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Resumen

Comprender las propiedades físico-químicas de las superficies de nanodiamantes (ND) es de fundamen-
tal importancia con muchas aplicaciones potenciales como administración de fármacos, nanoelectrónica
molecular y semillas para hacer crecer películas delgadas de diamantes. El control atómico en la superficie
ND es la clave para aplicaciones exitosas, como la administración de fármacos y la catálisis química. A
continuación, presentamos un estudio de la estructura atómica y electrónica de las superficies de diamante
(111) y (110). Se han realizado simulaciones de la teoría funcional de la densidad (DFT) con el fin
de calcular la estructura atómica y electrónica de la estructura cristalina y las reconstrucciones de las
superficies. En estos cálculos de DFT, también se empleó la polarización de espín para explorar posibles
configuraciones magnéticas. Además, también proporcionamos espectros de fotoelectrones ultravioleta
(UPS), imágenes simuladas de microscopía de túnel de barrido (STM) y funciones de trabajo de las super-
ficies energéticamente más favorables. Finalmente, las superficies de los diamantes muestran interesantes
propiedades electrónicas y magnéticas al interactuar con los átomos de hidrógeno.

Palabras clave: DFT, SCAN+rVV10, VASP, C(111), C(110), PDOS, energía de superficie, STM,
UPS, función de trabajo.
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Abstract

Understanding the physical-chemical properties of nanodiamond (ND) surfaces is of fundamental
importance with many potential applications as drug delivery, molecular nanoelectronics, and seeds to
grow diamond thin films. Atomic control on the ND surface is the key to successful applications, such as
drug delivery and chemical catalysis. Here, we present a study of the atomic and electronic structure of
diamond surfaces (111) and (110). Density-functional theory (DFT) simulations have been performed in
order to compute the atomic and electronic structure of bulk and surface reconstructions. In these DFT
calculations, spin-polarization was also employed to explore possible magnetic configurations. Moreover,
we also provide ultraviolet photoelectron spectra (UPS), simulated scanning tunneling microscopy (STM)
images, and work functions of the most energetically favorable surfaces. Finally, the diamond surfaces
show interesting electronic and magnetic properties on interaction with hydrogen atoms.

Keywords: DFT, SCAN+rVV10, VASP, C(111), C(110), PDOS, surface energy, STM, UPS, work
function.
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Chapter 1

Introduction

The study of nanomaterials has become one of the fastest-growing fields of materials science and engineer-
ing. The manipulation of materials on a nanometric scale has made it possible to obtain new and better
material properties such as fluorescence, extreme anisotropy of electrical and mechanical properties, high
electron mobility, tunable band-gap, and other unique properties that have not been successfully studied at
larger scales1. Thanks to all these novel properties, the use of nanomaterials in science and technology de-
velopment has had a notable influence, from the miniaturization and improvement of existing technologies
such as high computer performance chips to enable new technologies such as nano-based drug delivery
systems2. The combination of diverse material properties with potential applications and low fabrication
costs has meant that carbon nanomaterials occupy a special place in the large family of nanomaterials.
Among the most famous carbon nanomaterials can be found graphene, nanotubes, nanodiamonds, and
fullerenes1.

Nanodiamonds (NDs) have been recognized among the most promising materials for bio-applications
due to their excellent bio-compatibility and versatility3,4. Among the most attractive characteristics of
NDs stands out their capacity to be functionalized by surface modification5,6.

The lattice structure of NDs is similar to that of bulk diamond and has more frequent cubic variant
phases (in some cases with an admixture of hexagonal phases). With respect to bulk diamonds, a slight shift
in the lattice constant and broadening of the signals is observed when examined using various spectroscopic
and crystallographic methods. Based on the size of the NDs, strain within particles and altered bonding
situations close to their surface are observed. At the surface of NDs there is a large amount of highly reactive
dangling bonds that causes the surface reconstruction giving rise to sp2 hybridization and graphitization.
However, surface reconstruction largely depends on the method of preparation, such as detonation or shock

1
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wave synthesis. Yet, the exact surface structure of NDs is not yet completely understood. For application
purposes, surface modifications and pre-treatments are highly recommended. One of these methods is
hydrogenation of the ND’s surface. Hydrogenation treatments lead to a reproducible surface with large
C-H bonds and prevent the formation of sp2 species by etching.

Diamond surface modifications can be studied from the experimental point of view, using some
microscopic and spectroscopic techniques such as scanning tunneling microscopy (STM), ultraviolet
photoelectron spectroscopy (UPS), transmission electron microscopy (TEM), and x-ray photoelectron
spectroscopy (XPS).

From the theoretical point of view, diamond surface modifications can be studied using some advanced
theories such as the density-functional theory (DFT), this theory is considered one of the most powerful
theoretical tools for studying nanomaterials at the quantum mechanical level, allowing us to replicate
experiments and providing fundamental insights7. However, to perform a DFT simulation, it is necessary
to consider two essential aspects, the computational cost required to achieve the simulation and how precise
results are needed8. In this sense, satisfying both previous aspects, the simulation of diamond surfaces
using DFT has become an ideal option for investigating the diamond surface properties.

1.1 Problem Statement

Although DFT has dramatically improved the way it performs material surface simulations over the
past thirty years, diamond surface research has not been entirely explored for the theoretical modeling
community. For this reason, we can find a large number of scientific publications that report new and
better methods of synthesizing, characterizing, and functionalizing diamond surfaces without theoretical
modeling that validates these results. It is becoming more clear—within the scientific community—
that with the help of theoretical modeling, it is possible to investigate in greater depth the type of
diamond surfaces that can be found in nature and could lead to the pinpointing of properties to improve
characterization. For these reasons, it would be ideal to carry out a DFT study with cutting edge simulation
methods to explore a wide variety of diamond surfaces that could be possible to synthetize experimentally.

1.2 General and Specific Objectives

The general objective of this work is to perform a DFT study of the atomic and electronic structure of the
diamond surface reconstructions with hydrogenation and carbon vacancy defects using a state-of-the-art
DFT functional. For this, it is necessary to satisfy the following specific objectives:
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• Explain the theoretical background needed to understand how DFT performs material simulations,
specifically with the state-of-the-art strongly constrained and appropriately normed semilocal density
functional (SCAN) with Van der Waals corrections (rVV10).

• Study the atomic and electronic structure of the bulk system of diamond.

• Design the ideal methodology for the study of pristine, hydrogenated, and carbon vacancy diamond
surfaces.

• Study the atomic and electronic structure of pristine diamond surfaces (111) and (110) as well as
fully hydrogenated including hydrogen and carbon vacancies.

• Investigate possible magnetic solutions and the e�ect of H or C vacancies on these properties.

• Perform STM simulation images of the most energetically favourable surfaces.

• Perform UPS simulation spectra of the most energetically favourable surfaces.

• Raise some conclusions and remarks about all the work done in the light of experimental evidence.





Chapter 2

Theoretical Background

2.1 Density Functional Theory

2.1.1 Many-body Schrödinger equation

This chapter begins with the basic concepts of quantum mechanics and the theory of materials. It aims
to study the non-relativistic interactions on atomic systems, electrons, and nuclei, in the quantum regime.
For this, we have to consider the many-body Schrödinger equation, which is a handy equation to describe
the motion of a quantum mechanical particle system8

h
T̂ + V̂

i
 = Etot (2.1)

where T̂ (V̂) is the kinetic (potential) energy operator, Etot is the total energy, and is the wavefunction for
the many-body system. For a system of many atoms, N electrons’ positions will be labeled as r1, r2, ..., rN

and M nuclei positions will be labeled as R1, R2, ..., RM. With this notation, we can express the kinetic
energy operator as8,9:

T̂ = �
NX

i=1

~2

2me

ri
2 �

MX

I=1

~2

2MI

rI
2 , (2.2)

where ~ is the reduced Planck constant, me is the electron mass, MI represents the nuclei masses and r2 is
the Laplacian that acts with respect to each nucleus I and electron i position; in rectangular coordinates, it
will be:

5
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ri
2 =

@2

@x
2
i

+
@2

@y
2
i

+
@2

@z
2
i

. (2.3)

Regarding the potential energy operator, we should consider the Coulomb interactions between elec-
trons (ee), nuclei (nn), and electron-nuclei (en)8,9. First, for the electron-electron interaction, we have a
Coulomb repulsion because both charges are negative:

Vee =
1
2

X

i, j

e
2

4⇡✏0

1���ri � r j

���
, (2.4)

where ✏0 is the permeability of free space, e is the electron charge and
���ri � r j

��� is the distance between
electron pairs. It is essential to mention that i should not be equal to j because there does not exist Coulomb
repulsion between one electron and itself. Also, the sum is divided by two because we are considering just
one contribution per electron pair.

Next, for the nuclei-nuclei interaction, also we have a Coulomb repulsion because both charges are
positive:

Vnn =
1
2

X

I,J

e
2

4⇡✏0

ZIZJ

|RI � RJ |
, (2.5)

where ZI and ZJ are the atomic numbers of the nuclei I and J. The form of this equation is entirely similar
to the previous one but with nuclei instead of electrons.

Then, for the electron-nuclei interaction, we have a Coulomb attraction because both charges are
opposite:

Ven = �
X

i,I

e
2

4⇡✏0

ZI

|ri � RI |
, (2.6)

where |ri � RI | is the electron-nuclei distance, and the minus sign is due to the electrons’ contribution.
Finally, using equation 2.1, we can obtain the full many-body Schrödinger equation8–10:

2
66666664�

NX

i=1

~2

2me

ri
2 �

MX

I=1

~2

2MI

rI
2 +

1
2

X

i, j

e
2

4⇡✏0

1���ri � r j

���
+

1
2

X

I,J

e
2

4⇡✏0

ZIZJ

|RI � RJ |
�
X

i,I

e
2

4⇡✏0

ZI

|ri � RI |

3
77777775 = Etot .

(2.7)
To discuss the many-body Schrödinger equation with all its electrons and nuclei, we should include a

wavefunction containing each electron and nuclei position information, so this wavefunction is called the
many-body wavefunction. Then, the wavefunction for N electrons and M nuclei will be:
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 =  (r1, r2, . . . , rN ; R1,R2, . . . ,RM) . (2.8)

where the probability of finding N electrons concurrently at positions r1, r2, . . . , rN respectively is given
by | |2. The electron number density, the probabilty of finding any electron at position r, is given by8:

n(r) = N

Z
| |2 dr2 ... drNdR1 ... dRM . (2.9)

Here we have normalized the wavefunction  to unity, so we have:
Z
| |2 dr1 ... drNdR1 ... dRM = 1 . (2.10)

Then, integrating the electron number density, we will obtain the number of electrons that the system
has:

Z
n(r)dr = N . (2.11)

Now, we know all the elements that correspond to the many-body Schrödinger equation. Additionally,
it is essential to mention that equation 2.7 has no analytical solution for a system of more than two particles
and for real systems the numerical solution is very expensive computationally8. Thus, some approaches
have been proposed to tackle the complexity barrier, such as DFT.

2.1.2 Atomic units

In order to simplify the full many-body Schrödinger equation, we need to consider the fundamental physical
constants involved in this equation. These constants were experimentally determined and do not depend
on any particular material:

~ = 1.05457163 · 10�34J · s ,
me = 9.10938291 · 10�31kg ,

mp = 1.67262164 · 10�27kg ,

e = 1.60217649 · 10�19C ,

✏0 = 8.85418782 · 10�12F/m .

(2.12)

Considering the Bohr radius a0 = 0.529 Å, which is the most probable distance between the electron
and proton of the hydrogen atom in its fundamental state (i.e., the peak position in the electron number
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density), we can have a sense of the order of magnitudes involved in the energy calculations of equation
2.78. In this sense, we can calculate the average Coulomb energy for an electron-proton pair (eq. 2.13)
and notice that the inter-atomic interactions will give the related potential energies in Hartree units (Ha)

EHa =
e

2

4⇡a0✏0
. (2.13)

Now, for the kinetic energies, we can consider a semi-classical argument. In the Bohr model of the
Hydrogen atom, the ground-state angular momentum is given by:

a0 v me = ~ , (2.14)

where v is the electron velocity.
Additionally, the balance between the centrifugal force and nuclear attraction is:

me

v
2

a0
=

e
2

4⇡✏0a
2
0
. (2.15)

By combining the equations 2.14 and 2.15, we obtain the relation:

e
2

4⇡a0✏0
=
~2

a
2
0me

. (2.16)

And, by combining the equations 2.13 and 2.15, we obtain the second relation:

1
2

mev
2 =

1
2

EHa . (2.17)

The two previous relationships say that kinetic energy also has the order of EHa. Acknowledging
that potential and kinetic energies have the order of EHa, we can divide equation 2.7 by EHa to obtain a
considerable notation simplification

2
66666664�

NX

i=1

1
2

a
2
0ri

2 �
MX

I=1

1
2(MI/me)

a
2
0rI

2 +
1
2

X

i, j

a0���ri � r j

���
+

1
2

X

I,J

ZIZJ

a0

|RI � RJ |
�
X

i,I

ZI

a0

|ri � RI |

3
77777775 =

Etot

EHa
 .

(2.18)
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This equation is one of the most simplified forms that we have obtained. However, using the following
units, we can simplify the equation a little more:

1 Ha = 27.2114 eV = 4.3597 · 10�18J ,

1 bohr = 0.529177 Å = 0.529177 · 10�10m ,

1 a.u. of mass = 9.10938291 · 10�31kg .

(2.19)

Using these units and seting the electronic charge, e = 1, we are forming the so-called Hartree atomic
units system, which simplifies equation 2.18 in the simple form8:

2
66666664�

NX

i=1

1
2
ri

2 �
MX

I=1

1
2MI

rI
2 +

1
2

X

i, j

1���ri � r j

���
+

1
2

X

I,J

ZIZJ

|RI � RJ |
�
X

i,I

ZI

|ri � RI |

3
77777775 = Etot . (2.20)

This many-body Schrödinger equation shows that there are just two needed parameters to complete the
equation depending on the material to be analyzed: the atomic numbers (ZI) and the atomic masses (MI).

2.1.3 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation, also known as the adiabatic approximation, is an approximation
that states the total electron-nuclear wavefunction (eq.2.8) may be separated into a part depending explicitly
on only the electron coordinates, and the nuclear coordinates parametrically, and a part depending only
on the nuclear coordinates. We will consider the wavefunction  e for electron coordinates and �n for the
nuclear coordinates9,11:

 (r1, r2, . . . , rN ; R1,R2, . . . ,RM) =  e(r1, r2, . . . , rN)�n(R1,R2, . . . ,RM) . (2.21)

Nuclei masses are more than three orders of magnitude bigger than the electron’s mass. Consequently,
electrons follow the motion of the nuclei almost instantaneously so that the electronic states are consistently
in their ground state on the time scale of nuclear motion9. In this sense, the nuclei kinetic energy
contribution can be neglected setting MI = 18.

Considering that Coulomb repulsion between nuclei is a constant, for convenience, we can define the
following energy to simplify the equation 2.20

E = Etot �
1
2

X

I,J

ZIZJ

|RI � RJ |
. (2.22)



10 �.�. DENSITY FUNCTIONAL THEORY

By fixing constant the nuclei positions of the Coulomb potential of the electron-nuclei interaction, we
can redefine the potential just with an electronic spatial dependence

Vn(r) = �
X

I

ZI

|r � RI |
. (2.23)

Substituting equations 2.21, 2.22 and 2.23 into equation 2.20, we can obtain the electronic structure
fundamental equation

2
66666664�

NX

i=1

1
2
ri

2 +
X

i

Vn(ri) +
1
2

X

i, j

1���ri � r j

���

3
77777775 e = E e . (2.24)

Thanks to the Born-Oppenheimer approximation, we have decoupled the electronic structure funda-
mental equation from the complete many-body Schödinguer equation. This equation has just a dependence
on the positions of the electrons being convenient to perform electronic structures analysis8.

2.1.4 The independent electrons approximation

In order to study behavior of the electronic structure, from equation 2.24, we can define the many-electron
Hamiltonian, which involves the Coulomb interaction between electrons

Ĥ(r1, . . . , rN) = �
NX

i=1

1
2
ri

2 +
X

i

Vn(ri) +
1
2

X

i, j

1���ri � r j

���
. (2.25)

Similarly, we can also define the single-electron Hamiltonian, which only has the single electron-nuclei
Coulomb interaction

Ĥ0(r) = �1
2
r2 + Vn(r) . (2.26)

By combining equation 2.26 into equation 2.25, we obtain the many-electron Hamiltonian in the
following form:

Ĥ(r1, . . . , rN) =
NX

i=1

Ĥ0(ri) +
1
2

X

i, j

1���ri � r j

���
. (2.27)

Recognizing that the Coulomb interaction between electrons carries significant complications to solve
equation 2.24, we may switch o� this interaction and use equation 2.27 to obtain8:
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NX

i=1

Ĥ0(ri) = E , (2.28)

where the probability of finding an electron i at ri is independent of each other, |�i(ri)|2. Then, the
wavefunction  can be rewrited as the product of the independent electron wavefunctions8:

 (r1, r2, . . . , rN) = �1(r1) · · · �N(rN) . (2.29)

Thus, using these wavefunctions, equation 2.28 becomes:

2
6666664

NX

i=1

Ĥ0(ri)

3
7777775 �1(r1) · · · �N(rN) = E�1(r1) · · · �N(rN) , (2.30)

where the total energy E, is the sum of all the eigenvalues ("1+ · · ·+"N) of each independent wavefunction
�i.

This result means that when we fill the lowest energy eigenstates with one electron in each state, starting
from the lowest eigenvalue, we will obtain the system’s lowest energy configuration. At this point, it is
essential to mention that this approximation has two several problems8. The first one is that equation 2.29
does not satisfy the Pauli exclusion principle. While, the second one is that the eliminated Coulomb term
has the same order of magnitude as the rest of the terms, so it cannot be ignored. Both problems will be
solved in the next section.

2.1.5 Hartree-Fock theory

The previous section found some complications concerning the Pauli exclusion principle and the electron
Coulomb repulsion term. The Pauli exclusion principle states that two electrons with opposite spin can
occupy the same energy state and the resulting antisymmetric wave function10. Then, to solve this problem,
we should consider that we have to change the sign of the many-body wave function when exchanging
the electron positions and finally introduce a Slater determinant that satisfies the antisymmetry property,
replacing the equation 2.29 by:

 HF =
1p
N!

��������������

�1(r1) �1(r2) · · · �1(rN)
�2(r1) �2(r2) · · · �2(rN)
...

...
. . .

...

�N(r1) �N(r2) · · · �N(rN)

��������������

, (2.31)
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where N is the number of electrons in the system and HF denotes to Hartree-Fock. For the next calculations,
we will consider that perhaps the interaction of the electrons is not too strong to take into account the spin
terms. Also, it is important to remember that the wavefunction should be correctly normalized using

Z
| HF |2dr1 · · · drN = 1 . (2.32)

Regarding the electron number density is considered as one of the three main HF equations; it is
calculated by adding up the probabilities of finding electrons in each occupied state i

8:

n(r) =
X

i

|�i(r)|2 . (2.33)

Once we solved the Pauli exclusion principle problem, we now need to add a term that replaces the
electron Coulomb repulsion term in Ĥ0, maintaining the single-particle approximation saw in the previous
chapter. For this, we should consider the distribution of the electronic charge n(r) from the classical
electrodynamics point of view. This electronic charge will generate an electrostatic potential that is
described by Poisson’s equation, which in Hartree units is given by8:

r2
VH(r) = 4⇡n(r) , (2.34)

where VH(r) = �'(r) is the Hartree potential that have the electrons immersed in the electrostatic potential
'(r), generated by n(r). The formal solution for the Hartree potential is:

VH(r) =
Z

dr0 n(r0)
|r � r0| =

X

j

Z
dr0
|� j(r0)|2
|r � r0| , (2.35)

where dr0 is an element of volume that describes the charge dQ = �n(r0)dr0 that generates a Coulomb
potential dQ/|r � r0| at position r.

This is the mean-field approximation. It is essential to mention that Poisson’s equation in Hartree
units is also considered one of the three main HF equations that significantly simplifies the many-body
Schrödinger equation. Using both previous corrections, we can write the single-particle Schrödinger
equation with the Hartree potential

"
�1

2
r2 + Vn(r) + VH(r)

#
�i(r) = "i�i(r) . (2.36)

In order to find the single-particle wavefunctions �i, we need to use the variational principle considering
that  HF is a solution for the electronic ground-state energy8,9. To simplify the notation, from now on, we
will use the Dirac notation:
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EHF[�i] =
D
 HF

���Ĥ
��� HF

E
=

Z
dr1 · · · drN 

⇤
HF

Ĥ HF , (2.37)

where the Ĥ comes from the fundamental equation of the electronic structure theory (eq. 2.24) and E is
the ground-state energy. It is important to note that �i wavefunctions should be orthonormal, which means
that they should be orthogonal and normalized; this will simplify enormously the calculations considering
its requirement:

D
�i|� j

E
= �i j . (2.38)

Before minimizing the ground-state energy, we can notice that EHF[�i] has a dependence on �i. It
means that EHF[�i] is a functional of �i. Considering this, we can use the Lagrange multipliers method,
which introduces the functional EHF[�i] with the incorporated constraints8,9

L[�i, j, "i j] = EHF[�i] �
NX

i=1

"i j[h�i|� ji � �i j] = 0 , (2.39)

where "i act as Lagrange multipliers ensuring the normalization of the eigenfunctions.
In the Lagrange multipliers method, we can pass from the constrained minimization problem of

�E/��i = 0 to the unconstrained minimization problem given by8:

�L

��i

= 0, i = 1, · · · ,N , (2.40)

and
�L

�"i j

= 0, i, j = 1, · · · ,N . (2.41)

Note that di�erentiating equation 2.39 with respect to the Lagrange multipliers, we obtain the same
equation as 2.38. Concerning to equation 2.40, we evaluate the derivatives with respect to �⇤

i
, obtaining:

�L

��i⇤
= Ĥ0(r)�i(r) +

X

j

Z
dr0
|� j(r0)|2
|r � r0| �i(r) �

X

j

Z
dr0

�⇤
j
(r0)� j(r)

|r � r0| �i(r0) � "ii�i(r) = 0 , (2.42)

where i , j and j runs over the occupied single particle states. Here, we find two fundamental expressions
known as the Hartree potential (eq. 2.35) and Fock exchange potential8:

VX(r, r0) = �
X

j

�⇤
j
(r0)� j(r)

|r � r0| . (2.43)
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Generalizing all the results that we have obtained in this section, we can write the single-particle
Schrödinger equation as:

"
�1

2
r2 + Vn(r) + VH(r)

#
�i(r) �

Z
dr0VX(r, r0)�i(r0) = "i�i(r) . (2.44)

Finally, the three main equations given by the Hartree-Fock theory are: 2.33, 2.34 and 2.44. With
these three main equations, we may create a self-consistent system in the following way9:

1. Propose an initial guess of �i.

2. Use �i to calculate n(r), VH and VX .

3. Get a solution of the single-particle Schrödinger equation.

4. Use the new set of orbitals to calculate again n(r).

5. Iterate the procedure until we obtain convergence.

But, even with this system, the problem arises when Fock’s exchange potential incorporates the
integration of a new variable r0, complicating the calculations and preventing it from being a practical
solution8.

2.1.6 Hohenberg-Kohn theorem

In order to reduce the complexity of the computational calculations, Hohenberg and Kohn developed a
theory that calculates the ground-state energy, E0, using the electron density instead of wavefunctions.
This theory is based on the idea that E0 is a functional that only depends on the electron density (E = F[n]),
while excited energy states (greater states than E0) necessarily depend on the many-body wavefunction (E =
F[ ]). This statement is based on two essential theorems: Uniqueness and the Variational Principle12,13.

1. Uniqueness theorem states that the ground-state electron number density is uniquely determined by
the external potential of the nuclei Vn

12. To prove this theorem, we need to introduce the following
notation to make it more straightforward to manipulate the equations:

T̂ = �1
2

X

i

r2
i
, Ŵ = �1

2

X

i, j

1
|ri � r j|

. (2.45)

Using this notation to write the energy corresponding to equation 2.24, we obtain:
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E = F[n] = h |T̂ + Ŵ | i +
Z

dr n(r)Vn(r) , (2.46)

In this equation, we can assume that  is the ground-state wavefunction of the potential Vn, which
generates the density n(r) and the ground-state energy E. In the same way, we can suppose another
potential V

0
n

di�erent than Vn, which generates the same density n(r) but with another wavefunction
 0, and ground-state energy E

0. Using the potential V
0
n
, with a wavefunction that does not correspond

to its ground-state, we can obtain the following equation:

E
0 < h |T̂ + Ŵ | i +

Z
dr n(r)Vn(r)0 . (2.47)

Solving the equation 2.46 with respect to the bra-kets term and replacing it in equation 2.47, we
would obtain:

E
0 � E >

Z
dr n(r)

⇥
Vn(r)0 � Vn(r)

⇤
. (2.48)

Repeating the same procedure for Vn instead of V
0
n
,  0 instead of  and E instead of E

0, we would
find:

E � E
0 >
Z

dr n(r)
⇥
Vn(r) � Vn(r)0

⇤
. (2.49)

By subtracting equation 2 from equation 3, we obtain a contradiction, 0 > 0. This means that the
supposition of the potential V

0
n

di�erent than Vn, which generates the same density n(r), is not valid.
Thus, demonstrating that the ground-state electron number density n(r) is uniquely determined by
the external potential of the nuclei Vn

12,13.

2. Variational Principle theorem states that the ground-state energy E0 can be found by using the
functional of energy E = F[n], with the electron number density n(r) that minimizes it12. It is an
alternative to the Schrödinger equation expressed only in terms of n(r). Taking into account that
E = F[n], the mathematical expression for this statement will be:

�F[n]
�n

�����
n0

= 0 . (2.50)
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2.1.7 Kohn-Sham theory

The presentation of the two essential Hohenberg-Kohn theorems gives a proper perspective on calculating
the ground-state energy using the total energy as a functional of the electron number density. However,
these theorems did not provide any idea on how to construct that functional. In this sense, Kohn and Sham
proposed some equations that builds the functional, reducing the many-body problem to a single-particle
system with an additional exchange and correlation term. This new system is a fictitious system of non-
interacting electrons whose ground-state electron number density is exactly the same as the fully-interacting
electron number density8.

In order to develop the Kohn-Sham equations that describe how to construct the functional, we will
start by splitting equation 2.46 into the kinetic and Coulomb energy of independent electron, as in equation
2.36, and adding up the additional exchange and correlation term:

E = F[n] =
Z

dr n(r)Vn(r) �
X

i

Z
dr �⇤

i
(r)
r2

2
�i(r) +

1
2

Z Z
dr dr0 n(r)n(r0)

|r � r0| + Exc[n] . (2.51)

The first three terms of this equation represent the known contributions taken from the independent
electrons approximation and corresponding to external potential energy, kinetic energy, and Hartree energy.
However, the last term corresponds to the unknown many-body contributions, better known as exchange
and correlation energy8,9. It is important to mention that if we knew precisely the exchange and correlation
energy value, we could calculate the ground-state energy’s exact value using the electron number density.
The electron number density for this system can be calculated using equation 2.33 with the Kohn-Sham
wavefunctions. Recognizing that the total energy, E, reaches its minimum value using the ground-state
electron number density, we can use the variational principle theorem of Hohenberg and Kohn to obtain
the following condition for the orbitals:

�F

��⇤
i

=
�F

�n

�n

��⇤
i

= 0 . (2.52)

This condition establishes a problem similar to the minimization problem solved in the Hartree-Fock
theory, where it was convenient that the wavefunctions satisfy the orthonormality conditions, h�i|� ji = �i j.
Similarly, as in the Hartree-Fock theory, we can use the Lagrange multipliers method to solve the constrained
optimization problem of equation 2.52, using as functional E = F[n], and Lagrange multipliers "ii

8,9. After
a straightforward mathematical manipulation, we will get:
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"
�r

2

2
+ Vn(r) +

Z
dr0 n(r0)
|r � r0| +

�Exc

�n

#
�i(r) =

X

j

"i j�i(r) , (2.53)

where the four terms of the right side, from left to right, are already known as kinetic energy, external
nuclear potential, Hartree potential, and exchange-correlation potential. The exchange and correlation
potential is given by:

Vxc(r) =
�Exc[n]
�n

�����
n(r)
. (2.54)

where Exc[n] is known as the exchange-correlation functional. Rewriting equation 2.53 in a more compact
form, considering that the Lagrange multipliers can be diagonalized since the Hamiltonian is hermitian,
then, one of the most characteristic Kohn-Sham equation is8,9:

"
�r

2

2
+ Vn(r) + +VH(r) + +Vxc(r)

#
�i(r) = "i�i(r) . (2.55)

In summary, the Kohn-Sham theory describes a fictitious system of only electrons that interact through
the external potential. In this way, all many-body interaction e�ects are contained in the equations from the
theorem. Instead, the unknown many-body contributions are represented in the exchange and correlation
energy Exc, and potential Vxc. Finally, we could mention that the importance of constructing a useful
approximation for the Exc will determine how accurate the DFT results would be. Currently, the exact
form of the functional, Exc, is unknown for general systems. For this reason, the approximations are very
usefull due to their utility8.

2.1.8 Spin in density-functional theory

DFT calculations for magnetic materials, it is common to neglect the electron current density, which can be
treated separately when one is interested in diamagnetic e�ects or electric polarization. Considering only
the electron density n(r) and the spin density s(r), by neglecting the current and the minor components
of the Dirac spinors, we refer to the ‘spin-density functional theory’ (spin-DFT). The extension of the
Hohenberg–Kohn theorem to spin-DFT can be summarized as the total energy as a functional of the
electron density and spin density8,14,

E = G[n(r), s(r)] . (2.56)

The quantities n(r) and s(r) are commonly written in terms a the compact object called the density
matrix, defined as follows:
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n↵�(r) =
X

i

�⇤
i
(r;↵)�i(r; �) . (2.57)

where ↵ and � takes the values 1 or 2 in order to identify the spinor components.
According to Barth and Hedin (1972)14, considering the simplest situation where there is no external

magnetic field, we have exactly N electrons and the spinors are orthonormal, then the Kohn–Sham equation
(eq. 2.55) in spin-DFT can be written as:

"
�r

2

2
+ Vn(r) + VH(r)

#
�i(r,↵) +

X

�

#xc

↵�(r)�i(r; �) = "i�i(r;↵) , (2.58)

where #xc

↵�(r) is the exchange and correlation potential, in this case is a matrix of functions defined in the
following way:

#xc

↵�(r) =
�Exc

�n↵�

������
n↵�(r)

. (2.59)

In order to make more understandable this quantity, it is helpful to proceed as follows. We define:

Vxc =
#xc

11 + #
xc

22
2

, B
xc

x
=
#xc

12 + #
xc

21
2µB

, B
xc

y
= i

#xc

12 � #xc

21
2µB

, B
xc

z
=
#xc

11 � #xc

22
2µB

(2.60)

so that the exchange and correlation matrix can be written as15

#xc

↵�(r) = Vxc(r)1 + µB� · Bxc(r) (2.61)

where � represents the Pauli matrices, µB = 1/2 in Hartree units and Bxc(r) is an e�ective magnetic field
generated by the many electrons, also called exchange-correlation magnetic field; this extra field tends to
align the spin of the electrons of the system that could lead to a magnetic order8.

2.1.9 Self-consistent calculations

The fundamental idea behind standard DFT is to use self-consistency procedures to determine, as accurate
as possible, the ground-state electron number density n0(r), and energy E0[n]. In this sense, we can use the
well known Kohn-Sham equations (2.23, 2.33, 2.34, 2.54 and 2.55) to construct a self-consistent algorithm
that will calculate the optimal n0(r) and E0[n]8:

1. Calculate the nuclear potential (Vn), equation 2.23, using the nuclear coordinates of the system.
Usually, the system itself provides crystallographic information such as nuclear coordinates.
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2. Propose an initial guess for the electron number density, n(r). A helpful approximation to construct
the initial guess can be by adding up the electron density of the isolated atoms arranged in the
system’s atomic positions.

3. Use n(r) to calculate an estimate of the Hartree, and exchange and correlation potentials (VH and
Vxc), equations 2.34 and 2.54. Notice that once obtained these potentials, the equation 2.55 is already
complete with all its potentials terms.

4. Proceed to solve the Kohn-Sham equation 2.55 to find the new wavefunctions, �i.

5. Use �i through equation 2.33 to construct a better estimate of n(r) and equation 2.55.

6. Finally, compare the newly calculated electron number density with that used to generate the
potentials. If they are within a certain threshold of each other, the system is converged. Otherwise,
mix the new density and the old density to obtain a new guess for the electronic density and begin
the procedure once again.

2.2 Exchange-correlational functionals

To fully address the theory of electronic structure, DFT has been developing a series of methods to model
real problems with exact or approximate solutions. In this way, we can find the Kohn-Sham theory, which,
although it introduces orbitals that increase the computational cost in DFT by some orders of magnitude, is
considered one of the most accurate and applied theories in many areas of physics and chemistry7. In this
theory, the only unknown term is the exchange-correlation functional, Exc[n], which is often represented
by the sum of the exchange and correlation terms. In the e�orts to find an accurate functional that satisfies
most material systems’ modeling, hundreds of non-empirical and semi-empirical density functionals have
been developed7. Within all this large number of functionals, there is a possible hierarchy developed by
John Perdew and represented as a Jacob’s ladder (see Figure 2.1)16,17. This ladder is based on the Hartree
theory, where the exchange-correlation energy is zero, and the electron-electron interaction is provided
by classical electrostatics7. In the following subsections, we will describe the first three rungs of Jacob’s
ladder, paying special attention to the third rung. This rung contains the SCAN functional, which is the
functional used in this work.
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Figure 2.1: Jacob’s ladder of density-functional theory approximations to the exchange-correlation energy.
The ladder has five rungs distributed according to the precision and the number of ingredients used by the
functional. The ladder starts from the Hartree theory (earth) and ends in chemical accuracy (heaven). In
this way, moving up the ladder introduces additional ingredients into the functional form, increasing the
results’ accuracy. This Figure was adapted from the work of Mandirossian and Head-Gordon7.

2.2.1 The local spin-density approximation

The first rung of Jacob’s ladder has the simplest approximation for the exchange-correlation energy. This
approximation is known as the local spin-density approximation (LSDA)16–18,

E
LSDA
xc

⇥
n", n#

⇤
=

Z
d

3
r n(r) e

unif
xc (n", n#) , (2.62)

where e
unif
xc (n", n#) is the exchange-correlation energy per electron for the uniform gas, which uses only

local spin densities n" and n#. For this reason, the functionals that use this approximation are exact for
uniform electron gas calculations but are highly inaccurate for molecular properties, considering most real
systems have inhomogeneous densities distributions7,17. In other words, we can say that LSDA is a descent
approximation for solids but less useful for atoms and molecules.
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2.2.2 The generalized gradient approximation

The second rung of Jacob’s ladder contains an improved version of LSDA, the so-called generalized
gradient approximation (GGA)16–18,

E
GGA
xc
⇥
n", n#

⇤
=

Z
d

3
r n(r) e

unif
xc (n) Fxc(n", n#,rn",rn#) , (2.63)

where Fxc is the enhancement factor. This approximation arises from the second-order gradient
expansion (GEA) problem, where it violates the key properties of the exchange-correlation hole16. To
satisfy the exchange-correlation hole’s key properties and solve the inhomogeneous density distribution
problem presented in LSDA, the GGA introduces the ingredients of the normalized gradient of the density
rn" and rn# 16,19. The GGA overestimates lattice constants but surface energies are better than LSDA
for exchange alone and correlation alone but worse for their sum, and improved atomization energies with
errors of about 10 kcal/mol on average17. In general, many GGA xc functionals (e.g., LYP, PW91, PBE,
and PBEsol) are designed to improve particular kinds of calculations at the expense of others; that is, the
GGA can be accurate for structure calculations as lattice constants or energy calculations, but not both.

2.2.3 The meta-GGA

Increasing the computational accuracy by using an extra natural set of semilocal ingredients, the next rung
in Jacob’s ladder is the meta-GGA16,17,20,

E
MGGA
xc

⇥
n", n#

⇤
=

Z
d

3
r n(r) e

unif
xc (n) Fxc(n", n#,rn",rn#,r2

n",r2
n#, ⌧", ⌧#) . (2.64)

Which additionally contains the Laplacian of the density, r2
n, and the Kohn-Sham orbital kinetic

energy densities ⌧� that appear in the Taylor expansion of the exchange hole density about |r0 � r| = 0,

⌧�(r) =
1
2

occ.X

i

|r�i�(r)|2 , (2.65)

where � =", # and n� =
P

i |r�i�|2. Althugh ⌧� is a nonlocal functional of the density, it is accessible in
every calculation20. There are two formal deductions for the incorporation of ⌧. The first deduction arises
naturally in the Taylor expansion of the exact spherically averaged exchange hole near the reference point21.
In contrast, the second comes from the idea that ⌧ presents a simple and straightforward way to make a
correlation functional exactly one-electron self-interaction free22. Thanks to the kinetic energy densities,
meta-GGA has the flexibility to satisfy more exact constraints and break the idea that the functionals
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are accurate just for structures or energies. The Meta-GGA is considered a semilocal functional that is
expected to work best when the exact exchange-correlation hole is well localized around its electron. It is
slowly varying for compact electron densities16. Ussing the following dimensionless variable:

↵ =
(⌧ � ⌧w)
⌧unif , (2.66)

where ⌧unif is the kinetic energy density of the uniform electron gas and ⌧w = |rn|2 /8n is the von Weizsäcker
kinetic energy density that is exact for single-orbital systems, meta-GGA can identify di�erent chemical
bonds. The metallic bonds with ↵ ⇡ 1, slowly varying densities. The covalent single bonds with ↵ = 0,
the single-orbital systems. And the noncovalent bonds with ↵ � 1 between two closed shells17,23.

Strongly constrained and appropriately normed semilocal density functional (SCAN)

In the 2015 year, Jianwei Sun, Adrienn Ruzsinszky, and John P. Perdew developed a new nonempirical
functional called strongly constrained and appropriately normed semilocal density functional (SCAN)23,24.
This meta-GGA functional can successfully predict accurate geometries and energies of diversely bonded
molecules and materials, including covalent, metallic, ionic, hydrogen, and van der Waals bonds. Moreover,
SCAN often has the capacity to match or improve the accuracy of a computationally expensive hybrid
functional at a much lower cost such as a GGA24. SCAN is the first semilocal functional that is completely
constrained, obeying the exact 17 known constraints that a semilocal functional can fulfill, including the
tight lower bound, rare-gas atoms, and nonbonded interaction17,23,24. The satisfaction of many universal
constraints makes SCAN more predictive than GGAs or meta-GGAs that satisfy fewer exact constraints.
Using the dimensionless variable ↵, previously defined, SCAN provides a di�erent and appropriate
GGA description in each of the three limits or bonding situations, making significant and systematic
improvements at comparable e�ciency over its predecessors, the GGAs17.

2.3 Modelling Extended Systems

2.3.1 Periodic systems

The study of large atomic systems, such as whole crystals, can be a tedious and computationally expensive
work as the number of atoms increases. For this reason, periodically repeated systems can be studied using
a Bravais lattice. The Bravais lattice is an infinite array of discrete points constructed from the unit cell’s
translation described by the vector R25–27,
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R = n1a1 + n2a2 + n3a3 , (2.67)

where a1,2,3 are the linearly independent primitive vectors and n1,2,3 are integer numbers that give the total
number of unit cells spanned by R in all the three directions in real space. The vector R can specify each
atom location in the crystal lattice. If we get the Fourier transform of the Bravais lattice, we will get the
so-called reciprocal lattice, described by the vector G, in the same way as R describes the Bravais lattice.

G = m1b1 + m2b2 + m3b3 , (2.68)

where m1,2,3 gives the total number of unit cells spanned by G in the three directions in reciprocal space,
and b1,2,3 are lattice vectors defined by:

b1 = 2⇡
a2 ⇥ a3

a1 · a2 ⇥ a3
, b2 = 2⇡

a3 ⇥ a1

a1 · a2 ⇥ a3
, b1 = 2⇡

a1 ⇥ a2

a1 · a2 ⇥ a3
. (2.69)

We can describe electrons in crystal lattices using plane waves based on the idea that the system’s
potential contains the periodicity of the lattice. In other words, the potential has the following invariance
property under any translation R25,26:

U(r + R) = U(r) , (2.70)

where r is a given position of interest, and R represents all the possible Bravais vectors.
This potential suggests the study of a fundamental theorem for crystallographic systems called the

Bloch’s theorem. The Bloch’s theorem states that the eigenfunctions of the Schrödinger equation in a
periodic potential, U(r), are composed of two fundamental functions: a plane wave e

ik·r and a function
unk(r) with the crystal lattice periodicity R25–27. Therefore, the eigenfunctions can be written in the
following form:

�nk(r) = e
ik·r

unk(r) , (2.71)

where n and k are the quantum numbers (band index n and crystal momentum k).
It is important to mention that for each value of k, there is an associated wave function �nk and energy

"nk that can be used to obtain the system’s density of states. If we use Bloch’s theorem in the Kohn-Sham
equation (2.55) for a single electron system, we will get10

"
�1

2
(r + ik)2 + Vn(r) + +VH(r) + +Vxc(r)

#
unk(r) = "nkunk(r) , (2.72)
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where the electron number density can be written as:

n(r) =
X

n

Z

BZ

dk
⌦BZ

fnk |unk(r)|2 , (2.73)

where ⌦BZ is the volume of the first Brillouin zone, and fnk is equal to 1 for occupied states and 0 for
unoccupied states.

All the previous equations suggest that a system that can be represented by some periodic arrangement
can be successfully studied by a cell that represents the whole system. In this sense, the repetition of the
cell in all directions will build and describe the entire system. Adding to this, the aid of characteristic
parameters such as plane wave functions, quantum numbers, and translation vectors as R and G that
fully describes the periodicity of the system along all the space. In our case, we will use these concepts
about periodicity to simulate infinite carbon surfaces represented by supercells with tick enough slabs and
appropriate vacuum thickness.

2.3.2 Plane-wave expansion

A possible solution of the Kohn-Sham equations consists of representing the wavefunctions using a
Fourier series in combination with periodic boundary conditions, as we have seen previously. The Fourier
expansion of the electron’s wavefunction proceeds using the reciprocal lattice vector G with its primitive
vectors b1,2,3. Since the function unk(r) (in equation 2.71) satisfies periodic boundary conditions, unk(r)
can be expanded as a linear combination of plane waves8,28,

unk(r) =
X

G
c

G
nk e

iG·r , (2.74)

where the sum runs over the G vectors.
Using the plane-wave expansion to rewrite the Kohn-Sham wavefunctions with Bloch’s theorem

(equation 2.71), we will obtain:

�nk(r) =
X

G
c

G
nk e

i(G+k)·r . (2.75)

Commonly, in packages that use plane waves basis set calculations (such as VASP), there is one
parameter called the plane wave kinetic energy cuto� that specifies such waves. This parameter is defined
as the quantum mechanical kinetic energy associated with the plane waves8,28,29,
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Ecut =
1
2

G2
max
=

*
e

iGmax·r
������

1
2
r2
����� e

iGmax·r
+
, (2.76)

where Gmax is the largest G vector. This equation shows the relationship between the cuto� energy and the
G vectors in a plane-wave basis set calculation. In other words, the relationship represents the number of
plane-waves used in a DFT calculation for a cuto� energy given. On the one hand, if we increase the cuto�
energy value, we will increase the number of plane-waves used in the calculations giving a highly detailed
electronic structure description but at a high cost computationally. On the other hand, if we reduce the
cuto� energy value, we will decrease the number of plane-waves used in the calculations giving a poorer
electronic structure description but at a lower cost computationally. For these reasons, we will explore the
optimal value of cuto� energy to obtain a detailed enough electronic structure description, but at not too
high a cost computationally8.

2.3.3 The k-points mesh

The evaluation of physical quantities, such as energy and density, is more convenient in reciprocal space
(k-space) than in real space. Because basis sets of plane-waves scale better with the number of k-points
than the number of particles, it is preferable to compute on the primitive cell of the system rather than
the unit cell allowing the reduction of calculation load10. Besides, the use of k-points is advantageous
computationally because they allow the problem to be well-parallelized when solving the independent-
particle Schröedinger equation, with the results needing to be brought together only when calculating the
electron density; this makes the calculations highly parallelizable. The first Brillouin zone is defined as
the primitive cell in the reciprocal space. Therefore, the volume of the first Brillouin zone can be defined
by the primitive vectors b1,2,3 in the following way8:

⌦BZ = |b1 · b2 ⇥ b3| . (2.77)

The first Brillouin zone is very important in electronic structure calculations because it can help us to
simplify some integration problems, as the plane wave expansion of the electron number density in the
reciprocal space,

n(r) =
X

n

Z

BZ
dk |unk(r)|2 , (2.78)

where the density n(r) is obtained by integrating over all the first Brillouin zone. The problem with solving
these types of continuous integrals is that they are computationally very expensive, so Monkhorst and Pack
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developed a solution for these types of problems30. The solution consists of a uniformly spaced division
of the primitive vectors b1,2,3 to form a mesh of discrete and equidistant k points, separated by �k. This
mesh is so-called the Monkhorst-Pack mesh and is determined by a simple formula valid for any crystal
structure30:

µr =
2r � qr � 1

2qr

, (2.79)

where r = 1, 2, . . . , qr and q determines the number of k-points along the r-direction.
It is important to mention that by changing the length of the unit cell in real space, we can find two

di�erent alterations in the change of the k-points mesh29: if we increase (decrease) the unit cell length,
the number of k-points in the mesh will decrease (increase). For these reasons, it is recommendable to
do a convergence test of the system’s energy with respect to the number of k-points in the mesh. This is
done with the goal of knowing what is the optimal number of k-points. The Monkhorst-Pack method is
commonly used in sophisticated simulation packages, including VASP28.

2.3.4 Pseudopotentials

As we have seen in the previous sections, the electronic structure study can be very precise using plane-
waves basis sets. However, when we perform calculations with all the electrons of each atom (all-electrons
calculations), the modeling requires an extremely high plane-wave cuto�, or a very dense real-space grid,
to represent the highly oscillatory states of the core electrons, which are localized around the atom. For
this reason, we need to introduce pseudopotentials to reduce the number of plane-waves necessary in
a calculation28,29. The pseudopotentials’ definition consists of replacing the full nuclear potential and
the core electrons with a new potential that reproduces the same behavior for outer electrons (valence
electrons)8,28,29. This definition arises from the idea that valence electrons will be the most sensitive to
changes in the chemical bonding environment. In contrast, core electrons will be relatively immune to
such changes. Therefore, valence electrons are essential in defining chemical bonding and other physical
properties of materials. In this sense, we can completely freeze the core electrons for our description
and save considerable computational e�ort8. The strategy on the pseudopotentials method lies in the
construction of a modified nuclear potential that satisfies the following conditions8:

1. Outside the pseudization region, the modified potential should coincide with the original Kohn–Sham
potential obtained from a calculation including all the electrons.
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2. Inside the pseudization region, the potential should be modified in such a way that the solution of
the Kohn–Sham equation yields the pseudo-wavefunction precisely.

It is important to mention that the distinction between core and valence electrons is not rigorous and
depends on the accuracy that one is trying to achieve and the computational cost that one is willing to
pay8. In DFT simulations, the details of a pseudopotential define a minimum energy cuto� used in the
calculations. Pseudopotentials that require high cuto� energies are hard, while more computationally
e�cient pseudopotentials with low cuto� energies are soft28. Besides, as a final remark, it is essential to
notice that the field of pseudopotentials is constantly evolving today and involves many other very advanced
methods.

2.3.5 The projector augmented-wave method

The utilization of hard or ultrasoft pseudopotentials to perform DFT calculations is not ideal. It can require
a high cuto� energy radius and not restore the actual valence wavefunction, as we saw earlier. To avoid these
disadvantages, Blöchl proposed the projector augmented-wave (PAW) method31, where the central idea is
the exact partitioning of the electron wavefunctions. This method allows a full wave function calculation
(all-electron calculation) instead of only considering the valence electrons, giving access to the full wave
function information29,32, while performing calculations using smooth pseudo-wave functions. With this
in mind, we can describe the PAW method considering the all-electron (AE) valence wavefunctions formed
from pseudo (PS) wave functions through a linear transformation given by33:

| AE

nk i = | PS

nk i +
X

i

(|�AE

i
i � |�PS

i
i)hpPS

i
| PS

nk i . (2.80)

this expression can be re-written using tildes following the notation used in the original work by
Blöchl31, so that

| nki = |e nki +
X

i

(|�ii � |e�ii)hepi|e nki , (2.81)

where the pseudo-orbitals e nk are the variational quantities expanded in plane waves in VASP as

e nk(r) = hr|e nki =
1p
⌦

X

G
CnkGe

i(G+k)·r . (2.82)

As a final point, it is important to mention that the PAW method was adapted for plane-wave calculations
by Kresse and Joubert34, giving place to accurate DFT results implemented in DFT codes such as VASP.
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2.4 Scanning Tunneling Microscopy STM

Binnig and Rohrer invented the scanning tunnel microscope (STM) in 198235, winning the Nobel Prize
in 1986 for this invention. Today, this microscopy has become one of the most important nanoscience
tools due to the quality of information and resolution that it can obtain down to the atomic scales in real
space36. Some of the advantages of STM over other microscopy measurements are ultra-high resolution
in lateral (0.1 nm) and depth (0.01 nm) space. It is versatile, allowing its use in ultrahigh vacuum and
room to low-temperature conditions; it provides an atomically precise positioning system that allows very
accurate atomic-scale manipulation and the analysis of a multitude of characteristics such as roughness,
surface defect, molecule size, and conformation37. In this section, we will study the working principle of
STM and how it can be simulated using the Terso�–Hamann approximation.

2.4.1 Working principle

STM is based on the quantum mechanical concept called quantum tunneling, where a wavefunction can
propagate through a potential barrier. In STM, a bias voltage is applied between a tip and a conducting
sample, both separated by a certain vacuum distance that makes it possible to generate a tunneling current
(electrons tunnel through the vacuum between the tip-sample distance). The tunneling current generally
can be defined as38:

I / e
�2s/~
p

2m' , (2.83)

where m is the mass of the electron, s is the width of the barrier, and ' is the height of the barrier.
According to this equation, as the tunneling current increases, the tip-sample distance decreases, and
vice versa. Similarly, the tunnel current sensitivity is explained by the exponential relation between the
current and tip-sample distance36. The tip is located with such high accuracy using piezoelectric actuator
elements. The mechanical extension of these actuator elements is proportional to the voltage applied to
their electrodes. In this way, the tip can be moved in x, y, and z directions with sub-angstrom resolution36.

There are two operation modes for STM37: the constant-current mode and the constant-height mode.
On the one hand, in the constant-current mode, the feedback mechanism constantly adjusts the tip height by
approaching or retracting the tip to a tip-sample distance at which the tunneling current remains constant.
It leads to the image formation from the tip topography across the sample. On the other hand, in the
constant-height mode, the current changes to maintain the voltage and height constants. It leads to an
image made of current changes over the surface related to charge density. For our case, we will simulate
the constant-height mode to study the topography of the diamond surfaces. It is important to mention that
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the di�erent electronic properties of each element will a�ect the tip-sample distance. In the case of a high
conductive element, a larger tip-sample distance, and vice versa36.

Figure 2.2: Two typical STM operating modes: (a) constant-current mode and (b) constant-height mode.

2.4.2 Terso�-Hamann approximation

The tunneling current which flows between the tip and the sample depends on the voltage di�erence
between the tip and sample. If the sample is biased by a negative voltage -V with respect to the tip, this
e�ectively raises the sample electrons’ Fermi level with respect to the tip electrons. Electrons will tend to
flow out of the sample’s filled states into the empty states of the tip38. The elastic tunneling current from
the sample to the tip for states of energy (with respect to the Fermi level of the sample) is:

Isample!tip = �2e · 2⇡
~
|M|2 (⇢s(") · f (")) (⇢t(" + eV) · [1 � f (" + eV)]) , (2.84)

where the factor of 2 out front is for spin, �e is the electron charge, 2⇡/~ comes from the time dependent
perturbation theory, |M|2 is the matrix element, f (") is the Fermi distribution function, (⇢s(") · f ("))
represents the filled sample states we are tunneling from, and (⇢t(" + eV) · [1 � f (" + eV)]) denotes the
empty tip states we are tunneling to.

Even though the dominant tunnel current for the negative sample voltage -V will be from sample to
tip, there will also be a smaller electron tunnel current from tip to sample, which can be written similarly.
When we add these two contributions and integrate all the energies , we arrive at the total tunnel current
from the sample to the tip38:

I =
�4⇡e

~

Z 1

"F

|M|2 ⇢s(")⇢t(" + eV){ f (")[1 � f (" + eV)] � [1 � f (")] f (" + eV)} d" . (2.85)
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We can simplify this expression in di�erent ways38. First, if the measurements are made at low
temperature, the Fermi function cuts o� very sharply at the Fermi surface, allowing that the integral breaks
into 3 parts; where the most relevant range to find the tunneling current is between the Fermi energy levels
of the sample and tip (�eV < " < 0). Second, we pick a tip material that has a flat density of states within
the energy range of the Fermi surface that we wish to study so that ⇢t(" + eV) can be treated as a constant
and taken outside the integral. Third, considering the realistic assumptions of Bardeen, we can take the
matrix element outside the integral and treat it as a constant. The Bardeen assumptions show that (1) the
tip and the sample each have their own independent density of states, (2) each of their wavefunctions fall
exponentially to zero in the tunneling barrier, and (3) the overlap is small enough (i.e. tip-sample separation
is large enough) that each side is insignificantly influenced by the tail of the wavefunction from the other
side, then the matrix element for tunneling will be virtually independent of the energy di�erence between
the two sides of the barrier. The matrix element comes from the assumption that both tip and sample
wavefunctions fall o� exponentially into the vacuum gap. Basically, we assume that the vacuum barrier is
a square barrier, and if we make a Wentzel-Kramers-Brillouin (WKB) approximation39, we will find that
the tilt of the barrier will be much smaller than the height of the barrier, making it negligible. Following
the WKB approximation, we find that the tunneling probability through a barrier will be |M|2 = e�2�with:

� =

Z
s

0

r
2m'

~2 dx =
s

~

p
2m' . (2.86)

where m is the mass of the electron, s is the width of the barrier, and ' is the height of the barrier, which is
actually some mixture of the work functions of the tip and sample. Notice that we can measure the work
function by recording the tunneling current as a function of tip-sample separation (eq. 2.83).

Finally, considering all the previous assuptions and simplifications, we can write the tunelling current
in the following way38:

I ⇡ 4⇡e

~
e
�s

q
8m'

~2 ⇢t(0)
Z 0

�eV

⇢s(")d" . (2.87)

2.5 Ultraviolet Photoelectron Spectroscopy UPS

Ultraviolet photoelectron spectroscopy (UPS) is a technique based on the photoelectric e�ect. UPS provides
information about orbital energies, where ionization energies can be directly measured of orbital energies
in the neutral atom or molecule and can therefore be used to construct a molecular orbital diagram.
Frequently, especially for molecules in the gas phase, UPS can resolve the vibrational and rotational
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structure40. The electronic spectra tend to be more di�cult to resolve because it has a dependence on the
symmetries of the electronic spectra involved. In comparison, the electronic spectra for the vibrational
structure do not need all the vibrational frequencies active. Besides, UPS is handy for the characterization
of solids because it helps determine the material’s work function40. This spectroscopy technique can be
successfully simulated using the density of states (DOS), inelastic mean free path (IMFP), and energy
levels cross-sections of the studied material.

2.5.1 Working principle

UPS measures the ionization energies of the atoms or molecules when electrons are ejected from di�erent
orbitals by absorption of a photon with greater or equal energy41. This process can be represented by:

M + hv! M+ + e� , (2.88)

where M is the initial atom with all its corresponding electrons, hv represents the incident photon of the
incident beam, M+ is the ionized atom after the process, and e� is the ejected electron. The excess energy
from photoionization can appear either as electron kinetic energy, ion internal energy (vibrational and
rotational), or a combination of the two. Because of conservation of energy, when a photon ionizes a
sample, the energy of the incident photon hv must be equal to the sum of the ionization energy of the
sample and the kinetic energy of the photoelectron40. The ionization energy depends on which electron
is being removed from which orbital. For example: if we remove a weakly bound electron, we will get
the highest kinetic energy. Whereas if we remove a tightly bound electron, we will get a lower kinetic
energy. To reach higher ionic states, shorter wavelengths are required, wavelengths that fall in the vacuum
ultraviolet and can only be properly generated by noble gas resonance lamp sources. The most used
material for the lamp sources is helium because it is an economical gas with high photon energy, allowing
the photoionization process of the most atoms and molecules. This gas has its principal emission line
at 21.218 eV40. The electron kinetic energy spectrum is obtained by passing the ejected electrons from
the photoelectric process through an energy analyzer. Commonly, the energy analyzers are based on an
electric or magnetic field. There are two main analyzer types, retarding field and deflection analyzers40.
On the one hand, the retarding field analyzers transmit only those electrons with energies higher than the
retarding potential, and to obtain a spectrum, the retarding potential should be scanned. This analyzer
is less commonly used today. On the other hand, the deflection analyzers separate electrons by forcing
them to follow di�erent paths according to their velocities. This separation can be done using electric and
magnetic fields along the path that follows the ionized electrons. Once the electrons reach the analyzer,
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the electron multipliers amplify their current, converting them into electrons with enough current flow to
be measurable by a picoammeter or other sensitive current measurement devices40. As a final point, it is
essential to mention that a photoelectron spectrometer must be kept under vacuum and should have at least
three separate pumping regions, the resonance lamp, the sample chamber, and the analyzer chamber.

In order to correctly calculate a simulated UPS spectrum, we have to consider the depth of surface
sensitivity in which the incident photon energy can penetrate the surface sample. The depth of surface
sensitivity is related to the inelastic mean free path (IMFP) for the ejected photoelectrons from which elec-
trons can escape without significant scattering or energy loss to the surrounding lattice42. The probability
of generating a photoelectron from a given orbital depends on its angular momentum, orientation, and
dispersion within the crystal as well as the photon energy43,44. The simulated UPS spectra consider the
computed partial density of states weighted with the tabulated theoretical photoionization cross-sections
for each atomic orbital at photoexcitation energy of 40.82 eV, for this study. The photoionization cross
sections for the outermost atomic subshells for C were taken from Yeh and Lindau43.



Chapter 3

Methodology

In this chapter we provide a detailed description of all the procedures done in this work. It is separated into
two main sections: (i) computational details section will present all the necessary details for reproducing
the calculations performed using VASP and bSKAN. (ii) The surfaces development section will explain
the criteria used to optimize the structures with all their specific details and modifications.

3.1 Computational details

The calculations were performed using the plane-wave Viena ab initio Simulation Package (VASP)45,
where the projector augmented wave method (PAW) was used to describe the core electrons, and the
strongly constrained and appropriately normed semilocal density functional with van der Waals corrections
(SCAN+rVV10) was used to describe the valence electrons. The PAW potential for hydrogen H atoms
was generated in the electron configuration 1s

1 and for carbon C atoms in [He] 2s
22p

2, where square
brackets denote the core electron configurations. A cuto� energy of 1000 eV combined with a k-point
mesh separation equal to 0.042 Å�1 and an electronic temperature of 0 K were used to converge the total
energy to less than 1 meV/atom. All the structures were fully relaxed until all the forces were < 0.02 eV/Å.
Additionally, the STM images were calculated using the Terso�-Hamann approximation as implemented
in bSKAN46. This allows computing the STM images using input wavefunctions from VASP.

33
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3.2 Surface model simulations

In order to properly simulate the atomic and electronic structure of a diamond surfaces on VASP and
bSKAN, it was necessary to find out the optimal parameters for diamond systems. For this, we had to
examine the convergence of parameters such as cut-o� energy, k-points, optimal volume, vacuum size and
slab thickness. The following subsections are classified according to the optimization of the crystal and
surfaces.

3.2.1 Crystal optimization

The diamond crystal is a well-known material with an face-centered cubic fcc lattice. The primitive basis
has two identical C atoms associated with each point of the fcc lattice. Thus, the conventional unit cell
contains eight C atoms26. With this information about the structure (see Figure 3.1), we were able to begin
the calculations about the convergence of the cut-o� energy, k-points, and optimal cell volume. Before
starting the convergence tests, it was essential to consider that the errors in the energies with cut-o� energy
and k-points mesh should be in the range of < 1 meV/atom to yield and useful DFT simulations.

Figure 3.1: Diamond crystal structure. a) Primitive cell with only 2 C atoms. b) Conventional unit cell
(cube) with eight C atoms. In both figures, the black lines delimits the size of the cell.

The cut-o� energy

The first parameter used in the convergence test was the cut-o� energy. To analyze the optimal convergence
value, we had to vary the cut-o� energy with a fixed k-points mesh of 12⇥12⇥12, equivalent to �k = 0.04
Å�1 for this structure. Although we did not know the optimal value of the k-points mesh for the diamond
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structure, we knew that the value of the k-points mesh used is enough to yield reasonable results. Figure
3.2 shows the obtained cut-o� energy values and their behavior until they get convergence in the range of
< 1 meV/atom. According to Figure 3.2, we could establish that Ecut = 1000 eV will be used for further
calculations.
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Figure 3.2: Cut-o� energy convergence plot for diamond crystal. The energies begin to converge from
1000 eV according to the < 1 meV/atom criteria. The gray dashed region shows the allowed convergence
range.

The k-points mesh

The second parameter used in the convergence test was the Gamma-centered k-point mesh in order to
employ the tetrahedron method with Blöchl corrections. For this, we varied the k-points mesh using the
cut-o� energy obtained in the previous test for this structure to analyze the optimal convergence value.
Figure 3.3 shows the obtained k-points mesh values and their behavior until they get convergence in the
range of < 1 meV/atom. According to Figure 3.3, we could establish that the k-points mesh of 10⇥10⇥10,
equivalent to �k = 0.042 Å�1 will be used for further calculations.

The equation of state EOS

Once the cut-o� energy and k-points converged values been determined, the last test of optimization is for
the cell volume vs. the total energy. In this way, we varied the diamond crystal cell volume until we got
enough data to fit and find the optimal cell volume which yields the lowest total energy. These results were
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Figure 3.3: k-points mesh convergence plot for diamond crystal. The energies begin to converge from
8 ⇥ 8 ⇥ 8 k-points mesh according to the < 1 meV/atom criteria, but for more accurate results we use a
k-points mesh of 10 ⇥ 10 ⇥ 10. The gray dashed region shows the allowed convergence range.

obtained using the cut-o� energy and k-points mesh obtained in the previous tests. The equation used for
fitting the obtained data was the Birch-Murnaghan equation of state (EOS)47,
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where V is the cell volume, E0 is the ground state energy, V0 is the ground state volume, B0 is the bulk
modulus and B

0
0 is the bulk modulus pressure derivative. To make the fit, as easiest as possible, we can

simplify (3.1) in the following way:

E(V) = k1 + k2V
�2 + k3V

�4/3 + k4V
�2/3 , (3.2)

where k1,2,3,4 are constants assuming that E0, V0, B0 and B
0
0 are also constants.

Using equation 3.2 to fit the obtained data of the volume cell, we obtained the data shown in Figure
3.4. This Figure shows the change of the total energy of diamond fcc with the volume. To calculate the
numerical values of E0, V0, B0, and B

0
0 explicitly, we could use the fitting parameters k1,2,3,4 to solve the

system of four equations with four unknowns, as provided in (3.3). Once the numerical values of E0, V0,
B0, and B

0
0 are determined, they were compared directly with experimental values, taking into account that

both values should were in the same units.
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Figure 3.4: Computed SCAN+rVV10 equation of state for diamond fcc. The red dots show the computed
energies and the blue line is the Birch-Murnaghan EOS fitting. In this plot the optimal or equilibrium
volume of bulk diamond lattice corresponds to the lowest total energy volume.

3.2.2 Surfaces optimization

In order to completely characterize the atomic and electronic properties of the diamond surfaces (pristine,
hydrogenated, and surfaces with carbon vacancies), the diamond crystal can be cleaved by some families
of planes to get some surface structures, in our case the (110) and (111) family of planes, see Figure 3.5.
The atomic structure of the diamond surface was easily constructed starting from its crystalline structure.
However, there were some crucial factors that we needed to take into account to properly simulate the
surfaces. These factors are the vacuum space between slabs, the slab thickness and surface passivisation.
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Figure 3.5: Two di�erent cleaving planes cutting the diamond crystal in (a) plane (110) and in (b) the plane
(111). The spheres in yellow are the C atoms intersected by the planes

Optimal vacuum and slab thickness

The criteria used to determine the appropriate vacuum value between two slabs along z-direction is the self
interaction energy between images, the vacuum has to be large enough to prevent the slab self interaction.
Then, to calculate the optimal vacuum value of the surface, we performed a total energy convergence test
varying the vacuum value. It is important to mention that the atomic structure of the surface was ready
for this calculation, and it was contained in the POSCAR file. Figure 3.6 shows the data obtained for the
possible optimal vacuum values. For our case, we decided to select the 15 Å of vacuum space between
slabs that converge the energy to < 1 meV/f.u. (f.u.= formula unit)

The criteria used to select the optimal slab thickness is that there should not be any interaction between
the topmost atoms and the lower atoms within the slab. In other words, the slab should be thick enough
that electrons at the topmost part of the slab do not feel the existence of the electrons at the lower part
of the slab. For this reason, we had to vary the thickness of the slab until we found a specific thickness
from which the electronic structure of the topmost layers (surface) does not change if the slab thickness
is increased. In our case, we decided to work with nineteen layers slab for the (110) surface and with six
layers slab for the (111) surface.

Slab passivation

Once we obtain the optimal values for the slab thickness and vacuum, ideally we were ready to perform any
surface calculations. However, exploring a wide variety of possible surfaces using complete slab structures
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Figure 3.6: Change of system’s total energy with respect to the vacuum between surfaces. The vacuum
begin to converge from 14 Å. The shaded area shows the 1 meV/f.u. convergence.

(two surface faces) is not recommendable because it is very expensive computationally. For this reason,
we used passivated slabs. The passivated surfaces were constructed by cleaving the entire slab in half
(across the z-direction) and attaching two H atoms in each C left on the bottom of the slab, these H atoms
passivate the dangling bonds of those C atoms. Once the H atoms were attached, they were relaxed and
subsequently fixed with the first layer of C atoms of the same face. All of this to emulate a bulk behavior
in the cut face side. In our case, we used nine layers of slab thickness (including the fixed C layer) for
the (110) family. The passivated surface behavior could be verified by calculating the PDOS for the two
types of surface, passivated and non-passivated. In our case, both PDOS were practically the same, which
means that the passivated surface describes the same results as the non-passivated one. In the case that
the PDOS for both calculations were not the same, it is recommendable to increase the thickness of the
surface with unfrozen C layers. Finally, we assign the initial spin state of 3 (1.5) to the outermost layers
of the unfixed C (H) atoms and allow the spin states to vary during the calculations. In this way, we were
ready to perform surface calculations using the passivated surface structures and explore all its variations.

The surface energy � calculation

The surface energy of a solid, �, is one of the most fundamental properties that helps to identify which
surface composition and geometry are the most stable and expected to be observed in nature. This energy
measures the energy cost of increasing the surface area; therefore, all the normal solids should have positive
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surface energy; otherwise, the solids would disintegrate48. Commonly, the surface energy equation used
for slab systems composed of C and H atoms has the following form that depends on the temperature T

and pressure p
49,50:

�(T, p) =
1

2A

⇥
Eslab � nCµC(T, p) � nHµH(T, p)

⇤
, (3.4)

where A is the area of the surface unit cell, Eslab is the energy of the slab, nC (nH) is the number of C
(H) atoms present in the slab; µC and µH is the chemical potential for C and H, respectively. In diamond
surfaces, µC = �10.015 eV/atom, is the SCAN+rVV10 computed energy per atom of the optimal fcc
structure of diamond. The chemical potential of H depends on the source gas that the surface is in
equilibrium with; therefore in our simulations, we are interested on the change of � with respect to µH;
an appropriate upper limit for H chemical potential is when µH = �3.426 eV/atom that corresponds to
1/2E

total

H2
, where E

total

H2
is the total energy of a free isolated H2 molecule at T = 0K that is �6.852 eV

computed with SCAN+rVV10. High (low) values of µH means high (low) gas pressure. Finally, (3.4) is
divided by two times the area A, because the slab model presents two surfaces, one at the top and one at
the bottom.

However, the previous equation cannot be used to calculate � of a slab with pristine-passivated surfaces
because both slab surfaces are not equivalent. So, in order to calculate the energy of any modified-passivated
surfaces using equation 3.4, we had to developed the following equations. Considering a slab with two
equivalent pristine surfaces (P), see Figure 3.7, the surface’s energy can be calculated using equation 3.4
or the following equivalent expression:

�PP =
1
2
⇥
�P + �P

⇤
= �P , (3.5)

where �PP is the pristine-pristine surface energy.
In the same way, considering a slab made up of a pristine and a passivated surface (S), see Figure

3.7, we assume that we can completely decouple the pristine-passivated energy surface in two individual
surface energies:

�PS =
1
2
⇥
�P + �S

⇤
, (3.6)

where �P and �S are the surface energies of the pristine and passivated surfaces correspondingly.
Following the same reasoning than the two previous equations, the surface’s energy of any modified-

passivated surfaces can be obtained using the equation:
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�MS =
1
2
⇥
�M + �S

⇤
, (3.7)

where �M is an the energy of any modified surface of interest, see Figure 3.7. Using equations 3.6 and 3.5,
we could rewrite the equation 3.7 in the following form:

�M = 2�MS � 2�PS + �P , (3.8)

where all the surface energies � are calculated with the equation 3.4. We used the equation 3.8 to
calculate all the modified surfaces energies of the diamond slabs with a passivated surface. Although that
this equation needs the computed values of the pristine surface’s energy (�P) and the pristine-passivated
surface’s energy (�PS ), the equation avoided the costly and exhaustive calculation of the slabs without
passivation and agree with our computational simulations.

It is important to stress that this approximation is reliable when the slabs used in the calculations have
reached convergence of both surface energy and electronic structure at the surface with respect to the slab
thickness; moreover, the electronic structure at the middle of the slab reproduces the electronic structure
of the bulk.

Special study for selected surfaces

Once we calculated the surface energies of all the investigated slabs, we were able to select the most
stable surfaces in order to perform a particular study calculating the energy work function and simulating
di�erent experimental techniques, such as UPS and STM.

1. To calculate the work function of all the selected surfaces, we began performing a DFT calculation
of the total local potential of a structure in the z-direction. For this, we used the help of VASP and
the LVTOT command. Next, we plotted the total local potential averaged on the xy plane along
the z-direction, the plateau of the plot indicates the location of the vacuum level above the surface.
Finally, we subtracted the vacuum level from the Fermi energy obtaining the energy work function
� of the studied structure.

2. In order to simulate the UPS spectra of the most stable surfaces, we performed the following
procedure. First, we began using the NIST simulation software with the objective to obtain the
inelastic mean free path region (IMFP) for a diamond surface. For this, we had to fit the energy and
IMFP data obtained from NIST software51 and get the minimum value of the fitting. Next, we used
the photoionization cross-section data of C and H atoms obtained from Yeh and Lindau43 to obtain
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Figure 3.7: Slab examples for the (110) diamond family plane. (a) Slab composed of two equivalent
pristine surfaces. (b) Slab composed of a pristine and a passivated surface. (c) Slab composed of a
hydrogenated and a passivated surface. In the last case, we also called it modified structure because it
is neither a pristine nor a passivated structure. In the Figure appears some �’s referring to the surface’s
energy of each structure.

the optimal cross-section value. We combine these parameters with the previously computed PDOS
of the most stable surfaces to obtain the simulated spectrum. Finally, using 40.82 eV photons which
correspond to photoelectrons generated within approximately 5.74 Å of the outhermost surface
layers (3, 4, and 5 layers), we obtained the UPS spectra for the selected surfaces.

3. In order to obtain the simulated constant current mode STM images, we first had to use the bSKAN
simulation software to perform a Terso�-Hamann approximation with the output obtained from
the VASP calculations. It is important to mention that some values of bias voltage were needed
to perform a bSKAN simulation. Those values were selected based on the electronic structure
analysis of the DOS of the selected surface. The outcome of the TH calculation using bSKAN were
interpolated, from a 3D contour plot, we finally obtained the simulated constant current mode STM
images with their respective line scan plots.



Chapter 4

Results & Discussion

4.1 The diamond crystal

The starting point of these studies is the prediction of the structural, electronic and mechanical properties
of pristine bulk fcc diamond crystal using the SCAN+rVV10 xc functional. Table 4.1 summarizes the
properties calculated according to the EOS and compares them with the properties obtained experimentally.

The electronic structure of the fcc diamond crystal was studied using the DOS and PDOS obtained
from the wave-function projection of the valence electrons onto spherical harmonics. Figure 4.1 displays
the SCAN+rVV10 computed DOS and PDOS for fcc diamond crystal. The system presents an insulator
behavior because a bandgap Eg of 4.5 eV exists between the valence and conduction band. At this point,
it is important to mention that the calculated bandgap presents an underestimation of 20%, which was
already expected. The underestimation presented is because the quasiparticle bandgap (bandgap obtained
experimentally) di�ers by a constant of�xc from the Kohn-Sham bandgap. Commonly, the underestimation
is of 40% for LDA xc functionals and it can be reduced by the use of more accurate xc functionals such
as hybrids. Moreover, it is important to mention that the C 2p state’s contribution is greater than the C 2s
states in regions near the Fermi energy level EF (cf. Figure 4.1). Finally, the expected sp3 hybridization
between C 2s and C 2p orbitals for the atomic structure was successfully obtained.

43
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Table 4.1: SCAN+rVV10 computed crystal structure and mechanical properties for fcc diamond crystal in
comparison with experimental data. Here it is reported the lattice parameters (a, b, and c), lattice angles
(↵, �, and �), optimal volume (V0), bulk modulus (B0), bulk modulus pressure derivative (B00), energy
bandgap (Eg), and the fractional sites (u, v, w).

Property Calculated (SCAN+rVV10) Experiment26,52

Space group Fd3̄m Fd3̄m
a = b = c (Å) 3.5490 3.5668
↵ = � = � (�) 90 90
V0 (Å3) 11.175 11.344
B0 (GPa) 458.8 443.0
B
0
0 3.65 3.6753

Eg (eV) 4.5 5.4
Fractional sites u v w u v w

C (1) 0.00 0.00 0.00 0.00 0.00 0.00
C (2) 0.25 0.25 0.25 0.25 0.25 0.25

4.2 The C(110) diamond surfaces

4.2.1 The C(110) surface energies and electronic properties

In the first step of the C(110) surface calculations, we explored di�erent surface structure reconstructions.
In general, the surfaces explored were: pristine, pristine with surface C vacancies, surface hydrogenated,
hydrogenated with surface H and C vacancies. The pristine surface structure C(110)-(1⇥1) did not present
any variation in their structure or surface energy with respect to reconstructions such as the C(110)-(1⇥2)
and the C(110)-(2⇥2), then we use the pristine C(110)-(1⇥1) structure as reference pristine surface to
explore all the defective surface structures and reconstructions.

To determine which surfaces have the lower surface energy � and hence the more stable surfaces for
any given chemical potential of H (µH), a surface energy was computed according to Equations 3.4 and 3.8.
Figure 4.2 displays the SCAN+rVV10 computed surface energies for all the reconstructions and defective
surfaces considered in this study.

The most expected surface for µH < �5.7 eV is the pristine C(110)-(1⇥1) while for µH > �4.9 eV is
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Figure 4.1: SCAN+rVV10 computed DOS and PDOS for the fcc diamond crystal structure. In this Figure,
the green (blue) line represents the PDOS of C 2p (C 2s) states; and the black line is the total DOS. The
Fermi energy level EF is shifted to 0 eV and it is represented by the vertical red line.

the fully hydrogenated surface C(110)-(1⇥1)H. Within the range of �5.7 < µH < �4.9 eV, we observe the
most stable surface reconstructions show magnetization at the surface. Moreover, within this region exist
some competitive magnetic phases; these results are better visualized in Figure 4.3. Based in these results,
the following sections will analyse in detail the electronic structure of C(110)-(1⇥1), C(110)-(1⇥1)H,
C(110)-(2⇥1)H+2Hv, C(110)-(2⇥1)H+2Hv-AFM, C(110)-(2⇥1)H+3Hv-M1 and C(110)-(2⇥1)H+3Hv-M2
surfaces; here M and AFM stands for magnetic and antiferromagnetic solutions. Table 4.2 shows a
summary of the SCAN+rVV10 predictions for the work functions and bandgaps; the C(110)-(1⇥1) and
C(110)-(2⇥1)H+2Hv surfaces have metallic state and in all the cases, Eg is lower than the Eg of diamond
of 4.5 eV. It is important to stress that despite C(110)-(2⇥1)H+2Hv and C(110)-(2⇥1)H+2Hv-AFM have
practically the same atomic structure, the latter is an insulator. This interesting prediction could be tested
with scanning tunneling spectroscopy. Moreover, notice that � for the pristine C(110)-(1⇥1) surface has
the highest value of 6.03 eV and we observe a trend where the fully hydrogenated surface, C(110)-(1⇥1)H,
has the lowest � and it increases as the H coverage is decreased.
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Figure 4.2: SCAN+rVV10 computed surface energy of the C(110) surfaces considered in this study. The
di�erent colors (gray, purple, blue, and red) denote the number of cell repetitions (1⇥1, 1⇥2, 2⇥1, and
2⇥2) in the x and y-direction. The structures that only have carbon atoms on the surface are represented by
solid energy lines; while the dashed or dotted lines represent the surfaces with carbon and hydrogen atoms.
In the inset, the surface notation for surface carbon and hydrogen vacancies is Cv and Hv, respectively.

Table 4.2: SCAN+rVV10 computed work functions (�) and bandgaps (Eg) for the C(110) surfaces
considered in this study. Additionally keep in mind that predicted Eg for bulk fcc diamond is 4.5 eV and
the experimental value is 5.4 eV.

Surface �(eV) Eg(eV)
C(110)-(1⇥1) 6.03 0.00
C(110)-(1⇥1)H 3.18 2.51
C(110)-(2⇥1)H+2Hv 4.23 0.00
C(110)-(2⇥1)H+2Hv-AFM 4.70 1.36
C(110)-(2⇥1)H+3Hv-M1 4.79 0.73
C(110)-(2⇥1)H+3Hv-M2 4.81 0.86



CHAPTER �. RESULTS & DISCUSSION 47

Figure 4.3: Close-up of SCAN+rVV10 computed surface energy featuring the most stable C(110) surface
structures. The di�erent colors (gray and blue) denote the number of cell repetitions (1⇥1 and 2⇥1) in
the x and y-direction. The structures that only have carbon atoms on the surface are represented by solid
energy lines; while the dashed or dotted lines represent the surfaces with carbon and hydrogen atoms. In
the inset, the surface notation for surface carbon and hydrogen vacancies is Cv and Hv, respectively.

4.2.2 The C(110)-(1⇥1) surface

Atomic and electronic structure

Figure 4.4 displays the computed results of the atomic and electronic structure of the C(110)-(1⇥1)
surface. Figure 4.4(a) and (b) show the atomic reconstruction at the surface. After full relaxation, the
atomic configuration shows that the inter-atomic bond lengths of the surface were shorter compared with
the bulk structure. Note the inward relaxation of the topmost L1 layer. Figure 4.4(c) shows the computed
PDOS for layers L1, L2 and L3 corresponding to Figure 4.4(b). The results exhibit a metallic behavior but
the bulk bandgap is restored for deeper layers (not shown in Fig. 4.4(c)). The electronic structure of L1 at
EF is mainly composed of C 2p states and minor contribution of C 2s states.

Simulated ultraviolet photoelectron spectroscopy UPS for the C(110)-(1⇥1) surface

Figure 4.5 displays the simulated UPS spectrum for the C(110)-(1⇥1) surface using 40.82 eV photons which
correspond to photoelectrons generated within approximately 5.74 Å of the outermost surface layers—i.e.,
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Figure 4.4: SCAN+rVV10 computed atomic and electronic structure of C(110)-(1⇥1). (a) top and (b)
side view of the three first topmost layers; the C atoms are represented by grey spheres and the surface C
atoms are depicted by bigger spheres to contrast with the subsurface C atoms; the black lines delimits the
surface unit cell. (c) PDOS of the three surface layers, the surface has metallic character. The Fermi level
is shifted to 0 eV and is represented by the vertical red line. The ranges of integrated energies to obtain
the STM images (a and b) are represented from Fermi level to the dashed orange lines (1 and 2).

the five outermost atomic layers. The spectrum shows main peaks at ⇠-0.8 eV, -5.7 eV and -12.6 eV; as
well as a shoulder at -9.5 eV. The decomposed UPS predicts that the spectrum is composed mainly by
C 2p states; while below -14.2 eV, the spectrum has a major contribution of C 2s states. The simulated
UPS nicely reproduces the experimental UPS spectrum by Francz et al.54 obtained from a natural diamond
(110) with 40.82 eV photons after hydrogen-plasma annealing at 870 ºC, as depicted in the same Figure
4.5. These results provide a strong support to the level of prediction of the method applied in this study.

Simulated constant current mode STM images for the C(110)-(1⇥1) surface

Figure 4.6 displays the simulated constant current mode STM images and linescans for the C(110)-(1⇥1)
surface. The STM topography for VBIAS = �0.6 V (Fig. 4.6(a)) shows an arrangement of bright spots that
are assigned to the topmost C atoms in alternating sites along the y-direction; the dark spots are assigned
to alternating sites where either no surface or subsurface C atoms are present. A detailed analysis of the
electronic structure for the occupied states attributes the bright spots to C 2pz surface states that protrudes
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Figure 4.5: Simulated UPS spectrum for the C(110)-(1⇥1) surface using 40.82 eV photons. The ex-
perimental spectrum obtained with the same photons energy (gray line) was adapted from Ref. 54 and
displayed for direct comparison.

into the vacuum. The corresponding linescan along the A-A’ profile (Fig. 4.6(c)) shows a corrugation of
⇠0.3 Å. The STM topography for VBIAS = +1.0 V (Fig. 4.6(b)), the bright columns along y-direction are
identified as subsurface C sites and the corresponding linescan along A-A’ profile (Fig. 4.6(d)) reveals
a corrugation of 0.4 Å. Comparing the simulated STM topographies for positive and negative bias, we
observe a change of contrast.

4.2.3 The C(110)-(1⇥1)H surface

Atomic and electronic structure

Figure 4.7 displays the computed results of the atomic and electronic structure of the C(110)-(1⇥1)H
surface. This surface is fully covered by H atoms on the surface. Figure 4.7(a) and (b) show the atomic
reconstruction at the surface. After full relaxation, the atomic configuration shows that the inter-atomic
bond lengths of the surface were shorter compared with the bulk structure, notice the inward relaxation
of the topmost L1 layer. The H atoms are bonded to the surface C atoms with a distance of 1.09 Å and
tilted an angle of 57� with respect to the x-axis. Figure 4.7(c) shows the computed PDOS for layers L1,
L2 and L3 corresponding to Figure 4.7(b); the results exhibit a bandgap opening at the surface of 2.51 eV
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Figure 4.6: Computed constant current mode STM image and linescan along the A-A’ profile for the
C(110)-(1⇥1) surface with VBIAS of (a, c) -0.6 V, occupied states and (b, d) +1.0 V, unoccupied states. The
STM images are colored such that bright (dark) colors of the isocurrent topology represent the protruding
(receding) parts of the topology. In both images is superimposed the atomic structure of the topmost layers
where the C atoms are represented by grey spheres and the surface C atoms are depicted by bigger spheres;
the green box delimits the surface unit cell.

contrasting the metallic state of the pristine C(110)-(1⇥1). The bulk bandgap for deeper layers is restored
to the bulk value (not shown in Fig. 4.7(c)). The electronic structure of L1 around EF is mainly composed
of C 2p states with minor contributions of C 2s and H 1s states.

Simulated ultraviolet photoelectron spectroscopy UPS for the C(110)-(1⇥1)H surface

Figure 4.8 displays the simulated UPS spectrum for C(110)-(1⇥1)H surface using 40.82 eV photons which
correspond to photoelectrons generated within approximately 5.74 Å of the outermost surface layers—i.e.,
the 4 outermost atomic layers. The spectrum shows main peaks at ⇠-3.7 eV, -5.8 eV and -12 eV. The
decomposed simulated UPS spectrum predicts that the dominant contributions are from the C 2p states
while C 2s states overcome the C 2p states below -13.3 eV. The H 1s states practically have negligible
contribution in all range of energies. The simulated UPS reproduces well the experimental spectrum by
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Figure 4.7: SCAN+rVV10 computed atomic and electronic structure of C(110)-(1⇥1)H. (a) top and (b)
side view of the three first topmost layers; the C (H) atoms are represented by grey (white) spheres and
the surface C atoms are depicted by larger spheres to contrast with the subsurface C atoms; the black lines
delimits the surface unit cell. (c) DOS of the three surface layers, the surface has insulator character. The
Fermi level is shifted to 0 eV and is represented by the vertical red line; notice this surface is predicted
to have an insulating state. The ranges of integrated energies to obtain the STM images (a and b) are
represented from Fermi level to the dashed orange lines (1 and 2).

Francz et al.54 obtained from a natural diamond (110) with 40.82 eV photons after surface passivisation
by atomic deuterium, as depicted in the same Figure 4.8.

Simulated constant current mode STM images for the C(110)-(1⇥1)H surface

Figure 4.9 displays the simulated constant current mode STM images and linescans for the C(110)-(1⇥1)H
surface. The STM topography for VBIAS = �1.68 V (Fig. 4.9(a)) shows bright columns that are assigned
to the subsurface C atoms along the y-direction. The corresponding linescan along the A-A’ profile (Fig.
4.9(c)) shows a corrugation of ⇠0.01 Å. The STM topography for VBIAS = +3.0 V (Fig. 4.9(b)) displays
an arrangement of alternating primary and secondary bright spots where no surface C or subsurface C or
H atoms are present; the dark spots are assigned to H sites. The corresponding linescan along A-A’ profile
(Fig. 4.9(d)) reveals a corrugation of 0.015 Å. Comparing the simulated STM topographies for positive
and negative bias, we observe a change of contrast, this is similar to the results for pristine C(110)-(1⇥1)
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Figure 4.8: Simulated UPS spectrum for the C(110)-(1⇥1)H surface using 40.82 eV photons. Notice
the composition of the spectrum, basically the H 1s states are invisible or has negligible contribution to
the spectrum. The experimental spectrum of C(110) D-saturated surface obtained with the same photons
energy (gray line) was adapted from Ref. 54 and displayed for direct comparison.

case.

4.2.4 The C(110)-(2⇥1)H+2Hv surface

Atomic and electronic structure

Figure 4.10 displays the computed results of the atomic and electronic structure of the C(110)-(2⇥1)H+2Hv

surface. This surface was built from the C(110)-(1⇥1)H repeated 2 fold along the x-axis and extracting
two H that belong to the same column along the y-direction. Figure 4.10(a) and (b) show the atomic
reconstruction at the surface. After full relaxation, the top layer L1 moves inward, the H-C bond length
is 1.10 Å and the H atoms form an angle of 52.3� with respect to the x-axis. Figure 4.10(c) shows the
computed PDOS for layers L1, L2 and L3 corresponding to Figure 4.10(b). These results exhibit a metallic
behavior but the bulk bandgap is restored for deeper layers (not shown in Fig. 4.10(c)). The electronic
structure of L1 at EF is mainly composed of C 2p states.
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Figure 4.9: Computed constant current mode STM image and linescan along the A-A’ profile for the
C(110)-(1⇥1)H surface with VBIAS of (a, c) -1.68 V, occupied states and (b, d) +3.0 V, unoccupied states.
The STM images are colored such that bright (dark) colors of the isocurrent topology represent the
protruding (receding) parts of the topology. In both images is superimposed the atomic structure of the
topmost layers where the C (H) atoms are represented by grey (white) spheres; the green box delimits the
surface unit cell.

Simulated ultraviolet photoelectron spectroscopy UPS for the C(110)-(1⇥1)H+2Hv surface

Figure 4.11 displays the simulated UPS spectrum for C(110)-(2⇥1)H+2Hv surface using 40.82 eV photons.
The spectrum shows peaks at -1.1 eV and -12.5 eV, and a broad peak with maximum value at ⇠-5 eV. The
decomposed UPS predicts that dominant contribution are from the C 2p states while C 2s states overcome
the C 2p state below -14 eV; the H 1s states practically have negligible contribution in all range of energies.
The simulated UPS show also some similarity with the experimental UPS spectrum of C(110) passivized
with atomic deuterium by Francz et al. 54 obtained with 40.82 eV photons, as depicted in the same Figure
4.11; this computed surface is a expected candidate to explain the observed experimental spectrum for
H-terminated C(110) surfaces.
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Figure 4.10: SCAN+rVV10 computed atomic and electronic structure of C(110)-(2⇥1)H+2Hv. (a) top
and (b) side view of the three first topmost layers; the C (H) atoms are represented by grey (white) spheres
and the surface C atoms are depicted by bigger spheres to contrast with the subsurface C atoms; the black
lines delimits the surface unit cell. (c) DOS of the three surface layers, the surface has metallic character.
The Fermi level is shifted to 0 eV and is represented by the vertical red line. The ranges of integrated
energies to obtain the STM images (a, b and e) are represented from Fermi level to the dashed orange lines
(1, 2 and 3).

Simulated constant current mode STM images for the C(110)-(1⇥1)H+2Hv surface

Figure 4.12 displays the simulated constant current mode STM images and linescans for C(110)-(2⇥1)H+2Hv

surface. The STM topography for VBIAS = �0.95 V (Fig. 4.12(a)) shows bright columns along y-direction
which maximum is identified as the three coordinated surface C atoms. The corresponding linescan along
A-A’ profile (Fig. 4.12(c)) reveals a corrugation of 1.1 Å. The STM topography for VBIAS = +1.76 V (Fig.
4.12(b)) presents an arrangement of brigth and darkest spots along y-direction that are assigned to the C-H
columns; in addition, the other bright spots are assigned to subsurface C columns along the y-direction.
The secondary dark spots are located on the projected hexagons formed by surface and subsurface C sites.
The corresponding linescan along the A-A’ profile (Fig. 4.12(d)) shows a corrugation of ⇠0.42 Å. Finally,
the STM topography for VBIAS = +3.0 V (Fig. 4.12(e)) exhibits pairs of bright columns along y-direction
identified as subsurface C and C-H sites while the dark columns are assigned to surface C columns.The
corresponding linescan along A-A’ profile (Fig. 4.12(f)) reveals a corrugation of 0.68 Å.
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Figure 4.11: Simulated UPS spectrum for the C(110)-(2⇥1)H+2Hv surface using 40.82 eV photons. The
experimental spectrum of C(110) D-saturated surface obtained with the same photons energy (gray line)
was adapted from Ref. 54 and displayed for direct comparison.

4.2.5 The C(110)-(2⇥1)H+2Hv-AFM surface

Atomic and electronic structure

Our spin polarized calculations yield C(110)-(2⇥1)H+2Hv with antiferromagnetic state at the surface that
is lower in energy by 8.29 meV/Å2 with respect to the non magnetic case (cf. Sec. 4.2.4). Figure 4.13
displays the computed results of the atomic and electronic structure of the C(110)-(2⇥1)H+2Hv-AFM
surface. Figure 4.13(a) and (b) show the atomic reconstruction at the surface; after full relaxation, the
atomic configuration shows similar reconstruction as the non magnetic case (cf. Fig. 4.10). In addition,
Figure 4.13(a) presents the magnetization of -0.25 and 0.25 µB on the topmost C sites with H vacancies,
exhibiting an AFM configuration. Figure 4.13(c) shows the computed spin-polarized (SP) PDOS for layers
L1, L2 and L3 corresponding to Figure 4.13(b); the results suggest a stable AFM state with a bandgap
opening of 1.36 eV in comarison with the metallic solution of the non magnetic state (cf. Fig. 4.10(c)).
The electronic structure of L1 around EF is mainly composed of C 2p states with minor contributions of
C 2s and H 1s states.
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Figure 4.12: Computed constant current mode STM image and linescan along the A-A’ profile for the
C(110)-(2⇥1)H+2Hv surface with VBIAS of (a, c) -0.95 V, occupied states and (b, d) +1.76 V, (e, f) +3.0 V,
unoccupied states. The STM images are colored such that bright (dark) colors of the isocurrent topology
represent the protruding (receding) parts of the topology. In the three images is superimposed the atomic
structure of the topmost layers where the C (H) atoms are represented by grey (white) spheres and the
surface C atoms are depicted by bigger spheres; the green box delimits the surface unit cell.
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Figure 4.13: SCAN+rVV10 computed atomic and electronic structure of C(110)-(2⇥1)H+2Hv-AFM. (a)
top and (b) side view of the three first topmost layers; the C (H) atoms are represented by grey (white)
spheres and the surface C atoms are depicted by bigger spheres to contrast with the subsurface C atoms;
the black lines delimits the surface unit cell; the blue and red arrows shows the magnetization in µB on the
C surface atoms. (c) SP-PDOS of the three surface layers, the surface has insulator character; the spin up
(down) are plotted with positive (negative) values on the DOS axis. The Fermi level is shifted to 0 eV and
is represented by the vertical red line. The ranges of integrated energies to obtain the STM images (a, b
and e) are represented from Fermi level to the dashed orange lines (1, 2 and 3).

Simulated ultraviolet photoelectron spectroscopy UPS for the C(110)-(2⇥1)H+2Hv-AFM surface

Figure 4.14 displays the simulated UPS spectrum for C(110)-(2⇥1)H+2Hv-AFM surface using 40.82 eV
photons. The spectrum shows main peaks at ⇠-0.8 eV, -4.8 eV and -11.9 eV. The decomposed UPS
predicts that above -10.2 eV, the spectrum is composed mainly by C 2p states; while below -10.2 eV, the
spectrum is composed of both C 2s and 2p states. The simulated UPS show also some similarities with
the experimental UPS spectrum of C(110) passivated with atomic deuterium by Francz et al. 54 obtained
with 40.82 eV photons as depicted in the same Figure 4.14.
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Figure 4.14: Simulated UPS spectrum for the C(110)-(2⇥1)H+2Hv-AFM surface using 40.82 eV photons.
The experimental spectrum of C(110) D-saturated surface obtained with the same photons energy (gray
line) was adapted from Ref. 54 and displayed for direct comparison.

Simulated constant current mode STM images for the C(110)-(2⇥1)H+2Hv-AFM surface

The STM topography for VBIAS = �0.6 V (Fig. 4.15(a)) shows bright columns along y-direction which
maximum are centered on the magnetic surface C atoms. The corresponding linescan along A-A’ profile
(Fig. 4.15(c)) reveals a corrugation of 0.85 Å. The STM topography for VBIAS = +1.8 V (Fig. 4.15(b))
presents an arrangement of elongated bright spots that are assigned to the magnetic surface C atoms
in alternating sites along the y-direction; the dark spots are assigned to alternating C-H sites. The
corresponding linescan along the A-A’ profile (Fig. 4.15(d)) shows a corrugation of ⇠1.2 Å. Finally, the
STM topography for VBIAS = +3.42 V (Fig. 4.15(e)) exhibits pairs of bright columns along y-direction
identified as subsurface C and H sites while the dark stripes are assigned to surface C-H columns, the
secondary dark columns are assigned to the magnetic surface C atoms along y-direction. The corresponding
linescan along A-A’ profile (Fig. 4.15(f)) reveals a corrugation of 0.4 Å.



CHAPTER �. RESULTS & DISCUSSION 59

Figure 4.15: Computed constant current mode STM image and linescan along the A-A’ profile for the
C(110)-(2⇥1)H+2Hv-AFM surface with VBIAS of (a, c) -0.6 V, occupied states and (b, d) +1.8 V, (e, f)
+3.42 V, unoccupied states. The STM images are colored such that bright (dark) colors of the isocurrent
topology represent the protruding (receding) parts of the topology. In the three images is superimposed
the atomic structure of the topmost layers where the C (H) atoms are represented by grey (white) spheres
and the surface C atoms are depicted by bigger spheres; the green box delimits the surface unit cell.
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4.2.6 The C(110)-(2⇥1)H+3Hv-M1 surface

Atomic and electronic structure

Starting from C(110)-(2⇥1)H surface we extracted three H atoms. In order to get the lowest electronic
structure configurations, SP calculations were employed. Figure 4.16 displays the computed results of
the atomic and electronic structure of the C(110)-(2⇥1)H+3Hv-M1 surface where M1 denotes here the
magnetic solution 1. Figure 4.16(a) and (b) show the atomic reconstruction at the surface. After full
relaxation, the top layer L1 moves inward, the H-C bond legth is 1.09 Å and the H is attached to C with a
tilted angle of 52.3�. Interestingly the C atom of this site is found 0.21 Å higher with respect to the other
surface C atoms. Moreover, these atoms present a magnetization of +0.28, +0.46 and �0.26 µB. Figure
4.16(c) shows the computed SP-PDOS for layers L1, L2 and L3 corresponding to Figure 4.16(b). The
results exhibit a magnetic insulator state with a Eg = 0.73 eV. The electronic structure of L1 around EF is
mainly composed of C 2p states.

Simulated ultraviolet photoelectron spectroscopy UPS for the C(110)-(2⇥1)H+3Hv-M1 surface

Figure 4.17 displays the simulated UPS spectrum for C(110)-(2⇥1)H+3Hv-M1 surface using 40.82 eV
photons. The spectrum shows main peaks at ⇠-1.15 eV and -12.5 eV, and a broad peak with maximum
at -5.5 eV. The decomposed UPS shows a main contribution from C 2p states and only below -14 eV
the C 2s states are the main contribution; the H 1s contribution is negligible. Comparing this simulated
spectrum with the corresponding C(110) passivated by atomic deuterium54, our simulated UPS shows a
peak at -1.15 eV that is not observed in experiments. This peak comes from the surface atoms that present
magnetization of +0.28 and +0.46, both with a contribution of the C 2px and C 2pz states.

Simulated constant current mode STM images for the C(110)-(2⇥1)H+3Hv-M1 surface

Figure 4.18 displays the simulated constant current mode STM images and linescans for C(110)-(2⇥1)H+3Hv-
M1 surface. The STM topography for VBIAS = �0.49 V (Fig. 4.18(a)) shows bright columns along
y-direction centered at the subsurface C atoms located in between the topmost C atoms with H vacancies.
The corresponding linescan along A-A’ profile (Fig. 4.18(c)) reveals a corrugation of 1.25 Å. The STM
topography for VBIAS = +1.2 V (Fig. 4.18(b)) presents an arrangement of x-elongated bright spots that
are assigned to the bonding between the topmost C (with H vacancies) and subsurface C atoms along the
y-direction; the x-elongated dark spots are assigned to the C-H sites. The corresponding linescan along the
A-A’ profile (Fig. 4.18(d)) shows a corrugation of ⇠0.4 Å. Finally, the STM topography for VBIAS = +2.04
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Figure 4.16: SCAN+rVV10 computed atomic and electronic structure of C(110)-(2⇥1)H+3Hv-M1. (a)
top and (b) side view of the three first topmost layers; the C (H) atoms are represented by grey (white)
spheres and the surface C atoms are depicted by bigger spheres to contrast with the subsurface C atoms;
the blue and red arrows shows the magnetization in µB on the surface C atoms. (c) SP-PDOS of the three
surface layers, the surface has insulator character; the spin up (down) are plotted with positive (negative)
values on the DOS axis. The Fermi level EF is shifted to 0 eV and is represented by the vertical red line.
The ranges of integrated energies to obtain the STM images (a, b and e) are represented from Fermi level
to the dashed orange lines (1, 2 and 3).

V (Fig. 4.18(e)) exhibits bright columns along y-direction identified as the bonding between the topmost
and subsurface C atoms; the secondary bright columns are identified by subsurface C sites next to the
C-H sites along the x direction and the dark columns are located at the surface C atoms lying equidistant
between two C-H sites along the x-direction. The corresponding linescan along A-A’ profile (Fig. 4.18(f))
reveals a maximum corrugation of 1.2 Å.

4.2.7 The C(110)-(2⇥1)H+3Hv-M2 surface

Atomic and electronic structure

We found a second magnetic solution for this surface that is 2.96 meV/Å2 higher in energy with respect to
the M1 solution. Figure 4.19 displays the computed results of the atomic and electronic structure of the
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Figure 4.17: Simulated UPS spectrum for the C(110)-(2⇥1)H+3Hv-M1 surface using 40.82 eV photons.
The experimental spectrum for C(110) passivated by atomic deuterium obtained with the same photons
energy (gray line) was adapted from Ref. 54 and displayed for direct comparison.

C(110)-(2⇥1)H+3Hv-M2 surface. Figure 4.19(a) and (b) show the atomic reconstruction at the surface;
after full relaxation, the atomic configuration is practically the same as the M1 case (cf. Figs. 4.16 and
4.19). In this magnetic solution the surface C atoms present a magnetization of�0.23, +0.25 and+0.47 µB;
in comparison with the C(110)-(2⇥1)H+3Hv-M1 surface, two C atoms changed its magnetic orientation.
Figure 4.19(c) shows the computed SP-PDOS for layers L1, L2 and L3 corresponding to Figure 4.19(b);
the results shows a bangap opening of 0.86 eV. Similar to the M1 case, the electronic structure of L1 around
EF is mainly composed of C 2p states.

Simulated ultraviolet photoelectron spectroscopy UPS of the C(110)-(2⇥1)H+3Hv-M2 surface

Figure 4.20 displays the simulated UPS spectrum for C(110)-(2⇥1)H+3Hv-M2 surface using 40.82 eV
photons. The spectrum shows main peaks at ⇠-1.13 eV and -12.5 eV, and a broad peak with maximum
at -5.5 eV. The decomposed UPS shows a main contribution from C 2p states and only below -14 eV
the C 2s states are the main contribution; the H 1s contribution is negligible. Comparing the simulated
UPS of C(110)-(2⇥1)H+3Hv-M1 and this -M2, both spectra show almost no di�erences and both shows
peaks close to -1 eV that are not observed in the corresponding experimental UPS of C(110) passivated by
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Figure 4.18: Computed constant current mode STM image and linescan along the A-A’ profile for the
C(110)-(2⇥1)H+3Hv-M1 surface with VBIAS of (a, c) -0.49 V, occupied states and (b, d) +1.2 V, (e, f)
+2.04 V, unoccupied states. The STM images are colored such that bright (dark) colors of the isocurrent
topology represent the protruding (receding) parts of the topology. In the three images is superimposed
the atomic structure of the topmost layers where the C (H) atoms are represented by grey (white) spheres
and the surface C atoms are depicted by bigger spheres; the green box delimits the surface unit cell.
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Figure 4.19: SCAN+rVV10 computed atomic and electronic structure of C(110)-(2⇥1)H+3Hv-M2. (a)
top and (b) side view of the three first topmost layers; the C (H) atoms are represented by grey (white)
spheres and the surface C atoms are depicted by bigger spheres to contrast with the subsurface C atoms;
the blue and red arrows shows the magnetization in µB on the surface C atoms. (c) SP-PDOS of the three
surface layers, the surface has insulator character; the spin up (down) are plotted with positive (negative)
values on the DOS axis. The Fermi level EF is shifted to 0 eV and is represented by the vertical red line.
The ranges of integrated energies to obtain the STM images (a, b and e) are represented from Fermi level
to the dashed orange lines (1, 2 and 3).

atomic deuterium54. The peak observed at -1 eV, in this case, comes from the surface atoms that present
magnetization of �0.23 and +0.47, both with a contribution of the C 2px and C 2pz states.

Simulated constant current mode STM images of the C(110)-(2⇥1)H+3Hv-M2 surface

Figure 4.21 displays the simulated constant current mode STM images and linescans for C(110)-(2⇥1)H+3Hv-
M2 surface. The STM topography for VBIAS = �0.48 V (Fig. 4.21(a)) shows bright columns along
y-direction identified as the bonding between the topmost and subsurface C atoms. the darkest column is
assigned to the surface magnetic C atoms located in between two C-H sites along the x-direction. The
corresponding linescan along A-A’ profile (Fig. 4.21(c)) reveals a maximum corrugation of 1.4 Å. The
STM topography for VBIAS = +1.31 V (Fig. 4.21(b)) presents bright columns along y-direction identified
as the subsurface C atoms located in between the magnetic surface C atoms in the x-direction; the darker
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Figure 4.20: Simulated UPS spectrum for the C(110)-(2⇥1)H+3Hv-M2 surface using 40.82 eV photons.
The experimental spectrum obtained with the same photons energy (gray line) was adapted from Ref. 54
and displayed for direct comparison.

columns are assigned to the C-H sites along the y-direction. The corresponding linescan along A-A’
profile (Fig. 4.21(d)) shows a corrugation of 1.6 Å. Finally, the STM topography for VBIAS = +2.25 V
(Fig. 4.21(e)) exhibits bright columns that are assigned to the subsurface C atoms in alternating sites
along the y-direction; the darkest columns are assigned to the magnetic surface C atoms with alternating
magnetization along the y-direction. The corresponding linescan along A-A’ profile (Fig. 4.21(f)) reveals
a maximum corrugation of 2.5 Å.

4.3 The C(111) diamond surfaces

4.3.1 The C(111) surface energies and electronic properties

In the C(111) surface calculations, we explored di�erent surface structure reconstructions. In general, the
surfaces explored were the pristine and hydrogenated surfaces for di�erent cell sizes. The pristine surface
structure C(111)-(1⇥1) presents a variation in its structure with respect to the reconstruction C(111)-
(2⇥1), then we use both pristine structures as reference to explore the hydrogenated surface structures and
reconstructions.
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Figure 4.21: Computed constant current mode STM image and linescan along the A-A’ profile for the
C(110)-(2⇥1)H+3Hv-M2 surface with VBIAS of (a, c) -0.48 V, occupied states and (b, d) +1.31 V, (e, f)
+2.25 V, unoccupied states. The STM images are colored such that bright (dark) colors of the isocurrent
topology represent the protruding (receding) parts of the topology. In the three images is superimposed
the atomic structure of the topmost layers where the C (H) atoms are represented by grey (white) spheres
and the surface C atoms are depicted by bigger spheres; the green box delimits the surface unit cell.
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Figure 4.22 displays the SCAN+rVV10 computed surface energies � (cf. Eqs. 3.4 and 3.8) for all the
reconstructions and hydrogenated surfaces considered in this study.

Figure 4.22: SCAN+rVV10 computed surface energy of the C(111) surfaces considered in this study. The
di�erent colors (green and brown) denote the number of cell repetitions (1⇥1 and 2⇥1) in the x� and
y-direction. The structures that only have carbon atoms on the surface are represented by solid energy
lines; while the dashed lines represent the surfaces with carbon and hydrogen atoms. In the inset, FM
stands for ferromagnetic solution.

The most expected surface for µH < �5.1 eV is the pristine C(111)-(2⇥1) while for µH > �5.1 eV
is the fully hydrogenated surface C(111)-(1⇥1)H, both without magnetization; however, we observed the
most stable pristine surface for C(111)-(1⇥1) reconstructions is ferromagnetic. Based in these results,
the following sections will analyse in detail the electronic structure of C(111)-(2⇥1) and C(111)-(1⇥1)H
surfaces. Table 4.3 shows a summary of the work functions and energy bandgaps calculated in this study
for the (111) family of surfaces; notice the increased gap and decreased work function for the hydrogenated
surface.
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Table 4.3: SCAN+rVV10 computed work functions (�) and energy bandgaps (Eg) for the C(111) surfaces
considered in this study. Additionally keep in mind that computed here (experimental) Eg for bulk diamond
is 4.5 (5.4) eV.

Surface �(eV) Eg(eV)
C(111)-(2⇥1) 5.58 1.61
C(111)-(1⇥1)H 3.67 3.14

4.3.2 The C(111)-(2⇥1) surface

Atomic and electronic structure

Figure 4.23 displays the computed results of the atomic and electronic structure of the C(111)-(2⇥1)
surface. Figure 4.23(a) and (b) show a reconstruction similar to the chain-like atomic reconstruction
proposed by Pandy55 and ordered by bilayers at di�erent heights. After relaxation, the structure presents
tilted chains with intrachain buckling from second to bulk bilayers. There is a dimerization at the bilayer
L1 forming ‘zig-zag’ chains of C atoms with a C-C distance of 1.43 Å and a bond angle of 122.4�. The
surface geometry is very close to that of graphite, allowing the formation of a delocalised ⇡ bond, which
stabilises the surface. Notice the alternation of five-atom and seven-atom rings at the first bilayers, contrary
to the diamond bulk structure and the (110) surface reconstructions (Sec. 4.3). Figure 4.23(c) shows the
computed PDOS for bilayers L1, L2 and L3 corresponding to Figure 4.23(b); the results exhibit an insulator
state with Eg = 1.61 eV. The electronic structure of L1 around EF is mainly composed of C 2p states with
minor contributions of C 2s.

Simulated ultraviolet photoelectron spectroscopy UPS for the C(111)-(2⇥1) surface

Figure 4.24 displays the simulated UPS spectrum for C(111)-(2⇥1) surface using 40.82 eV photons which
correspond to photoelectrons generated within approximately 5.74 Å of the outermost surface layers—i.e.,
the 3 outermost atomic bilayers. The spectrum shows a broad peak centered around ⇠-5 eV, a shoulder
at -1.5 eV and other peak at -12 eV. The decomposed UPS suggest it has mainly a C 2p character and
below -13.5 eV C 2s states start to be the main contribution. The simulated UPS nicely reproduces the
main features of the corresponding experimental UPS spectrum by Francz et al. 54 obtained from a natural
diamond (111) with 40.82 eV photons after annealing at 1050 ºC, as depicted in the same Figure 4.24.
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Figure 4.23: SCAN+rVV10 computed atomic and electronic structure of C(111)-(2⇥1). (a) top and (b)
side view of the three first topmost bilayers; the C atoms are represented by grey spheres and the surface C
atoms are depicted by bigger spheres to contrast with the subsurface C atoms; the black lines delimits the
surface unit cell. (c) PDOS of the three surface layers, the surface has insulator character. The Fermi level
is shifted to 0 eV and is represented by the vertical red line. The ranges of integrated energies to obtain
the STM images (a and b) are represented from Fermi level to the dashed orange lines (1 and 2).

Simulated constant current mode STM images for the C(111)-(2⇥1) surface

Figure 4.25 displays the simulated constant current mode STM images and linescans for C(111)-(2⇥1)
surface. The STM topography for VBIAS = �0.76 V (Fig. 4.25(a)) shows bright (dark) columns that
are assigned to the topmost (subsurface) C atoms of same surface bilayer L1 along the y-direction. The
corresponding linescan along the A-A’ profile (Fig. 4.25(c)) shows a corrugation of ⇠0.24 Å. The STM
topography for VBIAS = +2.3 V (Fig. 4.25(b)), the zig-zag bright columns along y-direction are identified
as surface and subsurface C sites; the dark spots are located where either no surface nor subsurface C
atoms are present. The corresponding linescan along A-A’ profile (Fig. 4.25(d)) reveals a corrugation of
0.56 Å.
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Figure 4.24: Simulated UPS spectrum for the C(111)-(2⇥1) surface using 40.82 eV photons. The ex-
perimental spectrum obtained with the same photons energy (gray line) was adapted from Ref. 54 and
displayed for direct comparison.

4.3.3 The C(111)-(1⇥1)H surface

Atomic and electronic structure

Figure 4.26 displays the computed results of the atomic and electronic structure of the fully H covered
C(111)-(1⇥1)H surface. Figure 4.26(a) and (b) show the atomic reconstruction at the surface; after full
relaxation we notice the inward relaxation of the topmost L1 layer and the H atoms are vertically absorbed
on the surface C atoms with a bond length of 1.10 Å. Figure 4.26(c) shows the computed DOS for layers
L1, L2 and L3 corresponding to Figure 4.26(b); the system shows an insulating state with Eg = 3.14 eV.
The electronic structure at EF is mainly composed of C 2p states with minor contributions of C 2s and H
1s states.

Simulated ultraviolet photoelectron spectroscopy UPS of the C(111)-(1⇥1)H surface

Figure 4.27 displays the simulated UPS spectrum for C(111)-(1⇥1)H surface using 40.82 eV photons. The
spectrum shows a broad peak centered at ⇠-4.4 eV and other peak at -11.8 eV. The decomposed UPS
shows a C 2p main contribution and below -13.5 eV the C 2s states start to be the main character; the H
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Figure 4.25: Computed constant current mode STM image and linescan along the A-A’ profile for the
C(111)-(2⇥1) surface with VBIAS of (a, c) -0.76 V, occupied states and (b, d) +2.3 V, unoccupied states. The
STM images are colored such that bright (dark) colors of the isocurrent topology represent the protruding
(receding) parts of the topology. In both images is superimposed the atomic structure of the topmost
bilayer where the C atoms are represented by grey spheres and the surface C atoms are depicted by bigger
spheres; the green box delimits the surface unit cell.

1s states contribution is practically negligible. A direct comparison with the corresponding experimental
UPS obtained from a natural diamond (111) with 40.82 eV photons after atomic deuterium exposure54

shows close similarities.

Simulated constant current mode STM images of the C(111)-(1⇥1)H surface

Figure 4.28 displays the simulated constant current mode STM image and linescan for C(111)-(1⇥1)H
surface. The STM topography for VBIAS = �1.26 V and VBIAS = +3.6 V (Fig. 4.28(a, b)) shows an
hexagonal arrangement of bright spots that are assigned to the topmost C-H sites; the dark spots are
assigned to subsurface C sites. The corresponding linescans along the A-A’ profile (Fig. 4.28(c, d)) shows
maximum corrugations of ⇠0.006 Åand ⇠0.011 Å, respectively.
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Figure 4.26: SCAN+rVV10 computed atomic and electronic structure of C(111)-(1⇥1)H. (a) top and (b)
side view of the three first topmost layers; the C (H) atoms are represented by grey (white) spheres and the
surface C atoms are depicted by bigger spheres to contrast with the subsurface C atoms; the black lines
delimits the surface unit cell. (c) DOS of the three surface layers, the surface has insulator character. The
Fermi level is shifted to 0 eV and is represented by the vertical red line. The ranges of integrated energies
to obtain the STM images (a and b) are represented from Fermi level to the dashed orange lines (1 and 2).
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Figure 4.27: Simulated UPS spectrum for the C(111)-(1⇥1)H surface using 40.82 eV photons. The
experimental spectrum obtained with the same photons energy (gray line) was adapted from Ref. 54 and
displayed for direct comparison.
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Figure 4.28: Computed constant current mode STM image and linescan along the A-A’ profile for the
C(111)-(1⇥1)H surface with VBIAS of (a, c) -1.26 V, occupied states and (b, d) +3.6 V, unoccupied states.
The STM image is colored such that bright (dark) colors of the isocurrent topology represent the protruding
(receding) parts of the topology. In the image is superimposed the atomic structure of the topmost layers
where the C atoms are represented by grey spheres and the surface C atoms are depicted by bigger spheres;
the green box delimits the surface unit cell.



Chapter 5

Conclusions & Outlook

In this thesis, we have performed a detailed DFT study of the atomic and electronic structure of diamond
surface reconstructions with hydrogenation and carbon vacancies defects using a state-of-the-art functional
SCAN+rVV10.

In the first stage, we studied the electronic and mechanical properties of pristine bulk fcc diamond
crystal, finding semi-quantitative and qualitative agreement for the experimental data. The simulated
bulk structure was the starting point for designing an appropriate methodology for the study of pristine,
hydrogenated, and carbon vacancy diamond surfaces. Here, we were able to define the optimal vacuum
space in a diamond slab cell, the slab thickness needed to reproduce a surface, the energies of a passivated
surface, and the di�erent modifications for the diamond surface structures.

We proposed and simulated in total fourteen di�erent C(110) surface models. Based on the computed
surface energy, we were able to identity the most energetically favorable surface reconstructions; finding
a particular region of H chemical potentials (�5.8 < µH < �5.0 eV) where we find a variety of possible
hydrogenated reconstructions from which some of them show magnetic properties. We performed UPS
simulations for the most stable surface structures, the computed spectra show that the C(110)-(1⇥1) surface
reproduces qualitatively and semi-quantitatively the experimental UPS reported for the pristine surface.
Whereas the surface that best reproduces the experimental UPS reported for a hydrogenated diamond
surface is the metallic C(110)-(2⇥1)H+2Hv surface, even though the insulator C(110)-(2⇥1)H+2Hv-AFM
surface is energetically most stable and presents practically the same atomic geometry. We presume that
temperature e�ects might lead to a transition from the predicted AFM (insulator) to the non-magnetic
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(metallic) state—bear in mind that all our simulations are at zero Kelvin—therefore, due to temperature
e�ects, the experiments are reporting only the non-magnetic phase. Computing the constant current mode
STM images for the most stable surface structures, we found di�erent STM images between the C(110)-
(2⇥1)H+2Hv and C(110)-(2⇥1)H+2Hv-AFM surfaces; suggesting that the STM images clearly can resolve
the state of the surfaces, AFM or non-magnetic in this case. Based on the previous results, we suggest
that with experimental STM images for unoccupied states taken at low temperatures , i.e., liquid helium
temperatures, one could determine which surfaces are being seen in the experiment. Furthermore, using
scanning tunneling spectroscopy (STS), we can directly measure the existence of a bandgap and determine
which surface is present in the experiment.

Additionally, considering both C(110)-(2⇥1)H+3Hv-M1 and C(110)-(2⇥1)H+3Hv-M2 surfaces, they
present practically similar energies and simulated UPS spectra; these results that do not make possible the
di�erentiation between both surfaces. However, the STM images present clear di�erences between the M1
and M2 states, making the atomic structure resolution possible for this kind of surfaces.

Concerning the C(111) surface structures, we considered five surface models. The outcome of the
computed surface energies allow us to identify the most favorable surface reconstructions. We found that
the most stable surfaces are the C(111)-(2⇥1) and C(111)-(1⇥1)H surfaces. The UPS spectra for both
surfaces are reproduced in excellent agreement with respect to the experimental spectra. The STM images
for both surface structures are completely di�erent between them. In the case of the STM images for the
occupied and unoccupied states for the C(111)-(2⇥1) surface, presents di�erent STM images; while, for
the C(111)-(1⇥1)H surface, the STM images are basically similar.

Furthermore, it is essential to note that all the simulated STM images, except for surfaces C(110)-
(1⇥1)H and C(111)-(1⇥1)H, present images with a corrugation above 0.1 Å (See Fig. 4.9, 4.28). Which
means that all the surfaces, except the above mentioned, we predict that an appropriate STM experiment
might be able to revolve the atomic structure, this conclusion is supported considering that the best
experimental STM can obtain images with a maximum resolution along z-direction of 0.1 Å56.

Finally, we are aware that other reconstructions might be possible and escape our models but we are
confident that given the level of sophistication of the method used here, the results presented in this thesis
could encourage further experiments, specially considering the prediction of magnetic phases in the case
of C(110) surfaces.



Appendix A

VASP working principle

In order to understand how VASP performs the DFT calculations for a given system, we need to understand
the di�erent input and output files involved in the procedure. So, the following sub-sections detail the files
and their content.

A.0.1 VASP inputs

The input files give a complete description of all the parameters and what calculation procedures the
software should perform. In general, the minimum amount of input files are four: INCAR, POTCAR,
POSCAR, and KPOINTS.

1. INCAR: This is the most critical file because it determines which calculations do and how to perform
them. Usually, this is the primary source of errors that can produce false results, so we need to pay
close attention to this particular file. This file has a large set of parameters that can be set through tags
(always in capital letter) in each file line. Most tags have default values if they are not specified57. See
Figure C.1 for an example, and for more information about the possible tags, please visit the VASP
documentation on the following website: https://www.vasp.at/wiki/index.php/Category:
INCAR.

2. POTCAR: The POTCAR file contains the pseudopotentials and specific information (such as core
radius, number of valence electrons, atomic mass, and atomic configuration) about each atomic
species we are working to perform the calculations. If there are more than one atomic species in the
calculation, we should create just one POTCAR file with all the concatenated POTCAR files in the
same atomic order as in the POSCAR and INCAR files are specified. It is also essential to mention
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that with the POTCAR file present in the input files, it is not necessary to specify the valence and
mass in the INCAR file58.

3. POSCAR: This file contains the atomic structure of the system. The lattice constant, lattice vectors,
and ionic positions are the mainly used parameters to describe the structure59. See Figure C.2 for
an example.

4. KPOINTS: This file specifies the Bloch vectors (k-points) used to sample the Brillouin zone in the
calculation. The most convenient way to specify the k-points sampling is that VASP automatically
generates a regular mesh of points. The k-points generation mode that we use is the Monkhorst-Pack,
which is the flavor most commonly used to grid generation. This mode allows the user to supply the
subdivisions N1, N2, and N3 manually60. See Figure C.3 for an example.

A.0.2 VASP outputs

After performing the calculations with VASP, it will generate some output files with the results and input
parameters summaries. The number of output files depends on the achieved procedures according to
the input files. The most relevant files that commonly generate in most calculations are: CONTCAR,
CHGCAR, CHG, DOSCAR, OUTCAR, OSZICAR, and WAVECAR.

1. CONTCAR: This file contains the new atomic structure of the system after VASP calculations (such
as relaxations). The CONTCAR file is written in the same format as POSCAR, with the di�erence
that it is modified after each ionic step. If VASP stops or kills the calculations for some reason, it
should be possible to retake them from the CONTCAR file61.

2. CHGCAR and CHG: These files contain the lattice vectors, atomic coordinates, total charge density
multiplied by the volume, and a data array with the electron number density in all the cell. They can
be used to restart VASP from an existing charge density62,63.

3. DOSCAR: This file contains information about the total density of state (DOS), integrated DOS,
the partial density of state (PDOS), and Fermi energy level64. See Figure C.4 for an example.

4. OUTCAR: This file contains information about stress tensors, forces on the atoms, local charges,
magnetic moments, dielectric properties, information about the electronic steps, and a summary of
the used input parameters65.
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5. OSZICAR: This file gives information about convergence speed and the current step. Most specif-
ically, it gives information such as the number of electronic steps, current free energy values, total
energy after obtaining convergence, change in the free band structure, and energy values. All of
these in real-time while the calculations are performing66.

6. WAVECAR: This is a binary file that contains data about the number of bands, cut-o� energy, basis
vectors defining the supercell, eigenvalues, Fermi-weights, and wavefunctions. This file provides
starting wavefunctions for a continuation job67.





Appendix B

bSKAN working principle

In order to understand how bSKAN simulates the STM images for a given system, we need to understand
the di�erent inputs and outputs files involved in the procedure. So, the following sub-sections detail the
files and the kind of content of each one of them. It is necessary to mention that, in the same way as
VASP, all input and output files are written in capital letters, where the first two or three letters specify
the information that it contains. Some examples are: all files related to the Kohn-Sham states begin with
WAV-, files describing the geometry with A-, input parameters are contained in files named IN-, the output
in files OUT-. Current maps are stored in CUR- files, while plots generally are called PLOT or PLT46.

B.0.1 bSKAN inputs

The bSKAN input files give a complete description of all the parameters and the program’s calculation
procedures to realize. In this way, we use four essential input files always present in any calculation.
They are INCAR, INSCAN, WAVSAMPLE, and ASAMPLE. Considering that bSKAN can cooperate
with VASP, we can use VASP to calculate the Kohn-Sham states and use them to perform the bSKAN
calculation, as we will see in the following descriptions46.

1. INCAR: This file has the same form and purposes as in VASP calculations, just with the di�erence
of an additional line that describes some STM information needed. Information such as the range
of energy values of interest according to the DOS, range of atomic positions in the z-direction, and
the Fermi energy level.

2. INSCAN: This file contains all the input parameters needed for the simulation. It has similar form
and purposes as the INCAR file. See Figure C.5 for an example and visit the following reference46
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for tags documentation.

3. WAVSAMPLE: This file contains the Kohn-Sham states of the surface and can be created using the
OUTCAR file resulting from VASP calculations.

4. ASAMPLE: This file contains the atomic position of surface atoms and can be created using the
CONTCAR file resulting from VASP calculations. Also, the file has the same structural form as
CONTCAR file.

B.0.2 bSKAN outputs

Output files are either for information on the run. It contains the simulation data or an extracted sample
of the simulation data for visualizing. Commonly, there are four output file essentials in any calculation:
OUTSCAN, CURMAT, and CURSAVE46. However, in our case, we also obtained an additional file called
CURRENT.

1. OUTSCAN: This file contains all the output information of the STM simulations. It is similar to
the OUTCAR file on VASP.

2. CURMAT: This is a binary file that contains the current matrix of a topographic simulation.

3. CURSAVE: This file contains the current spectrum or matrix in ASCII format.

4. CURRENT:This file contains a current array in OpenDX format. This file is used to build the
STM image with its corrugated structure. This image is constructed with the help of Wolfram
Mathematica software.



Appendix C

Input and output files examples

Examples of input and output files used in this work.

1 SYSTEM = Diamond

2 #%%%%%%%%%% ELECTRONIC %%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 ISMEAR = -5

4 LREAL = auto

5 PREC = Accurate

6 ENCUT = 1000

7 ALGO = N

8 LORBIT = 11

9 AMIN = 0.01

10 #%%%%%%%%%% FUNCTIONAL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11 METAGGA = SCAN

12 LUSE_VDW = .TRUE.

13 BPARAM = 15.7

14 LMIXTAU = T

15 LASPH = .TRUE.

16 #%%%%%%%%%% DIPOLE CORRECTIONS %%%%%%%%%%%%%%%%%%%%%%%

17 IDIPOL=3

18 LDIPOL=.TRUE.

Figure C.1: Example of a typical INCAR file. This text shows various tags used to describe the electronic
relaxations, functional, and dipole corrections used to perform a VASP calculation. Also, it is necessary
to mention that the symbols # or ! are used to set comments.
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1 Hydrogenated Diamond Surface

2 1.00000000000000

3 2.5095000000000001 0.0000000000000000 0.0000000000000000

4 -1.2547499999999994 2.1732907507970491 0.0000000000000000

5 0.0000000000000000 0.0000000000000000 28.3369999999999997

6 C H

7 12 2

8 Selective dynamics

9 Direct

10 0.3333160593095900 0.6666839406904019 0.0572710929269463 T T T

11 0.9999876837654681 0.0000123162345344 0.1289305222226718 T T T

12 0.6666611535852203 0.3333388464147730 0.2012149232025754 T T T

13 0.3333372232367867 0.6666627767632129 0.2733859867420120 T T T

14 0.0000097478890398 0.9999902521109592 0.3456246052817470 T T T

15 0.6666805808529412 0.3333194191470510 0.4180480105683786 T T T

16 0.9999802752710698 0.0000197247289254 0.0744242348201843 T T T

17 0.6666552809525793 0.3333447190474138 0.1470025819060418 T T T

18 0.3333328575784064 0.6666671424215780 0.2192374109983557 T T T

19 0.0000070811729534 0.9999929188270432 0.2914575282609311 T T T

20 0.6666797288563177 0.3333202711436756 0.3636187770101301 T T T

21 0.3333460448829265 0.6666539551170733 0.4351640584656698 T T T

22 0.3333540273908592 0.6666459726091394 0.4741044039903367 T T T

23 0.3333132496650258 0.6666867503349664 0.0183425281914370 T T T

Figure C.2: Example for the POSCAR file. This text shows the lattice information of the C(111)-(1⇥1)H
surface structure with 6 layers and 15 Å vacuum. The first line is treated as a comment, so here we can
write the name of the system we are studying. The second is the scaling constant constant, which is used
to scale the lattice vectors and all the atomic coordinates; If this value is negative, it becomes the volume
of the cell. The third to the fifth lines specify the lattice vectors in Å. The sixth line defines the system
elements; it should have the same species organization as the POTCAR file. The seventh line gives the
number of atoms per atomic species (one number for each species). The eighth allows restriction on the
movement of atoms (cf. the T at the end of lines 10 and below). The ninth line indicates if the atomic
coordinates will be in direct (fractional) or cartesian coordinates. Finally, from the tenth to the last line,
the atomic positions are provided according to the lattice geometry defined on ninth line59.
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1 Diamond sf110-1x1 Dk=0.042 Ang^-1

2 Gamma

3 7 9 1

4 0 0 0

Figure C.3: Example for the KPOINTS file. This text shows the KPOINTS file used for the C(110)-(1⇥1)
surface structure. The first line is treated as a comment, so we can label the system we are studying in this
line. The second specifies the number of k-points, if 0 then the mesh will be generated automatically. The
third line specifies a Monkhorst-Pack gamma-centered grid generation. The fourth line defines the N1, N2,
and N3 subdivisions along the reciprocal lattice vectors. Finally, the last line specifies the optional shift of
the mesh60.

1 38 38 1 0

2 0.8856036E+01 0.3549000E-09 0.2509500E-09 0.3778590E-08 0.5000000E-15

3 1.000000000000000E-004

4 CAR

5 Diamond

6 15.00000000 -5.00000000 4001 6.09157233 1.00000000

7 -5.000 0.5869E+01 0.5868E+02

8 -4.995 0.5818E+01 0.5871E+02

9 -4.990 0.5801E+01 0.5873E+02

10 -4.985 0.5784E+01 0.5876E+02

11 -4.980 0.5766E+01 0.5879E+02

Figure C.4: Example of a DOSCAR output file. From the first line hows four numbers corresponding to
the number of ions (including empty spheres), number of ions, 0 (no PDOS) or1 (for PDOS). The second
line contains five numbers corresponding to the unit cell volume in Å3, length of the basis vectors (a,b,c),
and the POTIM tag. The third line specifies the temperature value. The fourth line gives the name of
the system as given by SYSTEM in the INCAR file. The sixth line gives five values corresponding to the
energy range in which the DOS is given, the number of grid points on which the DOS is evaluated, Fermi
energy level, and the value of 1. Finally, from the seventh to the last line is given a list of values that
correspond to energy, DOS, and integrated DOS64.
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1 #STM simulation for 111 diamond 2x1

2 TERSOFF

3 # NUMERICAL

4 LIMITS = -0.01 0.01

5 GRIDPOINTS = 150

6 BIAS VOLTAGE = 4.5

7 NKELDYSH = 1

8 PIVOT = 0.0000 0.0000

9 TOP = 0.0000 0.0000

10 ZVACUUM = 25.9575

11 CURRENT = 0.0

Figure C.5: Example for the INSCAN file. This text shows a typical INSCAN file used to simulate the
STM images for the C(111)-(2⇥1) surface structure.



Appendix D

Computed work functions for all the
selected surfaces

Figure D.1: SCAN+rVV10 computed work function for the C(110)-(1⇥1) surface. The average potential
in z-direction is represented by the blue line; while the Fermi level EF is represented by the horizontal red
line.

87



88

Figure D.2: SCAN+rVV10 computed work function for the C(110)-(1⇥1)H surface. The average potential
in z-direction is represented by the blue line; while the Fermi level EF is represented by the horizontal red
line.

Figure D.3: SCAN+rVV10 computed work function for the C(110)-(1⇥1)H+2Hv surface. The average
potential in z-direction is represented by the blue line; while the Fermi level EF is represented by the
horizontal red line.
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Figure D.4: SCAN+rVV10 computed work function for the C(110)-(1⇥1)H+2Hv-AFM surface. The
average potential in z-direction is represented by the blue line; while the Fermi level EF is represented by
the horizontal red line.

Figure D.5: SCAN+rVV10 computed work function for the C(110)-(1⇥1)H+3Hv-M1 surface. The average
potential in z-direction is represented by the blue line; while the Fermi level EF is represented by the
horizontal red line.
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Figure D.6: SCAN+rVV10 computed work function for the C(110)-(1⇥1)H+3Hv-M2 surface. The average
potential in z-direction is represented by the blue line; while the Fermi level EF is represented by the
horizontal red line.

Figure D.7: SCAN+rVV10 computed work function for the C(111)-(2⇥1) surface. The average potential
in z-direction is represented by the blue line; while the Fermi level EF is represented by the horizontal red
line.
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Figure D.8: SCAN+rVV10 computed work function for the C(111)-(1⇥1)H surface. The average potential
in z-direction is represented by the blue line; while the Fermi level EF is represented by the horizontal red
line.





Appendix E

Computed PDOS for all the selected
surfaces

Figure E.1: Detailed PDOS for the C(110)-(1⇥1) surface computed with SCAN+rVV10. The horizontal
axis is the E � EF(eV), and the vertical axis are the states/eV.
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Figure E.2: Detailed PDOS for the C(110)-(1⇥1)H surface computed with SCAN+rVV10. The horizontal
axis is the E � EF(eV), and the vertical axis are the states/eV.
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Figure E.3: Detailed PDOS for the C(110)-(1⇥1)H+2Hv surface computed with SCAN+rVV10. The
horizontal axis is the E � EF(eV), and the vertical axis are the states/eV.
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Figure E.4: Detailed PDOS for the C(110)-(1⇥1)H+2Hv-AFM surface computed with SCAN+rVV10.
The horizontal axis is the E � EF(eV), and the vertical axis are the states/eV.
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Figure E.5: Detailed PDOS for the C(110)-(1⇥1)H+3Hv-M1 surface computed with SCAN+rVV10. The
horizontal axis is the E � EF(eV), and the vertical axis are the states/eV.
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Figure E.6: Detailed PDOS for the C(110)-(1⇥1)H+3Hv-M2 surface computed with SCAN+rVV10. The
horizontal axis is the E � EF(eV), and the vertical axis are the states/eV.
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Figure E.7: Detailed PDOS for the C(111)-(2⇥1) surface computed with SCAN+rVV10. The horizontal
axis is the E � EF(eV), and the vertical axis are the states/eV.
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Figure E.8: Detailed PDOS for the C(111)-(1⇥1)H surface computed with SCAN+rVV10. The horizontal
axis is the E � EF(eV), and the vertical axis are the states/eV.



Appendix F

IMFP and Cross-section used for UPS
spectra simulations

Figure F.1: Inelastic mean free path (IMFP) fitting for the data obtained from NIST software51.
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Figure F.2: Photoionization cross-section interpolations for the C and H atoms. The vertical dashed
line is located at 40.82 eV, which is the energy used to simulate the UPS spectra. The data used in this
interpolation was taken from Yeh and Lindau43.
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