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Abstract

This project presents a deep learning algorithm for intraday stock prices forecasting of
Amazon, Inc. Deep learning methods can identify and analyze complex patterns and in-
teractions within the data allowing to optimize the trading process. This study focuses
on deep architectures such as convolutional neural networks (CNN), long short-term mem-
ory (LSTM), and densely-connected neural networks (NN). Results have shown that the
combination of these architectures performs accurately when forecasting non-stationary
time series. The evaluation of the proposed method has resulted in a mean absolute error
(MAE) of 6.7 for one-step-ahead forecasting and 9.94 for four-step ahead forecasting.

Keywords: Deep learning (DL); Convolutional neural networks (CNN); Long
shot-term memory (LSTM); Densely-connected neural networks (NN); Mean
absolute error (MAE).
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Resumen

Este proyecto presenta un algoritmo de aprendizaje profundo para el pronóstico de los
precios de acciones de Amazon, Inc. Los métodos de aprendizaje profundo son capaces de
identificar y analizar patrones complejos e interacciones presentes en el conjunto de datos
utilizado, esto permite la optimización de los procesos de inversión. Este estudio se enfoca
en el análisis de arquitecturas profundas como redes neuronales convolucionales, redes
neuronales recurrentes y redes neuronales profundas. Los resultados del método propuesto
han demostrado que la combinación de estas arquitecturas proveen un buen desempeño
al pronosticar series de tiempo no estacionarias. La evaluación del método propuesto ha
arrojado un error absoluto medio de 6.7 para predicciones de un paso por delante y un
error absoluto medio de 9.94 para predicciones de cuatro pasos por delante.

Palabras Clave: Aprendizaje profundo; Redes neuronales convolucionales;
Redes neuronales recurrentes; Redes neuronales profundas; Error absoluto medio.
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Chapter 1

Introduction

A time series is an ordered sequence of values that are usually equally spaced over time [2].
Time series are encounter in stock prices, weather forecasts, or historical trends. Moore’s
law is an example of historical trends, it is empirical forecasting about the development
of microchips [3]. This law describes the regularity in which the number of transistors on
integrated circuits doubles approximately every two years. For the case of Moore’s law,
there is a single value describing each time step, so these types of series are called univariate.
There are also multivariate time series, where the sequence is composed of multiple values at
each time step. An example of multivariate time series is the register of births versus deaths
in a period of time. Multivariate time series are useful for understanding the correlation
between variables allowing to analyze the impact of the related data. For example, if the
number of deaths passes to the number of births, it leads to a population decline [4].

Time series contains patterns describing di�erent behaviors. One of these patterns is
the trend, where time series have a specific direction that they are moving in. Another is
seasonality, which occurs when patterns repeat at predictable intervals. An example of this
is the sales of shopping sites that peak on weekends and decrease the following days [5].
Also, there are time series with a completely random behavior producing what is typically
called white noise. Another type is auto-correlated time series, where the value at each
time step is dependent on previous ones. Commonly, time series such as weather forecast,
stock prices, or population statistics are described as a combination of trend, seasonality,
auto-correlation, and noise [6].

Algorithms focused on forecasting time series are known as sequential models [7]. These
models are designed to spot patterns within the data. Once the model spot these patterns,
it is possible to make predictions. Traditional sequential models are based on the assump-
tion that patterns that existed in the past will continue in the future. But this assumption
can not be translated to stock price prediction since the stock market behavior is influenced
by di�erent external factors. Events such as financial crises, political events, or changes
in company policies can impact drastically the behavior of financial markets. Due to the
di�erent factors a�ecting financial markets over time, sequences composed of stock prices
are considered non-stationary time series [8].

Analyzing stock market movements has become an extremely challenging task for both
investors and researchers. The complexity related to this task is based on the behavior
of the stock market characterized by being non-stationary. Stock markets are a�ected

1
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by interrelated factors such as economic, industry, company, psychological, and political
variables. These variables interact in a very complex manner leading to the assumption
that stock markets can not be predicted. In this sense, the e�cient market hypothesis states
that those asset prices reflect all available information at the moment. This hypothesis
implies that it is impossible to predict consistently the market behavior since market prices
should only react to new information [9].

However, some researchers state that markets are ine�cient, in part due to the psy-
chological variables of market participants and the inability of the markets to immediately
respond to newly released information [10]. Based on this hypothesis, financial variables
such as stock prices are thought to be predictable. Therefore, due to potential market
ine�ciencies, market participants have focused on the development of accurate forecasting
strategies of financial variables.

In order to analyze the stock markets, statistical and machine learning methods have
been explored. Statistical approaches often employ autoregressive moving average (ARMA)
[11], autoregressive integrated moving average (ARIMA) [12] or linear discriminant analysis
(LDA) [13]. On the contrary, one of the most common machine learning techniques used
to forecast financial variables has been artificial neural networks (ANNs). Conventional
ANNs were mostly used in stock market prediction in the latter part of the last century
[14]. The following trend of machine learning application on financial markets focused
on applying Multilayer perceptron (MLP) [15]. For instance, a comprehensive review of
these studies, both statistical and machine learning, can be found in Atsalakis Valavanis
(2009) [16]. Some of the studies put in evidence the drawbacks of ANN when dealing
with sequential data. The incapability of ANNs for dealing with sequential information
is based on the assumption that all units of the input vectors are independent of each
other preventing to capture the relationship between earlier and later values of a sequence.
However, deep architectures can overcome these problems. In this sense, sequential models
such as recurrent neural networks (RNNs) have transformed speech recognition, natural
language processing, and other areas focused on the analysis of time series [17].

Regarding the application of deep architectures on financial time series, deep neural
network (DNN) approaches have improved the limitations of ANNs yielding good results
for developing High-Frequency trading strategies [18]. Deep learning frameworks based
on deep architectures such as autoencoders and long-short term memory (LSTM) have
been combined for stock price forecasting [19]. Other approaches focused on combining
deep architectures such as RNNs for dealing with sequential data and convolutional neu-
ral networks (CNNs) for identifying features within the data such as interdependencies
among the companies to understand the market dynamics [20]. Since financial markets are
constantly a�ected by events such as political decisions or changes in company policies,
deep architectures for stock market prediction from financial news articles based on RNNs
and CNNs have been developed [21]. In order to face the characteristic of non-stationary
time series, decomposition methods such as empirical mode decomposition (EMD) and
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) have
been combined with LSTMs increasing the accuracy of time series forecasting [22].

Information Technology Engineer / Mathematician 2 Graduation Project
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1.1 Problem statement

In this study, the capability of deep architectures for forecasting non-stationary time series
composed of stock prices is analyzed. A deep learning model composed of deep architecture
such as CNNs, LSTMs, and densely-connected neural networks is evaluated to forecast
intraday stock prices of Amazon Inc (AMZN). This model uses as input a batch dataset
composed of sequences with a period of time long enough to capture a high diversity in
price movements, the sequence construction is based on a sliding window approach. The
evaluation of this model consists of one-step and multi-step ahead forecasting.

1.2 Objectives

This research builds on the growing demand for more sophisticated algorithms for an-
alyzing stock markets, and the development of deep learning algorithms for forecasting
non-stationary time series.

1.2.1 General Objective

To develop a model using deep learning techniques for time series forecasting on stock
market data.

1.2.2 Specific Objectives

• To consolidate a time-series stock market dataset for training, testing, and validating
a deep learning model.

• To compare performance metrics such as accuracy, mean absolute error, loss, sensi-
tivity, and specificity with di�erent DL architectures in order to improve the model
performance.

• To test di�erent parameters involved in the training of DL models such as optimizers,
learning rate, loss, and activation functions to achieve an accurate algorithm.

1.3 Contributions

The contributions of this project consist of an overall review of State-of-the-Art deep
learning techniques inspired by the research of experts leading the development of artificial
intelligence. This project also contributes with an approach for building datasets composed
of non-stationary financial time series that can be used for training and testing sequential
models. The main contribution of this project consists of a deep learning model able
to perform one-step and multi-step ahead forecasting of financial time series. The results
provided by the model suggest that deep learning techniques can optimize the development
of trading strategies allowing to speed up the trading process.

Information Technology Engineer / Mathematician 3 Graduation Project
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1.4 Document Organization

In this project, deep architectures have been introduced for forecasting non-stationary
time series consisting of stock prices. Chapter 2 provides an overall review of state-of-the-
art deep learning techniques used on tasks such as image classification, natural language
processing, or speech recognition.

Chapter 3 describes the methodology used for forecasting non-stationary time series.
This section provides a detailed explanation of how the dataset is built. This section also
describes the proposed deep architecture and depicts the working of the model through a
block diagram. Also, the methodology used to define an optimum set of parameters for
training and testing is described.

Chapter 4 describes the materials used for the development of the project, the model
implementation, and the experimental setup. This section provides an analysis of the
experiments performed to define an optimum window size and the number of training
examples that improve the accuracy of the model. This section also compares the forecasted
values with the actual values of the test dataset.

Chapter 5 is a result and discussion section which shows that deep architectures provide
accurate results when forecasting non-stationary time series. Finally, chapter 6 carries the
conclusion and future studies.

Information Technology Engineer / Mathematician 4 Graduation Project



Chapter 2

Theoretical Framework

2.1 Artificial Intelligence and Machine Learning

In the early days of computers, people wonder if computers might become able to make in-
ferences intelligently and not only perform automated routine labors. Nowadays, artificial
intelligence (AI) is a wide field with many practical applications such as analyze and under-
stand speech, text, or images, make diagnoses in medicine, product recommendations and
support scientific research in other areas [23]. Problems that are di�cult for humans beings
but can be described by a list of formal mathematical rules are relatively straightforward
to solve for computers. Tasks such as recognizing words or images can be performed easily
for humans beings but can become di�cult for computers since these tasks are di�cult to
describe formally. The main objective of artificial intelligence is to try to solve these intu-
itive problems allowing computers the ability to learn from experiences and understand the
world in terms of a hierarchy of concepts, with each concept defined through its relation
to simpler concepts [23]. Based on this approach, computers are able to build their own
representation of the world with minimal need for hand-engineered operators that formally
specify the knowledge acquisition method.

Since tasks like object recognition or speech require a big amount of knowledge about
the world by a person, this knowledge can be acquired and interpreted in di�erent ways
and therefore di�cult to express in a formal way. Di�erent artificial intelligence projects
have tried to articulate knowledge about the world in formal languages in order to allow
computers to infer from these languages using logical inference rules. This approach is
known as knowledge base, one of the most popular projects based on this methodology is
the Cyc Project1 [24]. This project was an inference engine and a database of statements
managed by human supervisors. The main complication of the Cyc project was providing
enough formal statements that describe the world. Cyc struggle on understanding a story
about a person named Fred shaving in the morning. Cyc infers that people do not have
electrical parts, but as Fred was using an electric razor, the inference engine concludes that
the entity ”FredWhileShaving” contained electrical parts. Then, Cyc asked if Fred is still
a person while he was shaving [23].

Based on the di�culties of using knowledge-based approaches, artificial intelligence
1https://www.cyc.com [Last access: March 4, 2021]
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methods focused on the ability of own knowledge acquisition by extracting features of raw
data. This pattern recognition approach is known as machine learning (ML). Machine
learning techniques allowed computers the ability to face problems involving knowledge of
the real world and make inferences on tasks that appear to be subjective. The main idea
in machine learning is that computers can achieve learning by inferring feasible models
that explain the observed data. Then, these models can be used for making predictions on
unobserved data and make rational decisions based on the predictions. Observed data can
be consistent with many models, and therefore an uncertainty factor exists on which model
is more suitable for a given data. Machine learning techniques such as logistic regression
can determine if a cesarean is needed or by using machine learning algorithms such as
Naive Bayes it is possible to separate legitimate mails from spam mails [25].

2.1.1 Feature Representation

An important objective in machine learning is to learn deep hierarchies of features for other
tasks. Machine learning algorithms such as logistic regression or Naive Bayes are models
built from experience, which constitutes data acquired from actual cases [26]. Therefore,
simple algorithms like logistic regression and Naive Bayes are highly dependent on the
representation of the data they are given to achieve good performance. For instance,
in the case of logistic regression for recommending cesarean, the inputs for the machine
learning algorithm consist of relevant information such as the presence or absence of a
uterine scar. Therefore, each piece of information that represents a patient is known as a
feature. Then, logistic regression learns to correlates the di�erent features to classify and
return a prediction.

In order to achieve good performance from di�erent artificial intelligence algorithms, the
choice of features or data representation on which they are applied is important. Therefore,
much of the e�ort when developing a machine learning algorithm is focused on designing
processes of data transformation that result in a di�erent representation of the data that
can be supported by a machine learning algorithm [26].

However, this process of hand-engineered data representations is labor-intensive and
implies a disadvantage for learning algorithms. One solution for this problem is represen-
tation learning. This approach allows artificial intelligence algorithms the possibility to not
only discover the representation from inputs to outputs but also to extract and organize
the discriminative information from the data to build its own representations. Learned
representations can achieve much better results than hand-engineered representations. By
reducing the dependence on feature engineering, artificial intelligence applications can be
developed faster and also adapt to new tasks, and therefore representation learning algo-
rithms are able to discover the right set of features for a novel application in minutes or
days for a complex application.

The main objective when developing algorithms for learning features is to separate the
factor of variation that explains the observed data. These factors refer to separate sources
of influence present in the data, and they may exist as either observed objects or unobserved
forces in the physical world that a�ect observable quantities. They are called factors of
variation because they represent di�erent aspects of the data that can vary separately and
often independently. For example, when analyzing an image there are multiple factors of
variation, such as position, orientation, or lighting of an object.
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Most of the data present on real-world applications of artificial intelligence are influ-
enced by factors of variation, like the color of an object in an image influenced by the
daylight, or the accent of a speaker when analyzing speech recordings. All of these factors
make it di�cult to extract relevant features from raw data [26]. Therefore, in order to solve
this problem, deep architectures introduce an approach for building data representations
in terms of simpler representations. As a result, an artificial intelligence algorithm can
combine simpler concepts such as the edges, blurring, or sharpening of an image in order
to represent complex concepts such as the silhouette of a person [27].

2.1.2 Deep Architectures for Artificial Intelligence

In order to learn complicated functions that can represent high-level abstractions such
as vision or language, deep architectures are needed. An example of a deep architecture
is the multilayer perceptron (MLP). A multilayer perceptron is a mathematical function
that maps a set of input values to output values, this function is built by composing
multiple layers of simpler functions where each function provides a new representation of
the input. The main idea of deep architectures is that depth enables AI algorithms to learn
a sequence of instructions allowing that later instructions can refer back to the results of
earlier instructions [23].

Fig 2.1 shows the process of an artificial intelligence algorithm interpreting an image.
This process is composed of multiple modules in charge of processing the information,
starting with the raw pixels and ending in a linear classifier. The intermediate modules
of the algorithm consist on extracting the low-level features that are invariant to small
geometric variations such as crops or rotations, transforming the features until gradually
become invariant to contrast changes and contrast inversions, and then detect the most
frequent patterns. A common approach for extracting useful features from natural images is
transforming the raw pixel representations into more abstract representations, starting from
the presence of edges, detection of more complex but local shapes, until the identification
of abstract categories representing objects in the image, and then integrating all these
representations to capture enough understanding of the scene to answer questions about
it [27].

According to this approach of deep architecture, not all the information present in
di�erent level representations necessarily encodes factors of variation that explain the input.
If an artificial intelligence algorithm can capture the factors that explain the statistical
variation of the data and the interaction between factors of variation that generates the
observed data, then it is possible to state that the AI algorithm understands those aspects
of the world represented by the factors of variation. But most factors of variation present
in data such as natural images are di�cult to understand analytically due to the lack of
formalized prior knowledge about the world that explains the possible image variations,
even for a simple abstraction as a dog standing from Fig 2.1. This high-level abstraction of
a standing dog can be seen as a feature or even a category, and therefore all of the factors
included in the representation of a feature can be used to design a category detector.
Therefore, the objective of deep architecture learning is to automatically discover such
abstractions starting with low-level features such as pixels to the highest level concepts
such as objects in an image.
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Figure 2.1: Hierarchy feature extraction process of a Deep Neural Network.

2.1.3 Deep Architecture Representation

Deep architectures achieve learning by building hierarchies of features, higher feature hier-
archies are formed by the composition of lower-level features. This architecture of multiple
levels of abstract representations allows the learning of complex functions that maps the
inputs to outputs from the raw data and avoid the complete need for hand-engineered
features. The ability of deep architectures to extract features by themselves will improve
as the amount of data to be analyzed increases [17].

Depth of architectures refers to the number of levels of compositions of non-linear
operations in the learned function [27]. There are two main approaches for measuring the
depth of an architecture. The first approach is a computational graph based on the number
of sequential instructions that must be executed to evaluate the architecture, it can be
seen as the longest path of the graph from its inputs to outputs. The second approach is a
probabilistic modeling graph that measures the depth based on how concepts are related to
each other. This is because lower levels of hierarchies can be refined based on information
about higher-level hierarchies representing more complex features. For example, an AI
algorithm analyzing the image of a face with one eye on the shadow may only see one at
the beginning, but when detecting the presence of a face, the algorithm can infer that a
second eye is probably present [23]. Based on this approach, the graph can be built based
on two concepts, one layer for eyes and another layer for faces Figure 2.2.
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Figure 2.2: Illustration of two di�erent approaches for measuring the depth of an architec-
ture. A deep architecture can be represented through a computational graph mapping an
input to an output where each node performs an operation. The figure to the left repre-
sents an approach where each node performs an operation such as addition, multiplication,
or sigmoid function. To the left, an approach where each node corresponds to a neuron.
Both approaches consisting of di�erent element sets will result in the measure of di�erent
depths.

Figure 2.2 shows a diagram of a deep architecture representing two approaches based
on graphs. Left, the first approach defines depth as the length of the longest path from
inputs to outputs and consider which can be defined as a computational step. In this
case, the computation considered is logistic regression, the operations used are addition,
multiplication, and logistic sigmoids. Based on these three operations as the elements
describing the computer language as x ú ‡(a ú x + b), the computed depth is equal to 3.
Right, if the elements considered to measure the depth of the model are artificial neurons
describing f(x) = ‡(b + wx). Then, each set of neurons has a di�erent set of parameters
(w, b), and therefore the result is a multi-layer neural network where the depth corresponds
to the number of layers in the neural network, in this case, depth is equal to 2 [27].

Inspired by the depth architecture of the human brain, many attempts at training deep
neural networks with the objective of achieving learning have yielded poor results. One of
the first successful results takes place in 2006 with the introduction of Deep Belief Networks
(DBN) [28]. Deep Belief Networks is a learning algorithm that greedily trains one layer at a
time, exploiting an unsupervised learning algorithm for each layer. After that, the results
of learning algorithms improved with the introduction of autoencoders. This approach
exploits the principle of guiding the training of intermediate levels of representations using
unsupervised learning, which can be performed locally at each level.

Di�erent techniques for training deep architectures have been applied successfully.
These improvements have allowed the development of AI algorithms for dimensionality
reduction, object segmentation, or natural language processing. An advantage of autoen-
coders is the ability to training models with unlabeled data. However, autoencoders have
been used to initialize supervised neural networks achieving successful results in tasks such
as features extraction or dimensionality reductions [29] [30].
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The success of deep architectures such as restricted Boltzmann machines (RBMs) and
autoencoders have been due to their ability for learning data representations in an un-
supervised way. The ability of these algorithms for transforming one representation into
another allowed to improve the understanding of factors of variation in the data, and there-
fore improve the identification of representations at di�erent level abstractions that can
be used to initialize and train deep neural network based on supervised gradient descent
optimization. Similarly to the brain, where di�erent levels of abstraction consisting of
neural excitation of a reduced amount of a large number of features that are not mutually
exclusive [27]. These features form a distributed representation where the information is
not localized in a particular neuron but distributed across multiple neurons. [31]. Based
on the characteristic of features being distributed, it appears that the brain uses a sparse
representation. It means that only 1 to 4 percent of the number of neurons are activated
for a given activity [32].

Beyond the biological perspective inspiring initial AI approaches. The modern deep
learning perspective goes beyond a neuroscientific perspective and focuses on a more general
principle of learning multiple levels of composition that can be applied to not necessarily
neural-inspired models. The main reason for leaving behind the notion of deep architectures
based on neuroscience is that currently there is not enough information about the brain to
be used as a guide. However, the idea of allowing the interaction of multiple computation
units to become intelligent was inspired by the brain. Modern deep learning approaches are
inspired in di�erent areas such as math, linear algebra, statistics, or numerical optimization.

2.1.4 Multi-Layer Neural Networks

A multi-layer neural network can be represented as multiple series of layers, where each
layer combines an a�ne operation and a non-linearity. There are three types of layers
that can be di�erentiated in a multi-layer neural network architecture, the input layer
x, the hidden layers hk, and the output layer hl [23]. Figure 2.3 shows the notation
used for representing multi-layer neural networks. Each layer in the network represents
deterministic transformations computed in a feedforward way starting from the input layer,
through the hidden layers, until the output layer in charge of comparing the resulting value
with a given label y to measure the error L(hl, y) to be minimized.

Multi-layer neural network architectures are described by equation (2.1). Where hk is
the output vector computed from the previous layers hk≠1 with parameters bk representing
a vector of o�sets and W k as a matrix of weights. Then, an activation function such as
tanh, Sigmoid or ReLU is applied element-wise in order to achieve non-linearity. The
output layer hl is used for making predictions and is combined with a supervised target y
into a loss function L(hl, y).

In order to return probabilistic distributions used on classification tasks, the output
layer can have a non-linearity di�erent from the one used in previous layers, for example,
the softmax function (2.2). The output of the softmax function hl

i can be used as an
estimator of P (Y = i|x), where Y is the class associated with a given input data x. A
common loss function used in multi-layer neural networks is the log-likelihood (2.3) whose
expected value over (x,y) pairs is to be minimized [27].
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Figure 2.3: Notation used for representing multi-layer neural networks.

hk = tanh(bk + W khk≠1) (2.1)

hl
i = ebl

i+W l
i hl≠1

q
j ebl

j+W l
j hl≠1 (2.2)

L(hl, y) = ≠logP (Y = y|x) = ≠loghl
y (2.3)

Training Deep Neural Networks

Until 2006, many attempts for training deep neural networks (DNN) reported negative
results. Some reports suggest that training of deep supervised multi-layer neural networks
and random initialization of weights gets stuck in “apparent local minima or plateaus” [33]
and this drawback increase as the model gets deeper avoiding achieving good generalization
of factors of variation. Some observations suggest that random initialization of weights
yields poor results when treating with deep neural networks [34]. Then, some reports
found out that pre-training each layer with an unsupervised learning algorithm results in
much better results.

These approaches applied RBMs and autoencoders for training each layer based on the
idea of greedy layer-wise unsupervised learning where the first layer is trained with an
unsupervised learning algorithm, then the output of the first layers is used as the input
of the following layer [33] [35]. After initializing the first layer with unsupervised learning
algorithms, the neural network is trained using supervised learning algorithms. Other
experiments report achieving a training classification error down to zero without applying
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unsupervised pre-training even with deep neural networks [34]. Therefore, the problem
pointed in two di�erent directions, a regularization problem for unsupervised pre-training
or an optimization problem for non-unsupervised training.

In the experiment where the error down to zero, the hypothesis suggested that when
the top hidden layer is unconstrained, the top two layers are enough to fit the training set
even if lower layers provide a poor input representation. Also, if there are enough hidden
units in the top hidden layer, the training error can be reduced very low even if the lower
layer is not properly training, but this can yield on a not proper generalization a�ecting the
predictions in unobserved data. These experiments show that unsupervised pre-training
is most marked for the lower layers and non-unsupervised pre-training by the top layers.
One way to avoid the di�erentiation between optimization and regularization is to consider
a truly online setting in which data becomes available in sequential order and is used to
update the best predictor for future data at each step. Then, gradient descent can perform
a stochastic optimization of the generalization error [27].

2.1.5 Increasing Accuracy of Deep Learning Architectures

A key factor for the success of deep learning has been the development of big datasets
required for its training. Big datasets have expanded remarkably over time, and the main
reason is the growing digitization of society. The increasing amount of task performed on
computers make possible to gathers large amounts of information. As computers work as an
interconnected network, it is possible to centralize the collected information and transform
it into a dataset appropriate for deep learning applications. The process of generalizing a
large amount of data based on the observation of a small amount of data is known as Big
Data. In this sense, the requirements for training a deep learning algorithm decrease as
the amount of training data increases, allowing to provide the resources needed by a deep
learning algorithm to succeed.

One of the most widely used datasets in deep learning is the MNIST dataset 2. The
MNIST dataset is a database of handwritten digits containing 60,000 training examples
and 10,000 test examples. The digits have been size-normalized and centered in a fixed-size
image of 28x28 pixels. Recently, significantly larger datasets containing hundreds of thou-
sands to tens of millions of examples have enabled the development of more sophisticated
deep learning algorithms. These datasets include the public Street View House Numbers
dataset 3, di�erent versions of ImageNet dataset 4 or the WMT 2014 English to French
dataset 5.

Another factor involved in the success of deep learning is the constant development
of hardware. The availability of having faster computers with larger memory has made
it possible the analysis of large datasets. Since the introduction of hidden layers in deep
architectures, hardware advances have allowed artificial neural networks to double in size
approximately every 2.4 years [23]. The availability of faster CPUs and GPUs make possible
the development of faster network connectivity and better software infrastructure providing

2http://yann.lecun.com/exdb/mnist/ [Last access: March 8, 2021]

3http://ufldl.stanford.edu/housenumbers/
4http://www.image-net.org
5http://www.statmt.org/wmt14/
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allows to deep learning face more complex task such as medical image analysis, visual art
processing or financial fraud detection [36] [37] [38].

Since the earliest deep models used to recognize individual objects in extremely small
images [31], deep models have consistently improved their accuracy in tasks such as recog-
nition and predictions. The ability of deep models for processing more complex data has
scaled to object recognition networks able to process high-resolution images without the
need of a�ecting the image resolution. An example of this is the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), where convolutional network approaches (CNN)
have been able to beat state-of-the-art algorithms based on feature engineering with an
error rate of 26.2 percent to an error rate of 15.3 percent provided by convolution neural
networks. This deep architecture consists of 60 million parameters and 650.000 neurons,
five convolutional layers, and three fully-connected layers with a final 1000-way softmax
[39]. Since then, CNNs has consistently have won the challenge, the last winner of the
competition resulted in an error rate of 2.251 percent. This architecture called SENet
is constructed with a “Squeeze-and-Excitation” (SE) block that adaptively recalibrates
channel-wise feature responses by explicitly modeling interdependencies between channels
[40] Figure 2.4.

Figure 2.4: Error rate winners of ILSVRC.

The introduction of deep learning on speech recognition task yields a reduction of the
error rate, in some cases, the error was reduced in a half [41]. Deep architectures also
have succeeded in image segmentation resulting in a spectacular performance in tra�c
sign classification [42]. At the same time that the accuracy of deep learning algorithms
increased, the ability of these models for solving more complex tasks also extended. Re-
searches showed that neural networks could learn to output an entire sequence of characters
translated from an image instead of just identifying a single object [43]. In order to achieve
this type of learning, researchers thought that each individual element of the sequence must
be labeled [44]. Then, sequence-to-sequence learning algorithms such as long short-term
memory (LSTM) sequence models are used to analyze the relation between di�erent se-
quences rather than just fixed inputs. This type of recurrent neural networks (RNN) has
yielded on the introduction of deep learning on tasks such as machine translation [45].

The success of deep learning has also depended on the development of software infras-
tructures supporting the implementation of deep algorithms. Frameworks and libraries
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such as TensorFlow 6, PyTorch 7, Ca�e 8 or Theano 9 have supported the development of
many research project or commercial products.

Deep learning has consolidated as one of the most promising branches of machine
learning, based on areas such as statistics, applied math, and inspired on the human
brain. Constant advancements of computer hardware and software, larger datasets, and
techniques to train deeper networks have allowed deep learning techniques to expand over
di�erent research areas resulting in good results due to the accuracy of classification and
prediction tasks.

2.2 Deep Learning

Deep learning technology is used in a wide variety of aspects of modern society. Object
detection on images [46], speech recognition [47] or natural language processing [48](change
cite NLP) are di�erent applications of deep learning. Deep learning is a representation-
learning method with multiple levels of representations obtained by composing non-linear
modules that each transform the representation starting with the raw data into a rep-
resentation at a higher level. By achieving enough such transformations, very complex
functions can be learned [17]. In the case of classification tasks, higher layers of repre-
sentation amplify aspects of the input that are important for discrimination and suppress
irrelevant variations. For example, when classifying images, the firsts layers are in charge
of discovering the presence or absence of edges, blurring, or sharpening. Subsequent layers
will be responsible for assembling variations on edge positions to detect characteristics of
objects in the image. Then, the last layer will classify the image based on previously an-
alyzed characteristics and the labels assigned to each image. The idea of deep learning is
to provide supervised data to the model in order to learn characteristics avoiding external
human intervention.

Di�erent types of data can be analyzed through deep learning techniques by extracting
relevant features from the data. Considering di�erent characteristics of the input data, sev-
eral types of deep learning architectures. For example, recurrent neural networks (RNNs)
for processing sequential data or convolutional neural networks (CNNs) for analyzing im-
ages. When analyzing sequential data, such as speech or language, RNN architectures can
maintain in their hidden units information about the history of all the past elements of the
sequence. Therefore, recurrent neural networks can predict the following word in a text
or forecasting the next value of a stock price. More complex tasks can be approached by
using RNNs such as an encoder-decoder of a sentence from one language to another [49].

2.2.1 Supervised Learning

One of the most common approaches for machine learning is supervised learning. This
method is based on a set of inputs and outputs, inputs often called the predictors or

6https://www.tensorflow.org
7https://pytorch.org
8https://caffe.berkeleyvision.org
9https://github.com/Theano/Theano
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independent variables, and outputs called responses or dependent variables. Outputs can
be qualitative or quantitative, for example, categories such as iris discrimination [50] and
glucose level [11]. In the case of Iris discrimination the output is qualitative D={Virginica,
Setosa, and Versicolor} and in the case of glucose level example is quantitative D={Glucose
Level, Temp Basal, Basis Heart Rate}. There is no explicit ordering in the output classes,
and commonly descriptive labels are denoted as numbers to represent a category. Inputs
also can be distinguished as qualitative and quantitative. And di�erent methods can be
used to make predictions using qualitative or quantitative inputs. In the case of qualitative
variables, two classes such as ”sarcasm” or ”non-sarcasm” can be represented in a binary
digit 0 or 1 [51], this numeric representation also known as targets.

A machine learning method can process inputs and produce an output in the form of
a vector of scores representing a category. For example, given atmospheric data about
previous days, it is possible to forecast the ozone level of the following days [52]. Or
based on the pixel values of a handwritten digit [53], it is possible to predict its numeric
label. During training, the machine learning method is shown an input, and its objective is
assigned to the desired category the highest score of all categories. Therefore, an objective
function that measures the error between the outputs and the labels modifies the internal
parameters to minimize the error. These parameters called weights and biases has a similar
function to a knob that defines the outputs of the model. In order to decrease the error
between the computed output and the label, the machine learning algorithm computes a
gradient vector that indicates by what amount the error would increase or decrease if the
weight is increased minimally. Then, the weight is modified to the opposite direction of
the gradient vector.

Figure 2.5: Representation graphic of gradient descent optimization, image is taken from
Primo.ai [1]. Gradient descent is an optimization algorithm used to find the minimum
value of a function by repeated steps moving in the direction of steepest descent as defined
by the negative of the gradient.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is the most commonly used algorithm to find the
values that minimize the error of a given function. SGD methodology is based on taking a
small set of examples and compute the output error. Then, the average gradient for those
examples is computed and the corresponding weight is adjusted. This process is repeated
for all the small sets until the mean of the objective function stops decreasing [17]. The
main advantage of SGD is its quick ability to find values for the weights that minimize the
error. Figure 2.5 shows a representation of how gradient descent is computed.
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Cost Function

The cost function is a widely used method in supervised learning to measure the error
between predicted outputs and the ground truth outcomes. Supervised machine learning
aims to minimize the overall cost, thus optimizing the cost function through SGD is the
way that machine learning algorithms are able to learn.

2.2.2 Deep Neural Networks

A deep neural network (DNN) architecture is a multilayer set of neuron-like unit sets that
computes non-linear outputs. Each unit in a layer makes use of an activation function such
as Sigmoid or rectifier linear unit (ReLU) to increase the selectivity and the invariance of
the representation. Allowing an architecture to have multiple non-linear layers, a model
can implement extremely intricate functions of its inputs that are simultaneously sensitive
to minute details and insensitive to large irrelevant variations such as the background,
pose, lighting, and surrounding objects. DNNs have many di�erences from traditional ap-
proaches for classification. Its deep architecture provides more expressivity and robustness
for learning data representations without the need for hand-engineered features. An em-
pirical demonstration of this is the ImageNet classification task across thousands of classes
[39]. A standard DNN is composed of multiple layers, where the first layer often called as
input layer is the one in charge of feeding the model with external data, the last layer often
called as output layer returns the predicted values from the model, and the intermediate
layer often called hidden layers are in charge of transforming the inputs to a non-linear
representation so that the dataset categories become linearly separable by the output layer.

Backpropagation

The backpropagation procedure is based on repeated value adjustment of the weights in a
network to minimize a measure of the di�erence between the forecast output and the desired
output. As a result of the weight adjustment, deep learning models can represent important
features of a dataset. The principal advantage of backpropagation is its capability to create
useful new features.

The backpropagation methodology for computing the gradient of an objective function
with respect to the weights of a multilayer neural network is the application of the chain
rule for derivatives. The main idea is that the derivative of a function with respect to the
input of a layer can be computed backward from the gradient with respect to the output
of that layer. This process is repeated in order to propagate the gradients through all the
modules starting from the output layer to the input layer where the model is fed. After
computing these gradients, the gradients with respect to the weights are straightforward
to compute [17].

Convolutional Neural Networks

Convolutional neural networks (CNNs) are designed to process data represented on multiple
arrays such as images, audio recordings, or videos. In the traditional model of pattern
recognition, a hand-designed feature extractor gathers relevant information from the input
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and then the gathered features are classified into desired classes. Feature extractors often
called filters or kernels can extract di�erent characteristics of an array such as borders
and edges in the case of images. These feature extractors commonly are represented as
matrices. Therefore, it is possible to eliminate the hand-designed feature extractor and
allow the neural network to build an accurate feature extractor based on the raw data.

Figure 2.6: Internals of a convolutional network. This figure shows the outputs of each
layer (horizontally) of a typical convolutional network architecture applied to the image of
a dog. Each rectangular image is a feature map, representing di�erent features extracted
through convolutions such as edges or corners.

The main characteristic of CNNs is local connections, shared weights, pooling layers
and the use of many hidden layers. Commonly CNN architecture is composed of di�erent
stages, starting with convolution and pooling layers. Units in a convolutional layer are
organized in feature maps, where each unit is connected to local patches in the feature
maps of the previous layer through a set of weights called filter bank [17]. Then, an
activation function is applied to the resulting values. All units in a feature map share
the same filter bank. Di�erent feature maps in a layer use di�erent filter banks. This
architecture is based on two facts. First, multiple arrays such as images have local groups
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of values often highly correlated, this involves local patterns that can be easily detected.
Second, di�erent local patterns can appear independently from the location in the image.
Therefore, by having units at di�erent locations which share the same weights are able to
detect di�erent pattern on di�erent array location.

Then, a pooling layer reduces the dimension of the extracted features creating an in-
variance to shifts and distortions on the image. This process can be repeated by stacking
convolutions layers, non-linearity, and pooling layers followed by fully connected layers to
create feature extraction filters that represent low-level characteristics like an edge that
can be assembled into parts that compose an object. This object detection process also
can be applied to speech and text from phonemes or letters that can be assembled into
syllables, words, and sentences. Figure 2.6 shows a representation of how deep architecture
performs feature extraction.

2.2.3 Recurrent Neural Networks and Long Short-Term Memory

The recurrent neural network (RNN) is a type of deep architecture that has a deep structure
in the temporal dimension. RNNs are widely used in time series modeling. In this sense,
the traditional architecture of ANNs where all units of the input vectors are independent
of each other avoids the possibility of handling sequential data. On the other hand, RNNs
architectures add a hidden state that is generated by the sequential information of a time
series. This characteristic of RNNs allows that the resulting output has a dependence on
the hidden state, and therefore on the time series as shown in Fig 2.7.

Figure 2.7: Unfolded RNN diagram.

With the introduction of backpropagation, one of the most interesting applications was
focused on RNNs. RNNs process an input sequence one element at a time, allowing them
to maintain in their hidden units a state vector containing implicit information about
the history of the previous elements of the sequence. Therefore, it is possible to apply
backpropagation by considering the outputs of the hidden units at di�erent discrete time
steps in the same way as the outputs of di�erent neurons in a multi-layer neural network
[17]. A drawback of training RNNs is that when backpropagation is applied the gradients
tend to grow or shrink at each time step, and repeating this process many times result in
gradient exploding or vanishing [54]. Then, the introduction of a novel, e�cient, gradient-
based method called long short-term memory (LSTM) allowed the improvement of the
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architecture and training of RNNs. By truncating the gradient where this does not harm,
LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by
enforcing constant error flow through constant error carousels within hidden units [55].

Due to the advancements in the architecture of RNNs, they have performed success-
fully of task making use of sequential data such as predicting the next character in the text
[56], the next word in a sequence [57] or learning phrase representations using RNNs as an
encoder-decoder [49]. In this sense of using RNNs as an encoder-decoder has allowed the
development of complex task of machine translation, the use of RNNs consists of reading
an English sentence one word at a time, after that, an English encoder is trained to allow
that the final state vector of the hidden unit is able to transform the input sentence into
a good representation of the meaning expressed on the sentence. Then, this state vector
can be used as input of the hidden state of a trained French decoder which output can be
a probability distribution of a French word. The word chosen from the probability distri-
bution can be used as input for the decoder which returns another probability distribution
containing the translation of the second word, this process is repeated until translate the
whole phrase.

Instead of using machine translation to generates sequences of French words based on
a probability distribution that depends on the English sentence. RNNs also are able to
translate the meaning of an image into an English sentence. In this sense, CNNs can be
used as an encoder transforming the image pixels into an activity vector in its hidden units.
Then, RNNs can be used as a decoder resulting in the interpretation of the interaction of
the object present in the image [58].

Although RNNs main purpose is learning long-term dependencies. However, researchers
have reported di�culties at training RNNs to perform tasks in which the temporal contin-
gencies present in the input/output sequences span long intervals [54]. In order to solve this
drawback, by augmenting the network an explicit memory allows to the network remember
inputs for a long time [55]. A special unit called the memory cell acts like an accumu-
lator that helps to decide when to retain or forget the values of the memory cell. This
memory cell contains a connection to itself at the next time step that has a weight of one,
then it copies its own state and accumulates the external signal, but this self-connection
is multiplicatively gated by another unit called forget gate that learns to decide when to
clear the content of the memory. LSTMs subsequently proved to perform more e�ective
results than conventional RNNs. LSTM is an e�ective solution for combating vanishing
gradients by using memory cells, and its approach results in the development of complex
speech recognition systems or encoders and decoders for machine translation.

2.2.4 Future of Deep Learning

Unsupervised learning algorithms such as RBMs, DBNs, or autoencoder had a huge im-
pact on reviving the interest of deep learning, but since the success of purely supervised
learning due to the constant development of hardware, software and the availability of
large datasets has allowed that supervised learning algorithm domain most of the current
application of machine learning. Although, it is expected that unsupervised learning al-
gorithms become more important in the coming years since human and animal learning is
primarily unsupervised [17].

Much of the progress in deep learning is expected to happen from the combination
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of di�erent deep architectures such as convolutional neural networks and recurrent neu-
ral networks. The combination of di�erent deep learning algorithms has yielded on the
outperforming of state-of-the-art approaches [41]. One of the areas where deep learning
is expected to have a huge impact is natural processing. It is expected that algorithms
making use of RNNs will be able to understand whole documents by developing strategies
for selectively attending to one part at a time [45] [58].

The major advancements in deep learning are expected to happen from systems able
to combine representation learning with complex reasoning. Since deep learning is already
able to solve tasks such as speech or visual recognition, new paradigms are needed to
replace rule-based manipulation of symbolic expressions by operations on large vectors [17]
[59].

2.3 Discussion

Stock market prediction is usually considered as one of the most challenging issues among
time series predictions due to the stock market essentially being a dynamic, nonlinear, non-
stationary, non-parametric, noisy, and chaotic system [60] [61]. How to accurately predict
stock price movement is still an open question due to a wide set of factors that interacts in a
very complex manner a�ecting stock markets. These factors are economic variables, such
as interest rates, exchange rates, or monetary growth rates; company-specific variables,
such as changes in company policies, income statements, and dividend yields; psycholog-
ical variables of investors, such as the expectation of investors and institutional inversion
choices; and political variables, such as the occurrence and the release of important politi-
cal events. Furthermore, the E�cient Market Hypothesis states that stock prices reflect all
current information, and new information leads to unpredictable stock prices. The random
walk theory introduces a hypothesis that stock prices are defined randomly concluding that
stock prices cannot be accurately predicted using historical values [62].

On the other hand, some researchers state that the market behavior is ine�cient due to
the inability of the markets to immediately respond to newly released information alongside
psychological factors of market participants [10]. Based on the premise that markets are
ine�cient, financial variables such as stock prices, market index values, and the prices
of financial derivatives can be predicted. Therefore, by using information released to the
general public it is possible to make investment decisions based on stock market forecasting
technologies.

Most of the common methods for price prediction are based on fundamental and techni-
cal analysis. Fundamental analysis is the traditional approach using company parameters.
Technical analysis is based on Dow Theory and uses price history for prediction [63]. While
opinions di�er on the e�ciency of markets, many empirical studies have shown that finan-
cial markets are to some extent predictable [64] [65] [66]. In this sense, di�erent methods
for stock prediction have been compared such as statistical or artificial neural network
approaches.

Based on the type of financial data to be analyzed, financial time series forecasting
can be classified into two categories, univariate or multivariate analysis. In the case of
univariate analysis, only the financial time series itself is used as input. In the case of
multivariate analysis, the di�erent market indicators can be used as input variables such
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as the stock price, volume, volatility, or even financial news.
In the case of statistical approaches, techniques such as autoregressive integrated mov-

ing average (ARIMA) [67], the generalized autoregressive conditional heteroskedastic volatil-
ity (GARCH) [68] or the smooth transition autoregressive model (STAR) [69] have been
applied, mostly for univariate time series analysis. Statistical approaches for multiple input
variable often used techniques such as linear regression (LR) [70], support vector machines
(SVMs) [71] or quadratic discriminant analysis (QDA) [72]. A drawback of the above-
mentioned methods is that the data must meet requirements such as linearity, stationarity,
and normality, or in other cases the input data must be treated before been used. On the
contrary, approaches such as artificial neural networks are able to handle multivariate data
with no required assumptions.

Di�erent methods including statistical approaches, data mining classification algo-
rithms such as nearest neighbor classification [73] and composite classifier [74] have been
compared to artificial neural. Based on comparative analysis of stock market forecast-
ing methods, the literature suggests that ANN algorithms yield better performance [16].
However, di�erent researches suggest that ANNs are not the most accurate method for
dealing with time series containing noise and complex dimensionality that extends for long
periods of time [33]. In this sense, the introduction of deep architectures can overcome this
problem and they have already yielded good results in tasks using sequential data such
as speech recognition or machine translation. The success of deep architectures on the
above-mentioned tasks leads to the idea that sequential data such as financial time series
can also be predicted by using deep architectures.

Deep learning algorithms are capable of identifying hidden patterns and underlying
dynamics in the data through a self-learning process based on supervised learning. In
the case of financial time series, the data generated is enormous and is highly non-linear.
Di�erent from other approaches, deep learning architectures can e�ectively model these
types of data and can return a good prediction by analyzing the interactions and hidden
patterns within the data. One of the most used deep architectures for forecasting sequential
data is RNNs. In this sense, researchers have applied RNNs with di�erent approaches.
Certain works consider using data from a single time series as input [75] and others focused
on multivariate financial time series with the inclusion of heterogeneous market information
and macroeconomic variables [76]. With the introduction of long short-term memory cell
into recurrent neural networks architecture, the analysis of time-dependent data become
more e�cient. The capability of LSTMs for holding information in extended periods of
time improved the performance of stock price predictions [75] [77].

In this study deep architectures have been introduced to build a prediction algorithm
of univariate financial time series. The proposed deep architecture consists of convolutions
neural networks to extract features within the data, recurrent neural networks, and long
short-term memory cells to handle the long-term dependencies of time series and deep
neural networks for increasing the inferring capabilities of the model. Chapter 3 describes
the methodology suggested for stock predictions and the datasets used for training the
model. Chapter 4 implements the methodology and describes the experimental parameters
setting, and chapter 5 is a result and analysis section that shows the results of the proposed
architecture over di�erent stock market prices.

Information Technology Engineer / Mathematician21 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer / Mathematician22 Graduation Project



Chapter 3

Methodology

3.1 Phases of the Methodology

Figure 3.1: Flowchart of the proposed methodology. The following subsections explain in
detail how each phase developed.
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3.1.1 Build Dataset

This section covers the methodology for building a dataset composed of stock market data.
This methodology focuses on overcome the drawbacks of treating with non-stationary time
series.

Data description

The data used in this work involves the intraday stock prices of Amazon (ticker: AMZN).
The stock prices are collected with intervals of two and five minutes during the trading
hours from the last sixty days. It includes information about the volume, dividends, open,
high, low, and close price. This data was obtained through yfinance 1, a library that
collects historical market data from Yahoo! finance.

Univariate time series

The purpose of this study is to develop a deep learning model for forecasting univariate
time series. Therefore, the series for building the dataset consists of the opening prices
for two and five minutes intervals. This results in time series containing more than six
thousand observations for two-minute intervals and more than three thousand observations
for five-minute intervals. Figure 3.2 shows price behavior in the selected periods.

Figure 3.2: Amazon stock prices with 2 minute intervals to the left and 5 minute intervals
to the right.

Split data for training and test

To train the model the data is split into two-time series, one for training and another for
testing. For the data with two and five-minute intervals, 3500 and 2000 observations are
selected respectively for training, and the leftover observations are used for the testing.
Figure 3.3 shows the resulting time series for training and testing.

1
https://github.com/ranaroussi/yfinance
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Figure 3.3: The first row of figures corresponds to the time series for training a testing with
2 minute intervals. The second row corresponds to the time series for 5 minute intervals.

Define inputs and labels for the training dataset

Our goal is to consider a period of time long enough to capture a high diversity in price
movements. In the case of two-minute intervals data, a window of 60 data points corre-
sponding to 2 hours of stock prices is selected. For five-minute intervals data, the resulting
sequences consist of windows containing 108 data points corresponding to 9 hours of stock
prices. This process of selecting an optimal window size is focusing on overcoming the
characteristic of non-stationary time series. By selecting a limited period of time for build-
ing each sequence, the accuracy of the model increase with respect to a model processing
a complete non-stationary time series.

Figure 3.4: Inputs and labels selection based on sliding window approach and shifting
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In order to select the inputs and labels for building the training dataset, a sliding
window of size 60 or 108 is shifted every 1 value through the training time series described
in Figure 3.3. The process for selecting the inputs and labels is described in Figure 3.4.
This approach consists of a sliding window that is shifted every one value. In this sense, the
input sequence corresponds to the values within the window, and the label corresponding
to the next value of the window. The composition of an input sequence and the label
corresponds to a training example.

The objective of this stage is to expand the training time series based on a time period
long enough to represent the diversity in price movements. This allows the forecasting of
stock prices by using a period with a similar length.

Batching the dataset

Once we have created multiple sequences based on a sliding window approach and defined
the input and label for each sequence. Then, the resulting sequences are shu�ed. By
shu�ing the data, it ensures that each sequence creates an independent change on the
model meaning that each sequence is representative of the overall distribution of the data.
The purpose of shu�ing the data is to reduce the variance and the possibility of overfitting
by allowing that the model remains general for each training example.

The shu�ed dataset containing random permutations of the training sequences is then
batch. Batching the data consists on merge randomly selected sequences into a batch for
training. Batching the dataset allows to process of the dataset in smaller sets instead
of loading all the data to the model at once. By doing this, the computer memory can
be used more e�ciently and allows to speed up the training time. Figure 3.5 shows a
representation of batches creation. For the development of this study, the batch size was
set to one hundred sequences for both datasets with intervals of two and five minutes.

3.1.2 Model Architecture

The model architecture proposed in this project consists of three types of deep learning
architectures, CNNs, Dense layers, and LSTMs. Convolutional neural networks are special-
ized kinds of neural networks for processing data with a grid-like topology. This includes
time series, which are represented with one-dimensional arrays. This type of network uses
a mathematical operation called convolution, this is a specialized kind of linear operator
that can be used for feature extraction.

Dense layers are regular deeply connected neural networks. This type of layer is one
of the most common architectures used for developing deep learning models. The output
shape of the Dense layer will be a�ected by the number of neurons composing the network
and the defined activation functions.

RNNs are a type of deep neural network architecture that has a deep structure in the
temporal dimension. In contrast, to feedforward networks, RNNs introduce a hidden state
that is generated by the sequential information of a time series. RNNs consist of a hidden
state and modifiable weights, RNNs focused on applying the same set of weights recursively
over a graph-like structure. A recurrent neural network is defined by the following equations

a<t> = g(Waaa<t≠1> + Waxx<t> + ba) (3.1)
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Figure 3.5: A representation of the process for shu�ing and batching the dataset. This
approach consists of random permutations and random selection of sequences for batch
creation. In this example, the batch size is set to 3. Then, each batch is composed of 3
randomly selected sequences.

ŷ<t> = g(Wyaa<t> + by) (3.2)

where the network has an input x<t>, and an output ŷ<t>. The activation value com-
puted at a time step a<t≠1> is passed to the next time step to compute the next activation
value a<t>. The recurrent neural network scans the data from left to right. The parameters
it uses for each time step are shared, so the parameters Wax, Wya and Waa governs the
connection from the input x<1> to the hidden layers and from the hidden layers to the
outputs ŷ<t>. Then, ba and by corresponds to the biases and g to the activation functions.

One weakness of RNNs is that it only uses the information that is earlier in the sequence
to make a prediction. For example, when predicting ŷ<3> in Figure 2.7, the RNN does not
use information about the inputs from x<4> to x<T x>. So in the sense of forecasting time
series, it is important to extract information about earlier in the sequence as well as later
values in the sequence. This problem could be addressed by using Bidirectional Recurrent
Neural Networks (BRNNs) [78]. In the same way as RNNs, BRNNs struggle at learning
long-term dependencies because of the vanishing gradient problem. Therefore, LSTMs are
an e�ective solution for addressing vanishing gradients.

LSTM is a special kind of RNN, in this approach, the hidden layers are replaced with
LSTM cells. The cells are composed of di�erent gates that can control the input flow
through the hidden layers. LSTMs consist of a forget gate, update gate, and output gate.
It also consists of activation functions such as Sigmoid, ReLU , tanh and element-wise
multiplications Figure 3.6. LSTMs are represented with the following equations
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c̃<t> = tanh(Wc[a<t≠1>, x<t>] + bc) (3.3)

�u = ‡(Wu[a<t≠1>, x<t>] + bu) (3.4)

�f = ‡(Wf [a<t≠1>, x<t>] + bf ) (3.5)

�o = ‡(Wo[a<t≠1>, x<t>] + bo) (3.6)

c<t> = �u ú c̃<t> + �f ú c<t≠1> (3.7)

a<t> = �o ú tanh(c<t>) (3.8)

where c<t> corresponds to a memory cell which provides of a memory to remember
earlier input values. At every time step it is cosider update the memory cell c<t> with a
candidate c̃<t> that is computed using an activation function tanh of Wc plus a parameters
matrix containing the previous values of the memory cell, the activation value a<t≠1> as
well as the current input value x<t> plus the bias bc.

The key idea of LSTMs is the introduction of three control gates called update gate
�u, forget gate �f and output gate �o. These control gates are computed with a sigmoid
function, so their resulting value will be close to zero or one. Since, the RNN is considering
to update the value of c<t> with c̃<t>. Depending on the values of the control gates, it
is decided if the value of c<t> is updated. Therefore, computing the memory cell c<t>

depends on the resulting values of �u, �f and �o which vary between zero and one. The
introduction of control gates gives the memory cell the option of keeping the old value
c<t≠1> and then adding to the memory cell the value of c̃<t> (3.7).

Figure 3.6: Diagram representing of a Long Short-Term Memory cell.

Model architecture

In order to develop a deep architecture for one-step and four-step stock price forecasting,
this work presents a deep learning model for financial time series that integrates di�erent
deep learning approaches. Figure 3.7 shows the architecture of a 7 layer model. A batch
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dataset composed of the sequences generated by a sliding window approach is presented
as the input. Each batch is 1D-convolved with 60 filters, each of size 5, using a stride of 1
in the x-axis, causal padding, and ReLU activation function. The resulting feature maps
are then passed through a LSTM layer where each cell is composed of 60 units and returns
its output sequence. The resulting sequences serve as inputs for another LSTM layer with
the same characteristics which also outputs the sequence generated by each cell.

The following layers are three regular densely-connected neural networks. The first
dense layer composed of 30 units processes the outputs from the second LSTM layer.
Similar operations are performed by the second layer composed of 10 units. The final
dense layer is composed of 1 unit which output dimension is batch size by sequence length
by dense layer units. To conclude a Lambda layer is applied to scale up the output values
of the last dense layer in order to help the learning.

3.1.3 Training

The process of training the model consists of fine-tuning parameters such as the learning
rate, optimizer, loss function, and the number of epochs for training. Also, this approach
focused on the development of consistent data in order to decrease the training time and
prevent overfitting.

Loss Function

The purpose of loss functions is to compute the quantity that a model should seek to
minimize during training. The loss function used in this project is the Huber function,
this function tends to be less sensitive to outliers. Therefore, the Huber loss function is
able to perform well for intraday stocks characterized by having a high variance and noisy
behavior.

Optimizer

Optimizers are algorithms used to modify the parameters of a neural network such as the
weights and learning rate to optimize the loss function. In this model, the optimizer used is
Stochastic Gradient Descent (SGD). Stochastic gradient descent is an iterative method for
optimizing an objective function with suitable smoothness properties. It can be regarded
as a stochastic approximation of gradient descent optimization since it replaces the actual
gradient by an estimation of itself.

Defining Learning Rate

The learning rate (LR) is a tuning parameter in an optimization algorithm that determines
the step size at each training iteration while moving toward a minimum of a loss function.
Defining a high LR will make the learning jump over minima and a low LR will either take
too long to converge or get stuck in an undesirable local minimum. Therefore, defining
the correct learning rate becomes crucial for the training stage. In this sense, a learning
rate scheduler is used to define the optimum learning rate for stochastic gradient descent.
The learning rate scheduler is used to modulate how the learning rate of SGD changes
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Figure 3.7: Model Architecture.
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Figure 3.8: Selection of the optimum learning rate by using a learning rate scheduler.

over time, so the model is trained for a short number of epochs where the learning rate
is modified to analyze the returning loss. Figure 3.8 shows the resulting plotting of the
process for choosing an accurate learning rate based on using a learning rate scheduler.

Training Epochs

In order to determine the optimal number of training epochs for the model, the number
of training epoch is compared with the loss values. Figure 3.9 shows the loss value corre-
sponding to each training epoch. The figure to the left shows that the loss stays the same
before 100 epochs. But the figure to the right is zoomed in to the last few epochs, where
it can be observed that the trend is still downward until 400 epochs.

Figure 3.9: Analysis for selecting the optimum number of training epochs based on a Loss
vs. Epoch plotting. The figure to the left corresponds to the loss values at each training
epoch, 500 epochs. The figure to the right corresponds to the loss values of the last 300
epochs.
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3.1.4 Testing

Metrics for error measure

One of the most common metrics for measuring the error between the values predicted
by the model and the observed values is the mean squared error (MSE) or the root-mean-
square error (RMSE). Another metric is the mean absolute error (MAE), one characteristic
of this metric is not penalizing large errors as much as the MSE or RMSE does. The mean
absolute error is a common measure of forecast error in time series analysis since the loss
values tend to be proportional to the size of the error. The MAE is described by the
following equation

MAE =
qn

i=1 |yi ≠ xi|
n

=
qn

i=1 |ei|
n

(3.9)

Forecast on test dataset

To evaluate the performance of the model, two types of prediction were performed over the
test dataset. The first evaluation consists of one-step forecasting over the whole test data
with a stride of one. And the second evaluation consists of four-step forecasting given an
input sequence. Figure 3.10 shows both evaluation approaches.

Figure 3.10: The first row of figures corresponds to one-step forecasting over the whole
dataset with a stride equal to 1. And the second row corresponds to four-step forecasting
given a data sequence.
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Chapter 4

Experiments

The objective of the following experiments is to evaluate the performance of the model for
forecasting non-stationary time series consisting of stock prices. These experiments were
also used to build the proposed deep architecture and define the corresponding parameters
to achieve the best performance. Figure 3.7 shows a schema of the architecture.

4.1 Materials

The implementation of this project was performed using the Keras1, a deep learning API
written in Python. This project was executed using Google Colaboratory (Colab)2, Colab
is a hosted Jupyter notebook service providing free access to computing resources including
GPUs. The historical stock market prices were obtained with yfinace3, a Python library
that provides a convenient way to download historical market data from Yahoo! finance.
The code developed in this project can be found in the following GitHub repository 4.

4.2 Experimental setup

This section presents the details regarding the evaluation of the model for one-step and
four-step ahead stock price forecasting. The model is tested over a dataset composed of
stock prices with intervals of 2 and 5 minutes. The dataset is build using a sliding window
approach in order to face the drawbacks of using non-stationary time series. Di�erent
window sizes were tested for both datasets. For the 2 minute dataset, window sizes of 40,
60, and 80 were tested. And for the 5-minute dataset, window sizes of 46, 72, and 108.
Testing di�erent window sizes allow the selection of an optimum period of time capturing
a high diversity in price movements. The result of this process is a set of sequences with
a length equal to the window size. Then, the dataset is built by creating batches of 100
sequences. Figure 4.1 shows the experiments performed by varying the window size.

1https://keras.io/about/
2https://colab.research.google.com
3https://github.com/ranaroussi/yfinance
4https://github.com/ESbros/GraduationProject.git
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Regarding the model parameters. The first layer is a CNN composed of 60 filters,
a kernel size of 5, strides of 1, causal padding used for 1D convolutions, and a ReLU
activation function. Then, two layers composed of LSTM cells are defined, both with the
same parameters, 60 units, and enabling the possibility of returning sequences that serve as
input for the next layer. The following layers consist of three regular densely-connected NN
layers. The first and second dense layer implements a ReLU activation function consisting
of 30 and 10 units respectively. The third dense layer composed of 1 unit corresponds to
the output layer. The final layer consists of a Lambda layer which multiplies the values of
the output layer by 400.

The parameters used for training the model were Huber loss function, SGD for opti-
mizing the loss function with a momentum of 0.9, and mean absolute error for the metrics.
In order to define an optimum learning rate, the model is trained for 100 epochs where
at each epoch the learning rate is modified. Starting with a learning rate of 1e≠8, at each
epoch, the learning rate is modified as following 1e≠8 ú 10epoch/20. This process provides an
approximation for selecting an optimum learning rate. Figure 4.2 shows the experiments
for selecting the learning rate.

The model was trained on di�erent datasets by varying the number of data points used
for training and testing. The ’yfinance’ library returns sequences containing around 6000
and 6500 data points in the case of stock prices with two-minute intervals and around 3000
and 3500 data points for five-minute intervals. The number of data points returned by the
library varies depending on the day and hour that the query is performed. In this sense,
the number of data points for consolidating the training set were 2500, 3500, and 4500 for
two-minute intervals, and in the case of four-minute intervals, the number of data points
for training was 1500, 2000, and 2500. Figure 4.3 show the model performance for di�erent
datasets varying the number of training examples.

Two forecasting approaches were performed to evaluate the model performance. These
approaches consist of one-step and four-step ahead stock price forecasting. In this sense,
sequences of 60 and 108 data points for two-minute and five-minute intervals are used to
forecast the next data points. Additionally, a fifteen-step ahead forecasting was performed
for five-minute stock price intervals. This additional experiment was only considered for
two-minute interval forecasting due to the characteristics of the model developed for this
interval. Figures 4.4, 4.5 and 4.6 shows the di�erent forecasting approaches performed.

4.3 Perform Experiments

This section provides a comparative analysis of di�erent experiments consisting of varying
the window size, learning rate selection, one-set and four-step forecasting for two-minute
and five-minute intervals, and a fifteen-step ahead forecasting for five-minute intervals.

4.3.1 Varying window sizes

The purpose of this experiment is to define an optimum window size in order to face the
characteristic of non-stationary time series. The experiments show that for time series with
two-minute intervals, the optimum window size consists of 60 data points.
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Figure 4.1a shows the one-step-ahead prediction over the test dataset with a window
size of 40, this plot shows how the forecasted values tend to be below the actual values.
Figure 4.1e shows the prediction of using a window size of 80, in this case, the forecasted
values tend to be above the actual ones. Figure 4.1c shows how the forecasted values are
quite close to the actual values. In the case of five-minute intervals, Figure 4.1f shows the
one-step-ahead predictions using a window size of 108 correspondings to a period of time
of 9 trading hours. This window size provides the best forecastings over the test dataset.

(a) Interval: 2 minutes - Window Size: 40 (b) Interval: 5 minutes - Window Size: 46

(c) Interval: 2 minutes - Window Size: 60 (d) Interval: 5 minutes - Window Size: 72

(e) Interval: 2 minutes - Window Size: 80 (f) Interval: 5 minutes - Window Size: 108

Figure 4.1: One-step ahead forecasting (Orange) vs. Test Dataset (Blue). A window size
of 40 provides the best results in the case of two-minute intervals and a window size of 108
for five-minute intervals.

Information Technology Engineer / Mathematician35 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

4.3.2 Optimum learning rate selection

In order to define the learning rate for training. A learning rate scheduler provides an
approximation of the optimum learning rate. Figure 4.2 shows the resulting loss values for
varying the learning rate for 100 training epochs. The performed experiments show that
the optimum learning rate for both datasets varies between 5e≠7 and 5e≠6. The optimum
learning rate depends on multiple factors such as the number of training epochs, model
parameters, or dataset.

(a) Optimum learning rate: 2e≠6
. (b) Optimum learning rate: 1e≠6

.

Figure 4.2: Optimum learning rate selection.

4.3.3 Training dataset

The following experiment shows how the performance of the model is a�ected by varying
the number of training examples when creating the dataset. In the case of two-minute
intervals and a training data set of 2500 data points, Figure 4.3a shows how the one-
step-ahead forecasted values tend to be below the actual values. Figure 4.3c and 4.3e
corresponds to the forecasted values with a dataset composed of 3500 and 4500 data points.
Since the dataset is composed of non-stationary time series, it is interesting to note that
the best forecasting performance corresponds to the training dataset with 3500 data points.

Figure 4.3e shows how the forecasted values tend to exceed the actual stock prices.
The experiments performed for five-minute intervals show a similar behavior was 2000
data point provides the best performance. Figure 4.3b shows how the forecasted values
tend to be below the actual values, Figure 4.3f shows how the forecasted values di�er
drastically from the actual ones when the training examples extends for a long period of
time. Figure 4.3d shows how the model using 2000 data points for training provides quite
similar results to the actual values.

It is interesting to note that when dealing with non-stationary time series, increasing
the number of training examples does not mean improving the model performance. This
experiment shows how selecting an optimum number of training examples can improve the
prediction performance.
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(a) Interval: 2 minutes - Training dataset: 2500 (b) Interval: 5 minutes - Training dataset: 1500

(c) Interval: 2 minutes - Training dataset: 3500 (d) Interval: 5 minutes - Training dataset: 2000

(e) Interval: 2 minutes - Training dataset: 4500 (f) Interval: 5 minutes - Training dataset: 2500

Figure 4.3: One-step ahead forecasting (Orange) vs. Test Dataset (Blue). This experiment
consists of varying the number of training examples.

4.3.4 Forecasting

The purpose of this section is to evaluate the model for one-step and four-step ahead
forecasting by using the test dataset consisting of two and five-minute intervals. The
corresponding metrics for each experiment are present in section 4.4. Table 5.1 corresponds
to the one-step, four-step and fifteen-step forecasting approaches. Tables 5.2 and 5.3
corresponds to the training example and window size experiments respectively.
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One-step forecasting

(a) One-step ahead forecasting for 2-minute intervals dataset.

(b) One-step ahead forecasting for 5-minute intervals dataset.

Figure 4.4: One-step ahead forecasting (Blue) vs. Test Dataset (Orange).

Figure 4.4 shows how the model performs for one-step forecasting, Figure 4.4a for 2
minute dataset and Figure 4.4b in the case of 5 minute intervals dataset. This experiment
shows that the model trained for the 2-minute intervals dataset performs more accurately
than the model for 5-minute intervals. However, both models provide good performance for
forecasting the next data point given non-stationary time series as input. In both cases,
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the selected number of training examples and window sizes corresponds to the values
which provide the best performance on previous experiments. For the two-minute intervals
dataset, window sizes of 60 and 3500 training examples. For the five-minute intervals
dataset, window sizes of 108 and 2000 training examples.

Four-step forecasting

Figure 4.5 shows the model performance for four-step ahead forecasting. The first row cor-
responds to the forecasted values for 2-minute and 5-minute intervals datasets. The second
row corresponds to the input sequence followed by the four predicted values. In this sense,
Figure 4.5a and 4.5c shows how the model performs for four-step ahead forecasting for 2
minute intervals dataset and Figure 4.5b and 4.5d in the case of 5 minute intervals dataset.
In this experiment, the results show that four-step ahead forecasting is more accurate in
the case of 2-minute intervals. Similar experiments were performed for forecasting longer
time-steps where the model for forecasting 5-minute intervals time series provides more
accurate results.

(a) Forecasted values for 2-minute intervals. (b) Forecasted values for 5-minute intervals.

(c) Input sequence followed by forecasted values

for 2-minute intervals dataset.

(d) Input sequence followed by forecasted values

for 5-minute intervals dataset.

Figure 4.5: Four-step ahead forecasting (Blue) vs. Actual values (Orange).
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Fifteen-step forecasting

This is an additional experiment for testing the performance of the model for fifteen-step
ahead forecasting. The results showed that the model trained for forecasting 5 minute
intervals time series provides much more accurate results than the model for 2-minute
intervals.

(a) Test time series corresponding to stock prices

from the last sixty days ending on March 24.

(b) Test time series corresponding to stock prices

from the last sixty days ending on March 25.

(c) Fifteen-step ahead forecasting (Blue) vs. Ac-

tual values (Orange) March 24, 2021.

(d) Fifteen-step ahead forecasting (Blue) vs. Ac-

tual values (Orange) March 25, 2021.

(e) Fifteen-step ahead forecasting (Blue) vs. Ac-

tual values and input sequence (Orange).

(f) Fifteen-step ahead forecasting (Blue) vs. Ac-

tual values and input sequence (Orange).

Figure 4.6: Fifteen-step ahead forecasting for March 24 and March 25, 2021.
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Figure 4.6 only corresponds to the results provided by the model trained for forecasting
5-minute intervals. In this experiment the same forecasting approach is performed for two
di�erent time series, the first corresponds to the stock prices from the last sixty days ending
at March 24 and the second corresponds to the last sixty days ending at March 25, 2021.
Figure 4.6a and 4.6b shows the one-step-ahead forecasting for both time series in order
to provide the context in which the prediction is performed. Figure 4.6c and 4.6d shows
the model performance for fifteen-step ahead forecasting, this experiment shows that the
model trained for 5-minute intervals can forecast the trend in which the non-stationary
time series behaves for at least 15 data points ahead.

4.4 Evaluation Metrics

To measure the error rate of the developed models. The metric used in this project is mean
absolute error (MAE). This metric does not penalize large errors as much as metrics such
as MSE or RMSE. The mean absolute error is a common approach for measuring the error
of in time series analysis. In this sense, to measure the error rate, the experiments were
divided into three groups as shown in Table 4.1. The first group corresponds to one-step
and multi-step forecasting, for each experiment the model was trained using five di�erent
time series. This approach results in five di�erent MAE values returned by each model
that later was averaged. The second and third groups correspond to the MAE values from
the experiments consisting of varying the number of training examples and window sizes.
For these two groups, the model was trained for a single time series, and therefore the
MAE values corresponding to each experiment consist of a single evaluation.

Table 4.1: Metric definition used for di�erent forecasting approaches.

Group Approach Metric

1 One-step and multi-step ahead forecasting MAE
2 One-step ahead forecasting varying the number of training examples MAE
3 One-step ahead forecasting varying the window sizes MAE
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Chapter 5

Results

The results of the model for one-step, four-step, and fifteen-step ahead prediction are
shown in Table 5.1, this table describes the most important parameters used to achieve
these results and the average error rate returned by the models that performed these
experiments. The results shown in Table 5.2 corresponds to the experiments for varying the
number of training examples in order to define the optimum number of training examples
that provide the best performance. Table 5.3 shows the experimental results for varying
the window size in order to face the drawbacks of treating with non-stationary time series
and define an optimum period of time long enough to capture a high diversity in price
movements.

Table 5.1: Performance results in terms of mean absolute error (MAE) for one-step and
multi-step forecasting.

Approach Interval Window Size Training Examples MAE

One-step ahead forecasting 2 minutes 60 3500 6.7
One-step ahead forecasting 5 minutes 108 2000 9.94
Four-step ahead forecasting 2 minutes 60 3500 3.49
Four-step ahead forecasting 5 minutes 108 2000 8.07

Fifteen-step ahead forecasting 5 minutes 108 2000 9.84

5.1 Discussion results

The objective of this project is to measure the performance of deep architectures for fore-
casting non-stationary time series composed of stock prices. The proposed architecture is
composed of CNNs, LSTMs, and densely-connected neural networks. The experimental re-
sults show that the proposed architecture provides the best performance for a short period
of time, the best performance was achieved training the model with two-minute intervals
time series, in this case, the error rate of the model is equal to 6.7. By using five minute
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Table 5.2: Experimental results for experiments varying the number of training examples.

Approach Interval Training Examples MAE

One-step ahead forecasting 2 minutes 2500 8.83
One-step ahead forecasting 2 minutes 3500 5.7
One-step ahead forecasting 2 minutes 4500 21.99
One-step ahead forecasting 5 minutes 1500 6.46
One-step ahead forecasting 5 minutes 2000 9.11
One-step ahead forecasting 5 minutes 2500 9.52

Table 5.3: Experimental results for experiments varying the window size.

Approach Interval Window Size MAE

One-step ahead forecasting 2 minutes 40 11.53
One-step ahead forecasting 2 minutes 60 5.7
One-step ahead forecasting 2 minutes 80 9.49
One-step ahead forecasting 5 minutes 46 11.57
One-step ahead forecasting 5 minutes 72 10.32
One-step ahead forecasting 5 minutes 108 9.11

intervals time series for training, the model provides an error rate of 9.94, which is higher
than the model trained for two-minute intervals but also provides good performance for a
longer period of time. Figure 4.3c and 4.3d shows the forecasted values compared to the
actual values for two and five minute intervals. In the case of four-step ahead forecasting,
the model trained with two-minute intervals time series also provides a better error rate,
3.49 for two-minute intervals time series and 8.07 in the case of five-minute intervals time
series.

Although the models trained for two-minute intervals time series provides better perfor-
mance, the results show that models trained with five-minute intervals time series forecast
more precisely the longer period of time than the two-minute intervals approach. The
results show that for fifteen-step ahead forecasting, the model is able to maintain the error
rate closer to 9 while the error rate for models trained with two-minute intervals time series
is a�ected drastically. These results suggest that models trained with longer intervals time
series are able to forecast the trend in which the market data behaves for at least fifteen
steps ahead.

Regarding the analysis of non-stationary time series, the experimental results show that
defining an optimum window size is fundamental for increasing the model accuracy. The
selection of an optimum window size depends on the intervals of the time series. It was
found that for two-minute intervals time series, the optimal window size is equal to 60 data
points. In the case of five minute interval time series, the optimal window size is 108 data
points. Another important factor to achieve good performance is the number of training
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examples, the results show that for two-minute intervals time series the optimum number
of training examples is 3500 and 2000 in the case of five-minute intervals time series.
Contrary to the idea of deep learning models needing a large dataset, when treating with
non-stationary time series, the idea of defining a period of time long enough to capture a
high diversity in price movements becomes more important than collecting larger datasets.

The results provided by the model show that deep architecture performs accurately
when forecasting stock market prices. In this sense, one-step and four-step ahead fore-
casting can be applied to high-frequency trading strategies. Since high-frequency trading
strategies focused on short-term positions, the forecasted values by the model can be used
as an indicator for determining a position. An advantage of using deep learning models
in high-frequency trading is the speed at which the model provides accurate forecasting,
this approach enables the possibility to exploit trading opportunities that may open up for
milliseconds or seconds.

Since the financial market is a highly dynamic system, the patterns and dynamics ex-
isting within the model will not always correspond to the current dynamics of the financial
market. Therefore, in order to maintain the performance of the model, a limitation of
this approach is that the model must be trained constantly to allow the model to learn
the current behavior of the financial market. In this sense, further researches could focus
on extending the variables provided to the model to identify more complex features and
increase the model accuracy. The approach of this model is to analyze univariate time
series composed of stock opening prices. Further researches could focus on the analysis of
multivariate time series applying deep learning algorithms.
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Chapter 6

Conclusions

This work has presented a deep learning model that combines a CNN layer with two LSTM
layers and three regular densely-connected NN layers for intraday stock price forecasting.
The model uses as input a batch dataset built from non-stationary time series. Results
presented in table 5.1 show that the model can perform one-step and multi-step ahead
forecasting with a low error rate.

The proposed model uses only the opening stock price of the last sixty days to build
the dataset based on a sliding window approach. These results reinforce the hypothesis
that selecting shorter sequences of data points for training the model help to overcome
the drawbacks of treating non-stationary time series. The experimental results show that
choosing an optimum window size and number of training examples can drastically improve
the model accuracy.

Regarding the model architecture, it can be concluded that the combination of di�erent
deep architectures improves the capability of the model for identifying interrelations within
the time series to allow to forecast changes in trends of the stock market. The results
provided by the model show that deep architectures can be applied successfully to trading
strategies due to the speed at which the model performs accurate forecasting of stock
prices.

Although the proposed model has a satisfactory forecasting performance, it still has
some insu�ciencies. For example, a multivariate dataset could provide to the model the
possibility of identifying more complex features within the data to improve the model
accuracy. In addition, since the model must be constantly trained to learn the current
behavior of the stock prices, this process becomes time-consuming, therefore the introduc-
tion of high-performance computing (HPC) techniques for training the model can improve
the performance of possible trading strategies. In order to evaluate the e�ectiveness of
deep learning models in portfolio management, fundamental and technical analysis can be
addressed to develop di�erent trading strategies. All of these recommendations could be
implemented in future studies.
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[18] A. Arévalo, J. Niño, G. Hernández, and J. Sandoval, “High-frequency trading strategy
based on deep neural networks,” in International conference on intelligent computing.
Springer, 2016, pp. 424–436.

[19] W. Bao, J. Yue, and Y. Rao, “A deep learning framework for financial time series
using stacked autoencoders and long-short term memory,” PloS one, vol. 12, no. 7, p.
e0180944, 2017.

[20] S. Selvin, R. Vinayakumar, E. Gopalakrishnan, V. K. Menon, and K. Soman, “Stock
price prediction using lstm, rnn and cnn-sliding window model,” in 2017 interna-
tional conference on advances in computing, communications and informatics (icacci).
IEEE, 2017, pp. 1643–1647.

[21] M. R. Vargas, B. S. De Lima, and A. G. Evsuko�, “Deep learning for stock market
prediction from financial news articles,” in 2017 IEEE International Conference on
Computational Intelligence and Virtual Environments for Measurement Systems and
Applications (CIVEMSA). IEEE, 2017, pp. 60–65.

[22] J. Cao, Z. Li, and J. Li, “Financial time series forecasting model based on ceemdan and
lstm,” Physica A: Statistical Mechanics and its Applications, vol. 519, pp. 127–139,
2019.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[24] D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd, “Cyc: Toward
programs with common sense,” Commun. ACM, vol. 33, no. 8, p. 30–49, Aug. 1990.
[Online]. Available: https://doi.org/10.1145/79173.79176

[25] K.-M. Schneider, “A comparison of event models for naive bayes anti-spam e-mail
filtering,” in 10th Conference of the European Chapter of the Association for Compu-
tational Linguistics, 2003.

Information Technology Engineer / Mathematician50 Graduation Project

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/79173.79176


School of Mathematical and Computational Sciences Yachay Tech University

[26] A. C. Yoshua Bengio and P. Vincent, “Representation learning:a review and new per-
spectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38,
no. 8, pp. 1798–1828, 2013.

[27] Y. Bengio, “Learning deep architectures for ai,” Foundations, vol. 2, pp. 1–55, 01 2009.

[28] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006, pMID: 16764513.
[Online]. Available: https://doi.org/10.1162/neco.2006.18.7.1527

[29] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-encoders:
Explicit invariance during feature extraction,” in Icml, 2011.

[30] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,” Neu-
rocomputing, vol. 184, pp. 232–242, 2016.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[32] D. Attwell and S. B. Laughlin, “An energy budget for signaling in the grey matter
of the brain,” Journal of Cerebral Blood Flow & Metabolism, vol. 21, no. 10, pp.
1133–1145, 2001.

[33] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., “Greedy layer-wise training
of deep networks,” Advances in neural information processing systems, vol. 19, p. 153,
2007.

[34] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring strategies for
training deep neural networks.” Journal of machine learning research, vol. 10, no. 1,
2009.

[35] M. Ranzato, C. Poultney, S. Chopra, Y. LeCun et al., “E�cient learning of sparse rep-
resentations with an energy-based model,” Advances in neural information processing
systems, vol. 19, p. 1137, 2007.

[36] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A.
Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in
medical image analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017.

[37] G. W. Smith and F. F. Leymarie, “The machine as artist: An introduction,” in Arts,
vol. 6, no. 2. Multidisciplinary Digital Publishing Institute, 2017, p. 5.

[38] U. Fiore, A. De Santis, F. Perla, P. Zanetti, and F. Palmieri, “Using generative adver-
sarial networks for improving classification e�ectiveness in credit card fraud detection,”
Information Sciences, vol. 479, pp. 448–455, 2019.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, pp. 1097–1105, 2012.

Information Technology Engineer / Mathematician51 Graduation Project

https://doi.org/10.1162/neco.2006.18.7.1527


School of Mathematical and Computational Sciences Yachay Tech University

[40] E. Park, W. Liu, O. Russakovsky, J. Deng, F.-F. Li, and A. Berg, “Large scale visual
recognition challenge 2017,” 2017.

[41] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering in context-dependent deep
neural networks for conversational speech transcription,” in 2011 IEEE Workshop on
Automatic Speech Recognition & Understanding. IEEE, 2011, pp. 24–29.

[42] D. CireAan, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column deep neural
network for tra�c sign classification,” Neural networks, vol. 32, pp. 333–338, 2012.

[43] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.
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[49] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[50] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of
eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[51] A. Joshi, P. Bhattacharyya, and M. J. Carman, “Automatic sarcasm detection: A
survey,” ACM Computing Surveys (CSUR), vol. 50, no. 5, pp. 1–22, 2017.

[52] A. Grover, A. Kapoor, and E. Horvitz, “A deep hybrid model for weather forecasting,”
in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2015, pp. 379–386.

[53] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[54] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gra-
dient descent is di�cult,” IEEE transactions on neural networks, vol. 5, no. 2, pp.
157–166, 1994.

Information Technology Engineer / Mathematician52 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

[55] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[56] I. Sutskever, Training recurrent neural networks. University of Toronto Toronto,
Canada, 2013.

[57] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed rep-
resentations of words and phrases and their compositionality,” arXiv preprint
arXiv:1310.4546, 2013.

[58] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Ben-
gio, “Show, attend and tell: Neural image caption generation with visual attention,”
in International conference on machine learning. PMLR, 2015, pp. 2048–2057.

[59] L. Bottou, “From machine learning to machine reasoning,” Machine learning, vol. 94,
no. 2, pp. 133–149, 2014.

[60] B. Wang, H. Huang, and X. Wang, “A novel text mining approach to financial time
series forecasting,” Neurocomputing, vol. 83, pp. 136–145, 2012.

[61] G. J. Deboeck, Trading on the edge: neural, genetic, and fuzzy systems for chaotic
financial markets. John Wiley & Sons, 1994, vol. 39.

[62] B. G MALKIEL, “A random walk down wall street the time-tested strategy for suc-
cessful investing,” 2021.

[63] J. J. Murphy, Technical analysis of the financial markets: A comprehensive guide to
trading methods and applications. Penguin, 1999.

[64] T. Bollerslev, J. Marrone, L. Xu, and H. Zhou, “Stock return predictability and vari-
ance risk premia: statistical inference and international evidence,” Journal of Finan-
cial and Quantitative Analysis, pp. 633–661, 2014.

[65] M. A. Ferreira and P. Santa-Clara, “Forecasting stock market returns: The sum of
the parts is more than the whole,” Journal of Financial Economics, vol. 100, no. 3,
pp. 514–537, 2011.

[66] J. H. Kim, A. Shamsuddin, and K.-P. Lim, “Stock return predictability and the adap-
tive markets hypothesis: Evidence from century-long us data,” Journal of Empirical
Finance, vol. 18, no. 5, pp. 868–879, 2011.

[67] A. A. Ariyo, A. O. Adewumi, and C. K. Ayo, “Stock price prediction using the arima
model,” in 2014 UKSim-AMSS 16th International Conference on Computer Modelling
and Simulation. IEEE, 2014, pp. 106–112.

[68] P. H. Franses and H. Ghijsels, “Additive outliers, garch and forecasting volatility,”
International Journal of forecasting, vol. 15, no. 1, pp. 1–9, 1999.

[69] N. Sarantis, “Nonlinearities, cyclical behaviour and predictability in stock markets:
international evidence,” International Journal of Forecasting, vol. 17, no. 3, pp. 459–
482, 2001.

Information Technology Engineer / Mathematician53 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

[70] Y. E. Cakra and B. D. Trisedya, “Stock price prediction using linear regression based
on sentiment analysis,” in 2015 international conference on advanced computer science
and information systems (ICACSIS). IEEE, 2015, pp. 147–154.

[71] N. I. Sapankevych and R. Sankar, “Time series prediction using support vector ma-
chines: a survey,” IEEE Computational Intelligence Magazine, vol. 4, no. 2, pp. 24–38,
2009.

[72] P. Ou and H. Wang, “Prediction of stock market index movement by ten data mining
techniques,” Modern Applied Science, vol. 3, no. 12, pp. 28–42, 2009.

[73] L. A. Teixeira and A. L. I. De Oliveira, “A method for automatic stock trading com-
bining technical analysis and nearest neighbor classification,” Expert systems with
applications, vol. 37, no. 10, pp. 6885–6890, 2010.

[74] C.-J. Huang, D.-X. Yang, and Y.-T. Chuang, “Application of wrapper approach and
composite classifier to the stock trend prediction,” Expert Systems with Applications,
vol. 34, no. 4, pp. 2870–2878, 2008.

[75] H. Jia, “Investigation into the e�ectiveness of long short term memory networks for
stock price prediction,” arXiv preprint arXiv:1603.07893, 2016.

[76] J. Roman and A. Jameel, “Backpropagation and recurrent neural networks in financial
analysis of multiple stock market returns,” in Proceedings of HICSS-29: 29th Hawaii
international conference on system sciences, vol. 2. IEEE, 1996, pp. 454–460.

[77] J. Heaton, N. G. Polson, and J. H. Witte, “Deep learning in finance,” arXiv preprint
arXiv:1602.06561, 2016.

[78] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE trans-
actions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

Information Technology Engineer / Mathematician54 Graduation Project



Appendices

55




		2021-10-23T18:14:06-0500
	ERIK DAVID SOLIS GARCES


		2021-10-23T18:24:01-0500
	ERIK DAVID SOLIS GARCES




