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Resumen

El 13 de marzo de 2020, la OMS declaró una situación de emergencia pandémica global

ocasionada por un nuevo coronavirus denominado SARS-CoV-2, posteriormente denomi-

nado COVID-19. En Ecuador la pandemia inicio en el mes de febrero con el primer caso

detectado, rápidamente la pandemia colapso el sistema de salud y condenó a la sociedad

ecuatoriana a un estado de crisis sanitaria. El siguiente trabajo propone implementar dos

modelos epidemiológicos (SIR y SEIR) basados en los fundamentos del estudio del com-

portamiento cinético de las reacciones químicas, particularmente, reacciones cuadráticas u

oscilantes fuera de equilibrio, las cuales, ocurren dentro de un reactor discontinuo y poseen

una relación directa con el comportamiento de la dinámica de propagación del virus. Es-

tas reacciones se encuentran representadas por un conjunto de ecuaciones diferenciales

que permiten representar la tasa de cambio de cada una de las poblaciones de individ-

uos consideradas en los modelos seleccionados. Posteriormente el modelo epidemiológico

es utilizado para evaluar la dinámica de contagio de la pandemia en Ecuador utilizando

datos recuperados de fuentes oficiales para distintos periodos establecidos. Finalmente, los

resultados obtenidos muestran una aproximación cercana de la dinámica de propagación

de la pandemia así como la eficiencia de las políticas de confinamiento lo que valida los

modelos como herramientas de asistencia en la toma de decisiones.

Keywords : COVID-19, SIR, SEIR, Cinética Química.
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Abstract

On March 13, 2020, OMS declared a pandemic occasioned by a new coronavirus called

SARS-CoV-2, also called COVID-19. This pandemic began to affect Ecuador in Febru-

ary of 2020, affecting the country’s healthcare system and leaving profound affection to

society. The following work proposes implementing two epidemiological models (SIR and

SEIR) based on fundamentals of the kinetic study of chemical reactions. By considering

the analogy of dynamics of the pandemic’s spread with chemical reaction, particularly

quadratic or oscillating reactions out of equilibrium occurring inside a batch reactor, the

epidemiological model is implemented to evaluate the contagion dynamics of the pandemic

in Ecuador. For this, a set of convenient differential equations allows representing the rate

of change of each of the populations of individuals considered in selected models. The

data used for the models were retrieved from official sources, and different periods were

established. Finally, the results obtained show a close approximation of curfew policies’

efficiency on pandemic dynamics that validate the models as secondary assessment tools.

Keywords : COVID-19, SIR, SEIR, Chemical Kinetics.
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Chapter 1

Introduction

The Chemical Kinetics is a field of chemistry that involves studying the rates and mech-

anisms involved in chemical reactions, for which collisions between molecules occur with

specific energy depending on molecular orientation. The diffusion of the different species

involved, as well as the strength of the interaction between them, conditions the rate at

which the chemical reaction occurs, both processes being governed by the temperature.

Chemical reactions exhibit different kinetic parameters that characterize them, represent-

ing their dependence with temperature and concentrations of reactants species, which are

experimentally determined. In general, the analysis of the dependence with the concen-

tration of species involved followed by an appropriate differential equations system repre-

senting the temporal evolution of these species during the reaction period. This analysis

of the temporal evolution of chemical species has extended to the analysis of the spread-

ing capacity of a pathogen in a group of individuals,1 and it has even been the basis of

predator-prey models, well known in biological topics.2

Some epidemiological models in which the changes in the individuals’ healthiness due

to the spread of infectious diseases are analyzed present conceptual analogies with the un-

derlying fundamentals of Chemical Kinetics. From these models is allowed an evaluation

of the epidemic dynamic, identifying the kinetic parameters associated with it, for exam-

ple, the frequency at which the new cases are occurring, that is, the epidemic spreading.

The rate of new positive cases produced by a specific epidemic with the human-human

transmission can be modeled assuming that the encounters or collisions between an in-

1



CHAPTER 1. INTRODUCTION 2

fected individual and some who are not, called susceptible individuals, produce an increase

in infectious individuals. Principally, these phenomena occur due to the lack of immunity

against the disease, facilitating the disease’s spread. The spread process occurs according

to the intrinsic dynamic of the epidemic, whose kinetic parameter can be obtained through

kinetic mechanisms proposed from the changes in the infected population,3 and it can be

controlled by the restrictive mobility measures of the population. After a characteristic

period, a fraction of infected individuals become recovered individuals, which is dependent

on some factors such as the immune system of individuals, accessibility of the population

to hospital resources, and the policies involved in managing the epidemic.4

The first stage of an epidemic, related to the transfer of pathogen due to the encoun-

ters or collision between infected and susceptible individuals, occurs with a probability

associated with the epidemic transmission, identified by the kinetic parameter termed as

β in what follows. In the second stage, the infected individuals undergo two alternatives:

they could recover or, unfortunately, die. The probability for each of these alternatives is

related to individuals’ immune system, hospital resources, and the public health system’s

policies. This probability is identified with other important kinetic parameters defined as

γ. The epidemiological models proposed with the above-described stages are known as

compartmental models SIR and SEIR,5 whose acronyms are related to the identification

of types of individuals:

S = Susceptible

E = Exposed

I = Infected

R = Recovered
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Both models are based on the analysis of temporal evolution of each of these types of

individuals, which is carried out by solving the differential equations system that results

according to the analogy with the appropriate kinetic mechanism, being adjustable to the

daily information of COVID-19 provided by the the Comite de Operaciones de Emergencia

of Ecuador.6 Both models allow us to obtain the kinetic parameters associated with the

dynamic of the spread of the epidemic, taking into account that they are highly dependent

on the data being accurate and reliable to generate continuous predictions about the later

evolution of the epidemic.

In this work, we propose implementing two epidemiological models based on fundamen-

tals of the kinetic study of chemical reactions by considering the analogy of dynamics of the

pandemic’s spread, assuming the model of study to a batch reactor carrying out an auto-

catalytic reaction with catalyst deactivation. This model is based on a coupled ordinary

differential equations (ODEs) that describe the temporal evolution of the spatially homo-

geneous mixture of chemically reacting species. Furthermore, due to its characteristics,

the models can be defined as an analogy of the classic epidemiologic models: Susceptible

- Infectious - Recovered (SIR) and Susceptible - Exposed - Infectious - Recovered (SEIR).



Chapter 2

Chemical Kinetics overview:

Complex Mechanism

Chemical Kinetics is a chemistry field in which the collisions between molecules of different

chemical species and their dynamics are studied. The different collisions between molecules

may be defined as kinetic steps that allow the gather of chemical information. The set of

individual kinetic processes that allows chemical reactants’ transformation into chemical

products is defined as reaction mechanisms. These mechanisms are commonly used as a

guide to predict the rate law expression and, therefore, the order of that chemical reaction.

On the other hand, they allow categorizing the type of chemical reaction according to the

steps involved. In the case of a chemical reaction, which involves a single elementary step,

the reaction mechanism is defined as a simple reaction, and, for two or more elementary

steps, it is defined as a complex reaction.7

As an example, the decomposition reaction of dinitrogen pentoxide, given in the equa-

tion 2.1, could be reached by a single step consisting of a bi-molecular collision between

two N2O5 molecules, in whose case it would correspond to a simple reaction:

2N2O5 (g) → 4NO2(g) + O2 (g) (2.1)

However, for a reaction mechanism to be valid, the rate-law expression predicted by the

proposed mechanism must be corroborated experimentally.7 In the case of 2.1, it is neces-

4
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sary to reevaluate the mechanism and propose a new one consistent with the experimental

results as follows:

2N2O5
k1−−⇀↽−−
k−1

NO2 + NO3 (2.2)

NO2 + NO3
k2−→ NO2 + O2 + NO (2.3)

NO + NO3
k3−→ 2NO2 , (2.4)

In this proposed mechanism, the first step in 2.2 represents an equilibrium between

the N2O5 species to NO2 and NO3 species, which is defined by the rate constants k1 and

k−1 for the forward and backward reactions of equilibrium, respectively. The number two

besides N2O5 species indicates the number of times that this step occurs in the reaction

mechanism. In the second step illustrated in the reaction 2.3, the bi-molecular reaction

of NO2 and NO3 species results in a separation of NO3 to product NO and O2, having

associated a rate constant k2. Finally, the reaction given in 2.4, NO and NO3 species

undergo a bi-molecular reaction to produce 2NO2 whose rate constant is given by k3. The

stoichiometric numbers of a correct proposed mechanism must match the stoichiometric

of the reaction.7

The previous mechanism suggests the formation of NO and NO3, although these species

are not considered reactants nor products of that reaction. However, their presence justifies

the experimental results, and without them would be no possibility to do it. These species

are produced and fully consumed during the proposed mechanism, and therefore they are

chemical species denominated as reaction intermediates.7

As mentioned before, to verify the accuracy of the proposed mechanism of a chemical

reaction, the rate law suggested must reproduce the one experimentally obtained for such

reaction. It is needed to evaluate the chemical kinetics of that reaction, evaluating the

reactants species’ consumption rate or formation of product species during the course

of the chemical reaction. The time-evolution analysis of each species implies defining

differential equations by which the rate of consumption or/and production of these species

are represented, and therefore the rate reaction is established.

Following with the reaction described before and by assuming the proposed mechanism
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in 2.2 - 2.4 as valid, the rate of reaction (vrx) can be expressed by the consumption rate

of the reactant species, that is:

vrx = −1
2
d[N2O5]
dt

= k [N2O5]2 . (2.5)

In this equation, the rate law for such chemical reactions is related to the term k, which

considers the temperature dependence, as well as the concentration of reactant species

dependence, resulting in a second-order reaction for N2O5.7

To obtain the rate law for a chemical reaction, by specifying the order of reaction for

the reactant species, as well as the value for k, it is required to propose a mechanism and

evaluate the time evolution of the involved species. According to the previously proposed

mechanism for the decomposition reaction of N2O5, given in 2.2 - 2.4, the differential

equation representing the time variation of the N2O5 results in:

d[N2O5]
dt

= −k1[N2O5] + k−1[NO2][NO3] (2.6)

In general, the mechanism proposed is consistent with the experimentally obtained

rate law proven otherwise, which requires evaluating different experimental conditions

demonstrating that the reaction must occur by the sequential steps mechanism proposed.

2.1 Law of Mass Action

In 1864, Guldberg and Waage propose a statement to describe the chemical kinetics of a

system at equilibrium.8,9 The statement begins with the general reaction in which reactant

species A and B react to give product species C and D, that is:

a A + b B
kf−⇀↽−
kb

c C + d D , (2.7)

reflecting the balance of the rates of reactions in the forward and backward directions, for

which the stoichiometric coefficient a, b, c and d have to be considered. The representation
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of the rate of both reactions can be expressed as:

vf = kf [A]a [B]b (2.8)

vb = kb [C]c [D]d , (2.9)

and since the equilibrium of that reaction implies a balance of their rates, vf = vb, the

equilibrium conditions imply:

kf [A]aeq [B]beq = kb [C]ceq [D]deq . (2.10)

The statement of Goldberg and Waage proposes that if at a given temperature (T) a

chemical system is at equilibrium, then the ratio of the rate constants becomes a constant,

which is denoted by Keq and whose expression obtained from 2.10 results in:

Keq(T ) = kf
kb

=
[C]ceq [D]deq
[A]aeq [B]beq

. (2.11)

As it is perceived, equation 2.11 considers the concentrations of chemical species in-

volved in the reaction and, as a consequence, the rate of an elementary reaction is equal to

the product of the concentration of the reactants.10 In the case of uni-molecular reactions,

the reaction rates increase linearly with the reactant’s concentration and are related to the

probability of collision between species involved in a fixed time interval. For the case of

bi-molecular reactions,the probability of collision increases due to that it is directly related

to the amount of concentration.10,11

2.2 Steady State Approximation

In some mechanisms of reactions, one or more intermediate species are involved, which

are frequently very reactive species, so that their accumulation to any significant amount

could be not reached during the reaction. The following equations represent an example
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of such mechanism:

A
k1−→ I (2.12)

I
k2−→ P , (2.13)

where are indicated the rate constants kx for each step, and the intermediate reaction

is represented by the specie I. The set of differential rate expressions for each species

associated with such mechanism corresponds to:

d[A]
dt

= −k1 [A] (2.14)

d[I]
dt

= k1 [A] − k2 [I] (2.15)

d[P ]
dt

= k2 [I] . (2.16)

How the concentration of intermediate species evolves during the reaction course depends

on the speed of the different steps involved in the mechanism, that is, of the relative

magnitudes of the rate constants k1, and k2. For the illustrated example, if the first step

is faster than the second one, that is, k1 > k2, the intermediate species concentration

changes markedly during the reaction, increasing and then decreasing at the end of the

reaction, as is showed in figure 2.1-a. The greater the k1 compared to k2, the greater the

maximum value of the intermediate species’ concentration, and it will appear at times

closer to the beginning of the reaction.
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Figure 2.1: Relation of chemical species concentration vs. time for different conditions of con-
stant rates in chemical reactions involving intermediate species [12].
.

In contrast, if the second reaction step associated with the rate constant k2 is faster

than the first step with k1, the concentration of [I] will be quite small, that it is even

difficult to detect. This limit, represented in figure 2.1-b, applies for the most reactions,

in which it is considered that an accumulation of species I does not occur. From this, it

can be established the following relation between the involved species:

[I] � [A] (2.17)

[I] � [P ] ,

indicating the low concentration of intermediate species compared to the concentration of

the reactant and product species. That situation assumes that [I] builds up quickly to

this small concentration that remains relatively constant during the reaction, that is:

d[I]
dt

= 0 . (2.18)

The equation 2.18 represents the steady-state approximation, occasionally called the

stationary-state or Bodenstein’s Quasi-Steady State Approximation,13 which involves set-

ting the rate of change of a reaction intermediate in a reaction mechanism equal to zero
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so, the kinetic equations can be expressed as a function of the concentrations of chemical

species in macroscopic amounts. It is convenient to mention that, based on the principle

of conservation of mass applied to previous equations considering a constant volume, the

concentration of the chemical species at any stage of reaction are connected by:

[A] + [I] + [P ] = [A]0 (2.19)

where [A]0 represents the initial concentration of the reactive species, which is a constant.

Using the steady state approximation, the equation 2.19 results in:

d[P ]
dt

= − d[A]
dt

(2.20)

showing that the rate of formation of [P ] is equal to the rate of disappearance of [A].

2.3 Arrhenius equation

In the late 1800s, the physicist Svante August Arrhenius proposed an empirical expression

based on the relationship between the rate constant of a chemical reaction and the temper-

ature at which it is carried out.14 From his experiments, Arrhenius realized that, for many

reactions, a linear behavior, or close to it, is observed when evaluating the temperature

dependence of rate constants by the function ln(k) versus T−1. From this statement, the

equation suggested for that dependence, known as the Arrhenius equation, is:

k = AZ e
−Ea
RT , (2.21)

Where Ea refers to the activation energy, that is, the minimum value that the energy

involved in molecular collisions must reach in order to be effective and produce a chemical

reaction. The units of Ea are the same as those for RT . The term AZ refers to the

pre-exponential factor or Arrhenius factor, and its units are the same as those of k. The

Arrhenius equation’s initial proposal implies that the terms Ea and AZ are constant values

without a temperature dependence. Nevertheless, a more sophisticated approach has led
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to an equation similar to the Arrhenius equation but with the temperature dependence of

both terms, although such dependence is almost negligible when Ea � RT , which is the

case for most chemical reactions.

The equation 2.21 suggests an inversely proportional dependence between Ea and k,

that is, a low value for Ea is related with a high value for k, and therefore with a fast

reaction, while a high value for Ea means a slow reaction with a low value for k. On

the other hand, in that same equation (2.21), a directly proportional dependence between

k and the temperature is observed. The rapid proportional increase of k with T can be

mainly attributed to the increase in the number (or frequency) of collisions whose energy

exceeds the critical value Ea. Related to this frequency of collisions, an underlying factor

may be defined in terms of the space or volume in which the reaction is allowed to occur.

Assuming that such consideration of the volume of the container (Vcontainer), as well as

the density of the particles (ρ
P articles

), is contained in a factor denoted by zcoll, a good

representation for such factor is expressed in the following relationship:

zcoll = σA 〈u〉A ρA , (2.22)

where σA is the cross-section collision, σA = πd2, where d is the diameter of particles

A. The terms 〈u〉A and ρA correspond to mean speed and number density of particles A,

respectively. The 2.22 can be re-written as:

zcoll = πd2
A

(
∆x
∆t

)
ρA ≈

Vcontainer ρP articles

∆t , (2.23)

where ∆t represents the time interval considered for the collision count.

According to the equation 2.22, the frequency of molecular collision density between

identical particles,15 for example, between particles A, can be represented by:

ZAA = 1
2 ρA zcoll = 1

2 ρ2
A σA 〈u〉r,A , (2.24)
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being 〈u〉r,A the reduced mean speed of particles A defined by:

〈u〉r,A =
√

8
π

kBT

µA
= 21/2

√
8
π

kBT

mA

, (2.25)

where µa is the reduced mass of A, µA = mA/2, where mA is the mass of particles A.

Therefore the equation 2.24 results in:

ZAA = 1
2 ρ2

A d
2
a π 21/2

√
8
π

kBT

mA

= 2 ρ2
A

√
8πkBT
ma

, (2.26)

The terms kB and T have the usual meaning of Boltzmann constant and the absolute

temperature, respectively. For the case of the heterogeneous bi-molecular reactions, for

example, between a particle A and a particle B, the frequency of molecular collision density

could be adapted for as follows:

ZAB = ρA ρB σAB 〈u〉r,AB = ρA ρB d2
AB

√
8 πkBT

µ
AB

, (2.27)

in which the reduced mass µ
AB

of particles A and B, and the mean of its respective

diameter, that is dAB = (dA + dB) /2, are used.

Incorporating in the equation 2.21 the factor of collisions defined previously in the

equation 2.33, for generality, the Arrhenius equation can be re-written as:

k = ZAB exp
−Ea
RT . (2.28)

However, the description given for the factor Z ignores the hindrance effect between

molecules and the relative orientation, which plays a crucial role during a chemical re-

action. It is known that for a reaction to occur, two molecules must collide in the correct

orientation.15 Even in the most controlled experiment, all the molecules involved in the

reaction do not collide in a proper orientation; therefore, it is convenient to include a

probability of collision factor defined by a term P ,15 for which the equation 2.28 results

in:

k = P ZAB exp
−Ea
RT . (2.29)



CHAPTER 2. CHEMICAL KINETICS OVERVIEW: COMPLEX MECHANISM 13

2.4 Transition State Theory

In the 1930s, Henry Eyring proposed a theoretical description of reaction rates known as

the Transition State Theory (TST), also known as Activated Complex Theory. This theory

provides a theoretical description of reaction rates without involving complicated quantum

mechanical calculations.12 This theory’s conceptual idea suggests the formation of the

species AB∗, called activated complex, that occurs at the transition state, an intermediate

state during the chemical reaction before the product formation. The activated complex

is characterized by being unstable species, with a lifetime of a few periods of molecular

vibration in some reactions (10−14 s).

In order to support the theory, some significant assumptions are needed. The first

one considers that equilibrium occurs between the reactants and the activated complex.

Furthermore, it is assumed that the reaction coordinate describing decomposition of the

activated complex can be mapped onto a single energetic degree of freedom of the activated

complex.12 Taking this in mind, the 2.30 and 2.31 equations represent the equilibrium

between reactants, activated complex, and the decay of the activated complex to form the

product respectively.

A + B
k1−−⇀↽−−
k−1

AB∗ , (2.30)

AB∗ k2−→ P . (2.31)

This mechanism proposed could be used to develop an expression for the product

formation rate, based on the set of differential equations, by considering the assumption of

equilibrium between reactants and the activated complex. After a multi-step mathematical

development, the central equation of TST, that relates the rate constant of the chemical

reaction to the molecular parameters for species involved in the reaction,12 is reached, and

which is expressed by:

k = kB T

h co
K∗
c , (2.32)

Where co represents the standard concentration, set to 1 M, kB corresponds to the Boltz-
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man constant, T is the temperature of the system, and K∗
c is the equilibrium constant

of the reaction 2.30, which is related to the partition functions of the activated complex

and reactants that describes the measure of the volume occupied by the system in a phase

space.

The common Eyring equation is obtained by relating the results obtained by activated

complex theory and the well-known thermodynamic descriptions for the Gibbs energy

variation, such as:

∆G∗ = − RT lnK∗
c . (2.33)

In the equation 2.33, ∆G∗ represents the difference in Gibbs energy between the transition

state and reactants and R is the gases universal constant. Taking an expression for K∗
C

from 2.33, the expression for k becomes:

k = kB T

h co
exp−∆G∗/RT . (2.34)

This equation contains the temperature dependence of the rate constant. Furthermore,

using the definition for ∆G in terms of enthalpy and entropy variations, ∆G = ∆H −

T∆S, the Eyring equation, also known as Eyring-Polanyi equation, is finally obtained:

k = kB T

h co
exp

∆S∗
R exp

−∆H∗
RT . (2.35)

The equations from 2.32 to 2.35 were derived, taking into account the mechanism of

reaction, frequency of collisions between molecules, as well as the energy asociated to them.

The conjunction of these factors allows determining the reaction rate and its dependence

on the experimental condition and parameters that optimize the reaction. Eyring’s theory

argues that both, chemical reactions and different physical processes, such as electron

transfer, conductivity, viscous flows, molecular diffusion, are rate-controlled processes and

require activated energy to move from the initial state to the final state.16

2.5 Oscillating Reactions

The standard models of chemical kinetics analyze systems in which the reactants are

combined to obtain products until equilibrium, that is, in the absence of macroscopic
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variation in reactant or product concentrations with time. However, in some reactions,

the equilibrium never reached due to a periodic supply of reactants or products’ removal.

These particular reactions are referred to as oscillating reactions, with kinetic features as

nonlinearity in the differential equations associated with them and the species’ feedback.

For a while, this kind of reaction was considered a strange phenomenon; however, they are

found in a wide variety of systems in biology (cellular energy, chemotaxis) and chemistry

(combustion, film growth).2

The first plausible mechanism related to the oscillating processes was proposed in

1920 by Lotka and then validated by Volterra a few years later to explain ecological

oscillations,17 through the following mechanism:

A + X
k1−→ 2X (2.36)

X + Y
k2−→ 2Y (2.37)

Y
k3−→ B , (2.38)

For whose dynamic equations were applied the law of mass action.10 This mechanism has

frequently been used to explain chemical processes undergoing periodic behavior.

Currently, the mechanism is given in 2.36 - 2.38 is known as the Lotka-Volterra mech-

anism and, frequently called as the predator-prey mechanism,12,18 because this model

describes the interaction between two animal populations, predator and prey, in time

and space.18 In such a mechanism, X is the prey, Y is the predator, A (reactant) is the

birth/reproductive rate of a prey and B (product) is the dead of the predator. The initial

increase in prey population promotes an increase in the predator population. Later, due to

the predators consuming the prey, the prey population decreases and impresses a decrease

in the predator population. Finally, this decline in predators allows the prey population

to increase, and the cycle starts over again.12

Meanwhile, on the other hand, in 1921, Bray discovered a periodic reaction in a homo-

geneous solution through the decomposition reaction of aqueous H2O2 in the presence of

IO−
3 and I2, involving autocatalytic reaction steps, that is, those in which a product speeds

up the reaction. In this kind of reaction, repeated oscillations in the concentrations of one
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or more species (intermediates or catalysts) are observed as a function of time. Notably,

the reaction studied by Bray repeated oscillations in the I2 concentration were showed.

The periodically repeated changes in concentration of some species in the reaction could

imply a sequence of color, pressure, or temperature changes in the mixture of reactions,

which is very attractive to be studied.

Due to the complexity of these reactions, it was not until the years 1950–1970, by

experimental work of Belousov and Zhabotinskii and the theoretical work of Prigogine,

among others, that it was firmly established the basis of oscillating reactions,17,19,20 being

considered as reactions out of equilibrium, which means that the chemical system must be

far from its equilibrium condition during the chemical reaction for the periodic oscillations

to occur.

Subsequently, differential rate expressions associated with this kind of reactions, whose

mechanism is given by 2.36-2.38 equations, can be represented by the following equations:

d[X]
dt

= 2k1 [A][X] − k2 [X][Y ] (2.39)

d[Y ]
dt

= 2k2 [X][Y ] − k3 [Y ] . (2.40)

It is worth mentioning that, according to the proposed mechanism, the rate of this reaction

is independent of the concentration of species B formed during the reaction. By graphing

the 2.39 and 2.40 equations, the oscillating behavior of the concentrations of X and Y

species is observed, as is shown in figure 2.2. For the case in which the concentration

of A species is kept constant by supplying continuously an amount of A as the reaction

proceeds, being the concentrations of intermediates species X and Y the most relevant in

determining the reaction rate.

Calculating the concentrations of X and Y , through solving differential rate equa-

tions given in 2.39 and 2.40, requires to employ Euler method due to it provides the more

straightforward way to predict how reactants and products concentration will vary for a ki-

netic schemeEngel2007 by taking into account the initial concentration of A specie, denoted

by [A]o. Expressions for X and Y concentrations obtained from analysis demonstrate the



CHAPTER 2. CHEMICAL KINETICS OVERVIEW: COMPLEX MECHANISM 17

Figure 2.2: Oscillatory behavior of intermediate concentrations from the Lotka-Volterra mech-
anism [12].

oscillating behavior for both species’ concentrations. Some defining features of this behav-

ior can be obtained, such as the oscillation period and the time in which the maximum

concentrations of species are reached.

The particular phenomena of feedback contemplated in oscillating reactions can be

explained through the mechanism of the conversion from hydrogen and oxygen to water,

represented by the equation:

H2 + O2 → H2O . (2.41)

A simplified mechanism for this reaction corresponds to:21

electric spark + H2(g) → 2H(g) (2.42)

H(g) + O2(g) → OH(g) + O(g) (2.43)

O(g) + H2(g) → OH(g) + H(g) (2.44)

H2(g) + OH(g) → H2O(g) + H(g) (2.45)

H(g) + O2(g) + M(g) → H2O(g) + M(g) . (2.46)

This mechanism involves some feedback steps; that is, one step’s product in a reaction
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sequence affects other reaction steps in the sequence. This effect is generally modeled

with nonlinear differential rate expressions in the description of the mechanism to activate

or inhibit these reactions.2,22 The behavior of linear and non linear expressions can be

described by the to the coefficient of reaction advancement, denoted by ξ, that is:

ξ = [H2]0 − [H2]
[H2]0

. (2.47)

In the presence of an excess of O2, the H2 follows a first-order reaction with a rate an-

alytically represented by the linear differential equation given in the equation 2.48, and

graphically represented by the purple curve in figure 2.3.

dξ

dt
= k(1− ξ) . (2.48)

In the case in which the oxygen is not in excess, the reaction rate should be analytically

represented by the non-linear differential expression, given by 2.49, and graphically by the

red curve in figure 2.3.
dξ

dt
= k(1− ξ)2 . (2.49)

However, from the mechanism shown for the reaction of molecular hydrogen and oxygen, it

is easy to perceive that the rate of the reaction cannot be represented as a simple second-

order reaction due to feedback steps involved, that is, the rate of the reaction to increases

as hydroxyl radical is formed, and then decreases as the reactants are consumed. This fact

implies that the rate expression should be represented by:

dξ

dt
= kξ(1− ξ) , (2.50)

with a graphical representation shown with the blue curve in figure 2.3.

The equation 2.50 is well related to the general relationship for quadratic auto-catalytic

reaction, represented by the following equation:

A + B
k−→ 2B , (2.51)
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Figure 2.3: Illustration of the dependence of the reaction rate on the coefficient of reaction
advancement ξ. Retrieved from [12].

with an expression rate given by:

rate = k[A][B] (2.52)

The Lotka-Volterra mechanism has been commonly applied in the description of com-

plex chemical reactions and biological processes. However, it has extended to a wide range

of systems and processes, such as economic activity, wildlife, populations, and even the

spread of the disease,18 establishing an analogy between the "predator-prey" mechanism

with the process of interest.



Chapter 3

Mathematical Models in

Epidemiology

Mathematical modeling has been gaining great importance in epidemiology because it

allows to describe and predict infectious disease dynamics at a population level from an

individual-level knowledge of epidemiological factors. Furthermore, the long-term behavior

from the early spread dynamics and the impact of vaccination on the spread of infection

also can be modeled. The models’ precision will depend on the quality of data available

and the time frame in which the results are obtained.23–25

To formulate a good model for a particular problem, it must be sustained on three

claims: accuracy, transparency, and flexibility.23 Accuracy refers to the capacity to re-

produce the observed data and reliably predict future dynamics. On the other hand,

transparency refers to as the capacity to understand the correlation between model com-

ponents and their influence on dynamics. Finally, flexibility is the ability of the model

to be adapted to new emerging scenarios. A well representative model allows analyzing a

given process, estimating its dynamics, and providing predictions about its behavior.

Due to the models’ precision, some governments have been using them to analyze

epidemics in order to develop different strategies and policies, allowing them to model

different scenarios and estimate the possible results. For example, in 2001, in the United

Kingdom (UK), predictive models were used in two different situations: one of them during

the foot-and-mouth epidemic, and then another during the potential bioterrorist release

20
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of smallpox.4 For the case of the foot-and-mouth epidemic, the researchers proposed to

respond to two questions, the first one: if the epidemic was controlled, and the second one:

if any additional targeted culling would lead to a reduction in the total loss of livestock.

Three models were used and configured to perform the analysis based on different known

dynamical complexity judgments. Models presented their advantages and problems; they

lead to a similar conclusion: the epidemic will be large scale, and locally targeted culling

would reduce the overall loss of livestock by dramatically reducing the number of cases.4,26

Against the smallpox bioterrorist weapon scenario, the principal models used were

those from Meltzer27 and Halloran28 rather than the aforementioned models, which showed

high sensitivity to the implied variables and scenarios. However, due to the increase in

computing efficiency, model sensitivity, and the quality of data retrieved, models give

a good appoximation to biological phenomena and, even more, describe an infection’s

dynamic profile in an epidemic breakout.

In general, the principal stochastic biological models consider that the progress of an

infectious disease is defined qualitatively in terms of the pathogen’s growth rate within

the host and the interaction between the pathogen and the host immune response.23 In

figure 3.1 shows a simple representation of a dynamic profile of infection, where different

stages of the pathogen inside the host’s immune system go through are illustrated. During

stages, and depending on the host’s ability to transmit the pathogen, an individual can

be classified within a particular category. Initially, no pathogen is present, but the host is

susceptible to infection, and just a low-level nonspecific immunity is within the host. Once

the host comes in contact with an infectious individual and becomes infected, it is time

zero of infection is considered, and from this moment, the abundance of the parasite within

the host grows over time. During this early phase, the individual may exhibit no apparent

signs of infection, and the abundance of the pathogen may be too low to allow further

transmission — individuals in this phase are said to be in the exposed category. Once

the parasite level is sufficiently large within the host, the potential exists to transmit the

infection to other susceptible individuals; the host is considered as an infectious individual.

Finally, once the immune system of an individual has cleared the parasite and the host is

therefore no longer infectious, they are referred to as recovered.23
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Figure 3.1: Representation of the time-line of infection, showing the dynamics of the pathogen
(gray area) and the host immune response (black line) as well as labeling the various infection
classes: susceptible, exposed, infectious, and recovered. Note that the diseased period, when
symptoms are experienced, is not necessarily correlated with any particular infection class. Re-
trieved from [23].

The most common mathematical models to evaluate the transmission dynamics of in-

fectious diseases are known as Compartmental Models, in which the population sample is

distributed into labeled compartments.4 Each labeled compartment represents a state of

a population individual through time during a epidemic breakout. Once the population is

distributed, the model can be performed in a deterministic manner (using differential equa-

tions) or stochastic (random framework) depending on the research’s necessities. These

models are based on the deterministic formulation of chemical kinetics, which allows the

analysis of epidemics, the estimation of the diseases’ properties, and the evaluation of

strategies of its mitigation.29 When establishing the analogy between disease transmission

and chemical reactions, the pathogen transmission rate is represented by the temporal vari-

ation of the concentration of the species involved in the chemical reaction, considering that

the transmission process occurs as a reaction sequential chemistry. The different species

involved in the transmission process representing the population members are categorized

according to their infection status, which shows some characteristics or attributes. The

categorization before mentioned, the four types of individuals: susceptible, exposed, in-

fected, and recovered, allows defining different compartmental epidemic models, depending
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on the type of species considered in its description. For example, the SIR model involves

susceptible, infected, and recovered species, and as can be seen, its name is an acronym

with the initial letters of the category of individuals involved. On the other hand, the SEIR

model also involve exposed individuals in its description. Other descriptive compartmental

models exist, distinguishing each other according to the types of individuals considered,

and the modifications (if applicable) applied to the proposed mechanism of transmission.

The aforementioned dynamic models capture the information about the behavior of

the population against a pandemic breakout. These results allow the estimation of evo-

lution over time of the infectious disease and the effect of the moderation (or relaxation)

of the distancing/isolation measures, providing preventive measures and strategies to be

implemented.

In this work, a set of compartmental model analogs: SIR, SEIR, and SEIRD, are

proposed to establish predictions of an epidemic outbreak. These models are based on

classic epidemiological models using chemical kinetic principles, and, as a consequence,

they are not only based on stochastic approaches but also based on phenomenological

approaches.30

3.1 The SIR dynamic model of infectious diseases

The compartmental SIR model is an epidemiological model for acute diseases in which the

host is categorized into three compartments occupied by the Susceptible, Infected, and

Recovered individuals. The kind of individuals occupying the susceptible compartment

describes an individual that has not been exposed previously to the pathogen (disease).

On the other hand, the infected compartment is occupied by every individual that currently

has the pathogen, and finally, the recovered compartment consider every individual who

no longer presents the infection after having suffered it.5

Figure 3.2 corresponds to a representative flowchart of the SIR model. The solid black

arrows show the transitions of an individual between the Susceptible (S) and Infected (I)

classes and the Infected (I) and Recovered (R) classes, representing the temporal direction

of the model. The dotted gray arrow represents the fact that the infectious disease level
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Figure 3.2: Schematic SIR flowchart. [23]

influences the rate at which a susceptible individual moves into the infected class. The

SIR model dynamics are described by a set of differential equations whose parameters

of transmission and recovery rates are included. These differential equations result in

the assumptions taken into account in the model related to the research’s necessities and

the disease characteristics. Commonly, the SIR model considers a scenario where a few

infectious agents are introduced into a closed population leading to a quick expansion of

the disease. This phenomenon is considered an epidemic breakout, for which demographic

processes (births, deaths, or migration) are not considered.4 Furthermore, the transmission

and recovery rates denoted as β and γ, respectively, are defined for homogeneous mixing,

discarding the intricacies that affect the contact pattern.

The mechanism represented by the SIR model, in analogy to a chemical reaction mech-

anism, may be described as:

S + I
β−→ 2I , (3.1)

I
γ−→ R , (3.2)

where β and γ parameters represent the transmission and recovery rates of the infectious

disease, respectively. The set of differential equations to describe this mechanism, namely,

the temporal variation of the population in each compartment considered in the SIR model,
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corresponds to:

dS

dt
= −βSI , (3.3)

dI

dt
= βSI − γI , (3.4)

dR

dt
= γI . (3.5)

The equation 3.3 represents the temporal evolution of the susceptible class, taking into

account the probability with which their changes occur, represented by β. This parameter

is commonly referred to as the "force of infection",31 denoted by λ, being a measure for

the probability per capita of getting the infection.32 The following equation 3.4 represents

the temporal changes of infectious class, incorporating the γ parameter, representing the

recovery rate. The inverse of this parameter, (γ)−1, represents the average recovery time.

Finally, the equation 3.5 represents the temporal evolution of recovered individuals class,

taking into account the recovery rate γ of all infected individuals.

The set of equations 3.3-3.5 should be solved numerically, considering the initial con-

ditions for the susceptible, infected and recovered population given by S(t = 0) = S0 > 0,

I(t = 0) = I0 > 0, and R(t = 0) = Rec0 = 0. The values for S0, I0, and Rec0 are assigned

according to the region’s data to evaluate, representing the total population, the number

of infected individuals at the beginning of the analysis and the number of recovered indi-

viduals, respectively. Also, it is considered the additional condition that S + I + R = 1,

due to this summation involves all species considered in the model. The solutions that

result from this set of differential equations are plotted and shown in figure 3.3.

In figure 3.3 can be perceived the behavior of the resultant curves for functions S(t)

(blue curve), I(t) (orange curve) and R(t) (green curve), after solving the respective dif-

ferential equations.
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Figure 3.3: Sample SIR chart with an initial conditions of S(0) = 1000, I(0) = 1, R(0) = 2.5
Population Fraction: 1/1000.The variance trough time of S,I and R is observed.

3.2 Basic Reproductive Ratio (R0) - Threshold Phe-

nomena

From the equation 3.4, it can be assumed that the evolution of the epidemic depends

on the interplay of two parameters, β and γ, representing the transmission and recovery

rates. It has been reported by Kermack and McKendrick,5 and widely accepted, that if the

initial fraction of susceptible individuals meet to condition S0 < γ/β, then the infection

tends to fall through, that is, dI/dt < 0. This result is referred to as the “threshold

phenomenon.” It is assumed that is identified a quantity or proportion of the susceptible

population depends on the epidemic’s characteristics, such that if the threshold value is

exceeded, then the epidemic propagates. This threshold factor is precisely given by γ/β,33

which also is called relative removal rate, requiring to be small enough to allow a disease

to spread.

One of the most important quantities in epidemiology is precisely the inverse of the

relative removal rate, which is called primary reproductive ratio and denoted by (R0). This

ratio is defined as the "average number of secondary cases arising from an average primary

case in an entirely susceptible population".23 Remarkably, the primary reproduction ratio

estimates the maximum reproductive potential for infectious disease and allows to know

the impact of the different implemented control policies on the virus spread varies through
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time.34,35 Considering the parameter R0, the threshold phenomena can be re-expressed

into a new concept, that is, the invasion of a pathogen into a susceptible population is

defined by R0 > 1. This concept correctly contextualizes because if the infection cannot

successfully transmit onto more than one new host, then the infection will not spread.36

For an epidemic, the value of R0 will be given by considering the particular and specific

aspects of the disease and the demographic characteristics of a human population. Among

these characteristics, the contact structure, rural-urban gradients, and demographic rates

are included. Different values for R0 can be obtained for the same disease affecting different

regions due to the demographics characteristics of each population.23 In the table shown

in figure 3.4 are indicated some value of R0 for different infectious diseases affecting a

different kind of population.

Figure 3.4: Estimated Basic Reproductive Ratios for different diseases. [23]

3.3 The SEIR model: Adding a latent period to SIR

model

The SEIR model is a variant of the classic SIR model, and the modification consists of

including a new class of individuals to consider those hosts that cannot be categorized

as susceptible, infectious or recovered, due to very low abundance of the pathogen in the

host, as to be considered an active agent for transmission to other hosts, at least for a



CHAPTER 3. MATHEMATICAL MODELS IN EPIDEMIOLOGY 28

meanwhile.

Some specific pathogens (bacteria cells or virions) require a period to reproduce rapidly

within the host. During this period, the load of these pathogens is not enough for the host

to transmit the disease. In that case, it is necessary to introduce a new compartment

for these individuals who are "infected" but not yet "infectious".23 The compartment is

referred to as Exposed (E), and following the idea for the further model, this new model

includes the letter "E" in its name, that is SEIR model. In figure 3.5, by a flowchart, is

schematized the process considered in the SEIR model. The mechanism representing the

Figure 3.5: SEIR Flowchart.[23]

transitions considered in the SEIR model corresponds to:

S + I
β−→ E , (3.6)

E
σ−→ I , (3.7)

I
γ−→ R , (3.8)

The evolution rates of populations of different individuals considered in the model SEIR

are described by the respective set of differential equations given below. In developing the

SEIR equations had been considered the average duration of the latent period of the



CHAPTER 3. MATHEMATICAL MODELS IN EPIDEMIOLOGY 29

infectious disease by 1
σ
.

dS

dt
= µ− (βI + µ)S , (3.9)

dE

dt
= βSI − (µ+ σ)E , (3.10)

dI

dt
= σE − (µ+ γ)I , (3.11)

dR

dt
= γI − µR . (3.12)

In these equations, the factor µ represents the birth/death rate of a population. Notic-

ing that, the SIR and SEIR models are qualitatively similar, particularly at equilibrium.23

Indeed, both models behave similarly as long as the primary reproductive ratio β/γ and

average infected period 1
σ
are identical. Regardless, the behavior difference between these

models settles in the initial invasion stage due to the addition of exposed compartment

(E) in the SEIR model. This stage slows down the dynamics producing a slower growth

rate after pathogen invasion occurs due to the requirement for individuals to pass through

the exposed class before contributing to the transmission of the disease.

3.4 SEIRD model: Modelling post death transmis-

sion

The SEIRD model, represented in the flowchart shown in the 3.6, is a variation of the

classical SEIR model, in which transmission between infected and susceptible individuals

occurs at an average rate βI throughout infectiousness TI , as is indicated in figure 3.6.

This model also considers that, from individuals occupying the infected compartment, a

fraction f of these individuals will die, while a fraction 1 − f who will recover, assuming

the gain of permanent host immunity against infection. Dead individuals are categorized

in a new compartment denoted by D (dead individuals), including this letter in the name
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of the model. Furthermore, this model includes an additional transmission route by which

dead individuals can transmit to susceptible individuals at a special rate βD throughout

infectiousness TD.37

Figure 3.6: Schematic SEIRD Flowchart [37].

In the previous diagram, the solid arrows denote transitions between compartments,

while the dashed arrows denote the transmission dependent of the interactions between S

and I or between S and D (dead but still infectious). The different transmission rates are

denoted by βI and βD and the average period of infectiousness are given by TI and TD,

from one infected individual or one dead individual, respectively, while TE refers to the

latent period of the infection. Finally, the factor f is the fraction of individuals who die

under the disease infection. For this model, the basic reproductive number (R0) is given

by:37

R0 = βITI + fβDTD (3.13)

The dynamics of the SEIRD model are similar to the SEIR model; it differs only in

the R compartment, which stands for recovered individuals, and the D compartment for

deceased individuals.37 The mechanism associated with this model can be represented by:

S + I
βI−→ E , (3.14)

E
1/TE−−−→ I , (3.15)

I
1/TI−−→ R , (3.16)

I
1/TI−−→ D , (3.17)

D + S
1/TD−−−→ E . (3.18)
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Based on this mechanism, the respective set of differential equations representing the

evolution rates of the populations of different individuals considered in the SEIRD model

corresponds to:

dS

dt
= −βI

SI

N
− βD

SD

N
, (3.19)

dE

dt
= −βI

SI

N
+ βD

SD

N
− E

TE
, (3.20)

dI

dt
= E

TE
− I

TI
, (3.21)

dR

dt
= (1− f) I

TI
, (3.22)

dD

dt
= f

I

TI
− D

TD
. (3.23)

For the case in where the infection transmission by death hosts is controlled, and there is

the presence of asymptomatic individuals, the SEIRD contagion dynamics can be adjusted

as follows:

Figure 3.7: SEIRD variation with asymptomatic individuals Flowchart [38].

Sometimes, for simplicity, perhaps, this model does not consider natural deaths and

new births. In that case, the set of differential equations representing the model can be
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reinterpreted as follows:

dS

dt
= −βISI − βESE , (3.24)

dE

dt
= βISI + βESE − σE − φeE , (3.25)

dI

dt
= σe − φdI − φrI , (3.26)

dR

dt
= φrI + φeE , (3.27)

dD

dt
= φdI . (3.28)

Here, the variable σ is the inverse of the incubation period, φe is the asymptomatic

recovery rate, φr is the infected recovery rate, φd is the infected mortality rate, βe is the

asymptomatic contact rate, βI is the symptomatic contact rate.18



Chapter 4

Novel Zoonotic Epidemic: COVID-19

4.1 Historical worldwide Zoonotics Epidemics

Throughout human history, pandemics with zoonotic origins constitute a critical threat to

the human race. The black death (1348-1350), caused by the bacterium Yersinia pestis and

spread by infected flea (Xenopsyllia cheopis), and the Spanish Flu (1918-1919) caused by

the H1N1 influenza A virus, are two of the most critical pandemics episodes. Perhaps the

black plague does not have an official amount of produced deaths; the estimations establish

that the plague affects between a third and one half of the total European population.39 By

its part, the lethality of the Spanish Flu left approximately 260, 00040 deaths only in Spain.

Nowadays, and with the increasing expansion of human activities such as the domestica-

tion of exotic animals, hunting, animal husbandry practices, wet markets, and destruction

of ecosystems, humans have been forcing human-animal interactions. These interactions

confirm an essential basis for increasing the probability of cross-species pathogen trans-

mission; furthermore, their combination with specific factors such as socioeconomic and

demography is directly related to the increase in the probability of epidemic outbreak.41

For example, at the beginning of the 20th century, the hunting and butcher of wild non-

human primates in Africa led to the cross-infection (zoonotic transmission) of the simian

immunodeficiency virus responsible for HIV pandemic.42 Besides, in 2003, Yi Guan and

colleagues43 contribute to necessary research that supports the potential zoonotic origins

of the SARS pandemic. They isolated the severe acute respiratory syndrome (SARS) CoV

33
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from Himalayan palm civets (Paguma larvata), found traces of the virus in raccoon dogs

(Nyctereutes procuyoinboides) and workers from the market. Furthermore, with the ev-

idence achieved, they found a relationship between how the poor health conditions of a

living-animal market (wet market) could facilitate the transmission between animal-human

or even animal-animal of an infectious pathogen.

4.2 SARS-CoV-2: Pathogenesis and Characteristics

On March 13, 2020, OMS declared a new pandemic occasioned by a new coronavirus de-

nominated as SARS-CoV-2 or COVID-19. The virus presents similarities in zoonotic origin

and ineffectiveness to severe acute respiratory syndrome (SARS)-CoV and the Middle East

respiratory syndrome (MERS)-CoV. Also, it is responsible for producing coronavirus dis-

ease, which has been reported, as a potentially fatal disease with a remarkable capacity to

transmit from person to person via direct contact or aerosols, which are commonly spread

by coughing or sneezing from an infected individual. Structurally, SARS-CoV-2 has a

glycoprotein that promotes the entry into cells using the ACE2 human receptor.44 Indeed,

the virus harbors a furin cleavage site between the boundary of S1 and S2 sub-units as

shown in figure 4.1. On the one hand, the S1 sub-unit contains a receptor binding-domain

that admit the host receptor angiotensin-converting enzyme 2, while on the other hand,

the S2 sub-unit forms the six-helical bundle via the two-heptad repeat domain45

Figure 4.1: a) Schematic structure of the S protein of SARS-CoV-2.b) Protein-receptor (ACE2)
interaction and c) Cell fusion process Retrieved from [45]
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Once inside the cell, the virus can cause acute infections by evoking the host’s antiviral

immune responses. In most cases, the host’s immune system tends to protect it against the

infection killing the viral pathogen and stopping replication. However, sometimes, if the

immune system does not control the infection initially, the virus will start to focus on ACE2

protein present in various human organs.46 Furthermore, the ACE2 protein is present in

abundance on lung alveolar epithelial cells and enterocytes of the small intestine.47

Once the infection reaches these organs, it induces an upregulation of the immune

system to produce inflammatory cytokines. These cells can turn into immune cells and

attack the inflammation occasioned by virus infection.48 However, it also leaves a stew

fluid of dead cells (pus)46 and the immune dysregulation provokes a particular healthy issue

defined as "cytokine storm" or hypercytokinemia, which is potentially fatal and a significant

underlying factor in increased mortality of infected patients.49 Furthermore, this is the

underlying pathology of severe pneumonia (Observed in 4.2) and acute respiratory distress

syndrome (ARDS),50 two of the expected severe complications in Covid-19 disease.51

Figure 4.2: Lung CT of a patient with COVID-19. (A) Peripheral mild ground glass opacity’s
in the left lower lobe (arrow). (B) Three weeks later, at the same lung zones, the disease has
rapidly progressed and fibrotic changes are now evident (arrows).Retrieved from [52]

However, since Coronavirus disease 2019 (COVID-19) is an emerging infectious disease,

risk factors for the clinical outcomes of COVID-19 have not yet been well delineated,
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requiring more research to establish them.51

4.3 COVID-19 Pandemic

COVID-19 dramatically worsened over a short time, provoking extreme societal, economic,

and political disruption worldwide.53 For this situation, it received considerable global

concern by governments and researchers in order to establish strategies against the fast

spread of the virus. According to WHO54 on November 2020, the virus has already infected

around 38, 394, 169 globally, producing a total of 1, 089, 047 deaths to date.

In Ecuador, the first case of COVID-19 was reported on February 29, 2020, an imported

case from Spain. Since then, 150, 360 citizens were tested as COVID-19 positive and 12, 306

reported as deaths by the illness in all the territory to November 17.6 Anyway, due to the

socio-economical characteristics of the population and the deficiencies of an healthcare

system, Ecuador easily becomes one of the countries more affected by the pandemic with

more than 1,000 excess deaths per million inhabitants and the highest excess percentage-

excess deaths as a share of normal deaths for the same period.55,56

Figure 4.3: Cumulative confirmed COVID-19 deaths per million people. Coronavirus Pandemic
(COVID-19)". Retrieved from: ’https://ourworldindata.org/coronavirus’[57]
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This situation could be evidenced by dramatic images recorded from Guayaquil City

at the beginning of the pandemic (April - May 2020). Here, the healthcare system was

overwhelmed by positive cases during the first weeks of the epidemic, provoking many

deaths that even saturate the funerary services. Indeed, the city ran out of coffins leaving

hundreds of corpses unburied and sometimes lying on the streets.58

However, it is a novelty virus; the approved vaccines for preventing infection are not ac-

cessible in necessary doses for all countries.59 Also, there are no pharmaceutical options for

an efficient treatment against COVID-19 disease. The available options are under continu-

ous experimentation, and in some cases, the results do not differ much between treatment

and placebo, putting its efficacy in controversy.60–62 This situation complicates, even more,

the Ecuadorian panorama making necessary to focus on strict Non-pharmaceutical inter-

ventions (NPIs) such as the constant use of face mask, social distancing policies, school

closures, restrictions of gatherings, stay-at-home orders, non-essential business closure and

scheduled curfew.6 Perhaps the "simplicity" of these policies generates a positive effort in

mitigating the spread of the virus63). Consequently, the Ecuadorian government could

improve these NPIs to increase their effectiveness and mitigate the spread of the disease

until pharmaceuticals interventions.



Chapter 5

Problem Statement and Objectives

5.1 Problem Statement

With 1093 deaths per million inhabitants, due to the coronavirus disease 2019 (COVID-

19), as of April 6, 2020, Ecuador had one of the highest death rates from COVID-19

in Latin America. With a low health care capacity to handle pandemic outbreaks, the

Ecuadorian government has a critical need for analytical tools to contain the spread of the

virus in its territory, which is why it has focused on closing gaps in medical resources by

establishing policies to decrease the spread, increase the availability of medical personnel,

and improve the health system. Regardless, the pandemic is still not controlled across the

country, with a high incidence of positive cases and deaths recorded per day.

Using stochastic models to evaluate the dynamics of epidemics, such as the SIR and

SEIR models, the evaluation and analysis of the epidemiological behavior of the disease in

Ecuador can be developed, obtaining information from the descriptive parameters of the

dynamics of the epidemic. These models present the particularity that they are based on

classical concepts of chemical kinetics, allowing the evolution over time of the population of

infected individuals and the individuals susceptible to being infected. The implementation

of this type of model under these assumptions offers a link, together with the fields of

chemical kinetic-epidemic modeling, allowing the exchange of knowledge between sciences

and generating new perspectives for analysis.

38
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5.2 Objectives

5.2.1 General Objective

Implementation of descriptive mathematical models of epidemics based on the foundations

of chemical kinetics as a tool for evaluating the dynamics of COVID-19 spread in Ecuador.

5.2.2 Specific Objective

• Search the data related to the reports of cases of infection by COVID-19, and com-

pare them between the different official sources of information consulted, for a later

appropriate selection.

• Adapt the information collected to the proposed strategies that allow a more optimal

evaluation of the dynamics of the epidemic.

• Determine epidemiological indicators, such as transmission and recovery rates (β

and γ), and basic reproductive ratio (R0), based on the data collected from infected

cases per day, during the period from March 13 - November 17, 2020.

• Propose a description of the dynamics of the epidemic and an analysis of the efficiency

of the different restrictive policies, such as quarantine measures, curfew, implemented

to contain the mitigation of the spread of the disease.



Chapter 6

Methodology

6.1 The SIR and SEIR Analogy

In chemical engineering, reactors are modeled with reactions and balances. The reactions

identify chemical transformations of molecules through kinetic mechanisms, while mass and

energy balances identify the nature and morphology of the reactor where transformations

take place,64–66.

Classical compartmental models as SEIR and SIR distributes each member of a popu-

lation, during an epidemic outbreak, into different compartments denoted as S for suscep-

tible, (I) for infectious, (R) for recovered, and (E) for exposed in SEIR model.5 Assuming

that each person corresponds to a molecule of a specific chemical species, a chemical

approach to SEIR and SIR model could be proposed.1 For example, by considering the

susceptible population as the reactant (S), Infectious or active infected people (I) as a

reaction intermediate, and Recovered (R) as a product, a kinetic model representing the

outbreak is given by equations 3.1 and 3.2. These equations describe the process by which

susceptible individuals (S) can contract the disease if they come into contact with an infec-

tious individual (I). The mechanism is analogous to an irreversible auto-catalytic chemical

reaction 2.50 between a reactant species, in that case, represented by S, and catalyst

species, represented by I. This situation occurs when it is assumed that zero delays exist

between infection and the ability to transmit the disease between susceptible and infected

individuals. Also, each reaction step is governed by the interplay of kinetic parameters

40
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proposed by the Arrhenius equation.1

It is assumed that the kinetic mechanism associated with the disease spread takes place

in a hypothetical batch reactor. Such a reactor is characterized by considering an inlet and

outlet flow as nulls. Both conditions can be related to the restrictions in human mobility

during the global lockdown imposed for governmental agencies, and in consequence, the

batch reactor balances can reasonably predict the infection behavior.30 Also, it is feasible

to consider the susceptible population as the parameter that determines the active volume

of the reactor. For COVID-19 disease, the recovered people are supposed to be immunized,

and the reinfection parameter is not considered.67,68

For SEIR model, it is necessary to adapt the mechanism due to the presence of the

exposed individuals, denoted by E compartment, and in consequence, the general mecha-

nism is represented by equations 3.6 - 3.8. In that mechanism, the exposed compartment

(E) and infectious compartment (I) are considered as intermediates of the reaction.1 The

SEIR model is a common variation of the SIR model in where, a latent period (E) is

added.23 Due to similarities between SIR and SEIR model, the chemical analogies would

be similar in concept. Indeed, both mechanisms have the similar dynamics of a quadratic

auto-catalytic reaction 2.50.

6.1.1 Models description

A stochastic system has been developed based on an already proposed batch-type nu-

merical simulation.69 The model dynamically characterizes the evolution of each species

involved in the kinetic scheme. Kinetic constants for the reactions are described according

to a modified Arrhenius-type law where the temperature-dependence is considered negli-

gible due to the isothermal characteristics of the infection outbreak. By considering this,

the virus spreading is then modeled, providing a phenomenological interpretation that

monitors and predicts the time evolution of the SARS-Cov-2 spreading process.

For the proposed model, some assumptions were made. First, it is assumed that the

spatial mix of the chemical species is uniform, and as a consequence, it will follow the law

of mass action to model the rate at which susceptible and infectious individuals interact

via bi-molecular, auto-catalytic reaction 2.50. For this model demographic variables are
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considered as negligible. The number of new infections per unit time (incidence number) is

considered as a symmetric, b- linear function of (S) and (I) and is defined as β(S)(I). The

second-order transmission rate constant β > 0 follows the theory of collisions described in

previous chapter 2.27 in consequence, is defined as the product of the average frequency of

contacts of an individual and the specific transmission capacity of the disease R0. Recovery

transition is defined by the rate at which infectious individuals recover and is interpreted

as a "deactivation" with the kinetics of first order. Also, it is inverse γ > 0 is the average

time that an infected individual is infectious. From previous assumptions, sets of ODE

resulting for each model, given before, are shown again for the convenience of analysis.

For SIR:

dS

dt
= −βSI , (6.1)

dI

dt
= βSI − γI , (6.2)

dR

dt
= γI . (6.3)

For SEIR:

dS

dt
= αS , (6.4)

dE

dt
= αSI − βE , (6.5)

dI

dt
= βE − γI , (6.6)

dR

dt
= γI − σR . (6.7)

The set of ODE for SEIR model can be identified as two additional parameters, are,

α and σ. The parameter α represents the transition rate of a susceptible individual to an
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exposed individual, while the parameter σ is the transition rate from an infected individual

to a recovered individual.

Each one of the previous ODE for both models requires the definition of initial con-

ditions. These conditions are related to the numbers of initial active infected individuals

I0, initially recovered individuals R0, and susceptible individuals S0. Some conditions are

considered trivial since they will be zero at the beginning of the epidemic, such as I0 and

R0. On the other hand, S0 is known since its value is obtained from the total individuals

of a country population. The stability of this particular set of ODE has been primarily

analyzed.70

As previously mentioned, the basic reproductive number R0 is obtained by the following

relation:

R0 = β

γ
. (6.8)

It is important to remark that R0 is constant in time, dimensionless, and represents a

specific property of the disease and the population.23 Under the analogy with chemical

kinetics, since the catalyst’s activity and longevity are embedded in β and γ, being R0

large if the catalyst has a high activity and remains active for a long time and vice versa.1

Furthermore, the function of R0 factor can be explained by a chemical reaction analogy.

If R0 > 1, the injected catalyst particles deactivate faster than they catalyze to convert

the reactant, S, into more catalyst, I, to propagate auto-catalytic.

6.1.2 Estimation of Transmission (β) and recovery rate (γ)

The β and γ parameters corresponding to a specific population could be retrieved from

the previous SIR ODEs by establishing some assumptions as follows:

dI

dt
= βSI − γI . (6.9)
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. At the beginning of the epidemic breakout there is no infection, that is I+R = 0, and the

number of susceptible individuals is equivalent to the total population.71 In consequence:

dI

dt
∼ I(β − γ) (6.10)

By integrating equation 6.10 the following expression is obtained:

I = I0 exp(β−γ)t . (6.11)

Then, by considering β − γ as a constant term (m), the following equation could be

proposed:

I ∼ I0 expmt (6.12)

.

Taking the logarithm of both sides, the equation 6.12 could be redefined as a common

lineal equation with the form:

ln I = mt+ ln I0 = (β + γ)t+ ln I0 , (6.13)

where the slope m corresponds to a relation between the transmission and recovery rates,

while the intercept between lnI and time (t), corresponds to a value related to the initial

value for infected individuals in the period analyzed.

Then, the m value can be estimated from the log-plot data. On the other hand, γ

value could be obtained from integrating the equation 6.3 giving the following expression:

R(t) = γtI0 . (6.14)

Considering T as the recovery period, can be assumed that for t = T days the amount

of recovered individuals takes the value R(T ) = I0 when γT=1. In that case:

γ ≈ 1
T
, (6.15)
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that is, the parameter γ corresponds to the inverse of recovery period. For a interval of

time dt = a, the following expression can be proposed:

R(t+ a)
a

= γI , (6.16)

and therefore, the transmission rate (γ) can be obtained by:

γ = R(t+ 1)−R(t)
I(t) . (6.17)

From reported data obtained for number of infected and dead by COVID-19 individuals,

the equation 6.17 is used for the determination of parameter γ.
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Results

7.1 Data Selection

The official epidemiological data of COVID-19 spread is published nearly every day by

Comité Nacional de Operaciones de Emergencia (COE), however, some inaccuracies are

perceived during the recording period, which not only affects the reliability of the data but

also generates problems in the statistical management of the data. These inaccuracies were

perceived during specific dates, more precisely on the days: 6, 8, and 11 May 2020.6 On

these dates, around 2, 461, 1, 480, and 50 cases, respectively, were removed from analyzed

data due to inconsistencies.

Therefore, a precise approach to the dynamics of COVID-19 in Ecuador requires the

review and comparison of several databases to verify the information and appropriately

select the data to be used. This stage of analysis is crucial to ensure that proposed models

are suitably parameterized. The data selected from these sources were ordered and divided

into different temporal sections, representing stages with different data management, social

controls, implementing strategic policies by government entities, and the elimination of

data corresponding to days with very high inaccuracies.

In the following table (table 7.1) are indicated the different temporal sections, taking

into account the different lockdown periods imposed in Ecuador during the COVID-19

epidemic. For example, the first lockdown period, which began March 13th, was partitioned

into three temporal sections, each denoted by LD-0-1, LD-0-2, and LD-0-3, respectively.

46
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Partition of these periods depends on the behavior of the known data of infected population

during these periods, and particularly in this first lockdown implemented, some imprecision

in the management of data was perceived. The second stage considered for this analysis

is denoted by the code CP-1, referring to the critical point related to how the first change

in methodology by the government was implemented. The last LD-2 and LD-3 stages

are considered due to policy relaxation in these periods, involving easing of restriction

measures.

Table 7.1: Temporal sections for different periods during COVID-19 epidemic based in the
social management in Ecuador.

Temporal sections.

Code Period of time Information of period

LD-0-1 March 13th - March 23th Lockdown period (1)

LD-0-2 March 24th - April 11th Lockdown period (2)

LD-0-3 Arpil 12th - April 26th Lockdown period (3)

CP-1 April 27th - June 1st Critical Point

LD-2 June 6th - September 13th Partial Lockdown period

LD-3 September 14th - November 11th Low restrictions

The methodology of the partitioning of the total period allows obtaining a more precise

evaluation of data to estimate parameters associated with the transmission rate, that is,

the β factor, which is necessary to perform the proposed SIR and SEIR analyses.

7.2 Epidemiological Characteristics of Ecuador

7.2.1 Confirmed Cases and their incidence

Retrieved data regarding the number of infected cases in Ecuador reported per day is

shown in figure 7.1. These data were retrieved from database Ecuacovid research group,72

Registro Civil73 and COE Nacional,6 the official bureau in charge of handling information

regarding the COVID pandemic in Ecuador. The resultant figure shows an increasing daily
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number of reported positive cases, with a mean value of 254 during the first stage of the

epidemic breakout. The incidence number of positive cases per 100.000 inhabitants related

to this value shows an estimation during the first period (February 28th to April 26th) with

a value of 1.49. After April 26th, the mean value for daily reported cases increases rapidly

to 1, 751, with an incidence of 10.30. Then, a stabilization of the data occurs around May

11th, and since then, the mean value of positive reported cases per day is stabilized at 841,

with an incidence number of 4.95.

Figure 7.1: Daily variance of COVID-19 positive cases in Ecuador. Data Retrieved from online
database: [6, 72, 73]

The cumulative for the positive reported cases is shown in figure 7.2, and as can be

observed, on November 17th the curve still shows an upward trend with a total of 190, 060

confirmed cases, with an incidence of 2.52. The sustained increase in the incidence factor is
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related directly to the relaxation on curfew policies by government and the social fatigue.

Figure 7.2: Cumulative chart of positive reported cases to november 2020. Data retrieved
from:[6, 72, 73]

7.2.2 Associated and confirmed fatalities related to COVID-19

Ecuador reported its first COVID-19 death on March 13th. Since then, the daily number

has increased at a mean rate of 52.10. By November 17th, 8, 681 cumulative COVID-19

confirmed deaths were reported, and an additional of 4, 344 deaths possibly were related

to the disease,6 resulting in an amount of 13, 025 deaths. Although the mean number

of reported deaths has remained relatively constant since March 14th - April 26th, the

daily rate of reported deceases has progressively increased from 36.33 during this period

to 133.73 during April 26th - May 11th. Since this last date, the mean death rate remains
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positive, with a registered value of 50.16 cases per day. The cumulative values can be

observed in figure 7.3, showing inaccuracies in some periods, in which the death rate could

be observed as negative or even discontinuous.

Figure 7.3: Cumulative daily confirmed and related deaths to COVID-19 disease. Data retrieved
from online database: [6, 72, 73].

Both contributions to the number of deaths, from deaths of individuals with a con-

firmed diagnosis, and deaths related to the disease, as occurred by differentiating medical

attention and lack of medicine, are presented in figure 7.4. This figure is evident not just

in the hundreds of deaths caused by the COVID epidemic but the complex behavior that

the recovered data exhibits.

From Registro Civil del Ecuador and Centro de Operaciones de Emergencia database of
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Figure 7.4: Cumulative daily deaths confirmed and related to COVID-19 disease. Data retrieved
from online database: [6, 72, 73]

reported deaths from 2015 to 2020,6,73 a historical-comparative chart is obtained and shown

in figure 7.5. This comparison allows us to estimate the excess of deaths during the period

in which the epidemic occurred. It is observed an increase of deaths in 2020, compared

with previous years, and the pattern observed for 2020 closely matches the infected cases’

behavior. For the data shown for 2020, it is observed a notable peak around April - May

period. Coincidentally, this period reflects the large number of infected cases and deaths

suffered by Guayaquil population during the COVID-19 epidemic. This city is one of the

most populated of Ecuador, belonging to the province with the largest population, that is

2, 7 million approximately.6 It should be mentioned that other peak presented in the figure,
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served in April 2016, is associated with the earthquake that hits the coast of Ecuador.

Figure 7.5: Historical Comparative Chart of cumulative deaths from March to November period.
Data retrieved from online database: [6, 72, 73]

According to the presented data, it is crucial to consider that perceived incongruities

compare with the number of deaths reported by the government. Even though the data

plotted and shown in 7.5 refers to all deaths in Ecuador, regardless of their cause, the dif-

ferent pattern exhibited by the curve corresponding to the year 2020 compared to previous

years presents the suspicion of a possible incidence of the COVID epidemic on the recorded

data. This type of divergence between the reported data affects the strategies proposed

to develop the analysis of the epidemic through the respective models. In any case, it

is vital to observe that the pandemic outbreak directly influences the statistical behavior



CHAPTER 7. RESULTS 53

of the recorded data, which constitutes an essential factor to consider in decision-making

policies.

7.3 Forecasting COVID-19 epidemic dynamics through

SIR and SEIR simulations.

7.3.1 SIR MODEL

In order to evaluate epidemic breakout through the SIR model, the transmission and

recovery rates, denoted by β and γ, respectively, are obtained employing the equations 6.13

and 6.17 proposed by Bagal,71 using the database published by governmental agencies and

research groups,6,72,73 shown in figure 7.2. The graphs resulting from the function given

by the equation 6.13, applied to each temporal partition indicated in the table 7.1, are

shown in figures 7.6 and 7.7, from which an approximately linear dependence of Ln(I) vs. t

is observed. Here, I corresponds to the infected individuals’ population in a given time

t. The slope associated with each function in each temporal partition is reported in the

table 7.2. On the other hand, the estimation of the γ parameter was reached by using

the equation 6.17 for each defined temporal period, and once knowing m (slope linear

regression) and γ values, β parameters were calculated, and they are also indicated in the

table 7.2.
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Table 7.2: Estimation of transmission (β) and recovery (γ) rates and basic reproductive
ratio (R0) determined by using retrieved data for COVID-19 in Ecuador.

Kinetic parameters for COVID-19 data in Ecuador.

Code Period of time β γ R0

LD-0-1 March 13th - March 23th 0.44 0.05 8.79

LD-0-2 March 24th - April 11th 0.15 0.06 2.65

LD-0-3 April 12th - April 26th 0.12 0.08 1.44

CP-1 April 27th - June 1st 0.18 0.05 3.60

LD-2 June 6th - Sept. 13th 0.12 0.03 4.47

LD-3 Sept. 14th - Nov. 11th 0.11 0.04 2.52

From the values shown on table 7.2 can be appreciated that the transmission rate (β)

significantly decreases from the value for the initial partition with a bit of variance on CP1

due to previously exposed incongruousness in data. In contrast, the recovery rate (γ) varies

slightly. The changes observed in the transmission rate for the different temporal partitions

seem to be directly related to the policies implemented by the Ecuadorian government

and indicate the changes in the period of oscillation of the disease, making it challenging

to analyze. From March 23 onwards, the transmission rate is continuously reduced. The

government then advised, possibly as restriction policies, such as stay (and work) at home,

closed schools, and banned most private and public events, begin to take effect. The

implemented lockdown changed not only the probabilities of transmission per contact (β)

but also the contact patterns between susceptible and infectious individuals.

On the other hand, the slight variation on the recovery factor γ can be related to the

capacity of the health system to give effective treatments and the implemented policies

about the management of infected individuals. At the same time, the vaccine for the

disease is not yet accessible. It is important to remember that γ, the recovery rate, is the

inverse of the average infectious period and although sometimes it could be considered a

constant value, most realistic representations take into account a dynamic behavior of this

parameter.23,74 Once determined β and γ, the basic reproductive ratio R0 can be found for

each period considered. The R0 values estimated for each temporal period show erratic



CHAPTER 7. RESULTS 55

Figure 7.6: Left: Linear regression of the function Ln(I) vs. t for the first three temporal par-
titions: LD-01 (A), LD-02 (C), LD-03 (E), from which the relation between kinetic parameters
associated with COVID-19 epidemic are determined from the slope m estimated for each regres-
sion. Right: Recovery rate (γ) as a function of the time for the first three temporal partitions:
LD-01 (B), LD-02 (D), LD-03 (F).
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Figure 7.7: Left: Linear regression of the function Ln(I) vs. t for the last three temporal par-
titions: CP-1 (A), LD-2 (C), LD-3 (E), from which the relation between kinetic parameters
associated with COVID-19 epidemic are determined from the slope m estimated for each regres-
sion. Right: Recovery rate (γ) as a function of the time for the last three temporal partitions:
CP-1 (B), LD-2 (D), LD-3 (F).
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behavior, having the highest value for the first temporal partition at the beginning of the

pandemic. Then, it tends to decrease due to the implementation of restrictive policies.

However, as the partial curfew policies are implemented from June, the transmission rate

increases to another high value. Finally, the low value obtained for the last period (LD-3:

September-November) denotes a decrease in the transmission rate, and therefore in the R0

factor. Figure 7.8 shows the variation of the R0 factor for the different periods considered.

Figure 7.8: Variation of basic reproductive ratio (R0) through temporal periods considered.

Due to the very narrow variation of the estimated values for γ, and the fact that the SIR

model assumes a constant value for this parameter, an average value was obtained from

the different results for gamma reported in the table 7.2. The average value corresponds

to γ = 0.052± 0.006, which agrees with the most frequently reported value for γ.75 With

this average value for γ, new values for R0 factor were determined, and they are shown in
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the table 7.3, among the other kinetic parameter for each temporal periods defined. The β

values were not changed due to their significant variation in the different temporal periods.

From the values reported for kinetic parameters, the simulations of SIR and SEIR models

were carried out, representing the temporal evolution of the population of susceptible (S),

infected (I), Exposed (E), and recovered (R) individuals during the considered period of

COVID-19 epidemic.

Table 7.3: Kinetic parameters associated to COVID-19 epidemic in Ecuador: transmis-
sion (β) and average recovery (γ) rates and re-normalized basic reproductive ratio (R0),
determined by using official retrieved data reported in Ecuador.

Re-normalized kinetic parameters for COVID-19 data in Ecuador .

Code Period of time β γn R0

LD-0-1 March 13th - March 23th 0.44 0.052 8.79

LD-0-2 March 24th - April11th 0.15 0.052 3.03

LD-0-3 April 12th - April 26th 0.12 0.052 2.43

CP-1 April 27th - June 1st 0.18 0.052 3.60

LD-2 June 6th - Sept. 13th 0.12 0.052 2.40

LD-3 Sept. 14th - Nov. 11th 0.11 0.052 2.20

7.3.2 SIR model simulation for LD-0-1: β = 0.44 , γ = 0.052 ,

R0 = 8.79

In figure 7.9 are shown the results for differential equations associated to the SIR model,

given by the equations 6.1 - 6.3, taking into account the kinetic parameters (β, γ and

R0) values previously determined and depicted in table 7.3. The curves shown in figure

7.9 corresponds to the stochastic evaluation of data retrieved during the period between

March 13th and March 23th, period remarked as the beginning of the curfew policies. The

exponential increase of the infected population, represented by the red curve, after 50

days from the report of the first COVID-19 case on Ecuador, reaching a maximum value,

identified as a critical point, on the range from 50 to 65 days (between April - May). It

should be noted that this time range coincides with the events situated in Guayaquil, on
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the period April 23th - May 11th, during which the region experienced a large increase in the

number of infected individuals. According to the curve (I vs. t), at this point, around 64 %

of the total population get infected with COVID-19, the corresponding population of 11.7

million. The temporal evolution of recovered individuals represented by the green curve

shows a rapid increase from 50 to 120 days. The rapidly recovered phenomena are explained

by the number of people infected, and the low mortality rate due to the disease, estimated

around 0.5-1, according to the data reported.76 The blue curve represents the temporal

variation of the susceptible population, being consistent with the expected behavior.

Figure 7.9: Results for SIR model for temporal period LD-0-1: β=0.44 γ=0.052 and R0=8.79.
Initial Ecuadorian susceptible population: 17, 000, 000

Evaluating this period with the average fatality rate of Ecuador 5.43,57 representing a

deceased population of 635, 310. The entire range of time in which is evidenced variation

of susceptible, infected, and recovered population is up to around August 20th, assuming

this date as the ending of the first epidemic wave, according to SIR model with the kinetic

parameters established. This period can be related to the dynamics of the first wave of the

COVID-19 epidemic in Ecuador. Qualitatively, the behavior of curves shown in figure 7.9
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has similarity with those shown in figure 2.1, corresponding to the temporal evolution of

chemical species during a reaction mechanism of two steps involving intermediate species.

The correspondence in this analogy is compatible with: reactant species → susceptible

individuals (blue curve), intermediate species → infected individuals (red curve), and

product species → recovered individuals (green curve). Such similarity implies that the

rate constant for the first step, intermediate species formation, is much higher than the

rate constant for the second step, intermediate species consumption, understood as β > γ.

This assumption is for this first temporal period, consistent with the obtained results.

7.3.3 SIR model simulation for LD-0-2: β = 0.15 , γ = 0.052 ,

R0 = 3.03

Now, the simulation for the second temporal period considered (LD-02) results in curves

depicted in figure 7.10, which correspond to the stochastic evaluation of time variation of

S, I, and R individuals during the period between September 24th - October 12th. For this

period, values obtained for the β and R0 differ concerning those used for the previously

evaluated period, while the γ value is the same.

In this period, the effects of the curfew policies implemented by government agencies,

such as social distancing, permanent face masks, restricted movement of citizens, start to

be reflected on the temporal evolution of S, I, and R individuals population. The maximum

observed for the curve corresponding to infected individuals (red curve) is displaced on time

and is flattened compared to the curve depicted in figure 7.9. The total amount of infected

cases diminish to around 5.3 million of cases which indirectly means an estimated death

toll of 287, 779. The behavior of the curves corresponding to susceptible and recovered

individuals, blue and green curves, respectively, are also changed concerning the previous

period evaluated, exhibiting a displacement to higher times and a slow increase. These

changes exhibited are consistent because restrictive policies are taking effect, even more

so when one of them involved curfew.

By comparison with the analog curves for a chemical reaction (figure 2.1), the situation

of a higher speed constant for the first process is maintained, that is, β > γ. However, a
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lower sharpness of the peak for the temporal evolution of infected individuals is observed

and a more gradual change for the temporal evolution of susceptible and recovered indi-

viduals. These differences could be a consequence of a lower difference between both rate

constant, that is, between β and γ.

Figure 7.10: Results for SIR model for temporal period LD-0-2: β=0.15 γ=0.05 and R0=3.03.
Initial Ecuadorian susceptible population :16, 999, 465.

7.3.4 SIR model simulation for LD-0-3: β = 0.12 , γ = 0.052 ,

R0 = 2.43

For this temporal period, with different values for β and R0, the peak of the curve rep-

resenting the variation in time of infected individuals population is again displaced, this

time approximately day 250 (between November 10-November 20). The value of infected

individuals, at this point, corresponds to an amount of 4.2 million. The death toll esti-

mated is around 228, 060 cases, using the average value of the fatality rate for Ecuador

reported by OurWorldinData.org57
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Both the displacement of the red curve, corresponding to the temporal evolution of

the infected individuals, and its flatness suggest that the infectious wave ends without

infecting all the susceptible individuals, due to the low spread of the virus reached by the

restrictions in the mobility, programmed curfew, permanent mask, and hygiene campaigns.

Again, a behavior of the curves similar to those presented in figure 2.1-a (higher rate

constant for the first process) is observed, but with more excellent proximity to the behavior

of figure 2.1-b, but without reaching it.

Figure 7.11: Results for SIR model for temporal period LD-0-3: β=0.12 γ=0.05 and R0=2.43.
Initial Ecuadorian susceptible population: 16, 995, 410.

7.3.5 SIR model simulation for CP-1: β = 0.18 , γ = 0.052 , R0

= 3.60

The critical point period is characterized by inaccuracies in reported data for the infected

individuals diagnosed. Results for simulation of SIR model are depicted in figure 7.12,

shown a shift of the maximum of the curve to earlier times at the beginning of the epidemic,
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located at a timeless than day 200, approximately at day 150. This behavior indicates

that disease is gaining presence again in the population. The red curve has a remarkable

sharpness again, and the value of maximum corresponds to an amount of positive infected

cases of approximately 6, 7 million. The number of deaths is very similar to that which

resulted from the analysis of figure 7.10, which is 363, 810, which could indicate disease

resilience. The low respect to the general population’s anti-pandemic policies, related to

the tiredness and fatigue that the pandemic situation, and the restrictions imposed, has

generated in society, may also be responsible.

Figure 7.12: Results for SIR model for temporal period CP-1: β=0.18 γ=0.052 and R0=3.60.
Initial Ecuadorian susceptible population: 16, 995, 410.

7.3.6 SIR model simulation for LD-2: β = 0.12 , γ = 0.052 , R0

= 2.40

Figure 7.13 corresponds to results for simulation SIR model for the period between June 2th

- September 13th. The shift of the maximum of the infected individuals (red curve) occurs
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at day 250, indicating an increase in the dynamics of the disease spread. It is important

to remark that, during this period, some curfew policies were partially removed, and, in

consequence, factors as mobility and human interaction could be responsible to facilitates

the disease transmission.77 The infected individuals increased to a value of around 4, 5

million in November 2020, and a denoted recovery curve can be observed in a short period

(high pressure on the medical care system). The death toll for this period is approximately

248, 652 and, the end of the wave is estimated on January- February 2021.

Figure 7.13: Results for SIR model for temporal period LD-2. β=0.12 γ=0.05 and R0=2.40.
Initial Ecuadorian susceptible population: 16, 987, 451.

7.3.7 SIR model simulation for LD-3: β = 0.11 , γ = 0.052 , R0

= 2.20

Chart 7.14 shows a decrease on the infected peak and a pronounced displacement over

time. Many factors could be affecting the pandemic at this point. At first, the number

of infected cases is high compared to the start of the pandemic, which means a decrease
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Figure 7.14: Results for SIR model for temporal period LD-3. β=0.12 γ=0.05 and R0=2.20.
Initial Ecuadorian susceptible population: 16, 955, 386.

in the number of susceptible populations. Second, the asymptomatic population gain

quickly immunity against the disease which also represent a fewer impact of the disease on

susceptible. The peak for this period is reached on day 290 (July 2021) with approximately

3.8 million people infected with the disease. Notice that the infected curve flattens on day

350 before infecting all susceptible on country. At this point, healthcare system will have

more efficiency in given treatment to the severe cases which is reflected in the amount of

deaths estimated, which is: 206, 343 cases approximately.
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Figure 7.15: Comparative chart of COVID-19 infected curve peak from established periods

Chart 7.15 is a general representation of the spread of COVID-19 disease in Ecuador.

This estimation is made by combining each of the infected peak curves retrieved from SIR

model. The combination of the data allows recreating a possible scenario in Ecuador over

two years COVID-19 pandemic in where the peaks reflect the possible dates at which the

disease will be "out of control."Furthermore, it shows the flatten phenomena on curves over

time due to the implementation of curfew policies by local government. It is remarkable to

notice that the values for CP-1 and LD03 show a similar curve over time. This situation

occurs due to the issues in the data previously mentioned during this period.
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7.3.8 SEIR MODEL

To perform SEIR model evaluation is necessary to consider the values retrieved for the

SIR model on table 7.3 and a set of specific epidemiological values related to COVID-19

disease. These values were retrieved from literature75,78 given the following table:

Figure 7.16: SEIR model configuration values.

In contrast to SIR model, SEIR model allows adding parameters that increase the

precision of the model, such as incubation period, hospitalization probability, need of

intensive care unit (ICU) probability, and death probability (duration and delay in days).

This situation allows predicting the spread of the disease and acute when the healthcare

capacity will be overwhelmed. Also, the SEIR model allows the generation of large models

without dividing the data into different periods. For this reason, a median of β and γ from

Ecuador data were selected giving a R0 median of 2.74.

Figure 7.17 is an SEIR model of COVID-19 spread in Ecuador. Here many peaks

corresponding to the exposed, infected (active), hospitalized (active), ICU, and deaths are

observed. The infected curve shows a rapid increase with a significant peak registered at

days 50-70 from the beginning of the epidemic breakout. In terms of dates the peak is

between April and May and shows an average 2 million of people infected. The exposed

curve is closely related to the infected curve because it represents an estimation of the
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Figure 7.17: SEIR Chart. Ro=2.74. Probabilities: Hosp:0.21, ICU:0.05 Death:0.02. Ecuadorian
Population Susceptible considered:17000000

possible interaction between infected cases and susceptible remains. Chart 7.17 represents

the prominent peak observed with an average of 2.5 million exposed. Notice that the

peak is located before the other peaks (between 50-60 days), indicating a delay between

the reported cases and the probably exposure. The other peaks observed in the chart

correspond to the hospitalization, ICU, and deaths. The hospitalized peak is based on the

probability of an infected case that needs specialized treatment and occurs after the peak

of infected cases between 60-80 days. The value showed by the chart shows an amount

of 1.5 million people hospitalized, which widely exceeds the capacity of the Ecuadorian

health care system (23.803 beds for moderate cases79). The peak for severe cases (in ICU)

also overcomes the available amount of ICU units (1183 in all healthcare systems79) with

an average of 300000 cases. This peak will be reached simultaneously with the hospitalized

peak, putting more stress on the healthcare system. The deaths predicted will reach an

amount of 300000 cases by day 90 (June 2020).
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Figure 7.18: Amplified curves of Susceptible, Exposed, Infected and Deaths related to SEIR
model

Figure 7.18 shows a more detailed view of the peaks obtained by the model. Here is

more easy to observe the average estimation of cases for each of the curves obtained with

the SEIR model. Notice that the model does not show the number of recovered cases and

has a singular behavior after 100. This behavior is related to the lack of a demographic

and mobility information (contact matrix) for the Ecuadorian population and dispersion

of CFR (Fatality rate) between ages of biological sex structures. These factors add an

essential enhancement of the modeling, allowing predicting the spread for a longer time-

widespan.
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Conclusions

This work introduce a compartmental SIR and SEIR model describing temporal propaga-

tion of disease contagion and applied it to the 2020 outbreak of COVID-19 in Ecuador.

Our simulations are intended to provide a proof-of-concept of the potential of SIR and

SEIR models for regional modeling of the outbreak. Nonetheless, they show good quali-

tative agreement with reality, accurately predicting the outbreak dynamics and recreating

the transmission path in time. The SIR and SEIR kinetic models are used to examine

some possible reopening scenarios, which suggested that reopening may be best deter-

mined based on local population and contagion dynamics. However, when accurately

predicting the number of infected dead or recovered, it had a great difference with offi-

cial data given by COE. These phenomena may occur due to the country’s inefficiency

to take and process patient samples in an orderly fashion, a low detection rate of asymp-

tomatic patients,a high percentage of false negatives and false positives and fatalities not

recorded. The uncertainty in our predictions is considered large because of several un-

known reasons arising from: model assumptions, population demographics, the number of

COVID-19 diagnostic tests realized per day, contact matrix, testing criteria, the accuracy

of the test results, and heterogeneity in implementation of different government-initiated

interventions and community-level protective measures across the country. Furthermore,

the models do not consider the age structure, contact patterns, or spatial information in

order to refine the predictions. It is important to consider that COVID-19 hotspots in

Ecuador are not uniformly spread across the country, and state-level forecasts may be
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more meaningful for state-level policymaking. The models proposed simulates the out-

break for the whole nation. In consequence,in-country variations might exist. It suggested

that similar approaches should be made at a local scale. Regardless of the caveats in our

study, our analyses show the impact and necessity of lockdown and suppressed activity

post-lockdown in Ecuador.
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