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Resumen 
 

Los insectos vectores de enfermedades dependen quimiorreceptores para localizar a los 

huéspedes, encontrar parejas y elegir dónde poner sus huevos. Actualmente, el método más eficaz 

para prevenir y controlar el brote de enfermedades transmitidas por insectos ha sido el uso de 

repelentes de insectos (RIs). Sin embargo, no cumplen con las condiciones necesarias como para 

brindar protección ante un amplio espectro de mosquitos; muchos de ellos tienen olor o 

sensaciones en la piel desagradable, incluso algunos de ellos son cancerígenos; es decir, los RI 

actuales tienen importantes inconvenientes. Por lo tanto, es evidente la necesidad de nuevos RI 

de protección de amplio espectro, más efectivos, seguros y duraderos que los RI convencionales. 

Aquí, los clasificadores para la predicción de RI se desarrollarán mediante el uso de descriptores 

moleculares QuBiLS Suite 0-3D y técnicas de aprendizaje automático superficial. Los mejores 

modelos individuales se usaron para obtener modelos conjuntos con parámetros estadísticos 

adecuados para la serie de aprendizaje. En el presente trabajo pretendemos introducir, por primera 

vez, la capacidad de QSAR- (Relaciones cuantitativas estructura-actividad) y modelos basados 

en estructura para describir la interacción de los RI con la respuesta olfativa de la sensilla del 

mosquito Culex quinquefasciatus, así como con actividades repelentes mediante el uso de cuatro 

conjuntos de datos que tomaron en consideración los dos andamios de RI más relevantes: 

carboxamidas y compuestos derivados de plantas con efecto repelente sobre A. aegypti (y también 

A. gambiae) y las dos especies más comunes de cucarachas ( Blattella germanica y Periplaneta 

americana). Se realiza un software no comercial y multiplataforma, denominado “SiliS-

PAPACS”, para la predicción de RI, que está disponible gratuitamente en 

http://tomocomd.com/apps. Este software se utilizará para el cribado de conjuntos de datos que 

contienen diversos quimiotipos como componentes de aceites esenciales, productos químicos y 

medicamentos aprobados por la FDA. El propósito es evaluar la utilidad de los modelos 

desarrollados en el etiquetado IR de sustancias orgánicas y mostrar la capacidad del sistema para 

identificar nuevos andamios químicos. Aquí presentamos 23 compuestos nuevos encontrados a 

través de cribado virtual que pueden tener potencial actividad repelente. Los resultados sugieren 

que el método propuesto será un buen sistema asistido por computadora que podría aumentar 

potencialmente la posibilidad de encontrar nuevos agentes para el control de insectos. Es decir, 

este estudio proporciona información importante que ayudará a los que evalúan y/o diseñan 

nuevos quimiotipos de RIs. 

Palabras Clave: Repelente de Insectos, Proteína de Unión a Odorantes, Software SiliS-

PAPACS; índices algebraicos 0-3D basados en átomos y enlaces, aprendizaje automático, QSAR, 

docking. 

 

  



 

 

Abstract 
 

Disease vector insects rely on chemosensors to locate hosts, find mates and choose where 

to lay their eggs. Currently, the most efficient method of preventing and controlling the outbreak 

of insect-borne diseases has been the use of insect repellents (IRs). However, they do not meet 

the necessary conditions, such as protecting a broad spectrum of mosquitoes; many of them have 

unpleasant odors or produce unpleasant sensations on the skin, some of them are even 

carcinogens. In other words, current IRs have significant drawbacks. Therefore, the need for new, 

more effective, safer, and longer-lasting broad-spectrum IRs than conventional IRs is evident. 

Here, classifiers for predicting IRs will be developed by using QuBiLS Suite 0-3D molecular 

descriptors and shallow machine learning techniques. The best individual models were used to 

obtain ensemble models with suitable statistical parameters for the learning series. In the present 

work, we intend to introduce, for the first time, the ability of QSAR- (Quantitative Structure-

Activity Relationships) and structure-based models to describe the interaction of IRs with the 

olfactory response of the sensilla of the mosquito Culex quinquefasciatus as well as with repellent 

activities by using four datasets that take into consideration the two most relevant IR scaffolds: 

carboxamides and plant-derived compounds with repellent effect on A. aegypti (and also A. 

gambiae) and the two most common species of cockroach (Blattella germanica and Periplaneta 

americana). A non-commercial and cross-platform software named “SiliS-PAPACS” was 

developed for the IRs-prediction and is freely available at http://tomocomd.com/apps. This 

software will be used for the screening of datasets containing diverse chemotypes like essential 

oils constituents, chemicals, and FDA-approved drugs. The purpose is to assess the usefulness of 

the developed models in the IR-labeling of organic substances and show the system's ability to 

identify novel IR leads (new IR chemical Scaffold). Here, we report 23 novel compounds found 

through virtual screening that may have potential repellent activity. The results suggest that the 

proposed method will be an excellent computer-assisted system that could increase the chance of 

finding new insect control agents and assist those researchers in screening and/or designing new 

chemotype IRs. 

 

Keywords: Insect Repellent, Odorant Binding Protein, SiliS-PAPACS Software; Atom- and 

Bond-based 0-3D Algebraic Indices, Machine Learning, QSAR, Docking. 

http://tomocomd.com/apps
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Prediction Models for the Discovery of Insect Repellents that Interfere 

with Olfaction 

 

ABSTRACT 

Disease vector insects rely on chemiosensors to locate hosts, find mates and 

choose where to lay their eggs. Currently, the most efficient method of preventing and 

controlling the outbreak of insect-borne diseases has been the use of insect repellents 

(IRs). However, they do not meet the necessary conditions, such as protecting a broad 

spectrum of mosquitoes; many of them have unpleasant odors or produce unpleasant 

sensations on the skin, some of them are even carcinogens. In other words, current IRs 

have significant drawbacks. Therefore, the need for new, more effective, safer, and 

longer-lasting broad-spectrum IRs than conventional IRs is evident. Here, classifiers for 

predicting IRs will be developed by using QuBiLS Suite 0-3D molecular descriptors and 

shallow machine learning techniques. The best individual models were used to obtain 

ensemble models with suitable statistical parameters for the learning series. In the present 

work, we intend to introduce, for the first time, the ability of QSAR- (Quantitative 

Structure-Activity Relationships) and structure-based models to describe the interaction 

of IRs with the olfactory response of the sensilla of the mosquito Culex quinquefasciatus 

as well as with repellent activities by using four datasets that take into consideration the 

two most relevant IR scaffolds: carboxamides and plant-derived compounds with 

repellent effect on A. aegypti (and also A. gambiae) and the two most common species of 

cockroach (Blattella germanica and Periplaneta americana). A non-commercial and 

cross-platform software named “SiliS-PAPACS” was developed for the IRs-prediction 

and is freely available at http://tomocomd.com/apps. This software will be used for the 

screening of datasets containing diverse chemotypes like essential oils constituents, 

chemicals, and FDA-approved drugs. The purpose is to assess the usefulness of the 
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developed models in the IR-labeling of organic substances and show the system's ability 

to identify novel IR leads (new IR chemical Scaffold). Here, we report 23 novel 

compounds found through virtual screening that may have potential repellent activity. 

The results suggest that the proposed method will be an excellent computer-assisted 

system that could increase the chance of finding new insect control agents and assist those 

researchers in screening and/or designing new chemotype IRs. 

 

Keywords: Insect Repellent, Odorant Binding Protein, SiliS-PAPACS Software; Atom- 

and Bond-based 0-3D Algebraic Indices, Machine Learning, QSAR, Docking. 

 

 

Graphical Abstract 

 

  



3 

 

1. INTRODUCTION  

1.1. Insects as vectors for diseases 

Diseases with epidemic potential are a growing problem worldwide and have 

been so problematic that, in many cases, health systems have not been able to control it, 

and it ends up collapsing. Even though insects play essential roles in ecosystems, [1], 

[2] several species have been responsible for numerous outbreaks of vector-borne 

diseases that have caused the death of millions of people throughout the world.  

So far, the most effective method of controlling this threat to humanity has been 

through species-specific disruption strategies[2], [3] like the use of pesticides and insect 

repellents (IRs). The need for IRs has been growing every year. By 1997, it was 

estimated that 200 million people worldwide use DEET-based IRs per year[4] and in 

America alone, around 110 million people used IRs[5]. The urgency to develop novel 

IRs is growing each year as climate change increasingly impacts many insects' 

distribution.[2], [6] 

Chemoception, i.e., sense of smell and taste, can mediate behavioral and 

physiological responses.[7] Mosquitoes are attracted by odor and estrogens in human 

sweat, carbon dioxide, moisture, and heat[4]. Female mosquitoes are hematophagous 

and their main attractant compound is 1-octen-3-ol,[8]–[10] but also by carbon 

dioxide,[6], [11] acetic acid[12], and lactic acid[13]. Thus the olfactory pathway plays a 

major role in locating hosts, food, mates, or habitat for laying eggs. This sensory system 

is an opportunity to interrupt the process of disease transmission.[2], [14] Mosquito 

bites can be dangerous due to systemic allergic reactions,[4] as well as transmitting 

parasites and pathogens, resulting in diseases such as malaria, dengue fever, filariasis, 

leishmaniasis, trypanosomiasis, yellow fever, Chagas disease, Lyme disease, St. Louis 

encephalitis, Rocky Mountain spotted fever, and many more.[1], [2], [15]–[17] 
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1.2. Common repellents, mode of action, and related problems 

IRs are prophylactic agents that lower the chance of disease transmission by 

insect vectors[18], [19], by reducing mosquito-human interactions. Several studies have 

determined the mode of action of IRs. However, it is believed that they primarily 

disrupt olfactory responses to odor molecules that control mosquito behavior.[14] 

The most commonly used repellents are not necessarily the perfect ones. For 

instance, DEET (N, N-Diethyl-3-methyl-benzamide), one of the most popular ones, has 

an unpleasant odor and skin feel and causing a plasticizing effect in some polymers.[4], 

[20] DEET is also known to be neurotoxic,[21] be subject to declining efficacy with 

time, cause skin irritation, and be prone to development of resistance.[22], [23] At 

present, there are two main alternatives to DEET i) IR3535 (3-(N-acetyl-N-butyl)amino 

propionic acid ethyl ester), and ii) Picaridin ((RS)-sec-butyl 2-(2-

hydroxyethyl)piperidine-1-carboxylate). IR3535 is safer than DEET as evidenced by 

low acute oral and dermal toxicity and less irritation of mucous membranes.[20] 

Besides, Picaridin appears to have low acute toxicity and irritating effect.[24] 

1.3. The ideal repellent 

Therefore, the need for safer IRs is evident. An ideal repellent must be more 

effective than the actual ones, work on a broad-spectrum of insects, produce longer-

lasting protection, and be safer than conventional IRs. That is, being non-irritating to the 

skin after topical application of safe to use on different kind of clothes, neither staining, 

bleaching, or weakening them, and being inert and non-reactive with commonly used 

materials (e.g., plastics, vinyl, spandex, eyeglass frames, pens).[4] Furthermore, it is 

desired to have a pleasant odor or be odorless, and have a non-greasy feel or appearance 

and resistance to removal after wiping, washing, or sweating.[20] 
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1.4. Pheromones and insect attraction 

Chemical communication is essential during animal interactions of the same or 

different species. Insect pheromones are chemical compounds specialized in triggering 

physiological or behavioral changes in insects of the same species.[25], [26] 

Pheromones are crucial for insect survival. Different types act in specific ways, for 

instance, acting as alarm signal; identification of trail, home, royalty, and recruitment 

pheromones; and sex and oviposition-inhibition pheromones.[27] This type of specific 

reaction that pheromones produce has been widely used as a pest management 

strategy.[27] There is also chemical communication between different species through 

is through allomones that give the signal of repellency and kairomones that act as 

attractants.[26] 

1.5. Proteins involved in insect olfactory system. 

One of the study models that stand out in neurosciences is the olfactory system 

of insects.[2] It has been fundamental for discovering potential targets in vector insects 

and, therefore, the development of new repellents. Insects' chemical communication 

processes allow them to detect and differentiate among thousands of odorants in a 

highly selective manner.[28] In mosquitoes, the olfactory pathways rely on the sensory 

receptors of antennae and maxillary palps. The olfactory pathways begin upon the 

reception of volatile organic compounds (VOCs) by specialized hair-like structures in 

the antennae known as sensilla. Each sensillum has a different shape, being either long 

sharp trichoid (LST), short sharp trichoid (SST), short blunt trichoid I (SBT-I), short 

blunt trichoid II (SBT-II), short blunt trichoid-curved (SBT-C), or in the form of a 

grooved peg (GP).[29] 

VOCs are transported to the receptors on the membrane of the sensory neuron 

where signal transduction takes place. Odorant Binding Proteins (OBPs) are small 
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water-soluble proteins[30] (10-20 kDa) that are required for the correct performance of 

the olfactory system. Each OBP may specifically recognize a class of structurally 

related odorants and also distinguish semiochemicals of different chemical 

structures.[31]–[33] OBPs direct the transfer of VOCs to the Olfactory Receptors ORs 

throughout the sensillum aqueous lymph. [34]–[36]. ORs are the most diverse G-

protein-coupled receptors (GPCRs) subclass which, in a difference to vertebrates' 

GPCRs, have its seven transmembrane domains inversely oriented.[37], [38] ORs are 

located on the membrane of the olfactory receptor neurons (ORNs) and couple an 

Odorant receptor co-receptor (Orco). Orco protein sequence is highly conserved among 

insects[2], [39], making it an important target for the development of IRs. Furthermore, 

Sensory Neuron Membrane Proteins[40] (SNMP), insect-specific ionotropic glutamate 

receptors (TRPA)[40]–[43] are also part of the olfactory signal transduction pathway at 

glomeruli of mosquito. Then the information is processed, and a behavioral response is 

triggered.[7], [44]–[47] OR, Orco, ORN, and OBPs are potential endpoints for 

controlling insects' behavior to analyze attraction or avoidance circuits.[2] 

1.6. QSAR- and docking- based previous theoretical studies of repellency 

The drawbacks of current repellents and the increasing interest in designing a 

natural-based repellent[48] have constantly pushed the research in this field. However, 

the high cost and long periods of time required for experimental research have hindered 

progress. Thus, computational methods are preferred for bioprospecting molecules with 

potential repellent features. So far, in silico studies predicted and identified substances 

likely to interact with binding sites that are able to trigger a behavioral response.[49] 

Many molecular docking approaches against OBPs have been attempted to 

analyze interactions with possible repellents. Vinay Gopal & Krishnan have found that 

the ligands camphor, carvacrol, oleic acid, and firmotox establish H-bond interactions 



7 

 

with 7 OBPs (PDB IDs: 3K1E, 1QWV, 1TUJ, 1OOF, 2ERB, 3R1O, OBP1)[50] from 

Nilaparvatha lugens. Dhivya and Manimegalai showed that di(2-Ethylhexyl)phthalate, 

beta amyrin, and alpha amyrin from the plant Calotropis gigantea are strongly bind 

with an OBP (PDB ID: 2L2C) from Culex quinquefasciatus.[34] Qadir and Arshad 

determined low interaction of the compounds bioneem and azadirachtin from 

Azadirachta indica with an Anopheles gambiae OBP (PDB ID: 3R1O).[51] However, 

Jayanthi et al., employing Computational Reverse Chemical Ecology, screened and 

predicted active semiochemicals, namely Allyl isothiocyanate, E-2-Hexen-1-ol, E-4-

Hexen-1-ol, and Z-3-Hexen-1-ol against Plutella xylostella Linn. OBP (PDB ID: 

2WC5).[52] Thireou et al. filtered a library of 42 755 synthetic molecules based on i) 

the shape and chemical similarity to known plant-derived repellents, and ii) on the 

predicted similarity of the ligand’s binding mode to the Anopheles gambiae Odorant 

Binding Protein 1 (AgamOBP1) relative to that of DEET and Icaridin to perform a 

prospective screening. Then, they tested 16 of these compounds in vitro in AgamOBP1. 

They found no correlation between repellence and OBP-binding strength. Nevertheless, 

a correlation between binding mode (the respective and stable position between OBP 

and ligand) and repellence was found.[53] On the other hand, da Costa et al. screened 

1633 essential oil compounds based on the similarity to DEET binding. They analyzed 

the interaction with the OBP1 homodimer of Anopheles gambiae, and determined high-

affinity with thymol acetate, 4-(4-methyl phenyl)-pentanal, thymyl isovalerate, and p-

cymen-8-yl.[48] Nonetheless, a correlation between affinity and repellent activity is not 

established either. Besides, Portilla-Pulido et al. designed a repellent against Aedes 

aegypti (PDB ID: 3K1E) with effectivity as comparable to DEET using in silico 

simulations were complemented with in vivo repellent activity bioassays.[49] 
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Several studies related to docking with OBPs have been carried out. However, 

the affinity discriminates against the repellent activity. There are various shortcomings 

to studies on repellents, such as i) the analyses have not been previously calibrated; ii) 

so far they have only focused on one specific OBP. Hence, the vast majority of OBPs 

has not been analyzed yet to find broad-spectrum agents; iii) most of the experiments 

were dock-based building on the similarity of the compounds to DEET, which does not 

allow for finding new seeds; iv) the screening for interactions have only been used to 

select new agents from known libraries, and v) it has been imposible to establish a 

relationship between affinity and repellent activity. Therefore, it is utmost important to 

search for new scaffolds. Compounds other than DEET, terpenoids, and related 

substances have to be found in a way that allows us to broaden our search for 

compounds of different chemical nature and with desirable characteristics. 

Quantitative Structure-Activity Relationships (QSAR) modeling is a good 

approach for drug discovery and has been widely used to search for new repellents. For 

instance, Katritzky et al. used molecular descriptors of a library of acylpiperidines 

calculated by CODESSA PRO software, aiming to model the relationship between 

mosquito repellency and the chemical structure of the compounds.[54] Paluch et al. 

analyzed a set of 12 sesquiterpenes through static-air bioassay, and aided by classic and 

quantum molecular descriptors, they developed a QSAR model for repellency.[55] 

Oliferenko et al. found a few highly active compounds as viable candidates of mosquito 

repellents using the AaegOBP1, based on molecular field topology analysis and scaffold 

hopping.[56] However, after performing a docking analysis, they did not find a 

correlation between activity and the compound docked on OBP. It should be noted that 

machine learning (ML) techniques based on odorant chemical descriptors also allow 

predicting new ligands for a given receptor.[57] Thus, Janairo et al. used 20 DFT 
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calculated descriptors to predict the repellency of 33 plant-derived compounds.[58] 

Kepchia et al. analyzed 1280 odorant molecules and identified active antagonists for the 

conserved Orco.[59] Recently, Caballero-Vidal et al. studied Lepidoptera and screened 

3 million molecules that allowed them to find 11 novel agonists on Spodoptera littoralis 

OR through Support Vector Machine.[57] Several of the studies described above are 

based on congeneric data, that is, data from families of related compounds. So far, 

QSAR modeling has been performed several times. However, nobody has implemented 

QSAR models in expert software to discover new repellents. To this day, there is no 

free, cross-platform, and easy-to-use tool that facilitates to find leading compounds 

without the need for prior pure and theoretical knowledge of this topic. 

1.7. Objectives and Structure of the Report 

The present study aims to introduce a combination of molecular docking, QSAR 

modeling, and ML techniques implemented in user-friendly software that allows for the 

discovery of novel, potential repellents with suitable characteristics. Thus, we started 

with calculating the QuBiLS molecular descriptors (2D, [60] 3D,[61] and a fusion of 

both) of the sensilla of the mosquito C. quinquefasciatus. The quantitation of the 

interaction ability proceeded, by calculated with AutoDock Vina[62] of a repertoire of 

13 OBPs from different species. These calculations allowed to generate classification, 

regression, and ensemble models against 50 compounds with known experimental 

repellency activity for each of the six sensilla of C. quinquefasciatus mosquito.[29] 

These exhaustive procedure endorsed ro find compounds able to induce a response in 

the sensilla. The models are implemented in an expert software named SiliS-PAPACS. 

Furthermore, a retrospective analysis is carried out with four different datasets of 

compounds, for that repellent activity has been previously reported, to calibrate the 

predictions made for the effects on the sensilla and to validate the software. Finally, a 
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prospective screening is performed using SiliS-PAPACS software to identify new IRs 

scaffolds by sifting different libraries of drug-like compounds and natural products. 

 

2. EXPERIMENTAL PROCEDURES 

2.1. Datasets 

For the development, validation, and prospection of the regression and 

classification models, three different experiments (EXP) were carried out. 

In the first experiment (EXP1: Modelling), fifty compounds were extracted 

from the Liu et al’s. [29] research. For each compound its olfactory response has been 

recorded in spikes/s in each of the sensilla from Culex quinquefasciatus; see Supporting 

information SI_1_Table 1. Besides, the fifty IRs used in this study are given as 

Supporting information, folder SI_2_Insect_OBPs_PDB. Sensilla are of the long sharp 

trichoid (LST), short sharp trichoid (SST), short blunt trichoid I (SBT-I), short blunt 

trichoid II (SBT-II), short blunt trichoid-curved (SBT-C), and grooved peg (GP) types. 

However, LST and GP showed no significant response to the repellents tested in 

previous studies.[29] Thus, for the experiments, we used the following six types of 

sensilla: SBT-I type A and B (SBT-I-A and SBT-I-B), SBT-II type A and B (SBT-II-A 

and SBT-II-B), SST, and SST-C. A and B types differ in the spike amplitude's length, A 

producing the larger spike amplitude and B the smaller one.[29] 

This experiment is divided into two parts. EXP1A includes QSAR Modeling 

using ML techniques, and molecular descriptors QuBiLS-MAS[60] and QuBiLS-

MIDAS.[61] In contrast, EXP1B involves predictive modeling with the same dataset of 

fifty IRs however the response variable is the binding affinity with thirteen OBPs 

(SI_1_Table 2). These last were calculated through molecular docking calculations 

using the program AutoDock Vina (AV).[62] The PDBs’ OBPs are as follows 1N8V, 



11 

 

1OW4, 1QWV, 2GTE, 2GVS, 2WC5, 3FIQ, 3K1E, 3N7H, 3OGN, 3PM2, 3R1O, and 

3S0D (SI_1_Table 2). These are found in ten different insects: Mamestra brassicae, 

Rhyparobia maderae, Antheraea polyphemus, Drosophila melanogaster, 

Schistocerca gregaria, Bombyx mori, Aedes aegypti, Anopheles gambiae, Culex 

quinquefasciatus, and Apis mellifera, respectively; and the rodent Rattus norvegicus. 

The EXP2 involves four datasets for a retrospective screening. The first dataset, 

"A," is composed of 71 carboxamides found through QSAR and molecular docking 

experiments complemented with bioassays in which the Minimum Effective Dosage 

(MED) in μmol/cm2 was measured against female Aedes aegypti.[56] The second one, 

"B," has 34 carboxamides the repellency of which was tested against the three most 

common breeds of cockroach: Periplaneta americana, Blattella germanica, and Blatta 

orientalis.[63] The third dataset, "C," has 34 essential oils and DEET, in total 35 

compounds, whose repellency was tested on forearms of human volunteers against A. 

gambiae sensu stricto.[64] The fourth set, “D”, has 13 botanical sesquiterpenes assayed 

for spatial and contact repellency against A. aegypti.[55] These four datasets are 

provided as Supporting information, folder SI_3_EXP2_Retrospective Study 

Datasets. 

The EXP3 involves the Malaria Box[65], [66] dataset, and a library of 791 

different Essential Oil Constituents (EOCs) for a prospective screening using the 

software SiliS PAPACS. Malaria Box collects 400 diverse chemotypes that include 200 

compounds with drug-like properties and 200 probe-like confirmed blood-stage active 

antimalarial compounds.[66] This dataset is for the first time screened for drug 

repositioning to explore the repellent properties. On the other hand, the EOCs library 

comprises the main metabolites from plant extracts that might be related to repellency 

and the ideal properties of the IR; explored in a way of going back to the natural roots 
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of the pharmaceutical industry. Both datasets are available as Supporting Information, 

folder SI_4_EXP3_Prospective Analysis. The entire methodology applied in this work 

is presented in Figure 1. This figure summarizes all the steps followed to obtain new 

classification, regression, and repellency models based on QSAR and docking 

experiments, as well as the prospective procedure to find lead IR compounds. 

 

Figure 1. Comprehensive overview of the methods section. The software used is shown 

in brackets and the procedure specifications are shown in parentheses. 
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2.2. Structural coding of IRs 

The tridimensional (3D) geometry for the structures was generated with the 

cheminformatics toolkit RDKit[67] (https://www.rdkit.org/) by distance geometry. The 

3D conformations were optimized by using the Molecular Mechanic Force Field 

(MMFF94). SDF file is available in Supporting Information SI_5_EXP1_3D-

RDKit_MMFF_Repellents_liu(2013). 

2.2.1. Molecular descriptors calculation 

A number of 4463 two-dimensional (2D) molecular descriptors (MDs) were 

obtained from the EXP1A dataset by using QuBiLS-MAS software[60] 

(http://tomocomd.com/qubils-mas). These calculations are based on the bilinear, quadratic 

and linear algebraic forms.[60] These indexes have been used previously in different 

endpoints giving great predictive results.[68], [69] Unsupervised attribute selection was 

performed with IMMAN software[70] (http://mobiosd-hub.com/imman-soft/) to reduce 

the dimensionality in the dataset that was later processed in WEKA’s Feature Selection 

module. The run parameters used were Shannon Entropy (SE) = 0.8 and Spearman 

correlation = 0.6. The MDs list was obtained as a Duplex’s TXT file. 

Additionally, a list of 2658 tridimensional (3D) MDs was obtained using the 

EXP1A dataset, as well, with QuBiLS-MIDAS software[61] 

(http://tomocomd.com/qubils-midas). The calculations are based on multi-linear or N-

linear algebraic forms.[61] The run parameters were specified as Shannon Entropy (SE) 

= 0.8 and Spearman correlation = 0.5. This list was saved as a Ternary’s TXT file. 

In the case of the Duplex dataset, it was reduced to 3450 non-repeated MDs 

against the 50 IRs. In contrast, the Ternary one was filtered to different 2124 MDs. 

Each CSV dataset (duplex and ternary) was added as dependent variable the olfactory 

response from each of the six sensilla against the 50 IRs.[29] Thus, six datasets were 

https://www.rdkit.org/
http://tomocomd.com/qubils-mas
http://tomocomd.com/qubils-midas


14 

 

generated per MDs set type (Duplex and Ternary) for a total of twelve to be used as 

variables to predict the spikes/s response. 

2.2.2. Molecular docking 

 The compounds were studied for their binding affinity to thirteen OBPs using 

the molecular docking program AV, which combines some advantages of knowledge-

based potentials and empirical scoring functions. A grid-based protein-ligand 

interaction is used to speed up the score calculation since ligands are ranked based on 

this energy scoring function.[62] 

 For each of the PDB structures evaluated, a cube was established at their 

geometrical center in order to determine the docking site for the OBP structure. Ten 

runs were performed for each compound. All docking calculations included 20 number 

modes, an energy range of 1.5 kcal/mol, and exhaustiveness equal to 25. Finally, the 

best poses' average binding affinity was accepted as the binding affinity value for a 

particular complex. 

Identification of Interacting Residues: Identifying residues (PDB: 3N7H from 

A. gambiae) that interact on the binding site with the DEET model with the highest 

affinity value and the best pose was performed using Ligand Scout 3.11 (see Table 1 

and  

Figure 2 and Figure 3).[71] Residue-ligand interactions were visualized with 

the program PyMol.[72] 

 

Table 1. AutoDock Vina (AV) Affinities and RMSD Values Produced from Binding 

Best Model of DEET on OPB Structure (PDB: 3N7H), as well as Residues Interacting 

in the Binding Pocket (cutoff 4Å).  
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Co-crystalized ligand 
DEET native (co-

crystalized) 

DEET model 15 

(run 8) 

 DEET model 

3  (run 41) 

DEET model 

1  (run 1) 

AV affinity (kcal/mol) - -6.10 ±  0.00 -6.70 ± 0.00 -6.80 ± 0.00 

RMSD (Å) - 0.34 ± 0.00 0.42 ± 0.00 10 ± 0.00 

Residues (contact at cutoff of 4Å)a 

Leu-15    + 

Leu-19    + 

Leu-58    + 

Phe-59  + + + 

Leu-73 + + +  

Glu-74  + +  

Leu-76 + + + + 

His-77 + + +  

Leu-80 + + + + 

Met-84  + +  

Ala-88 + + + + 

Met-89 + + +  

Met-91 + + +  

Gly-92 + + +  

Lys-93 + + +  

Leu-96’ + + +  

Arg-94 + + +  

Leu-110  + +  

His-111  + +  

Trp-114 + + +  

Trp-122    + 

Phe-123    + 

Leu-124    + 

Val-125    + 

Water-153’ +  +  

Water-350    + 

Water-360 + +   
aResidues from chain B are indicated with a prime (’) and in bold type. Interactions were assigned for 

atoms separated by ≤ 4Å. 
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Figure 2. Representation for fifty re-docking runs to DEET into their respective binding 

sites on AgamOBP1 (PDB ID: 3N7H from A. gambiae). Crystallized conformation for 

each ligand is shown in green. The best re-docked pose is depicted in yellow for all 

complexes. A) 3N7H chain A complex-DEET model 15, run 8. B) Residues in the 

interaction 3N7H chain A complex-DEET model 15, run 8. C) 3N7H chain B complex-

DEET model 3, run 41. D) Residues in the interaction 3N7H chain B complex-DEET 

model 3, run 41. E) DEET’s re-docking run binding site is located at the center of a long 

hydrophobic tunnel (represented as a mesh) running through the dimer interface. Here, 

DEET molecule is bound to each subunit at a site located near the interface between the 

two monomers (center). However, the remaining area of each cavity is filled with other 

DEET poses (with marginal best AV affinities, see Table 2), which originally was 

occupied by PEG molecule that is used as a crystallization agent. 
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Figure 3. Schematic representation of the energetic binding site more favorably 

predicted for Autodock Vina (DEET model 1, run 1: -6.8 ± 0.0 kcal/mol, see Figure 

2E). DEET (with carbon atoms in yellow) form one H-bond with a water molecule 

(red). The contacts between DEET and AgamOBP1 (3N7H) are dominated by non-polar 

van der Waals (vdW) interactions (see Table 1).  

 

2.3. Modeling  

2.3.1. Feature Selection 

 The selection attributes were performed with Waikato Environment for 

Knowledge Analysis (WEKA)[73] ML suite to filter the variables and obtain subsets for 

the prediction modeling in EXP1A and EXP1B. The workflow was reiterated for each 

data set of the six sensilla.  

EXP1A started by i) applying the Correlation Attribute Evaluator with Ranker 

as search method and specifying 1500 as the number of variables to select. ii) 

Consecutively, this result was filtered again using the Relief-F method to retain the 

1000 nearest features. iii) Finally, the Correlation-based Feature Selection (CFS) Sub 
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Evaluation algorithm was applied with Genetic Search and Greedy Stepwise search 

methods to retain up to 100 variables per subset. EXP1B, on the other hand, started 

directly with the Wrapper selection step. 

Different subsets were generated with Wrapper-type selection.[74] In the case of 

Classification modeling, eleven ML techniques applied were Bayes Network (BN), 

Naïve Bayes (NB), Fisher's Linear Discriminant function (FLDA), Linear Discriminant 

Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic regression function 

(Log), John Platt's Sequential Minimal Optimization (SMO, with Pearson Universal 

Kernel (PUK)) algorithm, Stochastic Gradient Descent (SGD), IBk (with 10 K-nearest 

neighbors and True cross-validation (CV)), JRip rule, and J48 and Random Forest (RF) 

trees. All classifiers’ parameters described above were set as the default ones in WEKA.  

Regarding Regression modeling, in the Wrapper-type selection, the Greedy 

Stepwise and Genetic Algorithm strategies were used as search methods. The ML 

methods were also used with the default parameters in WEKA software. Six classifiers 

were used in Regression modeling: Linear Regression (LR), RF, M5P tree, Gaussian 

Processes (GP), and Sequential Minimal Optimization (SMOreg) algorithm (both with 

Pearson Universal Kernel (PUK)), and IBk (with 10 K-nearest neighbors and True CV).  

2.3.2. Classification Modeling 

Classification models were developed to predict the spike amplitude of the 

extracellular record of ORN response potentials of the antennal trichoid sensilla to C. 

quinquefasciatus in two classes: POSITIVE (active) or NEGATIVE (inactive). The 

breakpoint for the sensilla are given in spikes/s: SBT-I-A = 13.2, SBT-I-B = 16.3, SBT-

II-A = 20.4, SBT-II-B = 32.8, SST = 14.3, and SST-C = 13.5.[75] Values greater than 

or equal to the breakpoint will elicit a response in this specific sensillum and are 

represented as POSITIVE. Lower values represent certain actions occurring; however, 
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these are not enough to activate the sensillum response; these are classified as 

NEGATIVE.  

For this purpose, WEKA’s Classify module was used. The same eleven ML 

techniques were applied as well as in Wrappers selection to evaluate the performance 

based on 10-fold CV training. Then the meta-classifiers applied were Bagging, Vote, 

and Stacking with different combination rules for each. This process was applied to 

duplex and the ternary dataset, and from the best models of both, the MDs were used to 

create a new dataset that best combines the different descriptors. The evaluation 

considered the Matthews Correlation coefficient (MCC), area under the Receiver 

Operating Characteristic (ROC) curve, Precision-Recall Curve (PRC), Precision, False 

Positive (FP) rate, and True positive (TP) rate statistical parameters.[76], [77] 

It is important to remark that the dataset of the sensillum SBT-I-B evaluated in 

this report was unbalanced; that is, the dataset had notably more negative than positive 

cases. Once unbalance was detected, the Synthetic Minority Over-Sampling Technique 

(SMOTE)[78] was applied. SMOTE used different combinations of nearest neighbors 

(5 and 10), and the percentage of over-sampling was 110%. 

For the development of EXP1B, precisely the same ML techniques and 

evaluation methods to develop models were applied that describe the interaction of 

different OBPs against the fifty IRs. 

2.3.3. Regression Modeling 

The modeling process was built on case-based learning[79] by applying the six 

ML classifiers described before each of the subsets generated through Wrappers. The 

meta-classifiers were also applied to each dataset: Additive Regression, Bagging, 

Stacking, and Vote with different combination rules. In each subset of sensilla, the 

retain of robust individual and ensemble models was based on 10-fold CV. Moreover, 
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the filtering was based on multi-criteria decision-making[80] to assess the performance, 

stability, the number of instances involved, and the diversity of ML methods applied. 

The predictive power of the models was evaluated based on the statistical parameters: 

correlation coefficient (R2), Mean Absolute Error (MAE), and Root Mean Square Error 

(RMSE). 

The procedure described above was applied to duplex as well to the ternary 

dataset and by using the MDs involved in the best models of both, it was created a new 

dataset that optimally combines the different descriptors. Furthermore, aiming to build a 

model that enhances the classification based on the predictions of the individual models 

obtained in each sensillum, an ensemble model was manually assembled. Selected 

subsets of the best individual and ensemble prediction models with 2D, 3D, as well as a 

fusion of both types of MDs, were obtained to improve the prediction of the spike 

amplitude of the extracellular record of ORN response potentials at the antennal trichoid 

sensilla to C. quinquefasciatus repellents of each sensillum against 50 different IRs. 

Individual regression models were also obtained during EXP1B by applying the 

same ML techniques in which the variables that made up the models were a 

combination of the thirteen OBPs from different species against the sensillar response. 

2.3.4. Applicability Domain 

An analysis of the Applicability Domain (AD) was performed to understand the 

predictions' reliability with the models built.[81]–[83] A consensus-based decision 

among five estimation methods was considered, i.e., Range, Euclidean, Density, 

Manhattan, and Mahalanobis. The creiterion used in this work is that a consensus of at 

least 3 cases outside the AD methods' bounds reflects an unreliable prediction. The AD 

methods were applied with their default configurations and are available in the Ambit 

Discovery software.[84] 
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2.4. Retros-Prospective virtual screening 

The models obtained in EXP1A and EXP1B were implemented in an expert 

system named SiliS-PAPACS that stands for DRY – in silico – Screening & 

Prioritization of Anti-Parasitics and Agro-Chemicals Software, freely available at 

http://tomocomd.com/apps/papacs. The workflow of SiliS-PAPACS internally 

implements of supporting softwares, namely: RDKit,[67] QuBiLS-MAS[60] and 

QuBiLS-MIDAS,[61] Ambit Discovery,[84] AutoDock Vina,[62] Jmol,[85] and 

WEKA.[73] 

Four different datasets[55], [56], [63], [64] were analyzed in EXP2 to calibrate the 

prediction of repellent activity of the SiliS-PAPACS software. The potential to perform 

molecular docking by 50 IRs on a set of 13 OBPs was demonstrated so that the action 

on six different types of sensilla of the Cx. quinquefasciatus mosquito could described 

and classified. In this section, this study involves the IR experimental activity in four 

datasets, which include carboxamide derivatives and terpenoid-like scaffolds, 

considered the two most principal chemotypes with repellent action.[4], [55], [56], [64], 

[86]–[90] 

Previous studies indicate that the OBPs mediate the first steps in the process of 

olfaction, including; uptake of odorants, transport through the sensillar lymph, and 

delivery to ORs in ORNs, triggering a sequence of biochemical events translated into 

behavioral responses.[45], [50], [91]–[93] These interactions are potentially attractive 

targets for QSAR analysis. OBP-derived calculations can be used as predictors for 

repellency or attraction of natural and synthetic semiochemicals[56]. In order to relate 

the values of changes of AV binding affinity of the IRs in four sets (for more details, 

see section 2.1 Datasets: EXP2) with activity repellent data,[55], [56], [63], [64] the 

http://tomocomd.com/apps/papacs
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Multiple linear regression (MLR) analysis was applied using the program STATISTICA 

8.0.[94] 

Finally, with the software settings already adjusted, we proceeded to carry out 

EXP3, which involves prospective screening using the different libraries of drug-like 

compounds and natural products to find new seeds and lead compounds.  

SiliS-PAPACS is the first tool that assists researchers in predicting the 

interaction of smell with the repellent activity of any given molecule. Additionally, 

internal cross-platform integration simplifies the time typically spent doing this type of 

research and allows finding leading compounds with structures totally different from 

those currently studied and with a broad spectrum. 

 

3. RESULTS AND DISCUSSION 

3.1. Performance of the Best Individual and Ensemble Models 

Classification and Regression models were obtained for each of the six sensilla 

of C. quinquefasciatus mosquito as endpoints. Each model uses the 50 IRs as the 

independent variable (instances), and the standard dependent one for every case is the 

experimental electrophysiological value obtained in spikes/s of the olfactory response of 

the sensillum against the IRs[29] (SI_1_Table 1). In all the cases, WEKA software 

(v3.9.4) was used to generate the models. In EXP1A, the models involve a combination 

of a QuBiLS MDs matrix that followed a selection attribute process. In contrast, 

EXP1B uses a combination of the affinity values of 13 different OBPs against the 50 

IRs obtained by using AV.  

3.1.1. QSAR based models (EXP1A) 

Classification models based on 2D, 3D, and a combination of both types of 

MDs (2/3D) were built. The MDs were calculated with QuBiLS-MAS[60] (2D) and 
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QuBiLS-MIDAS[61] (3D) software. Then, the MDs there were filtered through 

WEKA[73] and by using 11 different Wrapper techniques (described in the Methods 

section), and small subsets were generated. Around 12 classification models for each 

sensillum dataset that depend on the MDs of 50 molecules experimentally evaluated by 

Liu et al. [29] (SI_1_Table 1) was obtained. The models represent the action over each 

sensillum to discriminate them between a POSITIVE and NEGATIVE response. After 

development, these models were examined, and the ones with the best performance are 

presented in Table 2. As it can be observed, the number of QuBiLS-MAS 2D-MDs, 

QuBiLS-MIDAS 3D-MDs, and the fusion of them, are ranging from 3 to 9 MDs. A 

good model behavior during 10-fold CV with values of 0.612 ≤ MCC ≤ 1, 80.597% ≤ Q 

≤ 100%, and 0.806 ≤ Precision ≤ 1 is also shown. The best performances according to 

the MCC were obtained in sensillum SBT-II-B. The model C1_SBT-II-B (MCC = 1, Q 

= 100%, Precision = 1) involves 8 different 2D-MDs and uses the Bagging algorithm 

with Logistic function as classifier. Similarly, C2_SBT-II-B (MCC = 0.941, Q = 98%, 

Precision = 0.98) involves 6 descriptors as a result from the mix of 2D and 3D MDs; 

this uses the FLDA algorithm. In general, most of the ML techniques applied are the 

meta classifiers Vote and Bagging.
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Table 2. Performance of the Classification models of EXP1A based on the statistical parameters obtained from WEKA through 10-fold CV 

training. 

Sensillum ID model Technique 
# of 

MDs 
MCC ROC Area PRC Area TP Rate FP Rate Q (%) Precision 

SBT-I-A 

C1_ SBT-I-A 

Vote using a 

combination of the 

average probability of 

the classifiers: LDA, 

SGD, and SMO 

4 0.729 0.836 0.838 0.86 0.158 86 0.873 

C2_ SBT-I-A 

Vote using a 

combination of the 

average probability of 

the classifiers: IBk, NB, 

and SMO 

6 0.678 0.862 0.87 0.84 0.169 84 0.841 

SBT-I-B 

C1_ SBT-I-B FLDA 9 0.612 0.839 0.846 0.806 0.194 80.597 0.806 

C2_ SBT-I-B 
Bagging with J48 as 

classifier 
3 0.612 0.839 0.815 0.806 0.195 80.597 0.806 

SBT-II-A 

C1_ SBT-II-A 
Bagging with NB as 

classifier  
5 0.683 0.87 0.862 0.84 0.175 86 0.847 

C2_ SBT-II-A 

Vote using a 

combination of the 

average probability of 

the classifiers: QDA, 

NB, Log and SMO 

5 0.645 0.894 0.904 0.82 0.198 82 0.831 

SBT-II-B 
C1_ SBT-II-B 

Bagging with Log as 

classifier 
8 1 1 1 1 0 100 1 

C2_ SBT-II-B FLDA 6 0.941 1 1 0.98 0.071 98 0.98 

SST 

C1_SST 

Stacking with BN as 

metaclassifier and the 

classifiers: BN, FLDA, 

Log, SGD, and RF 

7 0.80 0.941 0.919 0.90 0.082 90 0.909 

C2_SST 
Bagging with SGD as 

classifier 
7 0.876 0.945 0.941 0.94 0.098 94 0.945 
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SST-C 

C1_SST-C FLDA 9 0.758 0.918 0.895 0.88 0.09 88 0.896 

C2_SST-C 

Vote using a 

combination of the 

minimum probability of 

the classifiers: SGD, 

LDA, IBk, SMO, and 

Log 

7 0.843 0.878 0.862 0.933 0.108 84 0.933 
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Regression models were developed by using the previously calculated MDs to 

quantitatively predict the olfactory response of the 50 IRs against each sensillum. 

Initially, around 60 individual models after Wrappers-selection in Weka workbench 

were obtained. The number of QuBiLS-MAS (2D) and MIDAS (3D) MDs range from 6 

to 10. The most robust models are shown in Table 3. It can be observed that the models 

represent good behavior, for instance, 0.7173 ≤ R ≤ 0.9882, 4.613 ≤ MAE ≤ 9.1113, and 

6.6334 ≤ RMSE ≤ 11.2657. In addition, the best individual models regarding the R are 

from sensillum SBT-II-B. The one with the best R is I1_ SBT-II-B (R = 0.9882, MAE = 

6.0311, and RMSE = 7.8035). It was built with the Bagging meta classifier algorithm 

with IBk as a classifier and involved eight 2D-MDs. I2_ SBT-II-B (R = 0.9873, MAE = 

6.3461, and RMSE = 8.0678). The Additive Regression meta classifier was applied with 

IBk as a classifier to model 8 2D-MDs. From the compendium of models previously 

described, the meta classifier Additive Regression gave the best results. 

Subsequently, from the best individual models, Ensemble models were built 

using the MDs involved in each. The same ML techniques as in the Individual 

Regression models were applied. Table 3 shows the statistics of the best ensemble 

models for the six sensilla in CV 10. In this case, the number of MDs used goes from 

from 9 to 36 different 2D- and 3D-MDs. These integrative models' performance is 

0.8968 ≤ R2 ≤ 0.9962, 0.734 ≤ MAE ≤ 3.7256, and 1.6815 ≤ RMSE ≤ 6.7166. Again, 

the best results are seen in sensillum SBT-II-B. E1_ SBT-II-B (R2 = 0.9962, MAE = 

2.9631, RMSE = 4.4936) as well as E2_ SBT-II-B (R2 = 0.9961, MAE = 3.1799, RMSE 

= 4.5416) used the Vote meta classifier with 13 and 9 MDs, respectively. In general, LR 

is the most commonly used classifier that gave excellent results. 
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Table 3. Performance of the Best Individual and Ensemble Regression models of EXP1A based on the statistical parameters obtained from WEKA 

through 10-fold CV training. 

Sensillum Model Type ID model Technique  
# of 

MDs 
R2

 MAE RMSE RAE (%) RRSE (%) 

SBT-I-A 

Individual 

I1_ SBT-I-A 

Vote using a 

combination of the 

maximum 

probability of the 

classifiers: GP, LR, 

and M5P tree 

6 0.7558 7.9417 10.4025 60.286 67.2734 

I2_ SBT-I-A 
Additive Regression 

with LR as classifier 
6 0.7173 8.051 10.6235 61.1162 68.7026 

Ensemble 

E1_ SBT-I-A 
Additive Regression 

with LR as classifier  
12 0.8968 3.6618 6.7107 27.7969 43.3985 

E2_ SBT-I-A 

Vote using a 

combination of the 

maximum 

probability of the 

classifiers: LR, 

SMOreg and M5P 

tree 

12 0.8969 3.7256 6.7166 28.2813 43.4365 

SBT-I-B 

Individual 

I1_ SBT-I-B 

Vote using a 

combination of the 

average probability 

of the classifiers: 

GP, SMOreg and 

IBk 

6 0.9213 8.2697 10.7981 53.1897 40.6238 

I2_ SBT-I-B 
Bagging with IBk as 

classifier 
10 0.9174 9.1113 11.2657 58.6026 42.3829 

Ensemble 
E1_ SBT-I-B M5P 12 0.9889 1.8062 3.8634 11.617 14.5348 

E2_ SBT-I-B LR 15 0.9889 1.8062 3.8634 11.617 14.5348 

SBT-II-A Individual I1_ SBT-II-A 
Vote using a 

combination of the 
10 0.8569 5.9322 7.7384 67.988 59.4346 
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maximum 

probability of the 

classifiers: GP, LR, 

and IBk 

I2_ SBT-II-A LR 10 0.8563 4.9871 6.6334 57.1569 50.9476 

Ensemble 
E1_ SBT-II-A LR 9 0.9633 1.9101 3.4367 21.8909 26.3952 

E2_ SBT-II-A LR 17 0.9628 1.8602 3.4628 21.3198 26.5957 

SBT-II-B 

Individual 

I1_SBT-II-B 
Bagging with IBk as 

classifier 
8 0.9882 6.0311 7.8035 15.5033 15.33 

I2_ SBT-II-B 
Additive Regression 

with IBk as 

classifier 

8 0.9873 6.3461 8.0678 16.313 15.8492 

Ensemble 

E1_ SBT-II-B 

Vote using a 

combination of the 

maximum 

probability of the 

classifiers: LR, 

SMOreg, and M5P 

13 0.9962 2.9631 4.4936 7.6169 8.8276 

E2_ SBT-II-B 

Vote using a 

combination of the 

maximum 

probability of the 

classifiers: LR, 

M5P, and SMOreg 

9 0.9961 3.1799 4.5416 8.174 8.9219 

SST 

Individual 

I1_SST 
Additive Regression 

with IBk as 

classifier 

8 0.8942 5.2584 6.7424 47.7345 44.2123 

I2_SST 

Vote using a 

combination of the 

average probability 

of the classifiers: 

LR, IBk, and RF 

8 0.8937 4.613 6.9977 41.8753 45.886 

Ensemble 
E1_SST LR 10 0.9837 1.1587 2.7192 10.5179 17.8304 

E2_SST LR 14 0.9834 1.1925 2.6955 10.8251 17.6756 
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SST-C 

Individual 

I1_SST-C 
Additive Regression 

with SMOreg as 

classifier 

7 0.9133 6.1301 7.5744 44.0349 43.0061 

I2_SST-C 
Additive Regression 

with GP as classifier 
7 0.8933 5.3679 7.8914 38.56 44.8062 

Ensemble 

E1_SST-C LR 36 0.9953 0.734 1.6815 5.2726 9.547 

E2_SST-C 

Vote using a 

combination of the 

maximum 

probability of the 

classifiers: LR, 

SMOreg, and M5P 

9 0.9953 0.7427 1.6894 5.335 9.592 
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Regression and classification models allowed us to obtain a measure of 

performance in predicting the experimentally calculated olfactory responses based on 

MDs. The performance of these models and others implemented in the SiliS-PAPACS 

software is presented in SI_1_Table 3 and SI_1_Table 4. However, all the models' 

information is presented as Supporting information in the folder SI_6_EXP1A (QSAR-

based models). This folder includes the starting SDF file, the ARFF and CSV output 

files obtained from the Weka software, a DOCX file presenting the description of the 

model built, a output file in XLSX format containing the statistical parameters 

information and predictions from the Weka training, and the MODEL file. 

3.1.2. Structure-based models (EXP1B) 

Once the affinity values of docking calculations through AV[62] using a panel 

of 13 different OBPs were obtained, these were used as variables to build classification 

and regression models to predict the response of the trichoid sensilla against the 50 

IRs.[29] 

Several 48 Classification models were developed through Weka software[70] 

through Wrappers selection, applying the ML techniques described in the Methods 

section. These models and classification QSAR-based models predict a POSITIVE or 

NEGATIVE response of the OBPs against 50 IRs in each of the six sensilla. The best 

models, that were implemented in SiliS-PAPACS software, are presented in Table 4. 

The number of OBPs used as variables varied from 2 to 6. The performance in 10-fold 

CV is 0.403 ≤ MCC ≤ 0.941, 72% ≤ Q ≤ 98%, and 0.74 ≤ Precision ≤ 0.98. The models 

with the best behavior regarding the MCC values are seen in sensillum SBT-II-B. 

Model C1_SBT-II-B (MCC = 0.941, Q = 98%, Precision = 0.98) uses 6 different OBPs 

(OBPs' PDB ID: 1N8V, 1QWV, 2WC5, 3K1E, 3OGN, and 3R1O) and was trained with 

the Logistic regression function algorithm. Likewise, the C2_SBT-II-B model (MCC = 
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0.882, Q = 96%, Precision = 0.962) involves 4 different OBPs (OBPs' PDB ID: 1QWV, 

3K1E, 3PM2, and 3S0D) and uses the IBk algorithm. 
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Table 4. Statistical parameters of the Classification models of EXP1B obtained from WEKA through 10-fold CV training. 

Sensillum ID model Technique 
# of 

OBPs 
MCC 

ROC 

Area 

PRC 

Area 
TP Rate FP Rate Q (%) Precision 

SBT-I-A 

C1_ SBT-I-A IBk  2 0.485 0.663 0.664 0.74 0.286 74 0.755 

C2_ SBT-I-A 

Vote using a 

combination of the 

maximum probability of 

the classifiers: JRip, 

Log, and RF 

2 0.475 0.728 0.721 0.74 0.267 74 0.74 

SBT-I-B 
C1_ SBT-I-B 

Vote using a 

combination of the 

average probability of 

the classifiers: IBk, 

JRip, and RF 

2 0.58 0.759 0.775 0.82 0.25 82 0.818 

C2_ SBT-I-B FLDA 4 0.403 0.71 0.749 0.72 0.297 72 0.743 

SBT-II-A 

C1_ SBT-II-A 

Stacking with QDA as 

metaclassifier and the 

classifiers: J48, JRip, 

and IBk 

3 0.682 0.821 0.766 0.84 0.156 84 0.843 

C2_ SBT-II-A 
Bagging with LDA as 

classifier 
5 0.645 0.816 0.78 0.82 0.198 78 0.831 

SBT-II-B 
C1_ SBT-II-B Log 6 0.941 0.944 0.962 0.98 0.071 98 0.98 

C2_ SBT-II-B IBk  4 0.882 0.938 0.951 0.96 0.142 96 0.962 

SST 
C1_SST J48 4 0.753 0.838 0.828 0.88 0.114 88 0.885 

C2_SST RF 4 0.745 0.885 0.878 0.88 0.135 88 0.88 
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SST-C 
C1_SST-C 

Vote using a 

combination of the 

average probability of 

the classifiers: FLDA, 

Log, RF, and IBk  

2 0.73 0.853 0.879 0.88 0.204 88 0.885 

C2_SST-C IBk  6 0.587 0.8 0.767 0.8 0.189 80 0.818 
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Regression models allowed to predict a quantitative response in spikes/s in each 

sensilla involving multiple combinations of the 13 OBPs versus the 50 IRs. The models 

were developed through Wrappers in Weka software by applying the ML techniques 

previously described. The individual regression models with the best performance are 

presented in Table 5. As can be observed, the models involve from 2 to a maximum of 

8 OBPs. The performance in 10-fold CV is 0.522≤ R2 ≤ 0.9204, 5.09≤ MAE ≤ 11.3597, 

and 6.9172≤ RMSE ≤ 19.8615. The sensillum with the best models regarding the R 

coefficient is SBT-II-B. For instance, I1_ SBT-II-B (R = 0.9204, MAE = 8.8472, and 

RMSE = 19.8615). It was built with the Bagging meta classifier algorithm with IBk as a 

classifier and involved 7 OBPs (OBPs' PDB ID: 1N8V, 1QWV, 2GTE, 3K1E, 3N7H, 

3PM2, and 3S0D). Similarly, I2_ SBT-II-B (R2 = 0.9201, MAE = 8.9845, and RMSE = 

19.8056) also uses Bagging with IBk as classifier involving 5 OBPs (OBPs' PDB ID: 

1N8V, 1QWV, 2GTE, 3K1E, and 3S0D). 



35 

 

Table 5. Statistical parameters of the Individual Regression models of EXP1B obtained from WEKA through 10-fold CV training. 

Sensillum ID model Technique  
# of 

OBPs 
R2 MAE RMSE RAE (%) RRSE (%) 

SBT-I-A 

I1_ SBT-I-A 
Additive Regression 

with RF as classifier 
3 0.5581 8.9711 12.9976 68.1006 84.0563 

I2_ SBT-I-A 

Additive Regression 

with SMOreg as 

classifier 

4 0.522 11.3597 13.4138 86.2325 86.7476 

SBT-I-B 

I1_ SBT-I-B SMOreg 5 0.9192 8.9736 12.0045 60.6631 44.5853 

I2_ SBT-I-B 
Additive Regression 

with GP as classifier 
3 0.9154 8.9247 11.1321 60.3328 41.345 

SBT-II-A 
I1_ SBT-II-A 

Bagging with IBk as 

classifier  
8 0.6165 7.0953 10.1934 81.3181 78.2899 

I2_ SBT-II-A IBk  7 0.5616 5.09 6.9172 77.4194 82.5296 

SBT-II-B 

I1_SBT-II-B 
Bagging with IBk as 

classifier  
7 0.9204 8.8472 19.8615 22.7422 39.0179 

I2_ SBT-II-B 
Bagging with IBk as 

classifier  
5 0.9201 8.9845 19.8056 23.0952 38.9083 

SST 
I1_SST 

Additive Regression 

with IBk as classifier 
3 0.6656 7.9407 11.451 72.0838 75.0879 

I2_SST RF 2 0.6484 8.8276 11.3854 80.1345 74.6578 

SST-C 

I1_SST-C 
Additive Regression 

with IBk as classifier 
4 0.6507 9.8954 13.3235 71.0832 75.6485 

I2_SST-C 

Vote using a 

combination of the 

maximum probability 

of the classifiers: 

SMOreg and IBk tree 

2 0.6458 9.9363 13.9128 71.3766 78.9941 

  Outliers: SBT-I-B: (-)-α-pinene, S-(-)-Perillaldehyde, Citronellal, and (-)-Linalool
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In general, training with meta classifiers gave better results than simple 

classifiers. In all the models, the sensillum SBT-II-B showed the best performance, so 

its predictions with different molecules are thought to be better as well. Regarding the 

use of OBPs, an incidence matrix was made (presented in file SI_1. Table 5) that shows 

the variables that appear most frequently within the combinations of both classification 

and regression models in EXP1B. The most repetitive OBPs were found to be 11 times 

2GTE and 3S0D, and 10 times 2GTE and 3S0D. 

3.2. SiliS-PAPACS Software for Repellent Prediction 

All the models developed, both for classification and regression, were 

implemented internally in the SiliS-PAPACS software. SiliS-PAPACS software has a 

user-friendly desktop interface (Figure 4). The steps to use the software involves six 

stages: i) selecting compounds from an SDF or MOL external file. ii) Then, it is 

generated the 3D structure with the internally implemented RDKit. If the molecules to 

analyze have been previously optimized, pass directly to the next step. iii) Choose the 

QSAR based regression and classification models to analyze and the methods to 

evaluate the AD. iv) Select the prediction models based on the structure and specify 

(optional) a time out for the docking (as default 10 minutes). v) Choose the method of 

clustering to group the molecules by similarity: K-means (non-hierarchical) or tree 

joining (hierarchical). And vi) Indicate the folder to save the results.  

Once the screening is completed, a new interface is displayed, and a folder with 

the output information is automatically generated. The test sets used in the present 

report are provided as a sample dataset. 
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Figure 4. Screenshots of the interfaces of the SiliS-PAPACS software. Step 1: loading of external SDF or MOL file. Step 2: generation of the 3D 

structure (optional). Step 3: selection of QSAR-based models to evaluate and the AD. Step 4: selection of the structure-based models and the 

docking time out. Step 5: choosing the clustering method. Step 6: choosing the output folder
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3.3. Results of the Retrospective Virtual Screening 

The best models obtained based on the R2 and q2, together with their statistical 

parameters for each learning dataset, are given below: 

𝑳𝒐𝒈(𝑴𝑬𝑫) = −3.69(±0.66) − 2.40(±0.31) × 𝟐𝑮𝑽𝑺 + 0.27(±0.07) × 𝟑𝑭𝑰𝑸 +

0.28(±0.15) × 𝟑𝑹𝟏𝑶 + 0.88(±0.31) × 𝟏𝑸𝑾𝑽 + 0.34(±0.13) × 𝟑𝑲𝟏𝑬 −

0.43(±0.16) × 𝟏𝑶𝑾𝟒                                                                                     (1) 

N= 61  R2= 0.75  q2= 0.67  s= 0.42  q2
boot = 0.64  a(R2) = 0.075  F(6,54)= 26.4   p< 

0.0001 

 

𝑷𝑹(%)𝐵.  𝑔𝑒𝑟𝑚𝑎𝑛𝑖𝑐𝑎 = 103(±32.1) − 30.4(±3.73) × 𝟑𝑭𝑰𝑸 + 54.4(±10.7) ×

𝟏𝑵𝟖𝑽 − 33.2(±10.9) × 𝟑𝑶𝑮𝑵 + 48.8(±11.7) × 𝟑𝑹𝟏𝑶 − 41.0(±14.8) × 𝟑𝑷𝑴𝟐                          

                         (2a) 

N = 26   R2 = 0.81   q2 = 0.69    s = 11.7    F(5,20) = 16.9    p < 0.0001 

 

𝑷𝑹(%)𝑃.  𝑎𝑚𝑒𝑟𝑖𝑐𝑎𝑛𝑎 = 241(±35.9) + 45.9(±9.23) × 𝟐𝑮𝑻𝑬 − 57.3(±11.2) ×

𝟑𝑶𝑮𝑵 + 75.6(±13.5) × 𝟐𝑮𝑽𝑺 − 53.6(±11.8) × 𝟐𝑾𝑪𝟓 + 72.2(±14.9) × 𝟑𝑷𝑴𝟐 −

28.0(±11.4) × 𝟑𝑹𝟏𝑶                                                                                    (2b) 

N = 30    R2 = 0.77    q2 = 0.54    s = 11.5    F(6,23) = 12.8     p < 0.0001 

 

𝑹𝑫𝟓𝟎 = −0.007(±0.002) − 0.002(±0.0006) × 𝟐𝑮𝑻𝑬 + 0.002(±0.0004) × 𝟑𝑭𝑰𝑸 −

0.001(±0.0005) × 𝟑𝑹𝟏𝑶                             (3) 

N = 30   R2 = 0.75   q2 = 0.60    s = 0.001    F(4,25) = 18.6     p < 0.0001 

 

𝑳𝒐𝒈(𝑷𝑹𝟔𝟎𝒎𝒊𝒏) = 2.43(±0.13) + 0.17(±0.02) × 𝟑𝑹𝟏𝑶 − 0.14(±0.02) × 𝟑𝑷𝑴𝟐 +

0.01(±0.01) × 𝟑𝑺𝟎𝑫                             (4a) 
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N = 11    R2 = 0.93    q2 = 0.81    s = 0.02    F(3,7) = 29.7     p < 0.0001 

 

𝑳𝒐𝒈(𝑷𝑹𝟏𝟐𝟎𝒎𝒊𝒏) = 1.32(±0.20) − 0.11(±0.01) × 𝟑𝑭𝑰𝑸 + 0.06(±0.02) × 𝟑𝑵𝟕𝑯 −

0.03(±0.024) × 𝟑𝑺𝟎𝑫                            (4b) 

N = 11    R2 = 0.91    q2 = 0.78    s = 0.03    F(3,7) = 25.3     p < 0.0001 

 

Where N is the number of cases, R2 is the squared correlation coefficient, q2 is 

the determination coefficient of the LOO cross-validation procedure, s is the standard 

deviation of the regression, and F is the Fisher ratio at the 95.0% confidence level. 

There are modeled the Minimum Effective Dose (MED) necessary to trigger a favorable 

response, the Percentage of Repellency (PR (%)), and the exposure concentration 

producing a 50% respiratory rate decrease (RD50) [95]; and.The chemical SDF files for 

each dataset in this EXP2 are given as SI_3_Retrospective Study Datasets. All results, 

including statistics, experimental and calculated values, as well as their linear 

relationships, outliers, and structure representation for these QSAR studies can be seen 

in the Supporting Information file SI_1_EXP2_(A-D). 

As can be seen, the statistical parameters obtained from the analysis of MLR 

follow a significant linear trend in all four cases, with R2 (q2) of 0.75 (0.67), 0.81 (0.69), 

0.77 (0.54), 0.75 (0.60), 0.93 (0.81), 0.91 (0.78), respectively for all of the four cases 

studied: 71 carboxamide derivatives used by Oliferenko et al.,[56] 34 carboxamides 

assessed by Gaudin et al.,[63] 34 EOCs assessed by Omolo et al.,[64] and 12 

sesquiterpene compounds of plant derivatives used by Paluch et al.,[55]. This indicates 

that the binding affinity predicted by AV for the different OBPs is linked to the 

repellent activity of the existing chemotypes in the group of compounds studied.  
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It is important to note that the OBPs 3R1O (A. gambiae), 3FIQ (R. norvegicus), 

and 3PM2 (A. gambiae) were identified in that order (they appeared 5, 4, and 3 times, 

respectively) as the most significant in all the obtained models (see Table 6). These 

proteins are classical and C-plus class OBPs, and they are found in large concentrations 

in the lymph fluid which surrounds the olfactory dendrites, indicating an important role 

in the process of olfaction.[23], [96] In fact, it is important to remark that all the OBPs 

in the study appear at least once in the obtained models, and there is no model in which 

just one OBP alone explains the repellent activity, which indicates that a set of various 

OBPs (a diverse repertoire) is necessary for an accurate description of the repellent 

activity. 

 

Table 6. Frequency of the Appearance of the Variables (OBP-based Binding Affinities) 

in Regression and Classification Models. 

OBPs PLRa LDAb MLRc Total 

3FIQ 4 3 4 11 

3S0D 3 4 2 9 

1QWV 5 3 1 9 

3R1O 2 2 5 9 

2GTE 3 3 2 8 

3PM2 3 1 3 7 

1OW4 3 2 1 6 

1N8V 3 1 1 5 

2GVS 0 1 2 3 

3K1E 0 1 1 2 

3OGN 0 1 1 2 

3N7H 1 0 1 2 

2WC5 0 0 1 1 
a,bPiecewise non-linear estimation (PLR) and linear discriminant analysis (LDA) equations for prediction 

of the olfactory response of ORNs of IRs in EXP2, respectively. cMultiple linear regression (MLR) based 

models for repellent activities description of molecules in EXP2. 

 

Recently, Oliferenko et al.[56] did not obtain a good correlation between the 

values of binding affinity predicted by the Glide program with just one OBP (3K1E) 

with the repellent activity data. That is, in this study, a group of compounds that were 

least active in terms of MED was predicted to have similarly high docking scores that 



41 

 

compound with higher repellent activity. However, for the last class of compounds 

(seven times more potent), a high correlation coefficient of 0.92 suggests that they bind 

strongly to 3K1E, which is linearly related to acting as a strong IR. Although this result 

reflects a direct link between the binding of 3K1E and repellency, in fact, it is only a 

necessary but not a sufficient condition because it does not have a general relationship 

because, in the olfactory cascade, OBP is just one element in insect behavioral 

responses and in practice repertories of OBPs are present. For that reason, we propose 

to use a structurally diverse OBP repertoire and scale their affinities with ORN 

responses and repellent activities [56] because compound(s) with high affinity(ies) with 

OBP(s) may be slightly active (or completely inactive) on the second step of the 

ORs/ORNs transduction.  

On the other hand, if we compare the results obtained by our model (Eq. 1) (R2 = 

0.75 and q2 = 0.67) with the reported recently by Oliferenko et al.[56] using Molecular 

Field Topological Analysis (MFTA) (R2 = 0.96 and q10%
2 = 0.80), it can be seen that our 

results were lower, possibly because of the structural descriptors used by the authors in 

their studies (MFTA descriptors) are a direct quantification of molecule structures. That 

is, in Eq. 1, we used the AV affinities with a panel of 13 OBPs as variables, which are 

an "indirect" quantification of chemical structures because the binding affinities are 

docking scores from interactions of the complexes.[97], [98] However, the behavior of 

our approach in external predictions (see SI_1_EXP2_A4 for observed and prediction 

values and SI_1_EXP2_A6 for molecular structures) was similar-to-superior (R2 = 0.23 

for Eq. 1) than MFTA method (R2 = 0.11 for MFTA model).[56] 

Although the quantitative relationships of structure and repellency[18], [56], 

[105]–[109], [86], [90], [99]–[104] have been widely discussed in the research, only a 

small amount of quantitative data has been obtained; mainly carboxamides type 
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chemicals. The data used here with 71 compounds is the most representative (and 

biggest) and structurally diverse with this kind of scaffold from all these studies.[56] 

The second data of carboxamide selected by us is the only collection evaluated against 

cockroach[63] because all other studies mainly use mosquito species. However, this 

data is used for the first time here for the QSAR study, and thus it will not permit us to 

make a direct comparison. The other more explored chemotype as IRs are EOCs, where 

Omolo et al.’s[64] study is the biggest data reported so far, but also it is used here for 

the first time. Finally, to evaluate our approach for plant-related compounds in a 

comparative study, we selected a rather small data[55], [103] which is more structurally 

diverse than others previously used in QSAR studies, but that includes only α- and β-

pinene terpenoid derivatives.[90], [107], [109] 

In the last dataset in EXP2, the obtained models Eqs. 4a and 4b are similar to 

those reported by Paluch et al.[55] with the same group of compounds and activities, 

performed models with several topological indices and posteriorly to carry out VS of a 

sesquiterpenes library. As compared to these results,[103] one can see that those results 

described here are similar-to-better. For instance, Garcia-Domenech et al.’s results are 

R2 (q2) = 0.88 (0.81) and 0.87 (0.77) versus R2 (q2) = 0.93 (0.81) and 0.91 (0.78) 

obtained by us at 60 and 120 min, respectively.  

Finally, the adequate statistical quality of the QSARs built for these structurally 

diverse datasets attest its exploratory power and, with a good degree of accuracy (inside 

of DA,[110], [111] see next section EXP3), its capability to be used for VS purposes.  

3.4. Results of the Prospective Virtual Screening to find new lead compounds 

SiliS-PAPACS software was used for prospective VS of two sets of compounds, 

the first one is an Essential Oil Constituents library, and the second one is Malaria 

Box.[66] VS technologies have largely enhanced the impact of computational chemistry 
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within the lead discovery process and are now one of the computational tools used to 

filter out unwanted compounds from chemical libraries. In conjunction with High-

throughput screening (HTS) technology, the VS has become the main tool for 

identifying leads, playing a predominant role in drug research.[112]–[117] 

Many plant-derived products have been evaluated for their toxic properties 

against several insect species, especially the EOCs, which have been experimentally 

evaluated for decades, searching for repellent activity. Currently, several EOCs possess 

fumigant or contact toxicity,[118]–[121] repellent,[18], [87], [122] and antifeedant 

activity[123], [124] as well as development and growth inhibitory activity.[125], [126] 

Considering that the most critical interest of any mathematical model developed is 

the use of in silico searching of new hits, VS's final experiment was carried out. In this 

section, the models previously developed to classify and predict the ORN responses as 

well as estimate the repellent activity in insects (RD50 and MED) will be used in an 

integrated way to computationally screen a diverse set of EOCs compiled by us from 

literature, as well as the Malaria box library. The chemical structure of these compounds 

and their bibliographic references are shown as Supplementary Material 

SI_1_EXP3_(A & B). Besides, the SDF files of these compounds are given as 

SI_4_EXP3. 

For the selection of the EOCs, the following criteria (rules) were used: 1) a 

compound will remain in the hit list if the predicted olfactory activity is higher than the 

threshold on 4-6 sensilla (equivalent to activating 4-6 ORNs) using LDA-based QSAR 

models of each sensillum, 2) if the predicted olfactory activity exceeds the threshold for 

only 1-3 sensilla, the compounds will only be selected as candidates if at least in one of 

these types of sensilla, the quantitative spike value predicted by the PLR model is 

similar to or higher than the compound that caused a strong stimulation at an 
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experimental level, 3) compounds that have activation above threshold in just one 

sensillum will be selected only if the repellent activity of the MLR models is potent or 

greater than the values of 8.9 ×10-5 mg/cm2 and 0.052 μmol/cm2 reported as potent by 

Oliferenko et al.[56] and Omolo et al.[64] 

It is rather relevant to highlight that the predictions were only taken into account if 

the compound was within the AD of the models, for which we used a criterion 

consensus based on three different AD methods using the Ambit Discovery software 

(http://ambit.sourceforge.net). The AD of the QSAR model is “the range within which it 

tolerates a new molecule[127]–[129] This criterion is fundamental because one of the 

main aims of the present report was to develop models for predicting repellent activity 

at the early stages of drug discovery. Consequently, one may not mean extrapolating the 

use of these models to other kinds of chemical classes, making uncertain predictions in 

conditions very different from those fixed to calibrate the model. The majority of EOCs 

evaluated in silico fall within this area, which ensures great reliability for predicting 

these kinds of leads used in the VS.  

The selected compounds using the three criteria above were 243 (243/791 = 

30.7%), which reveals a very diverse group of chemicals; including many of them 

reported in the literature as IRs[64], [87], [89], [103], [107]. This shows the ability of 

the computational workflow to identify EOCs with repellent activity(ies) correctly. 

These compounds represent different structural types of terpenoids, sesquiterpenoids, 

monoterpenes acyclic, monocyclic and bicyclic, and diterpenes. Many studies show that 

the strong repellent activity of EOCs appears to be associated with the presence of these 

types of metabolites.[55], [87] Functional groups present in these compounds, such as 

hydroxyl, ketone, lactones, among others, are biologically active as IRs.[90], [130] 

Furthermore, computational approaches revealed that the repellent-receptor interactions 

http://ambit.sourceforge.net/
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are most likely related to the electrophilic interactions.[90] In fact, QSAR models 

developed by Wang et al. [90] showed that MDS such as dipole moment and boiling 

point is closely associated with the repellent activity of terpenoid compounds. The first 

(dipole moment) could be regarding lipophilicity or specific electrostatic interactions 

with the receptor, whereas the latter (boiling point) can determine the duration of 

contact time with the olfactory chemosensilla of mosquitoes.[90] 

It is important to note that the sensilla SST, SST-C, SBT-I-A, SBT-I-B, SBT-II-A, 

and SBT-II-B recovered 64.0, 59.0, 53.0, 54.0, 36.0, and 35.0%, respectively, of the 

compounds selected from screening (243 in total). Likewise, four compounds showed 

olfactory activity above the threshold in 6 sensilla, 12 in 5 sensilla, and 84 in 4 sensilla. 

In general, only 12.0% of the compounds in the dataset showed no activity on any 

sensilla. In total, only 16 EOCs shown significant activation of 5 or 6 sensilla. The 

majority of these EOCs are well-known IRs or are structurally rather-to-very similar to 

substances with proven insect repellent activity.   
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Figure 5. Clustering in 8 groups of the 234 EOCs selected from VS as potential IRs 

using the CheS-Mapper program.[131] These EOCs were compared and grouped with 

respect to the 50 IRs reported by Liu et al.[29] used in this study as an internal 

reference. The colors indicate compounds grouped by structural similarity. Cluster 1 

(Purple) has 23 compounds, cluster 2 (red) presents 13 EOCs, cluster 3 with 26 

compounds is green, cluster 4 (cyan) has 20 compounds, magenta represents the 52 

compounds in cluster 5, cluster 6 (pink) has 13 chemicals, yellow highlights the 23 

compounds in cluster 7 and cluster 8 (gray) is comprised of 64 compounds. 

 

Furthermore, using the ChemS-Mapper program,[131] the 234 compounds 

selected by VS were compared and grouped with respect to the 50 compounds reported 

by Liu et al.[29] used in this study as an internal reference (queries to get the structural 

diversity of new hits) to verify to what extent these compounds are similar to those 
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reported in the literature and whether they represent new chemotypes. Figure 5 shows 

the 234 compounds selected by VS, grouped by simple k-mean Cluster Analysis 

(CA).[131] As we can see, the EOCs were clustered into eight groups. The compounds 

in each 8 groups are resumed as 8 .sdf files in Supporting Information 

SI_4_EXP3_234_Cluster. 

Here, it is essential to note that the groups (1-8 clusters) bring together a diverse 

set of promising chemicals capable of changing insects' behavior, some of them similar 

to those reported in the literature as IRs. In general, the clusters 4, 5, and 8 gather the 

compounds with theoretically good olfactory activity in 4, 5, and 6 sensilla (4, 12, and 

84 compounds, respectively, for a total of 100 EOCs) and the best values of RD50 and 

MED (1.14 ×10-4 mg/cm2 and 0.02 μmol/cm2, respectively) of repellent activity 

predicted by our models. However, all 16 EOCs with 5-6 sensilla activation are 

substances very similar to compounds with repellent activities previously reported.   

It should be mentioned that 31 chemicals from 234 EOCs selected for our 

models have been previously reported with repellent activity in the literature, which 

mentioned the majority of the individual chemical components found in EOs used in 

patented repellent inventions.[87] Most of these compounds showed activation on four 

sensilla. In fact, only 1 EOC is among 16 compounds with activation of 5/6 sensilla. 

Among these 31 EOCs previously reported are Camphene, Camphor, Carvone, 1.8-

Cineole, Citronellal, Limonene, Linalool, Terpinene-4-ol, Verbenone, and others (for 

more detail see review[87] and also[55], [64], [89]) which are used as additives in at 

least one patent and tested against species of mosquito vectors of infectious diseases. 

Here, it is important to note that the predicted values of RD50 for some of these 

compounds (which had this parameter reported in [87]) are similar to the experimental 

values reported in the review article.[87] These results are shown in Table 7. This 
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demonstrates that if these oils had not been assessed and we were to select them for 

evaluation against mosquito species (from chemical composition), they would show 

repellent activity, which confirms our models' validity. 

 

Table 7. Observed and Predicted RD50 Values for EOCs Used in Patented Repellent 

Inventions that were identified from VS as Potential IRs. 

EOCs  
RD50 mg/cm2  

Obs.* Pred. 

Camphene 0.0022 0.0021 

Camphor 0.0014 0.0020 

Carvone 0.0013 0.0011 

1,8-Cineole 0.014 0.0025 

Citronellal 0.00022 0.00083 

Limonene 0.0018 0.00060 

Linalool 0.0015 0.00058 

Terpinen-4-ol 0.0015 0.0020 

Verbenone 0.0016 0.0027 

*Data collected from.[87]  
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Figure 6. Virtual screening and selection of 33 EOCs (virtual hits) with potential 

repellent activity. The 50 IRs used as internal reference were grouped as follows: 

Cluster 1) Linoleic acid, Oleic acid, Palmtic acid and Phytol; Cluster 2) Dimethyl 

phthalate, Dibutyl phthalate, Menthyl acetate, DEET and Permethrin; Cluster 3) Trans-

cinnamaldehyde, Cinnamyl alcohol, Eugenol, Thymol, Carvacrol and Naphthalene; 

Cluster 4) Isoamyl alcohol, Myrcene, Citronellal, Citronellol, (-)-Linalool and Geraniol; 

Cluster 5) R-(+)-Limonene, S-(-)-Limonene, α-Terpinene, α-Pinene, (+)-α-Pinene, (-)-

α-Pinene, (-)-β-Pinene, (+)-β-Pinene, 1S-(+)-3-Carene, Menthoglycol (PMD), S-(-)-

Perillaldehyde, S-(-)-perillyl alcohol, (-)-Menthone, (+)-Menthone, α-Terpineol, (+)-

Terpinen-4-ol, D-neomenthol, Menthol, Terpinolene, S-cis-Verbenol, Camphor and 

Eucalyptol; Cluster 6) Citronellic acid, Geranyl acetone and Linalyl acetate; Cluster 7) 

Geranyl acetate; and Cluster 8) β-Caryophyllene and (-)-Caryophyllene oxide. The 

structures of the IRs DEET and IR3535 are also presented. 

 

Taken representatively from 8 clusters and considering the structural di-similarity 

with well-known IRs, we have selected 33 compounds that could exhibit significant 

repellent activity and fulfill the important goals of an ideal IR, having a relatively novel 

structure core (see Figure 6). Compounds in Figure 6 are an example of the main 

frameworks with theoretical repellent activities, and some of them are new possible hits; 

the majority of the EOCs in Figure 6 produced a theoretical response in at least two 

sensilla, which is an adequate result if taken into account that well known IRs show 

significant activation of only one sensillum (e. g., DEET on ORNs in SST-C).[29] 

Finally, we developed an analysis of the leading frameworks in each cluster and 

looked in-depth at several literature sources to draw the main conclusions about structural 

features in the 33 EOCs in Figure 6 and verify whether they represent new chemotypes. 
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Cluster 1 included Linoleic acid, Oleic acid, Palmitic acid, and Phytol plus 23 

EOCs from 234 compounds selected in the VS experiment (EXP3). Here, only one 

EOC (Tetradecene) showed theoretical activation on five different types of sensilla. 

This compound has not been reported in any insect repellent activity, but two position 

isomers, 6- and 7-tetradecane, have been recognized as alarm pheromones, which is, in 

fact, a "repellent effect”.[132] All compounds that showed actions against 3 or 4 

different types of sensilla are structurally very close to some IR frameworks. Amongst 

the EOCs with strong action on 2 sensilla are Dihydro-5-tetradecyl-2(3H)-furanone 

(antitubercular activity against Mycobacterium tuberculosis)[133] and 4,8,12,16-

tetramethylheptadecan-4-olide. These compounds have a new chemotype (isoprenoid γ-

lactone) because no reports exist with their repellent activities and are structurally rather 

different to well-known IRs or related substances with action against insects. Finally, in 

this cluster, several monoterpenoids exist (C-10, two isoprene units), like (E)-Nerolidol, 

which is an acetate derivative of the IR Fokienol. 

In the second cluster, the IRs: Dimethyl phthalate, Dibutyl phthalate, Menthyl 

acetate, DEET, and Permethrin were comprised in join with 13 EOCs (1-4 sensilla). Here 

exist several acetate-derived chemicals related to the IRs Menthyl acetate (like Isobornyl 

acetate (directly related to with the IR Borneol),[87] cis-carvyl acetate, isodihydrocarveol 

acetate, Isobornyl acetate, etc.). In fact, isobornyl acetate possesses repellent activity, 

confirmed against mosquitoes and moths.[87] On the other hand, compounds like (3Z)-

butylidene phthalide (1 sensillum) and Z-ligustilide (2 sensilla, see Figure 6) are a 

representative framework in this cluster. Z-ligustilide (LIG, (3Z)-3-butylidene-4,5-

dihydroisobenzofuran-1-one), an essential oil extract from Angelica Sinensis, has broad 

pharmaceutical applications in treating cardiovascular diseases and ischemic brain injury. 

LIG can inhibit the proliferation and cell cycle progression of vascular smooth muscle 
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cells, associated with basic fibroblast growth factor stimulation, through the reduction of 

reactive oxygen species and/or the suppression of the Mitogen-Activated Protein Kinases 

pathway (MAPK). Meanwhile, LIG has an analgesic effect on rats and a concentration-

dependent anti-inflammatory effect on lipopolysaccharide-activated rat microglia without 

cytotoxicity.[134] Since the IR activity of LIG was not reported previously, the results of 

this study should raise public concern over the potential application associated with insect 

behavior.  

Other relevant scaffolds in Cluster 2 are represented by iso-Bergaptene and 

Acetoxyvaleranone, for which the repellent action against any insect has not been 

reported yet. However, the first EOC is a furocoumarin that presents photo-toxicity and, 

therefore, is still advisable to keep treated skin out of the sun and to use it in 

concentrations of less than 1%.[135] Thus, only Acetoxyvaleranone will be declared as 

a representation of a new chemotype. 

Cluster 3 is characterized by trans-cinnamaldehyde, Cinnamyl Alcohol, Eugenol, 

Thymol, Carvacrol, and Naphthalene as IRs and included 74 EOCs. This cluster is 

determined by molecules with a cyclic aromatic system, like 1,2,3-Trimethylbenzene 

(and its isomers), Benzylnitrile, Phenol, Menthofuran, Coumarin, and so on. Only 1,3,5-

trimethyl benzene produces a response in 5 different types of sensilla. However, this 

compound and some isomers are central nervous system depressants and may cause 

respiratory disorders. The 1,2,4-isomer may also be narcotic. Other effects of exposure 

to these compounds include headaches, tension, nervousness, inflammation and 

hemorrhaging of mucous membranes, convulsions, and ultimately death.[136] The 

major chemicals in this cluster are structurally very close to IRs, for example, 4-vinyl-o-

guaiacol. The most diverse compounds here: Dichlorobenzene and Menthofuran, 

possess repellent activity confirmed against mosquitoes and moths.[87], [137], [138] In 
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fact, 1,4-dichlorobenzene is formulated for moth repellents but presents some problems 

related to human and environmental health such as; irritating to eyes, it is highly toxic 

and may cause long-term adverse effects in aquatic environments, and has carcinogenic 

effects.[139] 

The IRs: Isoamyl alcohol, Myrcene, Citronellal, Citronellol, (-)-Linalool, and Geraniol 

were grouped in Cluster 4. All EOCs in this cluster are also alcohols or carbonyls with 

aliphatic skeletons, like cis-Salvene, cis-Ocimene, etc., very close to the IR Myrcene. 

However, two related compounds exist, Artemisia ketone and Yomogi alcohol (see 

Figure 6), which will be considered here as a new terpene-based chemotype. In fact, 

some studies of the chemical composition of plant extracts (oil from Artemisia argyi, A. 

feddei, A. gmelinii, Tanacetum vulgare)[140]–[142] with biological activity against 

arthropods (insects, but also ticks) and patented inventions report the presence of these 

EOCs. However, none of the compounds have been evaluated individually in these 

experiments. One of the recent studies show that Artemisia ketone is the oil component 

that has the most excellent anti-microbial activity; in fact, it always turns out to be 

effective against bacteria and some fungi (Candida albicans and Aspergillus fumigatus) 

at low concentrations (range 0.07–10.0mg/mL).[142] Another study evidenced that the 

presence of Artemisia ketone in the blend caused a significant increase in the repellency 

of the resulting blend (essential oil of Suregada zanzibariensis leaves) and that some 

blends of terpenoid ketones can serve as effective A. gambiae mosquito repellents.[143] 

Cluster 5 have the following IRs: R-(+)-Limonene, S-(-)-Limonene, α-Terpinene, α-

Pinene, (+)-α-Pinene, (-)-α-Pinene, (-)-β-Pinene, (+)-β-Pinene, 1S-(+)-3-Carene, 

Menthoglycol (PMD), S-(-)-Perillaldehyde, S-(-)-Perillyl alcohol, (-)-Menthone, (+)-

Menthone, α-Terpineol, (+)-Terpinen-4-ol, D-neomenthol, Menthol, Terpinolene, S-cis-

Verbenol, Camphor, and Eucalyptol. In addition, 52 EOCs were also included. This 
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cluster has the compound with most responses against mosquito antennal sensilla, where 

4 and 7 EOCs exist with action on 6 and 5 different types of sensilla (Camphene, α-

Thujene, E-Pinene hydrate, and Thuja-2,4-10-diene) and 7 (cis-Sabinene hydrate, α-

Isophorone, 5-methylenenorbonene, cis-1,4-Dimethylcyclohexane, 1,2,5,5-Tetramethyl-

1,3-cyclopentadiene, trans-2-Methyldecalin, Isophorone), respectively. The compounds 

with maximal responses are very close to well-known IRs, where also are Sabinene, neo-

3-thujanol, thuja-2,4-10-diene, α-thujenal, thuj-3-en-10-al, etc. However, that structural 

framework is not new in the IR field. A similar case occurs with the molecule 6,6-

Dimethyl-2-methylene-bicyclo[2.2.1] heptane-3-one (5 sensilla) due to them being very 

close to Pinene isomers S-cis-Verbenol, Camphor, etc. Menthone isomers are other IR 

chemotypes in this cluster, and cis-Piperitone epoxide (4 sensilla) represents this kind of 

structure. Another kind of structure is represented by Isophorene that produces responses 

in 5 sensilla too, but is not a new scaffold because this type of skeleton has a good 

representation in IR panel, for instance, Limonene isomers, 3-Carene isomers, etc. (see 

Figure 6). Here, only the 5-C ring molecules 1,2,5,5-Tetramethyl-1,3-cyclopentadiene (5 

sensilla; also 5-tert-Butyl-1,3-cyclopentadiene (2 sensilla)) and α-campholenal (3 

sensilla) have a new chemotype (see Figure 6). 

In Cluster 6, only 13 EOCs are grouped with Citronellic acid, Geranyl acetone, 

and Linalyl acetate. Here only the molecule of S-ethyl-pentanethioate has an interesting 

structure (dissimilar) regarding well-known IRs, which is not very similar to merck790 

and 2-undecanone. However, the Hexyl-2-methyl butyrate is a skin irritant, and its 

decomposition with heat is dangerous for the environment. Thus, S-ethyl-pentanethioate 

can be considered as a new theoretical IR structural prototype.  

In Cluster 7, only one IR of reference is included, Geranyl acetate (Z-

Sesquilavandulol is a structurally similar EOC), which is joint with 23 EOCs. 
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Compounds of the bicyclic sesquiterpene class, such as 7-epi-Sesquithujene were 

selected as a good prototype, and in fact, this EOC has been shown to elicit solid 

electrophysiological responses on the antennae of the emerald ash borer, Agrilus 

planipennis.[144] Another much related EOC was epi-α-bisabolol (monocyclic 

sesquiterpene alcohol with good theoretical results), which has a slight sweet flower 

fragance. Also its use since ancient times is due to the healing properties on the skin, 

which is why it is used in the cosmetic industry. Furthermore, it is known to have anti-

irritant, anti-inflammatory, and anti-microbial properties.[145] It also indicates 

improvement in UV-induced skin damage and promotes skin growth. Scientific studies 

have also shown that α-Bisabolol has excellent anti-obesity and anti-oxidation effects. 

In addition, this compound showed good insect repellent activity (84.0%)[87], [103], 

and due to its good properties, it is considered a good IR lead (starting point). In fact, 

other EOCs in their chemical neighborhood like Turmerona showed 88.9% of spatial 

repellency for 180 min (female A. aegypti).[87], [103]A Turmerona-related compound 

selected by us as a good IR candidate is β-Atlantone (2 sensilla and good repellent 

activity predicted).  

Finally, Cluster 8 had two of the most potent plant-related IRs, β-Caryophyllene 

and (-)-Caryophyllene oxide (both have responses in 4 different sensilla types). In this 

cluster, several bicyclic systems exist, like Cuparene, Humulene, α-Patchoulene (3 

sensilla; and Copaeb-11-ol, four sensilla), spiroalcanes (Italicene (3 sensilla), α-Carenol 

(2 sencilla) and Chamigrene (3 sensilla)), Ledene (5 sensilla) and santalos, which are 

viable scaffolds for developing more diverse active IRs. However, Santalos (1 

sensillum) is an EOC with many reports of insect repellency[45]. In that cluster, there 

are two analogs with better theoretical activity (Cis-Sesquisalebinene; 4 sensilla) and 

(Campherene; 2 sensilla). Ledene is structurally similar to the IR Spathulenol. However, 
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Cuparene, which is also recognized as an IR, is structurally similar to the skeleton of 2-

Phenylcyclohexanol (X4).  

On the other hand, numerous studies of chemical composition of plant extracts 

with biological activity against arthropods (insects, but also ticks) and patented 

inventions, report the presence of most of the compounds mentioned in our list, such is 

the case of extracts from Pulicaria gnaphalodes and Achillea wilhelmsii (dehydro 

aromadendrene, chrysanthenyl acetate),[146] extract from the turmeric herb (α-Copaen-

11-ol),[147] oil from Artemisia argyi, A. feddei, A. gmelinii, Tanacetum vulgare (cis-

Carvyl acetate, cis-Chrysanthenyl acetate, Artemisia ketone, Yomogi alcohol, 

Zingiberenol, 6,6-Dimethyl-2-methylene-bicyclo[2.2.1] heptan-3-one),[140], [141] oil 

from the root of A. annua (E-Nerolidol acetate, (E,E)-Farnesyl acetate),[148] oil from 

Tagetes minuta (cis-Ocimene),[149] extracts of Plectranthus incanus (cis-Piperitone 

epoxide),[150] oil from Cedrus deodara (β-Atlantone),[151] extract from Guava fruit 

(Isoamyl 2-methylbutyrate),[152] Angelica sinensis oil ((Z)-3-butylidene 

phthalide),[153] oil from Croton roxburghii (α-Campholenal),[154] and oils from 

Mediterranean plants (Hexyl 2-methyl butyrate).[155] Although none of the compounds 

mentioned above have been evaluated individually, this suggests that the extracts' 

repellent activity may be associated with the presence of these metabolites. However, 

compounds such as Tetradecene, Dihydro-5-tetradecyl-2(3H)-furanone, (3Z)-butylidene 

phthalide, Acetoxyvaleranone, Yomogi alcohol, 1,2,5,5-Tetramethyl-1,3-

cyclopentadiene, α-campholenal, S-ethyl-pentanethioate, β-Atlantone, Humulene, 

Copaeb-11-ol, Italicene, α-Carenol, Chamigrene, and Ledene their repellent activity is 

reported here for the first time. It, therefore, is a successful expansion of the existing 

scaffold. These EOCs are unknown for the developed models, so we can say that their 

evaluation in the equations is equivalent to discovering new IR leads. Furthermore, 
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according to the literature sources consulted, none of them have been yet described as 

IRs. These suggestive results need to be confirmed by experimental tests to obtain the 

final and conclusive results about OBPs/ORs/ORNs and/or insect repellent profiles of 

these compounds.  

As the second part of EXP3, it was used the Malaria Box [66] library (available 

in Supporting Information folder SI_4) for VS-prospective analysis using SiliS-

PAPACS software. Malaria Box comprises a group of 400 drug-like and probe-like 

compounds found in an exhaustive search to combat malaria and neglected diseases in 

2011[66]. From this starting point of 400 compounds, only 80 of them were filtered 

based on the molecular weight (MW) and the low volatility it implies, being an 

undesired feature in IRs design (see SI_4_EXP3_ResultsMBox_filtering_MW file). 

After docking the 80 molecules by using SiliS-PAPACS software with the parameters 

as default, there were filtered to keep only the active molecules and the ones with 

adequate volatility (see SI_4_EXP3_ResultsMBox_VS file). Finally, eight molecules 

were found to be ideal to use in IRs search; these are presented in Figure 7. In these 

cluster, half are probe-like compounds: MMV000570 (EC50 = 194nM, MW = 278.35), 

MMV665812 (EC50 = ND, MW = 255.35), MMV665924 (EC50 = 1060nM, MW = 

286.75), & MMV666021 (EC50 = 94.4nM, MW = 272.30). And the other half are drug-

like compounds: MMV000911 (EC50 = ND, MW = 278.71), MMV008270 (EC50 = ND, 

MW = 265.31), MMV018984 (EC50 = 693nM, MW = 278.31), & MMV665820 (EC50 = 

520nM, MW = 293.53). 
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Figure 7. Molecules selected from Malaria Box[66] library through VS using SiliS-

PAPACS software. 1: MMV000570, 2: MMV000911, 3: MMV008270, 4: 

MMV018984, 5: MMV665812, 6: MMV665820, 7: MMV665924, 8: MMV666021. 

 

As shown in Figure 7, these compounds present different structures from those 

studied to date in the search for repellents, including DEET. Besides, until now, no 

reports of application have been found to search for repellents of any of these eight 

compounds. 

 

4. CONCLUDING REMARKS 

This report's most outstanding contribution is that 23 compounds have been 

found starting from libraries of multiple compounds, among them compounds of 

essential oils and the well-known Malaria box. These 23 compounds are presented as 

new and key scaffolds for the research and development of the ideal repellent against 
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different vector-borne insects; however, they are suggested to be subjected to 

experimentation in the laboratory and in situ. 

In this report, we developed an expert system named SiliS-PAPACS that 

internally implements the workflow of different programs that, employing QSAR 

models based on MDs, and structure models based on AV docking affinities, allow to 

obtain quantitative models that discriminate and predict the ORN responses in six 

different types of the antennal trichoid sensilla of C. quinquefasciatus to estimate IR 

activities. The developed models were used in VS to simulate from the in silico to 'real-

world applications. This is presented as a novelty that optimizes time and costs by 

saving experimentation steps and reproducing reliable computationally-assisted results. 

Besides, the biosilico identification of novel potential EOCs as IRs is reported by using 

the new computational pipeline, and action/activity profiles appear to be promising 

from a practical point of view. We propose that these models are adequately 

characterized and evaluated and could play a valuable and essential role in the early 

discovery of new compounds with potent repellent activity; that is to say, the present 

study has laid a foundation for developing olfactory-based insect control agents.  

 

5. FUTURE OUTLOOKS 

Regarding the promising behavior that this computational approach brings 

through SiliS-PAPACS, we seek to study more diverse libraries of compounds to find 

leading ones with ideal properties. Furthermore, instead of modeling the sensilla 

response, we will analyze the ML techniques used in this report in experimental results 

of compounds with repellent properties against different insect species' odorant 

receptors. 
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SUPPORTING INFORMATION 

The Supporting Material of the present report is available in the following 

Google Drive folder: 

https://drive.google.com/drive/folders/1BMOaYgNgHqYwWiEuYQHZ9Ij3BuTSasHO

?usp=sharing 

 

 

  

https://drive.google.com/drive/folders/1BMOaYgNgHqYwWiEuYQHZ9Ij3BuTSasHO?usp=sharing
https://drive.google.com/drive/folders/1BMOaYgNgHqYwWiEuYQHZ9Ij3BuTSasHO?usp=sharing
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