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Resumen

Proponemos una generalización de un método de cifrado introducido anteriormente basado en
redes de mapas acopladas globalmente. Nuestro algoritmo emplea una red de mapas caóticos para
cifrar directamente los bytes contenidos en cualquier archivo digital, en lugar de solo archivos de
texto sin formato como método original. Nuestro método se puede aplicar para codificar y
decodificar texto plano, imágenes en color, audio, video, archivos comprimidos, etc. Además, nuestro
método abarca el almacenamiento y recuperación de la información encriptada. El método es
conceptualmente simple y computacionalmente eficiente, y se adapta a altos niveles de seguridad.
Mostramos varios ejemplos y aplicaciones del método. Un producto útil de esta tesis es la
implementación del algoritmo de cifrado y almacenamiento generalizado en una interfaz gráfica o
aplicación para el sistema operativo Linux-Ubuntu. Esta aplicación permite al usuario seleccionar
archivos de diferentes tipos para codificarlos y decodificarlos.

Palabras Clave: Criptografía, Sistemas Dinámicos, Caos, Redes de Mapas Acoplados.



Abstract

We propose a generalization of previously introduced encryption method based on globally coupled
map networks. Our algorithm employs a network of chaotic maps to directly encrypt bytes contained
in any digital file, instead of just plain text files as the original method. Our method can be applied to
encode and decode plain text, color images, audio, video, compressed files, etc. Additionally, our
method encompasses the storage and recovery of the encrypted information. The method is
conceptually simple and computationally efficient, and adaptable to high levels of security. We show
several examples and applications of the method. A useful product of this thesis is the
implementation of the generalized encryption and storage algorithm in a graphical interface or app
for the Linux-Ubuntu operating system. This app allows the user to select files of different types to be
coded and decoded.

Keywords: Cryptography, Dynamical Systems, Chaos, Coupled Map Networks.
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Chapter 1

Introduction

1.1 Chaotic dynamical systems, Cryptography, and this thesis
After the pioneering work of Edward Lorenz1, Chaos Theory was established by the end of the XX century with
developments from many different research areas such as Mathematics2–5, Physics6–8, Biology9, Chemistry10,11, and
Engineering12. Illustrative and documented accounts of those advances and their discoverers are presented in Refs.13–15.
The phenomenon of chaos consists of the extreme sensitivity of the evolution of a deterministic nonlinear dynamical
system under small changes in its initial conditions1,16,17. Very close initial conditions will cause completely different
results as time elapses. The sensitivity to initial conditions makes the trajectories generated by deterministic equations
eventually unpredictable. This property of chaotic systems is known as the “Butterfly Effect”. Chaos has had a profound
impact in all sciences and human culture.

Since early works, researchers have pointed out that there exists a close relationship between chaos and cryptogra-
phy18–24. The properties of chaotic dynamics, such as extreme sensitivity to initial conditions, ergodicity, and mixing,
relate with the “confusion" and "diffusion" that are characteristic attributes of several methods in cryptography. It was
natural to think that Chaos Theory can be used as a tool in the development of new techniques for ciphers. The approach of
using dynamical systems as cryptosystems was anticipated by Shanon in “Communication Theory of Secrecy Systems” in
194925. In recent times, cellular automata are considered among the first applications of dynamical systems as ciphers26,27.
On the other hand, it was shown that that some conventional stream ciphers can exhibit chaotic behavior23. Then, from
an algorithmic point of view, any good cipher could be considered as a pseudo-chaotic or chaotic system28. Currently,
it is accepted that the investigation about chaotic cryptosystems has opened roads to the design of new ciphers and has
enriched conventional cryptography29,30.

There are two general ways for designing chaotic-based ciphers: stream ciphers and block ciphers. Stream ciphers31–40

are used to mask text with no format; it consists of using chaotic systems to generate pseudo-random strings of symbols.
Block ciphers41–44 use plain text and secret keys as initial conditions, iterating and/or counter-iterating chaotic systems
multiple times to obtain a ciphertext. Most of the first models were stream ciphers that employed only one chaotic
dynamical element, either for masking the message to be sent or for transmitting a controlled signal.

In particular, iterated functions or discrete-time maps are naturally suited for applications as string generators and
stream ciphers21,31,38,45. However, it has been shown that cryptosystems based on one-dimensional chaotic maps, such as
the logistic map, may result in poor security when used as communication systems46–48.

Garcia et al.37 proposed an alternative approach that increases the security and the scope of applications of chaotic
cryptosystems, where a multidimensional dynamic system, specifically a network of coupled chaotic maps, is considered
as a generator of strings of symbols and as an encryption and communication system. This approach constitutes the
theoretical framework for the present thesis.

13
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Coupled map lattices or coupled map networks (CMN) are spatiotemporal dynamical systems where space and time are
discrete, but the dynamical states are continuous. They consist of a set of maps or iterative functions considered as nodes
interacting on a lattice or on a general network49–53. Coupled map networks have provided useful models for the study of
diverse spatiotemporal processes in spatially extended systems, with the advantage of being computationally efficient and,
in many cases, mathematically tractable54. In this context, globally coupled map networks, where each element interacts
with each other in the system, constitute paradigmatic models for the current research of complex systems55.

In particular, the encryption capability of coupled map networks can be seen as an emerging functionality of an
autonomous dynamical system of interacting elements, without any external influences. This is a distinctive property of
complex systems, where nontrivial collective behaviors arise from the interactions among the constitutive elements of the
system56.

In this thesis, we propose a generalization of the encryptionmethod based on globally coupledmap networks introduced
by García et al.37. Our algorithm employs a network of coupled chaotic maps to directly encrypt bytes contained in any
digital file, instead of just plain text files as the original method of García et al. Thus, our method can be applied to encode
and decode plain text, color images, audio, video, compressed files, etc. Additionally, our proposed method encompasses
the storage and recovery of the encrypted information. We show that the method is conceptually simple, computationally
efficient, and, in terms of security, scalable and comparable with current standard methods.

Chapter 2 of this thesis presents a brief review of the article by García et al.37 that lies the theoretical framework for
our model. Our generalized encryption method based on a coupled chaotic map network is described in Chapter 3. The
processes of coding, storing, and decoding are explained and illustrated with examples. The security of the method is also
discussed in Chapter 3.

We present our main results and show several applications of the generalized encryption method in Chapter 4. A useful
product of this thesis is the implementation of the generalized encryption and storage algorithm in an app for the Linux
operating system. This app facilitates the user to select files of different types to be coded and decoded. It also offers the
option of encrypting plain text that is typed directly in a displayed window. The cipher text can be decoded to yield the
original plain text.

The Conclusions and future extensions of the present thesis are contained in Chapter 5.

1.2 Problem statement
Modern communication media through the Internet or the distribution of any digital content involves the exchange of
enormous amounts of information. Without security, these media are vulnerable to third-party members. In recent years,
not only companies and governments have been affected by deficiencies in digital security, but also common users. The
need for the development of new and alternative forms of encrypting information when sharing data is an important
problem in our digital world. This thesis presents a general method to encrypt and store any type of digital file taking into
account a compromise between encryption speed and security.

1.3 General and Specific Objectives

General Objective

Our main objective is to propose and investigate a conceptually simple, computationally efficient, and sufficiently
secure method based on the properties of chaotic dynamical systems for encrypting digital files.

Information Technology Engineer 14 Final Grade Project
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Specific Objectives

1. To develop an algorithm that generalizes the encryption scheme proposed in Ref.37.

2. To extend the scope of the scheme to include digital files of any type.

3. To formulate a process for storing the encrypted information in optimal form, allowing its distribution through
any digital medium with sufficient security.

4. To create an app with a graphical interface that facilitates the application of the generalized encryption method
to users.

Information Technology Engineer 15 Final Grade Project





Chapter 2

Theoretical framework: Coupled map
networks as cryptosystems

In this chapter, we review the article that provides the theoretical basis for our proposed encryption method. Here, we
adapt the main ideas and the notation for our purpose.

In the article Coupled Map Networks as Communication Schemes37, García et al. investigate networks of coupled
chaotic maps as generators of strings of symbols, and propose to use them as an encrypting system for ASCII symbols.

Consider a coupled map network (CMN) defined as

xi
t+1 = f (xi

t) +
N∑

j=1

εi jx
j
t , (2.1)

where xi
t gives the state variables of the local element i (i = 1, . . . ,N) at discrete time t; f (xi

t) is a real valued function that
describes the dynamics of element i; εi j are the coupling strengths among elements in the system; and N is the size of the
network.

The CMN system Eqs. (2.1) can be expressed in vector form as

xt+1 = f(xt) + E xt, (2.2)

where xt = (x1
t , x

2
t , . . . , x

N
t ) is the state vector of the system at discrete time t, f(xt) = (( f (x1

t ), f (x2
t ), . . . , f (xN

t )), and the εi j

are components of the N × N coupling matrix E. The coupling strengths εi j can be different from each other; i. e., the
coupling can be heterogeneous. If εi j , 0, ∀i, j, the CMN system is called globally coupled.

Since the maps are chaotic, the time evolution of the system Eqs. (2.1) can exhibit a great variability, and therefore, can
be used as a generator of multiple strings that can be interpreted as a sequence of different symbols. The authors of Ref.37

were thinking in ASCII symbols, and thus, they fixed the number of maps in the network at N = 7. Then, to each state of
the network xt = (x1

t , x
2
t , x

3
t , x

4
t , x

5
t , x

6
t , x

7
t ), one can assign a binary sequence bt = (b1

t , b
2
t , b

3
t , b

4
t , b

5
t , b

6
t , b

7
t ) according to the

following rule

bi
t = 0, if xi

t < x∗, (2.3)

bi
t = 1, if xi

t ≥ x∗, (2.4)

where x∗ is some threshold value. With a prefixed correspondence rule, each of the 27 = 128 possible seven-digit
binary states (b1

t , b
2
t , b

3
t , b

4
t , b

5
t , b

6
t , b

7
t ) can be uniquely assigned an ASCII symbol that we denote by zk, belonging the set

{z1, z2, . . . , z128}.
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Assume that, starting from an initial condition x0, the evolution of CMN Eq. (2.2) eventually generates all ASCII
symbols in the set {z1, z2, . . . , z128}, provided that there are no symbols forbidden by the dynamics of the CMN. Denote by

αT (x0) = (zk
1, z

k
2, . . . , z

k
t , . . . , z

k
T ) (2.5)

the chain of symbols generated in a time T . Similarly, denote by |α| = T the length of the chain, or the number of iterations
performed on the CMN system up to time T .

Consider an ordered sequence of ASCII symbols P = (p1, p2, . . . , pn). For a sufficiently large number of iterations T ,
a chain αT (x0) can be expressed as a succession of substrings βl pl, l = 1, . . . , n, in the form

αT (x0) = (β1 p1, β2 p2, . . . , βl−1 pl−1, βl pl, . . . , βn pn), (2.6)

where β1 p1 is the substring beginning at zk
1 and ending at the first occurrence of symbol p1, the substring β2 p2 begins after

p1 and ends at the first occurrence of symbol p2, and so on. Because the CMN Eq. (2.2) is deterministic, the substring
βl pl depends only on the state of the system xl−1 at time l − 1 and on the symbol pl.

As an example, consider the sequence of ASCII symbols for the word "Rival" as P = (R, i, v, a, l). The string

α = (d, 4, $,R,m, e, >, i,&,H,+, t, 5, v, ?, u,K, g, a, i, a, 6, l) (2.7)

is segmented in 5 substrings by P = (R, i, v, a, l) as

α = (d, 4, $︸︷︷︸
β1

,

p1︷︸︸︷
R ,m, e, >︸ ︷︷ ︸

β2

,

p2︷︸︸︷
i ,&,H,+, t, 5︸        ︷︷        ︸

β3

,

p3︷︸︸︷
v , ?, u,K, g︸   ︷︷   ︸

β4

,

p4︷︸︸︷
a , i, a, 6︸︷︷︸

β5

,

p5︷︸︸︷
l ). (2.8)

The segmentation of the chain α by a finite sequence P = (p1, p2, . . . , pn) can be represented by an n-dimensional
vector C(P) whose components are the natural numbers giving the lengths |βl pl|, l = 1, . . . , n. That is,

C(P) = (|β1 p1|, |β2 p2|, . . . , |βl pl|, . . . , |βn pn|). (2.9)

Since the CMN can be iterated indefinitely, Eq. (2.9) just expresses the segmentation C(P) for the first T =
∑n

l=1 |β
l pl|

symbols of the string α. For the example considered, the word P = (R, i, v, a, l) will be represented by the vector
C(P) = (4, 4, 6, 5, 4), as illustrated in Fig. 2.1.

Figure 2.1: Word P = (R, i, v, a, l) contained in string α is represented by the vector of natural numbers C.

García et al.37 propose to use Eq. (2.9) as an encryption procedure for the plain ASCII text P = (p1, p2, . . . , pn) in
terms of the vector C(P). If the local function f (x) is public, the secret key may consist of the couplings ei j and the initial
condition x0. Once the coupling matrix E is specified, the autonomous chaotic evolution of the CMNwill generate a string
α that depends only on x0.
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In other words, if the matrix E and x0 are used as a secret key, the string αT (x0) will always be the same for a fixed
key and a sufficiently large T . Then, given P = (p1, p2, . . . , pn), the CMN system Eq. (2.2) uniquely generates the string
α(x0) that can be represented and ciphered by C(P), according to Eq. (2.9). Conversely, knowing the cipher C(P), the
public key f (x), and the private keys E and x0, allows us to obtain the original plain text P = (p1, p2, . . . , pn), thanks to
the deterministic evolution of the CMN, Eq. (2.2).

Note that a number n = |P| symbols of string α can be known if the plain text P = (p1, p2, . . . , pn) and its corresponding
cipher text C(P) are known. Unknown elements between the n known symbols (p1, p2, . . . , pn) can be inferred by using
new messages encrypted with the same key, even when the new plain texts are unavailable. In the example, the word
“Rival” is encrypted asC(R, i, v, a, l) = (4, 4, 6, 5, 4); therefore, after 19 iterations and after 23 iterations the CMN generates
the symbols “a” and “l”, respectively. If another word has the encryption C(Q) = (4, 4, 4, 4, 3, 4), it can be inferred that
Q = (R, i, t, u, a, l), and two additional symbols of the corresponding string α can be inferred.

In principle, any chaotic function f (xt) can be used as a local map in the CMN system, Eq. (2.1). As an application,
García et al. considered the logarithmic map57 f (xt) = b + ln |xt |. This map is unbounded and chaotic, with no periodic
windows in the parameter interval b ∈ (−1, 1), as shown in Fig. 2.2.

Figure 2.2: Bifurcation diagram xt as a function of the parameter b for the logarithmic map xt+1 = b + ln |xt |. For each
value of b, 500 iterates xt are plotted, after discarding 500 transients. Complete chaos occurs in the range b ∈ (−1, 1). The
labels x∗1 and x∗2 indicate fixed points orbits for b < 1 and b > 1, respectively. Reprinted from Ref.57

The unbounded character of the local logarithmic functions has the advantage that there are no restrictions on the
range of parameter values of the CMN system that can be explored. The threshold value chosen is x∗ = 0. García et
al. verified that, for this threshold, local parameter values about b ≈ 0.5, and couplings randomly selected in the interval
|εi j| < 0.1 ∀i, j, all the 128 ASCII symbols in the set {z1, z2, . . . , z128} are generated by the seven-dimensional CMN with
approximately the same probability of 1/128.

The useful property of chaotic CMNs as encrypting schemes is their sensitivity to initial conditions and/or couplings.
For a fixed value of the parameter b and N = 7, the maximum encrypting key consists of 7 × 7 coupling strengths and
seven initial conditions xi(0). A change of δ = 10−10 in one of the couplings will produce more than 10δ

−1×7×(7+1) ∼ 10560

possible keys. In general, such a large number of possible keys is unnecessary, and in practice the key can be reduced by
using a set of random number seeds to generate the 7 × 7 coupling strengths and the seven initial conditions xi(0).

At the end of the article, P. García et al.37 also suggest that this method may be used to encrypt black and white images.
By setting N = 8, the CMN Eqs. (2.1) can be employed to generate strings with elements in a scale of 28 = 256 gray
tones and therefore to encrypt images pixel by pixel. Figure 2.3 shows a black-and-white image and its decoding using
this method with a sightly wrong key.
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Figure 2.3: The bitmap image on the left has been encrypted assuming b = 0.5, xi(0) = 1.0 + 0.1i, and ei j = 0.01(i − j/2)
(i, j = 1, 2, . . . , 8). On the right, the corresponding decoded image shown when a slightly wrong key is used by adding
10−10 to ε35. Reprinted from Ref.37
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Chapter 3

Generalized CMN encryption method

3.1 A general cryptosystem based on chaotic CMN
In this Chapter, we propose a generalization of the encryption method based on coupled map networks (CMN) that was
presented in Chapter 2. We are motivated by two observations (i) the system size N of the CMN can be reduced in order
to increase the encrypting speed and to decrease the number of possible keys; and (ii) consequently, it is not necessary to
generate 128 ASCII symbols or 256 gray tones for black-and-white images.

Instead, of ASCII symbols, we propose a general method to directly encrypt bytes contained in a digital file of any
type. Thus, we define a two-dimensional (N = 2) coupled map network (CMN) as

xt+1 = f(xt) + E xt, (3.1)

where

xt =

x1
t

x2
t

 and f(xt) =

 f (x1
t )

f (x2
t ),

 (3.2)

describe the state variables and the local chaotic dynamics of the system at discrete time t, respectively; both defined in
some real interval. The real matrix

E =

e11 e12

e21 e22

 (3.3)

expresses the coupling strengths between the variables of the system.
We assign binary values to the states x1

t and x2
t of the system at a time t according to the rule

if xi
t ≥ x∗, bi

t = 1 (3.4)

if xi
t < x∗, bi

t = 0, i = 1, 2, (3.5)

where x∗ is some appropriately chosen threshold value. Then, the state of the system at time t can be expressed as a binary
pair in the form xt = (x1

t , x
2
t )→ (b1

t , b
2
t ).

On the other hand, a binary pair can be interpreted as a number in a quaternary numeral system. Therefore, a quaternary
representation can be assigned to the state xt as follows

(x1
t , x

2
t )→ (b1

t , b
2
t ) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} = {z0

t , z
1
t , z

2
t , z

3
t } = {0, 1, 2, 3}. (3.6)

Given an initial condition x0 = (x1
0, x

2
0), the CMN system Eq. 3.1 generates the following sequence of iterates or orbit

in a time T ,
(x1

0, x
2
0)→ (x1

1, x
2
1), (x1

2, x
2
2), (x1

3, x
2
3), . . . , (x1

T , x
2
T ). (3.7)
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The sequence Eq. 3.7 can be expressed as a chain of quaternary symbols

α(x0) ≡ (zk
1, z

k
2, . . . , z

k
T ), (3.8)

where (x1
t , x

2
t )→ zk

t according to the assignment Eq. 3.6. We denote the length of the sequence α by |α| = T .
Consider a byte B = (b1, b2, b3, b4, b5, b6, b7, b8), where bi ∈ {0, 1}, i = 1, 2, . . . , 8. We can write byte B as an ordered

sequence of four quaternary symbols: B = (w1,w2,w3,w4), where w1 = (b1, b2), w2 = (b3, b4), w3 = (b5, b6), and
w4 = (b7, b8); such that wi ∈ {z1, z2, z3, z4}.

Then, a sufficiently long orbit of the CMN Eq. 3.1 that starts at x0 can be represented by a chain of quaternary symbols
α(x0) that will eventually contain byte B:

αT (x0) = (zk
1, z

k
2, . . . , z

k
t1 = w1, . . . , zk

t2 = w2, . . . , zk
t3 = w3, . . . , zk

t4 = w4). (3.9)

Define the set of integers c j ≡ t j − t j−1 , j = 1, 2, 3, 4. That is, c j < 256 is the number of iterations between the
appearances of the quaternary symbols w j−1 and w j contained in byte B. If w j = w j−1, the CMN does not need to iterate
from the symbol w j−1 to find w j, and we set c j = 0. Then, the ordered sequence of integers

(c1, c2, c3, c4) = (t1, t2 − t1, t3 − t2, t4 − t2), (3.10)

is employed to encode byte B. Since the CMN system is deterministic, given an initial condition x0, there is a unique
sequence (c1, c2, c3, c4) generated by the CMN system Eq. 3.1 that encodes byte B.

Furthermore, the coding sequence (c1, c2, c3, c4) can be written into a cipher file file.ds as an ordered sequence of four
bytes (B̃1, B̃2, B̃3, B̃4), where the integer c j is assigned its corresponding binary representation as a byte B̃ j, j = 1, 2, 3, 4.
Thus, if the original byte B belongs to a file file.ext, it is converted into four bytes (B̃1, B̃2, B̃3, B̃4) in the cipher file with
extension “*.ds", as file.ds. Figure 3.1 illustrates our encryption method.

Figure 3.1: Schematic representation of the proposed encryption method.

By applying this procedure byte by byte, a file file.ext consisting of N bytes Bi, i = 1, . . . ,N, can be encoded into a
cipher file file.ds that will consists of 4N bytes (B̃1, B̃2, B̃3, B̃4)i. Then, an encryption system for any file file.ext of the
form (B1, B2, . . . , BN) can be defined, where the encrypted code is

[
(c1, c2, c3, c4)1, (c1, c2, c3, c4)2, . . . , (c1, c2, c3, c4)N

]
and

the encrypted file file.ds has the form
[
(B̃1, B̃2, B̃3, B̃4)1, (B̃1, B̃2, B̃3, B̃4)2, . . . , (B̃1, B̃2, B̃3, B̃4)N

]
. Similarly to in Ref.37, the

function f(xt) can be used as a public key, while the matrix E and the initial condition x0 can be taken as the private keys.
Thus, since the chaotic system Eq. 3.1 is deterministic, knowing x0 and E allows to obtain the original file file.ext from
the encrypted code or from the cipher file file.ds.

The processes of coding and decoding a file is illustrated in Fig. 3.2. The algorithm receives an input file file.ext and
returns an encrypted file file.ds. The cipher file file.ds contains all the information necessary for recovering the original
input file, including the extension or type of file. For the decoding process, the extension “*.ext" of the input file is found
in the first bytes of the file file.ds. Once the extension is known, a new file is created with the corresponding name and
extension file.ext. The algorithm will read byte by byte into file.ds in order to know how many times the CMN system
should be iterated to get the information of the original input file.
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Figure 3.2: Scheme of the process for general encryption and decryption of a file with our proposed method.

3.2 Coding and Storing
Any digital file consists of bytes, and each byte is a sequence of 8 bits. There are 28 = 256 distinct bytes. This can be
compared with the 256 gray tones proposed in Ref.37 for encrypting black-and-white images. Therefore, we can extend
this logic to encrypt any type of file byte by byte instead of pixel by pixel as for black-and-white images. Our method
proposes to take each byte in a file, ordered from the first to the last, independently of its extension or type. Thus, we
consider any file as an ordered sequence of bytes, in analogy to the ordered sequence of ASCII symbols for words or pixels
for images considered in Ref.37.

A byte can be divided into four groups of two bits each, each of these can be associated with quaternary symbols, as
explained above. The number of iterations of the CMN system Eq. 3.1 required to encrypt each quaternary symbol does
not exceed 255. Therefore, the number of iterations necessary to encrypt each of these groups or quaternary symbols
can be stored in one byte. Then, each byte of information can be encoded and stored in four bytes in a file “*.ds". As a
consequence, the storing file “*.ds" will have a size four times greater than the original file.

In Figure 3.3, we show an example of the coding and storing process of our method, where 4 bytes from the original
file are transformed into 16 bytes in the storing file. We assume that the coding and decoding devices have the same
endianness.

Figure 3.3: Process of coding and storing the 4 bytes R,I,F,F, into a file “*.ds".

Figure 3.4 shows the resulting coding and storing of bytes from a file file.wav in the cipher file file.ds.
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Figure 3.4: Coding and storing of bytes “R,I,F,F" from the file vbig.wav into the file vbig.ds.

3.2.1 How the file extension is saved

An input file with extension type “*.ext" is encoded and stored into a file with the same name but with the extension “*.ds".
In general, for encoding a file extension, the encrypting program proceeds as follows:

1. The program reads the extension type and the number of bytes or length of the extension, in the form: (3,jpg);
(3,exe); (1,c); (3,wav); (4,jpeg); etc.

2. In the file “.ds”, the length of the extension is written as the first byte.

3. The next bytes in the file “*.ds” correspond to the ASCII symbols for each letter of the file extension.

For example, if the input file type is “*.jpg”, the information of the file extension (3,j,p,g) is written in the file “*.ds” in
bytes as: 00000011, 01101010, 01110000, 01100111. Figure 3.5 shows how different file types are stored in files “*.ds”.

Figure 3.5: Examples of input files and stored encrypted files “*.ds”.
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3.2.2 What is saved in a file *.ds

In summary, the information contained inside a cipher file file.ds consists of the following three consecutive parts:

1. First byte comprising the length of the extension of the input file file.ext.

2. ASCII symbols that express the file extension of the input file.

3. Number of iterations that should be taken on the CMN system Eq. 3.1 to recover the information of the input file.

3.3 Decoding
To decode a file “*.ds", the program reads the first byte to know the number of next bytes required for recovering the file
extension. Then, each of the remaining bytes is read and converted into an integer number. This integer corresponds to the
number of iterations that should be performed on the CMN system Eq. 3.1, starting from the initial condition, to generate
the two-bits group or quaternary symbol that constitutes a fourth of the corresponding decoded byte. Each 4 bytes of the
cipher file “*.ds" allows the recovery of 4 two-bits groups. These 4 groups are concatenated into one byte that corresponds
to the original file. This process is repeated until all the bytes in the file “*.ds" are converted. Therefore, the original file
will have a fourth of the size of the cipher file “*.ds".

Figure 3.6 shows the process of decoding information from a “*.ds" file. In the example exhibited, 16 bytes from the
“*.ds" file are transformed into 4 bytes in the original file.

Figure 3.6: Decoding process for a “*.ds" file. In this example, 16 bytes from the “*.ds" file are converted into 4 bytes in
the original file.

Figure 3.7 shows the resulting decoded information, where 16 bytes from the cipher file file.ds are converted into the
4 bytes "R,I,F,F" in the original file file.wav.
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Figure 3.7: Decoding of 16 bytes from the file vbig.ds into the 4 bytes "R,I,F,F" in the file vbig.wav.

3.4 Security
Let us assume that the only secret key is the initial condition x0 = (x1

0, x
2
0) for the CMN system Eq. 3.1. Then, the key

comprises two double-precision numbers. Each of these numbers consists of 8 bytes or 64 bits, which implies that there
are (264)2 = 2128 possible keys. We assume that the coding and decoding devices has the same endianness and architecture.
Each key will have 128 bits. The property of chaos means that the time evolution of the CMN system is extremely sensitive
to small changes in the initial conditions. Then, even a change in one bit of the key represents a change of the initial
condition that will lead to another trajectory and therefore to a different encoding or decoding. Thus, the security of
our generalized CMN cryptosystem is quite robust since the 128-bit key is comparable to other methods, such as Data
Encryption Standard (DES) that uses a 56-bit key, and Advanced Encryption Standard (AES) that employs keys having
between 128 and 256 bits.

In addition, we can take as a secret key the double-precision values of the 2 × 2 components εi j of the coupling
matrix Eq. 3.3. By combining initial conditions and coupling components, the security of our cryptosystem can be further
enhanced.

Information Technology Engineer 26 Final Grade Project



Chapter 4

Results and Applications

4.1 Local dynamics
In order to implement the generalized encryption method presented in Chapter 3, we shall use a two-dimensional coupled
map network (CMN) of the form

xi
t+1 = f (xi

t) +
2∑

j=1

εi jx
j
t , i, j = 1, 2. (4.1)

For simplicity, we shall consider that the coupling strengths are equal, i.e.; εi j = ε. Then, Eqs. 4.1 become

x1
t+1 = f (x1

t ) + ε (x1
t + x2

t ),

x2
t+1 = f (x2

t ) + ε (x1
t + x2

t ). (4.2)

As sources of local chaos, we choose the following family of maps,

xt+1 = f (xt) = µ − |xt |
z. (4.3)

These maps are singular for |z| < 1 and have been shown to possess robust chaos, with no periodic windows, on a single
interval of the parameter µwhose boundaries depend on z58. Figure 4.1 shows the bifurcation diagram of the singular map
Eq. 4.3 as a function of the parameter µ, corresponding to a fixed exponent z = −0.5

Figure 4.1: Bifurcation diagram of xt as a function of the parameter µ for the singular map xt+1 = µ + |xt |
−0.5. For each

value of µ, 500 iterates xt are plotted, after discarding 500 transients. Robust chaos occurs on the interval µ ∈ (0.63, 1.89),
while stable fixed points appear outside this interval. Reprinted from Ref.58

27



School of Mathematical and Computational Sciences YACHAY TECH

Figure 4.2 shows the dynamical behavior of the local singular5 map Eq. 4.3 on the space of parameters (µ, z). The
boundaries shown separate the region on this plane where robust chaos occurs from the region where the map reaches a
stable fixed or stationary point58.

Figure 4.2: Dynamical behavior the singular map Eq. 4.3 on the space of parameters (µ, z). Regions where robust chaos
and stable fixed points appear are indicated. Reprinted from Ref.58

For applications of the encryption method, we choose values of µ and z of the local map Eq. 4.3 in the region corre-
sponding to robust chaos in Fig. 4.2. Robustness provides an advantage in applications that require reliable operation under
chaos, such as secure communications, since the chaotic behavior cannot be modified by arbitrarily small perturbations of
the parameters of the system. As local map parameters for the CMN system Eqs.4.2, we fix z = −0.25 and µ = 1.4.

4.2 Threshold and coupling parameter values for the CMN cryptosystem
García et al.37 chose a value x∗ = 0.0 for their CMN system with size N = 7 that used a local logarithmic map. In our case,
the threshold value x∗ defines how binary pairs or quaternary symbols are assigned to the state (x1

t , x
2
t ). The threshold

value should guarantee that the four binary pairs appear with approximately the same probability in the time evolution of
the CMN system Eqs.4.2.

Figure 4.3 compares the frequency distribution of the quaternary symbols or binary pairs for two different threshold
values. For the fixed local parameters z = −0.25 and µ = 1.4, and a range of the coupling parameter ε in the CMN system
Eqs.4.2, we have found that the choice x∗ = −0.03 yields an approximate equitable distribution for the quaternary symbols
for long times.

Figure 4.3: Frequency distribution of quaternary symbols for different threshold values x∗. Left: x∗ = 0.0. Right:
x∗ = −0.03. Fixed parameters are z = −0.25, µ = 1.4, ε =?.
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The performance of the CMN system may also depend on the value of the coupling parameter. To find optimal values
of the coupling parameter, we have calculated the time employed by our algorithm with the CMN system Eqs.4.2 for
encrypting files of different sizes. Figure 4.4 shows these times for a range of values of ε. The results indicate that the
encrypting time is shorter on the range ε ∈ [−0.2, 0.1].

Figure 4.4: Left: Time for encrypting files of different sizes on a range of values of the coupling parameter ε. Right:
Graphic representation of the encrypting times (vertical bars) on a range of ε for a file of 22601950 bits.Fixed parameters:
z = −0.25, µ = 1.4.

4.3 Different CMN system sizes
The proposed generalized method of Chapter 3 for encrypting bytes directly from any digital file is defined for two-
dimensional (N = 2) CMN systems. This provides a binary pair or quaternary representation of the CMN dynamics.
In principle, this encryption method can be extended for different CMN system sizes N. However, differences in the
performances arise when considering this method for different CMN sizes.

The main distinction is that the size of the cipher file “*.ds" increases when decreasing the number of maps N in the
CMN system. For example, if N = 8, each iteration of the CMN system generates one byte. The number of iterations
between two successive byte symbols generated by a chain α can be represented as a complete byte that will be converted
and stored as one byte in the cipher file. Therefore, the size of the file “*.ds" will be the same as the number of bytes in the
input file. For a CMN system consisting of N = 4 maps, a byte B should be divided into 2 groups of 4 bits each. A chain
α will correspond to a succession of 4-bits groups. Then, the size of the information to be processed and stored in the file
“*.ds" will be twice that of the input file. For a CMN system with N = 2 maps, as we have seen, the size of information
stored will be four times that of the input file.

Another aspect to take into account when changing the size N is the number of keys or the security of the cryptosystem.
The size N is the number of initial conditions that are taken as keys. Thus, N = 2 implies 2 double-precision numbers for
the initial state and for the key; N = 4 and N = 8 correspond to keys with 4 and 8 double-precision numbers, respectively.
In this sense, increasing N enhances security.

However, the crucial factor for any cryptosystem is the speed of the encryption process. In this regard, we have
computed the encryption time for files of different sizes when using our method with different numbers of maps. The
results are shown in Figure 4.5. Although it does not constitute a CMN system, we have included the encryption times for
one map using our method, for reference. As mentioned in the Introduction, cryptography based on one chaotic map has
been used before31.

The encryption time increases non-linearly when N is increased. The encryption time is more than triple when
employing N = 4 maps instead of N = 2; while using N = 8 maps instead of N = 2 increases this time by a factor of 40.
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Figure 4.5: Encryption times using a CMN system with different number of maps. File types and sizes are indicated on
the first and second columns. Fixed parameters are z = −0.25, µ = 1.4, ε = −0.025.

The corresponding encryption speeds (i.e., the number of encrypted bits per second), are shown in Fig. 4.6. The
comparison of the average speeds is also shown in Fig. 4.6. We notice that the increment in the encryption speed when
using N = 2 maps is enormous (3 to 40 times faster) compared to the speeds corresponding to N = 4 and N = 8 maps.

Figure 4.6: Top: Encryption speeds (bits/second) for CMN systems with different number of maps. Bottom: Graphic
comparison of the average encryption speeds. Fixed parameters: z = −0.25, µ = 1.4, ε = −0.025.

In comparison, the relative speed increment when using one map instead of N = 2 maps is about 37%. Then, one
may think that a single map would work better as a cryptosystem. However, the memory needed for storing the processed
information for one map will be bigger, since the size of the cipher file “*.ds" for one map will be twice the corresponding
size for an N = 2map system (that is, 8 times larger than the original input file). Then, the average writing speed for a single
map will be about half of that for an N = 2 CMNmap system. In total, the encrypting time plus the writing time for a single
map does not improve the total time for encoding and writing of a two-dimensional CMN system. Additionally, as we have
mentioned, the security of a CMN system with N = 2 maps is twice that for a single map. Overall, a two-dimensional
CMN map system exhibits the best performance for our generalized encryption method.
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4.4 Applications

4.4.1 Text

As an application of the generalized encryption method presented in Chapter 3 for encrypting text files, consider the
following statement from Edward Lorenz17, the discoverer of the butterfly effect and pioneer of Chaos Theory:

I shall probably never know to what extent my paper was responsible for setting off the outburst of activity
that followed, and to what extent I was simply lucky that it became known when a scientific revolution was
due to occur in any case.

The corresponding ciphertext and the decoded text with a slightly different initial condition are shown in Fig 4.7.

Figure 4.7: Top: Coding of the text by Lorenz using the generalized encryption method with initial condition x0 =

(10.0, 10.1). Each integer tells how many times the CMN system must be iterated to decode the text. Bottom: Decoded
text with initial condition x0 = (10.0000000000001, 10.1). The rhomboidal symbols correspond to non-printable ASCII
characters. Fixed parameters for both processes: µ = 1.4, z = −0.25, ε = −0.025.
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4.4.2 Color Images

As an example of the applications of the generalized encryption method for diverse file types, we present a .jpg color
image of size of 101.231 bytes in Fig. 4.8 (Left). The resulting decoded image using slightly different initial conditions is
shown in Fig. 4.8 (Right). We see that an error of 10−13 on just one initial condition returns a non-recognizable image.

Figure 4.8: Left: Original .jpg color image. Right: Decoded image with a small difference in initial conditions. The
original image was codified with initial conditions x0 = (10.0, 10.1) and decoded with x0 = (10.0000000000001, 10.1).
CMN fixed parameters are: µ = 1.4, z = −0.25, ε = −0.025.

4.4.3 App

We have created a software that implements the generalized encryption and storage method in an app, so that it can be
used by anyone with a computer with Linux operating system. In order to create a friendly and simple GUI, we make use
of Tkinter package. Note that the code for the GUI is made in python while the code for cypher is made in C. The Tkinter
package (“Tk interface”) is the standard Python interface to the Tk GUI toolkit. Both Tk and Tkinter are available on most
Unix platforms, as well as on Windows systems. The app allows the user to choose between 4 options from an entrance
window, as seen in Fig. 4.9 (Left):

• Code.

• Decode.

• Code Text.

• Decode Text.

The Code option allows to select among several files with different extensions, as seen in Fig. 4.9 (Right). A selected
file of the form file.ext becomes the input for the generalized encryption algorithm when it is open in the box dialog. The
corresponding encrypted file is stored in file.ds. The Decode option allows to select among cipher files of the type file.ds
and to recover the associated original file.

The Code Text option is specifically dedicated to encrypt plain text. This option opens a window where any text to
be coded can be directly typed by the user, as shown in Fig. 4.10 (Left). Selecting ‘Code´ at the bottom will display the
corresponding encrypted text as a sequence of integers. Similarly, the Decode Text option takes as input the ciphertext and
returns the original plain text at the bottom, as seen in Fig. 4.10 (Right).

By employing this app, a user can safely share information by exchanging encrypted files (Fig. 4.9) or through encrypted
text messages (Fig. 4.10).
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Figure 4.9: Left: App entrance window displaying the options: Code, Decode, Code Text, Decode Text. Right: File
selector for the option Code. The selected file will be encrypted by the program.

Figure 4.10: Left: Code Text option opens a window where a plain text to be encrypted can be directly typed by the user,
in this case the word “Hola". The encrypted text appears in a window below. Right: Decode Text option recovers the
original plain text.
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4.5 Improving Security
The efficiency of any cryptosystem is given by a comprise between its speed and security. Encryption methods based on
chaotic dynamics, such as ours, generally rely on the initial conditions as the secret key. As we have discussed, the initial
condition for the generalized encryption method with the two-dimensional CMN system that gives the best performance
provides a key size of 128 bis. This lies in the lower bounds of what is currently considered secure. In this section, we
propose a variant of the method that greatly improves its security without substantially decreasing its speed.

Let us consider a CMN system consisting of N maps. The state of the system at a time t is given by the vector

xt ≡ (x1
t , x

2
t , . . . , x

N
t ). (4.4)

The components xi
t, i = 1, 2, . . . ,N, are coupled to each other and evolve simultaneously. Suppose that we take only

two state components to be expressed as binary pairs for the encryption process as before; for example (x1, x2)→ (b1, b2).
Then the generalized encryption method can be carried out as defined for 2 maps. However, since the other N − 2 maps
are interacting with x1

t and x2
t , their initial conditions and states affect the evolution of x1

t and x2
t and the corresponding

sequence of binary pairs or quaternary symbols in a chain α(x0). Then, the initial condition x0 ≡ (x1
0, x

2
0, . . . , x

N
0 ) can be

employed as the key, without changing the size of storing cipher file “*.ds" that will still be four times the size of the
input file. We denote this variation of the generalized encryption method as CMN-N-E2, where the number 2 after E
indicates how many maps are being taken into account for the generation of symbols. The generalized encryption method
introduced in Chapter 3 and employed in the applications corresponds to CMN 2.

As we saw, the number of possible keys provided by the initial condition of a CMN with 2 maps is 264×2, yielding a
key size of 128 bits. For a CMN system with N maps, the number of possible keys will be 264×N , and the corresponding
key size will be 64 × N.

Figure 4.11 shows the encryption times and speeds for different CMN system sizes and variants.

Figure 4.11: Left: Encryption times (top) and speeds (bottom) for different CMN systems and variants. Right: Graphical
comparison of the average speeds (bits/second) for the different systems. CMN fixed parameters are: µ = 1.4, z = −0.25,
ε = −0.025

The encryption speed decreases as the size N increases. However, this loss of speed is small when compared with
the security that is being gained. For example, the variant CMN 4 E2 yields an encryption speed 25% less than that of
the original CMN 2 system. Correspondingly, the number of keys for the CMN 4 E2 is 2(64×4) and the key size is 256,
similar to the AES 256 cryptosystem currently regarded among the most common and secure on the Internet. The number
of possible keys grows exponentially with N but the encryption speed decreases almost linearly with the variants of the
method. For example, the encryption speed of the CMN8 E2 system is half of that of the original CMN2 system, but its
key size is 512, offering much greater security than the AES cryptosystem.
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Chapter 5

Conclusions and Outlook

The application of chaotic systems in cryptography has been a research topic ofmuch interest since the rise of Chaos Theory
at the end of the XX Century. In this thesis, we have proposed a general encryption method based on the phenomenon
of chaos exhibited by nonlinear deterministic dynamical systems. Our method is a generalization of the scheme that uses
a coupled map network (CMN) as a text encryption system, initially proposed in Ref.37. The consideration of a network
of coupled chaotic elements instead of a single unit substantially increases the security and the range of applications of
chaotic dynamics as cryptosystems.

The encryption capability of coupled map networks can be seen as an emerging functionality or property of an au-
tonomous dynamical system of interacting elements, without any external influence. This is one of the main characteristics
of complex systems, where nontrivial collective behaviors arise from the interactions among the constitutive parts of the
system56. In particular, the study of complex systems is a very active field of interdisciplinary research in contemporary
Sciences.

Our generalized encryption algorithm uses a coupled map network to directly encrypt bytes contained in any digital
file, regardless of its type. Thus, our method extends the scope of the original scheme to include plain text, color images,
audio, video, compressed files, etc. In addition, our method is integral, in the sense that it encompasses the optimal storage
of the encrypted information. The method is conceptually simple, computationally efficient, and sufficiently secure.

We have employed a two-dimensional CMN system as a generator of strings of binary pairs or quaternary symbols that
can be used to encode bytes. In this form, an input byte is expressed as four binary pairs that are codified by the algorithm
as a sequence of four integer numbers. This results in a storing cipher file whose size is four times that of the input file.
The splitting of bytes into binary pairs to be encrypted conforms to the idea of “divide-and-conquer" common in many
problem-solving algorithms.

By comparing the encryption speeds for CMN systems of different sizes, we have shown that a two-coupled map
system provides the best overall performance for the application of the method when considering encryption speed and
security. The chaotic nature of the local dynamics allows the use of the initial condition as the secret key, providing a
level of security within current standards. The security can be enhanced by considering the coupling parameters as an
additional part of the key. On the other hand, the local robust chaos dynamics of our CMN system contains the parameters
µ and z that can be varied and incorporated into the secret key while keeping the system functioning in chaos, to further
increase the security of the cryptosystem. Furthermore, we have shown that the security can be greatly improved by
considering a simple variant of the method, where the number of maps in the CMN is increased while keeping two maps
for the generation of binary pairs or quaternary symbols.

We have shown applications of our method to encrypt text and image files, but any digital file can be encoded. We
have illustrated the security of the method by decoding the corresponding cipher files with tiny differences in the initial
conditions used for the coding process. By applying this method, any encrypted file could be distributed through diverse
digital media with extra security besides the commonly employed encrypting methods on Internet, such as AES.
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As a useful product of this thesis, we have created a software that implements the generalized encryption and storage
method into a simple app for the Linux-Ubuntu operating system. This app facilitates the user to select files to be coded
and decoded. It also offers the option of encrypting plain text that is typed directly in a displayed window. The resulting
ciphertext consisting of a sequence of integers can also be seen in a window. The ciphertext can be decoded to yield the
original plain text. The code for this app can be obtained in this Github link.

Several extensions of the generalized encryption method proposed here can be investigated in the future. A straight-
forward step would be the use of a password instead of the initial condition as the key. In this way, the recollection of the
secret key would be more practical. This can be achieved by transforming the initial condition consisting of 128 bits into
a password with 16 ASCII characters.

The simple app that we have implemented can be expanded to include more features and to make it more attractive
and user-friendly. The app can be developed for other platforms and operating systems, such as Windows or Android.

Since the parameters of the CMN system determine the probability of occurrence of symbols and the transition
probability of generating symbol w j−1 followed by symbol w j in the chain, it is possible in principle to select the CMN
parameters to enhance or to inhibit some symbols and transitions. This is analogous to selecting grammatical rules. Thus,
the CMN system as a generator of symbols could be of interest in the investigation of language models.
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Appendix A

Code for Encryption any file

The following code is made in C. The input file will be coded into a .ds file with the same name. It must be compiled with
-lm flag.

#include <sys/stat.h>

#include <sys/types.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <string.h>

#include <stdio.h>

#include <errno.h>

#define w 1

#define ww w*4

#define N 2

off_t fsize(const char *filename) {

struct stat st;

if (stat(filename, &st) == 0)

return st.st_size;

return -1;

}

int g(int c1, int c2, double x[],double epsilon)

{

int iter=0;

double tmp;

int x2,x1;
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double treshold=-0.03;

while(1)

{

x1= x[0]<treshold ? 0:1;

x2= x[1]<treshold ? 0:1;

if(x1==c1 && x2==c2)return iter;

else {

//Coupled Map

tmp= (x[0]+x[1])*epsilon;

x[0]=(1.4-pow(fabs(x[0]),-0.25))+tmp;

x[1]=(1.4-pow(fabs(x[1]),-0.25))+tmp;

iter++;

}

}

}

void CodeHeader(double epsilon,int lenExt,char Ext[], int output[], double x[]){

int i,j;

j=0;

unsigned char buhherHeader[lenExt+1];

printf("LEN EXT:%d \n",lenExt);

printf("EXT: %s asd\n\n",Ext);

printf("\n");

}

void CodeLine(double epsilon,char input[], int output[], double x[]){

int i,j;

j=0;

for(i=0; i<8; i+=2){

output[j]=g(input[i]-48,input[i+1]-48,x,epsilon);

j++;

}

}

int main(int argc, char **argv){

//

clock_t start = clock();

double epsilon=-0.025;

//DECLARATIONS

FILE *pFile, *pData;

int i,j;

unsigned char buffer1[1],buffer4[4];

char hexa[3],binary[9];

int coded[ww];

double x0[N];

//x0 is the vector of initial conditions. When decoding, x0 must be exactly the same as when coding.
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for(i=0; i<N; i++) x0[i]=10.0+(0.1*i);

x0[0]=10.0;

x0[1]=10.1;

//GET FILE DATA

const char* filename=argv[1];

int size = fsize(filename);

pFile=fopen(filename,"rb");

int lenName=strlen(filename);

char filenameChar[lenName+1];

for(i=0; i<lenName+1; i++) filenameChar[i]=filename[i];

//DS FILE

char *token=strtok(filenameChar,".");

char dataName[lenName];

sprintf(dataName,"%s%s", token,".ds");

pData=fopen(dataName,"wb");

token = strtok(NULL, ".");

char bufferH[lenName+1];

sprintf(bufferH,"%s", token);

//PRINTS

printf("NameLen: %ld\n",strlen(token));

printf("FORMAT: %s\n", bufferH);

printf("Filename: %s\n",filename);

printf("Size of File: %d\n",size);

int h=size/w;

//***********************WRITTE HEADER**********************************

//WRITE LEN EXT

//Get Line Len

for(i=0; i<lenName; i++)if(bufferH[i]==’\0’)break;

int lenExt=i;

printf("Len de extension:%d\n",lenExt);

//Writte len in file

buffer1[0]=lenExt& 0xFF;

fwrite(buffer1, 1, sizeof(buffer1), pData);

//Writte EXT in file

fwrite(bufferH, 1, lenExt, pData);

CodeHeader(epsilon,lenExt,bufferH,coded,x0);

//***************READ AND WRITE FROM FILE TO DS*******************************

int percentage= h/10;

for(i=0; i<size; i++){

if(i%percentage==0)printf("Progress: %.0f/100\n", ((float)i/h)*100);

fread(buffer1,sizeof(buffer1),1,pFile);

sprintf(hexa,"%d",buffer1[0]);

for (j = 0; j < 8; j++) sprintf((char*)(binary+j),"%d", !!((buffer1[0] << j) & 0x80));

//AQUI DEBEMOS CIFRAR

CodeLine(epsilon,binary,coded,x0);

//WRITE TO DS FILE
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for(j=0; j<ww; j++) buffer4[j]=coded[j]& 0xFF;

fwrite(buffer4, 1, sizeof(buffer4), pData);

}

fclose(pFile);

fclose(pData);

printf("Tiempo transcurrido: %f\n", ((double)clock() - start) / CLOCKS_PER_SEC);

return 0;

}
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Appendix B

Code for Decryption any file

The following code is made in C. The input file will be a .ds file and the output will be a decoded file with its corresponding
extension and the same name. It must be compiled with -lm flag.

#include <sys/stat.h>

#include <sys/types.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <string.h>

#include <stdio.h>

#include <errno.h>

#define w 1

#define ww w*4

#define N 2

off_t fsize(const char *filename) {

struct stat st;

if (stat(filename, &st) == 0)

return st.st_size;

return -1;

}

void CoupledMap(double x[],double epsilon)

{

int i;

double tmp=0; //e
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for(i=0; i<N; i++) tmp=tmp+x[i]; //e

tmp=tmp*epsilon; //e

for(i=0;i<N;i++) x[i]=(1.4-pow(fabs(x[i]),-0.25))+tmp; //e

//compile with -lm

}

int Bin2Int(int aBin[]) {

if (aBin[0]==0){

if (aBin[1]==0) return 0;

else return 1;

}else

{

if (aBin[1]==0) return 2;

else return 3;

}

}

int ReadCuat(int a, int b,int c, int d){

char QUAD[5]={a,b,c,d,’\0’};

return(int)strtol(QUAD, NULL, 4);

}

int Decode(int hexas[],double epsilon,double x0[]){

int i,k,st_bin[N],quad_linea[ww];

for(i=0; i<4; i++){

for(k=0; k<hexas[i]; k++)CoupledMap(x0,epsilon);

st_bin[0]= x0[0]<0 ? 0:1;

st_bin[1]= x0[1]<0 ? 0:1;

quad_linea[i]=(Bin2Int(st_bin))+48; //sum 48 to read as char on ReadCuat()

}

return ReadCuat(quad_linea[0],quad_linea[1],quad_linea[2],quad_linea[3]);

}

int main(int argc, char **argv){

clock_t start = clock();

double epsilon=-0.025;

int i,j,read;

//DECLARATIONS

FILE *pInput, *pOutput;

unsigned char buffer1[1],buffer4[4];

char buf[4];

double x0[N];

//x0 is the vector of initial conditions. When decoding, x0 must be the same as when coding.

for(i=0; i<N; i++) x0[i]=10.0+(0.1*i); //Reiniciamos x0

x0[0]=10.0;

x0[1]=10.1;

//FILE DATA
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const char* filename=argv[1];

int size = fsize(filename);

pInput=fopen(filename,"rb");

int h=size/w;

int res= size-(w*h);

char hexa[4];

int hexas[4],outH;

//GET LEN OF EXT AND EXT

read=fread(buffer1,sizeof(buffer1),1,pInput);

sprintf(buf,"%d",buffer1[0]);

int lenExt=atoi(buf);

printf("lenExt: %d\n",lenExt);

unsigned char bufferH[lenExt+1];

read=fread(bufferH,lenExt,1,pInput);

bufferH[lenExt]=’\0’;

printf("Ext: %s\n",bufferH);

//OUTPUT

int lenName= strlen(filename);

char out[lenName+lenExt];

char filenameChar[lenName+1];

for(i=0; i<lenName+1; i++) filenameChar[i]=filename[i];

char *token=strtok(filenameChar,".");

sprintf(out,"%s.%s", token,bufferH);

pOutput=fopen(out,"wb");

//READ AND WRITE FROM FILE TO DS

int percentage= h/10;

printf("size: %d\n",size);

for(i=0; i<size-(lenExt+1); i+=4){

if(i%percentage==0)printf("Progress: %.0f/100\n", ((float)i/h)*100);

for (j = 0; j < 4; j++)

{

read=fread(buffer1,sizeof(buffer1),1,pInput);

sprintf(hexa,"%d",buffer1[0]);

hexas[j]=atoi(hexa);

}

//DECODE

outH=Decode(hexas,epsilon,x0);

buffer1[0]=outH & 0xFF;

fwrite(buffer1, 1, sizeof(buffer1), pOutput);

}

//CLOSE FILES

fclose(pInput);

fclose(pOutput);

}
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