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Abstract

In this work, a master-slave system of autonomous chaotic ordinary differential equations
that are not identical is considered. In order to refer to the master-slave system being
synchronized, the aim is that the evolution of the solutions of the master and slave equations
should coincide as closely as possible. Given a bounded solution for the master equation,
we use this as an input in the slave equation. This leads us to a non-autonomous system
where the conditions, that are represented by a class of systems illustrated by Chua’s
equations, are identified. Next, for the non-autonomous system, we are able to show,
under suitable conditions, the existence of solutions that ensure synchronization of our
master-slave system.

The theoretical results shown are recreated, using Chua’s equations, with numerical
simulations that effectively show that the solutions of the master and slave equations
match as closely as possible.

Keywords: synchronization, master-slave system, Chua’s equations, Banach
Fixed Point Theorem.
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Resumen

En este trabajo se considera un sistema maestro-esclavo de Ecuaciones Diferenciales Or-
dinarias caóticas autónomas no idénticas. Para referirse a que el sistema maestro-esclavo
está sincronizado, el objetivo es que la evolución de las soluciones de las ecuaciones mae-
stro y la ecuación esclavo coincidan lo más posible. Dada una solución acotada para la
ecuación maestro, esta es usada como entrada para la ecuación esclavo. Esto nos con-
duce a un sistema no autónomo donde se identifican las condiciones que representan una
clase de sistemas ilustrado por las ecuaciones de Chua. Por consiguiente, para el sistema
no autónomo vamos a mostrar, bajo ciertas condiciones, la existencia de soluciones que
encierran sincronización por parte de nuestro sistema maestro-esclavo.

Los resultados teóricos mostrados son recreados usando las ecuaciones de Chua con
simulaciones numéricas que muestran efectivamente que la solución del sistema maestro-
esclavo se ajustan al máximo.

Palabras Clave: sincronización, sistema maestro-esclavo, ecuaciones de Chua,
Teorema de Punto Fijo de Banach.
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Chapter 1

Introduction

Synchronization between two or more dynamical systems describes the correlation process
of two or more chaotic systems under specific conditions for a time interval [1, 2]. This
process is a basis to understand an unknown dynamical system from one or more well-
known dynamical systems [1].

This phenomenon has been studied since the century 17th when the scientist Christiaan
Huygens gave a detailed description about the inanimated synchronization of dynamical
systems by studying a system formed by two pendulum-clocks hanging from simple support
and observing phase to phase the synchronized behaviour that this system presented after
of a certain time [3]. Huygens’ research was a key element in the study of synchronization
of dynamical systems until becoming an active research topic.

An important scientific revolution was the chaos in dynamics introduced by Henri
Poincaré at the end of the 19th century [4]. Chaotic dynamical systems present an even
greater challenge because they defy synchronization, implying that the signals that produce
a chaotic system could not synchronize with any other system [5]. In other words, the
trajectory of two identical autonomous chaotic systems that begin in the same initial point
in the same phase space uncoordinated quickly in time. However, if the two dynamical
systems exchange information in the right way, they can synchronize [6].

Over time, the general interest in synchronization has increased, since this phenomenon
has presented relevant manifestation in fields such as technology, physics, biology and
engineering [2]. Synchronization, besides being a fundamental element to understand the
natural phenomena, describes a spontaneous transition to order due to the interaction
between different processes in a time interval [4].

Reference [7] shows that it has not been possible to establish a single definition of
synchronization that encompasses each and every example of synchronization known and
yet to be known. A lot of forms of synchronization have been established over the last
decade. One of them is classified on the basis of the unidirectional or bidirectional nature
of the coupling process.

At the end of the century 20th, Pecora and Carroll introduced in [5] a new phenomenon
where the synchronized systems present a unidirectional interconnection known as master-
slave synchronization [8]. This synchronization implies that one subsystem flows freely and
directs the flow of another one.

Master-slave synchronization consists of two non-identical subsystems which are cou-
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pled such that the solution of one of them (slave system) always converges, or at least stay
close, to the solution of the other (master system), independently of the initial condition
[9]. There exist some forms to represent a master−slave system. In our case, let us consider
a master system in the following form

ẋ = f(x, µ̄), (1.1)

where x ∈ Rn is the state variable and µ̄ is a constant vector in R2

The slave system is written in the following form

ẏ = f(y, µ) + ν(y− x), (1.2)

where y ∈ Rn and µ is a constant vector in R2. The system (1.1)-(1.2) is called the master-
slave system. The solution of (1.2) follows the evolution of a given bounded solution of the
system (1.1).

In this work, we will discuss the conditions and results for master−slave synchronization
of chaotic systems, more specifically, let us apply the last unidirectional synchronization
in a specific example, that is, in Chua’s equations. This review is inspired by [10], where,
using exponential dichotomies, it is established specific conditions on non-identical chaotic
dynamical systems to obtain master-slave synchronization. It is also important to note that
in our work the main interest, when it comes to thinking about applications, is directed to
chaotic systems. Certainly if the systems considered are not chaotic and evolve freely, are
not coupled, they could synchronize. The same is not true for chaotic systems.

This work is organized as follows.

• In chapter 2, we present some basic definitions related to normed spaces and com-
plete normed spaces. Next, we give some important examples of complete normed
spaces startling the set of bounded continuous functions on Rn with the infinite norm.
Then, we present the Banach Fixed Point Theorem, also known as the Principle of
contraction mappings which states sufficient conditions for the existence and unique-
ness of a fixed point. Later, we summarize some general properties of differential
equations as the basic existence theorem and uniqueness of solutions. Also, we re-
call some important facts concerning linear systems. The chapter closes with a brief
discussion of eigenvalues and eigenvectors as well as some very simple propositions
relating to these concepts. The concrete case of one type of matrix, which appears
when considering Chua’s equations is considered.

• In chapter 3, we present the problem to be considered. Specifically the type of
master−slave system mentioned above. Through a transformation, the master−slave
system is brought to a non-autonomous system on which our study is performed.
Thus our main theoretical result, which of course guarantees synchronization of the
master-slave system, is obtained on the non-autonomous system and provides con-
ditions that guarantee synchronization. Finally, a simple application of Gronwall’s
lemma allows us to say more about theoretical results.

• In chapter 4, we present the application of the results in Chua’s equations. We begin
highlighting important aspects about the circuit from which these equations derive
and establishing explicitly the system to discuss. Next, we propose a transformation

Mathematician 2 Graduation Project
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on Chua’s equation such that the conditions given in Chapter 2 are satisfied and
we can apply the theoretical results. In the end, we work with a Computer Algebra
System, Maxima, to expose the numerical results of master-slave synchronization in
Chua’s equations.

• In Chapter 5, we present some conclusions and recommendations related to this work.
There we highlight the characteristics that the systems considered in our work have,
and also mention considerations that may lead us to carry out further research on
what has been developed in this work.

Mathematician 3 Graduation Project



Chapter 2

Mathematical Framework

In this chapter we present a number of basic facts from analysis, ordinary differential
equations and linear algebra, which are fundamental in this work. For the development of
this chapter, the main references are the following [11], [12], [13], and [14].

2.1 Concepts and Definitions
This section introduces some conventions, notions and theorems related to Vector Spaces.

2.1.1 Banach spaces and examples
We start recalling that a linear vector space (or linear space) X over R (or C) is a set
{x, y, z, . . .} such that

1. for each x, y, z ∈ X, the sum x+ y is defined, x+ y ∈ X, as

x+ y = y + x, (x+ y) + z = x+ (y + z),

2. there is an element 0 ∈ X such that for every x ∈ X,

x+ 0 = x.

3. For a given x ∈ X there is an element x̄ ∈ X such that

x+ x̄ = 0.

4. Also, for each α, β ∈ R (or C) and for each x, y ∈ X, scalar multiplication αx is
defined, αx ∈ X and 1x = x,

(αβ)x = α(βx) = β(αx)
(α + β)x = αx+ βx

α(x+ y) = αx+ αy.

4
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From now on will be enough for us to pay attention to linear spaces over R (real linear
spaces). Let X be a real linear space, a norm on X is a map ‖·‖ : X → [0,∞) which
satisfies

i) ∀x ∈ X : ‖x‖ > 0 if x 6= 0, ‖0‖ = 0.

ii) ∀α ∈ R,∀x ∈ X : ‖αx‖ =| α | ‖x‖.

iii) ∀x, y ∈ X : ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

The pair (X, ‖·‖) is called a normed linear space. When confusion may arise, we
will write ‖·‖X for the norm function on X. The resulting space is called a normed space.

Some well known facts and definitions related with normed linear spaces are the fol-
lowing

• The ε−neighborhood of an element x of a normed linear space X is

{y ∈ X : ‖y − x‖ < ε}.

• A set S in X is open if for every x ∈ S, there exists an ε−neighborhood of x which
is contained in S.

• S is closed if and only if X − S is open.

• A set S in X is bounded if there exists r > 0 such that S ⊂ {x ∈ V : ‖x‖ < r}.

• An element x is a limit point of a set S in X if each ε−neighborhood of x contains
points of S.

• A set S in X is closed if it contains its limit points.

• A sequence {xn} in a normed linear space X converges to x in X if

lim
n→∞

‖xn − x‖ = 0.

We shall write this as
lim
n→∞

xn = x.

• A sequence {xn} in X is a Cauchy sequence if for every ε > 0, there is an N(ε) ∈ N
such that if n,m ≥ N(ε) then

‖xn − xm‖ < ε.

• The space X is complete if every Cauchy sequence in X converges to an element of
X. A complete normed linear space is a Banach space.

• A Cauchy sequence {xn}, in a Banach space X, which is contained in a closed set S
converges to an element of S.

• The real line and the complex plane are complete normed spaces.

Mathematician 5 Graduation Project
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• A subset A of X is complete if (A, d) is complete.

Examples

1. Let X = Rn be the space of real n−dimensional column vectors. For a particular
coordinate system, elements x in Rn will be written as x = (x1, . . . , xn), where each
xj is in R. If x = (x1, . . . , xn) , y = (y1, . . . , yn) are in Rn, then αx+ βy for α, β in R
is defined to be (αx1 + βy1, . . . , αxn + βyn) . The space Rn is clearly a linear space.
Moreover, it is a Banach space if we choose ‖x‖ to be either

sup{|xi| : i = 1, . . . , n} ,
n∑
i=1
|xi| or

 n∑
i=1

x2
i

 1
2

.

Each of these norms are equivalent in the sense that a sequence converging in one
norm converges in any of the other norms. The fact that X = Rn is complete
follows because convergence implies coordinate wise convergence and R is complete.
In particular when n = 1 all the above norms coincide for any x ∈ R.
Also, an important consideration, which we frame in this example, corresponds to
the set of real matrices of size n× n and which will be denoted byMn×n. Certainly
Mn×n can be identified with Rn2 and one has that X =Mn×n is a Banach space if
we choose ‖A‖, where A =

(
aij
)
,i, j = 1, . . . , n, to be either

sup{|aij| : i, j = 1, . . . , n} ,
n∑

i,j=1
|aij| or

 n∑
i,j=1

a2
ij

 1
2

.

We close this example by pointing out that throughout this work, unless otherwise
specified, we will use the Euclidean norm, i.e., ‖x‖ =

(∑n
i=1 x

2
i

) 1
2 , x = (x1, . . . , xn) ∈

Rn . Of course if A ∈Mn×n it corresponds to
(∑n

i,j=1 a
2
ij

) 1
2 .

2. Let X = C
(
[a, b],Rn

)
be the linear space of continuous functions which maps the

closed interval [a, b] into Rn. If we define for a given x ∈ X

‖x‖∞ = sup
t∈[a,b]

∥∥x(t)
∥∥,

then ‖ · ‖∞ is a norm on X and also X is complete with this norm. Thus, the pair(
C
(
[a, b],Rn

)
, ‖ · ‖∞

)
is a Banach space.

3. Let X = Cb
(
[0,∞),Rn

)
be the linear space of bounded continuous functions which

maps the interval [0,∞) into Rn. If we define, for a given x ∈ X,

‖x‖∞ = sup
t∈[0,∞)

∥∥x(t)
∥∥,

the pair
(
Cb
(
[0,∞),Rn

)
, ‖·‖∞

)
is a Banach space. Let us prove that X is complete.

We start by considering a Cauchy sequence {xn} in X. Given t ∈ [0,∞) , we have
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that
{
xn(t)

}
is a Cauchy sequence in Rn and since Rn is complete its limit is in Rn,

i.e, limn→∞ xn(t) exists. Now, define x : [0,∞)→ Rn as

x(t) = lim
n→∞

xn(t) ( pointwise limit).

We claim that
x ∈ X and lim

n→∞
‖xn − x‖∞ = 0 .

Given an arbitrary t ∈ [0,∞) and a closed interval [a, b] that contains t, the limit
function limn→∞ xn(t) is, with the norm ‖·‖∞, in C

(
[a, b],Rn

)
. Thus, x is continuous

at t.
To prove that x is bounded, we proceed by contradiction. Suppose that x is not
bounded, then there exists a sequence {tm} in the interval [0,∞) such that tm < tm+1,
m = 1, 2, . . ., limm→∞ tm = ∞ and

∥∥x (tm)
∥∥ > m. Now, given m > 1 we have that

limn→∞ xn (tm) = x (tm). Next, given 0 < ε < 1, if we choose N and m such that
‖xN‖∞ < m− 1 and

∥∥xN (tm)− x (tm)
∥∥ < ε, then

m 6
∥∥x (tm)

∥∥ =
∥∥∥(x (tm)− xN (tm)

)
+ xN (tm)

∥∥∥
< ε+m− 1.

This is a contradiction. Now, we have to prove that xn converges to x in norm.
Given ε > 0, there exists an N such that for n,m ≥ N, ‖xn − xm‖∞ < ε

2 . Now, for
t ∈ [0,∞) and n,m > N we have that∥∥xn(t)− x(t)

∥∥ =
∥∥∥(xn(t)− xm(t)

)
+
(
xm(t)− x(t)

)∥∥∥
6 ‖xn − xm‖∞ +

∥∥xm(t)− x(t)
∥∥

<
ε

2 +
∥∥xm(t)− x(t)

∥∥.
Next, choose m = m(t) > N such that

∥∥xm(t)− x(t)
∥∥ < ε

2 .

This implies that
∥∥xn(t)− x(t)

∥∥ < ε for all t ∈ [0,∞). Thus, ‖xn − x‖∞ 6 ε. Hence,
limn→∞ ‖xn − x‖∞ = 0.

2.1.2 Banach Fixed Point Theorem
A function taking a set A of some linear space into a set B of some linear space is called
a transformation or mapping of A into B. A will be called the domain of the trans-
formation and the set of values of the transformation will be called the range of the
transformation. The notation T : A→ B corresponds to the case where T is a transforma-
tion of A into B. We are interested in transformations that act from A to A, i.e., A = B,
where A ⊂ X and X is a Banach space. In this case, a fixed point of a transformation
T : A→ A is a point x in A such that

Tx = x.
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Among the many results on existence of fixed points, for a given transformation, we high-
light that three important results are Banach’s fixed point theorem, Brouwer’s fixed point
theorem and Schauder’s fixed point theorem. These results play an important role con-
cerning the existence of solutions for differential equations. In this work a fundamental tool
is Banach’s fixed point theorem also known as the contraction mapping theorem. Before
stating the contraction mapping theorem we need to introduce the following

Definition 1 (Lipschitz continuity, contraction). If A is a subset of a Banach space X

and T is a transformation mapping A into a Banach space Y (written as T : A → Y ),
then T is a contraction on A if there is a λ, 0 5 λ < 1, such that

‖Tx− Ty‖Y ≤ λ‖x− y‖X , with x, y ∈ A.

The constant λ is called the contraction constant for T on A.

The Banach fixed point theorem to be stated below gives a constructive procedure for
obtaining better and better approximations to the solution of the practical problem. This
procedure is called an iteration. Moreover, iteration procedures are used in nearly every
branch of applied mathematics, and convergence proofs and error estimates are very often
obtained by an application of Banach’s fixed point theorem.

Theorem 1 (Banach Fixed Point Theorem). If A is a closed subset of a Banach space X
and T : A→ A is a contraction on A, then T has one and only one fixed point, i.e.,

∃! x̄ ∈ X : T (x̄) = x̄.

Moreover, if x0 in X is arbitrary, then the sequence {xn+1 = Txn, n = 0, 1, 2, . . .} con-
verges to x̄ as n→∞ and

‖xn − x̄‖ ≤
λn‖x1 − x0‖

1− λ ,

where λ is the contraction constant for T on A.

Proof. Let T be a contraction on A. Then, there is some λ ∈ [0, 1) such that, for any
x, y ∈ X ∥∥T (x)− T (y)

∥∥ ≤ λ‖x− y‖. (2.1)

Let x, y are elements of A such that Tx = x and Ty = y, then

‖x− y‖ = ‖Tx− Ty‖ 6 λ‖x− y‖.

Thus,

(1− λ)‖x− y‖ 60

‖x− y‖ =0

x =y.
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(Uniqueness) Let x0 ∈ A be arbitrary and define the ”iteration sequence” (xn)n∈N by

xn+1 = T (xn).

Given n > 1, let us see how close xn+1 and xn are

‖xn+1 − xn‖ =‖Txn − Txn−1‖

6λ‖xn − xn−1‖

=‖Txn−1 − Txn−2‖

6λ2‖xn−1 − xn−2‖
...

6λn‖x1 − x0‖.

Thus,
‖xn+1 − xn‖ ≤ λn‖x1 − x0‖. (2.2)

Now, let us prove that (xn)n∈N is a Cauchy sequence so that it converges in the complete
space X. This limit x̄ will be the fixed point we are looking for. In fact, for m > n > 1 we
have, using the triangle inequality and (2.2), that

‖xm − xn‖ =
∥∥(xm − xm−1) + (xm−1 − xm−2) + · · ·+ (xn+1 − xn)

∥∥
≤ ‖xm − xm−1‖+ ‖xm−1 − xm−2‖+ · · ·+ ‖xn+1 − xn‖

≤ λm−1‖x1 − x0‖+ λm−2‖x1 − x0‖+ · · ·+ λn‖x1 − x0‖

= λn
(
λm−1−n + λm−2−n + · · ·+ 1

)
‖x1 − x0‖

= λn
(

1− λm−n
1− λ

)
‖x1 − x0‖

≤ λn

1− λ‖x1 − x0‖.

Then, giving ε > 0 pick N = N(ε) > 1 such that λN

1−λ ‖x1 − x0‖ < ε. For m > n > N we
have,

‖xm − xn‖ ≤
λn

1− λ‖x1 − x0‖ 6
λN

1− λ‖x1 − x0‖| < ε.

Since {xn} converges, {xn} ⊂ A and A is closed, there exists x̄ ∈ A such that

lim
n→∞

xn = x̄.

Finally to show that T (x̄) = x̄ (existence) we use that T is continuous. In fact, if xn → x̄,
then T (xn)→ T (x̄). But, xn+1 = T (xn) and then uniqueness of the limit implies that

T (x̄) = x̄.

Mathematician 9 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Remark 1. The above theorem can be formulated in a more general framework which
corresponds to metric spaces. However, due to our interests in this work, we restrict
attention to a framework corresponding to Banach spaces.

2.2 Aspects of Ordinary Differential Equations
In this section we recall some general definitions and results of ordinary differential equa-
tions. We begin with the definition of solutions and theorems concerning with existence
and uniqueness of solution for first order ordinary differential equations in a general form.
Next, we pay attention to linear equations.

2.2.1 Existence and Uniqueness
Let t be a scalar, let D be an open set in Rn+1 with an element of D written as (t, x); let
f : D −→ Rn, be continuous and ẋ = dx

dt
. Consider a system of d first order differential

equations
ẋ = f(t, x). (2.3)

For the most part, it will be assumed that f is continuous. We say x is a solution
of (2.3) on an interval I ⊂ R if x is a continuously differentiable function defined on I,
(t, x(t)) ∈ D, t ∈ I and x satisfies (2.3) on I. Suppose (t0, x0) ∈ D is given. An initial
value problem for the equation (2.3) consists of finding an interval I containing t0 and a
solution x of (2.3) satisfying x(t0) = x0. We write this problem as{

ẋ(t) = f(t, x(t)),
x(t0) = x0, t ∈ I. (2.4)

If there exists an interval I containing t0 and an x satisfying (2.4), we refer to this as
a solution of (2.3) passing through (t0, x0). These requirements on x are equivalent to the
following lemma

Lemma 1. Problem (2.4) is equivalent to

x(t) = x0 +
∫ t

t0
f(τ, x(τ))dτ, (2.5)

provided f(t, x) is continuous.

The next theorem to be introduced drops the assumption of Lipschitz continuity and
the assertion of uniqueness.

Theorem 2 (Peano). If f is continuous in D, then for any (t0, x0) ∈ D, there is at least
one solution of (2.3) passing through (t0, x0).

A proof of this theorem is given in [11].
If f(t, x) is continuous in a domain D, then the fundamental existence theorem implies

the existence of at least one solution of (2.3). The basic existence and uniqueness
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theorem under the hypothesis that f(t, x) is locally lipschitzian in x is usually referred to
as the Picard-Lindelöf theorem. This result as well as additional information is contained
in

Theorem 3 (Picard- Lindelöf Theorem). If f(t, x) is continuous in D and locally lips-
chitzian with respect to x in D, then for any (t0, x0) in D, there exists a unique solution
x(t, t0, x0), x(t0, t0, x0) = x0, of (2.3) passing through (to, xo). Furthermore, the domain
D in Rn+2 of definition of the function x(t, t0, x0) is open and x(t, t0, x0) is continuous in
D.

The proof of this theorem can be found in [11].

2.2.2 Linear Systems
A linear system of n first order equations is a particular case of (2.3) that is expressed by

ẋj =
n∑
k=1

ajk(t)xk + hj(t), j = 1, 2, . . . , n,

where the ajk and hj for j, k = 1, 2, . . . , n are continuous real valued functions on the
interval (−∞,+∞). In matrix notation this equation can be written in more compact
form as

ẋ = A(t)x+ h(t) , (2.6)

where A =
(
ajk
)
, j, k = 1, 2, . . . , n; h = (h1, . . . , hn)T . When h(t) = 0 for all t ∈

(−∞,+∞), we obtain the system
ẋ = A(t)x . (2.7)

We will refer to (2.7) as a homogeneous linear system. In another case, when h is not
the null function, we will say that equation (2.6) is a non-homogeneous linear system.

To continue our discussion of the systems (2.6) and (2.7), we recall some aspects of
linear algebra. A set of vectors x1, . . . , xn in Rn are said to be linearly independent if∑n
j=1 cjx

j = 0 for any real constants cj implies cj = 0 for j = 1, . . . , n. The vectors
x1, . . . , xn are said to be linearly dependent if they are not linearly independent. A useful
and very known criterion for deciding on linear dependence is the following:

The vectors x1, . . . , xn are linearly independent if and only if det
[
x1, . . . , xn

]
6= 0.

Now, an n × n matrix X(t), t > 0, is said to be an n × n matrix solution of (2.7)
if each column of X(t) satisfies (2.7). A fundamental matrix solution of (2.7) is an
n×n matrix solution X(t) of (2.7) such that detX(t) 6= 0. A principal matrix solution
of (2.7) at initial time t0 is a fundamental matrix solution such that X (t0) = I, where
I denotes the identity matrix. The principal matrix solution at t0 will be designated by
X (t, t0).

From the above definition of a fundamental matrix solution it is clear that a fundamental
matrix solution is simply a matrix solution of (2.7) such that the n columns of X(t) are
linearly independent.
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Lema 1. If X(t) is an n × n matrix solution of (2.7), then either detX(t) 6= 0 for all t
or detX(t) = 0 for all t.

Proof. A proof of this lemma is found in [11] page 80.

Lema 2. If X(t) is any fundamental matrix solution of (2.7), then a general solution of
(2.7) is X(t)v where v is an arbitrary vector in Rn.

Proof. A proof of this lemma is found in [11] page 80.

Theorem 4. If X is a fundamental matrix solution of (2.7) then every solution of (2.6)
is given by formula

x(t) = X(t)
[
X−1(τ)x(τ) +

∫ t

τ
X−1(s)h(s)ds

]
, (2.8)

for any real number τ ∈ (−∞,+∞).

Proof. A proof of this theorem is found in [11] page 81.

2.2.3 Linear Systems with Constant Coefficients
In this subsection, we consider the homogeneous equation

ẋ = Ax, (2.9)

and the non-homogeneous equation

ẋ = Ax+ h(t), (2.10)

where A is an n× n real constant matrix and h : (−∞,∞)→ Rn is continuous.
Given any fundamental matrix solution X(t) of (2.9) it is well known that

eAt := X(t)X−1(0) , (2.11)

where X−1(0) denotes the inverse matrix of X(0), is the only matrix solution of (2.9) that
evaluates at t = 0 gives the identity matrix; see for instance discussions given in [11], [12]
and [13]. Some important properties of the principal matrix solution eAt, which provide
the reason for this choice of notation, are the following:

eA(t+s) = eAteAs(
eAt

)−1
= e−At

d

dt
eAt = AeAt = eAtA,

and
eAt =

+∞∑
n=0

1
n!A

ntn = I + At+ 1
2!A

2t2 + · · · . (2.12)
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Particularly, the formula (2.12) is useful in some cases where A decomposes as A =
PJP−1, where P is an invertible matrix and for J its powers are known.

We close this subsection by noting that, according to the previous subsection, a general
solution of (2.9) is eAtv where v is an arbitrary vector in Rn and, for the equation (2.10),
(2.8) lead us to the formula

x(t) = eAt
[
x(0) +

∫ t

0
e−Ash(s)ds

]
. (2.13)

2.3 Eigenvalues and Eigenvectors
A real or complex number λ is called an eigenvalue of an n× n matrix A, if there exists
a non-zero vector v such that

Av = λv, or (A− λI)v = 0, (2.14)

where I is the n × n identity matrix. If λ is an eingenvalue of the matrix A and v is any
non-zero solution of equation (2.14), then v is called an eigenvector associated with the
eigenvalue λ. Hence, λ is an eigenvalue of the matrix A if λ is a solution of the polynomial
equation

det(A− λI) = 0. (2.15)

We refer to equation (2.15) as the characteristic equation of the matrix A. This
equation has n solutions, with possible repetitios

Now, let us consider an n× n matrix A and define a matrix B as

B := A+ νI, (2.16)

where ν is a real or complex number.

Proposition 1. λ is an eigenvalue of A if and only if λ+ ν is an eigenvalue of B.

Proof. If λ is an eigenvalue of A, there exists a non-zero vector v such that Av = λv. Now,

Bv = (A+ νI)v = Av + νIv

= (λ+ ν)v .

Thus, λ+ ν is an eigenvalue of B.
If λ+ν is an eigenvalue of B, then there exists a non-zero vector v such that Bv = (λ+ν)v.
The fact that B is given by (2.16) implies Av = λv. Hence, λ is an eigenvalue of A.

Proposition 2. v is an eigenvector of A if and only if v is an eigenvector of B. Moreover,

Av = λv ⇐⇒ Bv = (λ+ ν)v .
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Proof. If Av = λv,v 6= 0, then

Bv = (A+ νI)v = λv + νv

= (λ+ ν)v .

Thus, v is an eigenvector of B.
If Bv = (λ+ ν)v, v 6= 0, then (A+ νI)v = (λ+ ν)v. Therefore Av = λv.

The following propositions will be of great importance for the discussion of chapter 4
of this work.

Let A be a real matrix in M3×3 and suppose that A has two eigenvalues that are
complex conjugates and one real eigenvalue, i.e., λ1 = α + iβ, λ2 = α − iβ and λ3, with
α, β ∈ R and β > 0. Let B be a real matrix in M3×3 defined as in (2.16), with ν ∈ R.

Proposition 3. There exists a real invertible matrix P inM3×3 such B can be decomposed
as

B = PJP−1 ,

where J is given by

J =


α + ν β 0
−β α + ν 0
0 0 λ3 + ν

 . (2.17)

Moreover, P does not depend on ν.

Proof. Let v be an eigenvector of A associated to the eigenvalue λ1. Since λ1 is complex,
v could be expressed as v = v1 + iv2, where v1 and v2 are two non−zero real vectors. Now,
from Proposition 1, we have that

B (v1 + iv2) = (α + ν + iβ) (v1 + iv2) . (2.18)

We claim that vectors v1 and v2 are linearly independent. Indeed, suppose that they were
linearly dependent. Then there would be two non−zero real constants c1 and c2 such that
c1v1 + c2v2 = 0, or equivalently v1 = −

(
c2/c1

)
v2. Using this in equation (2.18) we obtain

B
(
−
(
c2/c1

)
v2 + iv2

)
= (α + ν + iβ)

(
−
(
c2/c1

)
v2 + iv2

)
.

Now, straightforward computations allow us to conclude

Bv2 =
(
α + ν −

(
c2/c1

)
β
)
v2 and Bv2 =

(
α + ν +

(
c1/c2

)
β
)
v2 .

Therefore, α+ ν −
(
c2/c1

)
β = α+ ν +

(
c1/c2

)
β and from this we obtain the contradiction

c2
1 + c2

2 = 0. So, the vectors v1 and v2 must be linearly independent.
Let us now consider an eigenvector v3 of A corresponding to the eigenvalue λ3. Defining
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P as the matrix whose columns consist of the real vectors v1, v2 and v3; it is denoted by
P =

(
v1|v2|v3

)
, we have that P is invertible and satisfies BP = PJ , where J is given by

(2.17).
In fact, observe that by equating its real and imaginary parts, complex equation (2.18) is
equivalent to the following pair of real equations

Bv1 = (α + ν) v1 − βv2 , Bv2 = βv1 + (α + ν) v2.

Now, routine matrix multiplication yield

BP =
(
Bv1|Bv2|Bv3

)
=
(
(α + ν) v1 − βv2|βv1 + (α + ν) v2| (λ3 + ν) v3

)
= PJ.

If we multiply both sides of this matrix equation, we obtain the desired result. Finally,
since the matrix A depends on α, β and λ3, the same is true for P .

Proposition 4. For the matrix B as in the previous proposition we have that

eBt = P


e(α+ν)t cos βt e(α+ν)t sin βt 0
−e(α+ν)t sin βt e(α+ν)t cos βt 0

0 0 e(λ3+ν)t

P−1. (2.19)

Proof. From (2.12) and the fact that Bn = PJnP−1, it is obtained that

eBt = PeJtP−1 .

Our task is to obtain eJt. We write the matrix J given by (2.17) as the sum of two
commuting matrices

J =


α + ν 0 0

0 α + ν 0
0 0 λ3 + ν

+


0 β 0
−β 0 0
0 0 0

 .

In this scenario, commuting matrices, eJt = eDteCt, where

D =


α + ν 0 0

0 α + ν 0
0 0 λ3 + ν

 and C =


0 β 0
−β 0 0
0 0 0

 .

Now, by using (2.12) and Maclaurin’s knowledge of series it is obtained

eDt =


e(α+ν)t 0 0

0 e(α+ν)t 0
0 0 e(λ3+ν)t

 and eCt =


cos βt sin βt 0
− sin βt 1 cos βt 0

0 0 1

 .
Finally, eJt = eDteCt and this allows to obtain the desired result.
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Chapter 3

Setting of the problem and
Theoretical results

This chapter is divided into two sections. The first part shows the problem statement
where we establish conditions on the master−slave system to obtain synchronization in
chaotic systems. In the last part, we present the main theoretical results obtained.

3.1 Setting of the Problem
Let us consider the master−slave system as follows

ẋ = f(x, µ̄), (3.1)
ẏ = f(y, µ) + ν(y− x), (3.2)

where ν is a real constant, µ̄, µ are vector parameters in Rm and f : Rn × Rm → Rn is a
continuous function.

To pose the problem from which we will be able to guarantee conditions that imply
the synchronization of the system (3.1) − (3.2), we will begin by considering a bounded
solution x(t,x0, µ̄) of (3.1). Here x(t,x0, µ̄) stands by a solution such that at t = 0 gives
x(0,x0, µ̄) = x0. Now, consider the following transformation

z = y− x(t,x0, µ̄). (3.3)

If we consider y as a slave solution, i.e., solution of (3.2) with input x(t,x0, µ̄), then
the previous transformation yields the non-autonomous equation

ż = νz + f(µ, z + x(t,x0, µ̄))− f(µ̄,x(t,x0, µ̄)) := F (t, z, ν, µ, µ̄) . (3.4)

We will now focus on the equation

ż = F (t, z, ν, µ, µ̄) , (3.5)

where F : [0,∞)× Rn × R× Rm × Rm → Rn is a continuous function. It is assumed that
F can be decomposed as the sum of three functions

F (t, z, ν, µ, µ̄) = Bz +G (t, µ, µ̄) +H (t, z, µ) , (3.6)

16
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and for this decomposition we impose the following hypothesis:

H1) B is a constant real n × n matrix for which all the eigenvalues have negative real
part.

H2) G : [0,∞) × Rm × Rm → Rn is continuous and satisfies: if given ε > 0, then δ > 0
exists such that ∥∥G (t, µ, µ̄)

∥∥ < ε,

for any t ≥ 0 and µ, µ̄ with ‖µ− µ̄‖ < δ.

H3) H : [0,∞)×Rn×Rm → Rn is a continuous function such that H (t, 0, µ) = 0 for any
µ ∈ Rm and t ≥ 0. Also it satisfies the following type of Lipschitz condition: for any
µ ∈ Rm there is a positive constant L = L (µ) such that∥∥H (t, z1, µ)−H (t, z2, µ)

∥∥ ≤ L‖z1 − z2‖ , t ≥ 0.

About H1), H2) and H3:
Corresponding to hypothesis H1), let us propose an interesting result that will be useful

in the next section.

Proposition 5. If B is a constant real n × n matrix for which all the eigenvalues have
negative real part, then there are positive constants K, γ such that∥∥∥eBtz∥∥∥ ≤ Ke−γt‖z‖, t ≥ 0, z ∈ Rn. (3.7)

Proof. The proof of this result is strongly based on the Jordan canonical form of the matrix
B and can be seen in [11] (Theorem 4.2., (ii)).

Hypothesis H2) tells us that the norm of G, depending on how close the parameters µ
and µ̄ are, can be made sufficiently small. H3) is a type of condition that is often considered
when looking for existence and uniqueness of solutions for differential equations.

Now, in our problem we study the system (3.5) with the decomposition given in (3.6)
and under the hypotheses H1), H2) and H3). We pursuit to find solutions of (3.5)
that, when associated with the transformation (3.3), guarantee synchronization of the
master−slave system (3.1)− (3.2).

3.2 Theoretical Results
We start with a lemma relating the equation (3.5) with an integral equation

Lemma 2. The initial value problem ż = F (t, z, µ, µ̄)
z(0) = z0,

(3.8)

where F is decomposed as in (3.6), is equivalent to

z(t) = eBtz0 +
∫ t

0
eB(t−s) (G(s, µ, µ̄) +H(s, z(s), µ)

)
ds. (3.9)
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Proof. It is a direct consequence of the main Theorem of Calculus.

Suppose K, γ are the constants appearing in (3.7). Let ρ > 0 and µ, µ̄ ∈ Rm such that∥∥G (t, µ, µ̄)
∥∥ < ργ

4K , t ≥ 0. (3.10)

With this choice of ρ, µ and µ̄, and for z0 ∈ Rn satisfying ‖z0‖ <
ρ

2K we define

G (z0, ρ, µ, µ̄) :=
{

z ∈ Cb
(
[0,∞),Rn) : ‖z‖∞ := sup

t≥0
‖z(t)‖ ≤ ρ and z(0) = z0

}
.

Proposition 6. G (z0, ρ, µ, µ̄) is a closed subset of the Banach space X = Cb
(
[0,∞),Rn)

with the supremum norm.

Proof. We are going to show that X−G (z0, ρ, µ, µ̄) is open i.e. given z̄ ∈ X−G (z0, ρ, µ, µ̄)
there exists an ε−neighborhood of z̄ which is contained in X − G (z0, ρ, µ, µ̄). If z̄ ∈
X − G (z0, ρ, µ, µ̄) then z̄(0) 6= z0 or for some t̄ ≥ 0 we have that

∥∥∥z̄(t̄)
∥∥∥ > ρ.

If z̄(0) 6= z0, then
∥∥z̄(0)− z0

∥∥ := r̄ > 0. Choose ε = r̄
2 and consider the set{

z ∈ Cb
(
[0,∞),Rn) : ‖z− z̄‖∞ < ε

}
.

We have that this ε -neighborhood is contained in X − G (z0, ρ, µ, µ̄). In fact: If
z ∈

{
z ∈ Cb

(
[0,∞),Rn

) : ‖z− z̄‖∞ < ε
}

, then∥∥z(0)− z0
∥∥ =

∥∥z(0)− z̄(0) + z̄(0)− z0
∥∥

>
∥∥z̄(0)− z0

∥∥− ‖z(0)− z̄(0)‖

= r̄ − r̄

2 > 0.

Thus, z(0) 6= z0.
If ‖z̄(t̄)‖ > ρ for some t̄ > 0, then the ε -neighburhood of z̄, with ε = ‖z̄(t̄)‖ − ρ, is

contained in X − G (z0, ρ, µ, µ̄). In fact: If z ∈
{
z ∈ Cb

(
[0,∞),Rn

) : ‖z− z̄‖∞ < ε
}

, then∥∥∥z(t̄)
∥∥∥ =

∥∥∥z(t̄)− z̄(t̄) + z̄(t̄)
∥∥∥

>
∥∥∥z̄(t̄)

∥∥∥− ∥∥∥z(t̄)− z̄(t̄)
∥∥∥

= ε+ ρ−
∥∥∥z(t̄)− z̄(t̄)

∥∥∥
> ρ.

Thus,
∥∥∥z(t̄)

∥∥∥ > ρ.

Inspired in the last lemma, for any z ∈ G (z′, ρ, µ, µ̄) we define an operator Tz by

(Tz) (t) = eBtz0 +
∫ t

0
eB(t−s) (G(s, µ, µ̄) +H(s, z(s), µ)

)
ds, t ≥ 0.

We have, due to the fact that eB(·)z0 is continuous and the hypothesis H1), H2), that
Tz is a continuous function for t ≥ 0.

Now, we state our main theoretical result.
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Teorema 1. If
KL

γ
≤ 1

4 , (3.11)

where L = L(µ̄) is the constant given in H3), then T acts from G (z′, ρ, µ, µ̄) into itself and
also has a unique fixed point in G (z0, ρ, µ, µ̄).

Proof. Let z ∈ G (z0, ρ, µ, µ̄). From H1), (3.10), (3.11), we obtain
∥∥(Tz) (t)

∥∥ ≤∥∥∥eBtz0

∥∥∥+
∫ t

0

∥∥∥eB(t−s) (G(s, µ, µ̄) +H(s, z(s), µ)
)∥∥∥ds

≤Ke−γt‖z0‖+K
∫ t

0
e−γ(t−s)

∥∥∥(G(s, µ, µ̄) +H(s, z(s), µ)
)∥∥∥ds

≤Ke−γt‖z0‖+K
∫ t

0
e−γ(t−s)

∥∥∥(G(s, µ, µ̄)
)∥∥∥ds

+K
∫ t

0
e−γ(t−s)

∥∥∥(H(s, z(s), µ)
)∥∥∥ds

≤ρ2 + ργ

4

∫ t

0
e−γ(t−s)ds+KL

∫ t

0
e−γ(t−s)∥∥z(s)

∥∥ds
≤ρ2 + ργ

4

∫ t

0
e−γ(t−s)ds+KL‖z‖∞

∫ t

0
e−γ(t−s)ds

=ρ2 +
(
ργ

4 +KL‖z‖∞
) 1
γ

(1− e−γt)

≤ρ2 +
(
ργ

4 +KL‖z‖∞
) 1
γ

=ρ2 + ρ

4 + KL

γ
‖z‖∞

≤ρ.

Thus, ‖Tz‖ ≤ ρ and Tz ∈ G (z′, ρ, µ, µ̄).
Now, let us take z1, z2 ∈ G (z′, ρ, µ, µ̄), the same type of estimates yields

∥∥(Tz2) (t)− (Tz1) (t)
∥∥ ≤ ∫ t

0

∥∥∥eB(t−s) (H(s, z2(s), µ)−H(s, z1(s), µ)
)∥∥∥ds

≤
∫ t

0
Ke−γ(t−s)

∥∥∥(H(s, z2(s), µ)−H(s, z1(s), µ)
)∥∥∥ds

≤
∫ t

0
KLe−γ(t−s)∥∥z2(s)− z1(s)

∥∥ds
≤
(∫ t

0
KLe−γ(t−s)ds

)
‖z2 − z1‖∞

= KL

γ

(
1− e−γt

)
‖z2 − z1‖∞

≤ KL

γ
‖z2 − z1‖∞

≤ 1
4‖z2 − z1‖∞.

Thus, T is a contraction on G (z′, ρ, µ, µ̄) and there is a unique fixed in G (z′, ρ, µ, µ̄).
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We close this chapter with an interesting application of the famous Gronwall’s inequality
which, of course, here is related to the Theorem 1. First, let us to state and give a proof
of the Gronwall’s inequality

Lema 3. Let M be a non-negative constant and let f and g be continuous non-negative
functions, for a ≤ t ≤ b, satisfying

f(t) ≤M +
∫ t

a
f(s)g(s)ds, a 6 t 6 b,

then
f(t) ≤Me

∫ b

a
g(s)ds a 6 t 6 b .

Proof. Define h(t) = M +
∫ t
a f(s)g(s)ds. We have that h(a) = M and ḣ(t) = f(t)g(t).

Now, since f(t) 6 h(t), f(t) > 0 and g(t) > 0 for a 6 t 6 b it is obtained

ḣ(t) = f(t)g(t) 6 h(t)g(t) .

By multiplying both members of this inequality by e−
∫ t

a
g(s)ds, we obtain

e−
∫ t

a
g(s)dsḣ(t) 6 e−

∫ t

a
g(s)dsh(t)g(t) .

Thus,

e−
∫ t

a
g(s)ds

(
ḣ(t)− h(t)g(t)

)
6 0 and d

dt

(
e−
∫ t

a
g(s)dsh(t)

)
6 0 .

Now, integrating from a to t we get

e−
∫ t

a
g(s)dsh(t)− e−

∫ t

a
g(s)dsh(a) 6 0 ,

which implies e−
∫ t

a
g(s)dsh(t) 6 h(a) = M and h(t) 6 Me

∫ t

a
g(s)ds. Finally, the fact that

f(t) 6 h(t) produces the result
f(t) 6Me

∫ t

a
g(s)ds.

Consider the sets G (z0, ρ, µ, µ̄) and G (z̃0, ρ, µ, µ̄). Let us denote by z? := z?(·, z0)
and z̃? := z̃?(·, z̃0) the fixed points of the operator T on G (z0, ρ, µ, µ̄) and G (z̃0, ρ, µ, µ̄),
respectively, i.e. Tz? = z? and T z̃? = z̃?. We have

z?(t, z0)− z̃?(t, z̃0) = eBt(z0 − z̃0) +
∫ t

0
eB(t−s) (H(s, z?(s, z0), µ)−H(s, z̃?(s, z̃0), µ)

)
ds.

Now,

∥∥z?(t, z0)− z̃?(t, z̃0)
∥∥ ≤ Ke−γt‖z0 − z̃0‖+

∫ t

0
KLe−γ(t−s)∥∥z?(s, z0)− z̃?(s, z̃0)

∥∥ds.
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By multiplying both members of the previous inequality by eγt, we obtain

eγt
∥∥z?(t, z0)− z̃?(t, z̃0)

∥∥ ≤ K‖z0 − z̃0‖+
∫ t

0
KLeγs

∥∥z?(s, z0)− z̃?(s, z̃0)
∥∥ds.

For this inequality we have, with M = K‖z0− z̃0‖, f(t) = eγt‖z?(t, z0)− z̃?(t, z̃0)‖ and
g(t) = KL, the hypotheses of Gronwall’s lemma. Therefore, we can conclude that

eγt
∥∥z?(t, z0)− z̃?(t, z̃0)

∥∥ 6 K‖z0 − z̃0‖e
∫ t

0 KLds, t > 0.

Thus, ∥∥z?(t, z0)− z̃?(t, z̃0)
∥∥ 6 Ke(KL−γ)t‖z0 − z̃0‖, t > 0, (3.12)

because in the Theorem 1, KL
γ

6
1
4. Relation (3.12) implies

∥∥z?(t, z0)− z̃?(t, z̃0)
∥∥ ap-

proaches zero exponentially as t→∞ and
∥∥z?(·, z0)− z̃?(·, z̃0)

∥∥
∞ 6 K‖z0 − z̃0‖.
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Chapter 4

Application in Chua’s equation

In this chapter, we present the application of the theoretical results obtained in the last
chapter to Chua’s equations. We begin with a brief description of Chua’s circuit. Then, we
prove that Chua’s equations satisfy the conditions described above and, using a Computer
Algebra System, we show graphically the result of the system to be synchronized.

4.1 A brief aspects about Chua’s circuit
The absence of a reproducible functioning chaotic system would imply that chaos could be
a phenomenon that will solely exist in mathematical abstraction and computer simulations
[15]. In 1983, intending to build an autonomous electronic circuit that exhibits a chaotic
electronic natural behavior, Professor Leon O. Chua proposes an electronic circuit which
models non-linear dynamics and present convoluted bifurcations and chaos.

Chua’s circuit is the bridge to understand the characteristic associated to dynamics
of nonlinear phenomena as stable orbits, bifurcations, and attractors, and to study ex-
perimentally the chaos control. This circuit, in its classic configuration, is one of the
simplest chaotic systems containing an inductor L, two capacitors C1, C2 which are the
linear energy-storage elements, a linear resistor iL and one 2-terminal nonlinear resistor
NR characterized by a current-voltage v − i characteristic which has a negative slope [16].

All circuit elements are passive except for the nonlinear resistor NR; this element must
be active in order for the circuit to become chaotic, and hence the instability condition
implies that each equilibrium point must lie on a segment of piecewise linear v − i [15].

Reference [17] shows that Chua’s circuit can be analyzed using Kirchoff’s Laws. Thus,
the following equations are obtained describing the circuit behavior

C1
dvC1

dt
= 1
R

(vC2 − vC1)− f(vC1) (4.1)

C2
dvC2

dt
= 1
R

(vC1 − vC2) + iL (4.2)

L
dil
dt

= −vC2 , (4.3)

where
f(vR) = GbvR + 1

2(Ga −Gb)
[
|vR +Bp| − |vR −Bp|

]
,
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is the response function of non-linear element (vR− iR). It consists of five linear segments,
as shown in Figure (4.1).

Figure 4.1: Illustration of the 5-segment vR − iR characteristic for the nonlinear resistor
corresponding to Chua’s circuit (4.1)−(4.3) used in the first research of the chaotic behavior
of this circuit [15]

In this work, we will use the adimensional form of equation system which is obtained
by rescaling the parameters of the system

x = vC1

Bp

, y = vC2

Bp

, z = R
iL
Bp

,

t = tRC2, α = C2

C1
, β = R2C2

L
,

a = −RGa, b = −RGb.

For (4.1) the following procedure is carry out. Taking, x = vC1
Bp

then dx

dt
= 1
Bp

dvC1

dt
and

taking y = vC2
Bp

, so

C1
dvC1

dt
= 1
R

(vC2 − vC1)− f(vC1)

C1Bp
dx

dt
= Bp

R
(y − x)− f(xBp)

C1Bp
dx

dt
= Bp

R
(y − x)−

GbxBp + 1
2

(
b

R
− a

R

) [
|Bp(x+ 1)| − |Bp(x− 1)|

]
dx

dt
= 1
RC1

(y − x)−
(
x

b

RC1
+ 1

2RC1
(b− a)

(
|x+ 1| − |x− 1|

))
,
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since t = tRC2 then C2 = 1
R

, it follows that

dx

dt
= C2

C1
(y − x)−

[
bx
C2

C1
+ C2

2C1
(b− a)

(
|x+ 1| − |x− 1|

)]
dx

dt
= α(y − x)− α

[
bx+ 1

2(b− a)
(
|x+ 1| − |x− 1|

)]
,

by taking f(x) = bx+ 1
2(b− a)

(
|x+ 1| − |x− 1|

)
, then (4.1) becomes

ẋ = α(y − x)− αf(x).

For (4.2) the following procedure is carry out. Consider x = vC1

Bp

then dy

dt
= 1
Bp

dvC2

dt

and taking x = vC1
Bp

and iL = zBp

R
, so

C2
dvC2

dt
= 1
R

(vC1 − vC2) + iL

C2Bp
dy

dt
= Bp

R
(x− y) + zBp

R
dy

dt
= 1
RC2

(x− y) + z

RC2
,

as before, since t = tRC2 then 1
R

= C2. Thus

ẏ = x− y + z.

For the last equation, (4.3), Let us consider vC2 = yBp, and z = R iL
Bp

then dz
dt

= R
Bp

diL
dt

,
so

LBp

R

dz

dt
= −yBp

dz

dt
= −R

L
y,

since t = tRC2 then R

L
= R2C2

L
= β, so that

ż = −βy.

Thus, the resulting system is a set of interdependent equations in the form of a 3-
Dimensional autonomous piece-wise linear ordinary differential equation (flow) described
by 

ẋ = α(y − x− f(x)),
ẏ = x− y + z,

ż = −βy,
(4.4)

where
f(x) = bx+ 1

2(b− a)
[
|x+ 1| − |x− 1|

]
,

Mathematician 24 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

and a, b, α and β are real parameter, a < b < 0, α > 0 and β > 0. The system (4.4) is
known as Chua’s equation.

This piece-wise function can be written as follows

f(x) =


bx− (a− b), if x ≤ −1,
ax, if − 1 ≤ x ≥ 1,
bx+ (a− b), if x ≥ 1.

(4.5)

Unlike the Figure (4.1), the non-linear function f(x) has three negative slopes as shown
in the following figure

Figure 4.2: Illustration of the three negative slopes corresponding to the non- linear con-
tinuous function (4.5) of the Chua’s Equation (4.4).

Each coordinate of (4.4) corresponds to physical quantities describing by the circuit

• x is the voltage drop on the first capacitor,

• y is the voltage drop on the second capacitor, and

• z is the current through the coil.

4.2 Application of Theoretical Results
In order to apply the theoretical results obtained to the system (3.1)− (3.2) in the Chua’s
sytems (4.4), we consider

z =

x̄ȳ
z̄

 , x(t,x0, µ̄) =

xy
z

 , µ =
(
α
β

)
, µ̄ =

(
ᾱ

β̄

)
.
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We have to find the representation of (3.4) for the case of (4.4). For that, first let us
compute f(z + x(t,x0, µ̄), µ)− f

(
x(t,x0, µ̄), µ̄

)
. Then,

f(z + x(t,x0, µ̄), µ) =

α((ȳ + y)− (x̄+ x)− f(x̄+ x))
(x̄+ x)− (ȳ + y) + (z̄ + z)

−β(ȳ + y)

 ,
so that,

f(z + x(t,x0, µ̄), µ)− f
(
x(t,x0, µ̄), µ̄

)
=

α(ȳ − x̄)
x̄− ȳ + z̄
−βȳ

+

(α− ᾱ)(y − x− f(x))
0

(β̄ − β)y



+

α(f(x)− f(x̄+ x))
0
0

 .
Rewriting the last expression we have

f(z + x(t,x0, µ̄), µ)− f
(
x(t,x0, µ̄), µ̄

)
=

−α α 0
1 −1 1
0 −β 0


x̄ȳ
z̄

+

(α− ᾱ)(y − x− f(x))
0

(β̄ − β)y



+

α(f(x)− f(x̄+ x))
0
0

 .
Now, setting

A = A(µ) :=

−α α 0
1 −1 1
0 −β 0

 , (4.6)

G(t, µ, µ̄) :=

(α− ᾱ)(y − x− f(x))
0

(β̄ − β)y

 , (4.7)

and

H(t, µ, z) =

α(f(x)− f(x̄+ x))
0
0

 , (4.8)

the system (3.1)− (3.2), in the context of Chua’s equations (4.4), becomes

ż = νz + Az +G(t, µ, µ̄) +H(t, µ, z)
= (A+ νI)z +G(t, µ, µ̄) +H(t, µ, z). (4.9)

Notice that, at this point, we get a mathematical formula written as in (3.6). Our
next goal is to establish that for the expression given in (4.9) the hypothesis H1), H2) and
H3) are satisfied. To prove H1), we consider B = A + νI where B ∈ M3×3 so that, it is
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important to know some properties about A matrix. Using a Computer Algebraic System,
Maxima [18], we can obtain the eigenvalues and eigenvectors of A. Then, for any α, β ∈ R,
the eigenvalues of A are given by

λ1A
=
−1

2 −
√

3i
2

 h2 (α, β)−

(
√

3i
2 −

1
2

) (
β
3 + (−1) (α+1)2

9

)
h2 (α, β) + (−1) (α + 1)

3 ,

λ2A =
−1

2 +
√

3i
2

 h2 (α, β)−

(
−1

2 −
√

3i
2

) (
β
3 + (−1) (α+1)2

9

)
h2(α, β) + (−1) (α + 1)

3 ,

λ3A =h2 (α, β)−
β
3 + (−1) (α+1)2

9
h2 (α, β) + (−1) (α + 1)

3 ,

where

h2(α, β) =
h1 (α, β) + (α + 1) β − 3αβ

6 + (−1) (α + 1)3

27

 1
3

,

and

h1(α, β) =

√
β
(
4β2 + (8α2 − 20α− 1) β + 4α4 + 12α3 + 12α2 + 4α

)
23 3

2
.

From here, we consider α = 9 and β = 100
7 so, the eigevalues of A are

λ1A = −0.0639− 3.608i,
λ2A = −0.0639 + 3.608i,
λ3A = −9.8721,

and the eigenvectors asociated to each λi for i = 1, 2, 3 are given by

v1A =

 1
0.9929
−1.5172

 , v2A =

 0
−0.4009
−3.9579

 , v3A =

 1
−0.0969
−0.1402

 ,
respectively.

By Proposition 2, for each i = 1, 2, 3, viA is an eigenvector of B. In order to prove H1)
in the Chua’s equation (4.4) we consider the following proposition.

Proposition 7. The matrix B satisfies H1). Moreover, there are positive contants K, γ
such that ∥∥∥eBt∥∥∥ ≤ Ke−γt, t ≥ 0. (4.10)

Proof. Let B be a 3× 3 real matrix given by

B = A+ νI =


−α + ν α 0

1 −1 + ν 1
0 −β ν

 . (4.11)
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By Proposition 1, for any value of α, β, the eigenvalues of B are given by

λ1B = λ1A + ν, i = 1, 2, 3,

then for values of α = 9 and β = 100
7 , the eigenvalues become

λ1B = −0.0639 + ν − 3.6082i,

λ2B = −0.0639 + ν + 3.6082i,

λ3B = −9.8721 + ν.

By choosen ν < 0.064, we have estabished that all the eigenvalues have negative real
part. By Proposition 3, B has the descomposition

B = PJP−1,

where J is given by

J =


−0.0639 + ν −3.6082 0

3.6082 −0.0639 + ν 0
0 0 −9.8721 + ν

 .
By Proposition 2, the eigenvalues of A are eigenvalues for B so P becomes

P =


1 0 1

0.9929 −0.4009 −0.0969
−1.5172 −3.9579 −0.1402

 ,
the inverse corresponding to this matrix is

P−1 =


0.06728 0.8135 −0.0824
−0.0588 −0.2830 −0.2240
0.9327 −0.8135 0.0824

 .
We know that

eBt = PeJtP−1. (4.12)

By taking the Euclidean norm in both sides, we get∥∥∥eBt∥∥∥ =
∥∥∥PeJtP−1

∥∥∥
≤ ‖P‖

∥∥∥P−1
∥∥∥∥∥∥eJt∥∥∥

= ‖P‖
∥∥∥P−1

∥∥∥
∥∥∥∥∥∥∥∥∥∥


e(−0.0639+ν)t cos (3.6082t) −e−0.0639t sin (3.6082t) 0
e−0.0639t sin (3.6082t) e(−0.0639+ν)t cos (3.6082t) 0

0 0 e(−9.8721+ν)t


∥∥∥∥∥∥∥∥∥∥

≤ 5.8470
(
e(−9.936+2ν)t

)
= Ke−γt,
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where K = 5.8470 and γ = 9.936− 2ν.

Now, let us prove that H2) is satisfied. Let G(t, µ, µ̄) be a continuous function given
by (4.7).

Proposition 8. Given ε > 0, there exists δ > 0 such that
∥∥G(t, µ, µ̄

∥∥ < ε (4.13)

for t ≥ 0 and ‖µ− µ̄‖ < δ.

Proof. Let ε > 0 be arbitrary. For any x, y ∈ R and t ≥ 0 choose

0 < δ <
ε

| x | + | y | , (4.14)

and assume that ‖µ− µ̄‖ < δ, i.e.,

‖µ− µ̄‖ =

∥∥∥∥∥∥∥
α− ᾱ
β − β̄


∥∥∥∥∥∥∥ < δ. (4.15)

Then, by (4.14) and (4.15)

∥∥G(t, µ, µ̄)
∥∥ =

∥∥∥∥∥∥∥∥∥∥


(α− ᾱ)(y − x− f(x))

0
(β̄ − β)y


∥∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥∥∥


(α− ᾱ)y

0
(β̄ − β)y


∥∥∥∥∥∥∥∥∥∥

+

∥∥∥∥∥∥∥∥∥∥


(α− ᾱ)(−x− f(x))

0
0


∥∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥
α− ᾱ
β − β̄


∥∥∥∥∥∥∥‖y‖+

∥∥∥∥∥∥∥
α− ᾱ
β − β̄


∥∥∥∥∥∥∥
∥∥x+ f(x)

∥∥
< δ

(
| y | + | x+ f(x) |

)
≤ δ(| x | + | y |) < ε.

Since ε was arbitrarily chosen, we have proved (4.13).

Now, to prove H3) we consider H(t, µ, z) given by (4.8) and the following proposition.

Proposition 9. H(t, µ, z) is Globally Lipschitz in z.

Proof. We have to prove that

∃ c > 0,∀ z1, z2 ∈ R3 :
∥∥H(t, µ, z2)−H(t, µ, z1)

∥∥ ≤ c‖z2 − z1‖. (4.16)
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Let z1, z2 ∈ R3, be arbitrary elements. Then,

H(t, µ, z2)−H(t, µ, z1) =


α(f(x̄2 + x)− f(x̄1 + x))

0
0

 ,
where α > 0 and f(x) is given by (4.5). It reminds to find a real constant M > 0 such that∥∥α(f(x̄2 + x)− f(x̄1 + x))

∥∥ ≤M‖x̄2 − x̄1‖. (4.17)

By the formula of f , we have to study 9 cases according the values that x̄2 + x and
x̄1 + x take.

The cases where x̄2 + x and x̄1 + x have the same conditions are immediately from the
definition of f . In the other cases, we have to work a little more. So,

i) if x̄1 + x ≥ 1 and x̄2 + x ≥ 1, then∥∥α(f(x̄2 + x)− f(x̄1 + x))
∥∥ =| αb | ‖x̄2 − x̄1‖,

ii) if x̄1 + x ≤ −1 and x̄2 + x ≤ −1, then∥∥α(f(x̄2 + x)− f(x̄1 + x))
∥∥ =| αb | ‖x̄2 − x̄1‖,

iii) if | x̄1 + x |≤ 1 and | x̄2 + x |≤ 1, then∥∥α(f(x̄2 + x)− f(x̄1 + x))
∥∥ =| αa | ‖x̄2 − x̄1‖.

iv) If x̄1 + x ≥ 1 and x̄2 + x ≤ −1, we deduce that x̄1 − x̄2 ≥ 2. Then,∥∥∥α (f (x̄2 + x)− f (x̄1 + x)
)∥∥∥ =

∥∥∥α (b (x̄2 − x̄1) + 2(b− a)
)∥∥∥. (4.18)

Let us concentrate in b (x̄2 − x̄1) + 2(b− a). By one hand we have

b (x̄2 − x̄1) + 2(b− a) ≤ b (x̄2 − x̄1) + (b− a)(x̄1 − x̄2) = a(x2 − x̄1). (4.19)

Now, since b (x̄2 − x̄1) + 2(b− a) > 0, it follows that

b (x̄2 − x̄1) + 2(b− a) ≥ −a(x2 − x̄1). (4.20)

Thus, by (4.19) and (4.20)∥∥b (x̄2 − x̄1) + 2(b− a)
∥∥ ≤ ∥∥a(x2 − x̄1)

∥∥,
therefore, ∥∥∥α (b (x̄2 − x̄1) + 2(b− a)

)∥∥∥ ≤ | αa |
∥∥(x2 − x̄1)

∥∥.
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The procedure for the remaining cases is similar to iv).

v) If | x̄1 + x |≤ −1 and x̄2 + x ≥ 1, then∥∥∥α (f (x̄2 + x)− f (x̄1 + x)
)∥∥∥ ≤| αa | ‖x̄2 − x̄1‖,

vi) if | x̄1 + x |≤ 1 and x̄2 + x ≥ 1, then∥∥∥α (f (x̄2 + x)− f (x̄1 + x)
)∥∥∥ ≤ | αb | ‖x̄2 − x̄1‖,

vii) if | x̄1 + x |≤ 1 and x̄2 + x ≤ −1, then∥∥∥α (f (x̄2 + x)− f (x̄1 + x)
)∥∥∥ ≤ | αa | ‖x̄2 − x̄1‖,

viii) if x̄1 + x ≤ −1 and | x̄2 + x |≤ 1, then∥∥∥α (f (x̄2 + x)− f (x̄1 + x)
)∥∥∥ ≤ | αa | ‖x̄2 − x̄1‖,

ix) if x̄1 + x ≥ 1 and | x̄2 + x |≤ 1, then∥∥∥α (f (x̄2 + x)− f (x̄1 + x)
)∥∥∥ ≤ | αa | ‖x̄2 − x̄1‖.

From i) - ix), Let us pick a constant M =| αa |. Thus, we have proved (4.17), conse-
quently we have proved,

∥∥H(t, µ, z2)−H(t, µ, z1)
∥∥ ≤M‖z2 − z1‖.

Thus, we say that the Chua’s System fulfills the conditions H1), H2) and H3). Sum-
marizing for α = 9, β = 100

7 , a = −8
7 and b = −5

7 , we found constants K, γ, and L such
that

K = 5.8472, γ = 9.936− 2ν and L = 9 | a |= 72
7 .

Thus, for values of ν < −1.79, the condition KL
γ
< 1

4 is satisfied. Therefore, we can
apply the Theorem 1 so that ∥∥y− x(t, x0, µ̄)

∥∥ ≤ ρ.
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4.3 Numerical Results
The technique exposed in the system (3.1)−(3.2) considers two similar copies of the system
to be synchronized with different initial conditions on them. Let x = (x, y, z) ∈ R3 be the
generalized coordinates corresponding to the master system, and y = (xs, ys, zs) ∈ R3

those of the slave system. Thus, the whole system is

ẋ = ᾱ(y − x− f(x)),
ẏ = x− y + z,

ż = −β̄y,
ẋs = α(ys − xs − f(xs)) + ν(xs − x),
ẏs = xs − ys + zs + ν(ys − y),
żs = −βys + ν(zs − z).

As we mentioned before, we concentrate our attention on the master−slave system with
the usual parameters µ̄ = (ᾱ, β̄) =

(
9, 100

7

)
, and (a, b) =

(
−8

7 ,−
5
7

)
. Let us choose ν = −10

since it corresponds to the minor number respect to the negative real part of the eigenvalues
mentioned in Proposition 7. Also, let us consider a vector µ = (α, β) =

(
8.9, 99

7

)
, closer to

µ̄.
To represent the master−slave synchronization we use a Computer Algebraic System,

Maxima [18] and its graphical interface wxMaxima. To make the following figures, an
important guide is found in [2]. To explore this synchronization technique, master−slave
syncronization, we starting from two slightly initial conditions (0, 0.5, 0.6) and (−0.5, 2, 1)
as shown in Figure 4.3

Figure 4.3: Illustration of two systems (master and slave), corresponding to Chua’a equa-
tion (4.4), after synchronization.
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4.3.1 Synchronization by coordinates
In order to verify more explicitly the synchronization found in the Chua’s system (4.4),
we illustrate the synchronization through coordinates. In other words, we represent the
synchronization in the coordinates

[
x(t), xs(t)

]
over time t, as the same way, we represent

the synchroization in the coordinates
[
y(t), ys(t)

]
over time and

[
z(t), zs(t)

]
over time.

Let us begin with the coordinates x(t) and xs(t). In Figure 4.4, it is represented
the trajectories followed by x(t) (coordinate corresponding to master system) and xs(t)
(coordinate corresponding to slave system).

Figure 4.4: Simulation of trajectories of two initial conditions, x(0) = 0 and xs(0) = −0.5,
for two coupled Chua’s systems. (4.4) .

Next, in Figure 4.5, it is represented the trajectories followed by y(t) (coordinate corre-
sponding to master system) and ys(t) (coordinate corresponding to slave system). Clearly,
the initial values are far from each other, and over time, the synchronization achieved
becomes more clearly evident.
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Figure 4.5: Simulation of trajectories of two initial conditions, y(0) = 0.5 and ys(0) = 2,
for two coupled Chua’s systems. (4.4) .

Finally, we represent, in Figure 4.6, the trajectories followed by z(t) (coordinate cor-
responding to master system) and zs(t) (coordinate corresponding to slave system). The
trajectory of each coordinate has a different initial value which, over time, the synchro-
nization achieved becomes more evident.

Figure 4.6: Simulation of trajectories of two initial conditions, z(0) = 0.6 and zs(0) = 1,
for two coupled Chua’s systems. (4.4) .
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Chapter 5

Conclusions

In this work, we have considered a finite-dimensional master-slave system, which is coupled
through a linear term. The system has the form

ẋ = f (µ̄,x) (slave)
ẏ = f (µ,y) + ν (y− x) (master)

Associated with this system and after the transformation z = y− x, a non-autonomous
system of ordinary differential equations has been considered

ż = F (t, z, µ, µ̄) .

From this non-autonomous system, a class has been identified with the following char-
acteristics:

• A linear part with a matrix possessing eigenvalues with negative real part.

• An expression which is under control in the sense of its size and which depends on the
parameters involved in the problem as well as on a bounded solution of the master
system.

• A Lipschitz condition, in the global sense. Lipschitz in the difference given by the
coupling linear term of the master-slave system.

The class of conditions, on which synchronization is studied, is obtained without re-
sorting to linearization. This, in principle, avoids the consideration of approximations and
it can be an important point when considering numerical simulations.

As part of interest, it has been observed that Chua’s equations, which correspond to a
chaotic model, constitute a representation of the class identified here. We emphasize that
in these equations the nonlinear part is given by a piecewise continuous function and this
fact was fundamental for the global Lipschitz condition.

On the other hand, the theoretical results presented in this work come from very simple
ideas and show a relationship between the parameters involved in the system. Furthermore,
through the eigenvalues of the matrix mentioned above, we can give an estimate for the
coupling parameter ν for which synchronization is guaranteed.
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Finally, in order to provide more elements in the class of systems that have been iden-
tified, we have in mind, for future consideration, the Lorentz and Rossler equations. Al-
though it is true that for these chaotic systems the non-linear terms are quadratic polyno-
mials, there are works that have incorporated modifications that introduce piecewise linear
functions, see for instance [19], [20]. In this sense, we believe that what has been developed
in this work can be applied.
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