ρ2 − ρ1) φ, (5.4)

µ = µ1 + (µ2 − µ1) φ. (5.5)

5.2 Simulation of Stable viscous finger in Hele-Shaw cell

In order to create a model that helps us to computationally replicate the experiments performed, we used the

Two-Phase Flow (level Set). In this section we will discuss the geometry, materials and initial conditions

used in our simulation.

First of all, the geometry of our system is based on the micro-models described in Chapter 4. For the

simulation we will be working in a 2D geometry, which is close to our experimental model because the

aspect ratio W/b allows us to consider a quasi 2D experiment.

Figure 5.1: Geometry. The shape and dimensions of the geometry are based on themicro-models proposed.
It is composed by two parts, a small square and a chambered rectangle. The square on the left represents
the fluid input end.
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Table 5.1: COMSOL Simulation parameters
Parameter Symbols Value

Length of the

domain
L 90mm

Width of the

domain
W 35mm

Viscosity of

oil
µ2 0.3267 Pa ·s

Density of

oil
ρ2 879.1 kg/m3

Viscosity of

water
µ1 From Library

Density of

water
ρ1 From Library

Surface Tension T 0.03 N/m

Injection speed U0 From Tab. 4.2

Channel thickness b

1mm

2mm

3mm

Thematerials usedwere extracted from thema-

terials library of COMSOL Multiphysics. We used

water and engine oil. COMSOL has the option of

customizing our fluids, sowe set the density and vis-

cosity of the engine oil we used in the experiments.

As initial conditions we set water to be at domain 1

(square), and engine oil at domain 2 (polygon). The

displacement of the simulation will be from left to

right, letting water displace oil.

From the level set package we define: no flow at

the walls, inlet and outlet properties. From the lam-

inar flow configurations, we do the same. Specify

the inlet and outlet and activate the shallow chan-

nel approximation, which will allow to consider a

transverse thickness for the channel. The input ve-

locities go according to the ones described in Table

4.2.

Regarding to the mesh, we used a Physics-

controlled mesh with element size Finer. This is

a predetermined kind of mesh built by COMSOL to

create the most suitable elements according to the

physic interfaces used.

The solvers were chosen according to a Time Dependent study, given that we require to track the

position of the interface. The result desired from the simulation is the Volume Fraction of Fluid. These

results plots the position of the interface along time. Thus, it is a visualizer for the fluid flow.



Chapter 6

Results & Discussion

In this Chapter, we will review the results according to the theoretical, experimental and computational

approaches. The discussion is based on whether our experimental results coincide with our theoretical

predictions previously described. Wewill join our experimental and computational results with the stability

maps by comparing the behavior of the system under different experimental conditions. Also, we will

analyze the displacement behavior in terms of the finger width and characteristic time for each aspect ratio

W/b available. According to McLean and Saffman20, the control parameters (d0, d1, κ) are dependent on

two main variables, the capillary number, and the aspect ratio. Then, for different aspect ratios (different

cell depth), there are different stability conditions expected. That is the reason why we have divided the

results according to this parameter in different sections. Later, we will compare the results between the

experimental and computational simulations, in order to decide under which conditions our simulation

works better in order to use it for further predictions. Finally, we present the simulation of the behavior

expected for the ideal situation where the fluid displacement begins from a initial flat interface.

Our experiments were developed using, as displaced fluid, motor oil 20W50, whose viscosity is µ =

0.3267 Pa s, and displacing fluid, water, whose viscosity is µ = 8.90× 10−4 Pa s. Both, the simulation and

the experimental set-up were equally configured. The viscosity, density, cell width and surface tension

remain the same for the different aspect ratios. The experimental conditions are specified in Chapters 4 and

73



74 6.1. STABILITY ANALYSIS ACCORDING TO CELL DEPTH

5, but can be also seen in Tab. 6.1. Then, what differs is the cell depth used, and the input velocity. The

shape of the micro-models proposed in Fig. 4.5 are basically the same in terms of stability, they only differ

on the recovery rate. The straight wall at the output of the micro-cell 1 retains oil at the corners, while

the micro-cell 2 has a triangular shape at the output, which allows it to displace oil better than the other.

Nevertheless, in this study we will make all measurements before the finger reaches the output. Given that

by now we are just interested on the shape of the displacement, there is no difference in the resulting flow

patterns of both micro-models.

As described in Chapter 4, section (4.3), there are 15 cases available to experiment. There are 5

velocities and 3 different micro-model depths. First we have to choose the micro-model depth we want to

use. Then we set the desired velocity in our pumping system (choose the right displacing screw). Once

we have all set, we input the most viscous fluid to be displaced (oil) into the cell. Finally, we displace the

fluid with water and stop the system before the water arrives to the output hole. Within the study of each

cell depth separately, each velocity used is distinguished by the name of Plot case, where the case (a) is

the slowest and (e) is the fastest configuration.

6.1 Stability analysis according to cell depth

In this section we will study the stability of our experimental and computational simulations in comparison

to the correspondent stability maps. The aim is to discuss whether our 2D theoretical analysis can predict

the kind of patterns seen in our experiments or not. This stability analysis is complemented with the finger

width and characteristic time of the patterns obtained.

For each cell depth studied in the following sections we will find: a table with the initial conditions

for each experiment, a stability map that compares the expected flow patterns with the actual results of

experiments and simulations, a table with the quantitative results of the flow patterns (surface tension

parameter, relative finger width), and a table with the characteristic instability time. The stability map and

the table for finger widths represent the same study, but the first is based on qualitative analysis, and the

table allows to analyze the results from a quantitative perspective.
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Table 6.1: Experimental conditions

Parameter Symbols Value
Cell Length L 75mm
Cell Width W 35mm
Viscosity of
oil µ2 0.3267 Pa s

Density of
oil ρ2 879.1 kg/m3

Viscosity of
water µ1 8.9×10−4 Pa s

Density of
water ρ1 997.77 kg/m3

Surface Tension T 0.03 N/m
Injection speed U0 From Tab. 4.2

Cell depth b
1mm
2mm
3mm

Our interest is to compare the resulting patterns to the surface tension parameter d0. Remember that this

parameter is the one that tells us about the behavior of the system. Not only that, but more specifically, this

parameter tells us about the amplitudes of the perturbation to which the system could converge according

its conditions. In the section 4.5 we already mentioned that experiments where d0 >1 implies a stable front

(yellow region), d0 <1 is perturbed by amplitudes A≤W/2 (blue region of the stability map). For d0 <4/9

(d0 <0.444) we can expect a tip splitting due to the perturbation of the front by amplitudes equal or smaller

than A = W/3 (orange region of the stability map). For d0 <1/4 (d0<0.25), perturbations of amplitude

A = W/4 could appear (red region of the stability map), meaning that we could expect tip splitting, where

each tip is of size λ =1/4.
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Table 6.2: Experimental conditions for b=3mm.

Cell depth [m] Screw Input Velocities [m/s] Front Velocities [m/s] Plot Case

b=0.003

1 0.0019105 0.000109171 a

2 0.00249167 0.000142381 b
0.00365483 0.000208848 c

3 0.00820257 0.000468718 d
0.0165447 0.00094541 e

6.1.1 Results for cell depth b=3mm.

The black dots plotted in Fig.6.1 are the experimental values corresponding to the cell widthW=35mm and

the front velocities seen in Table 6.2. In Fig. 6.1, there is a summary of the flow patterns obtained from

the experimental and computational approaches. There, we can see a qualitative comparison between the

three approaches. The stability map shows the possible patterns that we expect to evidence as explained

in section 4.5. In Table 6.2, we see that the surface tension parameter is d0 > 1 for all the experiments.

Then, all the experimental values hit the yellow zone, which means that stable fronts are expected for all

the displacements.
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Figure 6.1: Experimental results for b=3mm cell. The dots are the experimental values used, these are
mentioned in Table 6.2. The graph corresponds to the stability map of b=3mm. The first row under the
stability map shows the experiments performed at Yachay Tech, maintaining all the parameters constant
except for the input velocity using the cell depth b=3mm. The second row shows the simulations for the
fluid displacement made with COMSOL Multiphysics. The red part of the simulation is the displaced oil,
and the blue one is the water forming the fingers.

For the first three cases (a, b, c) at slow velocities, indeed we have stable fronts of the size of A = W

as expected. The last two cases are wide fingers. Although they are not of the size of the cell width, they
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are larger than λ=1/2, as seen in Fig. 6.1 and Table 6.3. This fingers are said to be in a transition region,

where the displacement pattern is not of the size of the cell, neither of the size of the half cell width.

Furthermore, it is possible that the fingers have not converged to their final width due to the cell length.

This will be discussed later on according to the characteristic time.

With respect to the similarity between the simulation and the experimental results, we can see the same

patterns. The fingers for the first three cases are of the size of the finger width, while the last two cases,

they are already separated from the walls. From the moment that the interface between fluids is no longer

attached to the lateral walls, they are considered to be a finger.

Finger width

In this study we will analyze the width of the fingers with respect to the cell width (relative finger width).

Using the method described at section 4.4.2, the relative finger width obtained are denoted in Table 6.2. In

Fig. 6.3 there is a plot of the relative finger widths with respect to the surface tension parameter for both,

experiment and simulation. In Table 6.3, the relative fingers for both, simulation and experiment can be

compared. The Plot case column, each case is filled with the color of the region in the stability map that

the given point hits. This will avoid us to go back to the stability maps. The yellow region is stable A < W,

the blue region is a half width finger A < W/2, the orange region is a tip splitting A < W/3, the red region

is a tip splitting of smaller amplitude A < W/4.

Table 6.3: Finger width comparison between experimental and computational approaches at b=3mm.

Cell Height
[m]

Front
Velocity
[m/s]

d0 Rel. Finger Width
(Simulation)

Rel. Finger Width
(Experiment)

Rel. Finger
Difference Plot Case

b=0.003

0.000109171 20.3305 0.984237 0.999593 0.015356 a
0.000142381 15.5885 0.982082 0.964052 0.01803 b
0.000208848 10.6274 0.953019 0.958838 0.005819 c
0.000468718 4.73528 0.797528 0.811205 0.013677 d
0.00094541 2.34767 0.716249 0.746632 0.030383 e
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In Fig. 6.2 we can see that both, simulation and experiment are very close to each other, being in an

acceptable range with respect to the error bars. This leads us to assume that the simulation corresponds

very accurately to the experiment for this aspect ratio. This can also be confirmed in Tab. 6.3, where

the absolute difference between both approaches ranges around 0.005 and 0.03. This absolute error is

regarding the relative finger widths. Given that this is a relative quantity with respect to the cell width,

the error in our finger widths is basically 0.005 or 0.03 times the cell width smaller or larger than the

experimental finger width. Then, this error is not really representative. Actually, in the same figure we can

see that the points hit values very close to each other in terms of the propagation errors related to them.

Figure 6.2: Relative finger width at b=3mm. This graph is the comparison between the experimental and
computational results for the displacement of a more viscous fluid with a less viscous one at the aspect
ratio W/b=35/3. The blue dots represent the experimental results, while the orange ones represent the
simulation.

Also, it is remarkable to note that actually the relative finger widths measured correspond to values of

fingers that have not converged yet, meaning that they could still grow or decrease in amplitude according to

its location in the stability map. To verify this behavior, the complementary experiment seen in Appendix

D, shows the development of some fingers under the same conditions of our experiments through longer

times. There, we see that the plot case (c) finally converges at λ =0.988, which is wider than the relative

finger width measured for this case in Tab. 6.3. The same happens for the plot case (d). In Fig. D.2 we

see that the finger converges at λ=0.87, which is wider than the ones seen in Table 6.2, but thinner than
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the cell width. Hence, if we let the system run for longer times until it converges to a stationary width, we

will see that our experiments are not in their final shape. Another premise that could be extracted from

this behavior is that there is not a strict convergence into a front of size A = W in the stable region, but

this means that the fingers could converge to other amplitudes between A = W and A = W/2. It would be

like a transition regime, where the fingers tend to appear, but they do not converge to the closest instability

which in this case is λ=1/2. The reason for this behavior can be explained from the premise stated in the

2D interface analysis of section 3.2, the systems are allowed to be perturbed by wavelengths l≤W
√

d0 or

amplitudes 2A ≤W
√

d0. This means that the finger is not restricted to converge at the exact amplitudes

studied in our analysis, but they are just the limit or maximum amplitude allowed to appear in a region.

Characteristic Time

The role of the characteristic time was already discussed in Chapter 3, section 3.4. This parameter allows

to identify the time that would take an instability to develop. Where the characteristic time:

tchar =
1(

1 − d0n2) W
2πnU

(6.1)

As previously discussed, there are positive and negative values for the characteristic times. The negative

values correspond to the points that are stable with respect to the control parameter d0. Thus, for d0 < 1,

where the maximum perturbation amplitude allowed is A=W/2, the values for the characteristic time will

be negative if the fingers converge to greater amplitudes. The same for the higher order instabilities

studied. The characteristic time is presented with respect to each possible perturbation, let it be amplitudes

of A = W/2,W/3,W/4. Thus, we will see the time that an instability will take to develop for each point in

our experiments.

In Table 6.4, we see that all the characteristic times are negative, meaning that we should not evidence

any instability of the size of the perturbations proposed (A=W/2,W/3,W/4). As previously discussed, the

structures obtained coincide very well with this analysis since all of the fingers seen are wider than λ = 1/2.

The finger widths are not either of amplitude A=W, but the yellow region of stability only requires the
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fingers to be greater than W/2, which agrees with our results.

Table 6.4: Characteristic time b=3mm.

Cell Height [m] n Amplitude [m] Front
Velocity [m/s] Char. time [s] Plot case

0.000109171 -2.63959 a
0.000142381 -2.68179 b
0.000208848 -2.77044 c
0.000468718 -3.18166 d

1 W/2

0.00094541 -4.37205 e
0.000109171 -0.760251 a
0.000142381 -0.765455 b
0.000208848 -0.776087 c
0.000468718 -0.820656 d

3/2 W/3

0.00094541 -0.917285 e
0.000109171 -0.317625 a
0.000142381 -0.318832 b
0.000208848 -0.321277 c
0.000468718 -0.331205 d

b=0.003

4 W/4

0.00094541 -0.351108 e

6.1.2 Results for cell depth b=2mm.

Table 6.5: Experimental conditions for b=2mm.

Cell Height [m] Screw Input Velocities [m/s] Front Velocities [m/s] Plot Case

b=0.003

1 0.00286575 0.000163757 a

2 0.0037375 0.000213571 b
0.00548225 0.000313271 c

3 0.0123039 0.000703077 d
0.024817 0.00141811 e

According to Table 6.6, the first four cases shown in Fig. 6.3 hit the yellow zone and correspond to

d0 > 1. Here, stable flow patterns are expected. For the last point, where d0 < 1 and a finger that tends to
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converge to the half of the cell width is predicted.
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Figure 6.3: Experimental results for b=2mm cell. The dots are the experimental values used, these are
mentioned in Tab. 6.5. The graph corresponds to the stability map for b=2mm. The first row under the
stability map shows the experiments performed at Yachay Tech, maintaining all the parameters constant
except by the input velocity using the cell height b=2mm. The second row shows the simulations of the
fluid displacement made with COMSOL Multiphysics. The red part of the simulation is the displaced oil,
and the blue one is the water forming the fingers.



84 6.1. STABILITY ANALYSIS ACCORDING TO CELL DEPTH

In the experiment, the cases a), b), and c) are stable fronts of the size of the cell width, while the cases

d) and e) are wide fingers. Again, the fourth case is in the stable region, but does not converge to the cell

width, nor to λ = 1/2. It is possible that because of the length of the cell, the finger has not achieved

its final width, which could be wider. Recall that this region allows perturbations between A = W and

A = W/2, so it still is a good result. The last point (e) hits the blue region. This point is supposed to

converge at λ→1/2, but it seems to be wider. Close to the input, the finger is wider than at the tip. The

fluid interaction with the walls makes the interface attach to the walls at the beginning, stabilizing the

front. This stabilization geometry may me the reason for the finger to be wider than the expected since the

theory does not account for this interaction.

In the simulations, the structures look qualitatively similar to the experiments, but there is a noticeable

difference in the case c). In the experiment, we see a very stable front that is even of the size of the cell

width. The simulation by the contrast shown a finger which is no longer attached to the walls, leading

to a wide finger instead a of stable front. This may be due to wall-interaction effects neglected in the

simulation. As mentioned in Chapter 5, we are avoiding to include wetting effects on the walls. The

wettablity of the fluids provide an interaction force that maintains the fluids attached to the walls. Apart

from this difference, the other structures coincide very accurately between simulation and experiment.

In Appendix D we can see a complementary experiment that shows the actual size that the fingers in

the simulation should have in the short term. There, we see that our fingers seen in Fig. 6.3 have not

converged yet. Just to figure out some examples, the plot case (c) converges to λ = 0.8247 if we let it flow

for 240s. In the data portrayed at Tab. 6.6, the relative finger width was λ =0.766 for the simulation, and

λ =0.963 for the experiments. Then, the finger obtained from the simulation has not converged to its final

width. In the Appendix D, we can also see the plot case (e) left to run for 80 seconds in Fig. D.4, the

one that converges at λ=0.64, which is more proximate to the experimental value seen in Tab. 6.6 for the

same case. Also, the experiment has not converged either. If we let the system to run longer, it would be

much more probable that both approaches, simulation and experiment turn out to coincide at similar finger

widths.



CHAPTER 6. RESULTS & DISCUSSION 85

Finger Width

In Table 6.6 and Fig. 6.4 it is evident that the relative finger width for the simulation is notably smaller than

the relative finger width for the experiments. Actually, the absolute difference between both approaches

are around 0.1 and 0.2. This error is no longer negligible. It would represent that the simulation results

are 0.1 to 0.2 times the cell width smaller than the experimental values. Therefore, for this aspect ratio,

our simulation is not so accurate with respect to the experiment, but it is not invalid either. The points

do not even coincide within the same range of errors as evidenced in Fig. 6.4, but they do not have to

coincide. Lets remember that there are different physical effects that occur in the actual experiment and are

not considered in the simulation. One of the most important of these effects are the transverse curvature

of the displaced interface and wetting effects. The transverse curvature increases the pressure jump of the

system, making the fingers move faster. On the other hand, wetting effects act like a dragging force for the

fluid displacement. The fact that the experiments turned out to be more stable than the simulations imply

that wetting forces are dominant in this aspect ratio (W/b = 35/2).

Table 6.6: Finger width comparison between experimental and computational approaches at b=2mm.

Cell Height
[m]

Front
Velocity
[m/s]

d0 Rel. Finger Width
(Simulation)

Rel. Finger Width
(Experiment)

Rel. Finger
Difference Plot Case

b=0.002

0.000163757 6.02385 0.873273 0.990783 0.11751 a
0.000213571 4.61882 0.848242 0.96238 0.114138 b
0.000313271 3.14886 0.766078 0.963059 0.196981 c
0.000703077 1.40304 0.6474 0.741264 0.093864 d
0.00141811 0.695606 0.595548 0.711286 0.115738 e
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Figure 6.4: Relative finger width at b=2mm. This graph depicts the comparison between the experimental
and computational results for the displacement of a more viscous fluid with a less viscous one at the aspect
ratio W/b=35/2. The blue dots represent the experimental results, while the orange ones represent the
simulation.

Characteristic time

In Tab. 6.7 we see that the only positive value corresponds to the perturbation of size A=W/2, for the plot

case (e). This means that this configuration is the only one that will actually be allowed to grow a finger

of relative width λ→1/2. According to the characteristic time, the instability should be visible after t≈13s.

The experiment and the simulation were left to run for approximately 30s. In that time, the fingers did not

converged to 1/2. In an attempt to solve this inquiry, in the Appendix D we let the fluids flow developed in

a micro-cell of submitted to the same conditions, except by the length, which is much longer than the used

in our studies. The finger was left to run by 180s and converged at λ=0.64. Hence, the experiments and

simulation agree qualitatively with the analysis, but quantitatively, there are physical assumptions ignored

in the analysis that could be affecting the behavior of the systems and we are not considering.
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Table 6.7: Characteristic time at b=2mm.

Cell Height [m] n Amplitude [m] Front
Velocity [m/s] Char. time [s] Plot case

0.000163757 -6.77097 a
0.000213571 -7.20738 b
0.000313271 -8.27482 c
0.000703077 -19.6577 d

1 W/2

0.00141811 12.9045 e
0.000163757 -1.80645 a
0.000213571 -1.85131 b
0.000313271 -1.94814 c
0.000703077 -2.44892 d

3/2 W/3

0.00141811 -4.63394 e
0.000163757 -0.736431 a
0.000213571 -0.746261 b
0.000313271 -0.766743 c
0.000703077 -0.858913 d

b=0.002

4 W/4

0.00141811 -1.10188 e

6.1.3 Results for cell depth b=1mm.

Table 6.8: Experimental conditions for b=1mm.

Cell Height [m] Screw Input Velocities [m/s] Front Velocities [m/s] Plot Case

b=0.003

1 0.0057315 0.000327514 a

2 0.007475 0.000427143 b
0.0109645 0.000626543 c

3 0.0246077 0.00140615 d
0.049634 0.00283623 e

In Fig. 6.5 we see that all of the experimental values hit at least one instability region. In Tab. 6.9

we see that the values of the surface tension parameter d0 are all less than 1. This implies that for all

the possible cases we should see fingers in the displacements. This is evidenced in both, experiment and
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simulation, as shown in Fig. 6.5. For the case (a) and (b), we should visualize at most, a finger that

converges to an instability of λ→1/2. For the case (c), we should evidence the first instability mentioned,

but this point hits the orange zone, which means that we could expect to see a bifurcation in the finger that

leads to an amplitude of A = W/3. For the last cases (d) and (e), given that they are away from all instability

frontiers in the map, we should be able to see all the instabilities mentioned. In both, our experiments

and simulations, we do not evidence any instability higher than λ→1/2. The first three cases show a clear

finger structure but they do not converge at W/2, neither do we see a bifurcation. According to the stability

analysis made in section 3.2, a stability line is the limit where a front can be unstabilized by perturbations

of equal or smaller amplitudes than a given amplitude. In this context, once we cross the instability line,

in the case (c), structures of amplitudes greater than A = W/3 should not be visualized. The same for the

last two cases, that are deep into the instability region, crossing the instability line of A = W/4. For these

points, a perturbation of the size of half cell should not be allowed. In the case of point (c), this behavior

can be considered to be due to the fact that the point is almost above the instability line, such that it could

be in a transition region, or the flow time has not being enough to let the instability develop. However,

the points (d) and specially (e), are far from the instability line, such that the behavior should be evident.

The fact that again, the experiments and the simulation are more stable than the predicted by the stability

criteria imply that there is a stabilization effect in both approaches that is not considered in the stability

analysis.

All of the structures obtained are similar for the experimental and computational model. For this aspect

ratio (W/b=35/1), the fingers obtained in the experiment reach the instability faster than the simulations,

but in general, both approaches seem to coincide very well.
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Figure 6.5: Experimental results for b=1mm cell. The dots are the experimental values used, these are
mentioned in Tab. 6.8. The graph corresponds to the stability map of b=1mm. The first row under the
stability map shows the experiments performed at Yachay Tech, maintaining all the parameters constant
except by the input velocity using the cell height b=1mm. The second row shows the simulations of the
fluid displacement made with COMSOL Multiphysics. The red part of the simulation is the displaced oil,
and the blue one is the water forming the fingers.
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Finger width.

The relative finger widths of the simulation are greater than the experimental results. Hence, the simulation

takes more time to converge to an unstable behavior than the experiments. Differently from the aspect

ratio (W/b=35/2), where the experiments were more stable than the simulations. Due to the shape of the

pressure jump equation for three dimensional contributions, 3.74, the smaller the cell depth (b), the higher

the pressure jump. This implies that the fingers in the experiment tend to move faster than the ones in the

simulation. As previously discussed, the experiment also counts on the contribution of dragging, wetting

effects, but as evidenced at this aspect ratio, the contribution of the transverse curvature is higher.

The absolute difference in relative finger widths between both approaches is negligible. They even

follow the same general shape. For this aspect ratio, in Fig. 6.6 we clearly evidence the same behavior,

which leads us to say that the simulation accurately represents the experiments. Still, as discussed

previously, the simulation takes longer to converge at the stable / unstable behavior than the experiments.

In this case, it takes longer to get to the unstable behavior, being this the reason for the upward displacement

of the simulation points in Fig. 6.6, that seem to show a more stable behavior than the experimental ones.

Once again, following the premise that the simulation and experiment accomplish to be in a good range

of agreement, in the Appendix D we show a predictive plot of how the system should behave if we let it

run for longer times. In Fig. D.5, we see the simulation for the plot case (e) of this aspect ratio. There, the

finger converges at λ =0.55. Hence, as previously noted, due to the extra physical contributions present in

the experiment, it will tend to converge faster to an unstable finger of λ =1/2. But the point is that it will

eventually converge. The results in the mentioned appendix allow us to say that both, the simulation and

the experiments have not been left enough time to let them reach their final width.

Actually, for cases d) and e) we should be able to see up to a tip splitting where each tip converges at

the width of λ =1/4. We do not visualize any instability further than single finger formations. The reason

for this behavior is no longer linked to the time duration of the experiments, given that we already saw

that even at the more unstable case, when letting it run for longer times, it does not split or change the

behavior. In both cases, simulation and experiment, we do not evidence higher order instabilities. Thus,
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we can neglect the fact that the three dimensional contributions are the ones that are affecting the behavior

of the system. In consequence, the difference between the obtained behavior and the expected one relies on

the geometry of the system. Recall the fact that our stability analysis was made under the assumption that

the initial state is a flat interface, from where we begin to induce perturbations A(t). Our experiments and

simulations do not begin at a flat interface, besides, the triangular shape of the input helps to stabilize the

front by the interaction with the walls. Still, even if we do not achieve to get to the exact amplitudes desired,

the results are qualitatively correct, meaning that at least we were able to predict when a displacement will

show finger formations.

Table 6.9: Finger width comparison between experimental and computational approaches at b=1mm.

Cell Height
[m]

Front
Velocity
[m/s]

d0 Rel. Finger Width
(Simulation)

Rel. Finger Width
(Experiment)

Rel. Finger
Difference Plot Case

b=0.001

0.000327514 0.752981 0.656194 0.598545 0.057649 a
0.000427143 0.577353 0.635324 0.574491 0.060833 b
0.000626543 0.393608 0.614118 0.560282 0.053836 c
0.00140615 0.175381 0.587023 0.5 0.087023 d
0.00283623 0.0869507 0.567036 0.500828 0.066208 e
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Figure 6.6: Relative finger width at b=1mm. This graph is the comparison between the experimental and
computational results for the displacement of a more viscous fluid with a less viscous one at the aspect
ratio W/b =35/1. The blue dots represent the experimental results, while the orange ones represent the
simulation.

Characteristic time

In Tab. 6.10 we see many positive values, which indicate that many instabilities are allowed to exist for

this aspect ratio. Even so, in our experiments and simulation we are only able to visualize first order

instabilities (A=W/2). For cases (a) and (b), only first order perturbations are allowed to occur, meaning

that we should see a finger that converges to λ→1/2 in 69s for case (a), and 30.1s for case (b). In our

experiments and simulation we only left the system to flow for 30s in case (a), and 25s in case (b). In

both cases it is actually evident that the fingers have not converged to their final width, which can now be

confirmed that the cells need to be longer by means of having more time for the instabilities to develop.

The characteristic times indicate that the closer a point is to the instability line, the longer it will take

to develop the instability. Consequently, the first cases submitted to lower velocities take longer to show

the instabilities. As previously discussed, this study was made under the assumption that a flat front is

perturbed by the described amplitudes, the fact that we do not evidence the other higher order instabilities

could be related to the stabilization of the front by the triangular shape of the input, the one that could be

flattening small amplitudes due to the interaction of the liquids with the walls. Furthermore, it is important

to consider that our initial front is not flat, but it is curved.
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Table 6.10: Characteristic time b=1mm.

Cell Height [m] n Amplitude [m] Front
Velocity [m/s] Char. time [s] Plot case

0.000327514 68.8539 a
0.000427143 30.8558 b
0.000626543 14.6617 c
0.00140615 4.80399 d

1 W/2

0.00283623 2.15106 e
0.000327514 -16.3334 a
0.000427143 -29.0729 b
0.000626543 51.8188 c
0.00140615 4.36241 d

3/2 W/3

0.00283623 1.62781 e
0.000327514 -4.22684 a
0.000427143 -4.97976 b
0.000626543 -7.73872 c
0.00140615 6.63611 d

b=0.001

4 W/4

0.00283623 1.5057 e

6.1.4 Finger Width comparison

In this section we will analyze the width of the fingers with respect to the cell width. Using the method

described at section 4.4.2, we determined the desired data for each aspect ratio. Then, we will plot the

relative finger widths for each data available for both, experiment and simulation. Our interest is to compare

this results to the surface tension parameter d0. Remember that this parameter is the one that tells us about

the behavior of the system. Not only that, but more specifically, this parameter tells us about the amplitudes

of the perturbation to which the system could converge according its conditions. In the section 4.5 we

already mentioned that fingers where d0 <1, tend to converge to relative fingers smaller than λ =1/2. For

d0 <4/9 will be perturbed by amplitudes equal or smaller than A = W/3 (it could appear a finger splitting).

For d0 <1/4, perturbations of amplitude A = W/4 could appear, meaning that we could expect tip splitting,

where each tip is of size λ =1/4.

In Fig. 6.7, there is the whole picture of the results obtained by the computational and experimental
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Figure 6.7: Computational vs. experimental relative finger width λ according to the surface tension
parameter d0. The plot on the left corresponds to the behavior of the simulations made on COMSOL
Multiphysics. The plot on the right corresponds to the experimental data obtained.

approach. In the case of the simulation, the results are very well arranged in an approximately square-

root-like behaviour as depicted by McLean and Saffman20, and Tabeling44. In the case of the experiment,

as expected, it is not so well arranged, but we can still evidence a similar relationship between the finger

width and the surface tension parameter. In terms of stability, it seems to be that the simulation is more

stable than the experiment. Here, we mean that the rate of change between a stable and an unstable

regime occurs faster for the experiments. The experimental curve is flat at values close to λ=1 (stable

regime), and then it rapidly drops to smaller relative finger widths as d0→0. Instead, in the simulation, the

relative finger width decreases smoothly as the surface tension parameter decreases as well. As discussed

in the previous sections, it seems to be like there is an interplay between wetting and pressure jump in

the experimental approach. Wetting effects tends to stabilize the displacement, while the increase of the

pressure jump unstabilize the front due to the increase in velocity. In the experiments, one can not neglect

the contribution of the transverse radii of curvature of the interface (b/2)12. The smaller the cell depth (b),

the higher the pressure jump in a real system20. The contribution of the pressure jump predominates over

the wetting effects as the cell depth decreases. In other words, the system tends to unstabilize faster as the

cell depth decrease, making the curve more pronounced. By the contrast, the simulations do not count on
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any of these physical contributions.

It is said that the simulation is more stable than the experiment not just because of the shape of the

curve, but because of the size of the fingers. In the simulation, the fingers at themost unstable point does not

reach λ = 1/2, but it stays around λ = 0.65. In contrast, the most unstable point of our experiments actually

reached λ = 1/2. This is another argument to say the experiment converges faster than the simulation to

the expected behavior. The last statement agrees accurately with the theoretical analysis. In section 3.5,

our three dimensional surface tension parameter d1 is greater than the 2D surface tension parameter d0,

meaning that it is easier to reach an instability under the effect of a transverse curvature in the fingers. This

behavior is also evidenced in the Appendix C, where we see a graphical comparison between the behavior

of the system under the 2D and 3D stability analysis, and the curves for the 3D analysis are displaced

downwards with respect to the 2D analysis, meaning that the points affected by a transverse curvature will

tend to reach faster to the studied instabilities.

6.2 Predicted displacement of a flat interface

In the previous results it was evidenced the correspondence between the experiments and the simulation.

The computational model showed to reproduce very well the experiments with great accuracy. Even

when both approaches failed to show the instabilities proposed by the stability analysis, there was high

concordance in the behavior between the approaches. Using the fact that the computational model could

very accurately represent an experimental situation, we can be confident to simulate the same two-phase

flow system under different geometries. The results may present a slight difference in the stability, where

the experiments tend to converge faster into an unstable behavior. Still, these results will allow to have a

close idea of the behavior of the fluid interactions before proceeding to build an experimental set-up.

In the past sections, the main discussion lead to the conclusion that the difference between the behavior

of the computational-experimental approach with the theoretical analysis could be closely related to the

shape of the initial interface and the shape of the input walls. Hence, in this section a new geometry is

proposed. In the stability analysis developed in section 3.2, the first assumption comes from the fact that
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there is a flat interface flowing at a constant velocity, and then a small bump or perturbation A(t) grows.

Thus, here it is presented a new geometry, the one that departs from a flat interface as seen in Fig. 6.8.

Also, the micro-model has been extended to L=20cm to led the fluids interact for longer time periods, such

that they can reach the convergence at a fixed amplitudes.

Figure 6.8: Flat interface geometry. The blue portion corresponds to water, the red portion is oil. The
flow goes from left to right.

Using the exact same experimental conditions than in the previous study, in the following section it is

found the result of the simulations for this new geometry in terms of the stability maps, finger shapes and

characteristic times.

Results for b=3mm.

In Fig. 6.9 we see the resulting displacement patterns for the same experimental conditions previously

discussed. Thus plot cases also correspond to the same conditions, but now they show different patterns

because of the change in geometry. This result is much more accurate with respect to the stability map

than the ones made with the last geometry. Here, again we see that all the experimental points hit the

yellow region, where it is expected to obtain very stable displacement fronts, meaning flat fronts or wide

fingers. That is exactly what we observe from the simulations performed. The first two plot cases (a) and

(b) are very stable flat fronts, the third one is curved but is still of the size of the cell width, and the last

two already show finger formation.

In Tab. 6.11 we see that these cases actually converge at λ→0.853 and λ→0.749 respectively. The

surface tension parameter d0 is greater than 1 for all the cases, which implies an stable front of an amplitude

greater than A=W/2. Thus, it coincides very well with the theoretical analysis because all the patterns
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Table 6.11: Relative finger width for b=3mm.

Cell depth [m] Front Velocity [m/s] d0 Rel. Finger Width (Simulation) Plot case

b=0.003

0.000109171 20.3305 1 a
0.000142381 15.5885 1 b
0.000208848 10.6274 1 c
0.000468718 4.73528 0.853 d
0.00094541 2.34767 0.749 e

observed are greater than λ = 1/2.
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Figure 6.9: Results for simulation of fluids interacting through flat interface at b=3mm. The graph corre-
sponds to the stability map of b=3mm. The flow patterns shown bellow correspond to each experimental
condition stated by the black dots in the stability map.

Results for b=2mm

For this aspect ratio (W/b = 35/2), the stability map suggests that the first four cases of slower velocities hit

the stability region, meaning that flat fronts, fingers of size of the cell width, or fingers of amplitudes greater
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than λ = 1/2. Instead, the last point, meaning plot case (e), hits the blue region of the stability map, which

should lead to the formation of finger that converges at λ→1/2. In the results for the simulations evidenced

at the same Fig. 6.10, we see that the fingers coincide very accurately with the stability map. Indeed, all

the cases coincide to the behavior described by the stability map and the surface tension parameters d0

shown in Tab. 6.12. Given that d0 < 1 for the case (e), we should expect to evidence a finger of half of

the cell width. In the simulation, we see a very pronounced finger that converges at λ = 0.619. We should

expect to see an even thinner finger, but considering the fact that the point (e) is very close to the instability

line, it may be required to be deeper into the instability region to actually evidence a finger of width closer

to λ = 1/2.

Table 6.12: Relative finger width for b=2mm.

Cell depth [m] Front Velocity [m/s] d0 Rel. Finger Width (Simulation) Plot case

b=0.002

0.000163757 6.02385 1 a
0.000213571 4.61882 0.923 b
0.000313271 3.14886 0.779 c
0.000703077 1.40304 0.849 d
0.00141811 0.695606 0.619 e
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Figure 6.10: Results for simulation of fluids interacting through flat interface at b=2mm. The graph corre-
sponds to the stability map of b=2mm. The flow patterns shown bellow correspond to each experimental
condition stated by the black dots in the stability map.
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Results for b=1mm.

For this aspect ratio (W/b=35/1), the points hit different instability regions and the surface tension param-

eters d0 is less than 1 for all the experiments. Therefore, we should be able to evidence all the studied

instabilities, A=W/2, W/3, W/4, where the last two imply finger splitting. In Fig. 6.11, the points (a) and

(b) for this aspect ratio hit the zone where we should expect a finger of width that converges at λ→1/2.

In the same way that seen in the case (e) of the aspect ratio W/b=35/1, the fingers seen are thin but they

do not converge at 1/2, but they converge at 0.633 and 0.6213 respectively. In the case of the case (c),

the point hit the region from where it should begin to split and converge into A=W/3. We do not see the

splitting, but we evidence a single finger that converges at 0.5976, but we have to consider that the point

is almost above the instability line, so we may need it to be deeper into the instability zone in order to

actually evidence this behavior. Finally, the cases (d) and (e) qualitatively correspond very well to the

stability map. For these last cases we expect the displacement to be split into two fingers that converge at

λ = 1/4 each. The results for the simulation seen in Fig. 6.11, show that we the behavior of the fingers

agree with the stability map, in both cases the interface is divided in two fingers. In Tab. 6.13, for cases

(d) and (e) there are two values at the correspondent cell of the relative finger width, these values are the

relative width of each finger grown in the displacement. For the case (d), the fingers have a relative width

of 0.275 and 0.3, meaning that this is actually a kind of transition regime between the instability caused

by a perturbation of amplitude A=W/3 and A=W/4. Finally, for the case (e), the relative finger widths are

0.265 and 0.268, which are very approximate values to λ→1/4.

Table 6.13: Relative finger width for b=1mm.

Cell depth [m] Front Velocity [m/s] d0 Rel. Finger Width (Simulation) Plot case

b=0.001

0.000327514 0.752981 0.633 a
0.000427143 0.577353 0.6213 b
0.000626543 0.393608 0.5976 c
0.00140615 0.175381 0.275 - 0.3 d
0.00283623 0.0869507 0.265 - 0.268 e
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Figure 6.11: Results for simulation of fluids interacting through flat interface at b=1mm. The graph corre-
sponds to the stability map of b=1mm. The flow patterns shown bellow correspond to each experimental
condition stated by the black dots in the stability map.
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6.3 Summary

Summarizing the results:

• The stability criteria developed analytically requires the initial interface to be strictly flat in order to

accurately predict instability regions.

• The initial geometry proposed for the micro-models provide stabilizing effects to the fluid flow.

• The initial geometry is not long enough to let the displacement structures to develop completely.

• In the experimental flows there is an interplay between wettability and pressure jump. The smaller

the cell depth, the higher the contribution of pressure jump. This makes the system reach faster to

an unstable behavior in comparison to simulations under the same condition.

• In the simulations, the pressure jump is independent of the cell height, maintaining the rate at which

the instabilities tend to form.

• Under the studied conditions, the computationalmodel has proved to be accurate enough to reproduce

and predict experimental fluid flows.



Chapter 7

Conclusions & Outlook

The goal of this research project was to propose a stability criteria to predict the behavior of Saffman -

Taylor instabilities in a system of a less viscous fluid pushing a more viscous one. Furthermore, to develop

a computational model that allows to simulate the expected behavior of this systems in order to use it in

further works.

These objectives were accomplished by the use of the surface tension parameter d0 as a control

parameter to construct stability maps. The stability maps define the regions where different perturbations

could show-up according to the experimental conditions. In order to complement the stability analysis, the

finger width relation to the surface tension parameter and the characteristic time were used to explain the

behavior of the flow patterns in deeper detail than just a qualitative description of the finger formation.

The experiments and simulations performed were proven to coincide with high accuracy, bearing in

mind the fact that the experiments still tend to reach unstable patterns faster that the simulations. The

stability criteria fails to describe the behavior of a displacement where the input flow has a curved interface.

The accuracy of the proposed computational model was confirmed through the comparison with the

experiments performed. The model was used to simulate a set-up where the initial interface is flat and

the input is uniform along the whole cell width. The theoretical stability analysis turned out to precisely

predict the behavior of the interaction between viscous fluids under the strict condition that the initial
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interface must be flat.

Hence, we achieved to establish a stability criteria that allows to play with the main parameters of the

cell shape and the fluid properties in order to find the most suitable conditions where we could expect to

see stable or unstable behaviors as desired.

More than a concluding research project, this thesis has achieved to settle the theoretical, experimental

and computational foundations to open a new research field at Yachay TechUniversity. The stability criteria

and the computational model are time and resource saving features of high relevance for future works.

The stability criteria will allow to settle the conditions for the experiments or simulations to be developed

according to the desired behavior. The computational model can be used to simulate the flow under new

conditions or a new geometry proposed, as long as the initial interface is flat. Also, we could simulate

good approximations to flow patterns that are not necessarily a flat interface, but in this case we can not

guide our results on the expected behavior proposed by the stability criteria. In general, these studies can

be easily performed to suggest new stabilization conditions before building experimental set-ups.

Now that we have understood the problem, for future works we expect not only to understand the

system, but to suggest new stabilization criterion to change behavior of the flow in order to stabilize the

displacement fronts. In that way, by damping viscous finger formations, techniques for improving oil

extraction processes through water-flooding can be developed.

Furthermore, we would like to keep improving the stability analysis. By now, the analysis is based on

simple assumptions of the fluid flow, but it has still shown to give an approximate idea of the behavior

of the system. For future works we would like to introduce three-dimensional contributions as briefly

introduced in the thesis, contributions like wetting interactions, transverse front curvature between other

effects, not only to the analysis but also to the computational model. The next step to improve the stability

analysis is to study the behavior of fluids interacting under the presence of a curved interface instead of a

flat one.



Appendix A

Crude oil data.

The following table shows a compilation of different crude oils, their properties differ according to their

location. Here we can find the viscosity in cp and the interfacial tension (IFT) between water and the

correspondent crude oil.

Field Oil Formation Location Oil Viscosity (cp) IFT (dynes/cm)
West Delta Offshore Louisiana 30.4 17.9
Cayuga Woodbine Texas 82.9 17.9
Fairport Lansing Kansas 5.3 20.8
Bayou Choctaw Louisiana 16.1 15.6
Chase-Silica Kansas City Kansas 6.7 19.6
Hofra Paleocene Libva 6.1 27.1
Black Bay Miocene Louisiana 90.8 17.7
Bar-Dew Bartlesville Oklahoma 9.0 21.4
Bar-Dew Bartlesville Oklahoma 6.8 21.4
Eugene Island Offshore Louisiana 7.4 16.2
Cambridge Second Berea Ohio 15.3 14.7
Grand Isle Offshore Louisiana 10.3 16.1
Bastian Bay Uvigerina Louisiana 112.2 24.8

Table A.1: Interfacial tension between water and several crude oil types1
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Field Oil Formation Location Oil Viscosity (cp) IFT (dynes/cm)
Oklahoma City Wilcox Oklahoma 6.7 20.1
Glenpool Glen Oklahoma 5.1 24.7
Cumberland McLish Oklahoma 5.8 18.5
Allen District Allen Oklahoma 22.0 25.9
Squirrel Squirrel Oklahoma 33.0 22.3
Berclair Vicksberg Texas 44.5 10.3
Greenwood-Waskom Wacatoch Louisiana 5.9 11.9
Ship Shoal Miocene Louisiana 22.2 17.3
Gilliand - Oklahoma 12.8 17.8
Clear Creek Upper Bearhead Louisiana 2.4 17.3
Ray Arbuckle Kansas 21.9 25.3
Wheeler Ellenburger Texas 4.5 18.2
Ray Arbuckle Kansas 21.9 25.3
Wheeler Ellenburger Texas 4.5 18.2
Rio Bravo Rio Bravo California 3.8 17.8
Tatums Tatums Oklahoma 133.7 28.8
Saturday Island Miocene Louisiana 22.4 31.5
North Shongaloo-Red Takio Louisiana 5.2 17.7
Elk Hills Shallow Zone Califonia 99.2 12.6
Eugene Island Miocene Louisiana 27.7 15.3
Fairport Reagan Kansas 31.8 23.4
Long Beach Alamitos Califomia 114.0 30.5
Colgrade Wilcox Louisiana 360.0 19.9
Spivey Grabs Mississippi Kansas 26.4 24.5
Elk Hills Shallow Zone Califonia 213.0 14.2
Trix-Liz Woodbine A Texas 693.8 10.6
St. Teresa Cypress Illinois 121.7 21.6
Bradford Devonian Pennsylvania 2.8 9.9
Huntington Beach South Main Area Califomia 86.2 16.4
Bartlesville Bartlesville Oklahoma 180.0 13.0
Rhodes Pool Mississippi Chat Kansas 43.4 30.5
Toborg - Texas 153.6 18.0

Table A.2: Interfacial tension between water and several crude oil types1



Appendix B

Error Propagation

In this appendixwewill find the error propagation for themeasurement of FingerWidths and the calculation

of the surface tension parameters in the experiments and simulations.

According to Lindberg58, the error propagation formula is given by

dz =

(
∂ f
∂w

)
dw +

(
∂ f
∂x

)
dx +

(
∂ f
∂y

)
dy + . . . (B.1)

Where z = f (w, x, y, . . .). For multiplication operations, this expression can be simplified into

∆z
z

=

√(
m∆x

x

)2

+

(
n∆y

y

)2

+ · · · (B.2)

Where z = xmyn.

First, the relative finger width λ depends on the finger width and the cell width of each simulation

or experiment performed. We will not get into details related to the errors that could show up in the

development of the fingers, but we will just focus on the errors related to their measurement. The

procedure for the measurement is described in sec. 4.4.2. The error propagation for the relative finger

width will be given by
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∆λ = λ

√(
∆W f

W f

)2

+

(
∆Wc

Wc

)2

(B.3)

Where W f is the finger width, and Wc is the cell width, both measured in pixels from the images taken

from the resulting experiments. The uncertainty of both variables is set at ∆W f = ∆W f = 2px because that

is the approximate pixel size of the interface’s line in the images.

Regarding the surface tension parameter, the calculus brings higher implications. The surface tension

parameter d0 depends on the front velocity (U), surface tension (T), cell width (W), cell depth (b) and

viscosity (µ). The surface tension and viscosity values were extracted from the literature, where no error

of measurement was provided, so we will not take them into account. Then, the error propagation for this

variable is given by

∆d0 = d0

√(
∆U
U

)2

+

(
2∆W

W

)2

+

(
2∆b

b

)2

(B.4)

The uncertainty of the cell width is ∆ W = 0.0005m given that it was measured with a ruler, while

the uncertainty of the cell depth is ∆ b = 0.00005m because it was measured with a vernier. The front

velocity was calculated from other variables, as described in section 4.3. Thus, we need to calculate its

error propagation through

∆U = U

√(
∆vscrew

vscrew

)2

+

(
2∆r

r

)2

+

(
∆W
W

)2

+

(
∆b
b

)2

(B.5)

Where r is the radius of the piston that contains the fluids, which was measured with a vernier, then ∆ r

= 0.00005m. The error ofW and b were already discussed, and the error of the velocity of the displacement

screws must also be calculated through

∆vscrew = vscrew

√(
∆D
D

)2

+

(
∆t
t

)2

(B.6)

Where D is the displacement of the movement platform that pushes the content within the cylinder, and
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t is the time measured for the displacement. Then ∆D=0.00005m because it was measured with a vernier,

and ∆t=0.5s because of the approximate time reaction. Once that we have all these calculations done, we

can find the total error propagation to be seen in section 6.1.4.



Appendix C

Stability map 2D - 3D

In the same way that we did the stability maps for the quasi-2D analysis, we can use the three dimensional

surface tension parameter d1 to visualize the stability maps under this condition. This last parameter

differs from the quasi-2D because because now we consider the contribution of the transverse curvature

of the displacing finger. In Fig.C.1 we can see the comparison between the behaviors of the stability maps

under different aspect ratios. In general, it is evident that the instability lines slightly displace downwards

in the stability map for the 3D case. According to Bensimon et al.12, the transverse curvature has a

higher contribution than the in-plane curvature of the finger. Then, it makes the system more unstable, as

evidenced in the figure. Hence, for the three dimensional case, the system will tend to converge faster to

the desired instabilities.
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Figure C.1: Stability map 2D - 3D. In the left column we find the stability maps under quasi 2D consid-
erations for b=0.003m, b=0.002m, b= 0.001m. In the right column we find the stability maps under 3D
considerations for b=0.003m, b=0.002m, b= 0.001m.



Appendix D

Simulating convergent fingers

In this appendix we will find some complementary results that help us to understand the flow patterns

described in Chapter 6. In the mentioned chapter, we saw that the fingers appeared to have ambiguous

behaviors, like being in a stable regime but showing a finger-like structure, or being in an unstable regime,

but not being of the expected size. Here, we performed longer simulations that give the systems enough

time to converge into a constant finger width. The simulation conditions are all the same than the ones

described in Chapter 5. The difference relies on the geometry, given that now the cell length is L=0.2m

instead of L=0.09m.

Convergence of fingers for b=3mm.

The first case we will see is the plot case c) of the aspect ratio W/b=35/3, visible in section 6.1. In our

results, we saw that the experimental conditions for point (c) suggested the flow pattern to be stable (no

fingers). In Fig. D.1 we see a finger-like displacement of the size of the cell width. This displacement

corresponds very well with the expected behavior described in 6.1, which implies that we have a stable

front. The finger converged at λ=0.988.
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Figure D.1: Simulation of finger structure at b=3mm, plot case c. The blue region is the portion of water
in the displacement, the red region is the oil displaced.

The following figure corresponds to the plot case d) of the aspect ratio W/b=35/3. In our results, we

saw that the experimental conditions for this points suggested the flow pattern to be stable (no fingers). In

Fig. D.2 we see a clear finger that is not of the size of the cell width, but is not either smaller than W/2,

which means that it has not crossed to the first instability, meaning that we are still in the stability region

(yellow zone of Fig. 6.1). The finger converged at λ=0.87.

Figure D.2: Simulation of finger structure at b=3mm, plot case d. The blue region is the portion of water
in the displacement, the red region is the oil displaced.

Convergence of fingers for b=2mm.

The following case corresponds to the finger structure evidenced in the plot case c) at b=2mm evidenced

in Fig. 6.3. In Fig. D.3, we see a stable finger that converges to λ =0.8257.
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Figure D.3: Simulation of finger structure at b=2mm, plot case (c). The blue region is the portion of water
in the displacement, the red region is the oil displaced.

The following case corresponds to the finger structure evidenced in the plot case e) at b=2mm evidenced

in Fig. 6.3. This point is the highest velocity setting of this aspect ratio (W/b=35/2). In the stability map

we were expecting to evidence an instability of first order that converges at λ=1/2. In Fig. D.4 we see that

the finger converges at λ=0.64. This does not correspond to the expected instability yet, but given the fact

that the stability analysis is made with respect to a flat initial front, the triangular shape of the walls near

to the input in our system could be stabilizing the front.

Figure D.4: Simulation of finger structure at b=2mm, plot case e. The blue region is the portion of water
in the displacement, the red region is the oil displaced.

Convergence of fingers for b=1mm.

In Fig. D.5 we see the finger of the plot case e) (maximum velocity available) of the micro-model of cell

depth b=1mm. In the stability map of this aspect ratio seen at Fig. 6.5, the conditions of this experiments

show that we should be able to at least see an instability of first order λ→1/2, up to a finger splitting of

amplitude A=W/4. After leaving the system to run for 35s, the finger converged at λ=0.55.
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Figure D.5: Simulation of finger structure at b=1mm, plot case e. The blue region is the portion of water
in the displacement, the red region is the oil displaced.
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