
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: LARGE SCALE TRAFFIC FLOW SIMULATION
USING A DISTRIBUTED SYSTEM

Trabajo de integración curricular presentado como requisito para la
obtención del título de Ingeniero en Tecnologías de la Información

Autor:
Clavijo Herrera Mauro Anibal

Tutor:
Ph.D. Pineda Arias Israel Gustavo

Urcuquí, Junio 2021

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Urcuquí, 23 de junio de 2021
SECRETARÍA GENERAL

(Vicerrectorado Académico/Cancillería)
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES

CARRERA DE TECNOLOGÍAS DE LA INFORMACIÓN
ACTA DE DEFENSA No. UITEY-ITE-2021-00017-AD

A los 23 días del mes de junio de 2021, a las 14:00 horas, de manera virtual mediante videoconferencia, y ante el Tribunal
Calificador, integrado por los docentes:

Presidente Tribunal de Defensa Dr. IZA PAREDES, CRISTHIAN RENE , Ph.D.

Miembro No Tutor Dr. MANZANILLA MORILLO, RAUL , Ph.D.

Tutor Dr. PINEDA ARIAS, ISRAEL GUSTAVO , Ph.D.

El(la) señor(ita) estudiante CLAVIJO HERRERA, MAURO ANIBAL, con cédula de identidad No. 0302695176, de la ESCUELA
DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES, de la Carrera de TECNOLOGÍAS DE LA INFORMACIÓN, aprobada
por el Consejo de Educación Superior (CES), mediante Resolución RPC-SO-43-No.496-2014, realiza a través de
videoconferencia, la sustentación de su trabajo de titulación denominado: Large scale traffic flow simulation using a
distributed system. , previa a la obtención del título de INGENIERO/A EN TECNOLOGÍAS DE LA INFORMACIÓN.

El citado trabajo de titulación, fue debidamente aprobado por el(los) docente(s):

Tutor Dr. PINEDA ARIAS, ISRAEL GUSTAVO , Ph.D.

Y recibió las observaciones de los otros miembros del Tribunal Calificador, las mismas que han sido incorporadas por el(la)
estudiante.

Previamente cumplidos los requisitos legales y reglamentarios, el trabajo de titulación fue sustentado por el(la) estudiante y
examinado por los miembros del Tribunal Calificador. Escuchada la sustentación del trabajo de titulación a través de
videoconferencia, que integró la exposición de el(la) estudiante sobre el contenido de la misma y las preguntas formuladas
por los miembros del Tribunal, se califica la sustentación del trabajo de titulación con las siguientes calificaciones:

Tipo Docente Calificación
Miembro Tribunal De Defensa Dr. MANZANILLA MORILLO, RAUL , Ph.D. 9,5

Presidente Tribunal De Defensa Dr. IZA PAREDES, CRISTHIAN RENE , Ph.D. 9,0

Tutor Dr. PINEDA ARIAS, ISRAEL GUSTAVO , Ph.D. 10,0

Lo que da un promedio de: 9.5 (Nueve punto Cinco), sobre 10 (diez), equivalente a: APROBADO

Para constancia de lo actuado, firman los miembros del Tribunal Calificador, el/la estudiante y el/la secretario ad-hoc.

Certifico que en cumplimiento del Decreto Ejecutivo 1017 de 16 de marzo de 2020, la defensa de trabajo de titulación (o
examen de grado modalidad teórico práctica) se realizó vía virtual, por lo que las firmas de los miembros del Tribunal de
Defensa de Grado, constan en forma digital.

CLAVIJO HERRERA, MAURO ANIBAL
Estudiante

Dr. IZA PAREDES, CRISTHIAN RENE , Ph.D.
Presidente Tribunal de Defensa

Dr. PINEDA ARIAS, ISRAEL GUSTAVO , Ph.D.
Tutor

Firmado electrónicamente por:

ISRAEL
GUSTAVO
PINEDA ARIAS

Firmado electrónicamente por:

CRISTHIAN
RENE IZA
PAREDES

Firmado electrónicamente por:

MAURO ANIBAL
CLAVIJO
HERRERA

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Dr. MANZANILLA MORILLO, RAUL , Ph.D.
Miembro No Tutor

TORRES MONTALVÁN, TATIANA BEATRIZ
Secretario Ad-hoc

TATIANA
BEATRIZ
TORRES
MONTALVAN

Firmado digitalmente
por TATIANA BEATRIZ
TORRES MONTALVAN
Fecha: 2021.06.28
21:52:48 -05'00'

Firmado electrónicamente por:

RAUL
MANZANILLA

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 2 Graduation Project

Autoŕıa

Yo, Mauro Anibal Clavijo Herrera, con cédula de identidad 0302695176, declaro
que las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y
conceptualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y her-
ramientas utilizadas en la investigación, son de absoluta responsabilidad de el autor del
trabajo de integración curricular. Aśı mismo, me acojo a los reglamentos internos de la
Universidad de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, Febrero del 2021.

Mauro Anibal Clavijo Herrera
CI: 0302695176

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer ii Graduation Project

Autorización de publicación

Yo, Mauro Anibal Clavijo Herrera, con cédula de identidad 0302695176, cedo a la
Universidad de Tecnoloǵıa Experimental Yachay, los derechos de publicación de la presente
obra, sin que deba haber un reconocimiento económico por este concepto. Declaro además
que el texto del presente trabajo de titulación no podrá ser cedido a ninguna empresa edi-
torial para su publicación u otros fines, sin contar previamente con la autorización escrita
de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este tra-
bajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto en el
Art. 144 de la Ley Orgánica de Educación Superior.

Urcuqúı, Febrero del 2021.

Mauro Anibal Clavijo Herrera
CI: 0302695176

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer iv Graduation Project

Dedication

“To my immediate family: My father Enrique, my mother Blanca, my sister Angie and
my grandparents. Without their unconditional love, support, patience and guidance this

achievement could not have been possible. To Domitila, I know that you will always
protect me from heaven.

To my excellent instructors whose perseverance and knowledge prepared me for any
adversities that will arise during my career and life.

To my friends and fellow students specifically to Karen, Andres, and the PPP group. I
thank you all for being part of this unforgettable journey. As always I wish you all the

best in your future endeavours.”

v

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer vi Graduation Project

Acknowledgments

First of all, I want to acknowledge Israel Pineda, Ph.D. Without his advice and motivation,
this project could have never been developed. His support during the implementation and
writing of this project helped me to improve my research abilities that will be very useful
for future projects. His dedication during this project made this achievement possible.

I would like to acknowledge this university, which provided me with a quality education
and laid a strong foundation for a brighter tomorrow.

I also would like to acknowledge my friends who gave me ideas and recommendations
during the development of this work.

Finally, I want to acknowledge my family for their guidance and unconditional love that
accompanied me during this stage of my life.

vii

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer viii Graduation Project

Resumen

El aumento de la congestión vehicular en las grandes ciudades, la evolución constante de
los sistemas informáticos y el desarrollo de sistemas de transporte inteligentes han dado
lugar a simulaciones de flujo de tráfico que representan escenarios de tráfico de la vida real
en un entorno de software. Estas simulaciones ayudan a mejorar el flujo del tráfico real
mediante el análisis de datos, para predecir la congestión en calles o carreteras concurridas,
y evitar inconvenientes como accidentes y atascos.

Simulation of Urban Mobility (SUMO) es una de las herramientas de simulación ve-
hicular más populares. Este software es un paquete de tráfico microscópico y de código
abierto que realiza simulaciones de grandes redes de carreteras. Sin embargo, estas sim-
ulaciones son computacionalmente costosas debido a problemas en tamaños de escenarios
y al número de veh́ıculos. La cantidad de veh́ıculos en un escenario puede llevar a tiem-
pos de procesamiento inmanejables. La necesidad de más computación produce requisitos
más exigentes de caracteŕısticas de hardware. Se implementan varios enfoques que utilizan
técnicas paralelas o distribuidas para aumentar el rendimiento de la simulación, lo que
permite al usuario experimentar con casos grandes.

Message Passing Interface (MPI) es un estándar de comunicación para enviar y recibir
mensajes entre diferentes procesos que se ejecutan simultáneamente para realizar tareas
paralelas o distribuidas. Las implementaciones de este estándar proporcionan varias fun-
ciones que permiten la comunicación entre procesos y permiten el paso de mensajes entre
ellos. Las principales ventajas de MPI son su portabilidad para sistemas distribuidos y su
amplia utilización debido a la optimización del hardware.

Este trabajo propone un algoritmo de partición de escenarios de simulacion y gestión
de fronteras para controlar el modelo de flujo de tráfico. Estas ideas se implementan y
ejecutan en grandes escenarios de SUMO utilizando un sistema distribuido. El algoritmo
de partición utiliza un enfoque de espacio uniforme. Este sistema se implementa mediante
técnicas MPI para comunicarse con diferentes nodos. Comparamos los resultados y el
rendimiento de la simulación distribuida con los resultados de una simulación de un solo
nodo. El desempeño de este enfoque se evalúa por el tiempo requerido para ejecutar la
simulación. Los resultados comparativos demostraron que el tiempo necesario para calcular
un paso de simulación disminuye. Sin embargo, las operaciones de sincronización y control
incluyen una sobrecarga significativa en el tiempo total de simulación.

Palabras Clave: SUMO, simulacion distribuida, MPI, TraCI.

ix

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer x Graduation Project

Abstract

The increased traffic congestion in big cities, the constant evolution of computer systems,
and the development of Intelligent Transportation Systems (ITS) have resulted in traffic
flow simulations representing real-life traffic scenarios in a software environment. These
simulations help improve actual traffic flow using data analysis to predict congestion in
crowded streets or highways and avoid inconveniences such as accidents and traffic jams.

Simulation of Urban Mobility (SUMO) is one of the most popular simulation tools.
This software is a non-proprietary traffic package that performs simulations of large road
networks. However, these simulations are computationally expensive due to large prob-
lem spaces in the number of vehicles. The number of vehicles in a scenario can lead to
unmanageable processing times. The need for more computation produces higher demand-
ing requirements of hardware characteristics. Few approaches using parallel or distributed
techniques have been implemented to increase the simulation performance enabling the
user to experiment with significant cases.

Message Passing Interface(MPI) is a communication standard to send and receive mes-
sages between different processes running simultaneously to perform parallel or distributed
tasks. The implementations of this standard provide several functions that enable inter-
process communication and allow message passing between them. The main advantages
of MPI are its portability for distributed systems and its vast utilization due to hardware
optimization.

This work proposes a network partition algorithm and border management to control
the traffic flow model. These ideas are implemented and executed in large SUMO scenarios
using a distributed system. The partition algorithm uses a uniform space approach. This
system is implemented using MPI techniques to communicate with different nodes. We
compare the results and performance of the distributed simulation with the results of a
single-core simulation. The performance of this approach is evaluated by the time required
to execute the simulation. Comparative results demonstrated that the time required to
compute a simulation step decreases. However, synchronization and control operations
include a significant overhead to the overall simulation time.

Keywords: SUMO, distributed simulation, MPI, TraCI

xi

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xii Graduation Project

Contents

Dedication v

Acknowledgments vii

Resumen ix

Abstract xi

Contents xiii

List of Tables xv

List of Figures xvii

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Objectives . 2

1.3.1 General Objective . 2
1.3.2 Specific Objectives . 2

2 Theoretical Framework 5
2.1 Traffic Simulation . 5

2.1.1 Microscopic Traffic Flow Models . 7
2.1.2 Car-following Model . 7
2.1.3 Lane Changing Model . 7

2.2 SUMO . 10
2.2.1 Network Building . 10
2.2.2 Demand Modelling . 12
2.2.3 Car-following and Lane-changing Model in SUMO 14
2.2.4 TraCI . 16

2.3 MPI . 17
2.3.1 Groups, Contexts, and Communicators 18
2.3.2 Point-to-Point Communication . 18

xiii

School of Mathematical and Computational Sciences Yachay Tech University

2.3.3 Collective Communication . 19
2.3.4 MPI for Python . 19

3 State of the Art 21
3.1 Partitioning Algorithms . 21

3.1.1 Graph Partitioning . 21
3.1.2 Space Partitioning . 22

3.2 Distributed Traffic Simulations . 23

4 Methodology 27
4.1 Phases of Problem Solving . 27

4.1.1 Description of the Problem . 27
4.1.2 Analysis of the Problem . 28
4.1.3 Algorithm Design . 28
4.1.4 Implementation . 28
4.1.5 Testing . 28

4.2 Model Proposal . 29
4.2.1 Network Partitioning . 29
4.2.2 Route Partitioning . 30
4.2.3 Border Management . 32
4.2.4 Communication Protocol . 33
4.2.5 Algorithm Implementation . 33

4.3 Experimental Setup . 34
4.4 Performance analysis . 35

5 Results and Discussion 39
5.1 Results . 39
5.2 Discussion . 40

6 Conclusions 47
6.1 Conclusions . 47
6.2 Recommendations . 48
6.3 Future Work . 49

Bibliography 51

Information Technology Engineer xiv Graduation Project

List of Tables

2.1 Decision process for changing lanes . 9
2.2 Coordinate parameters in a network file . 12
2.3 Edge parameters in a network file . 12
2.4 Lane parameters in a network file . 13
2.5 Junction (intersection) parameters in a network file 13
2.6 Request parameters in a network file . 14
2.7 Connection parameters in a network file 14
2.8 Vehicle Types in a route file . 15
2.9 Route representation in a route file . 15
2.10 Vehicle representation in a route file . 16
2.11 Blocking send in MPI . 19
2.12 Collective operations in MPI . 19

xv

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xvi Graduation Project

List of Figures

2.1 Genealogy of traffic flow models. Retrieved from [1]. 6
2.2 Pipes safe distance model. Retrieved from [1]. 7
2.3 SUMO Graphic User Interface . 10
2.4 Network representation in SUMO . 11
2.5 Network file representation . 11
2.6 Route file representation. 13
2.7 TraCI architecture. Retrieved from [2]. 16
2.8 Import TraCI in a Python script. 17
2.9 Basic TraCI script. 17
2.10 Group, context and Communicator example in MPI. Retrieved from [3]. . . 18

3.1 Graph Partitioning. Retrieved from [4]. 22
3.2 SPartSim Partitioning. Retrieved from [5]. 23
3.3 Uniform Space Partitioning. Retrieved from [6]. 23
3.4 dSUMO architecture. Retrieved from [7]. 24

4.1 Phases of Problem Solving . 27
4.2 Network example in SUMO . 29
4.3 Network Partition for two nodes in SUMO. The red line represents the

virtual border. 30
4.4 Network Partition for A . 30
4.5 Network Partition for B . 31
4.6 Route of a vehicle . 31
4.7 Route of the vehicle in the departing partition 31
4.8 Route of the vehicle in the receiving partition 31
4.9 Architecture of Distributed SUMO . 33
4.10 This workflow represents the behavior of one node executing the distributed

implementation. 35
4.11 Imbabura Cluster Topology . 35
4.12 Network Partition for two nodes. The red line represents the partition border. 36
4.13 Network Partition for four nodes . 37
4.14 Network Partition for six nodes . 37

5.1 Vehicle in Partition A before arriving to the Partition B. 40
5.2 Vehicle in Partition A and B after transference. 41
5.3 Vehicles coexist in both partitions after crossing the edge. 41

xvii

School of Mathematical and Computational Sciences Yachay Tech University

5.4 Vehicle in Partition A stop existing after leaving the border edge. 42
5.5 Total simulation time. 42
5.6 SUMO simulation time . 43
5.7 SUMO speedup . 44
5.8 MPI synchronization time . 44
5.9 TraCI operations time . 45

Information Technology Engineer xviii Graduation Project

Chapter 1

Introduction

1.1 Background
Traffic congestion is one of the most challenging problems a city faces, with significant
repercussions to its citizens. These scenarios can lead to accidents, delays, or other in-
conveniences with vehicles that circulate streets or highways in large urban areas. Traffic
simulation can be a powerful tool to simulate real traffic scenarios in a city. These sim-
ulations predict traffic jams and avoid dangerous traffic situations. However, the number
of vehicles in a congestion simulation can be vast, leading to computationally expensive
simulations.

Several types of traffic simulations have been created and are currently studied. Var-
ious created traffic simulators perform macroscopical and microscopical simulations. The
first one is based on the complete road flow using different constraints, and the last one
on simulating each vehicle as an autonomous agent that possesses its behavior based on
predefined metrics [7]. However, in this project, a microscopic simulator called SUMO [8]
will perform large-scale simulations of traffic scenarios using a geographic partition method
and several computation nodes to distribute the workload.

Simulation of Urban Mobility (SUMO) is a traffic simulation software designed during
2001 at the German Aerospace Center (DLR, German acronym). SUMO is an open-
source traffic simulator that contains several applications enabling the preparation and
performing simulations on real traffic scenarios [8]. This tool uses a network file that can
be created using netedit or converted from an existing map with netconvert. These are
some of the SUMO tools, among others. A route file also needs to be generated, which will
contain some characteristics such as type, departure times, and predefined routes for all
the vehicles in the simulation. Some car-following models simulate the driver behavior and
avoid accidents by considering another vehicle within the simulation. The microscopical
approach that SUMO implements considers each vehicle as an individual agent and declares
several variables that simulate the traffic scenario.

Microscopic simulations tend to be computationally expensive because we represent
each vehicle as an individual agent. We need to calculate several characteristics (i.e.,
position, speed, behavior) of each vehicle per time step. This high computation demand
increases the hardware requirements for large scenarios and leads to longer execution times.

1

School of Mathematical and Computational Sciences Yachay Tech University

This time can grow exponentially as the simulation scenarios increase.
This project proposes a solution for this problem by performing a distributed traffic

simulation using SUMO, Traffic Control Interface (TraCI), and a Message Passing Interface
(MPI) library to increase large scenarios performance. The solution enables to run scenarios
that would typically use a single machine in several machines. TraCI enables manipulating
the simulation in “real-time” and adding/removing vehicles sent between nodes using MPI
as a communication tool. The proposed system is compared to a standard simulation in
terms of time performance.

This project uses a uniform space partition algorithm to divide the network and route
scenarios into similar size partitions, as suggested by Acosta et al. [6]. Then, each node re-
ceives a partition. It will run a SUMO instance using said partition and interact with TraCI
to calculate vehicular behavior and send/receive vehicles through an MPI communicator.

1.2 Problem Statement
Traffic scenarios are a crucial subject considered in urban planning as this can lead to
congestion situations and inefficient road constructions. Traffic congestion is a widely
researched area as the efforts aim to optimize route planning and avoid accident scenes
[9][10]. These scenarios are often studied, taking advantage of the available technology
using real-life scenarios and replicating them in a software-oriented simulation. A traffic
simulator is software that renders a network (i.e., a city scenario) and simulates vehicular
and pedestrian behavior using predefined variables such as traffic flow models and others.

Performing a traffic simulation is computationally expensive due to the number of
computations required to calculate the characteristic of the vehicles at each step of the
simulation. A distributed system can be an effective solution to the mentioned problem
as this will allow running the computations in several nodes that will work together to
process the calculations.

One of the motivations for using MPI techniques within a distributed system relies on
portability and compatibility with different hardware architectures. It also provides a se-
cure and easy message passing infrastructure that allows communication between different
system nodes.

1.3 Objectives

1.3.1 General Objective
Design and implement a distributed system for traffic flow simulation using communica-
tion techniques and traffic control interface to manipulate vehicles in real-time during the
execution of a SUMO scenario.

1.3.2 Specific Objectives
• Use a space partition algorithm to divide a network and vehicles inside a delimited

area.

Information Technology Engineer 2 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Implement a distributed system to run simulations in SUMO using Traffic Control
Interface (TraCI) to control objects in the simulation and MPI techniques to com-
municate nodes.

• Analyze different SUMO simulations using the proposed implementation.

Information Technology Engineer 3 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 4 Graduation Project

Chapter 2

Theoretical Framework

This chapter presents the necessary concepts to understand this work, an introduction,
a detailed explanation of the fundamentals in traffic simulations, the SUMO simulator
interface, and components that help create traffic flow scenarios simulating them with user-
created characteristics. It also explains the MPI communication techniques that enable us
to create a message-passing system within the development of this project.

2.1 Traffic Simulation
The need for mobility during human activities, such as economic or social, has become
essential nowadays. As the urban and rural zones have grown, so have the distance and
the time required for transportation between two locations. The augmentation in vehicles
that circulate the world every year results in this time increment [11]. Furthermore, the
emergence of electric and self-driving cars [12] has enabled the development of models
representing real-life traffic scenarios using computational applications that simulate said
scenarios and even help us predict traffic.

The first traffic flow model was presented by Bruce Greenshields in 1935 [13], and since
then, several studies developed models and simulation tools. Nowadays, long-term planning
and short-term predictions, based on actual traffic data, employ simulation frameworks.
In the future, the models and simulation tools may develop to support adaptive cruise
control, dynamic traffic management, and other characteristics [1]. Figure 2.1 depicts the
evolution of traffic flow models.

5

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.1: Genealogy of traffic flow models. Retrieved from [1].

As shown in Figure 2.1, there are several types of simulation models descending from
the Fundamental Diagram(FD) of Greenshields [13]: macroscopic, mesoscopic, and micro-
scopic models. The macroscopic model defines a simulation on the complete road flow
using averaged quantities such as density and others. The microscopic model performs
simulations treating each vehicle as an individual agent. Finally, the mesoscopic model is
a combination of macroscopic and microscopic simulations.

The majority of traffic simulators use the microscopic approach due to detailed aspects
inside the simulation and replicating driver behavior. The following section presents this
model.

Information Technology Engineer 6 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.1.1 Microscopic Traffic Flow Models
The microscopic model simulates objects (vehicles) as an individual agent of the simulation.
This implies calculating the actions (position, acceleration, speed, lane changes, and others)
of the vehicle regarding the surrounded traffic at each simulation step. This model resulted
in the development of car-following and lane-changing models.

2.1.2 Car-following Model
The idea of this model is that microscopic simulations describe the actions of each vehicle
in function on the position and speed of vehicles nearby [14].

The first car-following model was introduced by Pipes in 1953 [15], and it was a safe-
distance model. In this model, vehicles adapt their velocity corresponding to the leader
vehicle to maintain a safe distance to other agents of simulation [1]. A formal definition on
the classical car-following model are shown in Eq.2.1, where vi(t) represents the velocity
of a ith vehicle in time t, vi−1(t) is the velocity of the vehicle preceding the previous one,
and τ is a relaxation on some time scale, representing how the driver achieves the desired
velocity [14].

dvi(t)
dt

= vi−1(t) − vi(t)
τ

(2.1)

The car-following model is represented in Figure 2.2, the n − 1 object is the leading
vehicle, the n vehicle is following it, and the variables ln and ln−1 represent the length of
said vehicles. The value of xn and xn−1 represents the position of both cars. The value of d
represents a safe distance, which means that the vehicle will not exceed that distance when
close to the leader. Finally, Tvn represents the safe stopping distance, with T representing
the time and vn the speed of the vehicle.

Figure 2.2: Pipes safe distance model. Retrieved from [1].

In later years, car-following evolved into several models such as the optimal velocity
model [16] [17], cellular automaton [18][19], and even modelling of human behaviour [20].
Further historical analysis can be found in Brackstone and McDonald [21].

2.1.3 Lane Changing Model
The lane-changing model defines a decision-making model where a vehicle in the simulation
contemplates several factors to change lanes in a multi-lane scenario. Several factors can

Information Technology Engineer 7 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

be critical such as traffic signals or traffic jam situations. Gipps presented the first model
in 1986 [22]. Table 2.1 shows the performed steps towards a successful lane-change in this
model.

According to Krauss [14], the topic of lane changes has reduced literature compared
to car-following models. Sparmann [23] performed a two-lane-freeway analysis, Leutzbach
and Busch [24] performed another analysis in three-lane-freeways, and Chowdbury et al.
and Latour performed rules in cellular automaton [25][26].

Information Technology Engineer 8 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.1: Decision process for changing lanes

Name Description

Selection of lanes The target lane is the lane where the driver intends to
move. This lane could change due to the impossibility
to move into the said lane.

Feasibility of changing lanes To be able to change lanes, two conditions must be sat-
isfied: the target lane must be one of the available to the
vehicle, and said lane must be denuded of obstruction
of other vehicles.

Driver behavior close to the
intended turn

Ask whether the vehicle is close to the intended turn. If
the answer is yes, then perform the change to that lane.

The urgency of changing
lanes

As the vehicle approaches the intended lane, the urgency
to turn increases.

Transit lanes and vehicles Transit lanes are dedicated to the use of public trans-
port and must be contemplated depending on the region
simulated.

The entry of nontransit ve-
hicles into transit lane

Ordinary vehicles could transit lanes in the presence of
an obstruction.

The departure of nontransit
vehicles from a transit lane

The model must contain the logic to ensure the ordinary
vehicle leaves the transit lane as the blocking ends.

Driver behavior in the mid-
dle distance

If the driver has an intended turn and is near there, not
all lane changes should be acceptable.

Relative advantages of
present and target lanes

If the previous steps have no helped make a decision.
The driver should evaluate the advantages of changing
to a target or staying in the present lane.

Effect of heavy vehicles Heavy vehicles tend to have a lower speed than ordinary
ones so that vehicles can change lane in the presence of
a heavy vehicle preceding them.

Effect of preceding vehicle A vehicle could change lane if it analyzes that the pre-
ceding vehicle is slow and in the target, the lane could
gain a significant speed.

Safety The remaining question before changing the lane is
whether we can safely perform it. If so, the model per-
forms a lane change.

Information Technology Engineer 9 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.2 SUMO
Simulation of Urban Mobility (SUMO) [27] [28] [29] is a continuous and multi-modal traffic
simulator that handles large network scenarios. It was developed by the employees at the
German Aerospace Center starting in 2001. Figure 2.3 depicts the Graphic User Interface
(GUI) of SUMO.

Figure 2.3: SUMO Graphic User Interface

The SUMO traffic simulation tool has many applications that help prepare the necessary
elements to perform a simulation. The main elements to perform a SUMO simulation
present two essential parts: representation of road networks and traffic demand [8]. In the
following subsections, we present a description and examples of both representations.

2.2.1 Network Building
The network representation in SUMO is a directed graph. The nodes represent a point
in the network using a coordinate within the map. The edges describe the union between
two nodes, which characterizes a unidirectional street in the map. Edges need to have a
starting and final node so that vehicles will know the street direction, and each edge can
contain several lanes that run in parallel. Each lane contains constant values that represent
the width, speed, and other features that limit the behavior of the vehicle transiting that
lane. A network representation in SUMO is depicted in Figure 2.4.

A file (*.net.xml) embodies each network representation. This file contains all the ele-
ments mentioned previously and others that allow the correct interpretation of the entire
network. Users can construct these files using tools such as NETEDIT and NETCON-
VERT applications. NETCONVERT is a command-line tool that allows the importation
of networks from different sources such as OpenStreetMap (OSM) or other simulators, e.g.,
MATSim [30]. NETEDIT is an editor used to generate, examine, and update network files
and allow manual manipulation of converted networks [27].

Information Technology Engineer 10 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.4: Network representation in SUMO

Network files contain detailed information regarding the representation of a graph en-
coded as an XML file, and the main contents include cartographic projection, edges, junc-
tions, and connections. These files contemplate other elements, such as traffic lights and
roundabouts. Figure 2.5 depicts the elements of a network file. The description of each
element in the file is detailed below.

Figure 2.5: Network file representation

Coordinates

Network files use Cartesian projection to represent the spatial distribution. The leftmost
node is at x=0 and the node at the bottom is at y=0. The label location represents such
projections and the characteristics are described in Table 2.2.

Edges and Lanes

As stated before, an edge is a union between two nodes (junctions), and each edge can
possess several lanes that are parallel unidirectional representations of streets. The char-
acteristics of an edge is shown in Table 2.3 and a lane is represented in Table 2.4.

Information Technology Engineer 11 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.2: Coordinate parameters in a network file

Name Description

netOffset The offset for moving the network to (0,0).
convBoundary The boundary of the current network.
origBoundary The boundary of the original network before projection.
projParameter Information on how the network was projected.

Table 2.3: Edge parameters in a network file

Name Description

id Id of the edge.
from Id of the node it starts at.

to Id of the node it ends at.
priority How important the edge is.
function Edge purpose.

Junctions

The junctions can be seen as nodes in the directed graph and represent intersections be-
tween lanes. Table 2.5 presents the characteristics of them.

The junctions can posses several requests. The requests describe, for each link, the
streams that have higher priorities. Table 2.6 presents characteristics of the requests.

Connections

The connections, or links, describe which lane the vehicle can reach from an oncoming
lane, and it shows the first way to use it after passing the intersection. Table 2.7 gives the
characteristics of connections.

2.2.2 Demand Modelling
After the network generation, we need to implement traffic demand. It possesses vehicles
and their respective trip information. In SUMO, there are several ways of representing
traffic demand, either as trips, flows, or routes [27]. This work exposes the representation
in routes. We can declare several types of vehicles with different characteristics such as size,
behavior, and others. The critical part of this file is creating each vehicle that will appear
in the simulation. Each of them will possess a type, departure time, and a predefined route,
represented as a set of edges that will travel during the simulation. A file that embodies
this traffic demand is known as a route file (*.rou.xml).

To generate a route file, we can use a tool provided by SUMO called randomTrips. It is
a python script that uses a network file and generates a series of routes in a file according to

Information Technology Engineer 12 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.4: Lane parameters in a network file

Name Description

id Id of the lane.
index A running number that starts at zero.
speed Speed limit in the lane (m/s).
length Distance of the lane (m).
shape The contour representation.

Table 2.5: Junction (intersection) parameters in a network file

Name Description

id Id of the intersection.
x The coordinate of the intersection in the x axis.
y The coordinate of the intersection in the y axis.

incLanes The set of lanes that finish in the intersection.
intLanes A list of the lanes in the junction.

shape Describes the limits of the junction.

parameters provided by the user. These routes are usually unbalanced, which means that
vehicles will possess randomized characteristics. A different approach implies using Origin
and Destination (O-D) matrices [31] to create demand with the tool OD2TRIPS provided
by SUMO. Another essential tool called DUAROUTER provides the basics to understand
the demand traffic and transformation of a trip to route files. Besides the mentioned
tools, there are other essential tools to generate traffic scenarios such as ACTIVITYGEN,
Flowrouter, DFROUTER, and JTRROUTER [27].

A route file usually contains detailed information on the traffic demand. Figure 2.6
depicts a representation of a route file. Detailed information on the representation is
explained below.

Figure 2.6: Route file representation.

Vehicle type

The first step defines one or several types of vehicles (vType) in the simulation. Each type
declares several variables used to create the vehicle shape and behavior through the entire
simulation. Some of these characteristics are shown in Table 2.8.

Information Technology Engineer 13 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.6: Request parameters in a network file

Name Description

index The index of the connection.
response Bitstring representing whether it prohibits

the un-decelerated passing of the intesection.
foes Bitstring describing conflicts of other connec-

tions with the actual one.
cont Whether a vehicle may pass the first stop line

to wait until there are no other vehicles with
higher priority.

Table 2.7: Connection parameters in a network file

Name Description

from Id of the incoming edge.
to Id of the outgoing edge.

fromLane Id of the incoming lane.
toLane Id of the outgoing lane.

via The first lane to use after passing the connection.
dir Direction of connection.

state State of the connection.

Route

The route defines a set of edges and other characteristics that will serve as a path for a
vehicle within the simulation. All the straight edges in the set must connect them to avoid
errors in the simulation. Table 2.9 presents the characteristics of the routes.

Vehicle

The vehicle defines the simulated object that will move through the entire simulation in
the desired network. Table 2.10 shows the essential characteristics of the vehicles.

2.2.3 Car-following and Lane-changing Model in SUMO
The current car-following model used in SUMO is a Gipps model extension [14] [32]. In
each time step, the speed of a vehicle adapts to the speed of the leading vehicle in a way
that avoids collisions in the next time step. This velocity is called vsafe, and Equation 2.2

Information Technology Engineer 14 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.8: Vehicle Types in a route file

Name Description

id Name of the vehicle type.
accel Acceleration ability of this vehicle (m/s2).
decel Deceleration ability of this vehicle (m/s2).
sigma The driver imperfection for car-following model
length The vehicle length (m).

maxSpeed Maximum speed allowed for the vehicle.

Table 2.9: Route representation in a route file

Name Description

id Name of the route.
edges List of edge ids that the vehicle will drive along.
color The color of the route.

states this computation.
vsafe(t) = vl(t) + d(t) − vl(t)τ

v̄
b(v̄) + τ

(2.2)

Where vl(t) is the velocity of the front vehicle, d(t) is the length to the front vehicle,
τ is the response rate of the driver, and b is the deceleration function [28]. The desired
velocity of the driver is the minimum between the safe velocity, the maximum velocity, and
the actual velocity plus the maximum acceleration as shown in Equation 2.3.

vdes(t) = min[vsafe(t), v(t) + a, vmax] (2.3)
A random “human error” may also be added. However, that is not the project goal.

More detailed information on the car-following model is presented by Krajzewicz et al.
[28]. SUMO also implements other car-following models, and the documentation presents
the available list.

In the lane changing model, SUMO implements a 4-layered hierarchy model [33] to
determine the vehicle behavior in each time step. The scenarios taken in the count for the
desired lane changing are:

• Evaluating subsequent lanes.

• Determining urgency.

• Speed adjustment to support lane changing.

• Preventing deadlock.

Information Technology Engineer 15 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.10: Vehicle representation in a route file

Name Description

id Name of the vehicle.
type Id of the type to use for this vehicle.
route Id of the route that will circulate the vehicle, edges can be explicitly declared.
color The color of the vehicle.

depart The time step at which the vehicle enters the network.

The model computes previous scenarios to perform a lane change. First, it considers
the right lane. If no change is possible, then a left lane is considered, and this model
showed some positive outcomes in the performance compared to other approaches.

2.2.4 TraCI
Traffic Control Interface (TraCI) [2] provides access to an executing traffic flow simulation
in SUMO, permitting the user to recover variables of simulated agents and manage their
actions. TraCI employs a design based on TCP/IP that grants control over SUMO. The
architecture matches a client/server topology. Thus, SUMO operates as a server that
starts with command-line operations using a TraCI script (usually in Python/C++) and
manipulates objects within the simulation in real-time. TraCI supports multiple clients
and performs the desired actions in the clients until it calls the simulation step function.
Figure 2.7 represents the TraCI architecture.

Figure 2.7: TraCI architecture. Retrieved from [2].

In the protocol shown in Figure 2.7, the client application sends commands to SUMO
to control the simulation execution, an individual vehicle behavior, or retrieve values from
simulation objects. SUMO answers with a status-response to each command and some
additional values depending on the request.

Information Technology Engineer 16 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

The preferred language to write scripts using TraCI is Python as this posses complete
documentation, supports all the TraCI commands, and the community test this library
daily. Other languages support TraCI libraries, such as C++ or Matlab, but they do
not possess complete support. To achieve a connection between SUMO and TraCI using
Python, we have to import TraCI in the script. The SUMO HOME/tools directory must
be in the python load path. Figure 2.8 shows the way of achieving this.

Figure 2.8: Import TraCI in a Python script.

After importing TraCI to the Python load path, we start our simulation, and connect
to it using the script created. A basic Python script that uses TraCI to perform 1000
simulation steps is depicted in Figure 2.9.

Figure 2.9: Basic TraCI script.

After connecting to the simulation, several commands can be executed and then perform
a simulation step until required. Finally, the simulation must be closed.

2.3 MPI
Message Passing Interface (MPI) is a standard specification for message-passing calls within
processes defined by the MPI Forum in 1994 [34] [35]. The specification includes point-to-
point communication and global operations [36]. The message-passing model has proven to
be efficient for parallel systems with distributed memory and distributed systems. It is also
widely used in both homogeneous and heterogeneous systems due to the architecture of the
implementations. Several implementations from the MPI standard have been developed,
such as OpenMPI[37], mpich[38] and many others. To send information in MPI, we have
two types of data that can be transmitted. One is information regarding the execution of
the programs, and the other one is actual data to be stored in the receiving side of the

Information Technology Engineer 17 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

communication. Data transfer could take significant time, depending on the size, and it
performs in either point-to-point or collective communications. Point-to-point is the com-
munication between two processes that exchange information and collective communication
between one process and all the other processes.

2.3.1 Groups, Contexts, and Communicators
A group is a collection of processes that can communicate, point-to-point and collectively,
between them. In terms of MPI, groups present ordered sets of process identifiers. Each
process is assigned a number between 0 and the number of tasks. A context that isolates
each point-to-point communication performs these communications. Each message sent
within a context can be received only in that context so that messages are sent and received
by the desired processes.

A communicator is an MPI object that wraps the idea of groups and contexts. This
communicator provides communication services between the processes. MPI defines a
communicator called MPI COMM WORLD, a group with a defined process and a unique
context [39].

Figure 2.10: Group, context and Communicator example in MPI. Retrieved from [3].

2.3.2 Point-to-Point Communication
The basic operations of point-to-point communication are the send-receive routines. They
send a message between a pair of processes with a source, destiny, and tag explicitly defined.
The send (MPI SEND) and receive (MPI RECV) are performed in a blocking form. All
processes are blocked until a return is received, in both sender and receiver. There are four
blocking primitives in MPI presented in Table 2.11.

MPI also provides a non-blocking communication where a process can continue execut-
ing while a buffer is either sending (MPI ISEND) or receiving (MPI IRECV) a message.
Some functions allow the test and wait of messages transmitted in non-blocking com-
munication [39]. However, a barrier can also halt all the processes execution until all
communications complete.

Information Technology Engineer 18 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.11: Blocking send in MPI

Primitive Description

Synchronous Completes once the sender receives the ac-
knowledgment of the receiver.

Buffered The send is blocked until the message copies
into a buffer in a message buffer scenario.

Standard The sender is blocked until the send buffer
frees, and the receiver is blocked until the
message is in the received buffer.

Ready The message is sent, and if there is no re-
ceiver waiting, then it is dropped.

2.3.3 Collective Communication
In collective communications, all processes within a group are involved in the operation.
This can be helpful in terms of synchronizing an application. Table 2.12 shows some of
the collective operations.

Table 2.12: Collective operations in MPI

Operation Description

MPI BARRIER Synchronization of all the processes in the
group.

MPI BCAST Send a broadcast message to all processes
from a root.

MPI GATHER All processes send data to a root that stores
them in order.

MPI SCATTER A root sends data to all processes in rank
order.

MPI REDUCE Uses data from all processes, perform an
arithmetic or logical operation, and sends it
to a root.

2.3.4 MPI for Python
MPI for Python (mpi4py) [40] is a library that allows user applications to exploit the idea
of multiple processors using MPI standards in a Python script. This package provides a

Information Technology Engineer 19 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

designed interface that translates MPI syntax from C++ to Python. The script written in
Python calls a wrapper that contains an extension module written in C.

This library implements several classes representing the MPI standards, such as com-
municators, point-to-point, and collective operations. The primary communicator is known
as WORLD. We also have a Get rank() function that allows creating a group within the
communicator and communication techniques like send() and receive(). A performance
analysis performed in this package showed similar behavior in time execution than the C
implementation [40]. The overhead imposed by MPI for Python is relatively smaller than
those presented in the literature of interpreted versus compiled languages using C.

Information Technology Engineer 20 Graduation Project

Chapter 3

State of the Art

This chapter presents preliminary research regarding the topics presented in this project.
Each subsection provides distributed traffic simulation approaches from a current perspec-
tive. The organization of these subsections is presented next. Subsection 3.1 presents some
partitioning algorithms for traffic simulations. Subsection 3.2 presents some approaches
for distributed traffic simulations.

3.1 Partitioning Algorithms
Partitioning algorithms propose methods to effectively divide a required network within a
traffic model and use it in parallel/distributed simulations to increase performance. Some
of the partitioning algorithms in the literature are described below.

3.1.1 Graph Partitioning
As explained in Chapter 2, a traffic simulation network can simulate a graph problem
where the junctions represent the nodes and the edges bonds them to form a street within
this network. For this purpose, we can use several partitioning algorithms in this context.

Graph partitioning algorithms have proved to be NP-Hard problems. Solutions for these
problems tend to use heuristics and approximations. The main algorithms implement
multi-level and spectral methods. Some of these methods were introduced in the early
years [41] and implemented in packages such as METIS [42]. Some graph partitioning
algorithms have been used in traffic simulation networks to improve the obtained balance
in big scenarios.

GrapH [43] is a distributed graph processing system that relies upon dynamic vertex
traffic and costs to perform partitions in a network. This method implements a fast single-
pass algorithm, named H-load, and a method for online traffic prediction that treats each
vertex as an individual learner to predict vertex traffic patterns. The results showed that
GrapH could outperform other algorithms in terms of communication costs and end-to-end
latency.

Ahmed and Hoque [4] presented a partitioning algorithm based on a list of parameters
such as node weight, link lengths, number of lanes, link density, and link priority. They

21

School of Mathematical and Computational Sciences Yachay Tech University

used METIS to partition the network and generate a node and link weighted graph. Figure
3.1 depicts the approach presented by them. Although it looks promising, this algorithm
has not been tested in the literature, leading to a gap regarding its performance.

Figure 3.1: Graph Partitioning. Retrieved from [4].

Graph partitioning can be seen as an optimal solution to achieve an efficient network
partition for traffic simulations. However, these approaches tend to present a high level of
complexity to simple road networks, and the main topic of this project is not partitioning.
For this purpose, a space partitioning algorithm is better suited to performance analysis
of the implemented system.

3.1.2 Space Partitioning
Space partitioning is the action of dividing a determined space into non-overlapping regions.
These algorithms are generally hierarchical, where an area is divided into regions, and the
regions divide recursively. This behavior forms space-partitioning trees. The algorithms
usually are divided into uniform and non-uniform approaches. The first one employs static
and regular shapes, such as rectangles, to perform partitions. The second one presents
areas that are irregular and not static that generally presents a hierarchical approach.

SPartSim [5] is a multi-level region growing road network partitioning based on a non-
uniform hierarchical approach. In this algorithm, they used an initial vertex as a starting
point and started growing the region from that vertex. Once all regions had reached the
boundaries of the network or contacted other growing regions, a balancing algorithm start
to trade segments lengths between partitions to accomplish a more balanced network par-
titioning. The SPartSim result is depicted in Figure 3.2. The resulting partition showed
improvements regarding the number of road cuts and load-balancing than traditional solu-
tions(i.e., Simple quad-tree partitioning [44]). However, it showed a higher execution time
required to perform the partition.

The partition algorithm used in this project is presented by Acosta et al. [6]. This
is a uniform space algorithm where the network is partitioned in even slices depending
on the number of nodes required for the partition. Figure 3.3 presents an example of

Information Technology Engineer 22 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 3.2: SPartSim Partitioning. Retrieved from [5].

this approach. The authors use NETCONVERT to perform the partition and provide
an algorithm to patch the differences between the original edges and the ones generated
in the partition. This algorithm uses SUMO tools to achieve the partitions, and the
implementation is detailed. However, the described approach has proven to be inefficient
in unbalanced networks [6].

Figure 3.3: Uniform Space Partitioning. Retrieved from [6].

For this project, we are using a balanced network to perform the simulations, and a
uniform space partition algorithm is sufficient for the scenario. In the future, we will employ
a graph algorithm to work with more unbalanced networks, such as big-city scenarios.

3.2 Distributed Traffic Simulations
The appearance of different traffic simulators has led to a growing research area to improve
the performance of simulations. For this purpose, the literature presents some approaches

Information Technology Engineer 23 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

using High-Performance Computing techniques, such as parallel or distributed implemen-
tations using existing applications and creating new ones (i.e., GeoSparkSim [45]).

In the case of SUMO, the absence of an official distributed implementation and the
lack of literature motivated this project. There are two implementations of distributing a
SUMO simulation. The strategies used are described below.

The first approach is called dSUMO [7] is a distributed version of SUMO, using different
cores on a machine or different machines. In this implementation, each node runs a SUMO
instance and a partition of its network. The communication performed in this system use
sockets. Figure 3.4 depicts the architecture of dSUMO. The idea is to have a container
that runs within a machine and runs one or several SUMO instances using a handler and
runner to manipulate the simulation and a client-server interface to communicate with
other containers. There is only one server and handler, but we can have several clients and
runners depending on the number of partitions we are using.

Figure 3.4: dSUMO architecture. Retrieved from [7].

The handler serves as an operator interface that provides full functionality obtained
using SUMO. The runner uses TraCI to interact with SUMO. It creates links with other
nodes using a shared-memory approach and serves as the main component to manipulate
the simulation. The client sends the required information to all the neighbor containers,
and the server receives incoming messages from clients.

Several messages are created to send among containers, such as the vehicle message
that sends a message of vehicles crossing the borders. The main idea of synchronization
lies in back-controlling a car. When a vehicle leaves one partition to enter another, it will
send back position and speed to the leaving partition for a short period. This idea does not
affect the car-following model and the general result in the simulation. The results showed
accuracy up to 99%, and that dSUMO had better simulation time than the centralized
version in terms of SUMO execution time. However, synchronization seems to add an
unnecessary overhead in this implementation.

Acosta et al. [6] performed an analysis in the network partitioning and border edges
management. They used the network partition method explained in the previous subsection
and three ideas to implement the border edge management. One included replicating a

Information Technology Engineer 24 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

model. The other performs braking when the leading car stops according to the minimum
safe gap. The last one uses a virtual traffic light to control the behavior of incoming vehicles.
Their results showed that the traffic light approach presented minimum errors. However,
lights did not contemplate the usage of yellow lights, and this introduces a limitation.

Further research by Arroyo et al. [46] implemented an idea similar to Acosta et al. [6]
and a synchronization method using a master-slave scheme. They implemented a partition
using a “dead-end” approach that included one of the nodes in the partition to have a
dead-end in the edge that will be shared, and the vehicles in both partitions could co-
exist. Vehicles in the master partition limited the behavior of the exact vehicle in the
slave partition, and a new vehicle inserted in the slave partition will also be inserted in the
master. They implemented shared-memory within the TraCI packages and resulted in a
reduced time of 60% compared to the traditional TCP/IP approach. The results showed
error values near 0% with an increased number of outliers for congestion scenarios.

Distributed simulations have been achieved using other simulators but with the same
partition approach. Distributed Urban Traffic Simulator (DUTS) [47] is a distributed
version of the simulator Java Urban Traffic Simulator (JUTS). It considers multiple core
computers in a cluster environment and performs analysis using several nodes and threads
to analyze the performance of the implementation. The system uses a shared-memory
architecture to perform communication between cores and message passing between nodes.
It uses a particular node called a control process that synchronizes and controls the entire
simulation. The spatial partition is performed by dividing the marked lanes in half. The
approach takes advantage of the multi-core computers to implement a parallel/distributed
system and compare it to a purely distributed system. The results show that the multi-core
approach reaches a 52% speedup compared to a distributed implementation.

In this project, some ideas for implementing the network partition were based on the
work of Acosta et al. [6]. The border management is similar to the back-controlling of a
car from dSUMO [7] as this showed reduced errors in a distributed simulation.

Information Technology Engineer 25 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 26 Graduation Project

Chapter 4

Methodology

This chapter presents the performed procedure to accomplish the required objectives. First
of all, we present the problem-solving scheme in chronological order. Then, the proposed
model is introduced, which includes the principal aspects for implementing the distributed
simulation. Ultimately, we propose the scenarios and techniques to interpret our results.

4.1 Phases of Problem Solving
The workflow diagram used to perform this project is depicted in Figure 4.1.

Figure 4.1: Phases of Problem Solving

4.1.1 Description of the Problem
This phase describes the project development pillar as it introduces the central issue,
its latent obstacles, and how to overcome them. For this purpose, we introduced the
concepts of traffic simulation, SUMO, and MPI. Later, we defined the potential problems

27

School of Mathematical and Computational Sciences Yachay Tech University

to address in detecting vehicles and communication between nodes. Finally, we present
a model for implementing the distributed traffic simulation problem. To achieve this,
Figure 4.1 presents a workflow to produce the model scheme. For this purpose, we chose to
implement a partitioning algorithm and an application from scratch that efficiently controls
the simulations and runs in a distributed system. Chapters 1 and 4 condense the actions
displayed in this stage.

4.1.2 Analysis of the Problem
This phase presents some background and essential information required to understand
this project. Chapter 2 systematically exhibits this knowledge, where the traffic flow
simulation is analyzed. Then, we present an introduction to the SUMO simulator, and
finally, the basics of MPI and its inference in distributed systems are detailed. This data
helped us to present a concise state of the art. Regarding this information, we established
a contemporary model proposal, where we propose the partition techniques, simulation
characteristics, and communication interface. Finally, the software employed is specified:
SUMO to perform the simulation and Python for control interface and communication
setting. Chapters 2 and 4 present the learning specified in this stage.

4.1.3 Algorithm Design
During this stage, we produced the described approach in the model scheme. First of all,
we developed an implementation of a network and route partition algorithm. A peer-to-
peer network interface was then created using MPI to communicate partitions between
different distributed system nodes. Section 4.2 explains these algorithms.

4.1.4 Implementation
This phase describes software requirements used for each of the steps during the develop-
ment of the project. For the simulation, the SUMO simulation package was used due to its
microscopic behavior and relevance. To control the behavior of the simulation in real-time,
we used the TraCI library in Python because of the documentation and support provided
in this language. Finally, an MPI library in Python (mpi4py) was selected as we are using
it as the principal language in the project.

4.1.5 Testing
This part concentrated on estimating and explaining the achievement of the implementa-
tion in a distributed traffic simulation. For that purpose, we perform several simulations
using different vehicular densities to appreciate the algorithm behavior in a scenario. The
simulations were performed in several computing nodes to compare performance between
this implementation and the traditional approach. Finally, the results are evaluated re-
garding time requirements to compare the obtained performance. Section 4.3 details all
these steps.

Information Technology Engineer 28 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4.2 Model Proposal
This project proposes a model to implement a distributed traffic simulation using SUMO
that will perform a single core simulation job in several computing nodes to increase the
performance in the required computations during each time step of the simulation. These
nodes need to communicate between them to allow vehicle transference in real-time. Several
factors must be considered to achieve this, such as the partition of the network/route and
the communication interface. In this sense, this model implements a communication based
on MPI basics and some literature review principles. For this purpose, we performed
several steps. First, a network and partitioning algorithm split the required files. Then,
SUMO and TraCI established an interaction to control the borders in the partitions, and
the communication protocol, using MPI routines, was defined. Finally, we implemented
the algorithm using several libraries and Python.

4.2.1 Network Partitioning
Several partition algorithms can split networks into different portions that will contain
different vehicles [5]. There are many partitioning algorithms based on space or graph
partitioning. A space-based algorithm will be better suited for this problem as graph
partitioning tends to be much more complex for simpler networks, as presented in this
project.

The method of partitioning the network is similar to the one presented by Acosta et al.
[6]. For example, we assume to have a network as presented in Figure 4.2.

Figure 4.2: Network example in SUMO

The uniform space algorithm used performs a non-disjoint separation of the network
graph. For simplicity, we will refer to it as a partition. Figure 4.3 depicts the network
partition required for two computing nodes. Two exact pieces divide the network, where
each of the divided portions will belong to a different node in the system, and each node
will be responsible for the network that lay on that side of the partition.

To preserve network topology, edges that are “cut” during the partition must remain
intact in both partitions. The network in Figure 4.3 will be partitioned in two networks A
and B. Each partition will be assigned to one of the two nodes. Figure 4.4 and 4.5 depict
this behavior.

Information Technology Engineer 29 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.3: Network Partition for two nodes in SUMO. The red line represents the virtual
border.

Figure 4.4: Network Partition for A

The spacial partition is performed using NETCONVERT and the option –keep-edges.in-
boundary to explicitly declare a required boundary within the network limits. However,
when using this application, the resulting boundaries can be affected due to edges converted
into dead ends. To this problem, it was necessary to reevaluate the new position of the
nodes within the new partitioned network and compare them with the original network to
patch the difference between them.

As stated before, each node will receive a partitioned network and will be responsible
for all the vehicles that start the simulation in that partition. Thus, a route partition
regarding the new networks is also required. We need to assign the vehicles that will
depart in partition A to a new route file and assigned to the node in charge of A and the
same for vehicles in B.

4.2.2 Route Partitioning
As mentioned before, after the network partitions are created, we need to create the cor-
responding route files for each partition. This partition will take a vehicle that starts in a
partition and put the corresponding routes of the vehicles in a new file. The sigma value

Information Technology Engineer 30 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.5: Network Partition for B

for the vehicle type is set to 0 as we want to minimize the human error introduced in the
car-following model and have the same simulation output in each execution.

An example of this partition is shown in Figure 4.6, 4.7 and 4.8. We assume to have
two partitions A and B and a vehicle depicted in Figure 4.6 that will start in A and end in
B. The edge that is partitioned in the network is gneE0, this edge will be present in both
partitions as explained before. The route partition for A is shown in Figure 4.7, the vehicle
will conserve the main characteristics of the original route and will contain the edges until
gneE0 and the route partition in B, depicted in Figure 4.8, will contain the rest of the
edges, including gneE0, to allow the inclusion of the vehicle when it leaves A and arrives
in B.

Figure 4.6: Route of a vehicle

Figure 4.7: Route of the vehicle in the departing partition

Figure 4.8: Route of the vehicle in the receiving partition

Algorithm 1 presents the main idea of the implementation using this approach.

Information Technology Engineer 31 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Algorithm 1: Route Partitioning Algorithm
1 Read network and route files;
2 for each network in partitions do
3 Make a list with all the edges within the partition;
4 for each route in routes do
5 if Departing edge in network boundaries then
6 Create a new vehicle with the same characteristics;
7 Assign edges within the partition to the new vehicle;
8 else
9 create a new route with the edges outside the partition;

10 end
11 end
12 end
13 Write route partitions in new files;

The route partition algorithm is implemented in Python, using sumolib, a library that
allows reading and feature extraction of SUMO files and xml.dom.minidom library to create
a route file template and use it to write information in new files.

4.2.3 Border Management
TraCI is in control of this part of the implementation. At every time simulation step,
the position of vehicles is compared to the boundaries of the partition to identify when
they are leaving the partition. Then it will operate the leaving vehicle to retrieve all the
information and prepare it to send into other partition. After everything is ready, it will
send the vehicle to the other partition. Once a node receives a vehicle, it will be inserted in
the simulation using the received information. We use some commands such as TraCI.add,
TraCI.remove to insert and remove vehicles during the simulation.

To ensure accuracy in the system, the model for managing the border is similar to the
one presented in dSUMO [7]. A relevant aspect of the simulation is the car-following model
and its functionality. The main goal is that if a car leaves one partition to another, it will
not disappear from the existing partition as this will be leading some other vehicles. If a
leading vehicle suddenly disappears, the vehicles following it will start to have a different
behavior as they do not have any information about the vehicle ahead. This problem is
solved by making a vehicle (V) leaving partition A and being transferred to B to exist in
both partitions. The node that manages partition B will send information of V back to
the node managing A. A will upload V position and speed according to B information
until V leaves the edge circulating before transference. After V leaves said edge, it will
stop existing in A and will only exist in B. This process is known as back-controlling a
vehicle. In this approach, other vehicles following V will act as the standard simulation.

After the TraCI.add function is applied, the insertion of a SUMO vehicle will be per-

Information Technology Engineer 32 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

formed in the next time step of the simulation. Thus, it is vital to calculate the position
of the vehicle in the next time step. Equation 4.1 presents the calculation of the following
position, where Pi+1(v) is the position of the vehicle in the following time step, Pi(v) is the
current position, s(v) is the actual speed of the vehicle and ∆t is the time step (usually 1
second). Note that the operation sign implies either an addition or a subtraction. This is
defined by the edge direction in which the vehicle is circulating.

Pi+1(v) = Pi(v) ± s(v) ∗ ∆t (4.1)

4.2.4 Communication Protocol
The communication implementation uses an MPI library for Python (mpi4py)[48]. Figure
4.9 depicts the behavior of the system where each node will run a SUMO instance that
contains a partitioned version of the network and the corresponding route file. The simu-
lation of each node connects to TraCI, which will perform the real-time operations in each
simulation step. A simulation manager will then be in charge of starting the simulation and
performing a simulation step when required. The border manager performs computations
on each vehicle between the simulations to calculate when a vehicle leaves a partition and
starts another and back-controls a car after vehicle transference. Finally, a vehicle manager
is in charge of sending and receiving vehicles, and more information, to other nodes using
MPI communication and manipulating them using TraCI. The vehicle manager will add
and remove vehicles within the simulation.

Figure 4.9: Architecture of Distributed SUMO

The MPI implementation uses peer-to-peer topology, non-blocking communication, and
a barrier to guarantee thorough communication between nodes. This type of communica-
tion avoids blocking when several nodes try to communicate simultaneously. The barrier
is placed after the communication part of the algorithm to wait until all nodes have com-
municated successfully.

4.2.5 Algorithm Implementation
Algorithm 2 presents a basic logic of the distributed simulation. As explained in previous
sections, each node will start a SUMO instance with the partitioned network and route
files. After the simulation start, we calculate the position for the next time step of the

Information Technology Engineer 33 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

simulation for each vehicle to find if some vehicle is leaving the partition. In that case,
we send the vehicle using the MPI.isend function to perform non-blocking communication
to the receiving partition. A false variable will be sent if there is no vehicle leaving the
partition. Each time step, the receiving partition will be waiting with MPI.irecv to message
the adjacent partitions. A barrier is placed after the synchronization process to guarantee
thorough communication between the partitions. After the synchronization process, if the
partition received a vehicle, it will be added using the TraCI.add command to the desired
position. We need to check if some vehicles need to be back-controlled or removed, as
explained in the border management. Finally, we perform a simulation step in all the
partitions simultaneously. Figure 4.10 depicts a graphic representation of the algorithm.

Algorithm 2: Distributed SUMO algorithm
1 Initialize MPI.COMM WORLD ;
2 for each node do
3 run a SUMO instance with partitioned networks and routes;
4 while Simulation is not over do
5 for v in vehicles that will leave the partition do
6 if v.position± v.speed ∗ timestep not in the partition then
7 Send v to the destiny node.
8 end
9 end

10 Receive incoming messages;
11 MPI.barrier();
12 if Vehicle v is received then
13 TraCI.add(v);
14 end
15 Check for back-controlling and vehicles to be removed;
16 Perform a simulation step;
17 end
18 Finish the simulation and close SUMO;
19 end

4.3 Experimental Setup
The implementation of distributed SUMO using TraCI and the mpi4py library was tested
using the Imbabura Cluster, established in Yachay Tech University in 2018. The cluster
works with 35 workstations. Each workstation runs the operating system Ubuntu 18.04
and has Intel Xeon 3.6 GHz Quad cores with 32 Gigabytes of RAM. Figure 4.11 shows a

Information Technology Engineer 34 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.10: This workflow represents the behavior of one node executing the distributed
implementation.

referential diagram of the cluster topology, and the representation is referential as we do
not have root access to the cluster.

Figure 4.11: Imbabura Cluster Topology

The partition algorithm and distributed implementation were performed in Python
3.7.4, SUMO 1.6.0, and mpi4py 3.0.3 and the required libraries in SUMO source (TraCI,
sumolib). Section 4.2 details the approaches employed for the algorithms.

The experimental setup for the distributed simulation used vehicular densities of 20,
40, 100, 500, 1000, 2000, 3000, 4000, 5000, 7500, and 10000 vehicles per simulation using
2,4 and 6 nodes. The network partitions are presented in Figure 4.12, Figure 4.13, and
Figure 4.14 for two, four, and six nodes respectively.

4.4 Performance analysis
The analysis of the obtained results is performed in terms of time requirements of the
execution in said simulations. This section describes the metrics required to test our

Information Technology Engineer 35 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.12: Network Partition for two nodes. The red line represents the partition border.

implementation.

• Execution time: It describes the time required to perform the entire, or parts, of
the simulation. Equation 4.2 presents this metric.

T = Te − Ts (4.2)

where T is the total execution time, Te is the end time, and Ts is the start time of
the analyzed part.

• Speedup: It presents the improvement obtained by our implementation when com-
pared to the traditional SUMO simulation. Equation 4.3 describes this metric.

S = Tt/Td (4.3)

where Tt is the execution time of the traditional SUMO simulation, Td is the re-
quired time of our distributed implementation, and S is the ratio of traditional and
distributed time.

Information Technology Engineer 36 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.13: Network Partition for four nodes

Figure 4.14: Network Partition for six nodes

Information Technology Engineer 37 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 38 Graduation Project

Chapter 5

Results and Discussion

This chapter presents the results and discussion obtained from our implementation of a
distributed SUMO. These results include several simulations performed in one, two, four,
and six nodes of a distributed system with different vehicular densities. The discussion
presents insight on the execution time while comparing different aspects of the solution.

5.1 Results
The previous chapter showed that our methodology could simulate traffic flow scenarios for
several thousand vehicles. This simulation runs on top of the SUMO framework and takes
advantage of TraCI and MPI tools to distribute the work. The results in this section provide
insight into the behavior of the different simulation elements, particularly concerning time.
We present an analysis of the time consumption of each one of the elements: simulation,
TraCI, and MPI. The results include the output of simulations such as the one presented
in Figure 4.12.

The results presented in Figure 5.1 include a GUI perspective of a vehicle in a partition
near the border and transferred into another partition. Before the vehicle goes across the
border, the leaving node sends the information to a receiving node with all the vehicle
information. Once the communication completes, the receiving node will add the vehicle
to this partition and start coexisting in both partitions. Figure 5.2 represents this behavior.
Then, the back-controlling procedure explained in Chapter 4 is performed.

The border management performs the process of back-controlling vehicles by sending
information back to the original partition. After several steps, when the vehicle leaves the
actual partition, TraCI deletes it from the original partition to only exist in the target
node. Figure 5.3 and 5.4 illustrate this process in a SUMO graphical interface.

After executing simulations, as detailed in the experimental setup, the results compare
the time requirements of our system. The first results showed that our system presents
increased execution time as the number of nodes grows. It was necessary to perform a
simulation using TraCI actions in the single node execution to appreciate our implemen-
tation better. Figure 5.5 depicts this behavior. However, further analysis indicates that
the time required to perform a simulation step decreases with more nodes. We compare it
to the required SUMO simulation time to reinforce the previous results. This simulation

39

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.1: Vehicle in Partition A before arriving to the Partition B.

time presents an overview of SUMO calculation requirements, and Figure 5.6 illustrates
this behavior.

The previously obtained results indicate that the system works properly by reducing
the SUMO required simulation time. However, the overall result shows that an imposed
overhead acts on top of SUMO, increasing the execution time performed by the system.
Further analysis in this area required the implication of communication and TraCI aspects
in the implementation. For this purpose, we perform a time analysis in terms of MPI
synchronization and TraCI operations. Figure 5.8 depicts a relation between the num-
ber of vehicles in a simulation and the MPI synchronization time for the communication
between nodes. Furthermore, Figure 5.9 presents a similar analysis as the previous one
but in terms of TraCI time required to perform real-time operations within a partition.
Finally, Figure 5.7 presents the maximum obtained speedup in SUMO execution time of
our implementation.

The obtained results indicate an extensive overhead imposed by the communication
and control processes during the distributed simulation. However, the SUMO calculations
decrease as the number of nodes increase, achieving one of the project goals. In the
following section, we will discuss our results.

5.2 Discussion
The results presented in the previous section provide insight into time requirements in the
implemented SUMO distributed simulation. The three main elements of the system require
different operation times that influence the overall performance of the implementation. We
present a discussion regarding the obtained results with a focus on future research.

The total time of the simulation is depicted in Figure 5.5. We can see that the single-
node simulation requires less time than the multiple nodes approach. Several factors can
lead to this behavior. One crucial factor is the overhead imposed by the use of TraCI

Information Technology Engineer 40 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.2: Vehicle in Partition A and B after transference.

Figure 5.3: Vehicles coexist in both partitions after crossing the edge.

to change vehicular behavior in real-time. This leads to several computations needed to
retrieve vehicle information and significantly add and remove vehicles within a partition.
The other factor to consider is the overhead demanded by the synchronization time required
to send information between nodes. The barrier used in MPI requires some partitions to
inquire in lazy waiting until completing the communication. This problem can be solved
using a more balanced simulation by controlling the number of vehicles present in each
partition per time step and the number of vehicles transferred between adjacent nodes.

A crucial aspect of these results relies on the fact that the required SUMO simulation
time reduces with more nodes in the distributed system. This implies that the required
computations to perform a simulation step effectively reduces, and thus, the simulation
time diminishes. Figure 5.6 presents an overview of the time required to perform a simula-

Information Technology Engineer 41 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.4: Vehicle in Partition A stop existing after leaving the border edge.

Figure 5.5: Total simulation time.

tion in the distributed system. We can observe that the required time reduces to less than
40% in six node scenarios compared to a standard simulation. These results also imply
that our implementation effectively distributes the work by giving each SUMO partition
less work to perform during a simulation. The tendency of this time seems to maintain
during all the vehicular densities, and the augmentation of nodes reduces the simulation
time, which evidences the reduced calculations performed by SUMO in our implementation.
Further analysis of these results presents the obtained speedup in Figure 5.7, which shows
that our implementation obtains up 2.7x speedup compared to the traditional SUMO sim-
ulation. This speedup grows as the number of nodes increase, demonstrating the potential

Information Technology Engineer 42 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.6: SUMO simulation time

scalability of our implementation.
As stated before, it is essential to analyze the overhead that MPI imposes in the com-

munication environment of our implementation. This overhead results during the transfer
of vehicles, or other information, between nodes. Figure 5.8 compares the required time to
perform data transfers between nodes during the distributed simulation. We can see that
this time rises as the number of nodes increases, indicating that the communication part
of the implementation adds an undesired time to the output of the simulation.

The behavior in this communication between nodes causes more vehicle transfer as
the number of partitions increase. The message transfer of a vehicle is demanding in
communication time. As we have constant communication between nodes, due to the peer-
to-peer topology of the implementation, it results in a lazy waiting behavior of the system
while vehicles are being transferred. The inserted barrier contributes to synchronize all the
nodes in the system. However, some nodes wait without performing any action, resulting
in the imposed overhead. A solution for this problem includes performing communication
in a defined number of steps, but this can jeopardize the simulation accuracy of SUMO.
Another solution includes using a master-slave scheme that will reduce the number of
messages sent between all nodes. However, this can add complexity to the implementation
and the need for an extra node to act as central entity of the distributed system.

The most significant overhead is imposed by the control interface that performs real-
time manipulation of the simulation via TraCI. Figure 5.9 depicts this time performance
during the system execution. We can see that the time occupied by TraCI increases with
the number of nodes. The interface will have to compute fewer vehicles, but the performed
operations increase as more vehicles will be back-controlled and added/removed during the
simulation. Another overhead includes the needed calculations to retrieve and compare the
position of vehicles in entities that will possess more adjacent partitions. Figure 4.12 depicts
the partition performed in two nodes. In this approach, each partition will calculate the

Information Technology Engineer 43 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Maximum Time (b) Speedup

Figure 5.7: SUMO speedup

Figure 5.8: MPI synchronization time

border management for only one adjacent partition. In Figure 4.13 we have to manage
the vehicular behavior for two adjacent partitions. Finally, in Figure 4.14 we have to
manage the vehicle behavior for three adjacent partitions in some cases. For our partition
algorithm, this number results in four adjacent partitions in more extensive scenarios.

The interface of TraCI works as a client/server architecture with TCP/IP communica-
tion. This can increment significantly the time required to manipulate simulation objects
during the execution. A solution for this problem might include a control interface imple-
mentation directly in SUMO source code that will perform the same operations ignoring the
TraCI communication overhead. This could improve the system performance but increase
the level of complexity in the implementation.

Besides, more solutions can result in positive outcomes for future research. The use of

Information Technology Engineer 44 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.9: TraCI operations time

more balanced route data can result in a better distribution of work. However, it will not
guarantee success in real scenarios as they will present unbalanced data. Another parti-
tion algorithm may lead to an efficient partition for both network and route files, causing
a harmonization of the simulation elements. The implementation of an alternative to MPI
may result in reduced synchronization time requirements. An interesting approach could
implement OpenMP techniques in the source code to perform parallelism in SUMO calcu-
lations. Finally, using a lower-level language, such as C++, can benefit the performance
of the system.

Information Technology Engineer 45 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 46 Graduation Project

Chapter 6

Conclusions

This chapter presents our conclusions about implementation, results, analysis, recommen-
dations, and future research ideas related to distributed traffic flow simulation.

6.1 Conclusions
The implementation of MPI techniques with TraCI facilitated the execution of distributed
simulations using the SUMO package. A uniform space partition algorithm was used to
divide the network and route files. In our proposal, each partition executes in a different
node in parallel. Border management is essential to guarantee the correct behavior of the
simulation. Asynchronous communication ensures proper communication between nodes.
We used message passing to send vehicles between the different partitions. The border
management found in the literature and described in Chapter 4 guarantees the accuracy
of the implementation as it showed an accurate match between simulations running in
different nodes.

The distributed simulation showed an increased total simulation time over the cen-
tralized simulation. However, each partition calculation was reduced, which showed that
the time required to perform a simulation step decreases with more nodes in the system.
This implies that the simulation time is effectively reduced in this implementation while
maintaining its microscopic behavior.

The utilization of the MPI library and TraCI generated a significant overhead to the
simulation. This overhead affected the overall performance of the simulation. In the
analysis, the overhead increments due to the number of actions that TraCI must perform
to retrieve the position of the vehicle at each time step and the real-time manipulation
during the simulation. Another essential aspect to consider in the overhead is the MPI
synchronization time required to send and receive information between nodes.

An essential aspect of the results showed the overhead imposed by the MPI imple-
mentation of the simulation. It evidenced a significant time added to the execution. This
analysis showed that the time required to send a vehicle between nodes is significant, which
causes a lazy-waiting in nodes that are not sending vehicles due to the barrier established
in the synchronization process. It also exhibited an increased time influence regarding
the network topology, which can cause the communication between more nodes in more

47

School of Mathematical and Computational Sciences Yachay Tech University

extensive scenarios.
Furthermore, TraCI presented the most considerable overhead in the implementation.

Our experiments showed the impact of TraCI on the execution time of the distributed
system. The analysis resulted in more border management calculations in a six-node
scenario compared to smaller distributions.

Finally, the obtained results evidenced the fulfillment of the proposed objectives. We
implemented an algorithm to partition the networks and routes. Then, we used these
partitions to simulate them in a distributed environment using SUMO, MPI, and TraCI.
Different SUMO simulations allowed the performance analysis of the implementation.

The results presented the time requirements of the proposed implementation and com-
pared them to traditional simulation results. Although the execution time exceeded the
expected results, our implementation showed that it could reduce the simulation calcula-
tions in each node. Further research can help to keep improving the performance of our
implementation.

6.2 Recommendations
In this section, we introduce several recommendations regarding the problems and limita-
tions of this implementation. These recommendations are the result of our learning process
during the implementation of this work.

• Use more balanced data in the partitions. For example, each partition will have the
same number of vehicles, and they will be equally transferred in the same time step.

• Perform a vehicle transfer in a different time step. For example, a node will com-
municate with others every two-time step. However, this approach can result in an
accurate effect.

• Use the previous approach to back-control a car. This can cause less impact on the
simulation performance and potentially decrease execution time.

• Implement a master-slave scheme that will reduce the message passing and increase
the node requirements.

• During the algorithm design phase, we recommend using functions to implement
the system. This technique enables a better structure and code reusability in other
implementations.

• For the implementation of the system, we recommend using more nodes in the dis-
tributed simulation. This will allow us to have a better analysis of our approach.

• In the partition phase, we suggest using some graph partition algorithms. This could
present a better insight into the results of our implementation.

Information Technology Engineer 48 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

6.3 Future Work
In this section, we propose approaches of implementation, which could result in future
works.

• More balanced simulations can be implemented to avoid lazy waiting during the
synchronization process, and this will increase the performance of the simulation.

• A graph space algorithm will be implemented to ensure a better distribution between
partitions in more significant network scenarios and increase the workload distribu-
tion.

• The usage of another language, such as C++, could decrease the required time to
perform the distributed simulation. We believe this could potentially increase the
performance of the system.

• Work with an alternative to TraCI, developed in the SUMO source code that will
control the vehicular behavior of the simulation but directly during the simulation
step. This will lead us to omit the necessity of an intermediary such as TraCI that
can add an undesired overhead to the simulation.

• An MPI alternative, such as OpenMP, implemented directly in SUMO source code
to calculate the microscopic characteristics of vehicles, can significantly decrease the
overhead obtained by this implementation.

Information Technology Engineer 49 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 50 Graduation Project

Bibliography

[1] F. van Wageningen-Kessels, H. Van Lint, K. Vuik, and S. Hoogendoorn, “Genealogy
of traffic flow models,” EURO Journal on Transportation and Logistics, vol. 4, no. 4,
pp. 445–473, 2015.

[2] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer, and J. P. Hubaux,
“TraCI: An interface for coupling road traffic and network simulators,” Proceedings
of the 11th Communications and Networking Simulation Symposium, CNS’08, pp.
155–163, 2008.

[3] A. Skjellum, N. E. Doss, and K. Viswanathan, “Inter-communicator extensions to
mpi in the mpix (mpi extension) library,” Submitted to ICAE Journal special issue on
Distributed Computing, 1994.

[4] M. S. Ahmed and M. A. Hoque, “Partitioning of urban transportation networks utiliz-
ing real-world traffic parameters for distributed simulation in SUMO,” IEEE Vehicular
Networking Conference, VNC, pp. 1–4, 2017.

[5] A. Ventresque, Q. Bragard, E. S. Liu, D. Nowak, L. Murphy, G. Theodoropoulos,
and Q. Liu, “Spartsim: A space partitioning guided by road network for distributed
traffic simulations,” in 2012 IEEE/ACM 16th International Symposium on Distributed
Simulation and Real Time Applications. IEEE, 2012, pp. 202–209.

[6] A. Acosta, J. Espinosa, and J. Espinosa, “Distributed Simulation in SUMO Revisited:
Strategies for Network Partitioning and Border Edges Management,” Proceedings of
the 4th SUMO User Conference, no. July, pp. 61–71, 2016.

[7] Q. Bragard, A. Ventresque, and L. Murphy, “dSUMO: Towards a Distributed
SUMO,” The first SUMO User Conference (SUMO2013), no. i, p. pp 132, 2013.
[Online]. Available: http://hdl.handle.net/10344/3347

[8] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO–simulation of ur-
ban mobility: an overview,” Proceedings of SIMUL 2011, The Third International
Conference on Advances in System Simulation, 2011.

[9] D. Smith, S. Djahel, and J. Murphy, “A SUMO based evaluation of road incidents’
impact on traffic congestion level in smart cities,” Proceedings - Conference on Local
Computer Networks, LCN, vol. 2014-November, no. November, pp. 702–710, 2014.

51

http://hdl.handle.net/10344/3347

School of Mathematical and Computational Sciences Yachay Tech University

[10] F. Malik, H. A. Khattak, and M. Ali Shah, “Evaluation of the impact of traffic con-
gestion based on SUMO,” ICAC 2019 - 2019 25th IEEE International Conference on
Automation and Computing, no. September, pp. 1–5, 2019.

[11] J. Dargay, D. Gately, and M. Sommer, “Vehicle ownership and income growth, world-
wide: 1960-2030,” The energy journal, vol. 28, no. 4, 2007.

[12] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to end learning for self-driving
cars,” arXiv preprint arXiv:1604.07316, 2016.

[13] B. D. Greenshields, “A study in highway capacity,” Highway Research Board Proc.,
1935, pp. 448–477, 1935.

[14] S. Krauss, “Microscopic modeling of traffic flow: investigation of collision free vehicle
dynamics,” Forschungsbericht - Deutsche Forschungsanstalt fuer Luft - und Raumfahrt
e.V., no. 98-8, 1998.

[15] L. A. Pipes, “An operational analysis of traffic dynamics,” Journal of applied physics,
vol. 24, no. 3, pp. 274–281, 1953.

[16] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, “Structure sta-
bility of congestion in traffic dynamics,” Japan Journal of Industrial and Applied
Mathematics, vol. 11, no. 2, p. 203, 1994.

[17] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, “Dynamical model
of traffic congestion and numerical simulation,” Physical review E, vol. 51, no. 2, p.
1035, 1995.

[18] R. Barlovic, L. Santen, A. Schadschneider, and M. Schreckenberg, “Metastable states
in cellular automata for traffic flow,” The European Physical Journal B-Condensed
Matter and Complex Systems, vol. 5, no. 3, pp. 793–800, 1998.

[19] S. C. Benjamin, N. F. Johnson, and P. Hui, “Cellular automata models of traffic
flow along a highway containing a junction,” Journal of Physics A: Mathematical and
General, vol. 29, no. 12, p. 3119, 1996.

[20] A. Pentland and A. Liu, “Modeling and prediction of human behavior,” Neural com-
putation, vol. 11, no. 1, pp. 229–242, 1999.

[21] M. Brackstone and M. McDonald, “Car-following: a historical review,”
Transportation Research Part F: Traffic Psychology and Behaviour, vol. 2, no. 4, pp.
181–196, 1999. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S136984780000005X

[22] P. G. Gipps, “A model for the structure of lane-changing decisions,” Transportation
Research Part B: Methodological, vol. 20, no. 5, pp. 403–414, 1986.

[23] U. Sparmann, “Spurwechselvorgänge auf zweispurigen bab-richtungsfahrbahnen,”
FORSCH STRASSENBAU U STRASSENVERKEHRSTECH 263, no. 263, 1978.

Information Technology Engineer 52 Graduation Project

http://www.sciencedirect.com/science/article/pii/S136984780000005X
http://www.sciencedirect.com/science/article/pii/S136984780000005X

School of Mathematical and Computational Sciences Yachay Tech University

[24] W. Leutzbach and F. Busch, “Spurwechselvorgänge auf dreispurigen bab-
richtungsfahrbahnen,” Institut für Verkehrswesen, Universität Karlsruhe, 1984.

[25] D. Chowdhury, D. E. Wolf, and M. Schreckenberg, “Particle hopping models for two-
lane traffic with two kinds of vehicles: Effects of lane-changing rules,” Physica A:
Statistical Mechanics and its Applications, vol. 235, no. 3-4, pp. 417–439, 1997.

[26] A. Latour, “Simulation von zellularautomaten-modellen für mehrspurverkehr,”
Schriftliche Hausarbeit im Rahmen der Ersten Staatsprüfung, 1993.

[27] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. Flötteröd, R. Hilbrich,
L. Lücken, J. Rummel, P. Wagner, and E. Wiessner, “Microscopic traffic simulation
using sumo,” in 2018 21st International Conference on Intelligent Transportation Sys-
tems (ITSC), 2018, pp. 2575–2582.

[28] D. Krajzewicz, G. Herktorn, C. Rössel, and P. Wagner, “SUMO (Simulation of Ur-
ban MObility)-an open-source traffic simulation,” Proceedings of the 4th middle East
Symposium on Simulation and Modelling (MESM20002), pp. 183–187, 2002.

[29] D. Krajzewicz, M. Bonert, and P. Wagner, “The open source traffic simulation
package SUMO,” RoboCup 2006 Infrastructure Simulation Competition, pp. 1–5,
2006. [Online]. Available: http://en.scientificcommons.org/20058515

[30] K. W Axhausen, A. Horni, and K. Nagel, The multi-agent transport simulation MAT-
Sim. Ubiquity Press, 2016.

[31] J. H. Banks, Introduction to transportation engineering. McGraw-Hill, 2002.

[32] S. Janz, “mikroskopische minimalmodelle des straßenverkehrs “,” Ph.D. dissertation,
Diploma Thesis, 1998.

[33] J. Erdmann, “Lane-Changing Model in SUMO,” SUMO2014 Modeling Mobility with
Open Data, pp. 77–88, 2014.

[34] M. P. Forum, “Mpi: A message-passing interface standard,” 1994.

[35] J. Dongarra et al., “Document for a standard message-passing interface,” in Message
Passing Interface Forum, 1993.

[36] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable im-
plementation of the MPI message passing interface standard,” Parallel Computing,
vol. 22, no. 6, pp. 789–828, 1996.

[37] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine et al., “Open mpi: Goals, concept,
and design of a next generation mpi implementation,” in European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting. Springer, 2004, pp. 97–
104.

[38] W. Gropp and E. Lusk, “User’s guide for mpich, a portable implementation of mpi,”
1996.

Information Technology Engineer 53 Graduation Project

http://en.scientificcommons.org/20058515

School of Mathematical and Computational Sciences Yachay Tech University

[39] L. Clarke, I. Glendinning, and R. Hempel, “The MPI Message Passing Interface Stan-
dard,” Programming Environments for Massively Parallel Distributed Systems, vol.
6643, pp. 213–218, 1994.

[40] L. Dalćın, R. Paz, and M. Storti, “MPI for Python,” Journal of Parallel and Dis-
tributed Computing, vol. 65, no. 9, pp. 1108–1115, 2005.

[41] G. Karypis and V. Kumar, “Analysis of multilevel graph partitioning,” in Supercom-
puting’95: Proceedings of the 1995 ACM/IEEE conference on Supercomputing. IEEE,
1995, pp. 29–29.

[42] G. Karypis and V. Kumar, “Metis: A software package for partitioning unstructured
graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices,”
1997.

[43] C. Mayer, M. A. Tariq, R. Mayer, and K. Rothermel, “GrapH: Traffic-Aware Graph
Processing,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 6,
pp. 1289–1302, 2018.

[44] A. Steed and R. Abou-Haidar, “Partitioning crowded virtual environments,” in Pro-
ceedings of the ACM symposium on Virtual reality software and technology, 2003, pp.
7–14.

[45] Z. Fu, “GeoSparkSim: A Scalable Microscopic Road Network Traffic Simulator Based
on Apache Spark,” Ph.D. dissertation, GeoSparkSim: A Scalable Microscopic Road
Network Traffic Simulator Based on Apache Spark by Zishan Fu A Thesis Presented
in Partial Fulfillment of the Requirements for the Degree Master of Science Approved
April 2019 by the Graduate Supervisory Committee:, 2019.

[46] “A new strategy for synchronizing traffic flow on a distributed simulation using
SUMO,” EPiC Series in Engineering, vol. 2, pp. 152–141, 2018.

[47] T. Potuzak, “Distributed-parallel road traffic simulator for clusters of multi-core com-
puters,” Proceedings - IEEE International Symposium on Distributed Simulation and
Real-Time Applications, pp. 195–201, 2012.

[48] F. Tesser, “Distributed message passing with mpi4py,” in Euroscipy 2016, 2016.

Information Technology Engineer 54 Graduation Project

	Dedication
	Acknowledgments
	Resumen
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem Statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Traffic Simulation
	Microscopic Traffic Flow Models
	Car-following Model
	Lane Changing Model

	SUMO
	Network Building
	Demand Modelling
	Car-following and Lane-changing Model in SUMO
	TraCI

	MPI
	Groups, Contexts, and Communicators
	Point-to-Point Communication
	Collective Communication
	MPI for Python

	State of the Art
	Partitioning Algorithms
	Graph Partitioning
	Space Partitioning

	Distributed Traffic Simulations

	Methodology
	Phases of Problem Solving
	Description of the Problem
	Analysis of the Problem
	Algorithm Design
	Implementation
	Testing

	Model Proposal
	Network Partitioning
	Route Partitioning
	Border Management
	Communication Protocol
	Algorithm Implementation

	Experimental Setup
	Performance analysis

	Results and Discussion
	Results
	Discussion

	Conclusions
	Conclusions
	Recommendations
	Future Work

	Bibliography

		2021-07-05T18:34:08-0500
	MAURO ANIBAL CLAVIJO HERRERA

		2021-07-05T18:35:25-0500
	MAURO ANIBAL CLAVIJO HERRERA

