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RESUMEN 

 

El gas natural (GN) al ser extraído de los yacimientos trae consigo agua en fase vapor. El 

agua presente en el gas natural deber ser removida para prevenir consecuencias 

desastrosas como corrosión, problemas en tuberías, formación de hidratos, dificultades 

en procesos de compresión y transporte, entre otros. La estimación precisa del contenido 

de agua en mezclas de gas natural es la base para el diseño de procesos de deshidratación. 

Para este propósito, se han desarrollado varios métodos de cálculo de contenido de agua 

(rigurosos y semiempíricos). Los métodos disponibles se basan en datos de presión y 

temperatura, otros métodos incluyen la concentración de sulfuro de hidrogeno (H2S), 

dióxido de carbono (CO2), y metano. No se han reportado métodos para el cálculo de 

contenido de agua que consideren la alta concentración de hidrocarburos más pesados que 

el metano presente en mezclas de gas rico, condensado de gas, o gas licuado de petróleo 

(GLP). Además, algunos métodos disponibles para la estimación del contenido de agua 

en el gas natural tienen baja precisión y no son aplicables a las condiciones típicas de 

operación en el procesamiento de gas. Actualmente, con el desarrollo de la inteligencia 

artificial, métodos alternativos de estimación como las redes neuronales artificiales 

(RNA) han probado ser precisas en la estimación de datos para aplicaciones ingenieriles. 

RNA basan su estructura en el funcionamiento biológico de redes neuronales y pueden 

aprender desde un conjunto de datos previo a predecir nuevos datos. Por lo tanto, el 

objetivo de este proyecto de graduación es el desarrollo de un modelo predictivo basado 

en redes neuronales artificiales para la estimación precisa del contenido de agua en 

mezclas de gas natural, tomando en cuenta la composición de los hidrocarburos pesados 

presentes en la mezcla, en condiciones típicas de operación. Para este fin, datos 

experimentales de contenido de agua en GN fueron requeridos. Los datos experimentales 

fueron procesados y se diseñó la RNA, después etapas de validación con otros métodos 

predictivos fueron necesarias para verificar la aplicabilidad del método propuesto. 

Ecuador al ser un país productor de hidrocarburos, las herramientas para el cálculo de 

contenido de agua en mezclas de gas natural son de interés para garantizar la continuidad 

operacional en la producción de hidrocarburos gaseosos e instalaciones de procesamiento. 

 

Palabras claves: gas natural, contenido de agua, red neuronal artificial, hidrocarburos 

pesados, procesos de deshidratación.  
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ABSTRACT 

 

When natural gas (NG) is extracted from the reservoir, it brings water in a vapor phase. 

Water present in natural gas needs to be removed to prevent disastrous consequences such 

as: corrosion, problems in pipelines, hydrate formation, difficulties in compression and 

transport processes. Accurate estimation of the water content in natural gas mixtures is 

the basis of the dehydration process design. In this regard, many water content methods 

have been developed (rigorous and semi-empirical methods). Some methods are based on 

pressure and temperature data. Other ones include the concentration of hydrogen sulfide 

(H2S), carbon dioxide (CO2), and methane in natural gas. There are no reported methods 

for calculating water content that considers the hydrocarbons heavier than methane 

present in mixtures of rich gas, gas condensate, or liquefied petroleum gas (LPG). 

Furthermore, some available methods for estimating water content in natural gas have 

low accuracy, and not all apply to typical operating conditions for natural gas processing. 

With artificial intelligence development, alternative estimation methods such as artificial 

neural networks (ANN) have proven to be accurate in estimating data for engineering 

applications. ANN base their structure on the biological neural networks functioning and 

can learn from a set of previous data to predict new data. Hence, this graduation project 

aims to develop a predictive model based on artificial neural networks to precisely 

estimate water content in natural gas mixtures, taking into account the composition of the 

heavy hydrocarbons present in the mixture for typical gas processing conditions. For this 

purpose, experimental data from open literature of water content in NG was required. The 

experimental data were processed, and the ANN was designed. Then, validation stages 

with other predictive methods were necessary to check the proposed method's 

applicability. As Ecuador is a hydrocarbon-producing country, the engineering tools for 

calculating the water content in natural gas mixtures are of interest to guarantee 

operational continuity in gaseous hydrocarbon production and processing facilities. 

 

Keywords: natural gas, water content, artificial neural network, heavy hydrocarbons, 

dehydration process. 
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CHAPTER I 

 

1. INTRODUCTION 

 

Natural gas (NG) is currently seen as one of the primary and most relevant energy sources 

from domestic to industrial use. So much so that for the year 2019, NG supplied 24.2% 

of global primary energy demand and at least 25% of the electrical energy generation [1]. 

The above percentages show the energy importance of natural gas. However, natural gas 

is not only energy; it is also the main feedstock for the petrochemical industry, used in 

the manufacture of fertilizers, plastics, nylons, polyesters, etc. [2].  

 

Natural gas extracted from reservoirs contains light hydrocarbons, hydrogen sulfide 

(H2S), carbon dioxide (CO2), water (H2O), and a variety of unwanted components [3]. 

Undesirable components like water can cause processing operations problems if not 

removed or reduced from natural gas streams. Dehydration technologies like molecular 

sieves and glycol absorbers are typically used to eliminate or reduce the water content in 

NG [4]. 

 

Water content in natural gas refers to the maximum amount of water vapor present in a 

specific volume of NG at a given pressure and temperature. Usually, water content is 

reported in pounds of water per million standard cubic feet of gas (lb/MMSCF) in English 

units, or milligrams of water per cubic meter (mg/m3) in the International Systems of 

Units [5]. Original conditions of the reservoirs and NG extraction processes allow 

sufficient water in contact to saturate the gas [6]. An already saturated gas cannot increase 

its water content in the vapor phase at a given condition, but dehydration processes are 

necessary to reach gas industrial required specifications [7]. 

 

Estimating water content in natural gas is the critical step for the dehydration processes 

design. Significant errors in water content estimation in natural gas lead to inappropriate 

dehydration plant designs. These inadequate designs are reflected in economic losses [4]. 

Many methods for estimating the water content in NG have been developed. In general, 

these methods can be divided into two groups: 1) charts, empirical or semiempirical 

correlations, and 2) rigorous thermodynamic models. Charts and correlations are helpful 

to get a rapid estimation due to available input data (pressure and temperature), while 
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thermodynamic models present a greater precision, but their application in most cases 

requires computational procedures [8].  

 

All methods base their calculations on gas pressure and temperature conditions. Some of 

them have chosen to add the contribution of H2S, CO2 and methane concentration. Also, 

limited ranges for pressure and temperature are proposed for a more accurate calculation 

of the water content in NG. Thus, accurate methods at low temperatures are not proper at 

high temperatures and vice versa, same for the pressure [8]. Although recognized models, 

like the McKetta-Wehe chart, proposed corrections based on natural gas molecular weight 

[9]. At the moment, methods that take into account the composition of heavy hydrocarbons 

in NG are not reported in the open literature. 

 

In addition to the methods mentioned above, in recent years, models based on artificial 

intelligence (AI), specifically machine learning (ML), have emerged for use in solving a 

large variety of tasks [10]. Artificial neural networks (ANN) are ML models that 

demonstrate great relevance in prediction and data classification. ANN are based on 

biological neuron networks functioning, and they can learn to predict values or results 

established on the knowledge of previous data  [11]. ANN have been used in the natural 

gas industry to predict dew points in dehydration processes with TEG [12]. Also in NG 

context, Al-Fattah and Startzman [13] developed an ANN to estimate natural gas 

production.  

 

In Ecuador, around 100 million standard cubic feet per day (MMSCF/day) of natural gas 

are produced [14]. The natural gas produced in Ecuador is used for several applications that 

are: (1) for supplying NG to the power plant Termogas Machala located in El Oro 

province, (2) for supplying liquefied natural gas to Azuay province, specifically to the 

ceramic sector, (3) for supplying different industrial sectors of the provinces of Pichincha, 

Guayas, Azuay among others, (4) for supplying domestic natural gas to around 350 

families in Bajo Alto province of  El Oro [15, 16]. The rest of the natural gas produced is 

used in energy production plans for supplying EP Petroecuador facilities, and its excess 

is burned in flares [17]. Besides, Ecuador produces around 1.06 million barrels per year 

(MMbl/yr) of liquefied petroleum gas (LPG) directly from associated natural gas [18]. 

 

This work focuses on developing an alternative and accurate predictive model of water 

content based on artificial neural networks, taking into account heavy hydrocarbon 

composition in natural gas.  The model developed is intended to be applicable under 
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typical pressure and temperature conditions in NG processing facilities for various gas 

types. For this purpose, an intense search of open experimental water content data and 

available methods was carried out. Then data processing was necessary. After processing 

the experimental data, the artificial neural network was developed and structured with 

artificial intelligence software tools. Finally, a group of natural gas mixtures was used to 

study the developed model's accuracy and applicability, and its results were compared 

with other available methods for estimating water content in natural gas. 

 

In Ecuador, natural gas and its derivatives (LGP) make it possible to supply part of the 

domestic market and reduce the importation of petroleum derivatives [15]. The predictive 

tools for calculating water content in natural gas guarantee operational continuity in 

gaseous hydrocarbon production and processing facilities in the country. 

 

1.1. Problem Approach 

 

When natural gas is extracted from the reservoir, it is accompanied by water vapor. The 

amount of water present in natural gas must be removed or decreased during NG 

processing. If the amount of water in the NG is not reduced or eliminated, its presence 

can lead to operational processes problems and reduce the gas quality [5]. In Figure 1, the 

main problems are shown that water can produce during the processing, transportation, 

and storage of natural gas.  

 

Figure 1. Emanating problems from the presence of water in natural gas 
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• Corrosion: variations in pressure and temperature can cause condensation of 

the water present in natural gas. The liquid water phase can interact with acid 

gases and may lead to corrosion. 

 

• Hydrate formation: gas hydrates (GH) are crystalline solids that are formed 

when water (or ice) traps small molecules of gases such as methane, ethane, 

propane, carbon dioxide or hydrogen sulfide under certain conditions of 

pressure and temperature [19]. Gas hydrates generate plugging of flow pipes. 

 

• Equipment damage: water in the liquid phase, even in small quantities, can 

damage equipment that works specifically with gases and vapor phase, such 

as compressors. Corrosion and gas hydrates also cause damage to equipment. 

 

• Calorific value reduction: water has no calorific value; therefore, its presence 

in high quantities reduces natural gas's calorific value. 

 

• Explosions: the gas used in thermoelectric plants, boilers, and other natural 

gas combustion processes must strictly comply with a minimum amount of 

water. The water present in the gas used for combustion can boil violently, 

increasing the pressure considerably. These pressure increases could damage 

the structure of the boiler, eventually causing explosions. 

 

In order to avoid the problems mentioned above, a dehydration process must be used. 

Regardless of which one, the dehydration process is optimally designed to meet the 

specifications required for processing, using, and commercializing natural gas and its 

products like LPG [20]. For any dehydration process design, the water content in the natural 

gas must be known at a given temperature and pressure conditions; in this need, many 

methods for determining water content in natural gas have been developed [21]. The 

problem with the available methods is most of them have low precision and have been 

developed based on scarce experimental data. This has meant some available methods 

cannot be applied in the entire range of typical pressure and temperature conditions to 

which natural gas is subjected during its production and processing. Further, no method 

allows taking into account the compositional classification of natural gas, except for H2S, 

CO2 and methane. This way, available methods could not have a good prediction of water 

content in mixtures with a large composition of heavy hydrocarbons such as rich gases, 

LPG and condensed gases. 
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In this context, this work seeks to develop a predictive and precise model (ANN) for 

calculating the water content in natural gas, alternative to available methods considering 

the impact of the heavy hydrocarbons present in the NG. The model must also be 

applicable in a range of typical pressure and temperature conditions to which natural gas 

is exposed during its production and processing. Besides, it is sought that the method 

developed applies to most types of natural gas. 

 

 

1.2. Objectives  

 

1.2.1. General Objective 

 

To develop an artificial neural network that calculates the water content in natural gas 

mixtures, taking into account the heavy hydrocarbons contribution, under operating 

typical natural gas processing conditions. 

 

1.2.2. Specific Objectives 

 

• To search and process experimental data of water content in natural gas 

mixtures. 

 

• To analyze the effect that heavy hydrocarbons have on natural gas mixtures 

water content based on available methods. 

 

• To analyze the operating conditions for which the artificial neural network 

will be applied. 

 

• To compare the developed artificial neural network's performance and 

applicability with available methods in different types of natural gas mixtures. 
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CHAPTER II 

 

2. BACKGROUND AND LITERATURE REVIEW 

 

2.1. Natural Gas 

 

Natural gas is a mixture that contains different hydrocarbon and non-hydrocarbon 

constituents. On the one hand, the hydrocarbon compounds in natural gas are methane 

(C1), ethane (C2), propane (C3), butanes (nC4, iC4), pentanes (nC5, iC5), hexane (C6), 

heptane and heavier hydrocarbon traces (C7
+). On the other hand, non-hydrocarbon 

compounds in natural gas are water (H2O), hydrogen sulfide (H2S), carbon dioxide (CO2), 

and nitrogen (N2). The compositional percentage of each of the natural compounds varies 

according to the type of gas [22]. 

 

 2.1.1. Types of Natural Gas 

 

Natural gas can mainly be classified by its source and composition [23].  

 

• Classification by source 

o Associated natural gas: it is the gas that is extracted together with oil and 

contains large amounts of hydrocarbons, such as ethane, propane, butane, 

and others. 

 

o Non-associated natural gas: it is the gas found in deposits that do not 

contain crude oil. The most abundant component in non-associated 

natural gas is methane. 

 

• Classification by composition 

o Sour gas: contains considerable amounts of carbon dioxide and sulfur 

derivatives (hydrogen sulfide, mercaptans, sulfides and disulfides).  

o Sweet gas: it is considered sweet gas when it does not have sulfur 

compounds or its composition is below the regulations' values (< 4 

ppmv). 

o Rich gas: it is the gas that contains significant amounts of hydrocarbons 

heavier than methane; generally, it is the associated natural gas. 
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o Lean gas: gas that contains smaller amounts of hydrocarbons heavier 

than methane, usually is non-associated natural gas. 

 

The mole composition in natural gas of hydrocarbon and non-hydrocarbon compounds is 

enormously varied and will depend on the gas source. In Ecuador, varieties of natural gas 

are produced. The most representative mixtures for their usefulness are the natural gas 

from the Shushufindi industrial field, which feeds the same field's gas processing plant 

and natural gas from the Amistad offshore field [24]. Table 1 shows the composition of 

different natural gas in some regions worldwide and representative samples from 

Ecuador. 

 

Table 1. Typical gas composition in some regions 

Natural Gas Composition (mole %) 

 Canada Bach Ho Miskar Rio Arriba Ecuador Ecuador 

 (Alberta) (Field Vietnam) (Field Tunisia) (New Mexico) (Field Shushufindi) (Field Amistad) 

He - - - - - - 

N2 3.20 0.21 16.90 0.68 3.80 0.61 

CO2 1.70 0.07 13.59 0.82 12.66 0.12 

H2S 3.30 - 0.09 - - - 

C1 77.10 71.79 63.95 96.91 45.20 98.81 

C2 6.60 13.59 3.34 1.33 7.45 0.37 

C3 3.10 7.60 0.96 0.19 22.59 0.09 

iC4 1.00 2.03 - - 2.74 - 

nC4 1.00 2.05 0.54 0.05 5.56 - 

iC5 1.50 1.66 - - - - 

nC5 1.50 1.00 0.63 0.02 - - 

   Source: Adapted from Kidnay and Parrish [2]; Vicuña and Parreño [24]. 

 

The "richness" or commercial appreciation of natural gas is evaluated by the GPM [25]. 

GPM is a unit of measurement and represents the volume of liquid that can be obtained 

per thousand standard cubic feet of natural gas, generally expressing the amount of the 

compounds, such as propane, butanes and other heavy components, which in practice can 

be obtained as liquids (generally GPM greater than two (GPM > 2) are considered rich 

gases) [26]. Table 2 summarizes the procedure for calculating GPM from the composition 

of the natural gas mixture.  
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Table 2. GPM calculation 

Component Mole fraction Gal/mole GPM per Component 

He 0.000 - - 

N2 0.010 - - 

CO2 0.030 - - 

H2S 0.000 - - 

C1 0.850 - - 

C2 0.058 10.126 1.548 

C3 0.030 10.433 0.825 

iC4 0.007 12.386 0.228 

nC4 0.008 11.937 0.252 

iC5 0.003 13.860 0.110 

nC5 0.002 13.713 0.072 

C6 0.002 15.566 0.082 

C7
+ 0.000 17.464 0.000 

GPM Mixture   3.116 

     Source: Adapted from Engineering Data Book [25]. 

Note: To obtain the GPM per component, multiply Gal/mol by the mole fraction of each 

component and divide by 379.49 SCF/mol to get gallons per standard cubic foot of the gas; 

then multiply by 1000. GPM mixture will be the sum of all GPM per component. 
                             

With a GPM of 10.80, the Shushufindi industrial field's natural gas is a rich gas with 

significantly heavier hydrocarbons than methane present in its composition. On the other 

hand, the GPM of natural gas from field Amistad is 0.12, being a lean gas where its 

composition is mostly methane. 

 

2.1.2. Natural Gas Processing 

 

Natural gas processing is essentially comparable to crude oil refining. The objective of 

gas processing is to condition the crude natural gas from the well into sales gas for 

delivering to customers [27]. Generally, natural gas processing begins with the removal of 

impurities, which are mainly non-hydrocarbon compounds. Fractionation stages are also 

necessary to separate hydrocarbons from obtaining compounds with greater added value 

[9]. In Figure 2, a generalized block diagram shows the main stages of natural gas 

processing. 
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Figure 2. Generalized natural gas processing block diagram 

 

• Gas Sweetening: natural gas sweetening is a process by which the content of acid 

gases such as CO2 or H2S, is reduced. Acid gases in natural gas can cause problems 

in the handling and processing stages, such as corrosion, poisoning, harmful odors, 

and emissions of compounds that cause acid rain. Normally, quality standards are 

CO2 < 2 vol.%, and H2S < 4 ppmv [2]. There are several methods for the removal of 

acid gases from a natural gas mixture. These include physical and chemical 

methods. In physical processes, a substance is used as a solvent and absorbs acid 

gases from natural gas as gas in solution without chemical reactions [28]. Usually, 

the solvent used is regenerated with pressure reduction and the application of heat. 

In chemical processes, the natural gas to be treated is contacted countercurrently 

with a solution of an active component that reacts with acid gases to form 

complexes, soluble in the solvent. The solvents most used in the gas industry for 

chemical sweetening natural gas are aqueous solutions of amines and water (30 - 

70 vol% respectively). The amines used commercially for gas treating are: 

monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), 

diglylamine (DGA), methyldietamine (MDEA) [25]. 

 

• Gas Dehydration: refers to the processes for eliminating or reducing water content 

in natural gas. Section 2.2. explains in detail the natural gas dehydration process. 

 

• Natural Gas Liquids Recovery: the recovery of natural gas liquids (NGL) 

involves processes to separate ethane and heavier hydrocarbons from methane; this 

process produces a quality lean natural gas to transport through pipelines [26]. The 

two main techniques for recovering NGL are absorption and mechanical 

refrigeration. On the one hand, in the absorption method, absorbent oil is used, 
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which traps NGL. On the other hand, the mechanical refrigeration method is the 

simplest and most straightforward process for NGL recovery on a large scale. This 

method is provided by a refrigeration cycle, which usually uses propane as the 

refrigerant [29]. Once the NGL has been recovered from the natural gas stream, they 

must be separated or fractionated. 

 

• Fractionation Train: the fractionation of natural gas liquids is used in gas 

processing plants to separate heavy hydrocarbons mixed in natural gas and obtain 

individual products. These hydrocarbons are ethane, propane, n-butane, isobutane, 

and pentanes with heavier compounds, called natural gasoline. The separation of 

these compounds is carried out by relative volatility [3]. The compounds' facilities 

can be separated depending on the relative volatility within the mixture and the 

products' required quality. A fractionation train (Figure 3) is made up of many 

columns or separators. The columns' number depends on components to be 

separated from the hydrocarbon mixture in the feed [2]. 

 

 

Figure 3. Typical fractionation train in natural gas processing 
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2.2. Dehydration Process 

 

Water present in natural gas at temperatures below its dew point tends to condense. In 

natural gas mixtures, two types of dew points can be distinguished: the hydrocarbon dew 

point and the water dew point [20]. Usually, for a saturated rich natural gas, the water dew 

point can be present at temperatures lower than hydrocarbons' dew point. On the contrary, 

in saturated lean natural gas mixtures, the dew point occurs at higher temperatures (Figure 

4) [24]. In terms used in engineering, dehydrating a gas reduces its water dew point, so the 

lower the water's dew point, the lower the water content in the gas. The main reasons for 

removing water vapor from natural gas are the following:  

 

o Liquid water and natural gas can form hydrates that plug equipment and pipes,  

o Liquid water from natural gas is corrosive, mainly if it contains CO2 and H2S,  

o Water vapor from natural gas can condense in lines, causing plugging,  

o For optimizing the operation of the compressors,  

o For achieving the quality required for its transport in pipes and 

commercialization [4]. 

 

The water content specification in natural gas is commonly 4 to 7 lb/MMSCF [2]. The 

Ecuadorian technical regulation INEN 2 489:2009 establishes a maximum limit of 4 

lb/MMSCF for processed natural gas [30]. 

 

 
Figure 4. Phase envelope - rich gas and lean gas 
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In order to meet the quality standards of water content in natural gas, natural gas must be 

subjected to a dehydration process. The dehydration processes most used in the natural 

gas industry are absorption and adsorption processes [31]. 

 

2.2.1. Absorption Processes 

 

Absorption is a mass transfer phenomenon from a gas phase to a liquid phase; this is 

possible by adding a liquid with high hygroscopicity or ease of removing water. 

Absorption dehydration consists of removing water vapor from the gas through intimate 

contact with a liquid desiccant [25]. The contact takes place in a packed or dishes tower. 

Glycols are the most effective liquid desiccants; the most used for the dehydration of 

natural gas are: ethylene glycol (EG), diethylene glycol (DEG), and triethylene glycol 

(TEG) [4].   

 

Triethylene glycol has gained universal acceptance as the most effective glycol because 

it achieves greater moisture remotion, has low evaporation losses and operating costs. It 

is a nonvolatile, odorless, colorless and hygroscopic liquid [32]. TEG has been used to 

dehydrate sweet and sour gases in operating ranges of pressure (25-2500 psia) and 

temperature (40-160 ºF) [25]. The disadvantages of using TEG are that it is not suitable for 

cryogenic processes, and it is corrosive if contaminated with H2S [33]. 

 

A dehydration plant that uses TEG (Figure 5) comprises two zones: the dehydration zone, 

which is favored by high pressures and low temperatures, and the regeneration zone, 

which is favored by low pressures and high temperatures. There are two complementary 

operations. The first refers to cleaning the wet natural gas that enters the absorption tower, 

and the second corresponds to the decontamination of the glycol to prevent impurities 

from reaching the reboiler [2]. It should be noted that the liquid-vapor phase equilibrium 

governs the absorption of water vapor and the concentration of glycol. 
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Figure 5. Diagram of a glycol dehydration plant 

Source: Adapted from Engineering Data Book [25]. 

 

The regenerated or lean glycol is continuously pumped to the absorber tower's upper 

plate, where it flows through the liquid downcomers that connect each plate or contact 

tray. The natural gas rises with water vapor content and flows through the bubble capsules 

or the valves placed in each plate [32]. This process is repeated at each contact plate: the 

descending liquid absorbs the water vapor, and the ascending natural gas is dehydrated. 

 

The following information must be available to design glycol dehydration plants: gas inlet 

flow, gas specific gravity, operating pressure, maximum contact tower working pressure, 

gas inlet temperature, "water content of inlet natural gas," and outlet gas specification [3]. 

Similarly, two fundamental design criteria must also be taken into account for an adequate 

plant performance: glycol/water ratio and lean TEG concentration. A value of 2 to 6 

gallons of TEG per pound of water removed (gal TEG/lb H2O) is considered appropriate 

for most glycol dehydration process requirements. A value of 3 gal TEG/lb H2O is most 

often used in dehydrators [25]. Normally, the concentration of lean TEG is 98 to 99.5% by 

weight. To obtain a TEG purity greater than 98% by weight, heating to 400 °F and 

atmospheric pressure are required in the regenerator [31]. To avoid the presence of liquid 

(water, heavy hydrocarbons) in the natural gas feed, a stripper separator (Scrubber) must 

be placed before the contactor or absorber [3]. 

 

In the operation of dehydration plants by glycol may occur operational problems such as: 
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o Glycol contamination due to the presence of suspended impurities, which can 

generate foam in the contact tower. Thus, glycol carryover by gas can occur. 

 

 

o Pumping problems when handling low temperatures which increase the 

viscosity of highly concentrated glycol solutions. 

 

o Glycol losses should be controlled to less than 0.1 gallons for each MMSCF 

of natural gas treated, avoiding temperatures above 160 °F and foam formation 

in the contactor [25]. 

 

Despite the problems associated with its operation, glycol absorption is the traditional gas 

dehydration method since it has proven to be efficient in achieving the required quality 

specifications, and its operation is well known [32]. In Ecuador, the Bajo Alto dehydration 

plant located in El Oro province is an absorption plant that uses TEG to dehydrate the 

natural gas from the Amistad field. Once natural gas is dehydrated goes to the 

thermoelectric plant Termogas Machala [34]. 

 

2.2.2. Adsorption Processes 

 

Dehydration with solid desiccants is a process that works under the principle of 

adsorption. Adsorption involves a form of adhesion between the solid desiccant particles 

and the water vapor in the gas. Dehydration with solids is much more efficient than 

dehydration with glycol; with this technique, water content of 0.05 lb/MMSCF is reached 

[3]. However, to reduce the adsorber's size, a glycol absorber is often used to perform 

initial dehydration, thereby reducing the mass of solid desiccant required for final 

dehydration [35]. 

 

Solid bed dehydration is a good alternative to glycol dehydration in applications such as: 

o Dehydration to achieve dew points of water less than -40 °F to -58 °F, 

o Hydrocarbon dew point control units where the simultaneous extraction of 

water and hydrocarbon are required to achieve both sales specifications. Solid 

desiccant is frequently used to control the hydrocarbon dew point in high-

pressure lean gas streams [9], 

o Simultaneous dehydration and H2S removal from natural gas is required, 

o Dehydration of gases containing H2S, where the solubility of H2S in glycol 

can cause corrosion problems,  
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o Dehydration and sulfide components (H2S, COS, CS2, mercaptan) removal 

from NGL or LPG streams [36]. 

 

Desiccants must possess a large affinity for water, a large surface area per unit volume, 

high mechanical strength, abrasion resistance, be chemically inert, and have reasonable 

costs. The most used solid desiccants are silica gel, alumina, and molecular sieve [37]. A 

comparison of the physical properties of each desiccant is shown in Table 3. 

 

In natural gas dehydration processes by adsorption systems, the most widely used 

desiccants are molecular sieves, which are crystalline forms of aluminosilicates that 

exhibit a high degree of water adsorption. They provide even a dew point of -150 °F and 

can be used simultaneously to sweet and dehydrate natural gas. Molecular sieves in their 

structure form cavities connected by uniform pores with diameters from 3 to 10 Å, 

depending on the type of sieve [4]. Since they are made according to specific pore size, 

molecular sieves allow adsorption to be selective; only molecules whose diameter is 

smaller than the molecular sieve's pore size are adsorbed [25].  

 

Table 3. Comparison of the physical properties of desiccants used for dehydration of 

NG 

Properties Silica gel  Alumina  Mol. sieves 

Specific area [m2/g] 750-830 210 650-800 

Pore volume [cm3/g] 0.4-0.45 0.21 0.27 

Pore diameter [Å] 22 26 3-10 

Design capacity [kg H2O/100 kg desiccant] 7-9 4-7 9-12 

Density [kg/m3] 721 800-880 690-720 

Heat capacity [J/kg/°C] 920 240 200 

Regeneration temperature [°C] 230 240 290 

Heat of desorption [J] 3256 4183 3718 

Source: Adapted from Netusil and Ditl [4]. 

 

Figure 6 shows the typical gas dehydration process with solid desiccant. When the wet 

gas enters the plant, it passes through a separator (Scrubber) to remove all solids and 

liquids. Subsequently, the gas flows to the top of the adsorber containing a desiccant bed. 

While one adsorber tower is dehydrating, the other regenerates by a stream of hot gas [25]. 

The gas to be processed passes through the adsorbent bed during the adsorption stage, 

where the water is selectively retained. When the bed becomes saturated, a stream of hot 

gas passes in counterflow to the adsorbent bed for regeneration. After regeneration and 

before adsorption, the bed must be cooled, and this is achieved by circulating cold gas 
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through the adsorption bed in the same flow direction; later, the same gas can be used for 

the regeneration process [3]. The change of beds is carried out using a time controller, 

which executes the operations' changes at certain times depending on the cycle; however, 

the different stages' duration varies considerably [38]. 

 

In Ecuador, the Shushufindi Gas Plant has two adsorbers of molecular sieves formed by 

synthetic zeolites. These molecular sieves are used to dehydration the associated natural 

gas that comes from the field with the same name (Shushufindi). Regeneration of the 

molecular sieves in this plant is carried out using residual gas, which is preheated at 500 

°F for 6 hours [18]. 

 

Figure 6. Diagram of the dehydration process with solid desiccants 

Source: Adapted from Engineering Data Book [25]. 

 

Design of plants for the dehydration of natural gas by adsorption necessarily requires the 

precise estimation of the "water content" in the gas to be dehydrated. In molecular sieves, 

the water content in saturated natural gas is one of the most important factors for sizing 

the adsorber, as is the flow to be treated and the expected lifetime of the molecular sieve 

[21]. 

 

 

2.3. Methods for Calculating Water Content in Natural Gas 

 

Natural gas extracted from the well can contain water in vapor form and free water 

associated with condensates. Besides, the sweetening processes with aqueous amines 
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solutions provide the natural gas's necessary conditions to become saturated in water at a 

given pressure and temperature [39]. The water vapor content of natural gas increases with 

increasing temperature and decreases with increasing pressure. A saturated natural gas's 

water content is on the order of a hundred or thousand pounds of water per million 

standard cubic feet of gas (lb/MMSCF). On the contrary, the specification of the 

maximum water content for transportation through gas pipelines and the sale of natural 

gas is in the order of 4 to 7 lb/MMSCF [25]. The dew point of water in natural gas is an 

indirect measure of natural gas's water content. The dew point is the temperature at which 

natural gas is saturated with water vapor at a certain pressure. At the dew point, the gas 

is in equilibrium with liquid water. Any decrease in temperature or increase in pressure 

would cause the water vapor in natural gas condensation [40]. 

 

In natural gas treatment processes, the so-called dew point depression is defined as the 

difference between the dew temperature of the gas saturated with water vapor and the 

dew point of the same gas after the dehydration process. To evaluate any natural gas 

dehydration process, by convention, the start point is to determine the saturated natural 

gas’s water content [33]. Experimental determination of the water content in natural gas is 

the most accurate way to calculate it. However, the experimental calculation of water 

content is very expensive and time-consuming. Thus, the role of methods for predicting 

water content in natural gas becomes of utmost importance [41]. The methods for 

estimating water content can be divided into empirical such as charts and correlations; 

and theoretical, which are rigorous thermodynamic models [4]. Some suitable methods for 

estimating water content in natural gas mixtures are showed below. 

 

2.3.1. McKetta and Wehe Chart  

 

The most widely used manual method to quantify the water content in natural gas is the 

McKetta and Wehe chart. McKetta and Wehe published in 1958 the chart for estimating 

the water content in sweet natural gas. This chart for its importance has been reproduced 

in many publications, but especially in the GPSA Engineering Data Book [40]. The chart 

was generated from empirical data, limited to sweet gases and should not be used for sour 

gas compositions greater than 5% mol of H2S + CO2 
[25]. Figure 7 shows the pressure-

temperature chart performed by McKetta and Wehe. The pressure and temperature 
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conditions are needed to use this chart, and the point where they intersect, taken to the 

sides, indicates the water content in lb/MMSCF.  
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Figure 7. McKetta and Wehe chart 

Source: Adapted from Engineering Data Book [25]. 
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The McKetta and Wehe chart also presents two corrections to the final value of the 

calculated water content; the first correction (CG) is a function of the gas specific gravity. 

The second is a function of the salts content of the brine. 

 

2.3.2. Bukacek Correlation  

 

Several empirical correlations have been proposed from the McKetta and Wehe chart 

publication; one is the Bukacek correlation. This correlation uses two mathematical 

expressions (Eqs. (1) and (2)). 

 

 
𝑊𝐶𝐻20 = 0.016 (47484

𝑃𝑠𝑤

𝑃
+ 𝐵) 

 

(1) 

 

 
𝑙𝑜𝑔𝐵 =

−3083.87

459.6 + 1.8(𝑡 + 32)
+ 6.69449 

 

(2) 

 

Where 𝑊𝐶𝐻20 is the water content in natural gas (in g/m3); Psw is the water saturated 

vapor pressure (in kPa); P is the pressure of the natural gas (in kPa); B is the correction 

term and, t  is the temperature of natural gas (in °C). Naturally, these units can be extended 

to any system of units [42]. Correlation is valid only for sweet gases and for temperatures 

in a range 15.6 to 237.8 °C (60 to 460 °F) and pressures from 103.4 to 68947.7 kPa           

(15 to 10,000 psia). The apparent simplicity equation takes complexity and precision in 

the correct calculation of the water saturated vapor pressure [40]. 

 

2.3.3. Maddox Correction 

 

Maddox et al., 1998 [43] presented a correction for calculating water content in sour natural 

gas mixtures. In their work, the water content in sour natural gas is assumed to be the sum 

of the contribution of sweet natural gas, H2S, and CO2 
[44]. Eq. (3) shows the mathematical 

expression of this correction. 

 

 𝑊𝐶𝐻20,𝑠𝑜𝑢𝑟 = 𝑦𝐻𝑐 ∙ 𝑊𝐶𝐻20,𝑠𝑤𝑒𝑒𝑡 + 𝑦𝐶𝑂2
∙ 𝑊𝐶𝐶𝑂2

+ 𝑦𝐻2𝑠 ∙ 𝑊𝐶𝐻2𝑆 (3) 

Where  𝑊𝐶𝐻20,𝑠𝑜𝑢𝑟 is the water content in sour natural gas; 𝑦𝐻𝑐, 𝑦𝐶𝑂2
 and 𝑦𝐻2𝑠 are the 

mol fraction of hydrocarbons, carbon dioxide, and hydrogen sulfide, respectively; 
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𝑊𝐶𝐶𝑂2
and 𝑊𝐶𝐻2𝑆 are the water content of carbon dioxide and hydrogen sulfide [43]. 

𝑊𝐶𝐻20,𝑠𝑤𝑒𝑒𝑡 can be obtained with McKetta-Wehe chart or the Bukacek correlation. While 

𝑊𝐶𝐶𝑂2
and 𝑊𝐶𝐻2𝑆 are calculated by Eq. (4): 

 

 𝑙𝑜𝑔𝑊𝐶𝑁𝑜𝑛𝐻𝐶 = 𝑎0 + 𝑎1 ∙ 𝑙𝑜𝑔 𝑃 + 𝑎2 ∙ (𝑙𝑜𝑔𝑃)2 (4) 

NonHc stands for H2S or CO2, P is the pressure of the natural gas (in psia). The 

coefficients 𝑎𝑖 are temperature dependent and are tabulated in Table 4. 

 

Table 4. Maddox 𝑎𝑖 coefficients 

  CO2    H2S  

T(K) 𝑎0 𝑎1 𝑎2 T(K) 𝑎0 𝑎1 𝑎2 

299.82 2.202797 −1.058120906 0.3427 299.82 2.314489 −0.678582201 0.3004 

310.93 2.496936 −1.036484877 0.3103 310.93 2.544338 −0.70422576 0.3046 

327.60 2.930297 −0.990489109 0.24 327.60 2.890856 −0.799408896 0.3319 

344.26 3.18733 −0.924518418 0.2139 344.26 3.241253 −0.896948037 0.3646 

    377.60 3.773303 −1.030222461 0.4232 

    410.93 4.277016 −1.255345485 0.4897 

 

 

2.3.4. Wichert Chart 

 

Wichert Chart is an empirical method for calculating water content in sour natural gas 

mixtures. It is necessary to know the molar concentration of sour gases (H2S, CO2) and 

the pressure and temperature of the gas to apply the model. This method adds a variable 

called %H2S Equivalent, which integrates the molar concentrations of sour gases into a 

single concentration. Eq. (5) is the mathematical expression of the %H2S Equivalent. 

 

 %𝐻2𝑆 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = 𝑚𝑜𝑙% 𝐻2𝑆 + 0.7𝑚𝑜𝑙% 𝐶𝑂2 (5) 

This chart is applicable up to values of 350 °F and up to a pressure of 10,000 psia, for 

sour gas mixtures with an %H2S Equivalent up to 50% [25]. The temperature is intersected 

with the % H2S Equivalent; then a vertical line is drawn up until it intersects with the gas 

pressure; drawing a horizontal line to the left, the water content ratio value will be 

obtained. Finally, the acid gas's water content is cleared from the water content ratio, for 

which the water content of the sweet natural gas is required by the McKetta and Wehe 

chart. Figure 8 shows the model developed by Wichert. 



 

22 

 

 

Figure 8. Wichert Chart for calculating water content in sour gas 

Source: Adapted from Engineering Data Book [25]. 

 

2.3.5. Thermodynamic Models 

 

Thermodynamic models for calculating water content in natural gas mixtures are based 

on the equality of chemical potentials. Although most thermodynamic methods have 

successfully predicted phase equilibrium for various systems, many of them have poor 

predictions for water-rich hydrocarbon systems [45]. Several authors have modified 

traditional Equations-of-State to successfully predict the phase equilibrium of water-rich 

hydrocarbon systems to solve this bad prediction. Two relevant models are cited below. 
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• SRK-Kabadi-Danner Equation-of-State (SRKKD EoS): Kabadi and Danner 

[45] presented a model based on the Soave-Redlich-Kwong Equation-of-State, 

with modifications in the mixing rules and the binary interaction parameters, 

to more adequately represent the liquid-vapor equilibrium of systems 

composed of hydrocarbons and water. They also developed a means to 

estimate water-hydrocarbon equilibrium when no data are available [46]. 

 

• PR-Modified-Panagiotopoulos-Reid Equation-of-State (PRM EoS): PRM Eos 

is a modification of the mixing rule for PR-Panagiotopoulos-Reid, which was 

initially developed from the Peng-Robinson Equation-of-State [47]. This 

thermodynamic model also fits the binary iteration parameters of the work 

developed by Panagiotopoulos and Reid. Software companies developed 

PRM for better prediction for Three-phase separators for water-hydrocarbon 

systems in commercial simulators (AVEVA PRO/II and Aspen HYSYS). 

 

Improvements in phase equilibrium water-hydrocarbon to the traditional thermodynamic 

models have made better and accurate water content predictions in natural gas mixtures. 

Most of these thermodynamic are programmable in computational tools; however, this 

requires a certain degree of complexity and time-consuming [5]. Commercial software 

facilitates the use of thermodynamic models, but this requires an economical expense. 

 

2.3.6. Other Methods 

 

Many methods have been proposed to calculate water content in natural gas; there are 

differences in their development and applicability. Thus, some have been developed 

strictly for sweet natural gases and others for sour natural gases. The pressure and 

temperature ranges are also different for each method [5]. Table 5 summarizes some 

available methods for calculating water content.  

 

Accurate water content determination requires careful study of existing literature and 

methods, if possible, compared with available experimental data [25]. Previously described 

methods estimate the water content as a function of pressure and temperature mainly. 

Unique sour gas methods add H2S and CO2 concentration for water content calculation. 

Although in the industry, there are many types of natural gas mixtures rich in heavy 

hydrocarbon components such as associated natural gas and its derivatives, among them 
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natural gas liquids and liquefied petroleum gas. No method for calculating the water 

content in NG considers the concentration of heavy hydrocarbons present in the mixture. 

 

Table 5. Some available methods for estimating water content in NG 

Method Natural Gas Type Operating Temperature 

(°F) 

Operating Pressure 

(psia) 

Sharma–Campbell Method [48] Sweet 80 to 160 < 2000 

Robinson et al., [49] Sour -50 to 350 300 to 10000 

Guo and Ghalambor's Chart [50] Sour -60 to 280 14.7 to 10000 

Ning Yingnan's formula [40] Sweet NA 14.7 to 10000 

Sloan correlation [5] NA -40 to 120 200 to 1000 

Wichert and Wichert chart [25] Sour -50 to 350 100 to 10000 

Gordon's Chart [20] Sweet -60 to 400 14.7 to 10000 

Torbjørn’s Chart [20] Sweet -50 to 212 14 to 7352 

Mohammadi and Richon [11] Sweet -38 to 40 < 1500 

Note: NA stands no available information. 

 

 

 

2.4. Fundamentals of Artificial Neural Network 

 

Science has been inspired by nature in a wide variety of environments. For example, 

airplanes use aerodynamics principles taken from the way birds stay in the air. Nature 

also provides a powerful tool to learn from mistakes through natural selection and develop 

designs that generate excellent efficiency and adaptation to its environment. In Artificial 

Intelligence (AI), examples of how natural models have been adapted to create algorithms 

that allow them to learn from their mistakes and become more efficient in their tasks. An 

example of the above are artificial neural networks (ANN). 

 

Artificial neural networks are software algorithms whose foundation is inspired by the 

behavior of neurons in the human brain [51]. Millions of chemical reactions occur in the 

brain that neurons communicate with each other. Neurons connect to each other through 

connections called synapses, which are electrical exchanges between the synaptic button 

(sending neuron) and the dendritic button (receiving neuron). These connections allow a 

neuron to send electric shocks to the cells around it. When a neuron receives a stimulus, 

its electrochemistry is altered, accumulating energy that, in a certain amount, the neuron 

discharges it to the neighboring neurons, forming a synaptic connection [52]. 
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Artificial neural networks base their structure on neuronal biological networks, where a 

simple unit receives information from various sources to generate and transmit its data in 

a network of simple units. The simple ANN unit acquires the name of a neuron or node 

[53]. 

 

2.4.1. Node 

 

The node or neuron is the smallest unit of processing in an artificial neural network. 

Similar to biological neurons, the node receives external stimuli through connections. 

External stimuli are input values (xi) connected to the node by parameters called weights 

(wi). Inside the node, a weighted sum of the input values multiplied by their weight is 

performed. A parameter called bias (b) is used to adjust the output and the weighted sum 

of the inputs to the neuron [54]. The weighted sum of the input values plus the bias are 

based on the linear regression model expressed in Eq. (6). 

 

 
𝑧 = ∑(𝑥𝑖 ∙ 𝑤𝑖

𝑛

𝑖=0

) + 𝑏 
 

(6) 

Where z represents the weighted sum plus the bias.  

 

Artificial neural network applications require that the output values are not always linear. 

Thus, to break with linearity, z is passed through an activation function (Ø) [51]. Therefore, 

the output value (y) of a neuron is represented by the mathematical expression in Eq. (7). 

 

 𝑦 = Ø(z) (7) 

Figure 9 shows a node's diagram with three input values denoted by x1, x2, x3, and one 

output value y1. The influence of each input value in y1 is determined by the value of its 

respective weight w1, w2, w3. 

 

Figure 9. Diagram of a node with three input values and one output value 
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The activation function is the reason why artificial neural networks have the ability to 

model countless problems [54]. Activation functions are mathematical equations that 

determine the output of a node. There are linear and nonlinear activation functions; 

nonlinear functions are the most widely used because they allow artificial neural networks 

to expand their applicability and modeling power. Normally the set of output values that 

an activation function grants are in a range determined as (0,1) or (-1,1) [51]. Frequently 

used activation functions are listed below: 

 

• Linear Function: also called identity function, it is the most used function                  

(Eq. (8)) for modeling linear problems where the output is a real value [51].  

 

 Ø(𝑥) = 𝑥 (8) 

• Sigmoid Function: the S-shaped term "sigmoid"; this function (Eq. (9)), also 

called logistic, maps the entire real range of x into (0,1). This simple function 

has two useful properties: 1) it can model a conditional probability 

distribution, and 2) its derivative has a simple form [55]. 

 

 
Ø(𝑥) =

1

1 + 𝑒−𝑥
 

 

(9) 

• Hyperbolic Tangent Function (tanh): this function (Eq. (10)) is analogous to 

the sigmoid function. Its interval widens to (-1,1), where high values 

asymptotically tend to 1, and very low values tend to -1. The tanh function has 

two important characteristics: 1) it is centered at the value of 0; 2) it enables 

the obtaining of negative and positive outputs [55]. 

 

 
Ø(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 

(10) 

• Rectified Lineal Unit Function (Relu): Relu function transforms the entered 

values, canceling the negative values and leaving the positive ones as they are 

entered. The Relu function (Eq. (11)) is frequently used in models where 

negative values are inadmissible [51]. 

 

 
Ø(𝑥) = {

0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0 

 
 

(11) 
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Figure 10 presents the representative graphs of the outputs of the activation functions 

explained. 

 

Figure 10. Various activation functions 

Source: Adapted from Aggarwal [51]. 

 

The node and activation functions are the core of artificial neural networks. However, a 

single node cannot cover the solution of complex problems. Several nodes must be 

grouped, which together and how they have organized form the artificial neural networks 

topology [52]. 

 

2.4.2. Artificial Neural Networks Topology 

 

In an artificial neural network, the nodes are connected to each other and grouped at 

different levels called layers [52]. A layer is a set of nodes; if the layer receives the input 

values are called “input layers”, while the “output layers” export the data that the artificial 

neural network has processed. The layers between the output layer and the input layer are 

called “hidden layers” [53]. Hidden layers represent the processing structure of artificial 

neural networks. How layers are connected, the number of nodes per layer, and the 

number of layers present in a neural network give the name to what is known as artificial 

neural network topology [54]. 
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Whit variation in the number of nodes per layer and number of layers in the network, 

complex ANN can be structured [51]. Artificial neural network models by the number of 

layers are classified into three groups: 1) Perceptron with the simplest structure which 

only has one input layer and one output layer; 2) Monolayer Neural Network which has 

one input layer, one hidden layer and one output layer; 3) Multilayer Neural Network 

which has one input layer, one output layer and as many layers as required by the network 

system [53]. The connections between neurons can be the feed-forward networks with only 

forward connections or the feedback networks that can have forward and backward 

connections. Figure 11 shows a multilayer feedforward neural network diagram, where 

the direction of the arrows represents the forward connections between layers. 

 

Figure 11. Feed-forward multilayer neural network 

 

2.4.3. Artificial Neural Networks Training 

 

Like humans, an artificial neural network can learn through experience. In other words, 

an artificial neural network can solve problems after training with other similar problems 

[10]. ANN training consists of giving the ANN a set of data (training data) with known 

inputs and outputs. Thus, from the training data, an artificial neural network will be able 

to predict outputs for new input data sets. Once an ANN can solve problems that have 

never been seen before, it is said that the ANN meets generalization [55]. In the training 
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stage, ANN parameters (weights and biases) are adjusted so that the output values of the 

ANN are the closest to the target value of the training data. This learning through 

experience in machine learning is called supervised learning [51]. It is necessary to use 

training algorithms to find the appropriate ANN parameters. Figure 12 shows the general 

steps that the training algorithms take for supervised learning. 

 

 

Figure 12. Supervised learning algorithm 

 

During the training stage, the ANN parameters are adjusted as often as necessary to obtain 

a minimal difference between the neural network's output and the training data set's target 

values. This difference between the ANN values and the target values is called objective 

function and is usually represented by statistical tools that express the deviation [54]. Each 

time all the weights are adjusted, and the neural network output is obtained, called an 

epoch or iteration. Each epoch or iteration reduces the objective function [53]. 

 

2.4.3.1. Objective Function 

 

The objective function plays a fundamental role in the learning of ANN. This objective 

function defines the course of learning by evaluating the error between the ANN output 

values concerning the training data's target values. The choice of the objective function 

depends on the particular application [51]. 

 

When establishing an objective function (Eq. (12)), two different terms must be chosen: 

error and regularization. 

 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 + 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 (12) 
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• Error term: error is the most important term in the objective function; It 

measures how the ANN fits into the training data set. All of these errors can 

be measured with a statistical tool [56]. The most important errors used in the 

field of ANN are described below. 

 

-Mean Square Error (MSE): calculates the mean of square differences 

between the ANN outputs and the training data set targets (Eq. (13)). 

 

 
𝑀𝑆𝐸 =

∑(𝐴𝑁𝑁𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 )

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

2

 
(13) 

 

MSE is the most commonly chosen error term to form part of the cost function 

because squaring differences remove their negative signs and influence larger 

differences [54]. 

 

-Mean Absolute Error (MAE): calculates the mean of the absolute differences 

between the ANN outputs and training data set targets (Eq. (14)) [56]. 

  

 
𝑀𝐴𝐸 =

∑|𝐴𝑁𝑁𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒|

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟
 

(14) 

 

-Normalized Squared Error (NSE): divides the squared difference between the 

ANN outputs and the targets by a normalization coefficient (Eq. (15)). If the 

NSE has a value of less or equal to one, then the neural network predicts within 

the allowed range, while a zero value means that the ANN makes a perfect 

prediction [56]. 

 

 
𝑁𝑆𝐸 =

∑(𝐴𝑁𝑁𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 )2

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
 

 

(15) 

 

NSE can be considered the default error term when solving classification and 

prediction problems. 

 

• Regularization Term 

 

Regularization consists of adding a penalty value to the cost function. This 

penalty produces simpler models that generalize better [57]. The regularization 

term can take any value, or it is also considered according to the ANN 

parameters (weights and biases). 
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2.4.3.2. Optimization Supervised Algorithm 

 

As mentioned before, a learning artificial neural network consists of obtaining weights 

and biases that minimize the objective function. The objective function is, in general, a 

function of the ANN parameters. These parameters, “weights and the biases” are initially 

random, and by changing them only once, it would be impossible to reach an immediate 

solution. Instead, a search through the infinite parameter space consists of a succession 

of iterations or epochs. In each epoch, the objective function will decrease by adjusting 

ANN parameters [55]. Optimization supervised algorithms generate a sequence of 

parameters to reduce the objective function at each iteration. The question is, when do 

you have to stop training? The optimization algorithm stops the ANN training when the 

following specified condition is satisfied [51]: 

 

o The objective function improvement in one epoch is less than a set value. 

o The objective function has been minimized to a goal value. 

o A maximum number of iterations or epochs is reached. 

 

The supervised optimization algorithm or training algorithm determines how ANN 

parameters change. The most commonly used optimization algorithms are described 

below [58]. 

• Gradient descent (GD): GD is the simplest optimization algorithm. Here, the 

parameters (weights and biases) are updated in each epoch going in the 

gradient objective function's negative direction [59]. From modifications to the 

GD algorithm, several other algorithms have been developed, such as 

AdaGrad and ADAM. Figure 13 shows a diagram of how the descending 

gradient works to find new parameters; in this example, the objective function 

that has been chosen is the MSE. 

 

Figure 13. Representation of gradient descent 
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• Levenberg-Marquardt algorithm (LMA): LMA proposes a damped Gauss-

Newton scheme. Like Gauss-Newton, it takes the linear approximation of the 

model and a certain direction of descent. LMA is highly used in the 

optimization environment, especially in the least-squares minimization [60]. 

 

• Adaptative linear momentum (ADAM): the ADAM is similar to gradient 

descent but implements a more sophisticated method of calculating the 

training direction that generally produces faster convergence [59]. 

 

Optimization Supervised Algorithm programming requires a deep knowledge of 

calculation tools. Generally, these algorithms are already implemented in computational 

tools for ANN design. 

 

2.4.3.3. Overfitting and Underfitting 

 

The goal of a good machine learning model, in this case, artificial neural networks, is to 

generalize the training data. It allows future predictions to be made on data that the ANN 

has never seen. Overfitting occurs when the model has been trained too much for the 

training data, it does not allow good predictions for new input data [61]. Underfitting occurs 

when the model cannot identify patterns, and the ANN will always get terrible results [51]. 

In Figure 14, a simplification to an example of regression allows visualizing the problem 

of underfitting and overfitting. Finding a balance for a correct generalization becomes 

necessary. The sweet spot is the middle ground that must be found in ANNs learning to 

ensure avoiding overfitting and underfitting, and an ideal fit can sometimes be a difficult 

task [53]. 

 

 

Figure 14. Comparison Overfitting-Underfitting 
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There are several strategies to avoid overfitting and underfitting. A strategy has already 

been discussed, which is Regularization. When regularization is used, the complexity of 

the model is minimized while minimizing the objective function. The results in simpler 

models that tend to generalize better than excessively complex [61]. Second, data must be 

sufficient to represent and generalize the desired model; an analysis of the training data 

is important when implementing any artificial neural network model [54]. 

 

The third and most important solution to overfitting and underfitting is validation. 

Validation is the data set that does not participate in the ANN training group. The 

validation group and the ANN output must be compared with statistical tools, taking the 

validation group as real data [10]. From a data universe, 80% is usually taken for the 

training set and 20% for the validation set; these percentages in machine learning make 

mention of the Pareto principle, but they are not mandatory [62]. 
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CHAPTER III 

 

3. METHODOLOGY 
 

The artificial neural network's development for calculating the water content in natural 

gas, taking heavy hydrocarbons into account, required a series of steps summarized in 

Figure 15. First, an intensive bibliographic search of the available methods for calculating 

water content in NG and experimental data was carried out. The most influential variables 

in the water content of NG and the collected experimental data were analyzed from the 

available methods. Second, for modeling, the data bank was processed, and two data sets 

were obtained. Data set 1 was used to design the ANN. An artificial intelligence software 

was used to find the artificial neural network structure that best fits the training data. 

Finally, data set 2 was used as a validation group of the artificial neural network. The 

results obtained by the ANN were compared with available methods for calculating the 

water content in NG. It was to verify the neural network's applicability developed for 

different natural gas types and in an adequate operating range according to the gas 

industry's needs.  

 

 

Figure 15. Methodology diagram 
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3.1. Modeling Bases 

 

For developing the artificial neural network for calculating the water content in natural 

gas, taking heavy hydrocarbons into account, the following bases are taken: 

 

1. The collected experimental data must comply with the following information 

to be considered in this work: pressure, temperature, the total composition of 

the natural gas mixture, and experimental water content. 

2. The experimental data of all types of natural gas available in the open literature 

are considered in this work; this includes sour gases, sweet gases, rich gases, 

and lean gases. 

3. Since no method for calculating water content reports errors greater than 25%, 

an absolute error (AE) of < 25% was established to limit experimental data. 

Eq. (16) shows the absolute error formula to compare the experimental data 

for water content with available methods, which were called theoretical 

values. 

 

 
𝐴𝐸 =

|[𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒]|

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
 

(16) 

4. For experimental data, possible measurement errors are not taken into account 

in this work since the data was collected from different sources. 

5. The influence of heavy hydrocarbons on the water content in natural gas was 

made based on available methods. 

 

3.2. Bibliographic Search Water Content in Natural Gas 

 

The bibliography search was carried out in various open sources of reliable information 

such as books, online scientific information services, scientific and engineering journals, 

and natural gas handbooks. The first step was an in-depth study of available methods for 

calculating water content in natural gas mixtures. This study analyzed the typical 

influencing variables and heavy hydrocarbons on the water content in natural gas. 

Experimental water content data were also analyzed, avoiding extreme deviations from 

the available methods. 
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3.2.1. Variables Analysis  

 

Variables analysis is essential for the development of any model or calculation method.  

For modeling, knowing the most important variables related to the water content in a 

natural gas mixture was necessary to develop the artificial neural network properly. On 

the one hand, many variables used as input values hinder the learning process, decreasing 

the accuracy of the model's predictions. On the other hand, creating a model with few 

input variables facilitates the neural network training process, but neglecting influencing 

variables can cause the model to not comply with generalization [61]. Naturally, there are 

variables more influential than others, and the number of total variables of the ANN was 

determined based on available models. A total of 4 variables are considered in available 

methods for calculating water content in natural gas. To these variables in this work is 

added the contribution that the concentration of hydrocarbons heavier than methane can 

influence in water content. The typical variables are: temperature, pressure, acid gas 

content, and molecular weight. 

 

3.2.2. Data Analysis 

 

From the bibliographic search, experimental data of the water content in natural gas 

mixtures were also obtained. For the appropriate analysis of the experimental data and 

future application of the ANN, pressure and temperature operating range was established 

to which natural gas is usually subjected during its processing. For this purpose, a 

minimum and maximum limit of pressure and temperature were established. Pressure and 

temperature limits were set with natural gas processing experts and natural gas treatment 

handbooks. 

 

The experimental data were also compared with available methods for calculating water 

content in NG to eliminate data extremely far from the pre-established models. The 

experimental data come from different research works, making it impossible to obtain a 

general error for pressure, temperature, and water content measurements. This work 

assumes that all the experimental data obtained from the different research works are real 

data. Thus, with all the experimental data that complied with the operating range and 

modeling bases 1 and 3, the final data bank was formed. 
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 3.3. ANN Modeling 

 

The design of an artificial neural network involves a sequence of steps that go from data 

processing to the final step, which is the validation of the ANN [10]. The steps followed in 

this work for modeling the artificial neural network were: data bank processing and ANN 

structuring. 

 

3.3.1. Data Processing 

 

Data processing was carried out from the data bank compiled in the bibliographic search.  

Since artificial neural networks' activation functions are a range (-1,1), having an 

adequate scale for the database facilitates the neural network’s convergence and training 

[63]. In this work, all variables were linearly normalized in a range (-1,1). The 

mathematical expression used for the normalization method is defined in Eq. (17). 

 

 𝑥𝑛𝑜𝑟𝑚 =   
𝑥 − 𝑥𝑚𝑎𝑥

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(𝑟𝑚𝑎𝑥 −  𝑟𝑚𝑖𝑛) + 𝑟𝑚𝑖𝑛  (17) 

 

where 𝑥 is the original value; 𝑥𝑛𝑜𝑟𝑚 is the normalized value; 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the 

maximum and minimum values of the concerned variable, respectively; 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥  

are the desired values of the normalized variable range, in this case (-1,1).  

 

Once all the values of all the variables were normalized, including the water content, the 

data bank normalized was divided into two groups; data set 1 and data set 2. Data set 1 

formed part of the artificial neural network structuring, and Data set 2 was used as a 

validation group for the ANN. The normalized data bank was divided 74% for data set 1 

and 26% for the validation group. 

 

3.3.2. Artificial Neural Network Structuring  

 

Structuring an artificial neural network involves finding the topology with the training 

algorithm best adapted to the training data set and complies with generalization to other 

data. The process of finding a good ANN topology does not have a defined sequence of 

steps. Several authors assure that monolayer structures should be tested first, 

progressively increasing the number of nodes one by one in the hidden layer. If monolayer 
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neural networks do not have good results, multilayer neural networks allow better results 

to be obtained [51]. However, finding a suitable ANN multilayer topology becomes tedious 

given many combinations in the number of hidden layers and the number of neurons per 

layer. Many machine learning software, programming languages, and AI platforms allow 

access to instruments that make it easy to find good ANN topologies. 

 

To find the artificial neural network topology that best fits this work, the BigML machine 

learning software has been used. BigML is a consumable, programmable, and scalable 

Machine Learning software. In this work, the tools for artificial neural networks of 

BigML are employed to obtain the best performance of the ANN. About 5000 multilayer 

artificial neural network topologies were designed and evaluated in BigML. Doing it 

manually took too much time, so the BigMLs Automatic Network Search tool was also 

used. This tool allows evaluation batches of 200 neural networks in a maximum period 

of 5 hours. During each batch, several training algorithms are tested. This search tool also 

tests the different activation functions described above. After the evaluation and training 

of any batch, the software yields the ANN structure with the best adjustment performance 

for the training data set [64]. BigMl also allows hosting the ANN in their platform for later 

use. The objective function for all searches was established as an MSE of 0.01 for the 

ANN's normalized outputs compared to the training data. Finally, the validation data set 

was used to evaluate the ANN with the best performance. 

 

3.4. Artificial Neural Network Validation. 

 

Dataset 2 was used as a validation group for the neural networks. To validate the ANNs 

designed, the following statistical tools were used to measure the error or variation of the 

ANN output values with the values of the validation group:   

 

• Mean Square Error (MSEv): analogous to Eq. (13), the MSE and being used 

as a cost function are also used to validate the ANN. The following 

nomenclature MSEv was used for the validation section since the 

mathematical formula is the same, but the compared values change as shown 

in Eq. (18). 

 
𝑀𝑆𝐸𝑣 =   

∑(𝑊𝐶𝑒𝑥𝑝 − 𝑊𝐶𝐴𝑁𝑁)
2

𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
  

(18) 
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where 𝑊𝐶𝑒𝑥𝑝 is the experimental water content of the validation group; 

𝑊𝐶𝐴𝑁𝑁 is the water content estimated for the ANN. This calculation is made 

for all validation group instances. 

Note: this work refers to each natural gas sample with its respective variables 

pressure, temperature, etc. 

 

• Coefficient of Determination (R2): it is a statistical tool that measures how 

well a prediction fits linearly to the general linear model [65]. Eq. (19) describes 

the coefficient of determination. 

 

 
𝑅2 =  1 −

∑ (𝑊𝐶𝑖,𝑒𝑥𝑝 − 𝑊𝐶𝑖,𝐴𝑁𝑁)
2𝑁

𝑖=1

∑ (𝑊𝐶𝑖,𝑒𝑥𝑝 − 𝑊𝑐̅̅ ̅̅ )
2𝑁

𝑖=1

  
(19) 

 

where 𝑊𝐶𝑖,𝑒𝑥𝑝 is the experimental water content of the validation group; 

𝑊𝐶𝑖,𝐴𝑁𝑁 is the water content predicted for the ANN; 𝑊𝑐̅̅ ̅̅  is the mean water 

content of observed validation data being evaluated. The values of R2 range 

from 0 to 1. Values close to 1 represent that the values produced by the ANN 

have a good fit to the experimental ones, while values of R2 that tend to 0 mean 

that the values predicted by the ANN do not have a good fit to the experimental 

data. 

 

MSE and R2 values are typically used to validate the normalized outputs of the artificial 

neural network. However, the normalized ANN outputs do not make any physical sense. 

To validate the ANN outputs, the average absolute deviation (AAD) was used as a 

parameter. The ANN's normalized output data was transformed into water content values 

in lb/MMSCF and compared with the data from the validation group. 

The mathematical expression of AAD is shown in Eq. (20). 

 

 

AAD =
1

𝑁
∑ |(

𝑊𝐶𝑒𝑥𝑝 − 𝑊𝐶𝐴𝑁𝑁

𝑊𝐶𝑒𝑥𝑝
)|

𝑁

𝑖=1

   
(20) 

 

Usually, the AAD is compared in percentage; therefore, Eq. (20) should be multiplied by 

100%. High AAD% values mean that ANN outputs data is vastly different from the 

experimental data. In contrast, small AAD% shows that the ANN gives accurate results. 
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Once the best performing ANN was obtained, the ANN results were compared with 

available water content methods. For comparison with charts and correlations, Bukacek 

Correlation and McKetta-Wehe Chart were taken. On the thermodynamic methods side, 

ANN was compared with SRKKD EoS and PRM EoS. Finally, to observe the ANN's 

applicability, the validation group was divided by gas types, and the AAD% was 

evaluated concerning the other available calculation methods. Because Mcketta-Wehe 

chart and Bukacek correlation are applicable only for sweet gases, for the sour gas 

samples, Maddox correction is applied to these methods for calculating water content in 

sour mixtures. 
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CHAPTER IV 

 

4. RESULTS AND DISCUSSION 

 

4.1. Analysis of Influencing Variables on Water Content 

 

The four influencing variables that the available methods for calculating water content in 

natural gas mixtures usually report are temperature, pressure, acid gas content, and 

molecular weight. 

 

• Temperature and pressure: these two variables are the most important for 

estimating water content in natural gas. For the hydrocarbons-water system, 

pressure and temperature define the vapor-liquid phase equilibrium. The 

temperature is directly proportional to the water content; the higher the 

temperature, the higher the natural gas's water content. The pressure, on the other 

hand, is inversely proportional to water content. Methods such as the Bukacek 

correlation have been developed only taking into account these two variables. 

 

• Acid gas content: the presence of acid gases such as H2S and CO2 increases the 

natural gas's water content. H2S has an asymmetric electron charge arrangement; 

as such, H2S has a higher polarity than hydrocarbons. Water, a polar substance, 

has higher solubility in polar materials [66]. Instead, CO2 has strong dipole-induced 

dipole attractions to water. For most of the methods developed for calculating 

water content in natural gas, the presence of acid gases determines whether a 

method is applicable or not. This is the case of the Mcketta-Wehe chart that is not 

applicable for natural gas mixtures with considerable concentrations of H2S and 

CO2. For the acid gas content, the contribution of H2S and CO2 was taken 

according to Eq. (21). 

 

 𝑦´ = 𝑦𝐻2𝑆 + 0.75𝑦𝐶𝑂2 (21) 

where y is the mol fraction, H2S and CO2 refer to the gases. In order to group in a 

single variable the influence of acid gases and reduce the input values to the ANN, 

y´ parameter received the name of Equivalent mol H2S [67].  

 

• Molecular weight: molecular weight as influential on water content has several 
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appreciations: methods applied for sweet gases report that the higher the 

molecular weight, the water content tends to be lower [25]. On the contrary, sour 

gases methods report that the higher the molecular weight, the water content 

increases [42]. Remarkably, the molecular weight is considered influential in the 

water content according to the type of gas used to develop the model. 

 

4.1.1. Heavy Hydrocarbons Effect on Water Content 

 

There are no studies or methods that show the influence of hydrocarbons heavier than 

methane on natural gas's water content in the open literature. McKetta-Wehe chart is the 

first model developed that reports a correction to natural gas's water content considering 

specific gravity and molecular weight. McKetta-Wehe chart was established only to be 

used in sweet gases, where acid gases' compositions are negligible [6]. Therefore, if acid 

gases' composition is negligible, the components that increase the molecular weight can 

only be heavier hydrocarbons than methane. 

 

 4.1.1.2. Correction for Gas Gravity 

 

The correction factor for gas gravity (CG), Figure 16, presented in the McKetta-Wehe 

chart is established in function of temperature and specific gravity (instead of molecular 

weight). By analyzing the correction for gas gravity, it can be determined that with good 

content of heavy hydrocarbons and the appropriate temperature condition, there is up to 

a 30% variation concerning the calculation of water content in rich natural gases 

compared to lean gases. Therefore, not considering the content of heavy hydrocarbons in 

the available water content methods could be why some available methods have low 

accuracy. 

 

In the gas industry, natural gas compositions are reported with a composition of heavy 

hydrocarbons from ethane to heptane or sometimes represented as C7
+ (used to represent 

heptane composition in conjunction with small amounts of heavier hydrocarbons). 

Considering the hydrocarbons ethane, propane, butanes, pentanes, hexanes, heptane+, at 

least six variables should be added to any water content calculation model taking into 

account the presence of heavy hydrocarbons. In addition to pressure and temperature, 

mandatory conditions for calculating water content require at least eight variables to add 

the water content's heavy hydrocarbons. Reducing the number of variables in the model 
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is an important step to optimize the system's functioning and, in the artificial neural 

network, to optimize the learning process [55]. The variable reduction should be made, 

trying not to omit relevant information for the model. Thus, in this work, it is proposed to 

group all the heavy hydrocarbon compositions in a single variable: the GPM. 

 

 

Figure 16. Gravity correction factor 

Source: Adapted from Engineering Data Book [25]. 

  

The present work seeks that the developed model was applicable for both sour and sweet 

gas mixtures; therefore, the molecular weight's duality of influence will conflict with the 

ANN training process. Thus, the molecular weight is discarded as a variable, and the 

remaining 3 variables are added to the contribution variable of heavy hydrocarbons. 

Finally, for the development of the artificial neural network, the following variables were 

considered as input values: temperature (°F), pressure (Psia), equivalent mol H2S (y´) and 

GPM. 
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4.2. Artificial Neural Network Model  

 

4.2.1. Data Analysis and Operating Conditions 

 

As mentioned before, a pressure and temperature range must be established to develop 

and apply the ANN. According to the recommendations of gas processing experts and 

manuals, the minimum pressure condition was set at 60 psia and the maximum condition 

at 3200 psia. The lower temperature condition was established at 32 °F because hydrate 

formation is favored at low temperatures, and hydrate formation conditions are not 

desired in the gas industry [19]. Later, for the maximum temperature, a temperature around 

300 °F was established. The defined pressure and temperature operating range and 

modelling bases were used to analyze the data found in the bibliographic search. 

  

Figure 17. Database distribution 

 

From the bibliographic search, a universe data of 226 instances of natural gas was 

obtained. The modeling bases and the operating range established for this work allowed 

to discard instances; finally, 165 instances of natural gas mixtures formed the analyzed 

data bank. For the development of the ANN, data set 1 with 74 % of the analyzed data 

bank (122 instances) formed the training group, while data set 2, the 26% (43 instances) 

the validation group (Figure 17). Satisfactory studies Tatar et al., 2016 [68] recommend an 

80% distribution for the training stage and 20% for validation. The data bank's 

distribution in this work is due to many instances of the data bank, which is why 6% more 

data is offered for the validation group, giving a wider margin for validation. The data 

bank division was carried out randomly, seeking to distribute both the training and 
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validation data throughout the established operational range of pressure and temperature. 

Figure 18 shows the final distribution of the training and validation group in this work.  

There are methods for predicting water content in natural gas that consider pressure 

conditions up to 15,000 psia [25] in the open literature. However, under typical gas 

processing conditions, the pre-dehydration process stages rarely exceed 3000 psia [2]. The 

condition range established in this work for pressure is sufficient for typical natural gas 

processing conditions. Furthermore, as shown in Figure 18, most of the open literature 

data are below 1500 psia; this shows that the defined pressure range for the ANN is 

optimal for its application in dehydration processes in the gas industry. Concerning the 

temperature, as mentioned before, low temperatures favor the formation of gas hydrates. 

The water content in natural gas in hydrate equilibrium tends to be lower than in liquid-

vapor equilibrium [3]. This adds to the lack of experimental data that describes the water 

content in this phase equilibrium due to the difficulty of measurement under these 

conditions [11].  

 

Figure 18. Database distribution under typical natural gas processing conditions 

 

Therefore, using experimental data measured for water content in liquid-vapor 

equilibrium should not be used for modeling natural gas systems in conditions of gas 

hydrates equilibrium. Thus, in this work, the lower temperature limit was set at 32 °F and 
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for the maximum temperature limit at 300 °F. Very high temperatures are also avoided 

since in the natural gas industry there are cooling processes (gas liquefaction), increasing 

the gas temperature a lot and then cooling requires a considerable energy cost. Finally, 

the operational range established for temperature in this work is considered optimal for 

applying the developed artificial neural network. 

 

4.2.2. Artificial Neural Network Structure 

 

Artificial neural network training was performed on the BigML software, various 

artificial neural network structures were tested with many training algorithms, and the 

activation functions such as Linear, Tanh, Sigmoid and Relu. The validation group was 

used in comparison with the ANN outputs. Then, statistical indicators MSEv and R2 were 

considered for the water content's normalized data, and the %AAD for the ANN outputs 

converted to lb/MMSCF. Values ≤ 20 of AAD% were taken as a satisfactory result. 

Models that do not comply with the AAD% are not reported in this work. Several authors 

state that a monolayer ANN is sufficient to obtain good results for nonlinear regressions. 

However, multilayer ANN is more effective, especially for predicting structures with 

many input values  [51]. Since monolayer ANN models did not comply with a satisfactory 

AAD%, the BigML platform was used to find multilayer ANN structures with the best 

performance. About 5000 multilayer ANN structures were tested in batches of 200 

structures. The best ANN structure of each batch and the comparison of their results with 

the validation group are reported in Table 6.   

 

Table 6. Best ANN structures developed 

   Normalized output Not normalized 

Notation Hidden layers 

Training 

Algoritm  MSEv R2 AAD% 

ANN(A) Relu(533),Relu(301) AdaGrad 0.036 0.95 18.75 

ANN(B) Sigmoid(54),Sigmoid(54),Simoid(54) ADAM 0.020 0.89 19.26 

ANN(C) Linear(998),Linear(524),Linear(302) ADAM 0.030 0.96 17.23 

ANN(D) Sigmoid(16),Sigmoid(36),Sigmoid(67) ADAM 0.010 0.99 13.90 

ANN(E) Relu(524),Relu(524) ADAM 0.015 0.93 11.80 

ANN(F) Relu(342),Relu(890),Relu(40) AdaGrad 0.220 0.92 15.80 

ANN(G) Tanh(120),Tanh(38) AdaGrad 0.017 0.91 9.17 

ANN(H) Sigmoid(46),Sigmoid(23),Sigmoid(11) ADAM 0.010 0.97 7.00 

ANN(I) Tanh(120),Tanh(38) ADAM 0.030 0.95 11.50 

ANN(J) Relu(528),Relu(258),Relu(122) AdaGrad 0.020 0.98 12.96 

Note: The hidden layers are ordered from left to right, each activation function is applied to the entire layer, 

and the number in parentheses represents the total node per layer. 
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For all ANN structures, the MSEv and R2 values are acceptable. The AAD%, however, 

presents a lower value in the ANN(H) structure; this means this structure has more 

accurate output predictions than the others when comparing with the experimental water 

content of the validation group in lb/MMSCF. Although the R2 is higher for the ANN(D) 

and ANN(J) structures than the ANN(H) structure, Draper and Smith [69] indicate that R2 

should be evaluated with other statistical indicators that allow validating a model since 

the R2 does not strictly indicate whether a regression model is or not suitable. Thus, the 

MSEv and the AAD% take on greater relevance to validate the ANN developed in this 

work. MSEv values denote the differences between the ANN output values and the 

experimental validation group values [54]. ANN(H) and ANN(D) structure present the 

smallest MSEv values, ensuring a minimum difference between the normalized values of 

the ANN and the validation group. Several models for the calculation of water content in 

natural gas base their validation on the AAD%. A small AAD% reflects more accurate 

predictions for the developed ANN. Therefore, the AAD% defines ANN(H) as the 

structure with the best performance.  

 

Figure 19 shows a developed multilayer artificial neural network ANN(H) scheme that 

presents the best performance. It is a feedforward multilayer ANN; its structure seems a 

bit complex compared to other works related to water content calculation in natural gas 

mixtures. Mohammad et al., 2016 [39] propose a monolayer ANN with 8 nodes. On the 

other side, Mohammadi and Richon 2007 [11] propose a monolayer ANN with 6 nodes. 

However, monolayer ANN structures in this work did not present accurate predictions. 

Increasing the number of nodes was one solution so that monolayer ANNs can generate 

more accurate predictions. However, an extremely large number of neurons in a single 

layer limits the learning process [53]. Multilayer ANN structure is justified in this work 

because 4 input variables are presented. Previous works present 2 and 3 input variables; 

also, the instances used for training are smaller than those used in this work. Besides, 

sometimes, as in this work, increasing the number of hidden layers is more effective, 

although it should be clarified that for non-linear regressions, more than 3 hidden layers 

do not provide better results [51]. 
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Figure 19. Artificial neural network structure developed for calculating water content 

in natural gas 

 

 

4.3. Artificial Neural Network Applicability 

 

The experimental data which ANN was developed comes from 7 different sources. Many 

studies for the experimental calculation of water content were carried out with synthetic 

gas (SM) mixtures that emulated natural gas mixtures depending on the study. Natural 

gas mixtures (NG) from wells were also obtained. SM and NG in all studies were 

subjected to artificial water content saturation in their respective works. The validation 

group is conformed of NG and SM mixtures; its properties are detailed in the  Appendix 

section. The samples that were part of the artificial neural network development can be 

classified either by their richness or content of acid gases, as shown in Figure 20. 
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Figure 20. Dataset classification:                                                                                               

(a) by heavy hydrocarbons content, (b) by acid gases content 

 

The applicability of the developed artificial neural network must be defined by evaluating 

its performance compared to other predictive models of water content in natural gas 

mixtures. For the evaluation, Bukacek correlation, McKetta-Wehe chart, SRKKD EoS 

and PRM EoS were selected. Bukacek correlation and McKetta-Wehe chart must not be 

used for sour gases, so the Maddox correction was used to adjust the water content values 

calculated by these methods in sour gases. For their part, SRKKD EoS and PRM EoS 

thermodynamic methods do not report limitations to work for both sour and sweet gases 

[45]. First, a comparison of the entire validation group was made with the ANN developed 

and the available water content methods. 

 

 

 



 

50 

 

Figure 21 shows the AAD% comparison of this work's results and other available methods 

for calculating water content. The AAD% obtained for the ANN is 7.00%, the lower value 

than the other available methods. This means that for this data set (validation group) the 

model developed in this work has more accurate predictions than other predictive 

methods. Bukacek, being a correlation that depends only on temperature and pressure, 

shows the largest deviation with an AAD% of 14.54%. For their part, thermodynamic 

methods present adequate AAD% values, especially since the SRKKD EoS model has 

similar values to the model developed in this work. The difference between the two 

methods is the facility of their application. For its part, the SRKKD EoS thermodynamic 

method requires a computational tool for its implementation and is time-consuming. The 

use of thermodynamic models is greatly facilitated with commercial software acquisition, 

but this requires an economic cost. On the other hand, the ANN developed in this work is 

hosted on the BigML software with free access, and only the four normalized input 

variables are required to estimate the water content in natural gas. The ANN developed 

in this work also presents an opportunity for improvement as more experimental data is 

added to the database. A detailed manual for using the ANN of this work can be found in 

the Appendix section. 

 

 

Figure 21. Methods for calculating water content in NG performance for the validation 

group 

 

The applicability of the model can be extended by evaluating more experimental data. 

However, more experimental data are not available in the open literature. To evaluate the 

ANN's performance for various natural gas types, the validation group was divided, and 

the% AAD was calculated for gas types. Figure 22 shows the AAD% values by gas type 

obtained for the ANN developed and the available methods for predicting water content 
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in NG. The ANN developed in this work presents AAD% lower than the other methods 

for rich gases, lean gases, and sweet gases. However, sour gases present the second-

highest AAD% below the McKetta-Wehe Chart. The AAD% of  8.7% value for sour 

gases in this work does not represent a bad prediction considering that methods such as 

the Wichert chart and Maddox correction (models developed strictly for sour gases) report 

deviations of 10% concerning experimental data of sour gases [25]. Then, the possibility 

of using more experimental data is open for better evaluation and comparison with other 

available methods. 

 

 

Figure 22. AAD% by Gas Type to compare methods for calculating water content 

 

McKetta-Wehe chart is the most commonly used method in calculating the water content 

of natural gas because it gives a quick estimate, and if used carefully, the error for sweet 

gases is reported as less than 5% [40]. The problem with McKetta-Wehe chart is that its 

facility of use is overshadowed by its difficulty in reading the water content, leaving the 

final value of the water content at the discretion of the person who used the chart [39].“A 

picture is worth a thousand words”, Figure 23 shows the correlation of the predictions of 

the McKetta-Wehe chart and the ANN developed in comparison with the experimental 

water content in natural gas, which ordinate gives a straight line of 45°. It can be seen that 

the values generated by both models spread around the 45° line, which does not imply an 

overestimation or an underestimation [69]. However, visually the McKetta-Wehe chart 
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values protrude more in the deviation lines 10% than the ANN values, which are closer 

to the 45° line.  

 

 

Figure 23. Correlation between experimental data and model predictions 

 

The contribution of heavy hydrocarbons in this work has allowed the development of a 

model with applicability to calculate water content in natural gas of various types. 

Considering the analysis of the influence on the water content that heavy hydrocarbons 

contribute, it is deduced that a large quantity of these heavy hydrocarbons in the mixture 

could decrease the water content calculated with other available methods by up to 30%. 

The composition of heavy hydrocarbons could then be taken as a variable that reduces 

the amount of water in natural gas. The composition of heavy hydrocarbons contrasts with 

the variable of acid gas content, which increases the amount of water in natural gas. Also, 

with the variable pressure and temperature fundamental in the calculation of water 

content. This model makes it possible to precisely calculate the water content for various 

types of gas and in a suitable operating range for the typical pressure and temperature 

conditions to which the gas is subjected in its processing.  
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CONCLUSIONS AND RECOMMENDATIONS  

 

o The artificial neural network model developed for calculating water content in natural 

gas, taking into account the GPM as heavy hydrocarbon contribution, obtained 

satisfactory and accurate results. 

 

o The analysis of heavy hydrocarbons' contribution in calculating the water content in 

natural gas was carried out based on the available methods due to the lack of studies 

on the importance of heavy compounds in water content. 

 

o The artificial neural network model developed was shown to predict the water content 

efficiently for sour and sweet gas mixtures, in the same way for rich and lean gases. 

This represents a huge advantage in the applicability of the model for natural gas 

dehydration plants' design. 

 

o Given the great variety of natural gas mixtures present in Ecuador and this being a 

producer of gaseous hydrocarbons, an accurate tool for estimating the water content in 

NG is of utmost importance to ensure the operational continuity of gas processing and 

satisfy the internal demand for natural gas and its derivatives such as LPG and NGL. 

 

o It is recommended to use this neural network only for natural gas mixtures in the 

operating pressure and temperature range defined in this work. 

 

o For future studies are necessary experimental measurements of water content at the 

same pressure and temperature intervals for different gas types to better observe the 

influence of heavy hydrocarbons on natural gas's water content. 
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The data group's composition to validate the ANN developed in this work is found in 

Table 7 for natural gas mixtures and Table 8 for synthetic mixtures. Table 9 shows the 

comparison of the ANN developed results with the available methods for estimating water 

content.  

 

 

Table 7. Validation Group Natural Gas Mixtures 

Composition Natural Gas Mixtures (NG) 

(mol%) NG1 NG2 NG3 NG4 NG5 NG6 NG7 NG8 NG9 NG10 NG11 

C1 63.73 62.16 98.20 93.22 88.21 86.35 94.36 83.85 66.12 86.90 61.25 

C2 13.51 12.19 0.56 2.92 8.36 6.19 2.64 3.46 11.86 7.36 15.86 

C3 8.63 7.58 0.19 0.72 1.76 1.55 0.96 0.66 7.35 3.17 8.87 

iC4 3.40 3.67 0.03 0.09 0.29 0.21 0.00 0.09 1.89 0.64 1.77 

nC4 4.60 4.73 0.04 0.14 0.44 0.31 0.44 0.13 3.36 0.77 2.36 

iC5 1.90 1.82 0.00 0.00 0.00 0.00 0.00 0.00 1.90 0.25 1.94 

nC5 1.50 1.88 0.01 0.06 0.03 0.13 0.00 0.07 0.93 0.16 0.89 

C6 2.10 0.19 0.01 0.05 0.00 0.06 0.00 0.07 1.87 0.04 1.10 

C7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 

N2 0.14 4.15 0.84 1.94 0.91 4.86 1.00 10.35 2.14 0.03 4.14 

CO2 0.85 1.63 0.11 0.85 0.00 0.17 0.60 1.29 2.58 0.65 1.82 

H2S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

He 0.00 0.00 0.02 0.03 0.00 0.15 0.00 0.04 0.00 0.00 0.00 
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Table 8. Validation Group Synthetic Mitures 

Composition Synthetic Gas Mixtures (SM) 

(mol%) SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10 SM11 SM12 SM13 SM14 SM15 

C1 70.0 72.5 89.0 100.0 94.0 67.5 96.0 70.0 80.0 50.0 86.9 70.0 83.0 71.3 96.9 

C2 0.0 0.0 0.0 0.0 4.0 4.5 3.0 11.0 0.0 0.0 7.3 0.0 0.0 0.0 3.1 

C3 0.0 0.0 0.0 0.0 0.0 1.9 1.0 6.0 0.0 0.0 3.2 0.0 0.0 3.8 0.0 

iC4 0.0 0.0 0.0 0.0 0.0 0.5 0.0 4.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 

nC4 0.0 0.0 0.0 0.0 0.0 0.7 0.0 4.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 

iC5 0.0 0.0 0.0 0.0 2.0 0.0 0.0 2.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 

nC5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

C6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

C7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

N2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CO2 30.0 0.0 11.0 0.0 0.0 18.8 0.0 0.0 20.0 50.0 0.6 30.0 0.0 6.3 0.0 

H2S 0.0 27.5 0.0 0.0 0.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0 17.0 18.8 0.0 

He 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 9. Evaluation of ANN vs Available methods for calculating Water Content in NG 

     SRKKD PRM Bukacek Mckketa- 

 Pressure Temperature Wcexp This work EoS EoS  Correlation  Wehe Chart 

Samples (psia) (°F) (lb/MMSCF) (lb/MMSCF) (lb/MMSCF) (lb/MMSCF) (lb/MMSCF) (lb/MMSCF) 

NG1 73.00 51.80 130.00 119.07 122.58 121.20 133.67 140.00 

NG2 76.00 50.90 128.00 115.84 116.85 116.75 124.22 135.00 

NG3 

72.52 32.00 55.57 53.64 59.64 58.64 NA 70.00 

217.56 41.00 28.74 29.63 29.40 28.27 NA 34.00 

870.23 50.00 11.92 9.68 12.67 10.64 18.26 17.00 

NG4 
217.56 41.00 28.45 28.07 29.57 28.63 NA 34.00 

870.23 59.00 16.91 16.47 17.42 15.16 24.13 24.00 

NG5 72.52 41.00 81.69 86.07 84.64 83.84 NA 86.00 

NG6 
1160.30 68.00 17.19 15.41 19.29 18.13 27.03 22.00 

217.56 41.00 28.07 26.68 29.43 28.45 NA 34.00 

NG7 

1514.10 93.00 36.80 36.92 34.90 32.94 47.11 34.00 

1014.10 66.00 23.10 18.93 19.73 16.97 27.48 28.00 

1014.10 86.00 38.30 38.52 37.00 33.68 48.54 40.00 

1514.10 81.00 25.50 24.76 24.50 20.44 34.25 24.00 

NG8 
72.52 32.00 57.95 55.24 59.04 58.29 NA 70.00 

217.56 59.00 55.10 61.35 56.55 55.70 64.58 64.00 

NG9 179.00 55.40 65.00 73.41 57.47 57.09 67.97 70.00 

NG10 166.00 54.50 75.00 74.16 62.14 61.29 70.34 72.00 

NG11 184.00 55.40 65.00 70.78 56.75 56.39 66.39 68.00 

SM1 435.11 68.00 45.55 41.79 41.80 40.76 50.15 51.47 

SM2 1392.00 160.00 247.00 243.86 206.84 232.46 244.40 306.27 

SM3 1000.00 160.00 286.00 263.14 267.23 278.72 308.03 271.57 

SM4 

141.56 67.19 119.69 123.41 113.59 112.83 123.82 126.00 

146.20 76.01 147.24 156.02 151.84 158.33 160.66 160.00 

560.57 76.01 41.61 43.32 50.79 55.20 53.59 50.00 

SM5 

442.37 190.67 1120.91 1119.64 1079.71 1115.06 1155.79 1000.00 

74.11 85.91 402.29 403.37 372.83 379.83 412.87 400.00 

279.05 119.93 305.88 298.95 289.32 294.32 328.47 325.00 

710.97 139.55 215.16 210.86 211.90 214.99 248.23 235.00 

82.24 165.47 3272.48 2598.50 2400.75 2503.89 3213.51 3000.00 

138.37 190.49 3315.23 2974.58 2560.28 2667.08 3385.34 3200.00 

SM6 
1499.55 199.99 477.48 572.93 470.20 548.09 522.08 506.39 

200.01 120.00 415.12 448.18 402.55 414.70 443.45 455.58 

SM7 2059.54 304.27 2089.83 2192.69 2148.88 1889.86 2260.46 2000.00 

SM8 
3015.33 301.01 1377.39 1536.62 1486.12 1833.13 1662.04 1500.00 

542.44 301.01 6364.48 5212.01 4937.51 5086.29 6545.05 6500.00 

SM9 2000.00 100.00 40.60 45.71 42.54 40.40 49.28 55.60 

SM10 870.23 68.00 30.21 30.34 30.37 33.82 31.66 32.28 

SM11 425.00 62.60 35.00 34.97 35.11 33.49 43.31 44.11 

SM12 435.11 104.00 133.27 120.25 127.71 128.67 145.60 115.99 

SM13 1010.00 160.00 292.00 279.32 278.04 286.11 305.79 326.75 

SM14 1499.55 199.99 496.24 566.10 500.57 546.43 522.08 621.77 

SM15 580.15 59.00 23.46 22.95 23.74 21.71 30.87 26.00 

AAD%    7.00 7.30 9.38 14.54 13.60 

Note: WCexp stands experimental water content; AAD stands absolute average deviation; NA stands no 

applicable. 
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APPENDIX B: 

Manual for the use of the ANN in BigML for 

estimating water content in natural gas 
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Next, the steps for using the artificial neural network to estimate water content in natural 

gas mixtures developed in this work are listed. 

 

1. Register on the BigML platform at the following link: 

https://bigml.com/accounts/register/ 

-Opening a BigML account is free. Once the account is created, the account must be 

entered. Inside the platform, you should see this image. 

 

 

 

2. Once inside the platform, click on the following link 

https://bigml.com/shared/deepnet/fO60BGP51o1njg9J9FrOL24bRDB 

This image should appear on the screen 

 

 

 

 

 

https://bigml.com/accounts/register/
https://bigml.com/shared/deepnet/fO60BGP51o1njg9J9FrOL24bRDB
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3. Click on the symbol in the image that is framed in the red box 

 

 

4. A box will appear in which you must click on the option "Clone Deepnet" 

 

 

-Followed a box would appear where you must confirm in "Clone" 

 

 

5. Once the artificial neural network is cloned, you can use it to make predictions in the 

box marked with red in the following image. 
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-A box appears where you can see the option "Predict" 

 

 

6. Finally, the prediction interface appears where the normalized values of pressure, 

temperature, mol equivalent H2S (Y´), and GPM of the gas mixture that you want to 

predict the water content must be located. 

 

-Remember to have the data in the English system of units and then apply Eq. (17) to 

normalize them with the maximum and minimum values for each variable used in the 

ANN training tabulated in Table 10. 

 

Table 10. Values to normalize data in ANN 

 GPM Pressure(psia) Temperature(°F) Y´ Water content 

Min 0.00 64.00 32.00 0.00 11.78 

Max 10.60 3156.02 304.27 0.89 7124.42 

 

-Remember that the resulting water content is normalized, so the normalization must be 

reversed with the water content values in Table 10. 


