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Resumen 

 El origen del universo ha sido una gran pregunta a lo largo de la existencia humana. El 

modelo del Big Bang ha sido el primer avance científico que ha tratado de responder esta 

pregunta. Luego, vino lo que se conoce como Cosmología Inflacionaria para resolver ‘the fine-

tuning problems’ que emergían de la teoría clásica del BB. A la inflación se entiende como una 

expansión acelerada que ocurre en el universo temprano, y a pesar de su gran ayuda para entender 

su comportamiento, todavía no es un model que explique la inflación satisfactoriamente. La 

manera de darnos cuenta la validez del modelo es comparando los valores calculados con los 

valores observados experimentalmente. Así, para este presente trabajo se utilizará el modelo 

inflacionario propuesto por Starobinsky el cual es el más aceptado por los resultados que arroja. 

Con este modelo calculamos el espectro de potencia para perturbaciones tensoriales usando tres 

métodos diferentes, integración numérica, aproximación slow-roll y aproximación uniforme, 

haciendo más énfasis en el tercero. El espectro de potencia nos permitirá estimar cantidades 

observables como el índice tensorial espectral nT y la relación tensor-escalar r. Demostraremos 

que la aproximación slow-roll da un mejor resultado cuando evaluamos el espectro de potencia. 

Pero, cuando calculamos el parámetro r, la precisión de la aproximación uniforme se compara 

favorablemente con los resultados numéricos. 

 

Palabras claves: Cosmología Inflacionaria, Perturbaciones Cosmológicas, Modelo de 

Starobinsky, Espectro de Potencia, Integración Numérica, Aproximación Slow-Roll, Método de 

Aproximación Uniforme. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Abstract 

The origin of the universe has been a big question along human existence. The Big Bang 

model was the first scientific step in order to answer this question. Then, Inflationary Cosmology 

comes to solve the fine-tuning problems emerging from the classical theory of the BB. Inflation 

is understood as an exponential expansion that occurred in the early universe, and despite its great 

help in order to understand its behavior there is still no model that explains it satisfactorily. The 

way to realize the validity of the model is comparing the calculated values with the experimentally 

observed values. Then, this work will make use of the Starobinsky model which is the most 

accepted model for the results it yields, in order to calculate the power spectrum of tensor 

perturbations by three different methods, numerical integration, slow-roll approximation and 

uniform approximation, making more emphasis in the third one. By consequence, we can also 

calculate the tensor spectral index nT and the tensor-to-scalar ratio r. We will show that the slow-

roll method gives a better result when we evaluate the power spectrum. But, when we calculate r 

the accuracy of the uniform approximation compares favorably with the numerical results.  

 

Keywords: Inflationary Cosmology, Cosmological Perturbations, Starobinsky Model, Power 

Spectrum, Numerical Integration, Slow-Roll Approximation, Uniform Approximation Method. 
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Chapter 1

Introduction

The need to explain what the universe is has moved humanity since its inception, and thanks to the technological
development of the last century we have been able to glimpse certain doubts. The modern point of view of the
universe is evidenced by the cosmological principle, which states that, at large scales the universe is homogeneous
and isotropic1, it means that if we compare two different space regions we realize that have very similar composition.
On the other hand, theoretical developments have also allowed a better understanding, as General Relativity by
Albert Einstein2 3. The Big Bang idea which originates from GR also broke in strongly, forging the beginning of
Cosmology as such. The Big Bang states that the universe was created from a hot, dense and infinitesimally small
point in the vacuum space. After that, the universe began to expand over the space and with it also cooled, taking
place to a process where the very light elements were created, known as nucleosynthesis4. The first observational
step for consolidating this theory is the expansion of the universe described by Hubble5 while measuring the redshift
of distant galaxies. It is established that galaxies are moving away from each other and, in general, that the universe
was expanding. Other observational fact predicted by the Big Bang is the existence of a remnant that evidences
this process known as the Cosmic Microwave Background (CMB)6 discovered in 1964. By these facts, the Big
Bang model assures a correct description for the universe creation. However, this is not a complete model, in fact
it has certain drawbacks related to the initial conditions7 that gave rise to the universe and are summarized in the
“Fine-tuning problems”. In this context Alan Guth proposed a way to solve these problems, known as Inflation8

that consists in a short period of time in the early universe where there was a huge and astonishing expansion. This
idea not only solved these problems but also helped explain the CMB anisotropies or the large-scale structure of the
Universe. It also generates a spectrum of density perturbations and predicts primordial gravitational waves. For
inflation take place, the energy density of the Universe was dominated by the potential of the scalar field. To evaluate
the potential useful, we should calculate the power spectrum and compare with the experimental measurements of
CMB anisotropies9. The present work makes use of the Starobinsky potential to calculate the tensor power spectrum
of cosmological perturbations.

1



2 1.1. THE BIG BANG THEORY

1.1 The Big Bang theory
Nowadays, if we think about the Big Bang theory we intrinsically assume the inflation era. But now we will present
a summary about the initial idea of this theory, called the Hot Big Bang. For this, it is important start with the
Cosmological Principle which had been established thanks to observations. Then, the number of galaxies per unit
volume appear to be uniform throughout large space regions (homogeneity), and the number of galaxies per unit
solid angle appears to be the same in all directions (isotropy)2. To reproduce this features, Friedman10 proposed a
simple model as a solution of the Einstein field equations, and then Robertson and Walker introduce the part of the
cosmological principle. Then, an expanding (or contracting) homogeneous and isotropic Universe is described by
the Friedmann-Lamaitre-Robertson-Walker (FLRW) metric,

ds2 ≡ gµν dxµdxν = −dt2 + a2(t)
[

dr2

1 − κr2 + r2 (dθ2 + sin2θ dφ2)
]
, (1.1)

expressed in polar coordinates where t, r, θ and φ are the comoving coordinates. The constant κ describes the
curvature of the Universe. The variable a is the scale factor and explain the expansion of the Universe. As is known,
the expansion is due to the deformation of the space-time itself, but not by the motion of its constituents, making
the distinction between physical distance, x, and comoving distance, r, necessary. The relationship between both is
given by,

x(t) = a(t) r. (1.2)

However, the properties of the constituents, like the energy density ρ(t) or the pressure p(t), also play an important
role in order to explain the expansion. They are related by a equation of state and the classic example are,

p =
ρ

3
, (1.3)

for radiation, and
p = 0, (1.4)

for non-relativistic matter. However, the behaviour of the constituents could be more complex like that.
The dynamics (expansion or contraction) of the Universe is described by solving the Einstein Field Equations,

Gµν + Λ gµν = 8 π G Tµν, (1.5)

where G is the universal gravitational constant, gµν is the metric tensor and Gµν is the Einstein tensor. The
cosmological constant Λ is related to the dark energy. Tµν is the energy-momentum tensor which describes the
properties of the constituents of the Universe. As is known, this equation relates the geometry (left hand side) of
the space with the matter (right hand side) of the Universe. To solve the left hand side of the equation the line
element described in Eq.(1.1) is used. While to solve the right hand side is necessary to assume that the Universe is
a collection of N perfect fluids, means that is uniform along all the space. Then, the energy-momentum tensor is,

Tµν =

i=N∑
i=1

Tµ(i)
ν =

i=N∑
i=1

{[
ρi(t) + pi(t)

]
uµuν + pi(t) gµν

}
, (1.6)
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where pi is the pressure and ρi is the density of the i perfect fluid, both depending on time. The vector uµ is a four
velocity in comoving coordinates given by u = (1, 0, 0, 0) and satisfies the relation uµuµ = −1. In order to determine
the cosmological evolution and to solve the Einstein equations, let to assume the properties of the fluid represented
in the equation of state pi = ωiρi, where ω is a constant which depends on the kind of matter. Then, the obtained
equation after solving the Einstein field equations are two coupled nonlinear differential equations,

ȧ2

a2 +
κ

a2 =
8πG
3Mpl

N∑
i=1

ρi +
Λ

3
, (1.7)

ä
a

= −
4πG
3Mpl

N∑
i=1

(ρi + 3pi) +
Λ

3
, (1.8)

where overdots are time derivatives and Mpl is the reduced Planck mass. In order to make these equations more
manageable we will assume that the Universe is mainly filled with just one fluid, we vanish the cosmological constant
and we say that the curvature of the Universe is κ = 0 as observations suggest. Thus, we get the Friedmann equation,( ȧ

a

)2
≡ H2 =

8πG
3

ρ, (1.9)

and the acceleration equation,
ä
a

= −
4πG

3
(ρ + 3p), (1.10)

where H is the Hubble parameter. Combining both equations we can prove that the continuity equation is fulfilled
which assures the energy conservation,

ρ̇ + 3H (ρ + p) = 0. (1.11)

This equation can be also obtained from the conservation of the energy-momentum tensor T µν
;ν = 0. In order to solve

it we integrate the conservation equation (1.11) which show the dynamics of the density,

p(t) = p f

(a f

a

)3(1+ω)
, (1.12)

where p f = p(t f ) and a f = a(t f ). Substituting in the Friedmann equation (1.7), we get

ȧ2

a2 =
8 π G ρ f

3

(a f

a

)3(1+ω)
, (1.13)

and solving we get the scale factor,

a(t) = a f

[
3
2

(1 + ω) H f (t − t f ) + 1
] 2

3(1+ω)

. (1.14)

From this equation we realize that the scale factor vanishes when t = tBB = t f − 2/[3(1 + ω)H f ]. According to the
current knowledge, it is unimaginable that a time existed prior to the Big Bang, therefore we say that time begins at
tBB. For convenience, the scale factor is rewritten in terms of tBB and fix tBB = 0, then the scale factor has the form

a(t) = a f

(
t
t f

) 2
3(1+ω)

. (1.15)



4 1.2. FINE-TUNING PROBLEMS

This equation shows that the scale factor depends on the constant ω which is determined by the constituents of the
Universe. In order to analyze this constituents we should establish the epoch to treat. There are three predominant
epochs where a different constituent dominates each one. To cross from one epoch to another, the process must be
smooth, it means that a and H must be continuous along time. The first epoch was dominated by radiation and the
corresponding equation of state is ω = 1/3, giving that the scale factor is a ∝ t1/2. The second epoch (current one)
is dominated by matter, described by the equation of state ω = 0, then a ∝ t2/3. Finally, dark energy dominates
the third epoch, described by ω = −1 and the scale factor is ill-defined because we have a exponential solution,
a(t) = a f exp[H f (t − t f )], known as the Sitter solution.

When some types of matter coexist, to quantify the contribution of each component to the total energy density
of the universe, the density parameter of component i is defined as

Ω(i) =
ρ(i)

0

ρcr
, (1.16)

where ρ(i)
0 is the density of the components i (baryons, photons, ...) and ρcr is the critical energy density that

corresponds to the value of a spatially flat universe (k = 0) and has the form

ρcr(t) =
3M2

plH
2
0

8πG
, (1.17)

where H0 is the current Hubble constant. By consequence the total density parameter is

ΩT =
∑

i

Ωi. (1.18)

This equation, (1.18) shows the fraction that contributes each material to the total energy density of the Universe.

1.2 Fine-Tuning Problems
Despite the fact that the cosmological model explained above, the BB model, describes the dynamics of the universe
on a large scale with an acceptable precision, it raises some problems in explaining various observational facts. We
will explore three of them. For this, we will follow the textbooks1 7.

1.2.1 Flatness Problem

In order to analyze this problem, we are going to rewrite the Friedmann equation (1.9) in terms of the critical energy
density ρcr(t) and the density parameter Ω(t), then

|ΩT − 1| =
|κ|

a2H2 . (1.19)

During the Big Bang model described above, a2H2 is decreasing, and so Ω moves away from one, for example for
an Universe dominated by matter |Ω − 1| ∝ t2/3, and in an Universe dominated by radiation |Ω − 1| ∝ t, where the
solutions apply provided Ω is far to one.
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In order to understand more mathematically, we review this problem using the notes of Martin7. So, we replace
the equation (1.12) in (1.19),

ΩT =
H2

o

H2

∑
i

Ωo
i

(ao

a

)3(1+ωi)
, (1.20)

where the subscript or superscript o means that is about the present time. Now, we use equation (1.19) assuming an
approximately flat Universe,

ΩT − 1 =

(Ho

H

)2

(Ωo
t − 1)

(ao

a

)2
. (1.21)

Combining (1.20) and (1.21) we find that

ΩT (t) =

∑
i Ωo

i

(
ao
a

)3(1+ωi)

∑
i Ωo

i

(
ao
a

)3(1+ωi)
− (Ωo

T − 1)
(

ao
a

)2 . (1.22)

Considering the two known epoch, matter and radiation the equation turns in,

ΩT (t) =

[
1 −

(
a2

ao

)
Ωo

T − 1
aΩo

m aoΩo
rad

]−1

, (1.23)

and doing a Taylor expansion and rearranging we get,

Ωo
T − 1 = (ΩT (z) − 1)

[
(z + 1) Ωo

m + (z + 1)2 Ωo
rad

]
. (1.24)

We know from the data obtained by Planck mission published in 201811 that |Ωo
T − 1| ≤ 0.003. To know the scope

of this results we analyze for different scenarios. For Ω = 1, the solution is an unstable critical point. This leads us
to estimate upper limits that this quantity should have throughout the life of the Universe. For a larger redshift z (go
backwards in time), Ωo

T − 1 must be less and less to satisfy the observational condition. For example, for Big Bang
Nucleosynthesis where t ∼ 1s we have |Ω−1| < O(10−16). For the Planck time t ∼ 10−43s we have |Ω−1| < O(10−60).
Then, the question is why the initial energy density of the universe was so finely tuned to its critical value. In order
to answer this question, a new paradigm which has this features is proposed.

1.2.2 Horizon Problem

This problem arises as a consequence of the finite age of the Universe, t0. It means that we can only see the Universe
up to such a distance that its light has had time to reach us. For further distant regions, the light would take a time
t > t0 to reach us, therefore the information from these regions would not be received yet, that is, these regions are
outside our light cone. Then, in the Universe there are regions which are not causally connected between them, that
means that no event that happens in one region will affect the other. This behaviour also affects to the temperature
which looks almost the same along all the space. The better explanation is that the Universe has indeed reached a
thermal equilibrium state, but unfortunately in the Big Bang theory this is not possible.

As we saw in the previous subsection, the expansion of an Universe dominated by matter like the current one
has the form a(t) ∝ t2/3. This implies that the particle horizon (horizon that delimits the causally connected regions
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after a given time) along the time has been increasing, so that now there are causally connected regions that in the
past were not. Specifically, no pair of points separated by more than 1.7 degrees would have been in causal contact
at the moment of their formation12.

We can evidence this behaviour in the CMBmeasurement. According to the Big Bang theory, the CMB is formed
by causally disconnected regions, but experimentally it has been seen that the CMB has the same characteristics in
all space. To explain this property it should be consider as an initial condition of the Universe, but it is a trivial
answer. In order to analyze the problem, consider the size of a causally connected sphere on the CMB which was
established when matter decoupled from radiation at the last scattering surface (lss). Then, the angular size of the
horizon at lss is given by

δθ =

[∫ t0

tlss

dτ
a(τ)

]−1 ∫ tlss

0

dτ
a(τ)

. (1.25)

To solve this equation we should know the behaviour of the scale factor a(t), but according to the Big Bang
model is not possible. However, an approximate solution is given by equation (1.14). Then, it is important to
explore the behaviour of the scale factor in each phase of the Universe evolution, using the following time scale
0 < ti < tend < teq < tde < t0. Phase I correspond to 0 < t < ti when radiation dominates the Universe and the scale
factor is a(t) = ai (2Hi t)1/2, where ai and Hi are free parameters. At t = 0 (Big Bang) the scale factor vanishes and
the scalar curvature blows up. In phase II, the scale factor is given by equation (1.14) for ti < t < tend, where the
behaviour of a(t) changes but staying continuous during the transition. The quantity ω is a free parameter related
to an equation of state of matter. Phase III has similar features with Phase I where dominates the radiation and the
scale factor is a(t) = aend [2Hend (t − tend) + 1]1/2 for times tend < t < teq. In Phase IV where matter dominates the
Universe composition the scale factor is a(t) = aeq [(3/2) Heq (t − teq) + 1]2/3 for teq < t < tde. And the last Phase V
is dominated by the cosmological constant with a scale factor of the form a(t) = ade eH0 (t−tde) valid until the present
time tde < t < t0.Then, we start solving the integrals by the denominator of equation (1.25), then the integral reads∫ t0

tlss

dτ
a(τ)

=

∫ tde

tlss

dτ
a(τ)

+

∫ t0

tde

dτ
a(τ)

,

=
1

aeq

∫ tde

tlss

dτ
[
3
2

Heq(τ − τeq + 1
]−2/3

+
1

ade

∫ t0

tde

dτ
[
e−H0(τ−τde)

]
,

=
2

aeqHeq

(
a0

aeq

)1/2 (ade

a0

)1/2

−

(
alss

a0

)1/2 +
1

a0H0

(
a0

ade
− 1

)
.

(1.26)

Applying the chain rule to the Hubble parameter at this epoch, we have

2
aeqHeq

=
2

a0H0

a0H0

adeHde

adeHde

aeqHeq
=

2
a0H0

a0

ade

(
ade

a0

)−1/2 (
a0

aeq

)−1/2

. (1.27)

Replacing in (1.26) we get the integral in terms of scale factor ratios at different times,∫ t0

tlss

dτ
a(τ)

=
2

a0H0

(
a0

ade

)3/2 (ade

a0

)1/2

−

(
alss

a0

)1/2 +
1

a0H0

(
a0

ade
− 1

)
. (1.28)
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In order to solve the second part of equation (1.25), the numerator, we apply the same procedure as before,∫ tlss

0

dτ
a(τ)

=

∫ ti

0

dτ
a(τ)

+

∫ tend

ti

dτ
a(τ)

+

∫ teq

tend

dτ
a(τ)

+

∫ tlss

teq

dτ
a(τ)

, (1.29)

and, using the piece-wise solution described before and replacing the respective scale factors, we have∫ tlss

0

dτ
a(τ)

=
1

aiHi
+

1
aiHi

2
1 + 3ω

(aend

ai

) 1+3ω
2

− 1

 +
1

aendHend

(
aeq

aend
− 1

)
+

2
aeqHeq

(alss

aeq

)1/2

− 1

 . (1.30)

Now,we apply again a chain rulewhere 1/(aiHi) = 1/[(aendHend)(ai/aend)(1+3ω)/2] and1/(aendHend) = 1/[(aeqHeq)(aeq/aend)−1]
given, ∫ tlss

0

dτ
a(τ)

=
1

aeqHeq

1 +
1 − 3ω
1 + 3ω

aend

aeq
−

1 − 3ω
1 + 3ω

aend

aeq

(
ai

aend

) 1+3ω
2

 +
2

aeqHeq

(alss

aeq

)1/2

− 1

 . (1.31)

Finally, we should do a clarification about the phases. The Phase II was introduced to explain the dominance of the
fluid in the Universe with the equation of state ω, therefore in the MCE model this phase is absent, being Phase I, II
and III almost the same. Then, we say that ai = aend, and approximating a0 ' ade and alss ' aeq, so we get

δθ '
1
2

(1 + zlss)−1/2 ' 0.0138. (1.32)

This means that the sky should be formed by many patches of different temperatures each one. But if we see this
property in the CMB we can identify because everything looks similar at large scales, the anisotropies appears just
in order to 10−5. The solution that arises from this problem is the inflation which supposes a very early Universe
in causal contact and after an accelerated expansion period this contact is break down. Then, the homogeneity that
existed previously is printed when the CMB was formed.

1.2.3 Monopoles Problem

The BB model with help of particle physics assumes the spontaneous symmetry breaking of the vacuum that took
place when the temperature of the universe was of the order of T ∼ 1016GeV . From this process, magnetic monopoles
must have been produced which should be easily observed in the current universe and even more should govern it
due to its great density that would dominate the total density. However, these relics have not been observed to date.

Inflation could dilute the monopoles by its accelerated expansion period, since the energy density during inflation
falls more slowly than the relic density. Then, relic density quickly becomes negligible and does not dominate.

1.3 General and Specific Objectives
The principal objective of the present work is to evaluate a specific model for inflation proposed by Starobinsky13

and to calculate, using the uniform approximation method up to the second order, the tensor power spectrum of
cosmological perturbations. This result will be compared with the numerical method (exact result) and the slow-roll
method (standard in inflationary cosmology).
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The Chapter 2 contains the theoretical background necessary to our discussion. Beginning with the inflationary
model proposed by Guth8 and how this idea can solve the fine-tuning problems. Also, the slow-roll approximation
is revised which is the most useful technique in Inflationary Cosmology. Then, both the Starobinsky model that
currently best explains the observations and the tensor cosmological perturbations are also introduced. At the
end of this chapter we explore a semi-classical method to solve the equation of tensor perturbations since it is a
second-order differential equation that has no real solution. The method is known as uniform approximation and is
the main contribution of this work to the scientific community, how an alternative method to solve the cosmological
perturbations equation. In Chapter 3 the results are presented. Both the results of background dynamics, as the
solutions to the Mukhanov-Sasaki equation and the full power spectrum of cosmological perturbations are presented
with its respective spectral index. The Chapter 4 consists of a summary of the work and the possibilities which can
take to continue researching.

For the present work we will use a notation that is specified below and that will remain constant throughout it.
We use the Einstein summation convention where a greek indices run from 0 to 3, and latin indexes go from 1 to 3.
The signature of the metric as usual is (-, +, +, +). The value of some constants like ~ or c is setting at 1. While
the reduced mass Planck is defined as Mpl = (8πG)−1/2. The dot over some variable denotes differentiation with
respect to the cosmic time t, and ′ is the differentiation with respect to the conformal time η. The cosmic time and
the conformal time are related by dt = a dη



Chapter 2

Methodology

2.1 Inflation
First at all, inflation was proposed in 1981 by Alan Guth8 as a solution to the fine-tuning problems of Big Bang
theory but along the time these theories have become complementary to each other. By consequence the inflationary
theory has been widely accepted not only for responding to these problems, but also because it is supported by the
observational facts.

Inflationary theory is a period of accelerated expansion of the Universe, strictly speaking the scale factor was
accelerating

ä(t) > 0, (2.1)

or rewriting in terms of the Hubble length or Hubble horizon, (Ha)−1, which are synonymous, we have

d
dt

H−1

a
< 0. (2.2)

It says that the Hubble length decreases during inflation. Reminding the acceleration equation (1.10), we see how a
positive acceleration involves that

ρ + 3p < 0, (2.3)

showing that either pressure or density should be negative. Since a negative density is unimaginable, the "exotic
matter" that drives inflationmust have a negative pressure. The equations (2.1), (2.2) and (2.3) are different conditions
to express the inflationary process.

Continuing the analysis of the dynamic behaviour of the Universe with this assumption, where we have a perfect
fluid with a negative pressure, the solution of the Friedmann equation (1.9) is

a(t) = a0 eHt. (2.4)

9
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Also, it is necessary to determine the amount of inflation, it means how much the Universe expands during this
epoch. In order to quantify it we use the number of e-foldings N from a initial time ti to a time t, and is given by

N(t) = ln
[

a(t)
a(ti)

]
. (2.5)

Until this point, we will see that inflation can solve the cosmological problems, but is not a clear scenario which
can describes how inflation played out and why it has only been around for a short period of time. In order to answer
this, the idea of a potential that governed inflation arises. For simplicity this potential is in the form of a single
massless scalar field, known as inflaton φ = φ(~x, t), which is defined in all space-time presenting a potential V(φ). It
is used to calculate the CMB observables of inflation, like spectral indices. The behaviour of the field is described
by the Klein-Gordon equation

∇µ∇
µφ = V ′(φ). (2.6)

The dynamics of the scalar field in the case minimally coupled to gravity is governed by the action,

S φ =

∫
d4x
√
−g

[
−

1
2
∂µφ ∂µφ − V(φ)

]
, (2.7)

where g = det(gµν). The corresponding energy-momentum tensor is derived using (1.6), then

T µ
ν = ∂µφ ∂νφ −

[
1
2
∂σφ ∂σφ + V(φ)

]
δ
µ
ν . (2.8)

Taking account the homogeneity of the Universe, the scalar field takes the form φ(~x, t) = φ(t). Then, the energy
density and pressure for a Universe containing a single scalar field is defined by

ρ =
1
2
φ̇2 + V(φ), (2.9)

p =
1
2
φ̇2 − V(φ), (2.10)

where φ̇ is the kinetic term and V(φ) is the potential term. In order to fulfills the inflationary condition of a negative
pressure, from equation (2.10) we assume that potential dominates over the kinetic energy. Then, inflation will exist
as long as this condition is met. Replacing these equation in equations (1.9), (1.10) and (1.11) gives the equations
of motion of a FLRW Universe during inflation governed by a scalar field,

H2 =
8πG

3

[
V(φ) +

1
2
φ̇2

]
, (2.11)

ä
a

= −
8πG

3

[
φ̇2 − V(φ)

]
, (2.12)

φ̈ + 3Hφ̇ +
∂V
∂φ

= 0. (2.13)

The equation (2.11) is the Friedmann equation of the field. The equation (2.13) has a similar form with the
Klein-Gordon equation (2.6), but with an extra term, 3Hφ̇, which is known as the friction term.
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2.1.1 Inflation to solve the flatness problem

From the above explanation about the phases of the Universe evolution, it is necessary remarks the importance of
the introduced Phase II corresponding to ti < t < tend, because as explained, in the Cosmological Standard Model
this phase can be omitted. But, it is important when we introduce inflation, then in this phase we consider a new
fluid, with an unknown equation of state ω which dominates the energy density of the Universe at this epoch. The
point where both phases are connecting is tend, then the possible redshift that can be reached is zend. So, we need to
rewrite zend in terms of zi and from equation (1.22) we get

ΩT (zend) '
Ωini

X

Ωini
X − (Ωini

T − 1)
(

aini
aend

)−1−3ω , (2.14)

where X represent the matter that governs the inflation at this epoch. Or in terms of the inflationary condition, we
get

ΩT (zend) ' 1 −
ΩT (zini) − 1

Ωini
X

e−NT |1+3ω|. (2.15)

Using the result of equation (1.24) we get the condition to solve the flatness problem,

Ω0
T − 1 =

ΩT (zini) − 1
Ωini

X

e−NT |1+3ω|
[
(zend + 1) Ωo

m + (zend + 1)2 Ωo
rad

]
. 0.003. (2.16)

Assuming Ωi
T ≈ Ω0

T which implies no fine-tuning, then the amount of inflation or e-foldings necessary to the flatness
problem is,

N &
−1

1 + 3ω
ln

[
(zend + 1) Ω0

m + (zend + 1)2 Ω0
rad

]
. (2.17)

Considering ω ≈ −1 and zend ≈ 10 × 1027 given by the Grand Unified Theory scale7, we get N & 60. Then, if
inflation provides at least 60 e-foldings, we do not assume any fine-tuning.

2.1.2 Inflation to solve the horizon problem

In order to explain how inflation solve the horizon problemwe are going to use again the Phase II where the behaviour
of the Universe was dominated by a fluid with a equation of state ω. Then, the angular size of the angular connected
sphere (1.25) is,

δθ =

[∫ ti

0

dτ
a(τ)

+

∫ tend

ti

dτ
a(τ)

+

∫ teq

tend

dτ
a(τ)

] ∫ t0

teq

dτ
a(τ)

−1

, (2.18)

but we can vanish the first and third integrals of the numerator due to they give small contribution to the angular
size, then

δθ '

[∫ tend

ti

dτ
a(τ)

] ∫ t0

teq

dτ
a(τ)

−1

. (2.19)
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For calculating the integrals we make the same procedure than in subsection above, then for solve the numerator we
use the scale factor defined by (1.14) changing f by i, then∫ tend

ti

dτ
a(τ)

=
1
ai

∫ tend

ti

[
3
2

(1 + ω) Hi (τ − ti) + 1
]− 2

3(1+ω)

,

=

[
2

(1 + 3ω) H(τ) a(τ)

]tend

ti

,

=
2

1 + 3ω

(
1

aendHend
−

1
aiHi

)
,

=
2

aiHi (1 + 3ω)

(aend

ai

) 1+3ω
2

− 1

 .
(2.20)

And using the relation,
1

aiHi
=

1
a0H0

a(1+3ω)/2
i

a1/2
0 a1/2

eq a(3ω−1)/2
end

, (2.21)

we get, ∫ tend

ti

dτ
a(τ)

=
2

a0H0 (1 + 3ω)
aend

a1/2
0 a1/2

eq

1 − (
ai

aend

) 1+3ω
2

 . (2.22)

Then, we get an expression for equation (2.19), imposing δθ > 2π to solve the horizon problem, then

δθ =
aend

a1/2
0 a1/2

eq − aeq

1
(1 + 3ω)

[
1 − e−

NT
2 (1+3ω)

]
> 2π, (2.23)

where NT is the total number of e-foldings during inflation given by,

NT >
−2

1 + 3ω
ln

[
−2π (1 + 3ω)

zeq + 1

(√
zeq + 1 − 1

)
(zend + 1)

]
. (2.24)

In the same way as in the above subsection, we consider zend ≈ 1027, zeq ≈ 1089 and ω ≈ −1, giving NT & 60. Thus,
if inflation provides at least 60 e-foldings the horizon problem vanishes.

2.2 Slow-Roll Approximation
This section should be part of the inflation itself because the slow-roll approximation is the standard strategy for
analyzing this process, however we present as a separated section due to the importance for this work. The slow-roll
approximation states that the scale factor φ(t) decays slowly along the time, by consequence the potential energy
would be governs over the kinetic energy, given the slow-roll condition,

V(φ) >> φ̇2. (2.25)
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This condition is easily seen if we define an effective field ω as the quotient between pressure and density, thus

ω =
p
ρ

=

1
2 φ̇

2 − V(φ)
1
2 φ̇

2 + V(φ)
. (2.26)

Thus, for inflation occurs ω ≈ −1, then the condition (2.25) is satisfied. By consequence from this condition, we
add that the potential must be flat enough to dominate the time required to solve the fine-tuning problems,

φ̈ << Vφ. (2.27)

Physically, it is understood as a slow slide through the potential, which will reach a minimum where inflation will
end through a process of overheating, giving place to the epoch dominated by radiation. Applying the conditions
evidenced in equations (2.25) and (2.27) to the equations of motion (2.11) and (2.13), we have,

H2 '
8πG

3
V(φ), (2.28)

3Hφ̇ ' −
∂V
∂φ

. (2.29)

This kind of approximation is quantified by the slow-roll parameters, ε and η4, given by

ε ≡
1

16πG

(
V ′

V

)2

, (2.30)

η ≡
1

8πG
V ′′

V
, (2.31)

where ε measures the slope of the potential and η the curvature. Both are dimensionless quantities. The inflation
takes place when,

ε << 1, and |η| << 1. (2.32)

Thus, the inflation ends when ε → 1 and η→ 1. In the same way, applying the slow-roll approximation the amount
of inflation (2.5), can be rewritten as

N
[
φ(t)

]
'

∫ φ

φend

V
V ′

dφ. (2.33)

The behaviour of theUniverse after the inflationary process iswell described byKofman, Linde andStarobinsky14.
This process is known as reheating, and is a transition period between inflation and radiation epochs. Technically,
reheating occurs when the potential loses energy (until be less than kinetic energy) and reaches the minimum
energy, then the scalar field rapidly decays into 4 particles, or into other bosons which in turn will decay into other
particles14. This soup of particles will interact between them to get a thermal equilibrium state at Tr, known as
reheating temperature.
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2.3 Inflationary Models
Now we explore some inflationary models used to try to explain inflation in order to highlight the importance of the
Starobinsky model which is the used in the present work.

The first idea about inflationary mechanisms was proposed by Starobinsky13 in 1980, although it went unnoticed.
His model was based on quantum corrections to the gravity. One year after, Guth proposed the first model8 based
specifically to solve the fine-tuning problems. The model is known as old-inflation and consists in a first-order phase
transition of the field, from a false vacuum with non zero energy to a true vacuum with zero energy by a quantum
tunneling effect. This model has a problem because the inflation does not end properly. To solve it, the new-inflation
model is proposed both by Linde15 and Albrecht and Steinhardt16 in separated works. They rely on a second order
phase transition assuming that the scalar field is in thermal equilibrium. Two years after, in 1983 Linde proposed
another model called the chaotic inflation17 which is a extremely simple potential. There are also hybrid models
with more than one scalar field

2.3.1 Starobinsky model

The Starobinsky model13 was first proposed to resolve the singularity that gives rise to the Big Bang, through
quantum corrections to gravity at an early age. Thus, the Hilbert-Einstein action is modified by adding a quadratic
term on the curvature scalar, given the action

S =
1
2

∫
d4x
√
−g

(
M2

pl R +
1

6M2 R2
)
, (2.34)

where M is a parameter with mass dimension and R is the curvature scalar. The quadratic term, under specific
conditions, can acts as a cosmological constant giving rise to an accelerated unstable expansion which will decay
giving way to the standard evolution of the universe. This case does not present a scalar field, the effective inflaton
is given purely by geometry. The importance of this model is that for large field values, some other models take the
Starobinsky form18.

After to write the above equation in terms of the Einstein frame by means of the conformal transformation18,

gµν → gµν = e
−
√

2
3

φ
Mpl gµν, (2.35)

we arrive to an action of the form

S =

∫
d4x
√
−g

 M2
pl

2
R −

1
2
∂µφ ∂

µφ −
3
4

M4
pl M2

(
1 − e−

√
2/3 φ/Mpl

)2
 , (2.36)

which is equivalent to the effective potential

V(φ) =
3
4

M2 M2
pl

(
1 − e

−
√

2
3

φ
Mpl

)2

. (2.37)

Figure 2.1 represents the graphical behaviour of this expression. In the limit, when φ
Mpl

>> 1 the potential has the
form V(φ) = 3

4 M2M2
pl where we realize that it is flat enough to have slow-roll. On the other hand, when

|φ|
Mpl

<< 1 the
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potential has the form of the harmonic potential V(φ) = 1
2 M2φ2, indicating that at the origin the potential oscillates

giving place to the reheating.

Figure 2.1: Starobinsky potential

2.4 Cosmological Perturbations Theory
The cornerstone of the Cosmology is to understand how the large-scale structure of the Universe was formed.
Inflation can explain it because generates primordial perturbations, besides solving the fine-tuning problems and
respond to the existence of small temperature fluctuations in the CMB.

The idea of an homogeneous and isotropic Universe is valid only to large scales. For small scales, there are
deviations that tend to grow due to the attractive nature of gravity. In the moment when the CMB was formed these
inhomogeneities were of the order of 10−5 4. Then, due to their small amplitude we can treat these inhomogeneities
as linear perturbations of the FLRW universe. By consequence, every variable which depends of the space-time
could be separated in a homogeneous part which depends only on the cosmic time, and a perturbation which contains
the variations with respect to the background, where the perturbations would be much less than the homogeneous
part.

Classically, the perturbations theory arise after to apply an inflationary model to General Relativity, so we can
think that the perturbed quantities are the matter and the geometry (metric) of the Universe studied. Then, the
cosmological inflationary model which is a deep branch of GR gives two spectres both from scalar perturbations
which is also known as density perturbations and from tensor perturbations which are also known as gravitational
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waves. Then, the Einstein equations takes the form,

G(0)
µν + δGµν = 8πG

[
T (0)
µν + δTµν

]
, (2.38)

where the superscript (0) corresponds to the background part which fulfill the Einstein equation. Then, we get only
an equation for perturbations of the form

δGµν = 8πGδTµν. (2.39)

Classical Perturbations

We start with a classical treatment of perturbations on General Relativity. First we go with the geometry and
according to GR, the geometry of the Universe is described by the metric. In the same way as before the metric
perturbations is given by δgµν = g(0)

µν + δgµν. Cosmological perturbations can have different origin, they could be
scalar, vector, and tensor perturbations. In a linear order these perturbations evolve independently, so that they can
be studied separately. Vector perturbations have just vanishing solutions, for this reason its study is not relevant.
Then, the most general lineal perturbation of the FLRW metric can be expressed as19,

ds2 = a2
[
−(1 + 2A)dη2 + 2Bidxidη + (δi j + hi j)dxidx j

]
, (2.40)

where η is the conformal time related to the cosmic time by η =
∫

dt
a(t) . The latin indices are spatial indices. A is a

scalar and Bi is a spatial vector. δi j is the spatial metric. And, hi j is the symmetric tensor. If scalar perturbations
are analyzed we realize that it presents instabilities that give rise to the current structures of the Universe. On the
other hand, tensor perturbation does not present instabilities leading to gravitational waves that are not coupled to
inhomogeneities. For this work, we will be mainly interested in the metric with only tensor perturbations which is
characterized by h00 = −1, h0i = 0 and spatial elements20,

hi j = a2


1 + h+ h× 0

h× 1 − h+ 0
0 0 1

 , (2.41)

where h+ and h× are two functions, assumed small. In order to be consistent we must specify that the perturbation
occurs in the x−y plane, advantageously obtaining the wavevector~k in the z−axis. h+ and h× also are two components
of a divergenless, traceless ans symmetric tensor. The pertrubation tensor of spatial elements also can be written as

Hi j =


h+ h× 0
h× −h+ 0
0 0 0

 , (2.42)

where divergenless means that kiHi j = k jHi j = 0.
Thus, we start to calculate the Christoffel symbols defined by

Γ
µ
αβ =

1
2

gµν
(
gµν,β + gµν,α − gαβ,µ

)
. (2.43)
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The explicit calculation is reported in Appendix A, then the obtained results from metric (2.41) are

Γ0
00 = 0,

Γ0
i0 = Γ0

0i = 0,

Γi
00 = 0,

Γ0
i j = Hgi j +

a2Hi j,0

2
,

Γi
0 j = Γi

j0 = Hδi j +
1
2
Hi j,0,

Γi
jk =

i
2

[
kkHi j + k jHik + kiH jk

]
.

(2.44)

Now, we calculate the Ricci tensor using

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓ
β
µν − ΓαβνΓ

β
µα, (2.45)

and the results are

R00 = −3
ä
a
,

R0i = 0,

Ri j = gi j

( ä
a

+ 2H2
)

+
3
2

a2HHi j,0 + a2Hi j,00

2
+

k2

2
Hi j.

(2.46)

And the Ricci scalar defined by
R = g00R00 + gi jRi j. (2.47)

Then, the obtained result is
R = 0, (2.48)

which means that tensor perturbations do no affect at first order the Ricci scalar.
With these results we can form the Einstein tensor which will be given by

Gµ
ν = Rµ

ν −
1
2

gµνR, (2.49)

due to the result (2.48). Then, the Einstein tensor perturbations are,

δG0
0 = 0,

δGi
0 = 0,

δGi
j = δik

[
3
2

HHk j,0 +
Hk j,00

2
+

k2

2a2Hk j

]
,

(2.50)

Now, we proceed to analyze the perturbations in the matter. As we know from Einstein theory, the matter of the
Universe is described by the energy-momentum tensor. Then, the matter perturbations is given by the right hand side
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of the equation (2.39). The energy-momentum tensor for a Universe with a single scalar field minimally coupled
to gravity is given by equation (2.8). During inflation, due to the inflaton dominates over the other components, the
perturbation are primarily limited to the scalar field, given

φ(t, ~x) = φ0(t) + δφ(t, ~x). (2.51)

The potential is also expanded around the background using Taylor expansion,

V(φ) = V(φ0) + δφ V,φ. (2.52)

Then, how we have been working the time-time and the time-space parts vanish, and also the space-space part
vanishes. Thus, the tensor perturbation of the energy-momentum tensor is null because the anisotropic stress tensor
has negligible linear order components in the perturbations.

Thus, the equations of motion for perturbations are obtained using the results of time-time, time-space and
space-space components and replacing in (2.39). For this case we have only the space-space components δGi

j = 0,
then we will work on it in order to analyze the evolution of the tensor variables, h+ and h×.

We start with h+ component, so let us consider a difference as follow δG1
1 − δG

2
2. We should realize that

H11 = −H22 = h+ due to the proportionality ofHi j and its derivatives in equation (2.50), therefore

δG1
1 − δG

2
2 = 3Hh+,0 + h+,00 +

k2h+

a2 . (2.53)

Then, the right-hand side of this components of the Einstein’s equations is zero. And considering the same procedure
for h×, we have

ḧα + 3Hḣα +
k2

a2 hα = 0, (2.54)

where α = +,×. If we change to the conformal time, we can rewrite the expressions ḣα = h′α/a and ḧα =

h′′α/a
2 − (a′/a3)h′α. Then,

h′′α + 2Hh′α + k2hα = 0, (2.55)

whereH is the conformal Hubble constant defined byH = a′/a. Both equations (2.54) and (2.55) are wave equations
and are called gravity waves. When the universe expands, the amplitude of a gravity wave described by euqation
(2.55) falls off once the mode enters the horizon20.

Quantum Perturbations

Until this point, we have reviewed the classical perturbations applied to GR and obtain an equation of motion which
describes the tensor behaviour of the universe studied. But, during inflation the components that occupy the majority
of the universe were a uniform scalar field and a uniform background metric. Then, we must also analyze quantum
perturbations of the field against the background. In order to do it, we are going to follow the treatment present by
Dodelson20.
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We proceed to quantize the equation of classical perturbations (2.55), so we must rewrite this equation in the
form of a harmonic oscillator, then we define,

h̃ ≡
ah
√

16πG
. (2.56)

If we derive this equation one and two times with respect to the conformal time, we have, respectively,

h′ =
√

16πG
(

h̃′

a
−

a′

a2 h̃
)
, (2.57)

h′′ =
√

16πG
(

h̃′′

a
− 2

a′

a2 h̃′ −
a′′

a2 h̃ + 2
(a′)2

a3 h̃
)
. (2.58)

Inserting both results in equation (2.55) and multiplying by 1/
√

16πG, gives

h̃′′

a
− 2

a′

a2 h̃′ −
a′′

a2 h̃ + 2
(a′)2

a3 h̃ + 2
a′

a

(
h̃′

a
−

a′

a2 h̃
)

+
k2

a
h̃ = 0, (2.59)

simplifying and sorting out the equation, we have

1
a

[
h̃′′ +

(
k2 −

a′′

a

)
h̃
]

= 0. (2.60)

This equation already has the form of a harmonic oscillator, it means that there are no damping terms (∝ ˙̃h), then h
becomes a quantum operator described as follow,

ˆ̃h(~k, η) = v(k, η) â~k + v∗(k, η) a†
~k
, (2.61)

where the coefficients of the creation and annihilation operators satisfy this equation,

v′′k +

(
k2 −

a′′

a

)
vk = 0. (2.62)

In order to solve this equation, we consider the slow-roll regime and use the following transformation, a′ = a2H '
−a/η, therefore

a′′

a
' a

1
a

d
dη

(
a
η

)
'

2
η2 . (2.63)

So the equation (2.62) is rewritten,

v′′k +

(
k2 −

2
η2

)
vk = 0. (2.64)

This is the Mukhanov-Sasaki equation.

2.4.1 Power Spectrum of Perturbations

In order to get the power spectrum we must solve the Mukhanov-Sasaki equation (2.64). The solution obtained is

vk =
e−ikη

√
2k

(
1 −

i
kη

)
. (2.65)
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If we consider the initial condition when the perturbation vk is at very early times before inflation occurs that is when
k|η| >> 1, so the term k2 will dominates and the equation behaves like a harmonic oscillator. The solutions would
take the form,

vk(k, η)→
e−ikη

√
2k
. (2.66)

On the other hand, in the super-horizon scales, k|η| << 1, which corresponds to time when inflation has worked for
many e-folds. Then, the solution takes the form,

vk(k, η)→ −
e−ikη

√
2k

i
kη
. (2.67)

With the before results in mind, we continue to calculate the power spectrum of the tensor perturbations. For this
we return to the equation (2.64) and analogously to the harmonic oscillator, we state the variance of the perturbations
in the h̃ field,

〈 ˆ̃h†(~k, η) ˆ̃h(~k′, η)〉 = |v(~k, η)|2 (2π)3 δ3(~k − ~k′),

≡ (2π)3 Ph(k) δ3(~k − ~k′),
(2.68)

where Ph would be the power spectrum of the primordial perturbations to the metric which is defined by,

Ph(k) =
16πG

a2 |v(k, η)|2. (2.69)

Reminding the result (2.66) and considering that the primordial power spectrum which scales as |v|2/a2, must be
constant in time after inflation stretched the mode beyond the horizon. Then,

Ph(k) =
16πG

a2

1
2k3η2 ,

=
8πGH2

k3 .

(2.70)

This is the expression for primordial power spectrum for gravity waves. We can detect these waves measuring the
Hubble rate during inflation. The power spectrum is both for h+ and h× separately, these are uncorrelated.

If we use the results of the comovil curvature perturbation R which is related to v by R = (v/a)(H/φ̇), Then, the
explicit power spectrum of the curvature perturbation for large scale is

PR(k) = Pv(k)
(

H
aφ̇

)2

'
1

4φ2

(
H2

φ̇

)2
∣∣∣∣∣∣∣
k=aH

. (2.71)

Because R remains constant at large scales in the slow-roll regime, when disturbances cross the Hubble horizon
during inflation, so R determines the amplitude of the disturbances at the instant before the modes re-enter the
determining horizon. Finally, we write the power spectrum of tensor perturbation, taking account the result (2.70),

PT (k) = 2 × 4k2 ×

( H
2π

)2
∣∣∣∣∣∣
k=aH

, (2.72)
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where the factor 2 indicates the two polarizations associated with gravitational waves (h+ and h×) and 2k2 is a
normalization constant.

Finally, we define some values which characterize the spectrum. The dependence in the scale is characterized
by the tensor spectral index defined by,

nT (k) ≡
d ln PT (k)

d ln k
. (2.73)

A spectrum independent of scale occurs when ns = 1. And also, we define the ratio between the amplitude of the
spectrum of tensor to scalar perturbations known as the tensor-to-scalar ratio given by,

r = 8
PT

PR
. (2.74)

These three last results are measurable quantities by space satellites and serve to statistically characterize the
anisotropies in the cosmic background radiation.

2.5 Uniform Approximation Method
Another way to solve the Mukhanov-Sasaki equation (2.64) is the uniform approximation method, from which we
obtain the approximate solutions for linear second-order differential equations, such as MS equation. The best and
most known example of an equation of this style is the Schrodinger equation. Herein lies the contribution of this work
to the scientific community because a relatively unexplored method is applied to be compared with the results of
the standard procedure in inflationary cosmology and with the observed results, with a specific form of the potential
described by equation (2.37).

Coming back to the method, the theoretical development was carry out by Berry21 and will be presented below
based on it. The method consists of comparing equations, an unknown one which can have the following form,

d2Ψ(x)
dx2 + χ(x) Ψ(x) = 0, (2.75)

with a known equation of the form,
d2Φ(σ)

dσ2 + Γ(σ) Φ(σ) = 0, (2.76)

where we will choose that Γ(σ) is similar to χ(x), therefore the wavefunctions Φ(σ) and Ψ(x) will be also similar
between them, and are related by a mapping function described by,

Ψ(x) = f (x) Φ(σ(x)). (2.77)

If we replace equation (2.77) in (2.75), and we realize that f =
(

dσ
dx

)−1/2
, we get that,

dσ
dx
'

[
χ(x)
Γ(σ)

]1/2

. (2.78)

Then, the approximate solution to (2.75) is given by,

Ψ(x) '
[
Γ(σ)
χ(x)

]1/4

Φ(σ). (2.79)
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This solution is valid for the entire range of x including the turning points. In the semiclassical limit, all problems
that have the same classical turning point structure are equivalent.



Chapter 3

Results & Discussion

In this section we are going to present all the results obtained using the Starobinsky potential (2.37), and the
comparison of those results with the experimental data. The section will be separated in two parts, background
dynamics of the universe and the power spectrum of all the methods used. The first part shows the background
dynamics of the universe during inflation and how the variables a and φwhich dominate the behavior during that time
evolve. The second part presents the power spectra obtained from the numerical method, the uniform approximation
method and the slow-roll approximation with their respective spectral index, also presents the comparison of the
results. All the results presented below have been calculated using the software Mathematica 12.0.

3.1 Background dynamics
In order to illustrate the dynamic behaviour of the universe during inflation wemust solve the Einstein Field Equations
with the slow-roll procedure, then the equations that we have to solve are Eqs. (2.28) and (2.29). To do it, we must
set an important initial condition, the scale factor at time t = 0 to be a(0) = 1 which means that at that time the
universe is not expanding. Then, we can calculate the background behaviour of the scalar field φ and the dynamics
of the scale factor a presented below, respectively,

φ(t) =

√
3
2

ln
[
e
√

2
3 φ0 −

2
3

Mt
]
, (3.1)

a(t) = exp
[
1
2

Mt +
3
4

ln
(

1
3

e−
√

2
3 φ0

)
+

3
4

ln
(
3e
√

2
3 φ0 − 2Mt

)]
. (3.2)

Also, we can calculate the slow-roll parameter, ε and δ which takes the form,

ε(t) =
4

3
[
e
√

2
3 φ0 − 1

]2 , (3.3)

23
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δ(t) = −

4
(
e
√

2
3 φ0 − 2

)
3
(
e
√

2
3 φ0 − 1

)2 . (3.4)

As we already studied before, the end of inflation occurs when ε = 1, then, using Starobinsky model, the end of
inflation occurs at

φend =

√
3
2

log
(

2
√

3
+ 1

)
. (3.5)

This results will be considered when we study the power spectrum of tensor perturbations in the last section of this
chapter.

Another necessary initial condition in order to plot the obtained results is the value of M which appears in the
Starobinsky potential and making use of the work of Mishra et al.22, we define M = 1.3 × 10−5. This condition and
the condition of the value of the scale factor at t = 0 defined before must be able to provide enough inflation for the
horizon and flatness problems to be solved. The results of φ and a are presented in the Figure 3.1 and 3.2 respectively.
Figure 3.1 shows the behaviour of the inflaton and how this field is rolling through the potential during inflation
takes place. The end of inflation is described by (3.5) and using (3.1) we compute that the end of the Starobinsky
inflationary model occurs at tend = 9.63049 × 106, after this time the field starts to oscillate. Figure 3.2 shows the
evolution of the scale factor which behaves like an exponential function because during the inflation it is increasing
rapidly which guarantees the accelerating universe expansion.

Figure 3.1: Behaviour of the background inflation field φ vs the cosmic time using the Starobinsky potential.
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Figure 3.2: Behaviour of the scale factor a vs the cosmic time using the Starobinsky potential.

3.2 Perturbation dynamics
In order to know the dynamics of the perturbation we have to solve the Mukhanov-Sasaki equation (2.64) and thus
we obtain the tensor power spectrum, the spectral index and the tensor-to-scalar ratio.

3.2.1 Slow-roll approximation

Also, we can explore the dynamics of the perturbations just knowing the power spectrum and, by the slow-roll
approximation, the tensor power spectrum up-to first-order is given by,

PT (k) '
[
1 + (2b − 2) ε +

(
2b2 − 2b − 3 +

π2

2

)
ε2

] ( H
2π

)2

, (3.6)

where b = 0.729637 is the Euler constant, and ε is described by equation (2.30). Also, the spectral index and the
tensor-to-scalar are described, respectively, by23

nT (k) ' −2ε − 2ε2, (3.7)

r ' 16ε. (3.8)
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All the expression must be evaluated at the horizon crossing time which occurs when k = aH. We can obtain the k
dependence of the tensor power spectrum using different values of k in the range 0.0001 Mpc1 ≤ k ≤ 10 Mpc1. The
results will presented in the next section.

3.2.2 Numerical integration

The first method used to solve the equation of tensor perturbations (2.64) is the numerical integration. To set this
equation, we are going to use the results of solving equations (2.11) and (2.13). The resulting perturbation vk is
a complex function giving two equations to solve, a real part and an imaginary part. Both equations are solved
basically by the same methodology.

The integration is divided in two parts. The first part corresponds when the perturbations are inside the horizon,
it means that vk presents an oscillatory behaviour. For this, we use the result (2.66) as initial condition. For the
second part which go from before horizon crossing to roughly three times the horizon crossing, we use the final stage
of the above solution as initial condition. Then, the tensor power spectrum is described by (2.69) while the spectral
index and the tensor-to-scalar ratio are described by (2.73) and (2.74) respectively.

3.2.3 Uniform approximation

The second method in order to solve the equation (2.64) is the uniform approximation. For this, let’s take the Habib’s
work24 as a reference. So, before applying the method we rewrite the equation doing the change a′′/a ≡ C2(η)/η2,
then

v′′k (η) +

[
k2 −

C2(η)
η2

]
vk(η) = 0. (3.9)

If we consider that C is constant the solution is given in terms of Bessels functions, this would be the "easy" part.
But, if we consider that C is not constant and varies slowly over time we have a problem. In order to solve this
problem without forcing C to have any imposition on its behavior, we propose a generic differential equation similar
to equation (3.9) represented by

d2v
dη2 =

[
b2g(η) + q(η)

]
v. (3.10)

The solution will depend on the behaviour of g(η) and q(η). When g(η̃) = 0, where η̃ is a turning point, the solution
is given in terms of Airy functions. If g(η) has a pole of order n > 2 the Liouville-Green approximation is used. In
any case, we must establish the convergence criteria described by

g(η) =
1
η2

[
C2(η) +

1
4

]
− k2 =

v2
T (η)
η2 − k2, (3.11)

q(η) = −
1

4η2 . (3.12)

Then, the Mukhanov-Sasaki equation takes the form,

v′′k =

{
−k2 +

1
η2

[
v2

T (η) −
1
4

]}
vk, (3.13)
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where vT =
(

a′′
a

)
η2 + 1

4 and the turning point is at k2 =
v2

T (η̃T )
η̃2

T
.

Now, we apply the uniform approximation method, starting by defining a new independent variable ξ and a new
dependent variable U, given by

ξ

(
dξ
dη

)2

= g(η), (3.14)

u =

(
dξ
dη

)−1/2

U. (3.15)

Then, we have a new equation from 3.10 described by

d2U
d2ξ

=
[
b2ξ + ψ(ξ)

]
U, (3.16)

where, the mapping functions is

ψ(ξ) =
[
4g(η)g′′(η) − 5g′2(η)

] ξ

16g3(η)
+
ξq(η)
g(η)

+
5

16ξ2 , (3.17)

2
3
ξ3/2 = −

∫ η̃

η

√
g(η) dη η > η̃, (3.18)

2
3

(−ξ)3/2 = −

∫ η̃

η

√
−g(η) dη η 6 η̃. (3.19)

Then, we realize that the approximate solution for vk(η) is valid both to the left (η 6 η̃s) and to the right (η > η̃s) of
the turning point. The solution can be written in terms of the Airy functions, where Ai(1) ≡ Ai and Ai(2) ≡ Bi, then

v(1,2)
k≶ (η) = f 1/4

≶ (η) g−1/4
s (η) Ai(1,2) [

f≶(η)
]
, (3.20)

f≶(η) = ∓

{
±

3
2

∫ η̃s

η

dη′
[
∓gs(η′)

]1/2
}2/3

, (3.21)

gs(η) ≡
v2

T (η)
η2 − k2, (3.22)

where the functions with the subscript < corresponds to the left side of the turning point, and those with the subscript
> are the right side of the turning point. The solution for vk(η) is in turn a lineal combination of two solutions,

vk(η) = A v(1)
k (η) + B v(2)

k (η). (3.23)

We must fix the coefficients A and B in such a way that satisfy the results at the limit k → ∞ where the solution is
vk(η) = e−ikη/

√
2k. In this limit, f<(η) is large and negative, then asymptotic form is employed,

Ai(−x) =
1

π1/2x1/4 cos
(

2
3

x3/2
)
−
π

4
, (3.24)

Bi(−x) = −
1

π1/2x1/4 sin
(

2
3

x3/2
)
−
π

4
, (3.25)
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choosing,

A =

√
π

2
ei(π/4) , B = −i

√
π

2
ei(π/4). (3.26)

Obtaining,

vk,1,< (η) = lim
−kη→∞

C
√

2k
exp

{
i

3
2

[
f<(k, η)

]3/2
}
. (3.27)

On the other hand, when the limit is η→ 0−, the 1/η2 pole dominates the behaviour of the solution. f>(k, η) becomes
large, then we can use the asymtotic form,

Ai(x) =
1

2
√
π

x−1/4 exp
(
−

2
3

x2/3
)
, (3.28)

Bi(x) =
1
√
π

x−1/4 exp
(

2
3

x2/3
)
, (3.29)

which leads to
vk,1,>(η) = lim

kη→0−
−iC

√
−η

2vT (η)
exp

{
2
3

[
f>(k, η)

]3/2
}
, (3.30)

where C is an irrelevant constant phase factor, then we only consider the growing to part of the solution in order to
compute the power spectra which is given by,

PT (k) = lim
−kt→∞

k3

2π2

∣∣∣∣∣vk(t)
a(t)

∣∣∣∣∣2 . (3.31)

Finally, the spectral index and the tensor-to-scalar ratio, as before, are described by (2.73) and (2.74) respectively.

3.3 Power spectrum
We already know how to calculate the tensor power spectrum for any of the three presented methods. It is well known
that the enough time for the spectrum to converge for all k modes is at t = 1 × 106M1

Pl which is the point until we
evaluate the power spectrum. Figure 3.3 shows the main result of this work, the behaviour of the power spectrum of
the tensor perturbations for the Starobinsky model for different k modes using the three different methods explained
before. We can observe that the numerical solution and the second-order slow-roll solution are very close between
both. However, the uniform approximation method neither gives a bad result, being acceptable. To corroborate this,
we calculate the relative error of each approximation method with respect to the numerical result using the scale
k = 0.05Mpc−1. The second-order slow roll approximation deviates in 0.0064% while the second-order uniform
approximation deviates in 0.9394%.

Once the power spectrum was analyzed, we proceeded to calculate the tensor spectral index using the definitions
described in (2.73). Table 3.1 presents the results obtained for the three different methods and their relative errors
with respect to the numerical solution. The relative errors are very close in both cases. Then, we also calculate the
tensor-to-scalar ratio described by (2.74) and the results are presented in Table 3.2. For this case, we have found
that r = 0.00271981 is the value that is closest to the numerical result and corresponds to the second-order uniform
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Figure 3.3: The power spectrum of the tensor cosmological perturbations for the Starobinsky inflationary model.
Solid line is the numerical result, dashed line is the second-order slow-roll approximation result and the dotted line
is the second-order uniform approximation.

approximation. Demonstrating that the use of a semiclassical method to solve the tensor perturbation equation is a
good procedure.

Method nT (k) rel. error (%)

Numerical integration -0.000384929

Second-order slow-roll -0.000392819 2.049

Second-order uniform approximation -0.000394894 2.589

Table 3.1: Values of nT (k) obtained with different methods for the Starobinsky inflationary model at the pivot scale
k = 0.05Mpc−1
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Method r(k) rel. error (%)

Numerical integration 0.00271453

Second-order slow-roll 0.00281164 3.577

Second-order uniform approximation 0.00271981 0.195

Table 3.2: Values of the tensor-to-scalar ratio r(k) obtained with different methods for the Starobinsky inflationary
model at the pivot scale k = 0.002Mpc−1



Chapter 4

Conclusions & Outlook

This work consists of analyzing a model that describes the inflationary process in an almost satisfactory way known
as the Starobinsky model, and by means of the specific application of the uniform approximation method to solve the
perturbation equation we find the power spectra, and consequently the tensor spectral index for each method which
are compared with the observed values by the Planck mission. To better understand what is being discussed we have
started with the genesis of the universe, the Big Bang. We introduced this concept and the problems that brought.
Also we review an inflationary period and how it solves the fine-tuning problems. The dynamics of the universe
during inflation is characterized by the domination of the potential energy over the kinetic part also known as slow-roll
approximation. Then, we studied the Starobinsky potential which is, currently, the best theoretical explanation to
the observations. Cosmological perturbations were also discussed in their classical and quantum treatments, ending
with the Mukhanov-Sasaki equation and its relation with the power spectrum. Also, we present a section to solve
the Mukhanov-Sasaki equation applying a semi-classical method known as the uniform approximation, of great
importance for this work. Then, the power spectra of tensor perturbation for Starobinsky inflationary model for the
three different methods are presented in Figure 3.3 showing that the second-order slow-roll method is the one that
best fits the numerical result with a deviation of 0.0064%. If we calculate the spectral index we realize that the
deviation is imperceptible in any case. On the other hand, if we calculate the tensor-to-scalar ratio we realize that
which fits better to the numerical solution is the second-order uniform approximation method which deviates just
0.195%. All the calculated values are in agreement with the results presented by Planck 2018 results. X11.

For future developments, we can compute the power spectrum of tensor perturbations using the generalized
Starobinsky model. Also, we can study the attractor behaviour of the system.
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Appendix A

Explicit calculation of Christoffel symbols

To calculate the Christoffel symbols we are going to use the definition (2.43) and also the definition of the metric
(2.41) or (2.42) which are related by,

gi j = a2 (δi j +Hi j). (A.1)

We start setting α = 0 and β = 0 giving Γ
µ
00. Then,

Γ0
00 =

1
2

g0ν (gν0,0 + gν0,0 − g00,ν
)
,

=
1
2

g00 (
g00,0 + g00,0 − g00,0

)
,

=
1
2

g00 (
g00,0

)
,

= 0,

(A.2)

and

Γi
00 =

1
2

giν (gν0,0 + gν0,0 − g00,ν
)
,

=
1
2

gi j
(
g j0,0 + g j0,0 − g00, j

)
,

=
1
2

gi j
(
−g00, j

)
,

= 0.

(A.3)
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Now we set α = i and β = 0 giving Γ
µ
i0. Then,

Γ0
i0 =

1
2

g0ν (gνi,0 + gν0,i − gi0,ν
)
,

=
1
2
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1
2

g00 (
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)
,

= 0,

(A.4)

and
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(A.5)

where gi j =
δi j

a2 .
Now, α = 0 and β = i giving Γ
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0i. Then,
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and

Γ
j
0i =
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Finally, we set α = i and β = j giving Γ
µ
i j. Then,
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