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integración curricular. Aśı mismo, me acojo a los reglamentos internos de la Universidad
de Investigación de Tecnoloǵıa Experimental Yachay.
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Yo, Josué Nicolás Maŕın Gaviño, con cédula de identidad 1723331573, cedo a la Uni-
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Abstract

Dimensionality reduction (DR) is a data transformation process that provides a low-
dimensional (attribute or variable) representation of high-dimensional data sets. The main
goals of DR are noise reduction, storage space reduction, data visualization, efficient data
processing, and the concentration of important information in fewer variables than the
original set. A visual performance measure in DM is topology preservation. Quality curves
RNX , proposed by Lee and Verleysen, evaluate performance generating a graphical rep-
resentation of topology preservation. Nowadays, there is a tool for topology conservation
evaluation of DM algorithms, also developed by Lee and Verleysen (2009). To the best of
our knowledge, such a tool is available only in MatLab. Therefore, a deployment challenge
arises since MATLAB may be limited in portability and hardly used over different technolo-
gies such as frameworks for dimensionality reduction programmed in other programming
languages. In this work, we provide an implementation in the Python programming lan-
guage of a software evaluation module of the curve RNX , a versatile and package-driven
coding tool that enables its use in multiple technologies.

Keywords: Data topology, dimensionality redution, Python, RNX curve.
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Resumen

La reducción de dimensionalidad (DR) es un proceso de transformación de datos que pro-
porciona una representación de baja dimensión (atributos o variables) de conjuntos de
datos de alta dimensión. Los principales objetivos de la recuperación ante desastres son la
reducción de ruido, la reducción del espacio de almacenamiento, la visualización de datos,
el procesamiento eficiente de datos y la concentración de información importante en menos
variables que el conjunto original. Una medida de rendimiento visual en DM es la preser-
vación de la topoloǵıa. Las curvas de calidad RNX , propuestas por Lee y Verleysen, evalúan
el rendimiento generando una representación gráfica de la preservación de la topoloǵıa. En
la actualidad, existe una herramienta para la evaluación de la conservación de la topoloǵıa
de los algoritmos de DM, también desarrollada por Lee y Verleysen (2009). A nuestro leal
saber y entender, dicha herramienta solo está disponible en MatLab. Por lo tanto, surge
un desaf́ıo de implementación ya que MATLAB puede tener una portabilidad limitada y
apenas se usa en diferentes tecnoloǵıas, como marcos para la reducción de dimensionalidad
programados en otros lenguajes de programación. En este trabajo, proporcionamos una
implementación en el lenguaje de programación Python de un módulo de evaluación de
software de la curva RNX , una herramienta de codificación versátil y basada en paquetes
que permite su uso en múltiples tecnoloǵıas.

Palabras Clave: Curva RNX , reduccion de dimensiones, Python, topoloǵıa
de los datos.
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Chapter 1

Introduction

The amount of data produced in real-time has exploded at an unknown rate. According
to IDC’s ”Data Age 2025” whitepaper, sponsored by Seagate, the sum of the world’s data
will grow to 175 zettabytes by 2025. Thus, researchers have developed new improvement
techniques to extract and represent the valuable information in data [1]. These techniques
fall in the field called data analytics, which can obtain hidden patterns in the data to make
decisions accordingly or for data representation.

Among the fields of data mining and pattern recognition, large amounts of data are
handled, and high-dimensional data. The latter refers by dimension to the number of
characteristics or variables in the input data [2]. This much data is prone to errors and,
most of the time has much redundancy. Moreover, to process such higher amounts of data
requires a lot of computer power, and it is sought to be the most efficient possible. Because
of this, it is mandatory to perform a preprocessing of the data. It has various objectives:
noise reduction, storage reduction, data visualization, efficient data processing, and data
compression [3, 4].

Dimensionality reduction represents high dimensional data into a lower dimension, ab-
stracting the most critical details from the data and cutting redundancy [5]. Nowadays,
there are many methods to achieve it; among these are spectral methods, divergence meth-
ods, heuristic methods, deep learning methods, neural networks, among others [6]. All these
methods are designed to generate embedded low-dimensional spaces trying to conserve the
original data’s topology. Only spectral methods are taken into account in this work be-
cause they also count with a kernel approximation counterpart, and also they have been
broadly used in many applications [5, 1]. Consequently, because of the high quantity of
DR methods, the questioning of their quality assessment and comparison appears. A way
to measure the quality of this dimensionality reduction is topology preservation. It means
that the data will keep its spatial relations after the embedding in a lower dimension. This
work implements the RNX curve proposed by Lee and Verleysen [7]. This curve evalu-
ates the performance generating a graphical representation of preservation of the local and
global topologies. A tool for creating this curve exists in Matlab, but this makes it incon-
venient to use when there is a pipeline of DR methods in other programming languages
that are more portable. Python has become one of the more used programming languages
by data scientists in the last years. For this motive, the necessity of such a python tool,
which is not only oriented to mathematicians or prototyping as Matlab is, arises [8].

1
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1.1 Problem statement
Dimensionality reduction (DR) is a data transformation process that provides a low-
dimensional representation (attribute or variable) of high-dimensional data sets. In the
last few years, many new nonlinear DR methods have been proposed. Moreover, the in-
terrogation about their quality assessment and comparison remains open. A visual perfor-
mance measure in DR is topology preservation. Quality curves RNX , proposed by Lee and
Verleysen, evaluate performance generating a graphical representation of topology preser-
vation [7]. Nowadays, there is a tool developed by Lee y Verleysen (2009) that evaluates
the topology preservation of DR algorithms using the RNX quality curves. However, this
tool is only programmed for scientific purposes in MATLAB, and it is not open source,
limiting the implementation of this algorithm in other technologies.

1.2 Objectives

1.2.1 General objective
To develop, in python, a module of curves RNX to evaluate the performance of dimension-
ality reduction and data representation based on data topology conservation and able to
work on different technologies.

1.2.2 Specific objectives
• Implementation of mathematical routines which allow one to measure topology con-

servation using the RNX curve in dimentionality reduction methods.

• Development of a plot in order to show the quality of dimensionality reduction algo-
rithms through the RNX curve.

• Integrate the module as a PyPI package in order to contribute the data science
community and the already developed modules.

1.3 Contribution
As a solution for this issue, in this work, we present a python module, called nxcurve, based
on Lee y Verleysen RNX curve whose purpose is to assess the quality of dimensionality
reduction showing a plot of the curve and its area under it. Broadly, nxcurve works as
follows: it receives five parameters, high dimensional data, low dimensional data, which
was obtained by using any dimensionality reduction technique, number of neighbors used
for reduction, an option “r” for telling the module we want the RNX curve, and a finally
a boolean variable which if true the module will show the RNX graph and the contrary
if it is false. The module will not only return the graph. Also, it will return the vector
containing the values of the RNX curve, its area under the curve, and its name. These
values are returned in case the user wants to draw its curve or multiple curves. Therefore,
the main goal of nxcurve is to perform a quality evaluation of the low-dimensionality

Information Technology Engineer 2 Graduation Project
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representation of high-dimensional data. The results are promising and open the possibility
of implementing this algorithm in other applications. In order to compare the Python
implementation against the Matlab implementation, two experiments were created, and
measures taken are explained in Section 3.2.

1.4 Document organization
This thesis is divided into five chapters as follows:

• Chapter 1 (Introduction) generally outlines the aspects of the work, the problem
statement (1.1), the contribution made (1.3), and the general and specific objectives
(1.2).

• Chapter 2 (Theoretical Background) explains the main idea of dimensionality reduc-
tion (2.2). It presents a taxonomy for DR methods and goes over a review of the
former. It introduces the goal of performing quality assessment in DR techniques
(2.5). It shows different quality assessment techniques, and the framework created
by Lee and Verleysen [7], from which many methods can be obtained.

• Chapter 3 (Methodology and Experimental Setup) It goes through the steps to obtain
the RNX and their respective algorithm (3.1). It describes the databases and the DR
methods used in the experiments, and the taken metrics (3.2).

• Chapter 4 (Results and Discussion) presents the results from the two experiments
and compares the two algorithm implementations along with a comparison between
Kernel approximations and conventional DR methods.

• Chapter 5 (Conclusion) draws the final remarks about the work.

Information Technology Engineer 3 Graduation Project



Chapter 2

Theoretical background

2.1 Introduction
In recent decades, the use of dimension reduction techniques has increased because of
the complexity of analyzing high-dimensional data [9]. Dimensionality reduction allows
eliminating redundant data, noise, reduction of features to improve data processing, iden-
tification of the essential features, and data visualization [4]. The use of dimensionality
reduction also implies a loss of quality, affecting the understanding and meaning of the
data. On the other hand, every DR algorithm is different, leading to a different percentage
of quality loss at the time of the reduction depending on the method.

2.2 Dimensionality reduction
Real-world data such as photographs or sound signals usually present high dimensionality.
For it to be handled efficiently a dimensionality reduction is needed (DR). Dimensionality
reduction refers to the remodeling of high-dimensional data into a lower dimension retaining
the geometry of the data as much as possible. The lower dimensional representation should
have a minimum number of parameters to fulfill the observed properties of the data, this
is called intrinsic dimensionality [10]. Mathematically, the objective of dimensionality
reduction is to embed a data matrix

X = [xi]1≤i≤N : xi ∈ RD, (2.1)

consisting of n datavectors xi with dimensionality D into a new dataset Y with dimen-
sionality d.

Y = [yi]1≤i≤N : yi ∈ Rd, where d < D. (2.2)
Dimensionality reduction can be achieved by:

• Feature Elimination: Some features of the high dimensional data are eliminated to
get the low dimensional representation [11]. [?].

• Feature selection: Here, statistical tests are applied to the features, and then they
are ranked according to their importance. Finally, a subset of features is selected.

4
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The disadvantage is the information loss and its stability as different statistical tests
can throw different importance scores to the features [12].

• Feature extraction: New independent features are created from old dependent fea-
tures. These techniques can be divided into linear and non-linear, and their disad-
vantage depends on the mathematical method applied [13].

Figure 2.1 shows a classification of dimensionality reduction techniques where convex
and non-convex techniques are two major groups. The optimization is different for both
groups; convex techniques focus on the optimization an objective function with no local
optima. On the other hand, non-convex techniques seek the optimization of functions with
a local optima. The remainder of techniques are discussed in the following sections.

2.2.1 Distance preservation
Dimensionality reduction uses the criterion of distance preservation. This ensures that the
data in lower dimensionality representation preserves its geometrical properties. However,
in nonlinear cases, distance is not entirely preserved because we are dealing with manifolds.
A manifold is a generalization of the notion of a curve surface which is closely modeled on
a Euclidean space [14].

Figure 2.1: Dimensionality reduction techniques categories.
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2.2.2 Topology
From a geometrical perspective, the support of the joint distribution of two or more depen-
dent variables does not span the whole space. This dependence produces some structure in
the distribution, in the form of an object in space. The sphere and the Swiss Roll in figure
3.3 represent these objects. Furthermore, as already mentioned, Dimensionality reduction
seeks to give a new representation of these objects while preserving their structure [15].

Topology in mathematics studies the preserved properties in objects between deforma-
tions, twistings, and stretching. Tearing is not allowed because to guarantee the structure
preservation or connectivity of the object. As an example, we can say that topologically,
a circle is equivalent to an ellipsoid. Topology encapsulates the connectivity of objects
ignoring the detail form. If two objects hold the same topological properties, they are said
to be homeomorphic.

These objects are formally called topological spaces. Geometrically, a topological space
is defined using neighborhoods and Haussdorf’s axioms. The neighborhood of a point
y ∈ RD is a set of points inside a D-dimensional hollow space with radius ε > 0 centered
in y. Then, a manifold M is defined as a locally Euclidean topological space. Generally,
a manifold is an object which is nearly ”flat” on small scales. The representation of a
topological object in a specific space RD is called an embedding [16].

2.2.3 Topology preservation
Other DR methods, instead of preserving the distance look for preserving the topology.
Topology preservation techniques are also called local preservation approaches. The dif-
ference from distance preservation techniques is that topological preservation does not
constraint distance conditions leading to better flexibility of subregions that in many cases
require to be locally stretched or shrunk to construct a good embedding.

2.3 Dimensionality reduction convex techniques
Convex techniques pursue the optimization of an objective function without local optima,
which means that the solution space is convex [17]. A great quantity of dimensionality
reduction techniques belongs to this category. The form of the objective function to be
optimized with the solution of an eigenproblem is φ(Y) = YT AY

YT BY (a (generalized) Rayleigh
quotient). It is well known that a function of this form can be optimized by solving
a generalized eigenproblem. Convex dimensionality reduction subdivides into techniques
that perform a full matrix eigendecomposition and techniques that perform sparse matrix
eigendecomposition.

2.3.1 Full spectral techniques
Full spectral dimensionality reduction techniques carry out a full matrix eigendecomposi-
tion (also called spectral decomposition) which gets the covariances between dimensions or
the similarities between data points. These spectral techniques also allow dimensionality

Information Technology Engineer 6 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

reduction in a feature space that is constructed through a kernel function.Six techniques
are discussed in this subsection.

PCA

Principal Component Analysis (PCA) is the most popular linear dimensionality reduction
technique. Many fields have used it since it first appeared, such as biology [18], psychome-
try, geophysics [19], medicine [20], and statistical processes. PCA’s objective is to extract
relevant information from the linear combination of the original data’s characteristics. It
embeds data into a linear subspace of lower dimensionality, which describes as much of the
original data variance as possible. PCA makes this reduction by maximizing the variance of
a linear basis of lower dimension [21, 22]. Mathematically, PCA pursues the maximization
of the cost function given by trace(MT cov(X)M), aiming to find a mapping M. This linear
mapping comprises the d principal eigenvectors of the sample covariance matrix cov(X),
which are also called principal components. Consequently, PCA solves the equation:

cov(X)M = λM, (2.3)

Multidimensional scaling (MDS)

Classical scaling is identical to the most used technique: PCA [23]. The main difference
is that when using PCA, the maximum variance is preserved, whereas when using MDS,
maximum distance is preserved between pairs of low dimensional data points [24]. MDS
can be metric (classical) or non-metric. Both use a matrix distance to characterize the
points according to their similarity or dissimilarity.

The input of classical scaling is a pairwise Euclidean distance matrix D. This matrix
contains the euclidean distances between the points in the high dimensional representation.
Classical scaling finds the mapping M minimizing the cost function:

φ(Y) =
∑
ij

(
d2
ij −

∥∥∥yi − yj
∥∥∥2
)
, (2.4)

where
∥∥∥yi − yj

∥∥∥2
is the Euclidean distance between the points yi and yj, yi in the low

dimensional representation and it is restricted to be xiM, and
∥∥∥mj

∥∥∥2
= 1 ∀j. In order to

minimize the cost function the the eigendecomposition of the Gram matrix K = XXT is
needed. The entries of this matrix can be obtained by computing:

kij = −1
2

d2
ij −

1
n

∑
l

d2
il −

1
n

∑
l

d2
jl + 1

n2

∑
lm

d2
lm

 , (2.5)

this equation is in charge of centering the matrix containing pairwise distances. Next, the
cost function minimization can be obtained with the multiplication between the principal
eigenvectors obtained from the distance matrix and the square root of their corresponding
eigenvalues. Classical scaling is flexible, and it can accept as input scalar products as
well as Euclidean distances. It also presents high memory usage due to the storage of the
Gram matrix N ×N . On the other hand, PCA does not present this inconvenience as the
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covariance matrix is D × D [16]. From the equation are obtained d higher eigenvalues.
Then, In order to obtain the low dimensional representation, the linear basis: Y = XM is
mapped.

Isomap

CMDS has proven to be useful in many applications. However, because it retains pairwise
distances, it does not consider the distribution of the neighboring points, which means
that if data lie in a curvilinear manifold, such as a sphere or swiss roll [25], MDS would
consider two data points as if they were near, whereas their distance over the manifold
is much larger than the typical distance between points. On the other hand, Isomap
is a method that attempts the preservation of pairwise geodesic distances between high
dimensional data points, solving the previously mentioned issue. Geodesic distance refers
to the measured distance between two points over the surface of the manifold. The geodesic
distance between two points can be represented as Sij = φ

(
xi,xj

)
, with φ(·) being the

geodesic distance between xi and xj. For the calculation of the distances, a graph of
neighborhoods G is constructed. In this graph, every datapoint xi is connected with its k
neighbors xij in the high dimensional representation X. Dijkstra’s algorithm can be used
to get the geodesic distance between two data points. With this precious process, a Gram
matrix containing geodesic distances is obtained. Next, Classical scaling is then performed
on this matrix to obtain the low-dimensional representation Y.

Isomap also presents some issues such that it is topologically unstable [26]. It can
construct faulty connections in the neighborhood graph G. Also, if the manifold is not
convex this method is prone to fail. In spite of these issues, Isomap was properly used in
tasks such as intrusion detection and data visualization [27, 28].

KPCA

Kernel PCA deals with linearly inseparable data projected onto a higher dimensional space
where it becomes separable [29, 30]. It computes the principal eigenvectors from a kernel
matrix obtained using a nonlinear mapping function instead, called kernel function, of the
covariance matrix. Applying PCA in the kernel space has the advantage of constructing
nonlinear mappings. The items in the kernel matrix K computed from the data points xi
are defined by:

kij = κ
(
xi,xj

)
, (2.6)

where κ is a kernel function that gives us a positive-semidefinite kernel K. Next, the kernel
matrix K is centered using

kij = −1
2

kij − 1
n

∑
l

kil −
1
n

∑
l

kjl + 1
n2

∑
lm

klm

 , (2.7)

if we look at the traditional PCA, the centering is performed by subtracting the mean of
the columns of features. In a similar way, Kernel PCA center the data by subtracting
the mean of the columns of the kernel function. As a next step, from the kernel matrix d
eigenvectors, are obtained [31] and the eigenvectors of the covariance matrix ai is calculated
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because of the relation:
ai = 1√

λi
vi, (2.8)

as a final step, the original data is projected onto the latter calculated eigenvectors. The
result of the projection of the low dimensional data representation is acquired by

yi =


n∑
j=1

a
(j)
1 κ

(
xj,xi

)
, . . . ,

n∑
j=1

a
(j)
d κ

(
xj,xi

) , (2.9)

in this equation, a(j)
1 represents the jth value in the vector a1 and κ, the kernel function

used for obtaining the kernel matrix.

MVU/Semidefinite embedding

As mentioned before, Kernel PCA performs PCA in a space defined by a kernel function
κ. MVU is a technique that infers the kernel matrix to be used by defining a neighborhood
graph on the data and retaining the pairwise distances in the resulting graph [6]. The
principal difference from Isomap is that the goal of MVU is to unfold the data manifold.
A manifold is a topological space that resembles Euclidean space near each point locally.
It achieves this by maximizing the Euclidean distances between data points under the con-
dition that the distances in the neighborhood don’t have changes. MVU first constructs
the graph of nearest neighbors G where each point is connected to its k nearest neighbors
xij.The constraint that the distance inside the graph G are conserved applied in the max-
imization of the sum of squares of the distances from the high dimensional data points.
Mathematically:

Maximize
∑
ij

∥∥∥yi − yj
∥∥∥2

subject to (1), with:

(1)
∥∥∥yi − yj

∥∥∥2
=
∥∥∥xi − xj

∥∥∥2
for ∀(i, j) ∈ G.

(2.10)

This optimization can be seen as a semidefinite programming problem by defining the
kernel matrix K as the outer product of the low dimensional data representation Y [32].
Next, the kernel matrix is determined, maximizing the trace of (K) subject to the following
equations.

1. kzi + kjj − 2ki,j =
∥∥∥xi − xj

∥∥∥2
for ∀(i, j) ∈ G,

2. ∑ij kij = 0,

3. K � 0, (Semidefinite K)

The solution of this problem is the kernel matrix K which is then passed to Kernel
PCA to obtain the low dimensional representation Y of the data

Diffusion maps

Diffusion maps is a nonlinear spectral method that uses Markov chains to perform a random
walk through the data. Once the finite walk is finished, a measure of proximity between
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data points is obtained [33]. The diffusion distance is defined using this measure, and in
the low dimensional embedding, the diffusion distances are preserved [34]. This method
first constructs a graph of the data where the edges are computed using the Gaussian
kernel function. Then W is normalized such that its rows add up to 1, forming matrix P
with entries:

p
(1)
ij = wij∑

k wik
, (2.11)

p
(1)
ij is considered a Markov matrix that represents the probability of change from one data

point to another in a single timestep. Later, the probability matrix for t steps P (t) is given
by (P (1))t. Then the low dimensional representation Y is given by obtaining d nontrivial
principal eigenvectors of the eigenproblem:

P(t)v = λv. (2.12)

2.3.2 Sparse spectral techniques
Full Spectral Techniques perform a low-dimensional representation of the high dimensional
data to obtain a low dimensional representation using a full matrix eigendecomposition.
On the other hand, the following four techniques discussed in this section solve a sparse
generalized eigenproblem, and all of them focus on keeping the local structure of the data.

LLE

Locally Linear Embedding, as well as Isomap and MVU, constructs a graph of the data
points. The main difference is that LLE seeks to preserve solely local properties of the
data allowing successful embedding of non-convex manifolds [35]. LLE performs adjusted
mapping, which means that it preserves local angles (local scalar product). The local
properties of a point xi in the manifold are expressed as a linear combination wi of its k
nearest neighbors xij. If the geometry of the manifold is preserved in the low dimensional
representation, the weight that reconstructs a point in the high dimensional representation
also reconstruct a point from its neighbors in the low dimensional one. The d-dimensional
representation can be found minimizing the cost function.

φ(Y) =
∑
i

∥∥∥∥∥∥yi −
k∑
j=1

wijyij

∥∥∥∥∥∥
2

subject to
∥∥∥y(k)

∥∥∥2
= 1 ∀k, (2.13)

this minimization can be found by solving the eigenproblem of the inner-product (X −
W)T (X−W), where W is a sparse n× n matrix [35]. if i and j are not connected in the
constructed graph the entries of W are put to zero ; if they do are connected, the value is
set to their corresponding weight.

Laplacian eigenmaps

Laplacian Eigenmaps obtain a low-dimensional representation of high-dimensional data
preserving the local properties of the manifold. In this method, pairwise distances be-
tween the neighbors are the foundation of the local properties [36]. Then, to find the low
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dimensional representation, the distances of a data point and its k nearest neighbors are
minimized. The minimization can be computed using spectral graph theory fundamentals
and a Laplacian graph’s notions. Also, it is defined as an eigenproblem. First, a graph G
is constructed where every data point in the high dimensional representation is connected
to its k nearest neighbors. Then an adjacency matrix W which entries are the weights of
each connection computed using the Gaussian kernel [37]. The cost function is given by

φ(Y) =
∑
ij

∥∥∥yi − yj
∥∥∥2
wij, (2.14)

the minimization can be seen as an eigenproblem by the calculation of the degree diagonal
matrix M which contain the sum rows of W . L = M −W . It can be shown that

φ(Y) =
∑
ij

∥∥∥yi − yj
∥∥∥2
wij = 2YTLY, (2.15)

next, minimizing φ(Y) is equivalent to minimizing YTLY. The low dimensional represen-
tation Y is found by solving the eigenproblem for the d smallest nonzero eigenvalues and
eigenvectors from the following equation.

Lv = λMv, (2.16)

LTSA

Local Tangent Space Analysis (LTSA) describes the local properties of high dimensional
data using each data point’s tangent space [38]. This method assumes local linearity in the
manifold, leading to the existence of a linear mapping between a high-dimensional data
point and its tangent space and the existence of a linear mapping from the corresponding
low dimensional data point to the same local tangent space. This method starts by com-
puting the bases for the local tangent spaces in all data points resulting in a matrix M ,
a mapping from the neighborhoods to the local tangent spaces. As mentioned before, a
mapping between the local tangent space L to the low dimensional representation exists.
Then the following minimization is performed.

Hlm =
∑
i

∑
j

(
(Hi)jl × (Hi)jm

)
(2.17)

2.3.3 Non-convex techniques for dimensionality reduction
The last section reviewed techniques that obtain a low-dimensional representation from a
high-dimensional one by performing the optimization of a convex objective function using
eigendecomposition. On the other hand, in this section we reviewed techniques that used
non-convex functions.

Sammon Mapping

Sammon mapping starts from classical scaling cost function (Equation (2.4)). It modifies
this cost function by calculating the contribution of each (i,j) to the cost function using
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the inverse of their pairwise distance in the high dimensional space [39]. Hence, Local
structure (small pairwise distances) is conserved better than in CMDS . The cost function
for Sammon is given by:

φ(Y) = 1∑
ij dij

∑
i 6=j

(
dij −

∥∥∥yi − yj
∥∥∥)2

dij
, (2.18)

in this equation, dij constitute the Euclidean distances in the high dimensional manifold.
The minimization of this cost function is achieved through a pseudo Newton method [40].

Multilayer autoencoders

Multilayer autoencoders are symmetrical neural networks with an odd number of hidden
layers [41]. Commonly weights are shared between the bottom and upper layers. The
middle hidden layer consists of d nodes and the input and output layer count with D nodes.
Figure 2.2 shows an schema of an autoencoder. The neural network aims to minimize the
mean square error between the network’s input and output layers, which ideally should be
equal. The middle hidden layer results in a d-dimensional representation Y of the high
dimensional data with structure preservation (small pairwise distances preservation). If a
nonlinear mapping is wanted, sigmoid functions are used among the neurons except for the
middle hidden layer, where a linear activation function is used.

Figure 2.2: Diagram of an Autoencoder with three hidden layers.

t-SNE

t-distributed Stochastic Neighbor Embedding is a non-linear dimensionality reduction tech-
nique. It begins by constructing a probability distribution on pairs in higher dimensions
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such that similar objects are assigned a higher probability, and dissimilar objects are as-
signed a lower probability. It minimizes Kullback-Leibler divergence D between two distri-
butions, P and Q, where Q is a t-distribution [1]. Kullback-Leibler divergence is a measure
of the difference between the probability distributions P and Q. The cost function has the
form

Et−SNE(X) =
N∑
n=1

DKL
(
P n‖Qn

)
=

N∑
n,m=1

pnm log pnm
qnm

. (2.19)

2.4 Kernel approximation techniques
In Section 2.3.1, Kernel PCA was mentioned. This method uses a kernel matrix rather a
covariance matrix fot he computing of the principal eigenvectors. The use of a kernel allows
for the generalization of the methods and solving problems that standard PCA and CMDS
present [42]. Unfortunately, it is unclear how the kernel function k should be selected.
MVU (section 2.3.1) tries to resolve this problem by learning a kernel matrix. Another
approach is to pick a kernel function to a specific problem to approximate the existing
methods. To pick a kernel function, it is necessary to define some restrictions [43].

1. The kernel matrix k must be positive definite.

2. The kernel matrix must contain sets of linear constraints on its elements.

3. The mappings between inputs and features are restricted from fully general nonlinear
transformations to the particular class of isometries.

Let us call a nonlinear function φ so that the mapping of sample x can be written as
x→ φ(x) which is called kernel function [44]. This function calculates the dot product of
the images of the samples x under φ. In other words, φ maps the features of the original
data into a larger k-dimensional feature space creating a nonlinear combination of the
original features.

κ
(
xi,xj

)
= φ (xi)φ

(
xj
)T
, (2.20)

this way, kernel functions allow a better representation of the high dimensional data fea-
tures, and proximity measures can be expressed using these functions [45]. Among these
measures, there are positive symmetric properties like the distances Euclidean, Minskowki,
Hamming, Mahalanobis. Also, there are binary similarity measures such as cosine simi-
larity, the Jaccard coefficient, and the Pearson coefficient. Table 2.1 shows some kernel
functions which are reviewed in [45].

2.4.1 LLE kernel
Kernel LLE can be approximated using quadratic forms with a matrix W which recon-
structs observed data and contains linear coefficients that sum to one. The kernel is
represented by [42].

KLLE = λmaxIN −M , (2.21)
in this equation, M is an N×X with λmax as its maximum eigenvalue and M = (IN −W ).
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Kernel Functions
Function Notation
Lineal

〈
yi,yj

〉
Polinomial

〈
yi,yj

〉D
Quadratic 1− ‖yi−yj‖2

‖yi−yj‖2
+σ
, σ ∈ R+

Exponential exp
(
−‖yi−yi‖

2σ2

)
, σ ∈ R+

Gaussian exp
(
−‖yi−yj‖2

2σ2

)
, σ ∈ R+

RBF exp
(
−∑D

i=1 γi (yi − y′i)
β
)
, γi > 0, β ∈ (0, 2]

ANOVA
(

exp
{
−∑D

i=1 γi (yi − y′i)
2
})m

, γi > 0,m ∈ N

hyperbolic tangent kernel tanh
(
a
〈
yi,yj

〉
+ b

)
, a > 0, b > 0

Camberra 1− 1
D

∑D
i=1 γi

|yi−yj|
yi+yj

, γi ∈ (0, 1]

Euclidean 1
D

∑D
i=1 max

{
0, 1− |yi−yj|

γi

}
, γi > 0

Table 2.1: Kernel functions in RD.

2.4.2 Isomap kernel
In Isomap, the geodesic distance can be represented as a kernel [46]. The kernel has the
form

K = −1
2HD

2H, (2.22)

where D2 is the geodesic distance matrix and H the centering matrix, which is given by

H = In −
1
N
eNe

T
N , where eN = [1 . . . 1]T ∈ RN , (2.23)

2.4.3 LE kernel
the kernel representation for LE is the pseudoinverse of the Laplacian graph L = M − w
as seen in section 2.3.2.

2.5 Data representation quality
The existence of many dimensionality reduction algorithms opens the question of their
quality assessment. Most of these mathods evaluate local neighborhood preservation and
the geometric structure preserved after the reduction. In this section, we present some of
the most used approaches.
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2.5.1 Spearman’s rho siegel
Spearman’s Rho Siegel was one of the first topology preservation estimation measures
after a dimensionality reduction technique called Spearman’s rho [47]. It assesses how
well the dimensionality reduction preserves the order of the pairwise distances in the high
dimensional space. For this measure, the following equation is used

SR = 1− 6∑T
i=1(z(i)− ẑ(i))2

T 3 − T
, (2.24)

where z(i) are the pairwise distances of the high dimensional data space in ascending order.
T represents the total number of distances to be compared. This measure vary between
the values [-1, 1] where 1 means perfect preservation.

2.5.2 Topological product
The following technique aims to get the quality of the low dimensional representation of self-
organized maps [48]. It is a measure of distance preservation among local neighborhoods.
This method is based on two distances Q1, the distance between point xi to the jth nearest
neighbor in the high dimensional data and Q1 and Q2 with the analogous information in
the low dimensional representation. These two measures are combined giving.

TPr = 1
n(n− 1)

n∑
g=1

n−1∑
f=1

log
(
Πf
p=1Q1(g, p)Q2(g, p)

) 1
2f (2.25)

where if TPr it is equal to zero means a perfectly order preserving map.

2.5.3 Konig’s measure.
It is a measure that focuses on maps formed using self-organizing neural networks. Konig
KM measures local preservation in self-organizing neural networks [49]. It analyses the
rank order in the high and low dimensional spaces, and it is calculated with

KM = 1
3k1n

n∑
i=1

k1∑
j=1

KMij, (2.26)

where, if the result of this equation is one means perfect preservation of small distances.
The topology is represented with KMij and k1 is the neighborhood value.

2.5.4 Trustworthiness and continuity
Trustworthiness measures the degree of data points initially far entering a neighborhood,
and continuity measures the degree of points that are initially in a neighborhood were push
away from it [50]. This method (T&C)exchanges indices of neighbors in high dimensional
data and low dimensional data. The equations for trustworthiness and continuity are given
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by the formulas.

MT = 1− 2
nk(2n−3k−1)

n∑
i=1

∑
j∈Uk(i)/∈Vk(i)

(r(i, j)− k),

MC = 1− 2
nk(2n−3k−1)

n∑
i=1

∑
j∈Vk(i)/∈Uk(i)

(r̂(i, j)− k).
(2.27)

Here, k represents the size of the neighborhood, r(i, j) the high dimensional data ranks,
and r̂ the lower-dimensional data ranks. Then MT and MC are combined in the equation

QT = αMT + (1− α)MC , (2.28)

the result is in the interval (0, 1) and higher values mean good preservation of trustworthi-
ness and continuity.

2.5.5 Local continuity meta-criterion
Local continuity meta-criterion also refered as LCMC checks the degree of overlap between
the neighboring sets of a data sample and their corresponding low dimensional represen-
tation [51]. The equation for this method is

ULC = 1− 1
nk

n∑
i=1

∣∣∣Ψχ
k(i)

⋂
Ψy
k(i)

∣∣∣− k2

n− 1 , (2.29)

where k is the number of neighbors, Ψχ
k(i) is the index set of k points in the high dimension

and Ψy
k(i) the index st of points in the lower dimension. The resultant values of ULC are in

the interval [0,1]. The values close to 1 mean high neighborhood overlap, and values close
to 0 low means low neighborhood overlap.

2.5.6 mean relative rank errors
Mean Relative Rank Errors (MRRE) is a quality assessment method based on ranks of
pairwise Euclidean distances among local neighborhoods, developed by Lee and Verleysen
[7, 16]. The present method is similar to Truswortines and Continuity method, and it also
has two components defined as

WT = 1− 1
Hk

n∑
i=1

∑
j∈Uk(i)

|r(i, j)− r̂(i, j)|
r(i, j) , (2.30)

WC = 1− 1
Hk

n∑
i=1

∑
j∈Vk(i)

|r(i, j)− r̂(i, j)|
r̂(i, j) , (2.31)

as in other methods, k represents the size of the neighborhood. Hk is a normalizing factor
given by equation 2.32 and MRRE is given by QM n[0, 1] (equation 2.33)where values near
to 0 show small rank error in the lower dimensional representation

Hk = n
k∑
i=1

|n− 2i+ 1|
i

, (2.32)

QM = βWT + (1− β)WC . (2.33)
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2.5.7 Co-ranking matrix
Given a high dimensional data X and its low dimensional representation Y calculate the
dissimilarity matrix for both (DX and DY respectively). The symbol δij indicate the
distance from xi to xj in the high-dimensional space and dij represents the distance from
yi to yj in the low dimensional space. It is assumed that δij = δji and dij = dji, however this
conjecture does not always holds true. For example, when δij and δji come from different
experimental measures. Also, there is no assumption as to the metrics associated with the
high and low dimensional spaces that can differ.

Starting from distances ranks are computed. In the high-dimensional space, the rank
of xi relative to xj is represented as

ρij = |δik < δij or (δik = δij and k < j)|, (2.34)

where |.| stands for the cardinality of the set. The same way in the low-dimensional space,
the rank of xi respect to xj is

rij = |dik < dij or (dik = dij and k < j)|, (2.35)

consequently, reflexive ranks are zero ρii = rii = 0 and ranks are unique, for example
ρij 6= ρik for k 6= j, even if δij = δik

Having the rank matrices we calculate the co-ranking matrix Q. Computing this ma-
trix demand 2N sorting operations resulting on a time complexity of O(N2) with a typical
sorting algorithm [7]. Errors of a DR mapping correspond to elements that are not in the
diagonal of this matrix. A point j where ρij > rij represent a intrusion and ρij < is an
extrusion. The co-ranking matrix is defined by:

Q = [qkl]16k,l6N−1 with qkl =|
{

(i, j) : ρij = k and rij = l
}
|, (2.36)

the errors after the dimensional reduction process are contained in the non-diagonal entries
of the co-ranking matrix Q. This matrix is a histogram of the combinations of the ranks.
The co-ranking matrix can also be exhibited as a Shepard diagram [52], and with this
viewpoint, it suggested that the essential criteria should concentrate in the entries of the
upper triangle matrix and lower triangle matrix of the co-ranking matrix Q. Then, we
define the rank errors as the difference ρij − rij. An intrusion is defined as a set of points
entering a neighborhood nKi erroneously with respect to the original neighborhood vKi and
extrusion refers to sets of points leaving the neighborhood nKi erroneously [7]. As the focus
is on K-ary neighborhoods, K-intrusion is defined as two events happening simultaneously:
an extrusion with rij < K and K-extrusion: an intrusion with ρij < K. Furthermore,
mild and hard K-intrusions are defined. The former refers when rij < ρij ≤ K and the
latter rij ≤ K < ρij. The co-ranking matrix is divided into four blocks separating the
first K rows and columns to associate intrusions and extrusions. If FK = {1, . . . , K} and
LK = {K + 1, . . . , N − 1} are defined, upper-left, upper-right, lower-left and lower-right
index sets blocks are

ULK = FK × FKURK = FK × LK ,
LLK = LK × FKLRK = LK × LK .

(2.37)

Again, The upper left block can be divided into its main diagonal and lowe and upper
triangles:

DK = {(i, i) : 1 6 i 6 K}, (2.38)
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LTK = {(i, j) : 1 < i 6 K and j < i}, (2.39)
UTK = {(i, j) : 1 6 i < K and j > i}, (2.40)

taking into account the mentioned division, The lower and upper trapezes represent K-
intrusions and K-extrusions, respectively. Hard K-intrusions and K-extrusions are found
in the blocks LLK and URK , and mild K-intrusions and K-extrusions in LTK and UTK .
Previously mentioned quality measures based on ranks can be defined in terms of the
co-ranking matrix. Then T&C from subsection 2.5.4 is redefined as

MT = 1− 2
GK

∑
(k,l)∈IK

(k −K)qkl, (2.41)

MC = 1− 2
GK

∑
(k,l)∈URK

(l −K)qkl, (2.42)

the MRRE from subsection 2.5.6 which also rely on the same principle as T&C.

WT = W v,w
N (K) = 1

CK

∑
(k,l)∈LTK∪LLK

(k − l)v
kw

qkl, (2.43)

WC = W v,w
X (K) = 1

CK

∑
(k,I)∈UTK∪URK

(l − k)v
lw

qkl, (2.44)

the difference between MRRE and T&C are the weighting of elements of qkl and the blocks
of Q covered. MRRE covers the first K rows and columns of Q. Thus, the first error
involves all K-intrusions and the mild K-extrusions and the second conveys K-extrusions
and the mild K-intrusions. Another method that can be defines in terms of the co-ranking
matrix is LCMC (subsection 2.5.5) such as

ULC = K

1−N + 1
NK

∑
(k,l)∈ULK

qkl, (2.45)

this method is computed over the block ULK from Q which elements are not weighted and
the normalization is simpler. The unified framework defined by Lee and Verleysen relates
the co-ranking matrix with the concepts of precision and recall [53] which is also related
with false positive and false negative classification [7]. In order to define QNX and RNX

this framework defines fractions of mild K-intrusions and mild K-extrusions as

UN(K) = 1
KN

∑
(k,l)∈LTK

qkl and UX(K) = 1
KN

∑
(k,l)∈UTK

qkl, (2.46)

and the fraction of vectors that keep the same rank in both neighborhoods vKi and nKi as

UP(K) = 1
KN

∑
(k,l)∈DK

qkl, (2.47)

with all the previous definitions QNX can be defined. It is ULC with the difference that
QNX do not have the subtraction of the ’random baseline’. The range is QNX ∈ [0, 1] where
1 means perfect embedding. in terms of the coranking matrix and ULC , QNX is defined as:

QNX(K) = UP(K) + UN(K) + UX(K) = ULC(K) + K

N − 1 (2.48)
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Figure 2.3: Co-ranking Matrix.

RNX can be viewed as a renormalized ULC which allows comparing values at different scales
[54]. As other measures RNX range is [0, 1] where 1 represents perfect embedding. RNX

renormalization is given by

RNX(K) = (N − 1)QNX(K)−K
N − 1−K . (2.49)
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Chapter 3

Methodology

Dimensionality reduction focus on providing low-dimensional representations of high-dimen-
sional data sets, and the proposed method looks for the quality assessment of this low
dimensionality representation using the RNX curve based on the co-ranking matrix. In
short, the low dimensional representation of high dimensional data is calculated. From
this, we cal calculate the co-ranking matrix, which framework contains the RNS curve
quality assessment.

3.1 Method flowchart

Figure 3.1: Proposed RNX curve flowchart. It contains the steps for obtaining RNX curve
from a high dimensional and low dimensional matrix.
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3.1.1 Data matrix and dimensionality reduction
The data sets X used in this work are specified in section 3.2. We first proceed to per-
form a dimensionality reduction from each data set using the methods Locally Linear
Embedding, Laplacian eigenmaps, Multidimensional Scaling, and Kernel Locally linear
embedding. Once we have the low-dimensional representation Y of the high-dimensional
data set X lets feed the algorithm with both matrices.

3.1.2 Distance matrix calculation
At this point, we count with a high dimensional matrix and a low dimensional matrix.
From here, we get the pairwise distances matrix DX and DY . Then, the indices that would
sort these matrices are obtained as matrices DXs and DY s.

3.1.3 Ranking matrices calculation
From DXs and DY s, using equations 2.34 and 2.35 respectively we proceed to calculate the
ranking matrices RX and RY . The implemented algorithm is the following

1 input : Dys , Dxs
2 ldrank [ Rows , Cols ]
3 hdrank [ Rows , Cols ]
4

5 For j =1:Rows
6 For i =1: Cols
7 ldrank [ Dys [ i , j ] , j ]= i
8 hdrank [ Dxs [ i , j ] , j ]= i
9 output : ldrank , hdprank

Where ldrank (RY ) and hdrank (RX) are the low dimensional rank matrix and high di-
mensional rank matrix, respectively.

3.1.4 Co-ranking matrix
Using RX and RY we proceed to calculate the co-ranking matrix following the equation
2.36. Translated to an algorithm we have

1 input : ldrank , hdrank
2 For j =1:Rows
3 For i =1: Cols
4 k = hdrank [ i , j ]
5 l = ldrank [ i , j ]
6 c [ k , l ] = c [ k , l ]+1
7 Remove f i r s t row and column from c
8 output : c
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3.1.5 Intrusions and extrusions
With the co-ranking matrix we can calculate QNX(K). But, before calculating QNX(K)
we need to calculate the intrusions and extrusions. In this algorithm, we take into account
the mild K-intrusions UN and mild K-extrusions UK with the equations 2.46, the fraction
vector UP from equation 2.47 and the ’random baseline’ The algorithm is as follows:

1 input : c
2 v1 [ Rows+1]
3 v2 [ Rows+1]
4 For i =1:Rows+1
5 v2=v1 [ i ] ∗Rows+1
6

7 For k=1:Rows
8 n [ k]=sum [ c [ k , 0 : k ] ]
9 x [ k]=sum [ c [ 0 : k , k ] ]

10

11 n = accumulativesum (n) /v2
12 x = accumulativesum ( x ) /v2
13

14 d=diagonal f rom ( c )
15 p=accumulativesum ( c )
16

17 b=v1/ (1 /Rows)
18 output : n , x , p , b

Where c is the co-ranking matrix and n, x, p, b are UN , UX , UP , ’random baseline’ respec-
tively. Figure 3.2 shows from a graphical manner the types of intrusions and extrusions
calculated in this algorithm [7].

3.1.6 QNX
With the outputs from the last algorithm we can calculate QNX as qnx = n+x+p following
the equation 2.48.

3.1.7 RNX
The normalization of QNX to obtain RNX is given by equation 2.49 and the respective
algorithm implementation is

1 input : qnx
2 lcmc = qnx − b
3 tmp = 1 − b
4 rnx = lcmc/tmp
5 output : rnx
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Figure 3.2: Different types of intrusions and extrusions.

With the rnx vector we can draw the RNX(K). Fort he graph we multiply the values from
rnxby 100 in order to get a percentage representation. From this vector we can obtain the
area under the curve with the following algorithm

1 input : rnx
2 wgh = 1/ [ 1 . . . l en ( rnx ) ]
3 s = sum(wgh)
4 wgh = wgh/ s
5 rnx auc = wgh . rnx
6 output : rnx auc

where rnx auc is the area under the curve of RNX and it is also multiplied by 100 in the
graphs shown.

3.2 Experimental setup
This section aims at evaluating through experimentation the validity of the RNX curve
developed in python. For this purpose, four data sets are employed (section 3.2.1), and
two experiments are set. The first experiment compares the two versions of the RNX curve:
the recently created Python implementation against the original developed in Matlab. For
this first experiment, seven DR techniques were applied to each data set using the two
implementations. On the other hand, the second experiment is designed to evaluate the
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kernel approximation quality using the python implementation. Here three DR methods
were used along with their Kernel trick implementation.

3.2.1 Databases
The experiments involve four data sets. The first one contains 1000 uniformly sampled
points from the surface of a sphere. Here, the colors are constant along the longitudes
of the spherical shell. The second data set includes 1000 uniformly distributed sampled
points from the surface of a Swiss-roll. The Columbia Object Image Library (COIL-20) is
the third data set [55]. It consists of 72 gray-level normalized images of 20 various objects.
Each one represents a 4-degree rotation around every object. Some of these images can
be seen in Fig. 3.3 The fourth data set is a random subset of the MNIST database of
handwritten digits [56]. It contains 1000 gray-level images of scanned handwritten digits
(out of 60 000). Each 28 by 28 image is vectorized in order to be fed to various NLDR
algorithms without any other preprocessing.

3.2.2 Python implementation vs MAT-LAB implementation
This first experiment compares the RNX quality curves obtained with Matlab against the
Python implementation ones. For this purpose, we use the data sets described before in
section 3.2.1 and seven DR methods: LLE, Isomap, MDS, PCA, LE, and t-SNE. Every
method is applied to each data set. Each of the low-dimensional representations Y was put
in a file alongside its original representation X. Next, we proceeded to read the files with
Matlab and Python so that their respective RNX implementation can process the matrices.
Both implementations output a vector containing the curve to be drawn and the area under
it. This vector and area under the curve are again saved in files and drawn in pairs (Matlab
and Python implementation) for a better graphical comparison of both implementations.
With the resulting vectors, the mean squared error between them is calculated, and if the
Python implementation is correct, the mean square error should approximate to zero. A
flowchart of the procedure is presented in Fig 3.4.

3.2.3 Evaluating kernel approximation
A conventional spectral DR method transforms high-dimensional data into a low-dimensional
representation. The Kernel approximation of these methods performs the same task with
similar results. In this experiment, three spectral DR methods alongside their Kernel ap-
proximations are used: Locally Linear Embedding, Laplacian eigenmaps, and Isomap. The
latter mentioned should perform (approximate) the RNX curve obtained with the conven-
tional methods. Every conventional method and its kernel approximation are applied to
each of the last used data sets. Then, both results are drawn in one figure to visualize
the similarity. Fig. 3.5 shows a flowchart of this experiment. The number of figures ob-
tained from this experiment is twelve, each with two RNX curves, one representing the
conventional method and the other the kernel approximation of that particular method.
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Figure 3.3: The four data sets used in the experiments are the spherical shell, the COIL-20
image bank, the Swiss Roll, and a random subset of the MNIST image bank. The COIL-20
and MNIST images are just vectorized before dimensionality reduction. In all four cases,
a two-dimensional embedding is sought.
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Figure 3.4: Methodology for comparing the Matlab implementation against Python imple-
mentation.

Figure 3.5: Methodology for comparing the Kernel methods KLE, KLLE, and KIsomap
with their respective conventional method.
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Chapter 4

Results and Discussion

4.1 Implementation comparison results
In this section, we present the results from experiment 1. Here, we compare the RNX curve
implementation developed in this work against the preexisting Matlab implementation.
This experiment validates the functioning of the Python RNX quality curve module by
creating the quality curve for different DR methods in Python and Matlab, using four
different datasets with six different DR methods. Figures ??, 4.2, 4.3, 4.4,represent the
RNX quality curves for different DR methods,drawn with the Matlab Implementation and
the Python implementation, from the databases Coil-20, MNIST, Sphere, and Swiss Roll
respectively. Graphically, an overlap on the curves is observed, which tells us that the
Python implementation works like the Matlab implementation.

Another essential factor of this experiment is that it visually compares different DR
methods using the RNX curve, which evaluates the topology preservation of the low di-
mensional representations. If the curve shows asymmetric forms to the right, it means
global topology preservation and if the curve is asymmetric to the left means local topol-
ogy reservation. Section 2.3 mention convex DR techniques, which optimize an objective
function without local optima. Similarly, section 2.3.3 talks about non-convex techniques
which do contain local optima.

This experiment shows the non-local approach and the local approaches in the convex
and non-convex techniques; this is achieved through the RNX curve. Used techniques:
Isomap, Le, LLE, MDS, and PCA are classified as convex techniques. Using the Coil-20
database, all of these techniques present a curve to the right, which points out global
topology preservation. On the other hand, t-SNE is classified as a non-convex technique,
and all figures from this experiment show an asymmetric curve to the left for this method
in all databases which means local topology preservation. All the figures show an overlap
in the Python and Matlab Implementation, but a better validation is constructed by mea-
suring the mean squared error between the Matlab implementation vector and the Python
implementation. Table 4.1 shows the AUC from Matlab and Python’s curve and the mean
square error for each DR method used with every dataset. As observed in this table, the
AUCs for both methods are in most of the cases the same, and the mean squared error is
practically zero. Thus, we have a better validation of the Python implementation.
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captionRNX quality curve comparison between Matlab and Python using the Coil-20
database

4.2 Evaluating kernel approximation results
This section presents the results for experiment 2. As we saw in section 2.4, the spectral
DR methods can be represented with kernel matrices allowing KPCA to perform a qual-
ity reduction that approximates the traditional method. This experiment validates the
functioning of the Python RNX quality curve module by performing a graphical valida-
tion of kernel matrices as DR approximations from conventional spectral methods. Thus,
the representation quality curve between the traditional method and the kernel method is
approximately the same.

As shown in this experiment’s results, the kernel approximations KLLE, KLE, and
KIsomap present an almost equal quality curve compared to their equivalent conventional
method. Figures 4.5, 4.6, 4.7, 4.8 present the RNX quality curve comparison of DR con-
ventional methods and their corresponding kernel representation for the databases coil20,
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Figure 4.2: RNX quality curve comparison between Matlab and Python using the MNIST
database

MNIST, Sphere, and Swiss Roll, respectively. It is seen that both methods, kernel and
conventional, generate a good representation of the databases, except for the KIsomap,
where the curve does not approximate to the traditional method. The figures also show
the area under the curve for each method. Areas from LE and LLE are very similar to the
area from KLE and KLLE, respectively.

As observed from the results, the kernel matrix presents a good approximation for the
traditional DR methods LE and LLE. This is seen from the point of view of the quality
curve and its area under the curve. Except for Isomap, the kernel quality curve with their
area under the curve approximated very accurately to the traditional method’s curve.
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Figure 4.3: RNX quality curve comparison between Matlab and Python using the Sphere
database.
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Figure 4.4: RNX quality curve comparison between Matlab and Python using the Swiss
Roll database.
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Dataset DR method AUC Matlab AUC Python RNX mse
Coil20 LE 0.321 0.318 0.004621
Coil20 PCA 0.398 0.398 9.08E-15
Coil20 t-SNE 0.46 0.46 1.66E-13
Coil20 LLE 0.18 0.18 2.90E-15
Coil20 MDS 0.344 0.344 2.13E-14
Coil20 Isomap 0.376 0.376 5.84E-30
MNIST LE 0.173 0.173 5.42E-13
MNIST PCA 0.169 0.169 5.08E-13
MNIST t-SNE 0.466 0.466 5.93E-13
MNIST LLE 0.103 0.103 3.82E-12
MNIST MDS 0.109 0.109 5.61E-13
MNIST Isomap 0.198 0.198 3.63E-12
Swiss LE 0.352 0.352 6.77E-32
Swiss PCA 0.638 0.638 2.36E-33
Swiss t-SNE 0.787 0.787 4.04E-13
Swiss LLE 0.467 0.467 8.71E-32
Swiss MDS 0.607 0.607 1.08E-32
Swiss Isomap 0.641 0.641 1.35E-32
Sphere LE 0.479 0.478 1.32E-08
Sphere PCA 0.492 0.492 1.19E-31
Sphere t-SNE 0.728 0.728 2.03E-13
Sphere LLE 0.487 0.487 1.25E-31
Sphere MDS 0.525 0.525 1.14E-31
Sphere Isomap 0.495 0.495 1.19E-31

Table 4.1: AUC comparison from the Matlab and Python implementation, and their cor-
responding RNX mean squared error.
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Figure 4.5: RNX curve comparison from each DR spectral method and their respective
kernel approximation, applied to Coil-20 database
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Figure 4.6: RNX curve comparison from each DR spectral method and their respective
kernel approximation, applied to MNIST database.
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Figure 4.7: RNX curve comparison from each DR spectral method and their respective
kernel approximation, applied to Sphere database.
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Figure 4.8: RNX curve comparison from each DR spectral method and their respective
kernel approximation, applied to Swiss Roll database.
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Chapter 5

Conclusions

Many DR approaches seek topology preservation. These methods can be divided into
convex and non-convex techniques. The former optimizes an equation that does not contain
a local optima, and the latter optimizes equations that do contain local optima. Inside
convex techniques, we have the subdivision of full spectral, which carries out a full matrix
eigen-decomposition, and sparse spectral techniques that solve a generalized eigenproblem.
Both methods obtain the covariances between dimensions or similarities between data
points.

This work validates the Python RNX curve implementation, comparing it with the
Matlab existing one. Data sets Coil-20, MNIST, Sphere, and Swiss Roll along different
DR methods were chosen for this validation. The methods Isomap, LE, LLE, MDS, PCA,
and t-SNE were applied to each data set using Python, and compared with the curve
from the Matlab implementation. Both methods perform similarly, and results are equiv-
alent graphically, as well numerically. This test also allows us to appreciate the difference
between different methods. Consequently, convex methods showed a curve to the right,
meaning non-local optima, and t-SNE, which is not convex, showed a curve to the left,
meaning local optima.

This work has mentioned Isomap, LLE, and LE, which are methods based on graphs
that perform an eigendecomposition of a Laplacian matrix. These methods can be repre-
sented through a kernel matrix and KPCA. Using the developed Python implementation,
a comparison between conventional methods and kernel methods was conducted, showing
that in LLE and LE, the Kernel approximation is almost equivalent to the conventional
method.

As the existing implementation was written in Matlab, it was limited for future devel-
opment, and cannot be implemented in other technologies. With our new implementation
developed in Python, we overcome that challenge. The proposed implementation can be
further integrated into new frameworks of dimensionality reduction and quality assess-
ment.
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5.1 Appendix 1

5.1.1 Python implementation of RNX curve
For the full featured nxcurve Python package you can visit the webpage
https://pypi.org/project/nxcurve/.
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