

UNIVERSIDAD DE INVESTIGACIÓN DE TECNOLOGÍA

EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

ARTIFICIAL INTELLIGENCE BASED POSITION

LOCATOR USING ULTRASONIC SENSORS

Trabajo de integración curricular presentado como requisito para la

obtención de título como Ingeniero en Tecnologías de la Información

Autor:

Jordan Rodrigo Montenegro Cárdenas

Tutor:

Oscar Chang, PhD

Urcuquí, septiembre, 2021

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Urcuquí, 2 de agosto de 2021
SECRETARÍA GENERAL

(Vicerrectorado Académico/Cancillería)
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES

CARRERA DE TECNOLOGÍAS DE LA INFORMACIÓN
ACTA DE DEFENSA No. UITEY-ITE-2021-00025-AD

A los 2 días del mes de agosto de 2021, a las 09:00 horas, de manera virtual mediante videoconferencia, y ante el Tribunal
Calificador, integrado por los docentes:

Presidente Tribunal de Defensa Dr. IZA PAREDES, CRISTHIAN RENE , Ph.D.

Miembro No Tutor Mgs. COLMENARES PACHECO, GUSTAVO ADOLFO

Tutor Dr. CHANG TORTOLERO, OSCAR GUILLERMO , Ph.D.

El(la) señor(ita) estudiante MONTENEGRO CARDENAS, JORDAN RODRIGO, con cédula de identidad No. 0402041131, de
la ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES, de la Carrera de TECNOLOGÍAS DE LA INFORMACIÓN
, aprobada por el Consejo de Educación Superior (CES), mediante Resolución RPC-SO-43-No.496-2014, realiza a través de
videoconferencia, la sustentación de su trabajo de titulación denominado: Artificial inteligence based position locator using
ultrasonic sensor. , previa a la obtención del título de INGENIERO/A EN TECNOLOGÍAS DE LA INFORMACIÓN.

El citado trabajo de titulación, fue debidamente aprobado por el(los) docente(s):

Tutor Dr. CHANG TORTOLERO, OSCAR GUILLERMO , Ph.D.

Y recibió las observaciones de los otros miembros del Tribunal Calificador, las mismas que han sido incorporadas por el(la)
estudiante.

Previamente cumplidos los requisitos legales y reglamentarios, el trabajo de titulación fue sustentado por el(la) estudiante y
examinado por los miembros del Tribunal Calificador. Escuchada la sustentación del trabajo de titulación a través de
videoconferencia, que integró la exposición de el(la) estudiante sobre el contenido de la misma y las preguntas formuladas
por los miembros del Tribunal, se califica la sustentación del trabajo de titulación con las siguientes calificaciones:

Tipo Docente Calificación
Miembro Tribunal De Defensa Mgs. COLMENARES PACHECO, GUSTAVO

ADOLFO
10,0

Tutor Dr. CHANG TORTOLERO, OSCAR GUILLERMO ,
Ph.D.

10,0

Presidente Tribunal De Defensa Dr. IZA PAREDES, CRISTHIAN RENE , Ph.D. 10,0

Lo que da un promedio de: 10 (Diez punto Cero), sobre 10 (diez), equivalente a: APROBADO

Para constancia de lo actuado, firman los miembros del Tribunal Calificador, el/la estudiante y el/la secretario ad-hoc.

MONTENEGRO CARDENAS, JORDAN RODRIGO
Estudiante

Dr. IZA PAREDES, CRISTHIAN RENE , Ph.D.
Presidente Tribunal de Defensa

Dr. CHANG TORTOLERO, OSCAR GUILLERMO , Ph.D.
Tutor

Firmado electrónicamente por:

OSCAR GUILLERMO
CHANG TORTOLERO

Firmado electrónicamente por:

CRISTHIAN
RENE IZA
PAREDES

GUSTAVO ADOLFO
COLMENARES
PACHECO

Digitally signed by GUSTAVO ADOLFO
COLMENARES PACHECO
DN: cn=GUSTAVO ADOLFO COLMENARES
PACHECO c=EC l=QUITO o=BANCO CENTRAL
DEL ECUADOR ou=ENTIDAD DE
CERTIFICACION DE INFORMACION-ECIBCE
Reason: I am the author of this document
Location:
Date: 2021-08-16 14:04-05:00

JORDAN RODRIGO
MONTENEGRO
CARDENAS

Firmado digitalmente por
JORDAN RODRIGO
MONTENEGRO CARDENAS
Fecha: 2021.08.16 16:23:38
-05'00'

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Mgs. COLMENARES PACHECO, GUSTAVO ADOLFO
Miembro No Tutor

MEDINA BRITO, DAYSY MARGARITA
Secretario Ad-hoc

DAYSY MARGARITA
MEDINA BRITO

Firmado digitalmente por DAYSY
MARGARITA MEDINA BRITO
Fecha: 2021.08.03 16:18:29 -05'00'

GUSTAVO
ADOLFO
COLMENARE
S PACHECO

Digitally signed by GUSTAVO ADOLFO
COLMENARES PACHECO
DN: cn=GUSTAVO ADOLFO
COLMENARES PACHECO c=EC
l=QUITO o=BANCO CENTRAL DEL
ECUADOR ou=ENTIDAD DE
CERTIFICACION DE
INFORMACION-ECIBCE
Reason: I am the author of this document
Location:
Date: 2021-08-16 14:05-05:00

Autoŕıa

Yo, Jordan Rodrigo Montenegro Cárdenas, con cédula de identidad 0402041131,
declaro que las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, defini-
ciones y conceptualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos
y herramientas utilizadas en la investigación, son de absoluta responsabilidad de el autor
del trabajo de integración curricular. Aśı mismo, me acojo a los reglamentos internos de
la Universidad de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, septiembre del 2021.

Jordan Montenegro
CI: 0402041131

JORDAN RODRIGO
MONTENEGRO
CARDENAS

Firmado digitalmente por
JORDAN RODRIGO
MONTENEGRO CARDENAS
Fecha: 2021.09.22 15:03:19
-05'00'

Autorización de publicación

Yo, Jordan Rodrigo Montenegro Cárdenas, con cédula de identidad 0402041131,
cedo a la Universidad de Tecnoloǵıa Experimental Yachay, los derechos de publicación de la
presente obra, sin que deba haber un reconocimiento económico por este concepto. Declaro
además que el texto del presente trabajo de titulación no podrá ser cedido a ninguna em-
presa editorial para su publicación u otros fines, sin contar previamente con la autorización
escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este tra-
bajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto en el
Art. 144 de la Ley Orgánica de Educación Superior.

Urcuqúı, septiembre del 2021.

Jordan Montenegro
CI: 0402041131

JORDAN RODRIGO
MONTENEGRO
CARDENAS

Firmado digitalmente por JORDAN
RODRIGO MONTENEGRO
CARDENAS
Fecha: 2021.09.22 15:03:59 -05'00'

Dedication

“To my parents: Rodrigo and Carmen
They made me what I am”

Jordan Montenegro Cárdenas

Acknowledgments

To Oscar Chang, who have been my professor and guide in this work. His support and
knowledge have been invaluables in my academic formation.

To my family, without their support this job would not have been possible. They gave me
the motivation to continue when the path was hard.

To my friends and housemates, who were my second family during my university stage and
with who I shared unforgettable moments.

Jordan Montenegro Cárdenas

Resumen

Este trabajo consiste en la implementación de un localizador de posición basado en in-
teligencia artificial que utiliza Sensores Ultrasónicos y está integrado en la estructura de
un pequeño robot móvil. El sistema incluye una computadora Arduino y un agente neu-
ronal artificial auto motivado capaz de aprender por śı mismo cómo mover el robot de
manera segura, en un ambiente del mundo real con obstáculos dispersos. La plataforma
robótica consta de bateŕıas, sensores ultrasónicos, motores, ruedas, etc. y está sujeta al
ruido mecánico causado por la inercia de los motores, la fricción de desplazamiento de las
ruedas y la imprecisión de los sensores. Un agente de aprendizaje por refuerzo impulsa al
robot en su fase de aprendizaje y extrae conocimientos sobre cómo moverse en una situación
del mundo real. Durante la fase de aprendizaje, el conocimiento se almacena en una red
neuronal local entrenable que se ejecuta en tiempo real en la placa de la computadora Ar-
duino local y aprende la poĺıtica requerida para mover el robot. Esta red está equilibrada
y entrenada para satisfacer la condición de avance requerida por un robot de movimiento
libre. Durante la fase de operación, el robot utiliza la poĺıtica aprendida almacenada en la
red neuronal y se comporta como un proceso de decisión de Markov.

Palabras Clave: Robot, Auto aprendizaje, Evasión de obstáculos.

Abstract

This job consists in the implementation of an Artificial Intelligence Based Position Locator
that use Ultrasonic Sensors and is integrated in the structure of a small mobile robotic car.
The system includes an Arduino computer and a self-motivated artificial neural agent
capable to learn by itself how to move the robot safely around, in a real world platform
with scattered obstacles. The robotic platform comprises batteries, ultrasonic sensors,
motors, wheels etc. and is subjected to mechanical ambient noise cause by the motors
inertia, wheels’ displacement friction and sensors imprecision. A reinforcement learning
(RL) agent drives the robot in its learning phase and extract knowledge about how to move
in a real world situation. During the learning phase, knowledge is stored in a trainable
local neural network that runs in real time in the local Arduino computer board and learns
the policy required to move the robot. This net is balanced trained as to satisfy the move
ahead condition required by the a free moving robot. During the operation phase, the
robot uses the learned policy stored in the neural net and behaves as a Markov decision
process.

Keywords: Robot, Self-taught, Obstacle avoidance.

Contents

Contents i

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2
1.3 Objectives . 2

1.3.1 General Objective . 2
1.3.2 Specific Objectives . 2

2 Theoretical Framework 5
2.1 Arduino Platform . 5

2.1.1 Arduino Mega 2560 . 5
2.2 Ultrasonic Ranging Module HC - SR04 . 6
2.3 H-Bridge L293B . 7
2.4 DC Motor . 8
2.5 Artificial intelligence algorithms . 9

2.5.1 Supervised learning . 9
2.5.2 Unsupervised learning . 9
2.5.3 Reinforcement learning . 9

2.6 Artificial neural networks . 9
2.6.1 Activation Functions . 10
2.6.2 Backpropagation algorithm . 11
2.6.3 Epochs . 14
2.6.4 Training Styles . 14
2.6.5 Issues with ANN . 14

2.7 Markov Decision Process . 15
2.8 Layered control system for a mobile platform 15

2.8.1 Zero level . 16
2.8.2 First level . 16

3 State of the Art 17
3.1 Artificial intelligence applied to avoid obstacles in mobile platforms 17

4 Methodology 19
4.1 Mobile platform . 19

4.1.1 Ultrasonic sensors block . 19
4.1.2 Motors control block . 19
4.1.3 Load/save buttons block . 20

4.2 Software . 23
4.2.1 Neural Network Architecture . 24
4.2.2 Code structure . 25

4.3 Experimental Setup . 28
4.3.1 Environment setup . 28
4.3.2 Exploration phase . 29
4.3.3 Exploitation phase . 29

5 Results and Discussion 31
5.1 Exploration phase . 31
5.2 Exploitation phase . 33

6 Conclusions 37
6.1 Future Work . 37

Bibliography 39

ii

List of Tables

2.1 Arduino Mega 2560 Features . 6

4.1 L293B H-bridge control for one Dc motor 20

iii

List of Figures

2.1 Arduino Mega 2560 main components. 6
2.2 Working of ultrasonic sensor HC-SR04 . 7
2.3 Problem with sensor in different angles . 7
2.4 H-bridge. 8
2.5 L293B Pins Distribution . 8
2.6 Artificial neuron functions . 10
2.7 Most common activation functions . 12
2.8 Agent - environment interaction . 16
2.9 Layered control system . 16

4.1 Frontal view of the robot . 20
4.2 Superior view of the mobile platform . 21
4.3 Schematic Diagram of the Mobile Platform Main Elements 22
4.4 Diagram of the Mobile Platform Main Elements 23
4.5 Architecture of the neural network . 24
4.6 Output for turn’s neurons . 25
4.7 Output for motion’s neurons . 25
4.8 Robot’s flow diagram . 28

5.1 Configuration for exploration phase . 31
5.2 Zero level achieved . 32
5.3 Zero level unachieved . 32
5.4 Mean squared error of exploration phase 33
5.5 First route of exploitation phase . 34
5.6 Second route of exploitation phase . 35

v

Chapter 1

Introduction

1.1 Background
Artificial intelligence have been of interest of the researches along the world in the recent
decades. Artificial intelligence arose as research discipline in the Dartmouth Summer Re-
search Project on Artificial Intelligence [1] in 1956. The concept of intelligence machines
was strongly influenced by Alan Turing on its paper ”Computing Machinery and Intelli-
gence” published in 1950 [2]. In this paper, Turing propose the idea of machines that are
able to learn and that can equalize or overcome human performing in intellectual tasks
such as chess game.

From this point and thanks to the development of other hardware improvements such
as the transistor that allowed the computer processing improvements, there have been
enormous advances, and IA has found application in all the fields. Researches in medicine,
sports, business, education, and other fields are the fields in which IA has been applied,
and in all of them, it has acquired exceptional results in a short time. A special section
of IA is reinforcement learning (RL), an approach based on the conductivism psychology
theory. This theory was proposed by J. Watson in 1913 [3] and proposes that the envi-
ronment determines the behavior of entities such as humans and animals. Reinforcement
learning studies the interaction between an agent and a dynamic environment; the agents
try to figure out how to behaves in the environment through trial-an-error. [4]. Since the
beginning of RL, it has been applied in many fields and solved all kinds of problems. Rl
has been used to solve problems in physics [5], chemistry [6, 7], protein folding [8]; among
others.

Among all the fields of applications, one of huge interest s the robot development
field, also known as robotics. Robotics is related to human functions’ emulation by using
mechanisms, sensors, actuators, and computers [9]. A robot might be defined as a machine
that can be controlled either by an external source or by an inter source. In the early
stages of robotics, the operations and control of a robot were done entirely with explicit
programming, i.e., the robots had stored in its memory how to behave precisely at any
time. The storage needed to save all this information was acceptable when the task was
not too complex, or the size of the environment was small or medium. However, across the
time, it was visibly the need for more complex tasks. That is why the advance of artificial

1

School of Mathematical and Computational Sciences Yachay Tech University

intelligence and robotics integrated into one field to produce robots that can learn human
behavior and imitate it. Some of the function imitated by robots includes clever playing
games such as clever Tic Tac Toe gaming [10, 11] or self-driven vehicles [12]. This last field
is of vital importance since it have evolver the transporation technology.

1.2 Problem statement
Although the development of the artificial intelligence algorithms have been huge in the
recent years, there are still some issues that needs to be solved. In the case of the self-
driving robotic cars some of those issues relies in the way that artificial intelligence is
integrated with them.

One concern is related with the computational power needed to execute the artificial
intelligence algorithms. Nowadays, there are different IA algorithms that may be used to
implements self-driving robotic cars, for instance neural networks, fuzzy logic, Q-learning
and so on. However, due to the complexity of the tasks, many of these algorithms might
require a lot of time and processing power to get an effective output.

Usually, the requirements of significant processing power are not a problem when work-
ing in average-sized workstations such as laptops or desktop computers because those
devices are designed to support average workloads and are provided with storage size in
the magnitude of gigabytes. For this thesis’s purposes, it was required to confine all the
required hardware of a self-driven car in an Arduino board, which has to be autonomous in
terms of power supply and its computational power, besides acquiring knowledge through
the exploration of its environment. To summarize, robotics cars need to have a very ef-
ficient computational arrangement that provides enough storage and supporting artificial
intelligence algorithms and finally works without external influence other than its envi-
ronments. The current degree project aims to fulfill all these requirements. On the other
hand is very important from the AI point of view to develop systems and/or robots that
learn by themselves in an unsupervised way, that its the machine has to figure thing out
by itself. This study develops a robotic environment where a reinforcement learning agent
explores a physical ambient and learns to move around without human supervision

1.3 Objectives

1.3.1 General Objective
Build a mobile platform equipped with ultrasonic sensors driven by artificial intelligence
algorithms which can accomplish the First level of the Brooks layered system.

1.3.2 Specific Objectives
• Build a mobile platform provided with ultrasonic sensors and motors that is au-

tonomous.

Information Technology Engineer 2 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Design an artificial intelligence algorithm with the capacity of self learning and able
to guide the movements of the mobile platform.

• Embed an artificial intelligence algorithm in an small and cheap micro controller such
as Arduino board

Information Technology Engineer 3 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 4 Graduation Project

Chapter 2

Theoretical Framework

In this chapter, the theoretical background of the concepts used in developing the present
work is depicted. The first part of the chapter is dedicated to the hardware elements;
meanwhile, the second part is used to detail the software elements.

2.1 Arduino Platform
The Arduino Platform [13] is an easy-to-use open-source platform that includes hardware
and software. Many kinds of Arduino boards represent the hardware part. Each board is
equipped with a microcontroller and several input/output pins to connect several transduc-
ers and sensors. There is a huge variety of sensors to scan different environment variables
such as temperature, humidity, light, UV radiation, sound, distance, etc. The software
part is an open-source IDE used to write C++ code to program the microcontroller in the
Arduino board.

There are several types of Arduino boards; they differ by the board’s size, the number
of inputs and outputs, the size of flash memory, or even the size of EEPROM. The Arduino
board used in the present work is described following.

2.1.1 Arduino Mega 2560
The Arduino Mega 2560 is a microcontroller which works using the ATmega2560 microcon-
troller, an 8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash.
The characteristics of the Arduino Mega are detailed in Table 2.1.

The main component of the board is the microcontroller which represents the board’s
processing unit . The microcontroller is the part of the board that is programmed, and it
contains the Flash memory, the EEPROM, and the SRAM. The Flash memory is where
the program will be stored and includes a bootloader where the initial configuration of the
board is set. The EEPROM (Electrically Erasable Programmable Read-Only Memory) is
a memory used to store information permanently on the board. The main of componenets
of the Arduino Mega 2560 microcontroller [14] is shown in Figure. 2.1.

5

School of Mathematical and Computational Sciences Yachay Tech University

Microcontroller ATmega2560
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limit) 6-20V
Digital I/O Pins 54
Analog Input Pins 16
DC Current per I/O Pin 20 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 256 KB
SRAM 8 KB
EEPROM 4 KB
Clock Speed 16 MHz
LED BUILTIN 13

Table 2.1: Arduino Mega 2560 Features

USB
Interface

Digital
pins

Power
supply

Power
pins

AT mega
2560

Analog
pins

Digital pins

Tx and Rx
leds

Power led

Reset
button

Figure 2.1: Arduino Mega 2560 main components.

2.2 Ultrasonic Ranging Module HC - SR04
It is an electronic device that is used as a proximity sensor. Two elements compose this
device: the transmitter, which emits the sound wave at a frequency of 40 KHz; and the

Information Technology Engineer 6 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

receiver, which receives the sound wave after it has traveled and bounced from an object
[15]. In this way, the sensor allows computing the distance at which an object is found by
computing the time between the sending and the reception of the sound waves, as shown
in Figure. 2.2. The formula used to compute the distance d in cm is shown in Eq. 2.1,
where t is the time measured by the sensor.

d = t

59 (2.1)

Object
Receiver

Transmitter

Figure 2.2: Working of ultrasonic sensor HC-SR04

Due to the sound wave’s behavior, there can be some troubles when detecting objects
which angle of incidence is not parallel to the sensors, as can be seen in Figure. 2.3. In this
case, the incidence angle causes the reflected wave to not arrive at the receiver, leading to
errors in the measures.

Transmitter

Receiver

Figure 2.3: Problem with sensor in different angles

2.3 H-Bridge L293B
An H-Bridge is a circuit that allows controlling the movement of DC motor. The basic
schema is illustrated in Figure. 2.4. Depending on which switch are closed, the DC motor
will move forward or backward.

Information Technology Engineer 7 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.4: H-bridge.

Figure 2.5: L293B Pins Distribution

The H-bridge L293B is an integrated circuit (IC) that includes two H - bridges. It has
four channels; each one has an input value and an output. The distribution of this IC’s
pines is shown in Figure. 2.5 [16]. The backward and forward movements of a DC motor
can be controlled using two channels of this IC. This device has a maximum output per
channel of 1A, and this is why it is very well used in electronic and robotic projects due
to its high performance.

2.4 DC Motor
A DC motor is an electronic component that transform electric energy in mechanical
energy. It works with direct current (DC) [17] . A motor has two connections, one is for
the ground(negative) connection and the other is for the positive terminal. Depending of
the polarization of a DC motor it will move in one direction or another.

Information Technology Engineer 8 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.5 Artificial intelligence algorithms
The artificial intelligence algorithms can be classified depending on the learning approach
that implements to achieve a certain object. The main categories are: supervised learning,
unsupervised learning, and reinforcement learning

2.5.1 Supervised learning
This learning approach is made with an input dataset and its corresponding target out-
puts. The main objective is to minimize the error between the network output and the
target output. This process is done in the network’s training step that consists of iterative
computing and adjusting the ANN weights. Once the ANN produces a satisfactory output
for the input, the training ends, and the weights are fixed so the network can be put in
operation in the test phase [18].

2.5.2 Unsupervised learning
In this learning paradigm, the neural network is not provided with a target output; just the
input dataset is given. The networks try to discover patterns or trends in the input data
without an external teacher signal. This learning is also called self-organized learning since
they establish a task-independent measure to evaluate the quality of representation that
the network is required to learn[18]. Some commons applications of unsupervised learning
include [19] clustering, pattern configuration, principal components analysis.

2.5.3 Reinforcement learning
The main feature of reinforcement learning is based on the logical principle that if an
action is followed by a satisfactory state of affairs or by an improvement in the state of
affairs, then the tendency to produce that action is strengthened, i.e., reinforced [20]. In
this paradigm of ANN learning, the learning machine performs a certain action on its
environment and gets a feedback response from the environment. Based on this response,
the learning machine grades its action as good (rewarding) or bad (punishable) and adjusts
its parameters [21]. The reinforcement learning problem can be summarized in an entity’s
problem learning from interaction to achieve an objective or a goal. The entity that learns
and that is the decision-maker is known as an agent. Meanwhile, everything else that
interacts with an agent is called the environment [22].

2.6 Artificial neural networks
Artificial neural networks have been developed as generalizations of mathematical models
of biological nervous systems. The basic processing elements of neural networks are called
artificial neurons. The basic working of an artificial neuron can be explained with an
analogy to a biological neuron: the synapse and its effects are represented by the connection
weights that modulate the effect of the associated input signals, and the nonlinear behavior

Information Technology Engineer 9 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

exhibited by neurons is represented by a transfer function[23]. In this way, the neuron
impulse is computed as the weighted sum of the input signals, being transformed by the
transfer function, as can be seen in Figure.2.6. The mathematical representation of a
neuron’s working is detailed in Eq. 2.2.

O = f

 n∑
i=1

wi · xi + b

 (2.2)

Where f is the activation function, also known as transfer function. Each xi corresponds
to an input and each wi to its respective weight. A threshold is added to the weighted
sum in order to determine the degree of sensitivity of a neuron to be inhibited or activated
[24]. The learning capability of an artificial neuron is achieved by adjusting the weights in
accordance to the chosen learning algorithm.

Output

b

w1

w2

wn

x1

x2

xn

Inputs

Figure 2.6: Artificial neuron functions

2.6.1 Activation Functions
Activation functions also knows as transfer functions are used in artificial neural networks
to transform the weighted addition of the inputs ∑n

i=1 wi · xi + b into the output of a
particular layer and supply it as input to the next layer [25]. An activation function
is used to get a non-linear behavior that emulates the process of activation synapses in
biological neurons. The activation function allows the neural network to identify and learn
complex mappings from data. Several functions can be used as activation function; the
most common are described following:

Binary Step Activation Function

This function is based on a threshold, i.e., if the function’s input is greater than a certain
threshold, the neuron is activated; otherwise, the neuron will be deactivated. Due to its
simpleness, this function only is recommended when working with binary classification
tasks rather than multiclass. Also, the derivative of this function is zero, which represents
a problem in the neural network’s learning algorithm. This function is shown following .

f(x) =
1 , if x >= 0

0 , if x < 0

Information Technology Engineer 10 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Linear Activation Function

This function is shown in Eq. 2.3, the output is directly proportional to the input. The
derivative of the function is equal to the a value; that is why the updating factor of the
weights will be the same in every iteration. Due to its characteristics, this function is not
useful when dealing with complex data, but it can be used for simple tasks.

f(x) = a · x (2.3)

Sigmoid Activation Function

This function is shown in Eq. 2.4. It is the most used activation function in neural
networks. It has some benefits such as its output values are in the range [0,1].

f(x) = 1
1 + e−cx

(2.4)

The derivative of this function is in Eq, 2.5. Since the learning algorithm is based in the
derivative of the activation function, it is an important factor. In the case of the sigmoid
function, its derivative allows the learning algorithm to be successful most of the times.

f ′(x) = c · f(x) · (1− f(x)) (2.5)

Relu Activation Function

This is the rectified linear unit function, it is a non-linear activation function. The main
characteristic is that with this function not all the neurons are activated at the same time
which makes this function the most efficient over all the activation functions. This function
is shown following.

f(x) =
x , if x >= 0

0 , if x < 0

TanH Activation Function

This is the hyperbolic tangent function, it has similarity with the sigmoid as can be seen
in Eq. 2.6. The difference with this function that it is symmetric with respect the origin.
The range of output values is the interval [−1, 1].

f(x) = e2x − 1
e2x + 1 (2.6)

2.6.2 Backpropagation algorithm
The backpropagation algorithm is the learning algorithm used by neural networks to “learn”
from a training dataset. The training data set is of the form {(x1, t1), ..., (xp, tp)} where xi
represents an input and ti is its corresponding output. The objective of the neural network
is to get the function that best approximates the xi input with its corresponding output

Information Technology Engineer 11 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

0.00

0.25

0.50

0.75

1.00

−4 −2 0 2 4
x

f(
x)

(a) Binary Step

−4

−2

0

2

4

−4 −2 0 2 4
x

f(
x)

(b) Linear

(c) Sigmoid

0

1

2

3

4

−4 −2 0 2 4
x

f(
x)

(d) RELU

−1.0

−0.5

0.0

0.5

1.0

−4 −2 0 2 4
x

f(
x)

(e) TanH

Figure 2.7: Most common activation functions

ti only by using the training dataset. As it is visible in Eq. 2.2, the output of a neural
network is based in the weight wi and the input xi. The weights are real random numbers.
When a new input is passed to the neural network, it will produce and output oi, generally
different from the ti . The main objective of backpropagation algorithm is to minimize the
cost function for all the p samples [26], generally it is the mean squared error shown in Eq.
2.7.

E(X, θ) = 1
2p

p∑
i=1
‖oi − ti‖2 (2.7)

The minimization of the error function can be done by computing the gradient of the
error function E(X, θ), where x represents the p-order input vector, and θ represents the
weights and the biases of the neural network. In each iteration, the gradient descent process
updates the parameters θ at each iteration t using the equation shown in Eq. 2.8 [27].

θt+1 = θt − α∂E(X, θ)
∂θ

(2.8)

Information Technology Engineer 12 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

By application of the chain rule, it can be set the Eq. 2.9 where akj is the weighted sum
plus the bias value for nodde i in layer k, wkij is the weight value from neurons i and j in
layer k.

∂E

∂wkij
= ∂E

∂akj
·
∂akj
∂wkij

(2.9)

We can define the backpropagated error of a neuron j as the error propagated from the
last layers to the current layer k; it is shown in Eq. 2.10.

δkj = ∂E

∂akj
(2.10)

It is also possible to see that Eq. 2.11 met and can be used to the second term of Eq.2.9
.

∂akj
∂wkij

= ∂

∂wkj
·

rk−1∑
l=0

wklj · ok−1
l

 = ok−1
i (2.11)

Then it is possible to use Eq. 2.10 and Eq.2.11 and replace it in Eq. 2.9 resulting in
Eq. 2.12 .

∂E

∂wkij
= δkj · ok−1

i (2.12)

The backpropagation algorithm for a multilayer neural network can be divided in the
following steps [24]:

i) Feed-forward computation

The input vector X is presented in the input of the network. The output o for each neuron
in all the layers is computed according to the Eq. 2.2.

ii) Backpropagation to output layer

Following the Eq. 2.12, it is necessary to compute the backpropagated error δkj . After the
partial derivative is applied, the backpropagated error can be computed using the Eq. 2.13
where f ′ represents the first derivative of the activation function and am1 represents the
weighted sum of the neuron plus the bias.

δmj = (tj − oj) · f ′(amj) (2.13)

iii) Backpropagation to the hidden layers

In this step, the computation of the weights of the hidden layers is computed. This process
begins with the hidden layer connected to the output layer and advances towards the layer
connected to the input layer. After the partial derivative is applied, the backpropagated
error can be computed using the Eq. 2.14.

Information Technology Engineer 13 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

δkh = f ′(amh) ·
rm+1∑
l=1

wm+1
lh · om+1

l (2.14)

iv) Weights updates

The final step of backpropagation algorithm is to update the weights W and the biases b
with the Eq. 2.15 and Eq.

∆wkij = −η · ∂E(X, θ)
∂wkij

(2.15)

2.6.3 Epochs
An epoch is defined as one iteration of the training process where it is performed for all
the elements in the training set (x1, x2, ..., xp) [28].

2.6.4 Training Styles
There are two ways in which the training process, i.e., how parameters θ of a ANN might
be updated: online and batch training. The difference in these techniques lies in the time
when the parameters θ are updated.

Online training

The parameters θ are updated after one unit of the training set is passed to the neural
network. In this way, the weights and the biases are updated after every cycle of feedforward
and backpropagation [29]. This training is done in reinforcement learning, where the
training set is acquired meanwhile an agent acts over an environment.

Batch training

In this kind of training, the parameters θ updating is done after a determined number of
training set elements are passed through a feed-forward and backpropagation cycle. This
number is called the batch size [30]. During this training, each training set element’s
gradients are summed and updated when the batch size is achieved.

2.6.5 Issues with ANN
When training an ANN there is neccesary to take into account some events that may leads
in poor quality training

Under-fitting

This issue usually occurs when the ANN was not able to learn appropriately from the
training data in the training phase. This event results in an imperfect ability of the ANN

Information Technology Engineer 14 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

to predict new inputs. The resultant classifier will have no predictive power or map the
training data correctly [31].

Over-fitting

It is a very well know problem when working with ANN. Over-fitting happens when in
the training phase, the network does not enhance its capacity to solve the problem any-
more. However, it begins to learn specific features of the training dataset and lose its
generalization capacity when new data arrives [32].

2.7 Markov Decision Process
A Markov Decision Process (MPD) aims to state the components of reinforcement learning
formally: states, agents, and rewards, shown in Figure. 2.8, and to find a solution to it
[33]. An MPD is used to solve the problem of choosing the sequences of decisions that will
maximize the expected return obtained from a process [34]. The process is composed of a
determined number of stages t that are members of a set T . The whole process is controlled
by a decision-maker system that acts in each t stage and can affect the process’s evolution
through time. The set T might be either finite or infinite and either a discrete set or a
continuum. When it is discrete and a finite set, the process is known as a Finite Markov
Decision Process, and its T set is of the form T = 1, 2, ..., N where N is the number of
stages of the process. The agent takes the decision maker’s role.

Formally, we can define an finite MPD as a set of objects of the form (T , S, A, pt(j|s, a),
rt(s, a)). Where S is the set of possible states of the process. A is the set of actions.
pt(j|s, a) is transition probability function i.e. the probability that the system is in state
j if action a is chosen in state s at time t. rt(s, a) is the expected reward received after
performing a action in state s at time t [35].

There is possible to define a decision rule which is a function dt : St → As,t that
determines the action that the agent will take when it is on state St. Each decision rule
is Markovian since it only depends on the current state and not of the past. The set of
the possible decision rules at time t is denoted as Dt and is known as the decision set. In
order to solve a finite MPD, it is necessary to define what a policy is. A policy is a chain
of decision rules π = d1, d2, ..., dN used for the agent to make a decision at each time t.
Having vπn(s) as the expected total reward over the n stages of MPD where policy π is used
and the system begins in state s. The final goal is to find an optimal policy π∗ such that
it produces the largest expected total reward [22]. vπn(s) is defined in Eq. 2.16.

vπn(s) = Eπ
[
Gt|St = s

]
= Eπ

 n∑
k=0

γRt+k+1|St = s

 (2.16)

2.8 Layered control system for a mobile platform
The mobile platform’s control is based on the layered system proposed by R. Brooks in
[36]. The diagram of the control system is depicted in Figure. 2.9. The higher-level layers

Information Technology Engineer 15 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Environment

Agent

RewardState Action

Figure 2.8: Agent - environment interaction

subsume the lower-level layers. In this way, the mobile platform can work well with the
lowest layer. The addition of the superior layer will add several functionalities to the mobile
platform’s behavior. This layered control system was implemented for the first two layers
with explicit programming.

Sensors Actuators

level 2

level 3

level 1

level 0

Figure 2.9: Layered control system

2.8.1 Zero level
This is the lowest layer, and its function is that the robot does not come into contact with
other objects, i.e., it ensures that the robot kept to a certain distance of the nearby objects.
The way the mobile platform achieves the Zeroth level moves away if something gets close
to the robot or stops if an object is too close to the mobile platform. This is the first aim
that the mobile platforms must accomplish over other conditions: wander around, target
searching, etc.

2.8.2 First level
The aim of this layer, with the zero layer subsumption, is to provide the robot with the
ability of wander around an environment environment avoiding obstacles.

Information Technology Engineer 16 Graduation Project

Chapter 3

State of the Art

Artificial intelligence applied to avoiding obstacles in mobile platforms has been widely
studied in recent years, achieving auspicious results. Many techniques have been carried
out to build mobile platforms to learn how to move in a space avoiding obstacles.

3.1 Artificial intelligence applied to avoid obstacles in
mobile platforms

One of the most popular algorithms in robotics is Q-learning due to its powerful features.
However, one of the issues with Q-learning lies in the Q-matrix size, which directly depends
on the number of states and actions. [37] deals with this problem by limiting the number of
states and actions. Their results are quite good since they achieve path planning correctly
with both targets and obstacles as mobile objects. However, the training process is done
knowing the exact position of the obstacles and the target.

Another approach to attack the problem is by using Artificial Neural Networks (ANN).
[38] implements a multi-layer perceptron with 3 inputs corresponding to the distance mea-
sured by three ultrasonic sensors and four outputs corresponding to the possible move-
ments: left, right, forward, and backward.

In [39], the authors implement self-learning neural networks that control a mobile robot
to get a target avoiding obstacles and especially concave U-shaped obstacles. This work
is based on the algorithm and simulation experiments proposed by [40]. The proposal is a
topologically organized neural network in which the separate behavioral equation describes
each neuron. In this way, the best trajectory is generated in real-time through the dynamic
activity 2D - landscape of the neural network by finding the neighboring neurons with the
highest activation towards a target.

Another very widely used approach is genetic algorithms(GA). For instance, in [41]
authors propose a path planning system for mobile robots based on genetic algorithms. In
this model, they get a target avoiding static and mobiles obstacles. Their simulation results

17

School of Mathematical and Computational Sciences Yachay Tech University

show the success of GA when dealing with path planning and obstacle avoidance. In [42]
the authors developed a GA based algorithm to control the navigation of a mobile robot
that is able to escape from dead-end zones. This is done by modifying the chromosome
structure and providing the robot with a memory that stores the sensor information, the
number, orientation, and coordinates of the robot in every step. They test their algorithm
in simulations achieving escaping from dead-end zones in all the simulations.

Fuzzy logic algorithms have also been applied to avoid obstacles in mobile platforms.
That is the case of [43] where the author compares the performance in a static environment
of fuzzy navigation against three classical approaches for obstacle avoidance (potential field
method, vector field histogram plus method, and Local navigation method). The fuzzy nav-
igation achieved the fastest results and had the easiest implementation.

Other approaches try a combination of several techniques to get better results. [44]
presents a method that combines Q-learning with a neural network planner to do robot
path planning in dynamic environments. They present simulation and real experiments
that achieved good results when the robot gets the target in no more than a minute and 15
iterations of the algorithm. A similar combination of these algorithms is done in [45] using
ultrasonic sensors as inputs and discrete movements as outputs. This work is divided into
four phases. At first, a Q-table is filled with state-action pairs. Then the ANN weights are
trained with values of the Q-table. Finally, the ANN itself is trained using a reinforcement
learning signal from the environment to retrain the network. They achieved better simu-
lations results when comparing against only the Q-learning algorithm.

In [46], the authors design and implement a reinforcement learning algorithm based on
an associated memory (AM) that behaves as a neural network. It uses local information
of a static environment to reach a target avoiding the obstacles that are in the mid-path.
The MA’s input corresponds to the possible positions in which obstacles can be found, and
the outputs correspond to the possible movements that can be done. Then by rewards and
punishment, the MA can relate the inputs with the outputs. Finally, they achieved quite
good simulation results when getting a target and avoiding obstacles.

In [47] the authors propose a combination of fuzzy control with ant colony algo-
rithm(ACO) to attack the problem of path planning and obstacle avoidance. They compare
this algorithm’s behavior against a pattern search algorithm, a genetic algorithm, particle
swarm optimization, and traditional ACO. Authors use ultrasonic transducers as sensing
devices and achieve great results in very few iterations.

In [48], the authors implement an adaptive neuro-fuzzy inference system to control
several mobile robots to reach a target avoiding obstacles in a static environment. This
system combines the logic rules of fuzzy systems and a neural network’s learning capability.
They performed extensive simulations and real experiments with several robots achieving
well results in both simulations and real experiments.

Information Technology Engineer 18 Graduation Project

Chapter 4

Methodology

In this chapter, the proposed model is detailed along with the description of its implemen-
tation and the experiments carried out to test the model.

4.1 Mobile platform
The mobile platform was implemented using one Arduino Mega 2560 board because of its
extensive digital input to include all the actuators and transducers needed. Also, the AT
mega 2560 microcontroller, which is the brain of the Arduino Mega 2560, provides a vast
EEPROM to store the weights of the ANN. An overview of the mobile platform is depicted
in Figure. 4.2. The chassis of the mobile platform is designed to include all the elements
needed to make the robot completely autonomous. This condition includes the motion
actuators, the power supply, and the agent software that controls the robot. The mobile
platform is equipped with a 4xAA battery holder used to power the mobile platform and
a buzzer used to let the user know when the different process inside the agent begins or
finish. The mobile platform’s main components are grouped in three blocks: i) ultrasonic
sensors blocks, ii) motors control block and iii) load/save buttons block and are described
following.

4.1.1 Ultrasonic sensors block
This module includes four HC - SR04 ultrasonic sensors placed on a curve-shaped surface.
The curve in the front gives the robot a better perspective to detect objects in front of it,
as shown in Figure. 4.1. The schematics diagram is shown in Figure. 4.4(a). The Vcc is
obtained from the Arduino board. The Trigger and Echo pin in each sensor are connected
to digital input and output pins in the Arduino board, respectively, allowing the distance
measurement.

4.1.2 Motors control block
This module includes the L293B C.I. and the DC motors. Its schematic diagram is shown
in Figure. 4.4(b). The central part of this module is the L293B CI, which controls both

19

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.1: Frontal view of the robot

Input A Input B Function
High Low Clockwise
Low High Anti - Clockwise
Low Low Stop
High High Stop

Table 4.1: L293B H-bridge control for one Dc motor

DC motors and it is shown in Figure.4.2. PWM 1 and PWM 2 pins allow the L293B CI
to control the speed of DC motor 1 and DC motor2, respectively. These pins must be
wired to PWM outputs in the Arduino board. In this way, the speed of the motors can
be controlled with an Arduino board. The IN1 and IN2 pins are digital input signals used
to determine the directions of DC motor 1. Meanwhile, IN3 and IN4 pins are used to
determine the directions of DC motor2. An H-bridge drives the rotation direction of each
DC motor, the rotation’s control of one DC motor is done with two digital signals, and the
process is detailed in Table 4.1.

4.1.3 Load/save buttons block
This module is dedicated to communicating with the mobile platform, i.e., to give basic
orders. Both buttons are installed with a pull-down resistor configuration [49], so the
logical output value will be “LOW” when the button is not pressed. Button 1 is the load
button that, when pushed, the robot loads the weights W vector stored in the Arduino
Mega EEPROM and proceeds to begin the exploitation phase. Button 2 is called the save

Information Technology Engineer 20 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

button that, when is pressed, begins the routine to store the current W vector into the
Arduino Mega EEPROM. This routine may be called independently, whether the robot is
in the training phase or testing phase.

Figure 4.2: Superior view of the mobile platform

Information Technology Engineer 21 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Ultrasonic Sensors block

(b) L293B Block (c) Buttons Block

Figure 4.3: Schematic Diagram of the Mobile Platform Main Elements

Information Technology Engineer 22 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Ultrasonic Sensors block (b) L293B Block

(c) Buttons Block

Figure 4.4: Diagram of the Mobile Platform Main Elements

4.2 Software
The code developed for the entire functioning of the robot is written in C++ language.
The code was developed using the Arduino IDE 1.8.13 [50], the official IDE to write C++
code and upload it into the Arduino board.

Information Technology Engineer 23 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4.2.1 Neural Network Architecture
The networks architecture is shown in Figure. 4.5. The artificial neural network comprises
three layers: one input layer with four neurons, one hidden layer with fifteen layers, and
one output layer with six neurons. The activation functions used in all the neurons is the
sigmoid function due to its advantages regarding its derivative respecting other activation
functions. The c value used in the sigmoid function was set experimentally to 0.5. The
learning rate η used in the backpropagation algorithm was set, also experimentally, to 0.25.
The bias for all the neurons was set to 0.

Figure 4.5: Architecture of the neural network

Each neuron in the input layer corresponds to one ultrasonic sensor of the mobile
platform. Its value is determined depending on the achievement of the zeroth level of
Brooks control system [36]. In this way, if the sensor accomplishes the zero level,i.e., there
is no obstacle in its range detection, the neuron input value is set to 0; otherwise, the value
is set to 1. This process is the same for all the sensors resulting in an input vector of the
form (x1, x2, x3, x4). The detection range was set experimentally to 10cm.

The neurons in the hidden layer were set experimentally to fifteen. Six neurons compose
the output layer that produces the output vector of the form (o1, o2, o3, o4, o5, o6). o1, o2
and o3 represent the turn movements: left, no-turn, and right respectively and they are
depicted in Figure. 4.6 . The remainder three neurons produce the output destined to
control the forward movements: forward, no-movement, and backward, and they are shown
in in Figure 4.7.

Information Technology Engineer 24 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Left (b) Quiet (c) Right

Figure 4.6: Output for turn’s neurons

(a) Back (b) Quiet (c) Forward

Figure 4.7: Output for motion’s neurons

4.2.2 Code structure
The code of the current degree project is divided into two main algorithms: the Algorithm
2 used in the exploration stage, a.k.a training stage, by which the robot learns, and the
Algorithm 3 used in the exploitation phase, a.k.a. test phase, by which the robot uses the
knowledge acquired in the exploration stage.

In addition, there is the Algorithm 1 used in the Algorithm 2. Algorithm 1 shows
the so-called “Fiction Backpropagation”, a backpropagation algorithm with theoretical
input and target. This algorithm is in charge of teaching the robot to achieve Brooks’
First level, i.e., to wander around its environment, accomplishing the zero level for all
the sensors. Line 1 of the algorithm shows the target values ti that will be used in the
backpropagation algorithm. These ti values correspond to the forward and no-turn moves
of the robot. Line 2 describes the input vector passed to the ANN in the feed-forward step
of the backpropagation algorithm. This vector contains the xi values and corresponds to a
Brooks’ Zero level simulation in all the sensors, i.e., none of the sensors detects an obstacle
nearby. Line 3 indicates that the backpropagation algorithm is performed, and it uses the
input and target values set in the previous lines.

Information Technology Engineer 25 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

This line is to separate algorithms from text
Algorithm 1: Fiction Backpropagation
1 Set forward and no-turn movement as ANN target i.e. ANN target=(0, 1, 0, 0, 0, 1);
2 Set zero level as ANN input i.e. ANN input = (0, 0, 0, 0);
3 Do backpropagation;

This line is to separate algorithms from text
Algorithm 2 describes the training stage of the robot. At this stage, the robot performs

the exploration of its environment. Line 1 shows the ANN initialization. In this step,
all the weights are set with random float values between −0.5 and 0.49 since these limits
achieved satisfactory experimental results. Line 2 indicates the algorithm will be executed
for a determined number of max iterations specified by the user or until the load button is
pressed (Algorithm 3 is invoked). Line 3 begins the robot’s operation with the forwarding
movement of the robot and reading of the sensors. After this movement, if the robot
achieves the zero layer, nothing is interesting to learn; thus, the robot continues exploring
until the zero level is not achieved. When the robot does not achieve the zero level, the
process to be performed is described from Line 4 to Line 17. At first, the number of
iterations is incremented; thus, the robot only counts those iterations that were useful and
in which it acquired knowledge. The if-condition shown in Line 6 tells whether the two
left sensors detected an obstacle. In that case, the target of the ANN is set to the vector
(0, 0, 1, 1, 0, 0), which indicates a right turning and a backward move. The other case,
where the right sensors detect an obstacle, is shown in Line 9. In this case, the target of
the ANN is set as the vector (1, 0, 0, 1, 0, 0) that indicates a backward movement and a left
turning. The if-conditions presented in Lines 6 and 9 are exclusive between them; in this
way, the measures from the two left sensors will be read at first, and if no obstacle was
detected, it will scan the measures from the two right sensors.

Once the target of the ANN was set, it is time to set the input. This process is done
in Line 12, where the input vector is the one acquired in Line 3. Following, having the
target and input defined is possible to perform the backpropagation algorithm shown in
Line 13. At this line of the algorithm, the robot can learn the zero layer of the Brooks
system, i.e., it has learned to avoid obstacles. However, the purpose of this degree project
is to equip the robot with the first level of the Brooks system, i.e., with the capacity to
wander around an environment; for that reason, the following line is added. Line 14 calls
the “fiction backpropagation” algorithm, shown in Algorithm 1. This algorithm is used to
teach the robot the first level of the Brooks layered system. Since each iteration of the
backpropagation algorithm is equivalent to one epoch, two epochs are performed in each
iteration of Algorithm 2. Finally, Lines 15 and 16 are used to locate the robot in a different
position to continue with the exploration.

It is important to emphasize that detecting the obstacles and, therefore, the robot’s
capacity to stay in the zero level and avoid obstacles depends on the ultrasonic sensors’
contact surface, as was mentioned previously.

Information Technology Engineer 26 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

This line is to separate algorithms from text
Algorithm 2: Exploration or training stage
1 ANN Random Weights Initialization;
2 while notTrained or iterations < max iterations do
3 Advance and read sensors;
4 if zeroLevelUnachieved then
5 iterations++;
6 if obstacleAtLeft then
7 Set backward and right movement as ANN target i.e. ANN

target=(0, 0, 1, 1, 0, 0);
8 end
9 else if obstacleAtRight then

10 Set backward and left movement as ANN target i.e. ANN
target=(1, 0, 0, 1, 0, 0);

11 end
12 Set current sensor values as ANN input;
13 Do backpropagation;
14 Do fiction backpropagation;
15 Step back the robot;
16 Random turn;
17 end
18 end

This line is to separate algorithms from text
Algorithm 3 shows the exploitation phase where the robot uses the knowledge acquired

in the training stage in order to wander around an environment avoiding obstacles, in other
words: accomplishing the Brooks First level. Line 1 indicates that the robot will perform
its process until an external factor stops it. The process begins with Line 2, where the
reading of the measures of the sensors is done, resulting in the input vector. Then, the
feed-forward process is performed with that input vector. Finally, the feed-forward step
results in an output vector that guides the robot’s movement at each iteration of the testing
phase.

The output of the neural network is a vector of the form (o1, o2, o3, o4, o5, o6) where
the outputs o1, o2 and o3 correspond to the neurons that control the turn movement of the
robot; meanwhile the outputs o4, o5 and o6 correspond to the neurons that control the back-
ward and forward movements. The way that a winner neuron is chosen is by selecting the
one with the highest value. That is, having an output vector (0.16, 0.23, 0.35, 0.30, 0.17, 0.45)
the winner neurons are those with the highest values for each kind of movement: 0.35 in
the case of turn movements which indicated that the robot would perform a right turn and
0.45 in the case of the back and forward movement indicates the robot to move forward.
The way that these movements are performed is at first the turning movement and then
the forward movement. The backward movement in the exploitation phase was tuned to
be less than the forward movement to improve the robot’s ability to pass through narrow
places.

Information Technology Engineer 27 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

This line is to separate algorithms from text
Algorithm 3: Exploitation or testing stage
1 while testPhase do
2 Read information from sensors;
3 Perform feed forward with input from sensors;
4 Get movement output from ANN;
5 Execute the movement;
6 end

This line is to separate algorithms from text

4.3 Experimental Setup
The general flowchart of the robot is shown in Figure. 4.8.

4.3.1 Environment setup
In order to evaluate the mobile platform, an environment has been built to perform both
the exploration and the exploitation stages. The environment consists of a circle-shaped
delimited environment that contains static obstacles with different shapes. The surface
floor is made of concrete with very few irregularities, such as dust and tiny holds simulating
a real scenario. The height of the obstacles and the walls is lower than 50cm, which is more
than enough for the robot to detect the objects. Since the ultrasonic sensors measure might
fail depending on the surface’s angle, square-shaped and circle-shaped obstacles are used to
test how the mobile platform behaves with different shapes. This is done considering that
the square-shaped obstacles’ flat surfaces might lead to failure in the sensors’ measures;
meanwhile, the circle curved-shaped, and the walls are the ideal surfaces for the ultrasonic
sensors.

Exploration phase
Load button

pressed?Begin

No

Yes

Load stored
weights from

EEPROM

Exploitation
phase

Save button
pressed?

Save weights in
EEPROM

Yes

No Iterations
completed?

No

Yes

Figure 4.8: Robot’s flow diagram

Information Technology Engineer 28 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4.3.2 Exploration phase
At first, the robot is located at a random position in the environment, initiated in its
exploration phase. Following the flow diagram shown in Figure. 4.8, at each iteration of
Algorithm 2, the robot will check if any of the buttons of load or save have been pressed.
Otherwise, the robot will continue to check whether the algorithm iterations have been
completed or not. For training purposes, the exploration phase was done with the USB
port of the Arduino Mega connected to a laptop to supervise the training and check by a
human supervisor the point at which is enough trained, so the robot will be able to behave
correctly in the exploitation phase. Also, this setup was set to acquire information about
how the error decrease along the epochs. However, this process is just for supervision
purposes since the agent algorithm allows the robot to begin the exploitation stage after a
determined number of iterations have been completed.

4.3.3 Exploitation phase
The training stage, for experimental purposes, was done with the supervision of a human
operator; then, once the exploration phase has acquired satisfactory results, the human
operator will press the ”save weights button” to store the ANN weights in the EEPROM
memory of the Arduino Mega 2560. Then, the robot’s power supply is changed to the four
AA batteries, and the wire connected to the laptop is unplugged since it is not necessary
anymore. The exploitation phase will begin when either a user haven pressed the ”load
button” or when the robot has completed with the number of max iterations previously
defined.

Information Technology Engineer 29 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 30 Graduation Project

Chapter 5

Results and Discussion

In this chapter, the results obtained from the evaluation of the mobile platform along with
the artificial intelligence algorithm are shown and analyzed.

5.1 Exploration phase
The configuration used for this phase is shown in Figure. 5.1. The diameter of the envi-
ronment was 1.20m. Despite this phase can be done independently in the robot, it was
plugged into the computer for human supervision. The control is done through the Serial
Monitor provided by the Arduino IDE. There are two possible situations at any iteration
of the robot exploration phase.

Figure 5.1: Configuration for exploration phase

In one case, the Zero layer has been achieved, so the robot keeps its exploration produc-
ing the output shown in Figure. 5.2. The first line of the output tells the current iteration
of the algorithm. The second line describes the previous movement performed, and the

31

School of Mathematical and Computational Sciences Yachay Tech University

third line introduces the measures corresponding to the four sensors starting with the left
sensor to the right sensor. In this case, since the zero layer has been achieved, the robot
continues with forwarding movement until it gets out of the zero level. It is important to
emphasize that the number of iterations of the training algorithm does not includes this
case since it does not contribute to the teaching of the ANN.

Previous move

Sensors measures

Figure 5.2: Zero level achieved

If the robot gets out of the zero level, it produces the other situation in the exploration
phase, resulting in the output shown in Figure. 5.3. The first two lines indicate the same as
the previous case. The third line is useful to tell the user the direction of a nearby obstacle.
The fourth line confirms that the zero layer has not been achieved, and the backpropagation
algorithm must be performed. The ”ANN input” line describes the input presented to the
ANN. The “ANN target” line describes the target presented to the ANN. The “ANN
output” line shows the output produced by the neural network. The “Fiction backpro”
line indicates that the fiction backpropagation has been done. After this line, the ANN
target and output used in the fiction backpropagation are shown. Finally, the “Random
future move” describes the future movement to be performed before the algorithm begins
again.

Previous move

Sensors measures

Obstacle position

Zero layer or not

ANN input

ANN target

ANN output

Fiction bakpro

Fiction target

Fiction output

Random future move

Figure 5.3: Zero level unachieved

The number of iterations needed to train the artificial neural network was 485. Taking
into account that for each iteration of the training algorithm two backpropagation steps

Information Technology Engineer 32 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

were performed, the number of epochs was 970. At this epoch, it was possible to see that
the output winner neuron agrees with the neural network’s target in all the input patterns.
Depending on the distribution of the obstacles and the environment’s size, the training
process might last more or less. If an environment is small and has many obstacles, the
training algorithm will be performed more times in less time; on the other hand, if the
environment is big and has few obstacles, the training algorithm will take more time. With
the current environment configuration, the robot’s time to perform the 485 iterations was
approximately 15 minutes.

The way to analyze the algorithm’s performance during the training stage is by checking
the mean squared error (MSE). It is applied to study the training performance since it is
the loss function used in the backpropagation algorithm in the exploration phase. MSE
indicates the overall performance of the ANN at each training epoch. MSE can be seen in
Figure 5.4, where the its value at epoch 0 is approximately 0.27, and across the training, it
decreases to values under 0.15. The variation in the MSE during the epochs is determined
by the learning rate used in the backpropagation algorithm. Choosing a different learning
rate has changed the behavior of the MSE in the exploration phase resulting in worst or
better results. In our case, it was proved experimentally that the learning rate value of
0.25 achieved the proper training in fewer epochs.

Since the algorithm was stopped when underfitting was avoided , i.e. when the ANN
was able to correctly predict the target value, rather than when the error was minimum,
the MSE does not achieve a value of 0 which means that the difference between the target
and the resulting output of the ANN is extremely low.

Figure 5.4: Mean squared error of exploration phase

5.2 Exploitation phase
This phase was executed in a different environment from the exploration stage; it is more
extensive and includes more obstacles so the mobile platform can face several situations

Information Technology Engineer 33 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

different from those used in training.
The way to evaluate the algorithm’s performance in this stage is by watching the

behavior of the mobile platform, unplugged from the computer, in a static environment.
The mobile platform is located in the environment and is triggered in its exploitation stage
during the time. Two starting points were evaluated in this stage, resulting in two routes.

The first route is shown in Figure 5.5. The starting point is the position at which the
robot is shown in the graph. The arrows indicate the route followed by the robot until a
human operator stops it. This route begins with the mobile platform in direction to a wall.
As it can be seen, this route is collision-free despite going through tight spots between an
squared-shaped obstacle and the wall. After, avoiding another square-shaped obstacle it
ends in the same point that it started with different direction.

The second route is shown in Figure. 5.6. This route is larger and more complex
than the previous one. The repeated arrows in small spaces are caused by the robot’s
constant backward and forward movements until it can achieve a position in which its
forward movement will not collide with any surfaces. This route presents a collision where
the red x symbol is drawn. This collision was produced after the mobile platform passed
successfully through a tiny space between a circle-shaped obstacle an the wall. After this,
the mobile platform ended too close to the wall and due to the range of measurement of the
left sensor, it failed in detecting the wall. The remainder of the route happened without
collisions, and the robot avoided three squared-shaped obstacles.

Figure 5.5: First route of exploitation phase

Information Technology Engineer 34 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.6: Second route of exploitation phase

Information Technology Engineer 35 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 36 Graduation Project

Chapter 6

Conclusions

Artificial intelligence is a promising set technique capable of being applied in infinity fields,
including medicine, leisure, sports, and finance. One of the most benefited fields is robotics.
The innovation in artificial intelligence algorithms includes the reinforcement learning al-
gorithms widely used in the robotic field due to their robust features, especially when
dealing with self-driving vehicles. The main conclusions of the present degree project are
summarized following:

1. An agent-driven approach has been implemented to control a mobile platform that
can achieve the First Level of the Brooks layered control system. The main compo-
nent of this approach is an artificial neural network that, after 970 epochs of online
training, can guide the mobile platform movements, getting as a final result a robot
able to wander around an environment successfully, avoiding obstacles.

2. The mobile platform has been built to be independent, without the need for an
external factor that controls it. The robot’s operation is performed in two steps.
First, the self-training stage, where the robot is placed in an environment, and it
can learn from continuously interacting with the environment. This phase is followed
by the operating phase, where the robot applies all the knowledge acquired in the
previous phase to accomplish an avoiding-obstacles behavior..

3. A 3-layer artificial neural network has been included inside an Arduino Mega 2560
board. This small, affordable, and simple board met all the requirements for imple-
menting the mobile platform, including the necessary power supply, the input/out-
puts pins, the EEPROM, and the computation power.

4. The mobile platform behaves following the Markov property that includes the ran-
domness of its whole process, including the condition that the future steps only
depend on the current state.

6.1 Future Work
Several improvements will be applied to both the mobile platform and to the agent that
drives it. In the mobile platform, the wheels play a central role in the mobile platform’s

37

School of Mathematical and Computational Sciences Yachay Tech University

motion then it is necessary to equip it with wheels that have better friction with the
ground surface and consequently a better motion. In terms of the software, Brooks’ layered
system’s upper layers will be implemented to endow the robot with more complex tasks,
such as get a target inside an environment.

Information Technology Engineer 38 Graduation Project

Bibliography

[1] S. Dick, “Artificial intelligence,” Harvard Data Science Review, vol. 1, no. 1,
7 2019, https://hdsr.mitpress.mit.edu/pub/0aytgrau. [Online]. Available: https:
//hdsr.mitpress.mit.edu/pub/0aytgrau

[2] A. M. Turing, “Computing Machinery and Intelligence,” Mind, vol. LIX, no. 236, pp.
433–460, 10 1950. [Online]. Available: https://doi.org/10.1093/mind/LIX.236.433

[3] J. B. Watson, “Psychology as the behaviorist views it.” Psychological review, vol. 20,
no. 2, pp. 158–177, 1913.

[4] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”
Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[5] D. Dong, C. Chen, T. Tarn, A. Pechen, and H. Rabitz, “Incoherent control of quantum
systems with wavefunction-controllable subspaces via quantum reinforcement learn-
ing,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 38, no. 4, pp. 957–962, 2008.

[6] Z. Zhou, X. Li, and R. N. Zare, “Optimizing chemical reactions with deep reinforce-
ment learning,” ACS central science, vol. 3, no. 12, pp. 1337–1344, 2017.

[7] M. Popova, O. Isayev, and A. Tropsha, “Deep reinforcement learning for de novo drug
design,” Science Advances, vol. 4, no. 7, 2018.

[8] O. Chang, F. A. Gonzales-Zubiate, L. Zhinin-Vera, R. Valencia-Ramos, I. Pineda,
and A. Diaz-Barrios, “A protein folding robot driven by a self-taught agent,”
Biosystems, vol. 201, p. 104315, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0303264720301891

[9] J. Craig, Introduction to robotics. Pearson Education, 2005.

[10] O. Chang, L. Zhinin-Vera, and F. Quinga-Socasi, “Self-taught neural agents in clever
game playing,” in Proceedings of the Future Technologies Conference (FTC) 2020,
Volume 1, K. Arai, S. Kapoor, and R. Bhatia, Eds. Cham: Springer International
Publishing, 2021, pp. 512–524.

[11] O. Chang and L. Zhinin-Vera, “A wise up visual robot driven by a self-taught neural
agent,” in Proceedings of the Future Technologies Conference (FTC) 2020, Volume 1,
K. Arai, S. Kapoor, and R. Bhatia, Eds. Cham: Springer International Publishing,
2021, pp. 606–617.

39

https://hdsr.mitpress.mit.edu/pub/0aytgrau
https://hdsr.mitpress.mit.edu/pub/0aytgrau
https://doi.org/10.1093/mind/LIX.236.433
https://www.sciencedirect.com/science/article/pii/S0303264720301891
https://www.sciencedirect.com/science/article/pii/S0303264720301891

School of Mathematical and Computational Sciences Yachay Tech University

[12] M. Daily, S. Medasani, R. Behringer, and M. Trivedi, “Self-driving cars,” Computer,
vol. 50, no. 12, pp. 18–23, 2017.

[13] Arduino. (2021) Arduino platform. [Online]. Available: https://www.arduino.cc/

[14] M. Daadoo, S. Tarapiah, and S. Atalla, “Analysis and performance of a low cost mul-
tiple alarm security system for smart home based on gsm technology and controlling
based on android smartphone,” European Journal of Scientific Research, vol. 143, pp.
136–164, 12 2016.

[15] V. A. Zhmud, N. O. Kondratiev, K. A. Kuznetsov, V. G. Trubin, and L. V. Dimitrov,
“Application of ultrasonic sensor for measuring distances in robotics,” Journal of
Physics: Conference Series, vol. 1015, p. 032189, may 2018. [Online]. Available:
https://doi.org/10.1088/1742-6596/1015/3/032189

[16] A. Datasheet. (2021) L293b datasheet (pdf) - stmicroelectronics.
[Online]. Available: https://pdf1.alldatasheet.com/datasheet-pdf/view/22430/
STMICROELECTRONICS/L293B.html

[17] E. Tutorials. (2021) Dc motor. [Online]. Available: https://www.electronics-tutorials.
ws/io/io 7.html

[18] J. Zou, Y. Han, and S.-S. So, Overview of Artificial Neural Networks. Totowa,
NJ: Humana Press, 2009, pp. 14–22. [Online]. Available: https://doi.org/10.1007/
978-1-60327-101-1 2

[19] Z. Waszczyszyn, “Fundamentals of artificial neural networks,” in Neural Networks in
the Analysis and Design of Structures, Z. Waszczyszyn, Ed. Vienna: Springer Vienna,
1999, pp. 1–51.

[20] R. S. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement learning is direct
adaptive optimal control,” IEEE Control Systems Magazine, vol. 12, no. 2, pp. 19–22,
April 1992.

[21] A. Dongare, R. Kharde, and A. D. Kachare, “Introduction to artificial neural network,”
International Journal of Engineering and Innovative Technology (IJEIT), vol. 2, no. 1,
pp. 189–194, 2012.

[22] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[23] A. Abraham, Artificial Neural Networks. American Cancer Society, 2005, ch. 129.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/0471497398.
mm421

[24] M. Buscema, “Back propagation neural networks,” Substance Use & Misuse,
vol. 33, no. 2, pp. 233–270, 1998. [Online]. Available: https://doi.org/10.3109/
10826089809115863

Information Technology Engineer 40 Graduation Project

https://www.arduino.cc/
https://doi.org/10.1088/1742-6596/1015/3/032189
https://pdf1.alldatasheet.com/datasheet-pdf/view/22430/STMICROELECTRONICS/L293B.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/22430/STMICROELECTRONICS/L293B.html
https://www.electronics-tutorials.ws/io/io_7.html
https://www.electronics-tutorials.ws/io/io_7.html
https://doi.org/10.1007/978-1-60327-101-1_2
https://doi.org/10.1007/978-1-60327-101-1_2
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471497398.mm421
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471497398.mm421
https://doi.org/10.3109/10826089809115863
https://doi.org/10.3109/10826089809115863

School of Mathematical and Computational Sciences Yachay Tech University

[25] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural networks,”
International Journal of Engineering Applied Sciences and Technology, vol. 2, 2020.
[Online]. Available: https://www.ijeast.com/papers/310-316,Tesma412,IJEAST.pdf

[26] R. Rojas, The Backpropagation Algorithm. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 149–182. [Online]. Available: https://doi.org/10.1007/
978-3-642-61068-4 7

[27] J. McGonagle, G. Shaikouski, C. Williams, A. Hsu, J. Khim, and A. Miller. (2021)
Backpropagation. [Online]. Available: https://brilliant.org/wiki/backpropagation/
#formal-definition

[28] J. Brownlee, “What is the difference between a batch and an epoch in a neural net-
work?” Deep Learning; Machine Learning Mastery: Vermont, VIC, Australia, 2018.

[29] J. Heaton, “Introduction to the math of neural networks (beta-1),” Heaton Research
Inc, 2011.

[30] H. Demuth, M. Beale, and M. Hagan, Neural network toolbox. Mathworks, 1994.

[31] H. Jabbar and R. Z. Khan, “Methods to avoid over-fitting and under-fitting in su-
pervised machine learning (comparative study),” Computer Science, Communication
and Instrumentation Devices, pp. 163–172, 2015.

[32] T. Dietterich, “Overfitting and undercomputing in machine learning,” ACM computing
surveys (CSUR), vol. 27, no. 3, pp. 326–327, 1995.

[33] M. van Otterlo and M. Wiering, Reinforcement Learning and Markov Decision
Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 3–42. [Online].
Available: https://doi.org/10.1007/978-3-642-27645-3 1

[34] R. E. Bellman and S. E. Dreyfus, Applied dynamic programming. Princeton university
press, 1962.

[35] M. L. Puterman, “Chapter 8 markov decision processes,” in Stochastic Models, ser.
Handbooks in Operations Research and Management Science. Elsevier, 1990, vol. 2,
pp. 331 – 434. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0927050705801720

[36] R. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal on
Robotics and Automation, vol. 2, no. 1, pp. 14–23, March 1986.

[37] M. A. Kareem Jaradat, M. Al-Rousan, and L. Quadan, “Reinforcement based
mobile robot navigation in dynamic environment,” Robotics and Computer-Integrated
Manufacturing, vol. 27, no. 1, pp. 135 – 149, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0736584510000700

[38] A. Medina-Santiago, J. Camas-Anzueto, J. Vazquez-Feijoo, H. Hernández-de
León, and R. Mota-Grajales, “Neural control system in obstacle avoidance
in mobile robots using ultrasonic sensors,” Journal of Applied Research and

Information Technology Engineer 41 Graduation Project

https://www.ijeast.com/papers/310-316,Tesma412,IJEAST.pdf
https://doi.org/10.1007/978-3-642-61068-4_7
https://doi.org/10.1007/978-3-642-61068-4_7
https://brilliant.org/wiki/backpropagation/#formal-definition
https://brilliant.org/wiki/backpropagation/#formal-definition
https://doi.org/10.1007/978-3-642-27645-3_1
http://www.sciencedirect.com/science/article/pii/S0927050705801720
http://www.sciencedirect.com/science/article/pii/S0927050705801720
http://www.sciencedirect.com/science/article/pii/S0736584510000700

School of Mathematical and Computational Sciences Yachay Tech University

Technology, vol. 12, no. 1, pp. 104 – 110, 2014. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1665642314716104

[39] B. Markoski, S. Vukosavljev, D. Kukolj, and S. Pletl, “Mobile robot control using self-
learning neural network,” in 2009 7th International Symposium on Intelligent Systems
and Informatics, Sep. 2009, pp. 45–48.

[40] S. X. Yang and M. Meng, “Neural network approaches to dynamic collision-free tra-
jectory generation,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 31, no. 3, pp. 302–318, June 2001.

[41] Pu Shi and Yujie Cui, “Dynamic path planning for mobile robot based on genetic al-
gorithm in unknown environment,” in 2010 Chinese Control and Decision Conference,
May 2010, pp. 4325–4329.

[42] X. Kang, Y. Yue, D. Li, and C. Maple, “Genetic algorithm based solution
to dead-end problems in robot navigation,” International Journal of Computer
Ajpplications in Technology, vol. 41, no. 3-4, pp. 177–184, 2011. [Online]. Available:
https://www.inderscienceonline.com/doi/abs/10.1504/IJCAT.2011.042693

[43] R. Abiyev, D. Ibrahim, and B. Erin, “Navigation of mobile robots in the presence
of obstacles,” Advances in Engineering Software, vol. 41, no. 10, pp. 1179 –
1186, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0965997810001018

[44] M. Duguleana and G. Mogan, “Neural networks based reinforcement learning for
mobile robots obstacle avoidance,” Expert Systems with Applications, vol. 62, pp. 104
– 115, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0957417416303001

[45] H. Xiao, Li Liao, and F. Zhou, “Mobile robot path planning based on q-ann,” in 2007
IEEE International Conference on Automation and Logistics, Aug 2007, pp. 2650–
2654.

[46] O. Motlagh, D. Nakhaeinia, S. H. Tang, B. Karasfi, and W. Khaksar, “Automatic
navigation of mobile robots in unknown environments,” Neural Computing and Ap-
plications, vol. 24, no. 7-8, pp. 1569–1581, 2014.

[47] C.-T. Yen and M.-F. Cheng, “A study of fuzzy control with ant colony algorithm
used in mobile robot for shortest path planning and obstacle avoidance,” Microsystem
Technologies, vol. 24, no. 1, pp. 125–135, 2018.

[48] J. K. Pothal and D. R. Parhi, “Navigation of multiple mobile robots in a
highly clutter terrains using adaptive neuro-fuzzy inference system,” Robotics
and Autonomous Systems, vol. 72, pp. 48 – 58, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889015000895

[49] S. Gupta. (2018) Pull up and pull down resistor. [Online]. Available: https:
//circuitdigest.com/tutorial/pull-up-and-pull-down-resistor

Information Technology Engineer 42 Graduation Project

http://www.sciencedirect.com/science/article/pii/S1665642314716104
http://www.sciencedirect.com/science/article/pii/S1665642314716104
https://www.inderscienceonline.com/doi/abs/10.1504/IJCAT.2011.042693
http://www.sciencedirect.com/science/article/pii/S0965997810001018
http://www.sciencedirect.com/science/article/pii/S0965997810001018
http://www.sciencedirect.com/science/article/pii/S0957417416303001
http://www.sciencedirect.com/science/article/pii/S0957417416303001
http://www.sciencedirect.com/science/article/pii/S0921889015000895
https://circuitdigest.com/tutorial/pull-up-and-pull-down-resistor
https://circuitdigest.com/tutorial/pull-up-and-pull-down-resistor

School of Mathematical and Computational Sciences Yachay Tech University

[50] Arduino. (2021) Arduino ide. [Online]. Available: https://www.arduino.cc/en/
software

Information Technology Engineer 43 Graduation Project

https://www.arduino.cc/en/software
https://www.arduino.cc/en/software

	Dedication
	Acknowledgments
	Resumen
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Arduino Platform
	Arduino Mega 2560

	Ultrasonic Ranging Module HC - SR04
	H-Bridge L293B
	DC Motor
	Artificial intelligence algorithms
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Artificial neural networks
	Activation Functions
	Backpropagation algorithm
	Epochs
	Training Styles
	Issues with ANN

	Markov Decision Process
	Layered control system for a mobile platform
	Zero level
	First level

	State of the Art
	Artificial intelligence applied to avoid obstacles in mobile platforms

	Methodology
	Mobile platform
	Ultrasonic sensors block
	Motors control block
	Load/save buttons block

	Software
	Neural Network Architecture
	Code structure

	Experimental Setup
	Environment setup
	Exploration phase
	Exploitation phase

	Results and Discussion
	Exploration phase
	Exploitation phase

	Conclusions
	Future Work

	Bibliography

