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Abstract

Phosphorene, the 2D form of black phosphorus, was first isolated in 2014
by mechanical exfoliation technique. It is known to be the most stable al-
lotrope among the 2D phosphorus group. Its main characteristics shows an
anisotropic crystalline structure that leads to anisotropic bands around the
Γ point, with a gap of 2 eV, making it a promising material for applications
in electronic, optoelectronic, and spintronic devices such as sensors and ac-
tuators, among others. Several first-principles calculations have studied the
electronic bands for this material. However, it is still not clear yet which hy-
bridizations among different orbitals are responsible for the local density of
states (LDOS) and the shape of the bands near the Fermi level. In this work,
we have performed a theoretical study of the electronic bands of phosphorene
by constructing an analytical tight-binding model based on the Slater and
Koster parametrization, and comparing our results with the bands presented
in the literature obtained from density functional theory (DFT) calculation.
To this end, we design a basis containing a minimum set of four hybrid
orbitals corresponding to the four atoms in the primitive lattice of phospho-
rene. Surprisingly, a minimal basis consisting of a combination of solely py
and pz orbitals, suffices to reproduce the main features of the band structure
at low energies predicted by DFT calculations. Namely, the band asymmetry
around the Γ point with a bandgap of 2.19 eV, and the anisotropic shape
of the bands around the S point. Furthermore, it is shown by the Löwding
transformation method that the addition in the model of the other atomic
orbitals of phosphorus does not introduce a significant change in the main
characteristics of the lower bands. The latter validates the robustness of our
low energy Hamiltonian for phosphorene.

Key words:
Phosphorene, 2D materials, Tight Binding, DFT, Löwding transformation
method, Band Gap.
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Resumen

El fosforeno, la forma 2D del fósforo negro, fue descubierto por primera vez
en el año 2014 mediante la técnica de exfoliación mecánica. Este material es
conocido por ser el alótropo más estable de entre todo el grupo 2D del fósforo.
Sus principales caracteŕısticas indican una estructura anisotrópica cristalina
que da lugar a bandas anisotrópicas alrededor del punto Γ, con una banda
prohibida de 2 eV, haciéndolo un material prometedor para aplicaciones en
electrónica, optoelectrónica y dispositivos espintrónicos como sensores y ac-
tuadores, entre otros. Varios autores han estudiado la estructura de bandas
para este material utilizando cálculos de primeros principios. Sin embargo,
todav́ıa no se tiene claro, qué hibridaciones entre diferentes orbitales son las
responsables de la densidad local de estados (LDOS) y la forma de las ban-
das cerca del nivel de Fermi. En este trabajo, se ha desarrollado un estudio
teórico de las bandas electrónicas del fosforeno a partir de la construcción
de un modelo de amarre fuerte basado en la parametrización de Slater y
Koster, y comparando nuestros resultados con las bandas presentadas en la
literatura obtenidas de los cálculos de la teoŕıa del funcional de la densidad
(DFT). Para ello, designamos una base que contiene un conjunto mı́nimo de
orbitales que corresponden a los cuatro átomos en la red primitiva del fos-
foreno. Sorpresivamente, una base mı́nima que consiste en una combinación
solamente de orbitales py y pz, es suficiente para reproducir las principales
caracteŕısticas de la estructura de bandas a bajas enerǵıas predecidas por los
cálculos de DFT. Esto es, la asimetŕıa de las bandas alrededor del punto Γ
con una banda prohibida de 2.19 eV, y la forma anisotrópica de las bandas
alrededor del punto S. Además, encontramos que la adición en el modelo
de otros orbitales atómicos del fosforeno, mediante el método de tranfor-
mación de Löwding, no introduce cambios significativos en las principales
caracteŕısticas de las bandas a bajas enerǵıas. Este último punto, valida la
solidez de nuestro Hamiltoniano a bajas enerǵıas para el fosforeno.

Palabras clave:
Fosforeno, Materiales 2D, Modelo de Amarre Fuerte, Teoŕıa funcional de la
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densidad, Método de tranformación de Löwding, Banda prohibida.
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Chapter 1

Introduction

The study of 2D materials has become very significant since the discovery
of graphene in 2004. Graphene is a material that crystallizes in a hexagonal
2D honeycomb structure; it is made up of carbon atoms linked together by
covalent bonds, with an sp2 hybridization. Some of the unique character-
istics of this material are a zero band-gap [1, 2], ultra-high carrier mobili-
ties, its tunable electrical behavior [3], and high-temperature superconduc-
tivity in twisted bilayer graphene [4]. Since the discovery of the properties
of graphene, numerous studies began to be carried out involving other 2D
layered materials (2DLM) such as transition metal dichalcogenides (TMDs)
like MoSe2, MoTe2, WS2, WSe2, and TiS2; gallium selenide (GaSe), Hexag-
onal Boron Nitride (h-BN), perovskites [1], silicene, and more recently 2D
phosphorus [3]. Due to the ultra-thin layer form of 2D materials, their more
remarkable properties are: large light-matter interaction, strong nonlinear
optical response, strong interlayer coupling, large mechanical strength, high
thermal conductivity, and ultrafast carrier dynamics, among others [1, 5, 6],
these properties make them very good candidates for potential applications
such as catalysis, electronics and photonics [7], power limiters [1, 8], THz
wave generation [3, 9], and ultra-thin light sources [10, 11].

Elemental phosphorus can exist in four main allotropic forms, named:
red, white, violet, and black phosphorus, depending upon the very differ-
ent structures and properties [12]. White phosphorus is the most reactive,
volatile, and toxic allotrope, formed by 4 phosphorus atoms arranged in a
tetrahedral P4 structure and containing two variants, an α form, which is
fcc, and a β form, with a hexagonal structure [13]. Red phosphorus is more
stable than white phosphorus, with an amorphous lattice, and can be syn-
thesized from white phosphorus at temperatures of 525-550 K [13]. Violet
phosphorus, like red phosphorus, has an amorphous structure and can be
synthesized by chemical vapor deposition (CVD) using amorphous red phos-
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2 CHAPTER 1. INTRODUCTION

phorus [14]. Black phosphorus, on the other hand, is the most stable and
least reactive of all the allotropes of phosphorus. This is due to its highly
stable layered crystal structure formed by single atomic species, it has an or-
thorhombic structure, and can be synthesized by heating white phosphorus
at high pressure (12.000 atmospheres) in the presence of a catalyst [15].

In black phosphorus, the layers are linked to each other by weak Van
der Waals (vdWs) inter-layer interactions with a separation of 3.21 Å to
3.73 Å [4, 16], while in each layer there are phosphorus atoms bonded to
each other by covalent bonds [17]. This bulk material has a semiconductor
behavior with a tiny band-gap, of about 0.3 eV, which increases with the
number of atomic layers [18, 19]. This thickness-dependent band-gap makes
it a good candidate in diverse applications like field-effect transistors (FETs)
[20], phosphorus based nanomaterials [17, 21], optoelectronic devices [21],
and superconductivity [22, 23].

Phosphorene, also known as monolayer black phosphorus, was synthesized
for the first time in 2014 through the celebrated method known as the scotch-
tape-based micro-cleavage approach [17, 20, 24], which essentially consists of
a repetitive peeling of the bulk material until obtaining one or few layers of
it. Another method to synthesize phosphorene was reported in [16] by using
plasma etching. Among the most remarkable properties of phosphorene are:
an experimentally measured band-gap of about 2 eV [25, 26], which makes it
a semiconductor material; it has a high anisotropic band structure, of great
advantage for several applications for instance in the optical spectrum for the
absorption and reflection of light along its lattice arm-chair direction [18, 27].
The charge transport in phosphorene multilayers is one of the most studied
characteristics, it depends on its number of layers, for example, the charge
mobility increases with the increase of layers reaching values of up to (1000
cm2V−1s−1) [16]. Also, it has been shown that this material behaves as a
superconductor with critical temperatures Tc between 9.5-10.7 K, and high
pressures of about 30 GPa [27]. Finally, but not less important, it has the un-
usual behavior of having negative Poissons’s ratio and an anisotropic Young
Modulus [4, 18] [3,13]. All of these properties have allowed phosphorene to
be considered for the development of applications in electronic devices such
as field-effect transistors, photodetectors, and its use in optics, electronics,
photonics, photovoltaics, and spintronics [1, 27, 28].

1.1 Phosphorene’s crystalline structure

Phosphorene has an orthorhombic primitive lattice, that in 2D can be seen as
a rectangular lattice, having a structure that is armchair along the ŷ axis and



1.1. PHOSPHORENE’S CRYSTALLINE STRUCTURE 3

zigzag along the x̂ axis, as shown in Fig. 1.1a and 1.1c. Out of the plane, the
puckered structure seems to be a bilayer configuration due to the positions of
the atoms (see Fig. 1.1b). In this material, the basis is formed by four atoms,
that in the plane are bonded to each other by covalent σ bonds, and out of
the plane, by π bonds, forming an sp3 hybridization (see Fig. 1.2, [29]). The
primitive lattice vectors in monolayer phosphorene for the 2D rectangular
structure are:

a1 = bx̂, a2 = aŷ, (1.1)

where b and a are the lattice parameters in the x̂ and ŷ directions respectively
(Fig 1.1c).

(a)

(b) (c)

Figure 1.1: Phosphorene crystalline structure. (a) Structure rotated at an
arbitrary angle. θ is the angle with the ŷ axis and φ is the angle with the ẑ
axis. The interatomic distances are defined by b1 and b2. The four atoms of
the basis are denoted as A, A′, B, and B′, so b1 is the A− B distance while
b2 is the B− B′ or the A− A′ distance. (b) Side view showing the puckered
structure. (c) Top view. The blue rectangle represents the unit cell with
lattice parameters a and b, the lattice parameter c is out of the plane in the
ẑ direction.
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The four atoms of the basis are labeled with the letters A, A′, B, and B′,
as shown in Fig. 1.1a. The distances between these atoms can be written as:

δABl
= b1 (± sin (θ) , cos (θ) , 0) = b1(nlx, nly, 0),

δA′B′l
= b1 (± sin (θ) ,− cos (θ) , 0) = b1(nlx,−nly, 0),

δAA′ = b2 (0,− sin (φ) ,− cos (φ)) = b2(0, ny, nz),

δBB′ = b2 (0, sin (φ) ,− cos (φ)) = b2(0,−ny, nz),

(1.2)

where θ and φ are the angles with ŷ and ẑ respectively, b1 is the A-B and
A’-B’ distance, and b2 is the A-A’ and B-B’ distance, as defined in Fig. 1.1a.
The values of all the mentioned parameters can be seen in Table 1.1. The
sub-index l is used to distinguish between the two first neighbors B(B′) of
the atom A(A′), and nlx, nly, ny, and nz are the respective direction cosines.

Figure 1.2: sp3 hybridization of phosphorene. This type of hybridization is
formed by mixing one 2s-orbital character, and three 2p-orbitals, in order to
create four hybrid orbitals with similar characteristics, adapted from [29].

The 2D reciprocal lattice of phosphorene is also orthorhombic. The 1st
Brillouin zone in 2D (figure 1.3) has a rectangular shape with the high sym-
metry points S, X, Y, and Γ, located at:

S = π

(
1

b
,

1

a

)
, X = π

(
1

b
, 0

)
,

Y = π

(
0,

1

a

)
, Γ = (0, 0) .

(1.3)
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Figure 1.3: Reciprocal lattice of phosphorene showing the high symmetry
points Γ, S, X, and Y at the first Brillouin zone (See Eq. (1.3)).

1.2 Electronic properties of phosphorene

Among the numerical methods used to model the band structure of phospho-
rene, we have full-potential linearized augmented plane-wave [30], the Gaus-
sian Plane Waves (GPW) [18, 31], the approximation of one body Green’s
function, the dynamically screened Coulomb interaction (GWA) [4, 18], and
the pseudo-atomic orbital basis [32]; all of these mostly, first-principle cal-
culations based in DFT [18, 24, 31, 33, 32]. By studying the electronic
properties with these techniques, it has been possible to find: the excitonic
properties [18], the minima and maxima of the conduction and valence bands
[18], the bonding between atoms [24], the band structure [24], equilibrium
geometry [24], bonding [24], the density of states [30], the contribution of
atomic orbitals to each band [30], structural properties [32], and the charge
mobility among others characteristics [18, 24, 33, 31, 32].

The characteristic band structure of phosphorene presents the minimum
and maximum between the conduction and valence bands around the Γ point
[4, 24, 33], where the calculated band-gap varies between 0.8 to 2.17eV, de-
pending on the method used [4, 18, 24, 33, 30, 34]. Also at this point, an
anisotropic behavior in the dispersion is observed (see the right rectangle
enclosed area in Fig. 1.4). The bands seem to have an approximately linear
behavior in the kx direction, in contrast to the ky direction, where they are
parabolic (see Fig. 1.4) [30, 4]. This can be explained also in terms of the
effective masses, in the kx direction the second derivative of the energy seems
to be closer to zero (dispersionless), while along ky direction is not (disper-
sive). The contribution of atomic orbitals for the valence and conduction
bands near the Γ and S points is mostly of pz character with a small contri-
bution of py orbitals [32, 30]. Finally, but not less important, the dominant
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Table 1.1: Table with the DFT parameters of Phosphorene to be used
in this work, taken from [34], and the experimental parameters for black
phosphorus, taken from [29]. The interatomic distances are defined by b1

and b2 in angstroms. The four atoms of the basis are denoted as A, A′, B,
and B′ (see Fig. 1.1a), so b1 is the A− B distance while b2 is the B− B′ or
the A− A′ distance. θ is the angle with the ŷ axis, and φ is the angle with
the ẑ axis, both in degrees. The lattice parameters are defined by a, and b
in angstroms. The bandgap for 2D phoshorene and Bulk Black Phosphorus
(BP) is defined in electronvolts.

Parameters 2D Phosphorene (DFT) [30] Bulk BP (Exp.) [19]

b1[Å] 2.243 2.22
b2[Å] 2.261 2.24
θ 48.41◦ 48.17◦

φ 21.41◦ 20.46◦

a [Å] 4.626 4.376
b [Å] 3.356 3.313

bandgap [eV] 2.17 0.3 (Bulk) - 2.05 (2D)[25]

spin-orbit coupling around the Γ point is of the Rashba kind, with a splitting
of around 2 µeV, while around the S point, the dominant spin-orbit coupling
is of the intrinsic kind with a splitting of about 20 meV [4, 24].

The use of analytical methods plays an important role in the study of
electronic properties because they provide detailed information about the
band structure of phosphorene. For example, it can be calculated the hopping
and overlapping integrals centered at different atomic sites [32, 35], in a way
that a more complete explanation of the relation between the shape of the
bands and the atomic structure, the symmetries of the material, and the
hybridization between atoms, can be provided [36]. Very useful methods for
making analytical models in phosphorene are Tight-Binding (TB) [37, 32] and
the k·p Theory [36, 38]. In the case of the TB method, the electronic structure
is described along the full Brillouin zone by a set of wave functions based
on the superposition of the atomic orbitals of each atom as Bloch functions,
on the other hand, the k·p method is an approximation to calculate the
electronic structure around the vicinity of a selected point from the Brillouin
zone.

Among the most relevant studies involving analytical methods in phos-
phorene, we highlight: Menezes et. al. [32], who presented a numerical
tight-binding model with adjustable Slater and Koster parameters, with and
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Figure 1.4: The DFT band structure of phosphorene along the all symmetry
points of the 1st Brillouin zone, adapted from [30]. The high symmetry points
are located at S = π(1/b, 1/a), X = π(1/b, 0), Y = π(0, 1/a), and Γ = (0, 0).
The rectangle areas enclose the band structure at the vicinity of S and Γ
points. Around the Γ point, there is an asymmetry between Γ−X and Γ−Y
directions. The bands seem to have an approximately linear behavior in the
Γ−X direction, in contrast to the Γ−Y direction, where they are parabolic.

without taking into account the overlap matrix, having as a result that the
model that includes the overlaps gives a better parametrization to adjust
the bands in phosphorene. But without devilling on the nature of the low
energy Hamiltonians at the high symmetry points. Fukuoka et. al. [37],
proposed a 16×16 linear combination of atomic orbitals (LCAO) Hamilto-
nian to model the bands of phosphorene at low energies, providing only a
qualitative description where they asserted the DFT calculations. Kafaei et.
al. [38], also developed a 16× 16 k·p Hamiltonian for bands at low energies
considering all couplings between atoms up to second-order correction, being
linear in one direction and non linear in the other direction, in this work, the
authors obtained a good approximation to the electronic bands considering
that the off-diagonal elements of the Hamiltonian must be of second order in
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the wavenumber. Popovic et. al. [35], proposed a TB model of pz rotated
orbitals with a small contribution of py orbitals with only two hopping ef-
fective parameters, with this, the authors obtained the bands around the Γ
point at low energies with sufficient accuracy compared with the DFT model.
Finally, Jaroslav et. al. [36], developed a k·p Hamiltonian model for 4 and
6 bands, and they fit the analytical model with first-principles calculations,
asserting the anisotropy of the bands of phosphorene around the Γ point.

In spite of all the models described above, a simplified analytical Hamil-
tonian for phosphorene, where the role of the overlaps between the atomic
orbitals could be included in the hopping parameters, is still missing. In
this work, we have developed a tight-binding model to address this problem.
With this goal, we have chosen a basis of tilted orbitals with components
pz and py as in reference [35], but with the inclusion of the specific overlaps
between the orbitals of different atoms, by using the Slater and Koster ap-
proximation to calculate the matrix relevant elements of the Hamiltonian.
With this simple analytical model, we have reproduced the main characteris-
tics of the bands around the high symmetry points of the first Brillouin zone
Γ and S, also, we have found the effective masses in the Γ−X and the Γ−Y
directions, in terms of the hybridizations between orbitals of the atoms of
the basis of phosphorene.

The structure of this manuscript is as follows: in Chapter 2 we present
the methods that support this work, which are: the tight-binding method,
the Slater Koster and the two center approximation, and the Löwding trans-
formation method. In Chapter 3, we present our results with a discussion
particularly on the role of the overlaping terms that mostly contribute to
the band behavior, comparing always with the results of the DFT model of
reference [30]. Finally, in Chapter 4, we present the conclusion of this work.

1.3 Hypothesis

An analytical tight-binding model, based on the Slater and Koster two centers
approximation and with a basis of rotated |φ〉 (combination of py and pz)
and |θ〉 (combination of px and py) orbitals, can be developed to find a
minimal Hamiltonian for phosphorene that contains the relevant information
of the hybridizations between orbitals that give origin to its anisotropic band
structure around the Γ and S points close to the Fermi energy.
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1.4 Objectives

1.4.1 General Objective

To develop an analytical tight-binding Hamiltonian for 2D Black phosphorus
valid for the high symmetry points S and Γ near the Fermi energy.

1.4.2 Specific Objectives

• To construct a basis of rotated orbitals |φ〉 and |θ〉 for phosphorene.

• To derive an effective Hamiltonian in the direct space for the basis of
|φ〉 orbitals.

• To determine by Fourier transform the Hamiltonian in reciprocal space.

• From the Hamiltonian obtained in the previous point, to obtain the
band structure in the vicinity of the high symmetry points S and Γ.

• To compare the band structure obtained with our model with those
reported in the literature by first principle calculations.

• To make a perturbation study of the influence of the |θ〉 and s orbitals
in the model described previously.



Chapter 2

Methods

Wigner and Seitz were the pioneers in the study of band calculations in crys-
talline materials in solid-state physics. The first calculations were developed
from the study of the wave-function, where the methodology they used is
summarized in three methods; The Wigner-Seitz method, very useful for the
understanding of alkali metals [39]; the Pseudopotential method, used for
the study of metals [39]; and the Tight Binding method (TB), used to the
study of solids, semiconductors and 2D-dimensional materials [40, 41].

The TB method or Linear Combination of Atomic Orbitals (LCAO) was
first introduced in 1928 by Felix Bloch who proposed the quantum theory
of solids. This method is a mathematical model that studies the electrons
that are tightly bonded to the nuclei of the atoms. As the name indicates, it
consists of taking the wave function of the electrons as a linear combination
of the atomic orbitals of the free atoms that constitute the solid material
[40, 39, 42]. TB provides information about the electronic and transport
properties, of crystalline solid systems that are composed of many atoms
[40, 41].

2.1 Tight Binding method

This section is supported by [43, 42, 44]. The model starts defining electronic
Bloch states Φ(k, r) that depend on the position vector r, and a wave vector
k of the electron. These functions are constructed for a system of n atomic
localized orbitals φu (Warnier Functions) using one atom in each unit cell,
labeled by the index u = 1, ..., n, and can be written as:

Φu(k, r) =
1√
N

N∑
v=1

eik·Ru,vφu(r−Ru,v), (2.1)

10
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where the sum is over N unit cells, that can be labeled by v = 1, ..., N and
Ru,v represents the position of the uth orbital in the vth unit cell.

We can express the electronic wave function Ψl(k, r) that depends on a
linear superposition of the n different Bloch functions

Ψl(k, r) =
n∑
u=1

cl,u(k)Φu(k, r), (2.2)

where cl,u are the expansion coefficients. The energy values εl(k) of the lth
energy band are given by

εl(k) =
〈Ψl|Ĥ|Ψl〉
〈Ψl|Ψl〉

, (2.3)

where Ĥ is the Hamiltonian operator. Now, substituting the expansion of
the wave function (2.2) into the equation of energy (2.3) we obtain

εl(k) =

∑n
v,u c

∗
lvclu 〈Φv|Ĥ|Φu〉∑n

v,u c
∗
lvclu 〈Φv|Φu〉

=

∑n
v,u c

∗
lvcluHvu∑n

v,u c
∗
lvcluSvu

, (2.4)

where Hvu = 〈Φv|Ĥ|Φu〉 represents the transfer integral matrix and Svu =
〈Φv|Φu〉 represents the overlap integral matrix. In order to minimize the
energy εl, we shall apply the first partial derivative of εl with respect to the
coefficient c∗lv, to obtain

∂εl
∂c∗lv

=

∑n
u cluHvu∑n

v,u c
∗
lvcluSvu

−
∑n

v,u c
∗
lvcluHvu

∑n
u cluSvu

(
∑n

v,u c
∗
lvcluSvu)

2
,

(2.5)

and making (∂εl/∂c
∗
lv = 0)

n∑
u=1

culHvu = εl

n∑
u=1

cluSvu. (2.6)

For general values of n, the transfer integral matrixH, the overlap integral
matrix S, and the expansion coefficients ψl, as a column vector, are

H =


H11 H12 H1n

H21 H22 H2n

Hn1 Hn2 Hnn

, S =


S11 S12 S1n

S21 S22 S2n

Sn1 Sn2 Snn,

, ψl =


cl1
cl2

cln

.
(2.7)
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The equation (2.6) can be written as

Hψl = εlSψl. (2.8)

Calculating the determinant of the system (2.8)

det(H − εlS) = 0, (2.9)

will give us the respective eigenvalues εl that describe the band structure of
the material. The number of eigenvalues calculated is according to l, which
represents the number of the different atomic orbitals of each unit cell v.

2.2 The Slater-Koster and two center approx-

imation

The TB method, as mentioned before in Sec. 2.1, involves the calculation of
the transfer integral matrix H in Eq. (2.7), in which each of the elements is
given by an integral of the form:

Hop = 〈Φo|Ĥ|Φp〉 =

∫
Φ∗o(r −Ro)ĤΦp(r −Rp)dr, (2.10)

where Φo,p represents the orbital contribution of the atom at position Ro,p.

The Hamiltonian operator Ĥ is:

Ĥ = − ~2

2m
∇2 +

∑
Ri

Vat (r−Ri) , (2.11)

being the first term the kinetic contribution, and the second term the atomic
potential, where r is the position of the electron and Ri is the position of the
atoms in the crystal.

The potential Vat(r) in Eq. (2.11), is an atomic potential that contains
all the contributions of the lattice atoms. This makes that the integrals in
Eq. (2.10) depend on multiple atomic positions. For solving this problem,
Slater and Koster in their work [40], proposed a solution that consists in
approximate the atomic potential, taking into account only the interaction
between two atoms, the source atom, and the target atom so, the atomic
potential in Eq. (2.11) is replaced by the expression:

V (r) =
∑
o,p

Vat(Rp −Ro). (2.12)
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given this approximation, the integrals from Eq. (2.10) can be replaced by
combinations of SK parameters [40]. According to the Slater and Koster
notation in Table. 2.1, the first two subindices in the symbols V(abc), represent
the two type orbitals involved in the hopping (s, p, d), and the sub-index c,
is the type of bond that joins them (σ, π, δ). A schematic representation of
how the bonds σ and π looks like joining the orbitals is presented in Fig. 2.1.

(a)

(b) (c)

Figure 2.1: SK hopping parameters for atomic orbitals. (a) Interaction be-
tween s orbitals by a σ bond. (b) Interaction between s and p orbitals by a
σ bond. (c) Interaction between p orbitals by π bonds, adapted from [29].

2.3 Löwding transformation method

The Löwding partitioning technique is used in perturbative quantum theory
as a powerful technique for solving eigenvalues problems, this is because it
does not distinguish between non-degenerated and degenerated states, pro-
viding a simplified solution as an approximation to a more complex problem
[45]. In this technique, an approach to construct effective Hamiltonians from
sub-matrices that seek to perturb the main matrix is defined.

The full Hamiltonian H of the entire system, shall be written as a parti-
tion of four blocks of submatrices that depend on two different subspaces H0
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Table 2.1: SK constants for the energy integral calculations used in this work.
The Vssσ (Vppσ) represent the hopping parameters between s−s (p−p) orbitals
with a σ bond. The Vspσ represent the hopping parameter between s − p
orbitals with a σ bond. The Vppπ represent the hopping parameter between
p−p orbitals with a π bond (see Fig. 2.1). We use the indexes i={x, y, z} and
j={x, y, z} for representing the direction of the orbitals, following the rule i
6= j. The n represents the respective cosine directors that are expressed in
Eq. (1.2).

〈s|Ĥ|s〉 Vssσ

〈s|Ĥ|pi〉 niVspσ

〈pi|Ĥ|pi〉 n2
iVppσ + (1− n2

i )Vppπ

〈pi|Ĥ|pj〉 −ninj(Vppπ − Vppσ)

and HF :

H =

(
H0 W
W † HF

)
, (2.13)

where H0 and HF represent the matrix of the subspaces, and W and W † are
the interaction matrices between the two subspaces. Also, a partition of the
eigenvector into two eigenvectors of the two subspaces shall be made as:

ψ =

(
ψ0

ψF

)
, (2.14)

giving a final eigenvalue equation that depends on the two subspaces with
the Löwding partitioning technique as:(

H0 W
W † HF

)(
ψ0

ψF

)
= ε

(
ψ0

ψF

)
. (2.15)

From Eq. (2.15), we can construct a system of two equations, to find the
energy ε as a solution

H0ψ0 +WψF = εψ0, W †ψ0 +HFψF = εψF . (2.16)

Solving for ψF from the second equation of Eq. (2.16), we obtain:

ψF = (ε−HF )−1W †ψ0, (2.17)

and replacing this into the first equation of Eq. (2.16) we get:

[H0 +W (ε−HF )−1W †]ψ0 = εψ0. (2.18)
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This section is supported by [46]. For finding a new effective Hamiltonian
Heff at low energies, we need to perform an expansion of the term (ε−HF )−1

in Eq. (2.18) up to first order in ε to obtain [H0 − WH−1
F W †]ψ0 ≈ εSψ0,

where S = 1 + WH−2
F W †. Defining Φ = S1/2ψ0 and its normalization is

given by |Φ|2 ≈ ψ0
†ψ0 + ψ†FψF up to the first order. With this assumptions

the equation Eq. (2.18) becomes in:

S−1/2[H0 −WH−1
F W †]S−1/2Φ = HeffΦ ' εΦ. (2.19)

Finally, assuming that S ≈ 1 the equation Eq. (2.19) becomes into:

Heff ≈ H0 −WH−1
F W †, (2.20)

where 〈H0〉 � 〈HF 〉, and 〈W 〉 � |〈HF 〉 − 〈H0〉|. This final equation allow us
to find an effective Hamiltonian (Heff) that can be used to add perturbations
to the main matrix.



Chapter 3

Results and discussion

In this chapter, we develop an analytical tight-binding model for phospho-
rene. The goal is to explain the main characteristics of its electronic bands
around the high symmetry points Γ and S, of the first Brillouin zone defined
in Fig. 1.4. We start with a model with a minimum set of orbitals, that in
spite of its simplicity, we shall show at posteriori that reproduces very well
the bands around the mentioned symmetry points. We also explore the in-
fluence of other relevant atomic orbitals as a perturbation. In all the cases
we compare the bands obtained with our model with the density functional
theory bands reported in reference [30].

The importance of choosing the Γ and S points from the first Brillouin
zone, remains principally in the mentioned unique characteristics of phos-
phorene around them, like its anisotropic dispersion and the Rashba splitting
around the Γ point, and the intrinsic spin-orbit coupling around the S point
[30]. The effects of spin-orbit are however very weak according to DFT cal-
culations, and in any case the role of the spin is beyond to the scope of this
dissertation. In spite that we are not going to include the spin, we present
our analytical model as a basis to, in the near future, include other interac-
tions like spin-orbit coupling, the stark effect, and magnetism inherited for
example from proximity effects.

3.1 Tight Binding model for Phosphorene

3.1.1 The basis of |φ〉 and |θ〉 orbitals

As reported in the literature [30], the DFT bands in phosphorene around
the Γ and S points have a strong pz character with a small py contribution
with a negligible px contribution to the local density of states. Given that we

16
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(a) (b)

Figure 3.1: The basis of rotated |φ〉 and |θ〉 orbitals in phosphorene. (a) Side
view of phosphorene where the |φ〉 orbitals of the four atoms of the basis
A′, A, B, and B′, are represented. These orbitals are slightly rotated in the
yz plane, resulting in a combination of py and pz orbitals. (b) Top view of
phosphorene picturing the |θ〉 orbitals. These orbitals are rotated in the xy
plane, resulting in a combination of px and py orbitals. The orbitals that are
in the top layer atoms are colored in green, and the ones in the bottom layer
are colorless. The monolayer of phosphorene lies in the xy plane.

want to describe the bands around these points, we find convenient for our
purposes to choose a basis of tilted atomic orbitals that we shall denote as
|φ〉. These |φ〉 orbitals, extend out of the plane of phosphorene and are not
perpendicular to such planes but rotated respect with ẑ and ŷ components,
as shown in Fig 3.1a. Explicitly they can be written as:

|A(A′)φ〉 = −nz |A(A′)pz〉 − ny |A(A′)py〉 ,
|B(B′)φ〉 = −nz |B(B′)pz〉+ ny |B(B′)py〉 ,

(3.1)

for the atoms labeled as A, A′, B and B′. The direction cosines ny and nz
with their respective signs are defined in Eq. (1.2).

In the plane of phosphorene, we can also define a basis of rotated orbitals
denoted by |θ〉 (see Fig 3.1b). These orbitals have components x̂ and ŷ, and
are given by:

|Aθ〉 = nly |Apy〉+ nlx |Apx〉 , |Bθ〉 = −nly |Bpy〉 − nlx |Bpx〉 ,
|A′θ〉 = −nly |A′py〉+ nlx |A′px〉 , |B′θ〉 = nly |B′py〉 − nlx |B′px〉 ,

(3.2)

where the direction cosines nlx and nly are defined in Eq. (1.2).
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3.1.2 Effective Hamiltonian with |φ〉 orbitals

We apply the tight-binding method to calculate the matrix elements defined
in Eq. (2.10). We only consider first neighbor interactions between the four
atoms of the basis given by A − A′, A − B, B − B′, and A′ − B′. So, the
coupling matrix elements for |φ〉 orbitals belonging to the same atoms are:

〈Aφ|Ĥ|Aφ〉 = (−nz 〈Apz| − ny 〈Apy|)Ĥ(−nz |Apz〉−ny |Apy〉)
= n2

z 〈Apz|Ĥ|Apy〉+ nzny 〈Apz|Ĥ|Apy〉+ nynz 〈Apy|Ĥ|Apz〉
+ n2

y 〈Apy|Ĥ|Apy〉 = εp(n
2
z + n2

y) = εp.

(3.3)

The procedure to find the other matrix elements for orbitals belonging to
the same atom goes in a similar way and are: 〈A′φ|Ĥ|A′φ〉 = 〈Bφ|Ĥ|Bφ〉 =
〈B′φ|Ĥ|B′φ〉 = εp.

For |φ〉 orbitals belonging to different atoms, we have:

〈Aφ|Ĥ|Bφ〉 = 〈Bφ|Ĥ|Aφ〉 = n2
zVppπ − n2

y(n
2
lyVppσ + (1− n2

ly)Vppπ)

= VAB,

〈A′φ|Ĥ|Aφ〉 = 〈Aφ|Ĥ|A′φ〉 = n2
z(n

2
zVppσ + (1− n2

z)Vppπ)

− 2n2
yn

2
z(Vppπ − Vppσ) + n2

y(n
2
yVppσ + (1− n2

y)Vppπ)

= Vppσ,

(3.4)

where we have used the Slater and Koster parameters defined in Table 2.1.
By symmetry: 〈A′φ|Ĥ|B′φ〉 = 〈Aφ|Ĥ|Bφ〉 = VAB, and 〈B′φ|Ĥ|Bφ〉 =
〈A′φ|Ĥ|Aφ〉 = Vppσ. Finally, the coupling integrals calculated in the ba-
sis |Aφ〉, |A′φ〉, |Bφ〉, |B′φ〉, are summarized in Table 3.1, where we have
taken the reference of energy at εp = 0.

Table 3.1: Coupling integrals, at first neighbors, between the |φ〉 orbitals of
the four atoms of the basis of phosphorene. The reference of energy has been
taken at εp = 0.

|Aφ〉 |A′φ〉 |Bφ〉 |B′φ〉

〈Aφ| 0 Vppσ VAB 0
〈A′φ| Vppσ 0 0 VAB

〈Bφ| VAB 0 0 Vppσ
〈B′φ| 0 VAB Vppσ 0
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3.1.3 Reciprocal Space Hamiltonian with |φ〉 orbitals
and band structure

In order to write the Hamiltonian defined by Table 3.1 in the reciprocal space,
we proceed by calculating first the diagonal elements and subsequently the
non-diagonal elements. By substituting the Bloch function Eq. (2.1) into the
transfer integral matrix Eq. (2.10), we obtain the equation for the diagonal
AA transfer matrix elements:

HAA =
1

N

N∑
o=1

N∑
p=1

eik(RA,p−RA,o) 〈Aφ(r−RA,o)|Ĥ|Aφ(r−RA,p)〉 . (3.5)

The sum in o goes along all the atoms A of the lattice of phosphorene, but
if we consider that the highest contributions come from the interaction of the
atom with itself o = p (onsite energies), we have that 〈Aφ(r−RA,o)|Ĥ|Aφ(r−RA,p)〉 =

〈Aφ(r−RA,o)|Ĥ|Aφ(r−RA,o)〉 = 0, because we have defined our reference
at εp = 0. The same applies to the other diagonal elements corresponding to
the other atoms of the basis.

For the off-diagonal matrix elements we have the equation:

HAB =
1

N

N∑
o=1

N∑
p=1

eik·(RB,p−RA,o) 〈Aφ(r−RA,o)|Ĥ|Bφ(r−RB,p)〉 , (3.6)

where the sum in p runs over all the atoms B of the lattice. If we consider
that the highest contribution in the sum comes from the interaction between
an atom A and its two first neighbors B, then:

HAB ≈
1

N

N∑
o=1

2∑
l=1

eik·δABl 〈Aφ(r−RA,o)|Ĥ|Bφ(r−RB,l)〉 , (3.7)

where δABl is the A−B distance defined in Eq. (1.2). The coupling between
A and its first neighbors B is defined in Table 3.1, and is independent of the
index l, therefore:

HAB ≈
1

N

N∑
o=1

2∑
l=1

eik·δABlVAB = VAB

2∑
l=1

eik·δABl = VABf(k), (3.8)

where VAB is extracted from Table. 3.1 and defined in equation Eq. (3.4), and
we have defined the form factor:

f(k) =
2∑
l=1

eik·δABl = 2eikyy cos

(
bkx

2

)
, (3.9)
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where k = kxx̂ + kyŷ represents the wave vector in the 2D plane. With a
similar procedure, we obtain that the rest of the off-diagonal elements are
given by:

HA′B′ =
∑
l

e
ik·δA′B′

l 〈A′φ| Ĥ |B′lφ〉 = VABf(k)

HAA′ = eik·δAA′ 〈Aφ| Ĥ |A′φ〉 = Vppσg(k),

HBB′ = eik·δBB′ 〈Bφ| Ĥ |B′φ〉 = Vppσg
∗(k),

(3.10)

where; δAA′ , δBB′ , and δA′B′l
are defined in Eq. (1.2); the letters h = b2 sinφ,

y = b1 cos θ, and b = 2b1 sin θ, respectively, and g(k) = e−ikyh. With all these
elements, the 4 × 4 Hamiltonian in the reciprocal space, in the basis |Aφ〉,
|A′φ〉, |Bφ〉, |B′φ〉, is:

Hφ(k) =


0 Vppσg(k) VABf(k) 0

Vppσg
∗(k) 0 0 VABf

∗(k)
VABf

∗(k) 0 0 Vppσg
∗(k)

0 VABf(k) Vppσg(k) 0

. (3.11)

From the Hamiltonian of Eq. (3.11) we calculated the eigenvalues around
the Γ point, in the directions in Γ− X and Γ− Y:

εΓX(±) = (±)

√
2V 2

AB + V 2
ppσ − 4

√
V 2

ABV
2
ppσ cos[bkx/2]2 + 2V 2

AB cos[bkx],

εΓX(±) = (±)

√
2V 2

AB + V 2
ppσ + 4

√
V 2

ABV
2
ppσ cos[bkx/2]2 + 2V 2

AB cos[bkx],

εΓY(±) = (±)e−iky(h+y)

√
−2
√

(eiky(h+y) + e3iky(h+y))2V 2
ABV

2
ppσ + e2iky(h+y)(4V 2

AB + V 2
ppσ),

εΓY(±) = (±)e−iky(h+y)

√
2
√

(eiky(h+y) + e3iky(h+y))2V 2
ABV

2
ppσ + e2iky(h+y)(4V 2

AB + V 2
ppσ),

(3.12)

and expanding up to quadratic order the bands that open the gap, which are
the first and third equations from Eq. (3.12), we obtain (A calculation of the
continuum Hamiltonian around the Γ point is shown in Appendix A.):

εΓX(±) = (±)(α + βk2
x), εΓY(±) = (±)(α + γk2

y), (3.13)

where εΓX and εΓY represent the eigenvalues in the Γ − X and Γ − Y direc-
tions, and the (+) and (−) represent the conduction and the valence bands
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respectively, and the constants α, β, and γ are:

α =

√
4V 2

AB + V 2
ppσ − 4

√
V 2

ABV
2
ppσ,

β =
b2
(
−2V 2

AB +
√
V 2

ABV
2
ppσ

)
4

√
4V 2

AB + V 2
ppσ − 4

√
V 2

ABV
2
ppσ

,

γ =

√
V 2

ABV
2
ppσ(h+ y)2√

4V 2
AB + V 2

ppσ − 4
√
V 2

ABV
2
ppσ

.

(3.14)

Table 3.2: Table with the Slater and Koster parameters obtained from the
fitting with the DFT bands from [30], for the model of |φ〉 orbitals. Vppσ and
Vppπ are the SK parameters for hopping between pz and py orbitals forming
σ and π bonds respectively. VAB is the hopping parameter between A(A′)
and B(B′) atoms (see Eq. 3.4).

Parameter Value (eV) Values of Ref. [32] (eV)

Vppσ 3.042 4.03
Vppπ -1.002 -1.14
VAB -0.971 -

Table 3.3: Table with numerical values of α, β, and γ expressed in Eq. (3.14).
These values were obtained from the tight-binding parameters from Ta-
ble. 3.2.

Parameter Value

α (eV) 1.09
β (eV nm2) 0.027
γ (eV nm2) 0.14

The effective masses along the Γ− X and Γ− Y directions are obtained
from 1/m∗ij = (1/~2)(∂2ε/∂ki∂kj) and are given by:

m∗ΓX(±) = (±)
~2

2β
, m∗ΓY(±) = (±)

~2

2γ
, (3.15)
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Table 3.4: Table with numerical values of the effective masses in Γ−X and
Γ−Y directions calculated from Eq. (3.15) and compared with reference [36].
Our values has been normalized by the rest mass of the electron.

Effective mass m∗ Our values Values from Ref. [36]

Conduction m∗ΓX 1.40 1.15
Conduction m∗ΓY 0.27 0.24

Valence m∗ΓX 1.40 7.29
Valence m∗ΓY 0.27 0.24

where i = j = x in the Γ−X direction and i = j = y in the Γ−Y direction.

The effective mass values obtained from our model are compared with
the effective mass values of Ref. [36] and are shown in Table 3.4. As can be
seen in this table, our values of effective masses are equal for the conduction
and valence band given a direction (Γ− X or Γ− Y), but they are different
for a given band (conduction or valence) in the direction Γ − X and Γ − Y.
The values reported in reference [36], however, have a numerical difference
for the conduction and valence band in the Γ − X direction, which can not
be reproduced by our model. This is because our effective mass values have
been calculated from Eq. (3.13), where the eigenvalues for the same direction
differ only in sign.

When analyzing the dependence of the effective masses in both directions
in Eq. (3.15) and the constants defined in Eq. (3.14), we can see that the
difference between the constants β and γ is the term −2V 2

AB, that appears
in the numerator of β, and the multiplicative geometrical parameters b2/4 =
2.81Å2 in β and (h+ y)2 = 5.37Å2 in γ. These geometrical parameters differ
by a factor of approximately 2, however, β is about one order of magnitude
smaller than γ (see Table.3.3). Therefore, we can conclude that what makes
the effective masses so different in the Γ−X and the Γ−Y directions is the
term −2V 2

AB in β. In this term, VAB is the hopping parameter between A
and B atoms, given by a combination of the Slater and Koster parameters
Vppσ and Vppπ (see Eq. 3.4).

At the S point, the S−Γ direction is defined by substituting kx = (π/b)+ks
and ky = (π/a) + ks in Eq. (3.11), where ks is the wavenumber around the
point S. The respective eigenvalues obtained directly from the Eq. (3.11) are:

εSΓ,v(c)± = −(+)

(
(2V 2

AB + V 2
ppσ − 2V 2

AB cos(bks))± (∓)4VABVppσ sin

(
bks
2

)
sin

(
aks
2

))1/2

,

(3.16)
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where the letter v corresponds to the valence band and c to the conduction
band. The signs + and − are related to the positive and negative effective
masses respectively.

In the S−X direction, we use kx = (π/b)+ks and ky = (π/a) in Eq. (3.11).
The eigenvalues obtained from Eq. (3.11) are:

εSX,v(c)± = −(+)(2V 2
AB + V 2

ppσ − 2V 2
AB cos(bks)). (3.17)

(a) (b)

Figure 3.2: Electronic band structure of phosphorene. (a) Valence and con-
duction bands around the Γ point in the Γ − X and Γ − Y directions. (b)
Valence and conduction bands around the S point in the S − Γ and S − X
directions. In both cases, the blue (-dashed-) lines are quadratic fits of the
DFT bands taken from [30], and the magenta (solid) lines are the eigenvalues
from Eqs. (3.13), (3.16), and (3.17), given by our tight-binding model with
|φ〉 orbitals from Eq. (3.11).

The bands calculated with our tight-binding model (Eqs. (3.13), (3.16),
and (3.17)), are plotted in Fig. 3.2 and represented by magenta (solid) lines.
The values of the Slater and Koster parameters, obtained from the fitting to
the DFT bands (blue (-dashed-) lines), are given in Table. 3.2. In Fig. 3.2,
the DFT bands used to compare with our tight-binding model were obtained
by taking data points from the band structure of reference [30] (Fig. 1.4),
around the Γ and S points. These data points were extracted and fitted
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to quadratic functions that reproduce the DFT bands around the Γ and S
points, in each direction X− Γ− Y and Γ− S− X.

As we can see in Fig. 3.2a, our model fits very well the highest valence
and lower conduction bands compared with the DFT model around the Γ
point. The more relevant features of the bands, like the difference between
the effective masses in the Γ−X and Γ−Y directions, are reproduced. Also,
we find a bandgap of 2.19 eV, which is very close to the one obtained by
DFT (2.17 eV). One characteristic we were not able to reproduce with our
model of |φ〉 orbitals, is a slight difference between the effective masses of
the valence and conduction DFT bands in a direction (Γ−X). On the other
hand, around the S point Fig. 3.2b, our model reproduces very well the shape
of the bands (compared to the DFT), but it can not reproduce the correct
band-gap between them. Finally, in all the cases, we compared the Slater
and Koster parameters obtained with our model with the ones reported by
Menezes et. al. (Table 1 in reference [32]), finding that they are in very close
agreement.

In the next section, we will evaluate if the addition of other orbitals
in order to figure out if this refined model can improve the discrepancies
observed between our model with only |φ〉 orbitals and the DFT bands used
as of reference [30].

3.1.4 Effective Hamiltonian with |φ〉 orbitals perturbed
by |θ〉 orbitals, and band structure

To include perturbatively the |θ〉 orbitals described in Section 3.1.1 and given
by Eq. (3.2), we use the technique of Löwding transformation. Before this,
we calculate the matrix elements (Eq. (2.10)), considering only interaction
between first neighbors. For |θ〉 orbitals belonging to the same atoms we
have:

〈Aθ|Ĥ|Aθ〉 = (nly 〈Apy|+ nlx 〈Apx|)Ĥ(nly |Apy〉+ nlx |Apx〉)
= n2

ly 〈Apy|Ĥ|Apy〉+ nlynlx 〈Apy|Ĥ|Apx〉+ nlxnly 〈Apx|Ĥ|Apy〉
+ n2

lx 〈Apx|Ĥ|Apx〉 = εp.

(3.18)

The procedure to find the other matrix elements of the same kind goes in a
similar way and are: 〈A′θ|Ĥ|A′θ〉 = 〈Bθ|Ĥ|Bθ〉 = 〈B′θ|Ĥ|B′θ〉 = εp.
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The hopping integrals for |θ〉 orbitals belonging to different atoms are:

〈Aθ|Ĥ|Bθ〉 = 〈Bθ|Ĥ|Aθ〉 = −n2
ly(n

2
lyVppσ + (1− n2

ly)Vppπ)

+ 2n2
lyn

2
lx(Vppπ − Vppσ)− n2

lx(n
2
lxVppσ + (1− n2

lx)Vppπ)

= −Vppσ,
〈A′θ|Ĥ|Aθ〉 = 〈Aθ|Ĥ|A′θ〉 = n2

lxVppπ − n2
ly(n

2
yVppσ + (1− n2

y)Vppπ)

= VAA,

(3.19)

where we have used the Slater and Koster parameters defined in Table 2.1.
By symmetry: 〈A′θ|Ĥ|B′θ〉 = 〈Aθ|Ĥ|Bθ〉 = −Vppσ, and 〈B′θ|Ĥ|Bθ〉 =

〈A′θ|Ĥ|Aθ〉 = VAA. Finally, the hopping and onsite integrals, calculated
in the basis |Aθ〉, |A′θ〉, |Bθ〉, |B′θ〉, are summarized in Table 3.5, where we
have taken the reference of energy at εp = 0. The matrix elements for the

Table 3.5: Hopping and onsite integrals, at first neighbors, between the |θ〉
orbitals of the four atoms of the basis of phosphorene. The reference of
energy has been taken at εp= 0.

|Aθ〉 |A′θ〉 |Bθ〉 |B′θ〉

〈Aθ| 0 VAA −Vppσ 0
〈A′θ| VAA 0 0 −Vppσ
〈Bθ| −Vppσ 0 0 VAA

〈B′θ| 0 −Vppσ VAA 0

hopping between |φ〉 and |θ〉 orbitals belonging to the same atom are:

〈Aφ|Ĥ|Aθ〉 = (−nz 〈Apz| − ny 〈Apy|)Ĥ(nly |Apy〉+ nlx |Apx〉)
= −nznly 〈Apz|Ĥ|Apy〉 − nznlx 〈Apz|Ĥ|Apx〉
− nynly 〈Apy|Ĥ|Apy〉 − nynlx 〈Apy|Ĥ|Apx〉 = −nynlyεp.

(3.20)

In the same way, the other matrix elements are: 〈A′φ|Ĥ|A′θ〉 = 〈Bφ|Ĥ|Bθ〉 =
〈B′φ|Ĥ|B′θ〉 = −nynlyεp.
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The hopping integrals for |φ〉 and |θ〉 orbitals from different atoms, are:

〈Aφ|Ĥ|Bθ〉 = 〈Bθ|Ĥ|Aφ〉 = nznly(−nlznly(Vppπ − Vppσ))

+ nznlx(−nlznlx(Vppπ − Vppσ)) + nynly(n
2
lyVppσ + (1− n2

lyVppπ))

+ nynlx(−nlynlx(Vppπ − Vppσ)) = nynlyVppσ,

〈A′φ|Ĥ|B′θ〉 = 〈B′θ|Ĥ|A′φ〉 = −nznly(nlznly(Vppπ − Vppσ))

+ nznlx(nlznlx(Vppπ − Vppσ))− nynly(n2
yVppσ + (1− n2

lyVppπ))

+ nynlx(nlynlx(Vppπ − Vppσ)) = −nynlyVppσ,
〈Aφ|Ĥ|A′θ〉 = 〈A′θ|Ĥ|Aφ〉 = nznly(−nzny(Vppπ − Vppσ))

− nznlx(−nznx(Vppπ − Vppσ)) + nynly(n
2
yVppσ + (1− n2

yVppπ))

− nynlx(−nynx(Vppπ − Vppσ)) = nynlyVppσ,

(3.21)

where we have used the Slater and Koster parameters defined in Table 2.1.
By symmetry: 〈Bφ|Ĥ|B′θ〉 = 〈Aφ|Ĥ|A′θ〉 = nynlyVppσ. Finally, the hop-
ping and onsite integrals between |φ〉 and |θ〉 orbitals, are summarized in
Table. 3.6, where we have taken the reference of energy at εp = 0.

Table 3.6: Overlap integrals, at first neighbors, between the |φ〉 and |θ〉
orbitals of the four atoms of the basis of phosphorene. The reference of
energy has been taken at εp= 0.

|Aθ〉 |A′θ〉 |Bθ〉 |B′θ〉

〈Aφ| 0 nynlyVppσ nynlyVppσ 0
〈A′φ| −nynlyVppσ 0 0 −nynlyVppσ
〈Bφ| nynlyVppσ 0 0 nynlyVppσ
〈B′φ| 0 −nynlyVppσ −nynlyVppσ 0

Now we apply the Löwding transformation method given by Eq. (2.20),
where the four sub-matrices are taken as follows: H0 is the real space Hamil-
tonian matrix for |φ〉 orbitals (Table. 3.1), HF is the real space Hamiltonian
matrix for |θ〉 orbitals (Table. 3.5), W is the overlap matrix between |φ〉 and
|θ〉 (Table. 3.6), and W † is the conjugated matrix of W . Once, these elements
are ready, we write the real space effective Hamiltonian for |φ〉 orbitals per-
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turbed by |θ〉 as:

Hθ
eff ≈ H0 −WH−1

F W † ≈


0 V θ

ppσ V θ
AB 0

V θ
ppσ 0 0 V θ

AB

V θ
AB 0 0 V θ

ppσ

0 V θ
AB V θ

ppσ 0

, (3.22)

where the super index θ represents the perturbation with |θ〉 orbitals, and
the matrix elements are:

V θ
ppσ = Vppσ +

(2n2
lyn

2
yV

2
ppσ)

(VAA − Vppσ)
, V θ

AB = VAB −
(2n2

lyn
2
yV

2
ppσ)

(VAA − Vppσ)
. (3.23)

The Hamiltonian in the reciprocal space, considering the nearest first
neighbors contributions, can be calculated with a procedure similar to the
one shown in Subsec. 3.1.3 (Eqs. (3.5) to (3.10) ), and is given by:

Hθ(k) =


0 V θ

ppσg(k) V θ
ABf(k) 0

V θ
ppσg

∗(k) 0 0 V θ
ABf

∗(k)
V θ

ABf
∗(k) 0 0 V θ

ppσg
∗(k)

0 V θ
ABf(k) V θ

ppσg(k) 0

. (3.24)

From the Hamiltonian of Eq. (3.24), we obtain the eigenvalues around the
high symmetry points Γ and S of the first Brillouin zone. All the calculations
mentioned before are similar to those for |φ〉 orbitals without perturbation
(see Eqs. (3.13), (3.16), and (3.17)), the only difference is the change in the
parameters Vppσ and VAB by V θ

ppσ and V θ
AB (see Eq. (3.23)).

Table 3.7: Table with the Slater and Koster parameters obtained from
the fitting with the DFT bands, for the model of |φ〉 perturbed by |θ〉 or-
bitals. Where Vppσ and Vppπ are the SK parameters for the hopping between
p orbitals forming σ or π bonds. VAB is the hopping parameter between
|φ〉 orbitals of the A(A′) and B(B′) atoms (see Eq. (3.4)), and VAA is the
hopping parameter between |θ〉 orbitals of the A(B) and A′(B′), atoms (see
Eq. (3.19)).

Parameter Value (eV) Values of Ref. [32] (eV)

Vppσ 3.22 4.03
Vppπ -5 -1.14
VAB -1.2 -
VAA -1.09 -
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(a) (b)

Figure 3.3: Band structure of phosphorene with |φ〉 orbitals perturbed by |θ〉
orbitals. (a) Valence and conduction bands around Γ point in the X−Γ−Y
directions. (b) Valence and conduction bands around the S point in the
Γ − S − X directions. In both cases, the blue (-dashed-) lines represent the
DFT fitting taken from [30], and the magenta (solid) lines represent the
eigenvalues obtained by our tight-binding model from Eq. (3.24).

The electronic band structure of phosphorene in the vicinity of the Γ
and S points is shown in Fig. 3.3 and was adjusted by the SK parameters
from the Table. 3.7. As we can see in Fig. 3.3a, our model (magenta (solid)
lines), reproduce again the asymmetry of the bands around the Γ point in
comparison with the DFT model (blue (-dashed-) lines), with a band-gap
of 2.31 eV that is still close to the one obtained by DFT 2.17 eV. On the
other hand, around the S point, the change that we can see, compared with
the model of only |φ〉 orbitals, is that the bands are closer in energy to
those given by DFT. Finally, we compared the Slater and Koster parameters
obtained with our model with the ones reported by Menezes et. al. (Table 1
in reference [32]), finding that they are in the same order of magnitude.

3.1.5 Effective Hamiltonian with |φ〉 orbitals perturbed
by s orbitals, and band structure

In order to include perturbatively the s orbitals, we proceed as we did in
Section 3.1.1, first we find the hopping integrals between the same atoms
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(on-site), using the Slater-Koster parameters from Table 2.1 in Sec. 2, and
considering only the interaction between the first neighbors. Following this
we have:

〈As|Ĥ|As〉 = 〈Bs|Ĥ|Bs〉 = 〈A′s|Ĥ|A′s〉 = 〈B′s|Ĥ|B′s〉 = εs, (3.25)

where εs is the on-site energy for the s orbitals. For s orbitals belonging to
different atoms, we have:

〈As|Ĥ|Bs〉 = 〈A′s|Ĥ|B′s〉 = 〈As|Ĥ|A′s〉 = 〈B′s|Ĥ|Bs〉 = Vssσ. (3.26)

The Slater and Koster integrals calculated with a basis of |As〉, |A′s〉, |Bs〉,
|B′s〉 are indicated in Table 3.8.

Table 3.8: Hopping and onsite integrals, at first neighbors, between the s
orbitals of the four atoms of the basis of phosphorene.

|As〉 |A′s〉 |Bs〉 |B′s〉

〈As| εs Vssσ Vssσ 0
〈A′s| Vssσ εs 0 Vssσ
〈Bs| Vssσ 0 εs Vssσ
〈B′s| 0 Vssσ Vssσ εs

The hopping integrals between the orbitals |φ〉 and |s〉 belonging to the
same atoms are:

〈Aφ|Ĥ|As〉 = 〈As|Ĥ|Aφ〉 = (−nz 〈Apz| − ny 〈Apy|)Ĥ|As〉 = −nz 〈Apz|Ĥ|As〉
− ny 〈Apy|Ĥ|As〉 = 0,

(3.27)

and in the case for the other atoms, the result goes in the same way, as:
〈Bφ|Ĥ|Bs〉 = 〈A′φ|Ĥ|A′s〉 = 〈B′φ|Ĥ|B′s〉 = 0. The hopping integrals be-
tween the orbitals |φ〉 and |s〉 belonging to different atoms are given by:

〈Aφ|Ĥ|Bs〉 = 〈Bs|Ĥ|Aφ〉 = (−nz 〈Apz| − ny 〈Apy|)Ĥ |Bs〉 = −nz 〈Apz|Ĥ|Bs〉
− ny 〈Apy|Ĥ|Bs〉 = nznlzVspσ + nynlyVspσ = nynlyVspσ,

〈Bφ|Ĥ|As〉 = 〈As|Ĥ|Bφ〉 = −nynlyVspσ,
〈Aφ|Ĥ|A′s〉 = 〈A′s|Ĥ|Aφ〉 = (−nz 〈Apz| − ny 〈Apy|)Ĥ |A′s〉 = −nz 〈Apz|Ĥ|A′s〉

− ny 〈Apy|Ĥ|A′s〉 = −nznzVspσ − nynyVspσ = −Vspσ,
〈A′φ|Ĥ|As〉 = 〈As|Ĥ|A′φ〉 = −nznzVspσ + nynyVspσ = Vspσ,

(3.28)
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where we have used the Slater and Koster parameters defined in Table 2.1.
By symmetry: 〈B′φ|Ĥ|A′s〉 = 〈Aφ|Ĥ|Bs〉 = nynlyVspσ, 〈A′φ|Ĥ|B′s〉 =

〈B′φ|Ĥ|A′s〉 = −nynlyVspσ, 〈Bφ|Ĥ|B′s〉 = 〈Aφ|Ĥ|A′s〉 = −Vspσ, 〈B′φ|Ĥ|Bs〉 =

〈A′φ|Ĥ|As〉 = Vspσ. Finally, the transfer integral matrix between |φ〉 and s
orbitals is summarized in Table. 3.9.

Table 3.9: Transfer integral matrix, at first neighbors, between the |φ〉 and
s orbitals of the four atoms of the basis of phosphorene. The reference of
energy has been taken at εp = 0.

|As〉 |A′s〉 |Bs〉 |B′s〉

〈Aφ| 0 −Vspσ nynlyVspσ 0
〈A′φ| Vspσ 0 0 −nynlyVspσ
〈Bφ| −nynlyVspσ 0 0 −Vspσ
〈B′φ| 0 nynlyVspσ Vspσ 0

.

Now, we apply the Löwding transformation method given by Eq. (2.20)
where the four sub-matrices are taken as follows: H0 is the real space Hamil-
tonian matrix for |φ〉 orbitals (Table. 3.1), HF is the real space Hamiltonian
matrix for s orbitals (Table. 3.8), W is the overlap matrix between |φ〉 and s
(Table. 3.9), and W † is the conjugated matrix of W . Once, these elements are
ready, we write the real space effective Hamiltonian for |φ〉 orbitals perturbed
by s as:

Hs
eff ≈


εs1 V s

ppσ V s
AB E

V s
ppσ εs1 E V s

AB

V s
AB E εs2 V s′

ppσ

E V s
AB V s′

ppσ εs2

, (3.29)

where the super index s represents the perturbation with s orbitals and the
matrix elements are defined by:

εs1 = +
V 2
spσ(2(Vssσ + nlynyVssσ)2 − (1 + n2

lyn
2
y)ε

2
s)

−4V 2
ssσεs + ε3

s

,

εs2 = −
V 2
spσ(−2(−1 + nlyny)

2V 2
ssσ + (1 + n2

lyn
2
y)ε

2
s)

−4V 2
ssσεs + ε3

s

,

V s
ppσ = Vppσ+

(−1 + nlyny)
2V 2

spσVssσ

4V 2
ssσ − ε2

s

, V s′

ppσ = Vppσ +
(Vspσ + nlynyVspσ)2Vssσ

4V 2
ssσ − ε2

s

,

V s
AB = VAB+

(−1 + n2
lyn

2
y)V

2
spσVssσ

4V 2
ssσ − ε2

s

, E = −
2(−1 + n2

lyn
2
y)V

2
spσV

2
ssσ

−4V 2
ssσεs + ε3

s

.

(3.30)
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The Hamiltonian in the reciprocal space, considering the nearest first
neighbors contributions, can be calculated with a procedure similar to the
one shown in Subsec. 3.1.3 (Eqs. (3.5) to (3.10) ), and is given by:

Hs(k) =


εs1 V s

ppσg(k) V s
ABf(k) Ef ∗(k)g(k)

V s
ppσg

∗(k) εs1 Ef(k)g∗(k) V s
ABf

∗(k)

V s
ABf

∗(k) Ef ∗(k)g(k) εs2 V s′
ppσg

∗(k)

Ef(k)g∗(k) V s
ABf(k) V s′

ppσg(k) εs2

. (3.31)

Using the matrix Eq. (3.31), we find the electronic band structure of phospho-
rene perturbed by s orbitals around the vicinity of the high symmetry points
Γ and S, which is shown in Fig. 3.4. The expressions of the eigenvalues ob-
tained with Eq. 3.31 contain a large number of terms, which makes difficult to
extract information about the hybridization between orbitals that contribute
to the shape of the bands in the mentioned symmetry points, therefore we
do not include them in this work. The values of the SK parameters used to
obtain the bands are defined in Table. 3.10.

Table 3.10: Table with the Tigh-Binding parameters used for the adjustment
with the DFT bands, for the model of |φ〉 perturbed by s orbitals. Where
Vspσ, Vssσ, εsp, Vppσ, and Vppπ represents the SK parameters used for the
calculation of the hopping integrals.

Parameter Value (eV) Values of Ref. [32] (eV)

Vspσ 2.12 2.39
Vssσ -0.5 -1.59
εsp -8.6 -8.8
Vppσ 3.04 4.03
Vppπ -1 -1.14

As we can see in Fig. 3.4a around the Γ point our bands, represented
by magenta (solid) lines, reproduce very well the shape of the conduction
and the valence bands compared with the fit model of DFT from [30] blue
(-dashed-) lines. The value of the band-gap does not change significantly
and is 2.14 eV (see Fig. 3.4a). On the other hand, around the S point (see
Fig. 3.4b), we can see that our model does not give the correct band-gap,
but reproduce very well, as before, the shape of the bands given by the DFT
model. In summary, we can observe that the perturbation with s orbitals,
does not affect significantly the shape of the bands. Again, we compared the
Slater and Koster parameters obtained including the s orbitals with the ones
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(a) (b)

Figure 3.4: Band structure of phosphorene with |φ〉 orbitals perturbed by s
orbitals. (a) Valence and conduction bands around Γ point in the X−Γ−Y
directions. (b) Valence and conduction bands around the S point in the
Γ − S − X directions. In both cases, the blue (-dashed-) lines represent the
DFT fitting taken from [30], and the magenta (solid) lines represent the
eigenvalues obtained by our tight-binding model from Eq. (3.31).

reported by Menezes et. al. (Table 1 in reference [32]), finding that they are
very close.

After having developed an analytical Tight-Binding model based on the
Slater and Koster approximation for the phosphorene structure, it could be
evidenced that: The inclusion of the |θ〉 and s orbitals in a perturbative way
does not change significantly the shape of the bands around the Γ and S
points, with respect to the model with only |φ〉 orbitals. Therefore, this last
model is sufficiently complete to describe the electronic properties of phos-
phorene around the mentioned high symmetry points shown by the DFT
calculations [30]. Finally, it is important to mention that in the model de-
scribed here, the effect of the overlap parameters is not considered. As a
future work, the effect of these parameters can be included in the model in
order to improve the fit of the bands to those obtained from DFT calcula-
tions.
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Conclusions and future work

An analytical tight-binding model for phosphorene was introduced. The
model is based in terms of the Slater and Koster parameters, and with a
rotating basis of |φ〉 orbitals that contain only py and pz atomic orbitals. It
is shown that this minimal model suffices to reproduce and explain the main
characteristics of the electronic band structure of phosphorene around the
Γ and S high symmetry points. The analytical expressions obtained for the
eigenvalues of the Hamiltonian allow us to explain the specific dependence
with the hybridizations between different orbitals from the atoms in the crys-
tal lattice. The expressions also explain the origin of the band’s asymmetry
around the Γ point, which is strongly dependent on the SK parameter VAB,
representing the hybridization of the |φ〉 orbitals between the A and B atoms.

With this model, we have also reproduced other characteristics of the
bands like the band gap of 2.19 eV which is very close to the reported ex-
perimentally of about 2 eV, and by DFT of 2.17 eV. The shape of the bands
around the two mentioned high symmetry points is also well fitted to the
DFT bands. Finally, the SK parameters obtained are very close to the ones
reported in the literature. The inclusion of other orbitals in the model, like
the |θ〉 and s orbitals, does not change significantly the shape of the bands,
therefore, the model only with |φ〉 orbitals is sufficiently complete to describe
the physics around the Γ and S points.

The Hamiltonian model presented in this thesis can be used in future
works as an input to a more complete model that includes spin-orbit coupling,
spin relaxation, the study of the proximity effects, among others. In the same
way, the analytical terms found can be helpful for the experimental study
of the electronic, transport, magneto-transport properties, Landau levels,
tunable optical properties, layered controlled anisotropic excitons, quantum
oscillations in few layers, etc; in phosphorene, since they allow to have simple
expressions that detail the trend or behavior of the material depending on

33
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the hybridizations between orbitals. Finally, a better fitting of the bands can
be accomplished by including the overlapping parameters into the model.



Appendix A

Continuum Hamiltonian
around the Γ point

We can take the Hamiltonian from the equation Eq. (3.11) and approximate
the respective spectral functions, f(k) and g(k), at low energies around the
Γ point, taking up to second order in kx and ky:

f(k) =
2∑
l=1

eik·δABl = 2eikyy cos

(
bkx

2

)
,

≈ 2

(
1 + iyky −

y2k2
y

2

)(
1− b2k2

x

8

)
≈
(

2− b2k2
x

4
+ 2ikyy − k2

yy
2

)
,

g(k) ≈
(

1− ihky −
h2k2

y

2

)
(A.1)

Replacing the approximated spectral functions from the equation Eq. (A.1)
into the Hamiltonian Eq. (3.11) we have

Hφ(k) ≈
0 Vppσ

(
1−ihky−

h2k2y
2

)
VAB

(
2− b

2k2x
4

+2ikyy−k2yy2
)

0

Vppσ

(
1+ihky−

h2k2y
2

)
0 0 VAB

(
2− b

2k2x
4
−2ikyy−k2yy2

)
VAB

(
2− b

2k2x
4
−2ikyy−k2yy2

)
0 0 Vppσ

(
1+ihky−

h2k2y
2

)
0 VAB

(
2− b

2k2x
4

+2ikyy−k2yy2
)

Vppσ

(
1−ihky−

h2k2y
2

)
0

 .

(A.2)
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The eigenvalues calculated from Eq. (A.2) around the Γ point, in the direc-
tions in Γ− X and Γ− Y are:

εΓX± = ±
(

2− b2k2
x

4

)
VAB ± Vppσ, εΓX± = ∓

(
2− b2k2

x

4

)
VAB ± Vppσ,

εΓY± = ±
√

(−2VAB + Vppσ)2 ±
VABVppσ(h+ y)2k2

y√
(−2VAB + Vppσ)2

,

εΓY± = ±
√

(2VAB + Vppσ)2 ∓
VABVppσ(h+ y)2k2

y√
(2VAB + Vppσ)2

,

(A.3)

where εΓX and εΓY represent the eigenvalues in the Γ − X and Γ − Y direc-
tions, and the (+) and (−) represent the conduction and the valence bands
respectively. The bands that open the gap are the first one and the last one
equations from Eq. (A.3). In Fig. A.1 we show the bands obtained with the
eigenvalues of Eq. (A.3), compared with the bands from Eq. (3.12), and with
the DFT bands reported in reference [30]. As we can see in this figure, the
continuum approximation preserving up to second order in kx and ky fits
very well with the analytical and DFT bands for general values of the wave
vector.
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Figure A.1: Electronic band structure of phosphorene around the Γ point
from 0 to 1 in k. Valence and conduction bands around the Γ point in the
Γ−X and Γ−Y directions. The blue (-dashed-) lines are quadratic fits of the
DFT bands taken from [30], the magenta (solid) lines are the eigenvalues from
Eq. (3.13) given by our tight-binding model with |φ〉 orbitals from Eq. (3.11),
and the yellow (dotted) lines are the eigenvalues from the first and the last
equations from Eq. (A.3) obtained from the continuum Hamiltonian from
Eq. (A.2).
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Journal of Applied Physics, 124(3):035702, 2018.

[39] C. Kittel. Introduction to Solid State Physics. Wiley, 2004.

[40] J. C. Slater and G. F. Koster. Simplified lcao method for the periodic
potential problem. Phys. Rev., 94:1498–1524, Jun 1954.

[41] W. E. Pickett. ”tight binding” method: Linear combination of atomic
orbitals (lcao). UCDavis, 11 2006.

[42] Edward McCann and Mikito Koshino. The electronic properties of bi-
layer graphene. Reports on Progress in Physics, 76(5):056503, apr 2013.

[43] Edward McCann. Electronic properties of monolayer and bilayer
graphene, pages 237–275. NanoScience and Technology. Springer Verlag,
2012.

[44] Mervyn Roy. The tight binding method. Rutgers University, 05 2015.

[45] Jaroslav Fabian. Spin-orbit coupling in graphene: from single layers to
graphite. Universität Regensburg, 03 2011.

[46] Mayra Peralta, Ernesto Medina, and Francisco Mireles. Proximity-
induced exchange and spin-orbit effects in graphene on ni and co. Phys.
Rev. B, 99:195452, May 2019.


