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herramientas utilizadas en la investigación, son de absoluta responsabilidad del autor del
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Abstract

In this work we prove existence, multiplicity, concentration phenomena and decay of solu-
tions for the nonlinear Schrödinger equation⎧⎨⎩ε2Δv(x) − V (x) v(x) + |v(x)|p−1v(x) = 0, x ∈ R

N ,

v(x) → 0, as |x| → ∞,
(Pε)

where ε > 0.
We consider the Infinite Case as presented by Byeon & Wang, under the restrictions:

(V1) V ∈ C(RN) is non-negative;
(V2) V (x) → ∞, as |x| → ∞;
(V3) Z = {x ∈ R

N / V (x) = inf(V )} = {0};
(Vinf) ∀|x| ≤ 1 : V (x) = exp

(
− 1

a(x)

)
.

where b ∈ C(RN) is an Ω-quasi homogeneous function and a ∈ C(RN \ {0}) is an asymp-
totically (Ω, b)-quasi homogeneous function.

Under conditions (V1), (V2), (V3) and (Vinf) the corresponding limit problem of (Pε)
as ε → 0 is: ⎧⎨⎩Δw(x) + |w(x)|p−1 w(x) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω,
(P)

where Ω ⊆ R
N is a strictly star-shaped domain.

Using the properties of the Krasnoselskii genus and by a Ljusternik-Schnirelman scheme
we prove the existence of an infinite number of solutions vk,ε, wk for (Pε) and (P) while
presenting concentration results about the solutions of (Pε). We prove the subconvergence,
up to scaling of vk,ε to a solution of (P) and exponential decay of solutions away from Ω.
Our results are congruent with the ones obtained by Byeon & Wang (2002), Felmer &
Mayorga (2007) and Mayorga, Medina & Muñoz (2020) in each of their respective studies
of the Critical Frequency cases.

Keywords: Nonlinear Schrödinger equation, infinite case, critical frequency, multiplicity,
concentration.
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Resumen

En este trabajo demostramos la existencia, multiplicidad, concentración y decaimiento de
soluciones del problema relacionado a la ecuación no-lineal de Schrödinger:⎧⎨⎩ε2Δv(x) − V (x) v(x) + |v(x)|p−1v(x) = 0, x ∈ R

N ,

v(x) → 0, mientras |x| → ∞,
(Pε)

con ε > 0.
Consideramos el Caso Infinito presentado por Byeon & Wang, bajo las restricciones:

(V1) V ∈ C(RN) es no-negativo;
(V2) V (x) → ∞, si |x| → ∞;
(V3) Z = {x ∈ R

N / V (x) = inf(V )} = {0};
(Vinf) ∀|x| ≤ 1 : V (x) = exp

(
− 1

a(x)

)
,

donde b ∈ C(RN) es una función Ω-cuasi homogénea y a ∈ C(RN \ {0}) es una función
asintóticamente (Ω, b) cuasi-homogénea.

El problema ĺımite correspondiente a (Pε) bajo las restricciones (V1), (V2), (V3) y (Vinf)
es: ⎧⎨⎩Δw(x) + |w(x)|p−1 w(x) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω,
(P)

donde Ω ⊆ R
N es un dominio estŕıctamente estrellado.

Usamos un esquema de Ljusternik-Schnirelman y las propiedades del género de Kras-
noselskii para demostrar la existencia de un número infinito de soluciones vk,ε, wk de (Pε)
y (P), respectivamente. También presentamos resultados de concentración referentes a la
solución de (Pε). Dado un escalamiento, demostramos la subconvergencia de vk,ε a una
solución de (P) y el decaimiento exponencial de soluciones por fuera de Ω. Nuestros re-
sultados son congruentes con los obtenidos por Byeon & Wang (2002), Felmer & Mayorga
(2007) y Mayorga, Medina & Muñoz (2020) en cada uno de sus respectivos estudios refer-
entes a los problemas con Frecuencia Cŕıtica.

Plabras Clave: Ecuación de Schrödinger No-linear, caso infinito, frecuencia cŕıtica, mul-
tiplicidad, concentración.
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Chapter 1

Introduction

As humanity advances in it’s understanding of the Universe, ever more complex, bold
and precise theories to describe it arise. As these theories emerge, so does the need for a
more accurate and sophisticated way in which they are written. Naturally, this requires
significant improvements in the ever so intertwined fields of Mathematics and Physics given
their ability to precisely describe physical phenomena.

Such is the case of Quantum Mechanics. It arose due to Classical Mechanics’ inability to
accurately describe small scaled phenomena. By obtaining a solid mathematical foundation
in the mid 1920’s, it became the standard way in which we understand the Universe at a
microscopic scale. The famous Schrödinger equation has been the most commonly used
tool to study the state of a quantum system. In this work we are interested in its nonlinear
version

i�ψt(x, t) + �
2

2 Δψ(x, t) − V0(x)ψ(x, t) + |ψ(x, t)|p−1ψ(x, t) = 0, ∀x ∈ R
N , ∀t ≥ 0, (1.1)

where i denotes the imaginary unit, N ∈ N and p > 1. ψ is called the state function. It
contains information about the system and

� = 6.62607015 × 10−34Kg · m2 · s−1,

is known as the reduced Planck constant. V is a real valued function known as the potential
of the system and the Laplacian operator Δ is given by:

Δ :=
N∑

i=1

∂2

∂x2
i

.

This equation arises in the study of the evolution of Bose-Einstein condensates, [23], and
it is relevant to model the propagation of light in some nonlinear optical materials, [24].

When searching for solutions of (1.1), it is natural to search for standing waves. i.e.,
semi-classical states of the form

ψ(x, t) = v(x)e−iEt/�, x ∈ R
N , t ≥ 0,

with
E = inf(V0).

1
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Here the time-independent component, v, should verify

ε2Δv(x) − V (x)v(x) + |v(x)|p−1v(x) = 0, (1.2)

with ε2 = �
2/2 and V (x) = V0(x) − E. The term semi-classical is justified as it is an

asymptotic method which stops considering � as a constant but instead considers it as a
parameter that decreases to zero, that is, passing to the limit as ε → 0.

We consider the situation where

Z = {x ∈ R
N / V (x) = inf(V )} 	= ∅.

The case when inf(V ) > 0 is referred to as the non-critical frequency case. The critical
frequency case arises when inf(V ) = 0, this term is justified since the behavior of the
solutions notably changes.

There exist a large number of works regarding the non-critical case such as [2], [8], [12],
[13], [24], [25], [28] and [32], based on the Lyapunov-Schmidt reduction, the variational
method or a combination of both. Some common results are:

(I) v∗
ε , a solution of (1.2), is bounded away from zero, i.e.,

lim inf
ε→0

max
x

|vε(x)| > 0; (1.3)

(II) v∗
ε concentrates around some critical points of V ;

(III) v∗
ε exponentially decays to zero away from such critical points, as ε → 0; and,

(IV) there is a unique limit problem and, therefore, a unique profile, as ε → 0.

In our work, we continue the study of the case when inf(V ) = 0 presented in the pioneer
work [6] for the critical-frequency problem⎧⎨⎩ε2Δv(x) − V (x)v(x) + |v(x)|p−1v(x) = 0, x ∈ R

N ,

v(x) → 0, as |x| → ∞,
(Pε)

with ⎧⎨⎩2 < 1 + p < 2∗ = 2N/(N − 2), if N ≥ 3;
2 < 1 + p, if N = 1, 2.

(1.4)

where it is proved the existence of vε, a positive standing wave, least energy solution, (see
[6]), for which

(C1) (1.3) no longer holds. Instead, the following behavior is verified

lim
ε→0

‖vε‖L∞(RN ) = 0, (1.5)

lim inf
ε→0

‖vε‖L∞(RN )

ε2/(p−1) > 0; (1.6)

(C2) vε concentrates around an isolated component of Z = {V = 0};

Mathematician 2 Graduation Project
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(C3) vε exponentially decays outside the region Z;

(C4) There no longer exists a unique limit problem and, therefore, neither a unique profile.
They depend on the behavior of V nearby Z.

Three cases were considered.

Flat: intZ = Z 	= ∅ is bounded;

Finite: Z is finite and V vanishes polinomially around it;

Infinite: Z is finite and V vanishes exponentially around it.

For these cases it was also proved that

(C5) a scaling of the positive least-energy solution vε converges to u, a positive least-energy
solution of a corresponding limit problem;

(C6) the energy of vε converges to the energy of u.

The papers [11] and [21] focus on the flat case, assuming the potential satisfies the following
conditions:

(V1) V ∈ C(RN) is non-negative;

(V2) V (x) → ∞, as |x| → ∞;

(Vflat) int(Z) 	= ∅ is connected and smooth.

In this context, the corresponding limit problem is⎧⎨⎩Δu(x) + |u(x)|p−1u(x) = 0, x ∈ Z,

u(x) = 0, x ∈ ∂Z.
(Pflat)

Authors Felmer and Mayorga-Zambrano applied the Ljusternik-Schnirelman theory to the
even energy functionals Iε and I associated with (Pε) and (Pflat), respectively. They proved
that:

i) There exist sequences of solutions, (vk,ε)k∈N and (uk,ε)k∈N, for (Pε) and (Pflat) respec-
tively.

ii) For a fixed k and as ε → 0 the solution, not necessarily positive, vk,ε behaves like
those found in [6]. That is, conditions (C1), (C2) and (C3) hold.

iii) Point (C6) also holds, that is:

lim
ε→0

Iε(vk,ε) = I(uk). (1.7)

iv) Point (C5) holds in the sense that a scaling of vk,ε converges, up to subsequences, to
wk a solution of (Pflat) with the same energy of uk:

I(wk) = I(uk).

Mathematician 3 Graduation Project
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Additionally, further asymptotic estimates on the boundary of Z were obtained.

Remark 1.0.1. In the context of the Ljusternik-Schnirelman theory for even functionals,
the indices k of the critical values are representative of the topological characteristic of the
level sets, given by the Krasnoselskii genus.

Remark 1.0.2. Condition (V2) is more restrictive than the one in [6]. Where it was
assumed that for some γ > 0 we have lim inf

|x|→∞
V (x) > 2γ.

In [21] the results of [11] were experimentally shown via a numerical approach for N = 1.
For a fixed ε, a variation of the shooting scheme developed in [17] was applied. Here,
instead of the commonly-used Newton method to adjust the initial slope, a secant method
was applied because the manipulation of two initial slopes provided control on k, which
corresponds to the number of changes of sign that uk and vk,ε have, in the one dimensional
case. For several values of k, the following concentration property was numerically shown

‖uk − ε−2vk,ε‖L2(Ω) → 0, as ε → 0.

This is difficult because of the nonlinearity of the equations and, by the properties of the
Krasnoselskii genus, there are at least two solutions for each topological level k ∈ N.

In [22], the finite case was studied. The same kind of results as in [11] were obtained.
In this project, similarly, we show that the same types of results of [11] hold for the N -
dimensional infinite case. Grossly speaking, that is when V (x) decays at an exponential
rate as x gets close to Z = {0}. This document is organized as follows:

• In Section 2 we present the basic mathematical tools required for our project. We re-
view some definitions, theorems and results from normed spaces, Functional Analysis,
Partial Differential Equations, Sobolev spaces, Variational Calculus and Nonlinear
Analysis.

• In Section 3 we start with a historical overview of Quantum Mechanics and proceed
with some brief but essential concepts from its foundation, such as wave functions,
the Schrödinger equation and the Heisenberg uncertainty principle.

• In Section 4 we formally state our problem and the main results. Then we set up
a Ljusternik-Schnirelman scheme to prove that our problem has infinite solutions.
Next we prove the convergence of critical values and make an asymptotical analysis
of our solutions. We conclude with the decay results of our problem.

Mathematician 4 Graduation Project



Chapter 2

Mathematical Framework

In this chapter we present topics that are needed to handle our problem. We will provide
proofs of some of the most relevant results while referring the reader to our main sources,
such as [4], [10], [18], [19], [20], [31]. We will use standard notation across this entire
chapter.

2.1 Basic definitions
We start with some fundamental results from linear algebra and topology.

Definition 2.1.1 (Linear Space). Let V be a non-void set. Let (V, +) be an Abelian group
with an external operation · : R × V → V . We say that (V, +, ·) is a linear space over R

iff:

i) (Harmlessness of 1) ∀u ∈ V : 1 · u = u;

ii) (Mixed associativity) ∀u ∈ V, ∀α, β ∈ R : (αβ) · u = α · (β · u);

iii) (Vector Associativity) ∀u ∈ V, ∀α, β ∈ R : (α + β) · u = α · u + β · u;

iv) (Scalar Distributivity) ∀α ∈ R, ∀u, v ∈ V : α · (u + v) = α · u + α · v.

The pair (V, T ) is called a topological space iff V is a non-void set and T ⊆ P(V )
verifies

i) ∅ ∈ T and V ∈ T ;

ii) ∀A, B ∈ T : A ∩ B ∈ T ;

iii) (Aλ)λ∈Λ ⊆ T =⇒ ⋃
λ∈Λ

Aλ ∈ T .

Elements of the topology T are called open sets, we will later give a characterization using
the notion of norm.

5
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Now let us define the concept of a metric. Let X be a set. We say that d : X ×X −→ R

is a metric over R iff for every x, y, z ∈ X the following properties hold:

i) d(x, y) = 0 ⇐⇒ x = y;

ii) d(x, y) = d(y, x);

iii) d(x, z) ≤ d(x, y) + d(y, z).

and from points i) and iii) it follows that

0 ≤ d(x, y).

The ordered pair (X, d) is called a metric space.

Definition 2.1.2 (Norm, normed space). Let E be a linear space and || · || : E −→ R. We
say that (E, || · ||) is a normed space iff for every x, y ∈ E and λ ∈ R the following hold:

i) 0 ≤ ||x||;

ii) ||x|| = 0 ⇐⇒ x = 0;

iii) ||λx|| = |λ|||x||;

iv) ||x + y|| ≤ ||x|| + ||y||.

Remark 2.1.1 (Every metric space is a topological space). Every metric space X is a
topological space when, by definition, A ⊆ X is open iff A can be expressed as a union of
sets of the form

B(x0, r) = {x ∈ X : d(x0, x) < r}, x0 ∈ X, r > 0.

Remark 2.1.2 (Notation). If it generates no confusion, we shall use the following notation
for the rest of the chapter || · ||E := || · || and we will denote (E, || · ||E) = E, (F, || · ||F ) = F

as normed spaces unless stated otherwise.

It is important to know that every norm induces a metric in the sense of

d(x, y) := ||x − y||. (2.1)

Hence, every normed space is also a metric space.
We now introduce the concept of balls. Given x0 ∈ E and r > 0, we denote:

(Open ball) B(x0, r) = {x ∈ E : ||x0 − x|| < r},

(Closed ball) B(x0, r) = {x ∈ E : ||x0 − x|| ≤ r},

(Sphere) S(x0, r) = {x ∈ E : ||x0 − x|| = r}.

Mathematician 6 Graduation Project
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We say that all of these objects are centered in x0 with radius r. Using this, let us give
the characterization of open sets.
We have that U ⊆ E is open iff

∀x ∈ U, ∃r > 0 : B(x, r) ⊆ U.

We say that C ⊆ E is closed iff Cc := E − C is open.

Definition 2.1.3 (Interior, closure and boundary of a set). Let E be a linear space, U ⊆ E.
We denote:

i) (Interior of U) int(U) = {x ∈ E / ∃r > 0 : B(x, r) ⊆ U},

ii) (Closure of U) U = {x ∈ E / ∀r > 0 : B(x, r) ∩ U 	= ∅},

iii) (Boundary of U) ∂U = U ∩ U
c.

From this, it follows that int(U) ⊆ U and U ⊆ U . Moreover, U is open iff U = int(U).

Lemma 2.1.4. In the definition above, we note that the set U is closed.

Proof. Let’s prove that
A

c = int(Ac),

which implies that A
c is open, so that A is closed.

i) First, we will prove that A
c ⊆ int(Ac). Let x ∈ A

c, generic. Then x /∈ A, and
therefore, there exists r > 0 such that

B(x, r) ∩ U = ∅.

So that B(x, r) ⊆ U c and x ∈ int(U). By the arbitrariness of x, we have A
c ⊆ int(Ac).

ii) Let’s prove that int(Ac) ⊆ A
c. Let x ∈ int(Ac), then there exists r > 0 such that

B(x, r) ⊆ U c.

Hence, x /∈ U . That is x ∈ U
c. We conclude by the arbitrariness of x.

Theorem 2.1.5 (Characterization of a closed set). Let (X, T ) be a topological space,
A ⊆ X. Then

A is closed ⇐⇒ A = A.
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Proof. ⇐) Assume that A = A. By the previous lemma, A is closed.
⇒) Assume that A is closed. Therefore Ac is open and, by the previous lemma, U

c = U c.
This implies that

U =
(
U

c
)c

= (U c)c = U.

We conclude.

Definition 2.1.6 (Convergent sequence). Let E be a normed space, (xn)n∈N ⊂ E. We say
that xn converges to x ∈ E iff:

∀ε > 0, ∃N ∈ N : n > N =⇒ ||xn − x|| < ε,

and it is denoted by

lim
x→∞ ||xn − x|| = 0,

xn → x, as n → ∞.

Using the notion of a convergent sequence we can define compact sets. Namely, K ⊆ E
is compact iff every sequence in K has a convergent subsequence, that is

∀(xn)n∈N ⊆ K, ∃(xnk
)k∈N ⊆ (xn)n∈N - convergent .

We say that A ⊆ E is relatively compact iff A is compact.

Let’s now define the concept of continuity of a function. Let (E, d), (F, ρ) be metric
spaces. We say that a function f : E −→ F is continuous at x0 ∈ E iff:

∀ε > 0, ∃δ > 0 : d(x, x0) < δ =⇒ ρ(f(x), f(x0)) < ε.

Moreover, if f is continuous at every x0 ∈ E, we say that f is continuous in E.

Proposition 2.1.1 (Continuity by inverse image). Let, E, F be topological spaces, f :
E → F . Then, f is continuous iff the inverse image of an open subset of F belongs to E.
That is

∀A ⊆ F - open : f−1(A) ∈ E.

A proof of this proposition can be found in [18].

Let’s now define a particularly useful type of continuity. For E, F normed spaces we
say that f : E → F is Lipschitz continuous iff there exists C > 0 such that

∀x, y ∈ E : ||f(x) − f(y)|| < C||x − y||.

In particular, if C < 1 we say that f is a contraction.

Remark 2.1.3. Note that any function f that is Lipschitz continuous is continuous, that
is, Lipschitz continuity implies continuity.
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Definition 2.1.7 (Comparable norms). Let V be a linear space and || · ||1,|| · ||2 be two
norms on V. We say that || · ||1 dominates || · ||2 iff

∃c > 0, ∀u ∈ V : ||u||2 ≤ c||u||1.

And say that the norms are comparable iff one of the norms dominates the other.
Additionally, || · ||1 and || · ||2 are equivalent iff they dominate each other, that is:

∃c1, c2 > 0, ∀u ∈ V : c1||u||1 ≤ ||u||2 ≤ c2||u||1.

We say that a sequence (xn)n∈N ⊂ E is Cauchy iff

∀ε > 0, ∃N ∈ N : m, n > N =⇒ ||xm − xn|| < ε.

Cauchy sequences are also known as fundamental sequences. The last equation tells us
that from a certain point, the tail of the sequence gets infinitely close or stays within a
certain ball. Cauchy sequences are used in numerical approximation when ε is taken as
the approximation value.

Proposition 2.1.2 (Convergent implies Cauchy). Every convergent sequence in a normed
space is a Cauchy sequence.

Proof. Let (xn)n∈N ⊆ E be a convergent sequence, let’s denote as as its limit. Then

∀ε > 0, ∃N = N(ε) : n > N =⇒ ||xn − x|| <
ε

2 .

Now, the triangle inequality implies that, for m, n < N

||xm − xn|| ≤ ||xm − x|| + ||x − xn|| <
ε

2 + ε

2 = ε.

That is, (xn)n∈N is Cauchy. We conclude.

Definition 2.1.8 (Complete space). Let (X, δ) be a metric space. Then, X is complete
iff every Cauchy sequence converges in X.

From the previous definition we say that any normed space (E, ‖ · ‖) that is complete
with the metric induced by the norm ‖ · ‖ is a Banach space.

Remark 2.1.4. It is very important to note that completeness is a property that depends
on the metric. A space E may be complete with the norm || · ||1 but not with the norm
|| · ||2.

Definition 2.1.9 (Uniformly convex space). We say that the normed space E is uniformly
convex iff:

∀ε > 0, ∃δ > 0, ∀u, v ∈ E : (||u|| ≤ 1 ∧ ||v|| ≤ 1 ∧ ||x − y|| ≥ ε
)

=⇒
∥∥∥∥∥x + y

2

∥∥∥∥∥ < 1 − δ.
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Uniform convexity is a geometric property related to the unit sphere S(0, 1). Namely,
the unit sphere must be round and cannot admit any line segment.

Moreover, the Milman-Pettis theorem [4, Th. 3.31] states that every uniformly convex
Banach space is reflexive.

Theorem 2.1.10 (Closed set in a complete space). Let (X, δ) be a complete metric space
and A ⊆ X. Then, A is closed iff A is complete.

A proof of this theorem can be found in [20].

2.2 Some topics on Functional Analysis
In this section we shall introduce some of the most important spaces in Analysis and
provide some important concepts that are useful for our work.

2.2.1 Linear operators and functionals

Definition 2.2.1 (Linear operator and functionals). Let E, F be normed spaces, T : E →
F be an operator. We say that T is linear iff

∀λ ∈ R, ∀x, y ∈ E : T (λx + y) = λT (x) + T (y).

In particular, if F = R, we say that T is a functional.

Remark 2.2.1. Note that, in the definition above, the term operator is used to define a
function. These terms are equivalent and change depending on the context.

We say that T is bounded iff:

∃c > 0, ∀x ∈ E : ||T (x)|| ≤ c||x||,

and denote, the space of bounded linear operators by

L(E, F ) := {T ; E → F / T is linear and bounded.}.

This space is equipped with the norm || · ||L(E,F ) given by:

||T ||L(E,F ) = inf{c > 0 / ∀x ∈ E : ||T (x)|| ≤ c||x||}.

As a consequence,

∀x ∈ E : ||T (x)|| ≤ ||T ||L(E,F )||x||.

A proof that || · ||L(E,F ) is a norm can be found in [20].
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Remark 2.2.2. Let’s note that, by the linearity of the operators, all bounded operators
are Lipschitz, that is

∀x ∈ E, ∀T ∈ L(E, F ) : ||T (x)|| ≤ ||T ||||x||,

implies that
∀x, y ∈ E : ||T (x) − T (v)|| ≤ ||T || · ||u − v||.

Definition 2.2.2 (Dual space). The topological dual or, simply, dual space of E is

E∗ := L(E,R).

This space is complete since R is complete.

Theorem 2.2.3 (Continuity and boundedness). Let E, F be normed spaces, T ∈ L(E, F ).
Then, T is bounded iff T is continuous.

Proof. ⇒) By Remark 2.2.2 we have that T is Lipschitz continuous. Therefore, T is
continuous.
⇐) Now assume that T is continuous, we have to prove the boundedness of T , i.e.,

∃c > 0, ∀u ∈ E : ‖T (u)‖ ≤ c‖u‖. (2.2)

By the purpose of contradiction, assume that (2.2) is false, that is

∀c > 0, ∃u ∈ E : ‖T (u)‖ > c‖u‖.

Therefore we can choose a sequence (un)n∈N ⊆ E such that

∀n ∈ N : T (un) > n‖un‖.

For each n ∈ N we set
vn = 1

n‖un‖un,

so that ‖vn‖ = 1/n. Then,
lim

n→∞ vn = 0, (2.3)

and
‖T (un)‖ = 1

n‖un‖‖T (un)‖ ≥ 1
n‖un‖n‖un‖ = 1. (2.4)

Points (2.3) and (2.4) contradict the continuity of T so we conclude that T is bounded.

Corollary 2.2.1 (Composition of bounded operators is bounded). Let V, W, U be normed
spaces. If T ∈ L(V, W ) and S ∈ L(W, U), then ST ∈ L(V, U). Moreover,

||ST || ≤ ||S||||T ||.
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A proof of this corollary can be found in [18].

In the context of proposition 2.1.7. Let’s assume that E ⊆ F and that in the normed
spaces (E, || · ||1), (F, || · ||2), || · |||2 dominates || · ||1. In this case, we have that

(E, || · ||2) ⊆ (E, || · ||1),

and the embedding operator I : E → F given by

I(u) = u.

is continuous. We say that (E, || · ||1) is continuously embedded in (F, || · ||2).

2.2.2 Weak and weak * convergence.
We start by noting that any sequence that converges in the context of definition 2.1.6 is
said to be strongly convergent or converge strongly to x.

Definition 2.2.4 (Weak convergence). Let E be a normed space. A sequence (xn)n∈N ⊆ E

is said to be weakly convergent to x ∈ E iff

∀T ∈ E∗ : lim
n→∞ T (xn) = T (x),

which is written as
xn

w−→ x or xn ⇀ x.

The element x is called the weak limit of (xn)n∈N.

This type of convergence is incredibly important in analysis, it is widely used e.g. in
the calculus of variations and differential equations.

Lemma 2.2.5 (Weak convergence). Let E be a normed space. Let (xn)n∈N ⊆ E be a
weakly convergent sequence. Then,

i) the weak limit x is unique;

ii) every subsequence of (xn)n∈N converges weakly to x;

iii) the sequence (||x||n)n∈N is bounded.

A proof of this lemma can be found in [18].

Theorem 2.2.6 (Strong and weak convergence). Let E be a normed space, (xn)n∈N ⊆ E

be a sequence that converges strongly. Then, (xn)n∈N converges weakly with the same limit.
That is, strong convergence implies weak convergence.
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Proof. Assume that (xn)n∈N is strongly convergent, that is

xn −→ x,

which means that
||xn − x|| −→ 0.

This implies, by the linearity and boundedness of T ∈ E∗, generic, that

|T (xn) − T (x)| = |T (xn − x)| ≤‖f‖‖xn − x‖ −→ 0.

We conclude by the arbitrariness of T .

Definition 2.2.7 (Weak * convergence). Let E be a normed space, (Tn)n∈N ⊆ E∗ be a
sequence of functionals. We say that (Tn)n∈N converges *weakly to T ∈ E∗ iff

∀x ∈ E : lim
x→∞ Tn(x) = T (x).

T is called the weak* limit of (Tn)n∈N.

Remark 2.2.3. Note that weak convergence implies *weak convergence. A proof of this
fact can be found in [20]

Now let X be a topological space. We say that a family of functions (fε)ε>0 ⊆ X
subconverges in X as ε → 0 iff from every sequence (εn)n∈N converging to zero it is possible
to extract a subsequence (εni

)i∈N such that (fεi
)i∈N converges in X as i → ∞.

A linear operator T : E → F is called a compact linear operator, or completely contin-
uous linear operator iff for any U ⊆ E bounded, T (U) is relatively compact, that is, T (U)
is compact.

Lemma 2.2.8 (Continuity of compact operators). Let T : E → F be any compact operator.
Then, T is bounded, hence, continuous.

Proof. Since T is compact, we have that for any bounded U ⊆ E, then T (U) is compact.
Now consider the unit ball in E, that is B(0, 1) ⊆ E, we have that

T (B(0, 1)) ⊆ F,

is compact and, therefore, bounded. So we have that,

||T || ≤ sup
||x||=1

||Tx|| < ∞,

which implies that T is bounded. We conclude.

Theorem 2.2.9 (Compactness criterion). Let E, F be normed spaces, T : E → F be a
linear operator. Then T is compact iff T maps every bounded sequence (xn)n∈N ⊆ E onto
a sequence (Txn)n∈N ⊆ F which has a convergent subsequence.
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Proof. If T is compact and (un)n∈N is bounded, then T (xn) is compact in F and by the
definition of a compact sequence, it has a convergent subsequence.

Conversely, we assume that every generic bounded sequence (xn)n∈N contains a subse-
quence (xnk

)k∈N such that T (xnk
)k∈N converges in F . We consider any bounded subset of

X, B ⊂ X, and let (yn)n∈N be any sequence in T (B).
Then, T (xn) = yn or some xn ∈ B, we have that (xn)n∈N is bounded since B is bounded.
Then, as T (xn) contains a convergent subsequence T (B) is compact by the arbitrariness
of (yn)n∈N in T (B).

Theorem 2.2.10 (Weak convergence and linear compact operators). Let T : E → F be
a linear compact operator and (xn)n∈N ⊆ E be a sequence that converges weakly to x ∈ E.
Then (Txn)n∈N ⊆ F converges strongly to Tx.

A proof of this theorem can be found in [18].

Theorem 2.2.11. Let E be a uniformly convex Banach space, (xn)n∈N ⊆ E and x ∈ E

such that
xn ⇀ x,

and
lim sup

x→∞
‖xn‖E ≤ ‖x‖E.

Then, xn converges strongly to x.
A proof of this theorem can be found in [4, Prop.3.32].

2.2.3 Lebesgue spaces
In order to ease the contents of this document, in this section we assume the reader has
some notions about measure theory such as Lebesgue measure, measurable sets, measurable
spaces, measurable functions and integrable functions. We shall state some commonly
known results in Lp(Ω) spaces that are important to our work.

Definitions, norm and properties
Let m denote the Lebesgue measure. As it’s usually done, we will adopt the abuse of
notation u = v for equality of functions if they coincide almost everywhere (a.e.), that is

m
(
{x ∈ R

N : u(x) 	= v(x)}
)

= 0.

Let Ω ⊆ R
N open, we set

L1(Ω) :=
{

u : Ω → R /

ˆ
Ω

|u(x)|dx < ∞
}

,
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with the functional || · ||L1(Ω) given by

||u||L1(Ω) =
ˆ

Ω
|u(x)|dx,

as the space of integrable functions.

Definition 2.2.12 (Lp(Ω) spaces). Let 1 ≤ p < ∞, for Ω ⊆ R
N open we define

Lp(Ω) :=
{
u : Ω → R / |u|p ∈ L1(Ω)

}
,

with the functional || · ||Lp(Ω) : Lp(Ω) → R given by

||u||Lp(Ω) =
(ˆ

Ω
|u(x)|pdx

) 1
p

.

Remark 2.2.4. For p = ∞ we set

L∞(Ω) :=
{
u : Ω → R / ∃C > 0 : |u(x)| ≤ C, for a.e. x ∈ Ω

}
.

Remark 2.2.5. We define the space L1
loc(Ω) as

L1
loc(Ω) :=

{
u : Ω → R / ∀K ⊆ Ω - compact:

ˆ
K

|u(x)|dx < ∞
}

,

the space of locally integrable functions.

Lp(Ω) spaces are normed spaces for any p. But before we state and prove the theorem,
we shall state some useful results.

To simplify notation, whenever there is no confusion, we set || · ||Lp(Ω) = || · ||p.
For 1 ≤ p ≤ ∞ we denote the conjugate exponent of p, p′, by

1
p

+ 1
p′ = 1. (2.5)

Lemma 2.2.13 (Young’s Inequality). Let a, b ≥ 0 and p > 1. Then

ab ≤ ap

p
+ bp′

p′ .

Theorem 2.2.14. [Hölder’s inequality] Let 1 ≤ p ≤ ∞. Assume that u ∈ Lp(Ω) and
v ∈ Lp′(Ω). Then, uv ∈ L1(Ω) and

ˆ
Ω

|uv| ≤ ||u||p||v||p′ .

A proof of this theorem can be found in [4].
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Remark 2.2.6. A particular case of Hölder’s inequality, known as the interpolation in-
equality, holds for 1 ≤ p ≤ q ≤ ∞, u ∈ Lp(Ω) ∩ Lq(Ω) and p ≤ r ≤ q. For β ∈ [0, 1] such
that

1
r

= β

p
+ 1 − β

q
,

we have
||u||r ≤ ||u||βp ||u||1−β

q .

We now state the theorem and prove it.

Theorem 2.2.15 (Lp(Ω) is a normed space). Let 1 ≤ p ≤ ∞. Then,
(
Lp(Ω), || · ||p

)
is a

normed space.

Proof. The cases p = 1 and p = ∞ are trivial. We assume that 1 < p < ∞ and let
u, v ∈ Lp(Ω), generic. For any x ∈ Ω and since | · | is a norm on R, by the triangle
inequality for | · |, we have that

|u(x) + v(x)|p ≤ (|u(x)| + |v(x)|)p ≤ 2p(|(u(x)|p + |v(x)|p),

which implies that u + v ∈ Lp(Ω) and proves that Lp(Ω) is a vector space since Lp(Ω) is a
subset of the space of linear functions and f ∈ Lp(Ω) =⇒ λf ∈ Lp(Ω).

Let’s now prove that || · ||p is a norm. Conditions i) − iii) are trivial, so we shall only
prove the triangle inequality. We have that

||u + v||pp =
ˆ

Ω
|u(x) + v(x)|p−1|u(x) + v(x)|dx

≤
ˆ

Ω
|u(x) + v(x)|p−1(|u(x)| + |v(x)|)dx

=
ˆ

Ω
|u(x) + v(x)|p−1|u(x)|dx +

ˆ
Ω

|u(x) + v(x)|p−1|v(x)|dx.

and by (2.5), noting that p′(p − 1) = p,

|f + g|p−1 ∈ Lp′(Ω).

Therefore, by Hölder’s inequality we have that

||u + v||pp ≤ ||u + v||p−1
p (||u||p + ||v||p),

that is
||u + v||p ≤ ||u||p + ||v||p.

We conclude by the arbitrariness of u and v.

Theorem 2.2.16 (Fischer-Riesz). Lp(Ω) is a Banach space for any p such that 1 ≤ p ≤ ∞.
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A proof of this theorem can be found in [4].
The following theorems are useful when doing computations on Lp(Ω) spaces.

Theorem 2.2.17 (Monotone convergence theorem). Let (fn)n∈N ⊂ L1(Ω) satisfying

i) fn ≤ fn+1 a.e. on Ω for all n ∈ N;

ii) sup
n∈N

ˆ
fn < ∞.

Then, there exists f ∈ L1(Ω) such that fn(x) → f(x) a.e. and ||fn − f ||1 → 0 as n → ∞.

Theorem 2.2.18 (Dominated convergence theorem). Let (fn)n∈N ⊂ L1(Ω) satisfying

i) fn(x) → f(x) a.e. on Ω,

ii) ∃g ∈ L1(Ω) : ∀n ∈ N: |fn(x)| ≤ |g(x)| a.e. on Ω.

Then f ∈ L1 and ||fn − f ||1 → 0, as n → ∞.

We denote by Cc(RN) the space of all continuous functions on R
N with compact support,

that is:

Cc(RN) := {f ∈ C(RN) / ∃K ⊆ R
N compact, ∀x ∈ R

N \ K : f(x) = 0}.

This space is dense on L1(Ω), a proof of this fact can be found in [4]. The notation C0(RN)
is also used.

Theorem 2.2.19 (Kolmogorov-Riesz-Fréchet). Let F ⊆ Lp(Ω) be a bounded set, 1 ≤ p <

∞. Assume that

∀ε > 0, ∃δ > 0, ∀f ∈ F : |h| < δ =⇒ ||τhf − f ||p < ε.

Then, F|Ω is relatively compact in Lp(Ω) for any Ω ⊆ R
N measurable. Here we denote

τhf := f(x + h) as the shift of f for x, h ∈ R
N .

A proof of this theorem can be found in [4].

Theorem 2.2.20. Let (fn)n∈N ⊆ Lp(Ω), f ∈ Lp(Ω) such that

‖fn − f‖Lp(Ω) → 0.

Then, there exists a subsequence (fnk
)k ∈ N ⊆ Lp(Ω) and a function h ∈ Lp(Ω) such that

a) fnk
(x) → f(x) almost everywhere on Ω;

b) ∀k ∈ N : |fnk
| ≤ h(x) almost everywhere on Ω.

A proof of this Theorem can be found in [4].
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2.2.4 Hilbert spaces
We say that

(
V, (·, ·)) is an inner-product space iff the functional (·, ·) : V ×V → R verifies:

i) ∀u, v, w ∈ V : (u + v, w) = (u, w) + (v, w);

ii) ∀λ ∈ R, ∀u, v ∈ V : (λu, v) = λ(u, v);

iii) ∀u, v ∈ V : (u, v) = (v, u);

iv) ∀u ∈ V : (u, u) ≥ 0.

Thus, the functional (·, ·) is known as an inner product.

Remark 2.2.7. Note that from the conditions above, it follows that

∀u ∈ V : (u, u) = 0 ⇐⇒ u = 0.

Proposition 2.2.1 (Inner product induces a norm). The inner product (·, ·) induces a
norm || · || given by

||u|| =
√

(u, u).

Before proving proposition 2.2.1 we shall state and prove the Cauchy-Bunyakovsky-
Schwarz (CBS) inequality for inner product spaces.

Lemma 2.2.21. [Cauchy-Bunyakovsky-Schwarz inequality] Let (V, || · ||) be an inner-
product space. Then,

∀x, y ∈ V : |(x, y)| =
√

(x, x)
√

(y, y). (2.6)

Proof. Let x, y ∈ V , generic. Let’s denote

‖x‖ = (x, x)1/2.

We have that

0 ≤ ||x − y||2 = ||x||2 − 2(x, y) + ||y||2 =⇒ (x, y) ≤ 1
2(||x||2 + ||y||2),

0 ≤ ||x + y||2 = ||x||2 + 2(x, y) + ||y||2 =⇒ (x, y) ≤ −1
2(||x||2 + ||y||2).

Then
|(x, y)| ≤ 1

2(||x||2 + ||y||2).

Therefore,

|(x, y)| = |(λx, λ−1y)|

≤ 1
2λ2||x||2 + 1

2λ2 ||y||2.

By taking, in particular, λ = ||y||||x||−1 we get our result. We conclude by the arbitrariness
of x and y.
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Proof of proposition 2.2.1. Let x, y ∈ V , generic. We shall only prove the triangle inequal-
ity for the induced norm since points i) and ii) are trivial. By the CBS inequality, we have
that

||x + y||2 := (x + y, x + y)

= ||x||2 + 2(x, y) + ||y||2

≤ ||x||2 + ||x||||y|| + ||y||2

= (||x|| + ||y||)2.

We conclude by the arbitrariness of x and y.

Corollary 2.2.2 (Parallelogram equality). From the proof of Proposition 2.2.1, the fol-
lowing equality, known as the parallelogram equality, holds:

∀x, y ∈ V :
∥∥∥∥∥x + y

2

∥∥∥∥∥
2

+
∥∥∥∥∥x − y

2

∥∥∥∥∥
2

= 1
2(||x||2 + ||y||2).

Definition 2.2.22 (Hilbert space). An inner-product space (V, (·, ·)) is said to be a Hilbert
space iff it’s complete with the norm induced by the inner product.

From now on, we shall refer to any arbitrary Hilbert space as H. We will now state
some properties of Hilbert spaces.

Proposition 2.2.2. Let H be a Hilbert space. Then, H is uniformly convex.

Proof. Let ε > 0 and u, v ∈ H generic be such that

|u| ≤ 1, |v| ≤ 1 and |u − v| ≥ ε.

By the parallelogram equality, we have∣∣∣∣∣u + v

2

∣∣∣∣∣
2

≤ 1 − ε2

4 ,

so that ∣∣∣∣∣u + v

2

∣∣∣∣∣ ≤ 1 − δ,

with

δ = 1 −
(

1 − ε2

4

) 1
2

> 0.

Since δ does not depend on u or v, we conclude our proof.
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Lemma 2.2.23 (Equality by using the inner product). Let V be an inner-product space
and u, v ∈ V , then

[∀w ∈ V : (w, u) = (w, v)] =⇒ u = v.

Proof. Assume that (w, u) = (w, v). Let w ∈ V , generic. Then, we have that

(w, u) = (w, v) =⇒ (w, u) − (w, v) = 0.

Now, by the linearity of the inner product and taking w = u − v we obtain

0 = (w, u − v)

= (u − v, u − v)

= ||u − v||
=⇒ u − v = 0

=⇒ u = v.

We conclude by the arbitrariness of w.

Theorem 2.2.24 (Riesz-Fréchet representation theorem). Let H be a Hilbert space and
ψ ∈ H∗. Then

∃!v ∈ H s.t ∀u ∈ H : ψ(u) = (u, v),

and
||ψ||H∗ = ||v||H .

A proof of this theorem can be found in [18].

Definition 2.2.25 (Self-adjoint operator). Let H be a real Hilbert space, we say that a
linear operator T : H → H is self-adjoint iff

∀u, v ∈ H : (Tu, v) = (u, Tv).

Theorem 2.2.26 (Banach-Alaoglu). Let H be a Hilbert space and (xn)n∈N ⊆ H be bounded.
Then (xn)n∈N has a weakly convergent subsequence.

A proof of this theorem can be found in [33, p.126].

2.3 Some topics on Sobolev spaces and partial differ-
ential equations

In this chapter we introduce some concepts about partial differential equations and Sobolev
spaces, the main setting of our work, and establish some of their most important properties.
Our sources for this section are [1], [4] and [10].
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2.3.1 Partial Differential Equations
We call multiindex to a vector α = (α1, ..., αN) ∈ N

N
∗ of order

|α| = α1 + · · · + αN .

Now let U : Ω ⊆ R
N −→ R. Given a multiindex α, we write:

DαU(x) := ∂|α|U(x)
∂α1

x1 · · · ∂αN
xN

≡ ∂α1
x1 · · · ∂αN

xN
U.

Definition 2.3.1 (Partial differential equation). Let’s fix an integer k ≥ 1. For Ω ⊆ R
N

open and a given F : RNk × R
Nk−1 × ... × R

N × R × Ω → R we define a partial differential
equation (PDE) as an expression of the form

F (Dku(x), Dk−1u(x), Du(x), u(x), x) = 0, x ∈ Ω, (2.7)

where we want to find, if it exists, a function u : Ω → R that satisfies (2.7). In this case,
u is known as the solution of (2.7). The order of the PDE is the order of the highest
derivative appearing in it.

Ideally, we want to find an explicit solution (or family of solutions) of (2.7) by adding
some constraints such as initial or boundary conditions that reflect characteristics of a
physical phenomena. It is not always possible to immediately find an explicit solution, so
we are limited to proving that it exists, finding some of it’s properties or approximating it
using numerical methods.

We say that (2.7) is:

i) Linear: if F is linear with respect to u and it’s derivatives, that is:∑
|α|≤k

aα(x)Dαu = f(x),

for given functions a, f . This PDE is homogeneous if f ≡ 0.

ii) Semilinear: if F is nonlinear with respect to u, but linear for its derivatives. That is,
it has the form ∑

|α|=k

aα(x)Dαu + a0(Dk−1u, ..., Du, u, x) = 0,

iii) Quasilinear: if F is linear for the highest derivatives of u. That is, it has the form∑
|α|=k

aα(Dk−1u, ..., Du, u, x) + a0(Dk−1u, ..., Du, u, x) = 0,

iv) Fully nonlinear: if F is nonlinear for the highest order of derivatives.
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Let L ∈ Ck(Ω) be a linear operator given by

Lu =
∑

|β|≤k

aβ(x)Dβu,

where β is a multiindex. Then, we say that L is elliptic iff

∀x ∈ Ω, ∀ζ ∈ R
N \ 0 :

∑
|β|=k

aβ(x)ζβ 	= 0.

Let u ∈ C2(RN), we say that u is harmonic if:

Δu = 0.

Additionally, if Δu ≤ 0 and Δu ≥ 0 we say that u is superharmonic and subharmonic,
respectively.

We will now state the mean value theorem for harmonic functions, which says that any
harmonic function u must be equal to the average of its values in a neighborhood of any
point. For Ω ⊆ R

N we use the following notation
 

Ω
u(x) ≡ 1

|Ω|

ˆ
Ω

u(x)dx,

where |Ω| is the measure of Ω.

Theorem 2.3.2 (Mean value theorem for harmonic functions). Let Ω ⊆ R
N be open and

u ∈ C2(Ω). If u is harmonic in Ω, then for any x ∈ Ω, r > 0 such that Br(x) ⊂⊂ Ω, we
have that

u(x) =
 

Br(x)
u(y)dx =

 
∂Br(x)

u(y)dS(y).

Conversely, if u verifies
u(x) =

 
∂Br(x)

u(y)dS(y),

then u is harmonic.

A proof of this theorem can be found in [10, Th.2 & 3, p.26], since its quite lengthy, it
is not included. Additionally, we use the notation Br(x) ⊂⊂ Ω to denote a compactly
contained set, that is:

Br(x) ⊂ Ω.

Theorem 2.3.3 (Strong maximum principle.). Let Ω ⊆ R
N be bounded, u ∈ C2(Ω) be a

harmonic function. Then, if Ω is connected and u attains its maximum M on int(Ω) then
u is constant in Ω.

Proof. Assume that
u(x0) = max

Ω
u = M.
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Let’s set
A = {x ∈ Ω / u(x) = M}.

Since u is continuous, A is closed. We shall prove that A is open. Let Br(x) ⊂⊂ Ω be such
that x ∈ A. Recall that

∀y ∈ Ω : u(y) ≤ M. (2.8)

Now, by (2.8) and since u is harmonic, by Theorem 2.3.2, we have that

0 = u(x) − M

=
 

Br(x)
u(y)dy − M

=
 

Br(x)
[u(y) − M ]dy

≤ 0.

And since M − u(y) ≥ 0 we obtain

∀y ∈ Br(x) : u(y) = M.

That is, Br(x) ⊂ A and A is open. Since Ω is connected, A = Ω. We conclude.

2.3.2 W1,p spaces
Let Ω ⊆ R

N , 1 ≤ p ≤ ∞. We say u ∈ Lp(Ω) belongs to the Sobolev space W 1,p(Ω) if there
exist f1, f2, ..., fN ∈ Lp(Ω) such that

∀ψ ∈ C∞
c (Ω), ∀i = 1, 2, ..., N :

ˆ
Ω

u
∂ψ

∂xi

= −
ˆ

Ω
fiψ. (2.9)

For the case when p = 2 we set

H1(Ω) = W 1,2(Ω).

For u ∈ W 1,p(Ω) we define ∂u

∂xi

= fi and we write

∇u =
(

∂u

∂x1
,

∂u

∂x2
, ...,

∂u

∂xN

)
= grad(u),

which makes sense since fi is unique a.e. The derivatives in the W 1,p space are called
weak derivatives. Note that when N = 1 the definition in (2.9) above coincides with the
integration by parts formula.

The space W 1,p(Ω) is equipped with the norm:

||u||W 1,p(Ω) = ||u||p +
N∑

i=1

∥∥∥∥∥ ∂u

∂xi

∥∥∥∥∥
p

.
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The space H1(Ω) is equipped with the scalar product

(u, v)H1(Ω) = (u, v)L2(Ω) +
N∑

i=1

(
∂u

∂xi

,
∂v

∂xi

)
=
ˆ

Ω
uv +

N∑
i=1

∂u

∂xi

∂v

∂xi

,

and the associated norm

||u||H1(Ω) =
⎛⎝||u||22 +

N∑
i=1

∥∥∥∥∥ ∂u

∂xi

∥∥∥∥∥
2

2

⎞⎠1/2

,

which is equivalent to the W 1,2 norm.

Remark 2.3.1. It is important to note that if u ∈ C1(Ω) ∩ Lp(Ω) such that its partial
derivatives belong to Lp(Ω), then they coincide with (2.9).

Some properties of W 1,p(Ω) are

i) ∀1 ≤ p ≤ ∞: W1,p(Ω) is a Banach space.

ii) ∀1 < p < ∞: W1,p(Ω) is reflexive and separable.

iii) H1(Ω) is a separable Hilbert space.

A proof of these facts can be found in [4, Prop. 9.1].

Remark 2.3.2. It is important to note that we could have also defined the W1,p(Ω) spaces
as the completion of

{u ∈ C∞(Ω)/ ‖u‖W 1,p(Ω) < ∞},

with the || · ||W 1,p(Ω) norm.

Similarly, for 1 ≤ p < ∞ we can define the spaces W1,p
0 (Ω) as the closure of C∞

0 (Ω) in
W1,p(Ω). Therefore, we set W1,2

0 (Ω) = H1
0(Ω) as the closure of C∞

0 (Ω) respect to the norm
|| · || given by

||u||2 :=
ˆ

Ω
|∇u(x)|2dx,

which is equivalent to the usual H1(Ω) norm by Poincaré’s inequality (2.13).
The space W1,p

0 (Ω) is a separable Banach space, reflexive when 1 < p < ∞. H1
0(Ω) is a

Hilbert space.

Remark 2.3.3. In general, W1,p(Ω) 	= W1,p
0 (Ω) on an arbitrary subset of RN . These spaces

are equal whenever Ω = R
N . Functions of W1,p

0 (Ω) are “roughly” those of W1,p(Ω) that
vanish on ∂Ω. This is important since a function in W1,p(Ω) is only defined a.e. and the
measure of ∂Ω is zero.
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Remark 2.3.4. Given U ⊆ R
N we usually identify any u ∈ H1

0(U) with its extension by
zero, u, of u in R

N \ U as an element of H1(RN) in the sense

u =

⎧⎪⎪⎨⎪⎪⎩
u(x), if x ∈ U ;

0, if x ∈ R
N \ U.

(2.10)

We now consider Ω ⊆ R
N to be open and of class C1. Geometrically, this means that

∂Ω is smooth and, locally, is the image of a continuous function whose image is contained
within Ω. Namely, ∂Ω is similar, locally, to ∂B1(0) ⊆ R

N , for more information about
domains of class C1 we refer the reader to [4] or [10].

Proposition 2.3.1. Assume that Ω ⊆ R
N is of class C1. Let 1 < p < ∞, u ∈ Lp(Ω). The

following statements are equivalent:

i) u ∈ W 1,p
0 (Ω);

ii) there exists a constant C > 0 such that

∀ψ ∈ C1
0(RN) :

∣∣∣∣∣
ˆ

Ω
u

∂ψ

∂xi

∣∣∣∣∣ ≤ C‖ψ‖Lp′ (Ω), ∀i = 1, 2, . . . , N.

iii) the function

u =

⎧⎪⎪⎨⎪⎪⎩
u(x), if x ∈ Ω;

0, if x ∈ R
N \ Ω.

Belongs to W 1,p(RN) and, in this case ∂u

∂xi

= ∂u

∂xi

.

A proof of this proposition can be found in [4, p. 304].

Theorem 2.3.4 (A weak maximum principle). Let Ω ⊆ R
N , u ∈ H1(Ω). Let L be an

elliptic operator satisfying Lu ≥ 0 (Lu ≤ 0) on Ω, then

sup
Ω

u ≤ sup
∂Ω

u+ (inf
Ω

u ≥ inf
∂Ω

u−),

where u+ := {x ∈ Ω : u(x) > 0}, u− := {x ∈ Ω : u(x) < 0}.

A proof of this theorem can be found in [15, p. 179].

2.3.3 Sobolev inequalities and immersion results
In this section we shall state, for dimension N ≥ 2, the Sobolev embedding theorem. We
begin by considering the following when Ω = R

N .
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Theorem 2.3.5. [Sobolev, Gagliardo, Niremberg] Let 1 ≤ p < N . Then

W 1,p(RN) ⊂ Lp∗(RN), (2.11)

and there exists a constant C = C(p, N) such that

∀u ∈ W 1,p(RN) : ||u||p∗ ≤ C||∇u||p. (2.12)

Where, p∗ is given by p∗ = pN

N − p
.

A proof of this theorem can be found in [4].

Corollary 2.3.1. Let 1 ≤ p < N . Then

∀q ∈ [p, p∗] : W 1,p(RN) ⊂ Lq(RN).

Proof. Let u ∈ Lq(RN), q ∈ [p, p∗] generic. Then, for any λ ∈ [0, 1] we have that:

1
q

= λ

p
+ 1 − λ

p∗ ,

then the interpolation inequality implies that

||u||q ≤ ||u||λp ||u||1−λ
p∗ ,

so that
||u||q ≤ ||u||λp ||u||1−λ

p∗ ≤ C||u||W 1,p .

Since u was taken arbitrarily, we conclude.

Corollary 2.3.2. Let 1 ≤ p < ∞. We have the following continuous injections⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
W1,p(Ω) ⊂ Lp∗(Ω) if p < N,

∀q ∈ [p.∞) : W1,p(Ω) ⊂ Lq(Ω) if p = N,

W1,p(Ω) ⊂ L∞(Ω) if p > N.

Moreover, if p > N , for any u ∈ W1,p(Ω) and for almost all x, y ∈ Ω we have that

|u(x) − u(y)| ≤ C||u||W 1,p|x − y|α,

with α = 1 − (N/p), C = C(Ω, p, N). In particular, we have

W1,p(Ω) ⊂ C(Ω).

A proof of this result can be found in [4].
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Theorem 2.3.6 (Rellich-Kondrachov). Assume that Ω is bounded and of class C1. Then,
we have the following compact injection for p < N .

∀q ∈ [1, p∗) : W1,p(Ω) ⊂ Lq(Ω).

A proof of this result can be found in [4].

Remark 2.3.5. Theorem 2.3.6 tells us that we can transform bounded sequences in
W1,p(Ω) into sequences that have convergent subsequences converging in Lq(Ω).

We shall finish by stating Poincaré’s inequality.

Corollary 2.3.3. Assume that 1 ≤ p < ∞ and that Ω is open and bounded. Then, there
exists a constant C = C(Ω, p) such that:

∀u ∈ W1,p
0 (Ω) : ||u||Lp(Ω) ≤ C||∇u||Lp(Ω). (2.13)

2.4 Some topics on nonlinear analysis and variational
calculus

On this chapter we will present some results of nonlinear analysis that are relevant to our
work. The main references for this section are [7],[10], [19] and [31].

2.4.1 Differentiability in normed spaces
We will start with the definitions of small o and directional derivative in order to lead us
to weak and strong derivatives and their properties.

Let E, F be normed spaces, O ⊆ E open such that 0 ∈ O, and g : O → F such that
g(0) = 0. Let

ε : B(0, r) ⊆ E → F,

be a mapping such that

lim
h→0

ε(h) = 0,

then, we say that g is a small o of h, denoted

g(h) = o(h)

iff

g(h) = ||h||ε(h)

Mathematician 27 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

which is equivalent to

lim
h→0

1
||h||g(h) = 0 = lim

h→0

||g(h)||
||h|| .

Let u ∈ O be a point, h ∈ E a direction and f : O → F . We call the directional
derivative of f at u in the direction h to the limit

∂hf(u) = lim
t→0

1
t
[f(u + th) − f(u)], (2.14)

if it exists. Note that in (2.14) we have that ∂λhf(u) = λ∂hf(u), for some λ ∈ R. Indeed,
by taking αλ = t

λ∂hf(u) = λ lim
t→0

1
t
[f(u + th) − f(u)]

= t

α
lim
t→0

1
t
[f(u + λαh) − f(u)]

= lim
t→0

1
α

[f(u + λαh) − f(u)]

= ∂λhf(u).

This allows us to define the following concepts:

Definition 2.4.1 (Weak derivative). We say that f is Gateaux (or weakly) differentiable
iff for every direction h the directional derivative exists and

∃f ′
G(u) ∈ L(E, F ), ∀h ∈ E : ∂hf(u) = f ′

G(u)h. (2.15)

Since the operator that satisfies (2.15) is unique, it is referred to as the Gateaux (or weak)
differential of f at u.

Definition 2.4.2 (Fréchet differentiability). Let u ∈ O be a point and f : O → F . If
∃φ ∈ L(E, F ) such that

∀h ∈ E : u + h ∈ O =⇒ f(u + h) − f(u) = φ(h) + o(h), (2.16)

then we say that f is Fréchet, or strongly, differentiable at u.

If f is differentiable in every point of O1 ⊆ O then we say that f is differentiable on O1.
If f is differentiable at all the points in its domain, we simply say that f is differentiable.

As in weak differentiation, we also have uniqueness of the bounded operator shown in
(2.16). This is stated in the following proposition.

Proposition 2.4.1 (Uniqueness of the Fréchet differential). Let E, F be normed spaces,
O ⊆ E, u ∈ O and f : O → F . If f is Fréchet differentiable, then its differential is unique.
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Proof. Let ϕ ∈ L(E, F ) be such that for every h ∈ E, with u + h ∈ O, it implies that

f(u + h) − f(u) = ϕ(h) + o(h). (2.17)

We have to prove that φ = ϕ, that is,

∀v ∈ E : φ(v) = ϕ(v).

So let v ∈ E, generic. Since O is open, there exists r > 0 such that

B(u, r) = u + B(0, r) ⊆ O.

Then, from (2.16) and (2.17) we get

∀h ∈ B(0, r) : φ(h) + ||h||ε1(h) = ϕ(h) + ||h||ε2(h), (2.18)

with functions ε1, ε2 : B(0, r) → F vanishing to 0 as h goes to 0. We distinguish two cases:

1. If v = 0, then, by linearity, we have that 0 = φ(v) = ϕ(v).

2. If v 	= 0 we choose N ∈ N such that for every n ∈ N with n > N

hn = 1
n

· 1
||v||v ∈ B(0, r).

So that (2.18) provides

φ(hn) − ϕ(hn) = ||hn||[ε2(hn) − ε1(hn)]

and

φ(v) − ϕ(v) = ||v||[ε2(hn) − ε1(hn)].

Now, since ε1 and ε2 vanish at 0, we let n → ∞ and get our desired result. We conclude
by the arbitrariness of v.

The previous allows us to rewrite (2.16) as:

f(u + h) − f(u) = f ′(u)h + o(h).

And refer to the operator
f ′(u) ∈ L(E, F ),

as the differential of f at u. This operator is sometimes referred as the Fréchet differential
of f at u. Moreover, we shall denote f ′(u) = φ(u) evaluated at v ∈ E by φ(u)v and
Df(u) = f ′(u).
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Remark 2.4.1. It is clear that Fréchet (strong) differentiation implies Gateaux (weak)
differentiation, and whenever this happens we write

Df(u) = f ′(u) = f ′
G.

Whenever f is a functional, then f ′(u) ∈ E∗ and it is called the (first) variation of f
at u, written as:

f(u + h) − f(u) = 〈f ′(u), h〉 + o(h).

Let us state some useful proposition and properties of the differential.

Proposition 2.4.2 (Differentiability implies continuity). Let f : O ⊆ E → F . If f is
differentiable at u ∈ O, then f is continuous at u.

Proof. We have that

∀h ∈ E : u + h ∈ O =⇒ f(u + h) = f(u) + f ′(u)h + o(h).

Now, since f ′(u) is a continuous linear operator and since lim
h→0

o(h) = 0, we have that

lim
h→0

f(u + h) = f(u),

that is

lim
x→u

f(x) = f(u),

so that, f is continuous at u.

The next two results involve the operator f : O ⊆ E → F . We have that,

1. If f is a constant operator, then ∀u ∈ O : f ′(u) = 0.

2. If f ∈ L(E, F ), then ∀u ∈ E : f ′(u) = f .

Additionally, differentiability is linear, that is:

Proposition 2.4.3 (Linearity). Let λ ∈ R and f, g : O ⊆ E → F be differentiable at
u ∈ O. Then λf + g is differentiable at u and:

(λf + g)′(u) = λf ′(u) + g′(u).

Proof. Since f and g are differentiable, we have that:

∀h ∈ E : u + h ∈ O =⇒ f(u + h) − f(u) = f ′(u)(h) + ||h|| · ε1(h), (2.19)

∀h ∈ E : u + h ∈ O =⇒ g(u + h) − g(u) = g′(u)(h) + ||h|| · ε2(h), (2.20)
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where

ε1 → 0 and ε2 → 0, as h → 0.

We have to prove that:

∀h ∈ E : u + h ∈ O =⇒ (λf + g)(u + h) − (λf + g)(u) = ϕ(h) + ||h|| · ε(h), (2.21)

where ϕ = λf ′(u) + g′(u) ∈ L(E, F ) and

ε(h) → 0 as h → 0.

So let h ∈ E be such that u + h ∈ O. By (2.19) and (2.20), we have that:

(λf + g)(u + h) − (λf + g)(u) = λ[f(u + h) − f(u)] + [g(u + h) − g(u)]

= λ[f ′(u)(h) + ||h|| · ε1(h)] + [g′(u)(h) + ||h|| · ε2(h)]

= ϕ(h) + ||h||ε(h),

where

ε(h) = ε1(h) + ε2(h) → 0 as h → 0.

We conclude by the arbitrariness of h.

Proposition 2.4.4 (Differential of a product). Let F be a commutative algebra. Let
f, g : O → F be differentiable at u ∈ O, then, f · g is differentiable at u and

(f · g)′(u) = g(u)f ′(u) + g′(u)f(u).

For the proof of this proposition we refer our reader to [7] or [19].
Now, assume that G is a normed space, U ⊆ F is open and that the operators

f : O → F, g : U → G,

verify that f(O) ⊆ U . So that the mapping g ◦ f is defined on O, i.e.,

g ◦ f : O −→ G

X �−→ (g ◦ f)(u) = g(f(u)).

and we have:

Theorem 2.4.3 (Chain rule). Assume that f(O) ⊆ U . If f is differentiable at u ∈ O and
g is differentiable at f(u), then g ◦ f is differentiable at u and

(g ◦ f)′ = g(f(u)) ◦ f ′(u).

The proof of this theorem is based on (2.16) and and it can be reviewed in [7] and [19].
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2.4.2 The C1 class
Now we will define an important concept such as the class of continuous functions with one
continuous derivative, or C1 class. As before, consider E, F as normed spaces and O ⊆ E
as an open set.
We say that f : O → F belongs to the class C1(O, F ) iff

1. f is differentiable.

2. the function

f ′ : O ⊆ E −→ L(E, F )
x �−→ f ′(x),

is continuous.

Whenever these two conditions hold, and there is no confusion, we say that f is of class
C1.

Remark 2.4.2. We have the following result on the C1 class. Let Ω ⊆ R
N open and

f : Ω −→ R be such that all its partial derivatives exist and are continuous at Ω. Then

f ∈ C1. (2.22)

2.4.3 Palais-Smale condition and the Krasnoselskii genus
Before explaining what the Palais-Smale condition for sequences is, we shall explain a little
bit about critical points and extremum.

Consider X as a non-void set and f : X −→ R, we have the following definitions:

i) We say that a ∈ X is a point of (global) minimum iff

∀a ∈ X : f(a) ≤ f(x).

If this holds, we say that the value f(a) is the minimum of f .

ii) We say that a ∈ X is a point of (global) maximum iff

∀a ∈ X : f(a) ≥ f(x).

If this holds, we say that the value f(a) is the maximum of f .

iii) A point a ∈ X of either minimum or maximum is called a point of (global) extremum.
In this case, we say the the corresponding value f(a) is an extremum of f .

Additionally, we have that a continuous function on a compact set always achieves its
extremums.

Theorem 2.4.4 (Extremum on a compact). Let (X, T ) be a topological space, A ⊆ X

compact and f ∈ C(X). Then f achieves its extremums in A, that is

∃xm, xM ∈ A, ∀x ∈ A : f(xm) ≤ f(x) ≤ f(xM).
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Theorem 2.4.4 provides an existence result but provides no uniqueness, however, when-
ever xm ∈ A is the only point where f achieves its minimum, we say that xm is the point
of strict minimum and that the value f(a) is the strict minimum. We can speak the same
way of the strict maximum.

Consider now Y ⊆ X and g : Y −→ R. We say that a ∈ Y is a point of local minimum
of f iff

∃G ∈ N (a), ∀x ∈ G ∩ Y : g(a) ≤ g(x).

So whenever this holds, we say that the value f(a) is a local minimum of f . We can say
the same for local maximum and local extremum.

Definition 2.4.5 (Critical point). Let E, F be normed spaces, O ⊆ E open and f : O −→
R. We say that x ∈ O is a critical point of f iff f is differentiable at x and

f ′(x) = 0.

We shall denote the set of all critical points of f as:

K(f) := {x ∈ O/f ′(x) = 0}.

The corresponding value f(x) = c ∈ R is called a critical value or a critical level. If c is
not a critical value, it is called a regular value.

Corollary 2.4.1. Let E be a normed space, O ⊆ and f : O → R. Assume that:

i) f has a local extremum at x ∈ O;

ii) f is differentiable at x.

Then, x is a critical point of f , i.e.,

f ′(x) = 0.

We are now ready to define the Palais-Smale condition for sequences.

Definition 2.4.6 (Palais-Smale). Let E be a Banach space and Φ ∈ C1(E). Then
(un)n∈N ⊆ E is called a Palais-Smale (PS) sequence iff

(Φ(un)) is bounded and Φ′(un) → 0.

If Φ(un) → c ∈ R and Φ′(un) → 0, then (un) is a (PS)c-sequence. The functional Φ is
said to satisfy the (PS) condition (or (PS)c condition) if each (PS) (or (PS)c) sequence
has a convergent subsequence.

Remark 2.4.3. It is clear that if a (PS) sequence, or a subsequence, converges to u, then
u is a critical point of Φ.
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In the following subsections we will use the concept of manifold, so let us define it.

Definition 2.4.7 (Ck differentiable manifold). Let H be a Hilbert space, O ⊆ H open.
M ⊆ H closed is said to be a Ck differentiable manifold iff there exists Φ ∈ Ck(U), c ∈ R

a regular value of Φ and
M = Φ−1(c).

Moreover, for u ∈ M we say that

TuM := Ker(DΦ(u)),

is the tangent space of M at u.

Krasnoselskii’s genus
Let E be a Banach space. We define the class of all closed, symmetric subsets of A ⊆ E
that do not contain 0 as

ΣE = {A ∈ E/ A = A, A = −A, 0 /∈ A}.

The genus of A, denoted γ(A), is the smallest integer k such that there exists and odd
mapping h ∈ C(A,Rk − {0}). That is, for a given A ∈ ΣE we set

K = {k ∈ N / ∃f ∈ C(A,Rk \ {0}) odd }.

and the Krasnoselskii genus as:

γ(A) := inf(K),

We set γ(∅) = 0 and γ(A) = ∞ if K = ∅.
The concept of Krasnoselskii’s genus is a generalization of the concept of dimension and it
is possible to use it to explain the previously described critical point theory.

The following lemma states some properties of the genus.

Lemma 2.4.8. Let A1, A2 ∈ ΣE. Then, we have that:

i) If A1 ⊆ A2 then γ(A1) ≤ γ(A2),

ii) γ(A1 ∪ A2) ≤ γ(A1) + γ(A2),

iii) If η ∈ C(A, E) is odd, then γ(A) ≤ γ(η(A)).

iv) If A is compact then γ(A) < ∞ and there exists a symmetric neighborhood UA of A

such that

γ(UA) = γ(A).
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A proof of this lemma can be found in [3].

Let S denote the unit sphere in E, that is:

S1(0) := {u ∈ E : ||u|| = 1},

the following theorem regarding critical points and the genus holds.

Theorem 2.4.9. Let E be an infinite dimensional Banach space. Assume that Φ ∈
C1(S,R) is bounded from below satisfies the PS condition, then

Φ has infinitely many pairs of critical points.
A proof of this theorem can be found in [27]. While we do not include the proof here,

it is important to show that for any j ∈ N it defines

Γj = {A ⊂ S : A = −A, A compact and γ(A) > j},

and point out that it shows that every

cj = inf
A∈Γj

sup
u∈A

Φ(u),

is a critical level. Moreover if cj = ... = cj+p for some p ≥ 0, then:

γ(Kcj
) ≥ p + 1,

where

Kcj
:= {u ∈ S : Φ(u) = cj and Φ′(u) = 0}.

Hence, as in [31], the number of critical points is infinite regardless of whether the number
of distinct cj’s is finite or not.

2.4.4 Nehari Manifolds
In order to describe Nehari manifolds in an abstract setting we shall assume that E is a
real Banach space and Φ ∈ C1(E). Recall that the Fréchet derivative of Φ at u belongs to
the dual space, that is:

Φ′(u) ∈ E∗.

Furthermore, assume that u 	= 0 is a critical point of Φ. Then, necessarily, u is contained
in the set

N := {u ∈ E \ {0} : Φ′(u)u = 0}. (2.23)

So that N is a natural constraint for the problem of finding nontrivial critical points of Φ
and it is called the Nehari manifold although, in general, it may not be a manifold. By
setting

c := inf
u∈N

Φ(u), (2.24)

we hope that c is attained at some u0 ∈ N under appropriate conditions.
Now, without loss of generality, we assume that E is uniformly convex, Φ(0) = 0. We

say that ϕ ∈ C(R) is a normalization function iff
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i) ϕ(0) = 0;

ii) ϕ is strictly increasing;

iii) ϕ(t) → ∞ as t → ∞.

We shall need the following assumptions:

(A1) There exists a normalization function ϕ such that

u �→ ϕ(u) :=
ˆ ||u||

0
ϕ(t)dt ∈ C1(E \ {0},R).

So that J := ϕ′ is bounded on bounded sets and for every w ∈ S : J(w)w = 1.

(A2) For any w ∈ E \ {0} there exists sw ∈ (0, ∞) such that if we set the function
αw(s) := Φ(sw) we have that:

0 < s < sw =⇒ α′
w(s) > 0,

s > sw =⇒ α′
w(s) < 0.

(A3.a) There exists δ > 0 such that
sw ≥ δ;

(A3.b) for any W ⊂ S compact, there exists CW ∈ R such that

∀w ∈ W : sw ≤ CW .

The functional J in (A1) is called the duality mapping corresponding to ϕ. For (A1) to
hold we need || · || ∈ C1(E \{0},R). The case that will interest us the most is E = W1,p

0 (Ω)
with Ω ⊂ R

N bounded, p > 1 and setting ϕ(t) := tp−1. The associated functional ψ is
given by

ψ(u) = 1
p

||u||p,

and the duality mapping

J = ψ′ : E → E∗,

given by
〈J(w), v〉 =

ˆ
Ω

|∇w(x)|p−2∇w(x) · ∇v(x)dx,

is continuous and bounded on bounded sets.
From (A2) we have that for any w ∈ S1(0) the function αw attains a unique maximum

sw ∈ (0, ∞) such that

0 < s < sw =⇒ α′
w(s) > 0,

s > sw =⇒ α′
w(s) < 0.
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And, for some δ > 0 independent of w

sw > δ.

Then

α′
w(sw) = Φ′(sww) = 0.

So that sww is the unique point on the ray s �→ sw, s > 0, which intersects N .
Moreover N is closed and bounded away from 0 by the first part of (A3), let’s use the

mappings defined in [31]

m̂ := E \ {0} −→ N and m : S −→ N ,

by setting

m̂(w) = sww and m := m̂|S.

So that the following proposition holds.

Proposition 2.4.5. Assume that Φ satisfies (A2), (A3.a) and (A3.b). Then

a) The mapping m̂ is continuous.

b) The mapping m is a homeomorphism (bijective and bicontinuous) between S and N ,
and the inverse of m is given by m−1(u) : u/||u||.

Proof. (a) Assume that wn → w 	= 0. Since

∀t > 0 : m̂(tw) = m̂(w),

we assume that wn ∈ S for any n ∈ N, so we need to prove that

m̂(wn) = m̂(w), (2.25)

after passing to a subsequence. Let’s denote

m̂(wn) = snwn.

By (A2), (A3.a) and (A3.b), we have that the sequence (sn)n∈N is bounded and bounded
away from 0, so that we can take a subsequence

sn → s > 0. (2.26)

Since N is closed and by (2.26) we have that

sw ∈ N .
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hence

sw = sww = m̂(w).

Which proves (2.25).
(b) Is a direct consequence of (a).
We conclude our proof.

Additionally, it is clear that c in (2.24) is positive if attained. We also have that u0 ∈ N
is a critical point whenever Φ(u0) = c. Note that since s �→ αw(s) is increasing for any
w ∈ S, 0 is a local minimum and a critical point of Φ.
Since u0 is a solution of the equation

Φ′(u) = 0,

that has minimal energy Φ in the set of all nontrivial solutions, we shall call it a ground
state.

Let’s remark that a point u ∈ E is a nonzero critical point of Φ if and only if u ∈ N
and u is critical for the restriction of Φ to N . So that we can apply critical point theory
on the Nehari manifold in order to find critical points of Φ.
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Chapter 3

A short introduction to Quantum
Mechanics

In this chapter we provide some elementary ideas about Quantum Mechanics (QM). We
begin by presenting a historical overview. Then, in Sections 3.3 and 3.4 we consider the
mathematical approaches followed by Erwin Schrödinger and Werner Heisenberg, which
helped to give birth to the field. The main sources for this chapter are [14], [16], [18] and
[26].

3.1 Historical background
Throughout its years of existence, quantum theory has proven to be exceptionally fruitful
and interesting. The perception that our physical world, that had been considered to be
an area of clear, determined and consistent problems, was shattered in the early years of
the 20th century because of various discoveries that showed that, at a subatomic level, our
world was erratic and cloudy in it’s behavior, [26]. This was the biggest change in the way
we understood our world since the days of Sir Isaac Newton, so much that the progenitor
of relativity theory, Albert Einstein, resolutely opposed it up onto the very end of his life.

The starting point of QM was Planck’s idea that electromagnetic radiation is emitted
and absorbed in discrete amounts of energy, called quanta. This was further strengthened
by Einstein since quanta proved useful in fixing an inconsistency in the framework of the
photoelectric effect, [26]. Thus, the first quantum particles to be named emerged: photons.
These provided a glimpse into the wave-particle duality of light. Then came the atomic
model proposed by Bohr, [26], which stated that electrons orbited around fixed orbits,
jumping from orbit to orbit without going through intermediate states.

All of this culminated in Heisenberg and Schrödinger’s work: QM. Also came the in-
corporation of quantum electro-magnetic radiation which was accomplished by Jordan,
Pauli, Heisenberg, Born, Dirac and Fermi. We will briefly describe the Geiger-Marsden
experiments, [26], and present, as shown in [14], a version of the double-slit experiment
that confirms the particle-wave duality of light.
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In 1911 Rutherford conducted the Geiger-Marsden experiments in which the planetary
model of an atom was established by studying how some small, positively charged projec-
tiles called α-particles behaved when they hit a thin gold film. Many of these α-particles
passed trough unaffected but some were substantially deflected, making Rutherford theo-
rize that it was because the positive charge of gold atoms could not be spread around and
instead must be concentrated around the centre of the atom. This model proposed that
almost all the weight of the atom would be concentrated on a tiny nucleus of 10−13 − 10−12

cm at the center, with electrons orbiting around it, [14]. With the electrons being repelled
or attracted to the nucleus via Coulomb forces. However, in classical physics this model is
unstable since the size of an atom is about 10−8 cm.

The double-slit experiment
This experiment is a modern version equivalent to the scattering of electrons conducted by
Young in 1805. As seen in [14], it can be abstracted as the double-slit experiment, wherein
an interference pattern for electrons is displayed, similar to that of waves.

We assume that a current of electrons is fired at a wall, acting as a shield, in which two
slits have been cut. On the other side of the wall there is a detector screen.

Figure 3.1: Shield set up and electron firing. Source [14].

The electrons that pass trough the slits will hit the sensor barrier, in whose case their impact
positions will be recorded. If either one of the slits is closed, after sufficient impacts there
will be enough data for a intensity distribution, pictured in Figures 3.2 and 3.3
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Figure 3.2: Intensity distribution when
slit 1 is blocked. Source [14].

Figure 3.3: Intensity distribution when slit 2
is blocked. Source [14].

A striking result is shown in Figure 3.4 when both slits are open.

Figure 3.4: Intensity distribution when both slits are open. Source [14].

Contrary to what we would expect, the intensity distribution is not the sum of the previous,
that is; P 	= P1+P2. Based on this observations, we claim that matter behaves in a random
way since we cannot exactly predict where a given electron will hit the sensor, we can only
determine the distribution of impacts, [14].

Remark 3.1.1. It is important to observe that the intensity pattern we observe when
both slits are open is similar to the one seen when a wave propagates trough the slits, as
seen in Figure 3.5 below.
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Figure 3.5: Pattern generated when waves go through the slits. Source [14]

A wave enters through each slit, splitting into new waves E1 and E2, represented by complex
numbers that encode the information amplitude and phase, that crash into each other, the
split waves generate a combined pattern that is proportional to:

|E1 + E2|2 	= |E1|2 + |E2|2.

This allows us to conclude that matter also exhibits wave-like properties. These observa-
tions form a central part of the impact introduced by QM.

3.2 Wave functions and the state space
In QM, the state of a particle is described by a complex-valued function

ψ : R3 × R −→ C

(x, t) �−→ ψ(x, t),

where x and t represent position and time, respectively. We refer to this function as a state
function or wave function, [14]. Recall that the state of a particle at a time t is related to
the probability distribution of its position. Thus, the following conditions seems natural
for our wave function:

1. The probability distribution of the position of a particle at time t will be given by
|ψ(·, t)|2.

2. As a consequence, it’s required the normalization
ˆ
R3

|ψ(x, t)|2dx = 1.

3. The probability that a particle is in a region Ω ⊆ R
3 at time t is given by

|ψx|1 =
ˆ

Ω
|ψ(x, t)|2dx.
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An immediate consequence of points 1 and 2 is that for any time t, the wave function has
to be square integrable, that is;

∀t ∈ R : ψ(·, t) ∈ L2(R3),

Recall that L2(R3) is a Hilbert space with its own inner product, see Section 2.2.3.

3.3 The Schrödinger equation
Based on what we have presented, let’s give a motivation to the equation that determines
the evolution of a particle’s wave function and total energy, the Schrödinger equation.
First, by [14] we shall state three conditions that any wave function should satisfy.

1. Causality: If we know ψ(t0) at a time t = t0, then we should be able to determine
the state at all the following times t > t0. Therefore ψ must satisfy the following
equation, for some operator T ∈ L2(R3),

∂

∂t
ψ = Tψ. (3.1)

2. Superposition principle: If ψ and φ are any state functions, then their sum, ψ + φ is
also a state function. This suggests that the operator T must be linear.

3. Correspondence principle: Quantum theory results must be in accordance to those
obtained from classical methods, when dealing within the same setting.

Applying the third principle to the Hamilton-Jacobi equation (HJ), and using an anal-
ogy with the eikonal equation in the transition from wave optics to geometrical optics,
seen in [14], leads us to an explicit expression for (3.1), indeed:

∂S

∂t
= −h(x, ΔS), (HJ)

where h(·, ·) is the classical Hamiltonian, where for a particle of mass m moving in a
potential V is given by

h(x, k) = 1
2m

|k|2 + V (x),

and S(x, t) is the classical action. We look for solutions of (3.1) in the form

ψ(x, t) = a(x, t)ei
S(x,t)

� ,

where

� =6.62607015 × 10−34Kg · m2 · s−1
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is the reduced Planck constant and S(·, ·) satisfies (HJ). Now, by assuming that a is
independent of �, it is shown that, to leading order, ψ then satisfies the equation

i�
∂

∂t
ψ(x, t) = − �

2

2m
Δxψ(x, t) + V (x, t)ψ(x, t). (3.2)

= Hψ(x, t), (3.3)

Equation (3.2) is also known as the time-dependant Schrödinger equation. Let’s also note
that in equation (3.3) the linear operator H is called the Schrödinger operator and it is
given by:

Hψ := − �
2

2m
Δψ + V ψ. (3.4)

The Laplacian operator in (3.4) describes the kinetic energy of the system while the po-
tential V is related to the potential energy. If the reader wants to know more about the
process used to obtain (3.2), we refer to [14] and [16].

The time-independent Schrödinger equation
To describe a particle we need non-trivial solutions of equation (3.2), [16]. We do this by
applying the separation of variables method, that is, we look for solutions of the form:

ψ(x, t) = v(x)φ(t), ∀x ∈ R
3, t ∈ R. (3.5)

So, by assuming that V is independent of time, V (t, x) = V (x), and replacing (3.5) into
(3.2), as seen in [16], we obtain the following:

i�v(x)∂φ(t)
∂t

= − �
2

2m
Δv(x)φ(t) + V (x)v(x)φ(t),

i�
1

φ(t)
∂φ(t)

∂t
= − �

2

2m

1
v(x)Δv(x) + V (x). (3.6)

We note that the left side of (3.6) does not depend on position and the right side does
not depend on time, hence both must be equal to a separation constant. We will call this
constant E. We obtain:

i�
1

φ(t)
∂φ(t)

∂t
= E, (3.7)

and

− �
2

2m
Δv(x) + V (x)v(x) = Ev(x). (3.8)

Moreover, (3.7) is a well known ordinary differential equation whose general solution is
φ(t) = e

−iEt
� and equation (3.8) is known as the time-independent Schrödinger equation,

[14]. No further can be done without specifying the potential V . However, it is immediate
that a solution of (3.8), does not need to be complex-valued, so that the solution has the
form:

ψ(x, t) = v(x)e−iEt
� , (3.9)

which is also known as a standing wave.
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3.4 The Heisenberg uncertainty principle
Before stating the Heisenberg uncertainty principle we must recall that, in QM, the state
of a particle at a time t is described by its state function ψ. We will briefly describe one of
the tools used to extract information about state functions, the kind of operators referred
to as observables, [14].

3.4.1 Observables
An observable is an unbounded self-adjoint operator, [18], defined on L2(R3). It represents,
roughly speaking, any measurable property of a physical system, namely; position, spin,
energy and momentum, among others. We have already stated and studied some parts
of the behavior of the Schrödinger operator, this operator describes the total energy of a
particle described by its wave function. We refer the reader to [14] for the specific proof of
the self-adjointedness of H and for further information about other observables. However,
at a formal level, for any u, v ∈ H1

0 (R3) ∩ H2(R3), applying integration by parts twice, we
obtain

(−Δu, v) =
ˆ
R3

−Δu(x)v(x)dx

= −
ˆ
R3

Δu(x)v(x)dx

=
ˆ
R3

∇u(x)∇v(x)dx

= −
ˆ
R3

u(x)Δv(x)dx

=
ˆ
R3

u(x)(−Δv(x))dx

= (u, −Δv).

The border integrals disappear since u has compact support.
We define the mean value of an operator T ∈ L2(R3) at a state ψ by

〈ψ, Tψ〉 = 〈T 〉ψ. (3.10)

Moreover, for any ψ satisfying (3.2), we can compute:

d

dt
〈T 〉ψ = d

dt
〈ψ, Tψ〉

= 〈ψ̇, Tψ〉 + 〈ψ, T ψ̇〉

=
〈

1
i�

Hψ, Tψ

〉
+

〈
ψ, T

1
i�

Hψ

〉

=
〈

ψ,
i

�
HTψ

〉
−

〈
ψ, T

i

�
Hψ

〉

=
〈

ψ,
i

�
[H, T ]ψ

〉
, (3.11)
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to analyze how the mean value of an observable in a state ψ evolves in time. Note that in
(3.11)

[H, T ] := HT − TH

is the commutator of H and T . We define x̂j : ψ(x) �→ xjψ(x) as the coordinate multipli-
cation operator, we will explain more about x̂j in Section (3.4).

Recall that

H = − �
2

2m
Δ + V, (3.12)

Δ(xjψ) =xjΔψ + 2 ∂

∂xj

ψ.

Now, using the commutator operator, for x̂j we obtain

i

�
[H, x̂j] = −i�

m
∇j,

leading us to the equation

d

dt
〈ψ, xjψ〉 = 1

m
〈ψ, −i�∇jψ〉. (3.13)

So that, by denoting the operator −i�∇j as pj and using (3.10), equation (3.13) becomes

m
d

dt
〈x̂j〉ψ = 〈pj〉ψ, (3.14)

which is reminiscent of the definition of classical momentum. The operator p is known as
the momentum operator. Using the Fourier transform, [14, 18], we can compute the mean
value of p as

〈ψ, pjψ〉 = 〈ψ̂, p̂jψ〉
= 〈ψ̂, kjψ̂〉

=
ˆ
R3

kj|ψ̂(k)|2dk.

This and similar computations, show that |ψ̂(k)|2 is the probability distribution for the
particle momentum.

3.4.2 The Heisenberg representation
The framework outlined until this point is known as the Schrödinger representation of QM.
However, chronologically, QM was first formulated in the Heisenberg representation, which
we will describe using the former. We consider two observables known as position and
momentum, the latter being briefly described above.

For j ∈ {1, ..., N} and ψ a state function, we have:
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1. The position observable for the jth coordinate xj:

x̂j : Dj ⊆ L2(RN) −→ L2(RN)
ψ(x) �−→ x̂j[ψ](x) = xjψ(x),

where
Dj :=

{
ψ ∈ L2(RN) /

ˆ
RN

|xjψ(x)|2 < +∞
}

2. The momentum observable for the jth coordinate pj:

pj : Uj ⊆ L2(RN) −→ L2(RN)

ψ(x) �−→ pj[ψ](x) = ∂

∂xj

ψ(x),

where
Uj :=

{
ψ ∈ L2(RN) /

∂

∂xj

ψ exists and belongs to L2(RN)
}

We want to compute d
dt

〈x̂j〉 using (3.12) to obtain what we will refer to as the Heisenberg
equations. Since Δ(xjψ) = xjΔψ + 2 ∂

∂xj
ψ, it follows that:

i

�
[H, x̂j] = −i�

m

∂

∂xj

= −i�

m
pj.

Now, (3.11) implies that

d

dt
〈x̂j〉ψ = 1

m
〈pj〉ψ. (3.15)

Notice that the previous expression is similar to (3.14). Similarly, we can compute d

dt
〈pj〉ψ

using the facts that:

1. [Δ, pj] = 0 and,

2. [V, pj] = i� ∂
∂xj

V .

We obtain
i

�
[H, pj] = − ∂

∂xj

V,

thus,

d

dt
〈pj〉ψ =

(
∂

∂xj

V

)
ψ

. (3.16)

We refer to equations (3.15) and (3.16) as the Heisenberg equations.
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3.4.3 Uncertainty principle
Consider a particle in a state ψ. We can think of the observables x̂j and p as random
variables with their respective probability distributions, as shown in Sections 3.2 and 3.4.1.
Then, we can describe their standard deviations, or dispersion in the state ψ, by use of
their mean values 〈x̂j〉ψ and 〈pj〉ψ, as

σ(x̂j)2 := 〈(x̂j − 〈x̂j〉ψ)2〉ψ,

and

σ(pj)2 := 〈(pj − 〈pj〉ψ)2〉ψ,

respectively. This allows us to state the Heisenberg Uncertainty Principle as follows:

Theorem 3.4.1 (Heisenberg Uncertainty Principle). For any state function ψ, we have
that:

(σx̂j
)2(σpj

)2 ≥ �

2 . (HUP)

Proof. In order to prove (HUP) we will consider the commutation relation

i

�
[pj, x̂j] = 1 = δjk.

As in [14], we will assume that

〈x̂j〉ψ = 〈p〉ψ = 0,

for notational simplicity. Let’s now recall that for two self-adjoint operators T and S and
ψ ∈ D(T ) ∩ D(S) we have that

〈i[T, S]〉ψ = −2Im〈Tψ, Bψ〉. (3.17)

Now, by assuming that ||ψ||L2 = 1 and that ψ ∈ Dj ∩ Uj, by (3.17) we obtain

1 = 〈ψ, ψ〉 = 〈ψ,
i

�
[pj, x̂j]ψ〉

= −2
�

Im〈pjψ, x̂jψ〉

≤ 2
�

|〈pjψ, x̂jψ〉|

≤ 2
�

||pjψ||||x̂jψ|| = 2
�

(σx̂j
)2(σpj

)2.

This concludes our proof.

This famous theorem says that a small dispersion of the momentum implies greater dis-
persion of the position and vice-versa. Physically, it means that we cannot simultaneously
measure momentum and position of a particle with unlimited accuracy, [18].
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3.5 The nonlinear Schrödinger equation
From the description provided by thermodynamics, within a gas it can be assumed as if all
the particles behave in the same manner and, in principle, they can occupy certain energy
states, or rather, quantum states, [29]. If the particles are fermions, they cannot occupy
the same quantum state, this is given by the Pauli exclusion principle. This is not the case
with bosons as any number of them can occupy the same quantum space and moreover,
they will increase occupation of the states of minimum energy as the temperature tends to
zero.

For collections of bosons, as the temperature goes to zero, all the particles are going to
occupy the same energy state, the ground state of the system. This implies that when the
temperature is low enough, the majority of the particles will have the same velocity in the
same quantum state. Thus, in this setting the collection of bosons acts like a macroscopic
fluid with new properties, such as superfluidity, [29]. This is known as Bose-Einstein
condensation.

In order to study these properties, we only concentrate on the ground state. We must
mention that interactions between bosons are not necessary for condensation to take place,
and yet, they play a very important role in the properties of the condensate. In this sense,
the usual Schrödinger equation is not enough to provide a good description, instead we
need the Gross-Pitaevskii equation which is also known as the (main) nonlinear Schrödinger
Equation, [29],

i�
∂

∂t
Φ(x, t) =

[
− �

2

2m
Δ + V (x) + g|Φ(x, t)|2

]
Φ(x, t), g > 0. (3.18)

This equation contains another energy term g|Φ(x, t)|2, proportional to the local density
|Φ(x, t)|2 of the condensate, which is referred to as twice the mean-field energy of the con-
densate. It plays a fundamental role in its dynamics.

Remark 3.5.1. It is important to note that comparing the atom-atom interactions to Kerr
nonlinearity in optics suggest that they play a role similar to that of a non linear medium
for light, [23]. For more information about the derivation of (3.18) and the relation with
nonlinear optics, we refer to [16], [23] and [29].
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Chapter 4

Results

4.1 Problem statement
Let’s consider the following nonlinear Schrödinger equation:

i�ψt(x, t) + �
2

2 Δψ(x, t) − V0(x)ψ(x, t) + |ψ(x, t)|p−1ψ(x, t) = 0, (SchEq)

for x ∈ R
N , t ∈ R and N ≥ 3, p + 1 ∈ (2, 2∗) with

2∗ = 2N

N − 2 .

We look for solutions in the form of standing waves of the form

ψ(x, t) = v(x)e−iEt/�, x ∈ R
N , t ∈ R. (4.1)

By replacing (4.1) in (SchEq) we obtain

i�v(x)e−iEt/� + �
2

2 Δv(x)e−iEt/� − V0(x)v(x)e−iEt/� + |v(x)e−iEt/�|p−1v(x)e−iEt/� = 0

Ee−iEt/�v(x) + �
2

2 e−iEt/�Δv(x) − V0(x)v(x)e−iEt/� + |v(x)|p−1|e−iEt/�|p−1v(x)e−iEt/� = 0

Ev(x) + �
2

2 Δv(x) − V0(x)v(x) + |v(x)|p−1v(x) = 0. (4.2)

By setting ε2 = �
2/2 and V (x) = V0(x) − E in (4.2) we obtain

�
2

2 Δv(x) − (V0(x) − E)v(x) + |v(x)|p−1v(x) = 0,

ε2Δv(x) − V (x)v(x) + |v(x)|p−1v(x) = 0

and thus, our problem becomes⎧⎨⎩ε2Δv(x) − V (x) v(x) + |v(x)|p−1v(x) = 0, x ∈ R
N ,

v(x) → 0, as |x| → ∞.
(Pε)
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Let’s consider the situation where

Z = {x ∈ R
N / V (x) = inf(V )} 	= ∅.

The case when inf(V) > 0 is referred to as non-critical frequency, critical frequency or
energy corresponds to the case inf(V) = 0. In this work we shall focus on the infinite case
as presented in the pioneer work [6]. Our objective is to make an asymptotical analysis of
(Pε) through a semiclassical approach, that is, study the behavior of (Pε) as ε → 0 and
obtain similar results to the ones presented in [11]. We consider the following conditions:

(V1) V ∈ C(RN) is non-negative;
(V2) V (x) → ∞, as |x| → ∞;
(V3) Z = {0}

Remark 4.1.1. In the papers by Byeon & Wang, [6], and Felmer & Mayorga, [11], three
cases were considered.

Flat: intZ = Z 	= ∅ is bounded;

Finite: Z is finite and V vanishes polinomially around it;

Infinite: Z is finite and V vanishes exponentially around it.

The condition (Vinf), below, differentiates our situation with that of the finite case. It
corresponds, grossly speaking, to the decay of V as we get close to Z. However before
stating it we need to define a couple of concepts.
Let Ω ⊆ R

N be a smooth bounded strictly star-shaped domain, i.e., there exists a ball
B ⊆ Ω such that

∀x ∈ B, ∀y ∈ Ω : [x, y] ⊆ Ω.

Ω is a q-Poincaré domain for all q ≥ 1, [30], i.e., there exists a constant Mq,Ω > 0 such that

∀u ∈ C1(Ω) : ‖u − uΩ‖Lq(Ω) ≤ Mq,Ω

(ˆ
Ω

|∇u(x)|q dx

)1/q

.

Moreover, we assume that Ω is generated by a positive capturer function r ∈ C(RN \{0})
such that ⎧⎪⎪⎪⎨⎪⎪⎪⎩

t = r(x) =⇒ 1
t
x ∈ ∂Ω,

t > r(x) =⇒ 1
t
x ∈ Ω,

t < r(x) =⇒ 1
t
x ∈ R

N \ Ω.

(4.3)

Point (4.3) implies that every non-zero point is well determined by a point in the boundary
of Ω:

∀x ∈ R
N \ {0}, ∃!(r(x), s(x)) ∈ (0, +∞) × ∂Ω : x = r(x)s(x).

Now, as in [6], we assume that b ∈ C(RN) is an Ω-quasi homogeneous function and
a ∈ C(RN \ {0}), is an asymptotically (Ω, b)-quasi homogeneous function. That is, there
exists β : [0, +∞[→ R such that
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b.1) ∀x ∈ R
N : b(x) = b(r(x) s(x)) = β(r(x));

b.2) β is non-negative and strictly-increasing;

b.3) for L = lim
r→0

β(cr)
β(r) it holds ⎧⎨⎩c < 1 ⇒ L < 1,

c > 1 ⇒ L > 1;
(4.4)

a) a is positive and

lim
|x|→0

a(x)
b(x) = 1.

Now we can write the condition that characterizes our case:

(Vinf) ∀|x| ≤ 1 : V (x) = exp
(

− 1
a(x)

)
.

Under conditions (V1), (V2), (V3) and (Vinf) the limit problem of (Pε) is⎧⎨⎩Δw(x) + |w(x)|p−1 w(x) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω.
(Pinf)

As it’s done in [6], for any ε > 0 we set

Vε(x) = 1
[εg(ε)]2 V

(
x

g(ε)

)
, (4.5)

with g : (0, +∞) → R given by

g(ε) = 1

b−1
(

−1
ln(ε)2

) .

We consider the space

Hε :=
{

u ∈ H1(RN) :
ˆ
RN

[
|∇u(x)|2 + Vε(x)u2(x)

]
dx < ∞

}
,

with the norm
‖ · ‖ε =

ˆ
RN

[
|∇u(x)|2 + Vε(x)u2(x)

]
dx.

Proposition 4.1.1. The functional (·, ·)ε : Hε × Hε → R given by

(u, v)ε =
ˆ
RN

[∇u · ∇v + Vε(x)u(x)v(x)
]
dx,

defines an inner product on Hε and induces ‖ · ‖ε
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Proof. Let u, v, w ∈ Hε, λ ∈ R. We shall prove conditions i) - iv) described at the start of
Section 2.2.4.

i) Let’s prove that
(λu + v, w)ε = λ(u, w)ε + (v, w)ε.

We have that

(u + v, w)ε =
ˆ
RN

[∇(λu + v)(x)∇w(x) + Vε(x)(λu + v)(x)w(x)
]
dx

=
ˆ
RN

[
λ∇u(x)∇w(x) + Vε(x)λu(x)w(x)

]
dx +

ˆ
RN

[∇v(x)∇w(x) + Vε(x)v(x)w(x)
]
dx

= λ

ˆ
RN

[∇u(x)∇w(x) + Vε(x)u(x)w(x)
]
dx +

ˆ
RN

[∇v(x)∇w(x) + Vε(x)v(x)w(x)
]
dx

= λ(u, w)ε + (v, w)ε

So that (·, ·)ε is linear in the first argument.
ii) Let’s prove that

(u, v)ε = (v, u)ε.

We have that

(u, v)ε =
ˆ
RN

[∇u(x)∇v(x) + Vε(x)u(x)v(x)]dx

=
ˆ
RN

[∇v(x)∇u(x) + Vε(x)v(x)u(x)
]
dx

= (v, u)ε.

So (·.·)ε is symmetric. As a consequence, (·, ·)ε is bilinear.
iii) Let’s prove that (·, ·)ε ≥ 0. By (4.5) and since V ≥ 0 we have that

(u, u)ε =
ˆ
RN

[
|∇u(x)|2 + Vε(x)u2(x)

]
dx ≥ 0.

Clearly, (u, u)ε = 0 ⇐⇒ u = 0.
Hence, we have proved that (u, v)ε defines an inner product, and thus, induces a norm

‖ · ‖ε in Hε. We conclude by the arbitrariness of u, v, w and λ.

Furthermore, as is usually done, the functional (·, ·) : H1
0(RN) × H1

0(RN) → R given by

(u, v)H1
0(RN ) =

ˆ
RN

∇u(x) · ∇v(x)dx,

defines an inner product on H1
0(RN) and induces ‖ · ‖H1

0(RN ).
The proof that (·, ·) is an inner product is analogous to that of Proposition 4.1.1.

Mathematician 53 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Remark 4.1.2. We can also consider the Hilbert spaces (Hε, ‖ · ‖ε) and (H1
0(Ω), ‖ · ‖H1

0(Ω))
as the completion of C∞

0 (RN) with the norms induced by the inner products (u, v)ε and
(u, v)H1

0(RN ), respectively.

Remark 4.1.3. The following problems are closely related to (Pε).⎧⎪⎪⎨⎪⎪⎩
Δw(x) − Vε(x) w(x) + |w(x)|p−1w(x) = 0, x ∈ R

N ,

w(x) → 0, as |x| → ∞,
(P ′

ε)

⎧⎪⎪⎨⎪⎪⎩
Δŵ(x) − Vε(x) ŵ(x) + 2Θ |ŵ(x)|p−1ŵ(x) = 0, x ∈ R

N ,

ŵ(x) → 0, as |x| → ∞,
(P̂ε)

where
Θ = 1

2(ŵ, ŵ)ε. (4.6)

Indeed, if ŵ is a solution of (P̂ε), then

w(x) = (2Θ)1/(p−1)ŵ(x), x ∈ R
N ,

is a solution of (Pε).

Remark 4.1.4. Related to (Pinf) is
⎧⎪⎪⎨⎪⎪⎩

Δŵ(x) + 2Υ |ŵ(x)|p−1 ŵ(x) = 0, x ∈ Ω,

ŵ(x) = 0, x ∈ ∂Ω,
(P̂ )

where
Υ = 1

2(ŵ, ŵ)H1
0(Ω).

Indeed, if ŵ is a solution of (P̂ ), then

w(x) = (2Υ)1/(p−1)ŵ(x), x ∈ Ω,

is a solution of (Pinf).

Main results

We define the functional Jε : Mε ⊆ Hε → R given by

Jε(u) = 1
2 ‖u‖2

ε

= 1
2

ˆ
RN

[|∇u(x)|2 + Vε|u(x)|2]dx, (4.7)

where
Mε := {w ∈ Hε/ ‖w‖Lp+1(RN) = 1} (4.8)

is a Nehari manifold, see [31].
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Remark 4.1.5. Since every norm is continuous, Jε is continuous.

Proposition 4.1.2 (Jε is strongly differentiable). The functional Jε defined above is of
class C1. Moreover, its Fréchet differential is given by

〈
DJε(u), h

〉
=
ˆ
RN

[∇u(x)∇h(x) + Vε(x)u(x)h(x)
]
dx = (u, h)ε.

Proof. 1. First we will now prove that Jε is Gateaux differentiable. Let u, h ∈ Hε and
λ ∈ R be generic. By (4.7) we have that

J(u + λh) = 1
2

ˆ
RN

|∇(u + λh)(x)|2 + Vε|(u + λh)|2dx

= 1
2

ˆ
RN

[|∇u(x)|2 + 2λ∇u(x)∇h(x) + λ2|h(x)|2 + Vε(x)|u(x)|2+

+ 2λVε(x)u(x)h(x) + λ2Vε|h(x)|2]dx,

so that

d

dλ
J(u + λh) = 1

2

ˆ
RN

[
2∇u(x)∇h(x) + 2λ|h(x)|2 + 2Vε(x)u(x)h(x) + 2λVε|h(x)|2

]
dx,

we obtain

d

dλ
J(u + λh)

∣∣∣
λ=0

= 1
2

ˆ
RN

[
2∇u(x)∇h(x) + 2Vε(x)u(x)h(x)

]
dx.

Therefore
∂hJε(u) =

ˆ
RN

[∇u(x)∇h(x) + Vε(x)u(x)h(x)
]
dx.

We define the functional Φ : Hε → R given by

Φ(y) =
ˆ
RN

[∇u(x)∇y(x) + Vε(x)u(x)y(x)
]
dx. (4.9)

Clearly Φ is linear, we shall prove that it’s bounded, that is

∃c > 0, ∀y ∈ Hε : |Φ(y)| ≤ c ‖y‖ε

We choose
c > 2 ‖u‖ε .
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Let y ∈ Hε, by the Hölder, (2.2.14), and CBS, (2.2.21), inequalities we have that

|Φ(y)| =
∣∣∣∣∣
ˆ
RN

∇u(x)∇y(x) + Vε(x)u(x)y(x)dx

∣∣∣∣∣
≤
ˆ
RN

|∇u(x)∇y(x)|dx +
ˆ
RN

|Vε(x)u(x)y(x)|dx

≤
ˆ
RN

|∇u(x)||∇y(x)|dx +
ˆ
RN

|[Vε(x)]1/2u(x)[Vε]1/2y(x)|dx

≤
(ˆ

RN

|∇u(x)|2
)1/2 (ˆ

RN

|∇y(x)|2dx

)1/2

+
(ˆ

RN

Vε(x)|u(x)|2dx

)1/2 (ˆ
RN

Vε(x)|y(x)|2dx

)1/2

=‖∇u‖L2‖∇y‖L2 +
∥∥∥V 1/2

ε u
∥∥∥

L2 +
∥∥∥V 1/2

ε y
∥∥∥

L2

≤ 2 ‖u‖ε ‖y‖ε .

Hence the functional Φ is bounded and therefore Φ ∈ H∗
ε is Gateaux differentiable,

namely
J ′

εG(u)h = Φ(h). (4.10)

2. Let’s prove that Jε is Fréchet differentiable. By (4.7) we have that

Jε(u + h) = 1
2

ˆ
RN

[
|∇u(x) + ∇h(x)|2 + Vε(x)|u(x) + h(x)|2

]
dx,

so that

Jε(u + h) − Jε(u) = 1
2

ˆ
RN

[|∇u(x) + ∇h(x)|2 + Vε(x)|u(x) + h(x)|2−

− |∇u(x)|2 − Vε(x)|u(x)|2]dx

=
ˆ
RN

[∇u(x) · ∇h(x) + Vε(x)u(x)h(x)
]
dx+ (4.11)

+ 1
2

ˆ
RN

[
|∇h(x)|2 + Vε(x)|h(x)|2

]
dx. (4.12)

= (u, h)ε + 1
2‖h‖2

ε

Now, since (u, ·)ε ∈ H∗
e and clearly ‖h‖2

ε is o(h) we have that J is differentiable and
its Fréchet differential is given by (4.9) and thus

〈DJε(u), h〉 = J ′
ε(u)h =

ˆ
RN

[∇u(x)∇h(x) + Vε(x)u(x)h(x)
]
dx.

We conclude that Jε is Fréchet differentiable by the arbitrariness of u, h, y and λ.
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Finally, by the CBS inequality, Lemma (2.2.21), we have that for any u, v ∈ Hε

〈DJe(u), v〉 = (u, v)ε ≤ ‖u‖ε ‖v‖ε ,

which implies that
∀u ∈ Hε : ‖DJε(u)‖H∗

ε
≤ ‖u‖ε .

so that DJε is continuous and linear. Therefore Jε is of class C1. We conclude our proof.

Additionally we consider the functional J : M ⊆ H1
0(Ω) → R given by

J(u) = 1
2 ‖u‖2

H1
0(Ω)

= 1
2

ˆ
Ω

|∇u(x)|2dx, (4.13)

where
M := {w ∈ H1

0(Ω)/ ‖w‖Lp+1(RN) = 1} (4.14)

is a Nehari manifold, see [31].

Remark 4.1.6 (J is of class C1). Notice that J is also continuous and it can be eas-
ily proved that it is strongly differentiable in the same way as Jε. Namely, it’s Fréchet
differential is given by

〈DJ(u), h〉 =
ˆ

Ω
∇u(x)∇h(x) = (u, h)H1

0(Ω). (4.15)

Indeed, we have that

J(u + h) − J(u) = 1
2

ˆ
Ω

|∇(u + h)(x)|2dx − 1
2

ˆ
Ω

|∇u(x)|2dx

= 1
2

ˆ
Ω

|∇u(x) + ∇h(x)|2dx − 1
2

ˆ
Ω

|∇u(x)|2dx

= 1
2

ˆ
Ω

[
|∇u(x)|2 + 2∇u(x)∇h(x) + |∇h(x)|2

]
dx − 1

2

ˆ
Ω

|∇u(x)|2dx

=
ˆ

Ω
∇u(x)∇h(x)dx + 1

2

ˆ
Ω

|∇h(x)|2dx

= (u, h)H1
0(Ω) + 1

2‖h‖H1
0(Ω).

And since (u, ·) ∈ (H1
0(Ω))∗ = H−1 and ‖h‖H1

0(Ω) is clearly o(h) we conclude that J is dif-
ferentiable, and its differential, which we shall denote as DJ , is given by (4.15). Moreover,
by the CBS inequality, for any u, v ∈ H1

0(Ω), we have that

〈DJ(u), v〉 = (u, v)H1
0(Ω) ≤ ‖u‖H1

0(Ω) ‖v‖H1
0(Ω) . (4.16)

And thus, (4.16) implies that

∀u ∈ H1
0(Ω) : ‖DJ(u)‖H−1 ≤ ‖u‖H1

0(Ω) .
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So that the differential of J is bounded, thus, continuous. We conclude that J is also of
class C1.

We assume that (V1), (V2), (V3), (Vinf) and that⎧⎨⎩2 < 1 + p < 2∗ = 2N/(N − 2), if N ≥ 3;
2 < 1 + p, if N = 1, 2,

(4.17)

always hold.
We start by stating the main results and in the following sections we will provide the

proofs of the theorems. We start with the multiplicity result.

Theorem 4.1.1. The following points hold.

i) Given ε > 0, the functional Jε has a sequence of different critical points (ŵk,ε)k∈N ⊆
Mε.

ii) The functional J has a sequence of different critical points (ŵk)k∈N ⊆ M.

Remark 4.1.7. By Remarks 4.1.3 and 4.1.4, for ε > 0 and k ∈ N we have that the function
given by

vk,ε(x) =
[
2ck,ε (ε g(ε))2

]1/(p−1)
ŵk,ε

(
x

g(ε)

)
, (4.18)

where
ck,ε = Jε(ŵk,ε), (4.19)

is a solution of (Pε) and the function given by

wk(x) = (2ck)1/(p−1) ŵk(x), (4.20)

is a solution of (Pinf).

What follows is the convergence of energies result.

Theorem 4.1.2. Let k ∈ N. Then

lim
ε→0

ck,ε = ck. (4.21)

We also have the subconvergence of critical points and the result about exponential
decay.

Theorem 4.1.3. Let k ∈ N. As ε → 0, (wk,ε)ε>0 subconverges in H1(RN) to some uk ∈
H1(RN) such that its restriction to Ω is another solution of (Pinf), verifying

J(ûk|Ω) = ck,

where
ûk = (2ck)1/p−1uk.
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Theorem 4.1.4. Let k ∈ N and δ > 0, there exists εδ > 0 and C = C(N, k, p, δ) such that

∀x ∈ R
N , ∀ε ∈ (0, εδ) : |ŵk,ε(x)| <

C

(2ck)1/p−1 · exp
(
γδ,ε · dist(x, Ωδ)

)
, (4.22)

where
Ωδ = {x ∈ R

N : dist(x, Ω) < δ},

and
γδ,ε = γδ,ε(N, k, p) → −∞, as ε → 0.

Preliminary results

The following results are stated in [6] and are rewritten in our setting. They are helpful
in proving our results and involve the potential V , the scaling Vε and the functions g, b, a
and β. We have that:

lim
ε→0

g(ε) = ∞; (4.23)

∃α > 0 : lim
r→0

β(r)
rα

= 0 ∧ lim
ε→0

g(ε)
| ln(ε)|1/α

= 0; (4.24)

∀c > 0 : lim
ε→0

1
[εcg(ε)]2 = lim

ε→0

1
g2(ε) exp

⎛⎜⎜⎜⎜⎜⎝
c

b

(
1

g(ε)

)
⎞⎟⎟⎟⎟⎟⎠ = ∞. (4.25)

By (Vinf), for every ε > 0 and |x| ≤ g(ε),

Vε(x) = 1
[ε g(ε)]2 exp

⎛⎜⎜⎜⎝− 1

a
(

x
g(ε)

)
⎞⎟⎟⎟⎠ (4.26)

= 1
g2(ε) · exp

⎛⎜⎜⎜⎜⎝ 1

β
(

1
g(ε)

)
⎡⎢⎢⎢⎣1 −

β
(

1
g(ε)

)
β
(

r(x)
g(ε)

)
β
(

r(x)
g(ε)

)
a
(

x
g(ε)

)
⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠. (4.27)

Additionally we have the following propositions.

Proposition 4.1.3. For every B ⊆ Ω measurable,

lim
ε→0

‖Vε‖L∞(B) = lim
ε→0

esssup
x∈B

|Vε(x)| = 0. (4.28)

Proposition 4.1.4. There exists D ∈]0, 1[ such that for all d > 1,

lim
ε→0

min
x∈Rε,D,d

Vε(x) = ∞, (4.29)

where
Rε,D,d = {x ∈ R

N / |x| ≤ D g(ε) ∧ r(x) ≥ d}.
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The following result is similar to the embedding theorems stated in Section 2.3.3 in-
volving the weighted Sobolev spaces such that the weighted functions verify (V1) and
(V2).

Theorem 4.1.5. Assume that U ∈ C(RN) is non-negative and such that

U(x) → ∞ as |x| → ∞.

Let HU be the Hilbert space resulting of the completion of C∞
0 (RN) whenever it is equipped

with the norm induced by the interior product given by

(v, w)U =
ˆ
RN

[∇v(x)∇w(x) + U(x)v(x)w(x)]dx.

Then, for every q ∈ [2, Q), the embedding

HU ⊆ Lq(RN),

is compact. Where,

Q =

⎧⎪⎪⎨⎪⎪⎩
2∗, if N ≥ 3;

∞, if N = 1, 2.

As mentioned in [11], this Theorem is obtained by an application of the Kolmogorov-
Riesz-Fréchet Theorem, 2.2.19, and [4, Cor 4.27]. Compensating the non-boundedness of
the domain by letting U explode at infinity.

The following holds by Remark 2.3.4.

Proposition 4.1.5. Let ε > 0, then:

1. The embedding H1
0(Ω) ⊆ Hε is continuous.

2. The norms ‖ · ‖ε and ‖ · ‖H1
0(Ω) are equivalent in H1

0(Ω).

Proof. By direct computation we have

∀u ∈ H1
0(Ω) : ‖u‖H1

0(Ω) ≤ ‖u‖ε ≤ CΩ,ε‖u‖H1
0(Ω), (4.30)

where
C2

Ω,ε = 1 + C2
Ω‖Vε‖L∞(Ω) > 0, (4.31)

with CΩ being the constant appearing in (2.13).

Remark 4.1.8. Recall that for any measurable set Λ ⊆ R
N such that |Λ| < ∞ it holds

that
∀w ∈ Lp+1(Λ) : ‖w‖L2(Λ) ≤ |Λ|(p−1)/2(p+1)‖w‖Lp+1(Λ) ,

by applying Hölder’s inequality, (2.2.14).
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4.2 Multiplicity by a Ljusternik-Schnirelman scheme
This section is dedicated to the proof of Theorem 4.1.1, showing how a Ljusternik-Schnirelman
scheme, [3], provides the desired result in a very direct way. The tools used in this sec-
tion are the Krasnoselskii genus and Palais-Smale sequences, briefly described in Section
2, alongside the tools provided by nonlinear analysis and variational calculus. The main
tool for this section is the following theorem.

Theorem 4.2.1. Let M ∈ ΣE be a C1 manifold of E and let f ∈ C1(E) be even. Assume
that (M, f) satisfy the Palais-Smale condition and let

Ck(f) = inf
A∈Ak(M)

max
u∈A

f(u), (4.32)

where Ak(M) = {A ∈ ΣE ∩ M : γ(A) ≥ k}. Denote Kc as the set of critical points of f

corresponding to the value c. Then

a) f has at least γ(M) pairs of critical points on M:

γ(M) ≤
∑
c∈R

γ(Kc).

b) If Ck(f) ∈ R, then Ck(f) is a critical value of f . Moreover, if

c = Ck(f) = · · · = Ck+m(f),

then γ(Kc) ≥ m + 1. Particularly, if m ≥ 1, then Kc contains infinitely many
elements.

Further information about this theorem and its proof can be found in [27].

Lemma 4.2.2. (M, J) verifies the Palais-Smale condition.

Proof. Let’s consider (un)n∈N ⊆ M a Palais-Smale sequence, that is,

1) (J(un))n∈N ⊆ R is bounded.

2) J ′(un) → 0 as n → ∞.

We have to prove that there exists a convergent subsequence of (un)n∈N.
From assumption 2) we have that

lim
n→0

∥∥∥J ′(un)
∥∥∥

H1
0(Ω)

= 0

so that J ′ converges to 0 strongly, so by Theorem 2.2.6 we have that J ′ converges weakly
to 0. In particular, we have

∀n ∈ N : lim
n→∞〈J ′(un), un〉 = 0.
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Since
J(u) = 1

2 ‖u‖2
H1

0(Ω),

it is bounded from below. Moreover, by this and since (J(un))n∈N ⊆ R is bounded, we
have that

∃k1 ∈ R, ∃k2 ∈ (max{0, k1}, ∞), ∀n ∈ N : k1 ≤ J(un) ≤ k2.

By the compactness of the Sobolev embedding shown in Remark 4.1.5 and the equivalence
of the ‖ · ‖ε and ‖ · ‖H1

0(Ω) norms, we have that

∃C1 > 0 : ‖un‖Lp(Ω) ≤ C1 ‖un‖ε ≤ CΩ,ε ‖un‖H1
0(Ω) , (4.33)

with CΩ,ε being the constant appearing in (2.13). So that, by (4.33), up to a subsequence,
for some u ∈ M, it follows that

un ⇀ u in M.

Now, viewing it as weak convergence, we have that

∀ν ∈ H−1 : 〈ν, un − u〉 → 0 as n → ∞,

which implies that
〈J ′(u) − J ′(un), un − u〉 → 0 as n → 0.

Now, by (4.15), the triangle and Cauchy-Schwarz inequalities we compute∣∣∣〈J ′(un) − J ′(u), un − u〉
∣∣∣ =

∣∣∣〈J ′(un), un − u〉 − 〈J ′(u), un − u〉
∣∣∣

=
∣∣∣〈J ′(un), un − u〉 + 〈−J ′(u), un − u〉

∣∣∣
≤

∣∣∣〈J ′(un), un − u〉
∣∣∣ +

∣∣∣〈−J ′(u), un − u〉
∣∣∣

=
∣∣∣〈J ′(un), un − u〉

∣∣∣ +
∣∣∣〈J ′(u), un − u〉

∣∣∣
≤ ‖J ′(un)‖ ‖un − u‖H1

0(Ω) + ‖J ′(u)‖ ‖un − u‖H1
0(Ω) . (4.34)

Finally, by (4.34), we have that∣∣∣〈J ′(un) − J ′(u), un − u〉
∣∣∣ → 0 as n → ∞.

So that
un → u, as n → ∞,

whence, the functional J satisfies the (PS) condition.

Since the functional J is of class C1 and even, it satisfies the hypotheses of Theorem
4.2.1. So, for k ∈ N we write⎧⎨⎩Σ = ΣH1

0(Ω), Ak = Ak(M),
ck = Ck(J) = J(ŵk) ∈]0, ∞[.

(4.35)
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Related to (Pinf) we have the following intermediate problem that will be of use⎧⎨⎩Δu(x) + |u(x)|p−1u(x) = 0, x ∈ Ωδ

u(x) = 0, x ∈ ∂Ωδ,
(P δ)

where
Ωδ = {x ∈ R

N / dist(x, Ω) < δ}.

We set
Mδ = {u ∈ H1

0(Ωδ) / ‖u‖Lp(Ωδ) = 1} (4.36)
in order to define the functional Jδ : Mδ → R which is given by

Jδ =
ˆ

Ωδ

|∇u(x)|2dx,

which also satisfies the conditions of Theorem 4.2.1. Hence, for k ∈ N we write⎧⎨⎩Σδ = ΣH1
0(Ωδ), Aδ

k = Ak(Mδ),
cδ

k = Ck(Jδ) = Jδ(ŵk) ∈ (0, ∞).

And by the scaling shown in Remark 4.1.4, it follows that the function

wδ
k = (2cδ

k)1/(p−1)ŵδ
k(x), x ∈ Ωδ, (4.37)

is a solution of (P δ).
Now, since V and Vε satisfy the conditions of the embedding Theorem 4.1.5 we have

that, in particular, this result holds for Hε = HVε . Therefore, it is proved that the functional
Jε satisfies the Palais-Smale condition on Mε. Hence, we write for ε > 0 and for k ∈ N,⎧⎨⎩Σε = ΣHε , Ak,ε = Ak(Mε),

ck,ε = Ck(Jε) = J(ŵk,ε) ∈ (0, ∞).
(4.38)

Remark 4.2.1. We can strengthen assumption (V1) so that for some η > 0, V ∈ Cη(RN).
Then, by using standard regularity arguments, it can be proved that vk,ε, wk and wδ

k are of
class C2,η, becoming classical solutions of (Pε), (Pinf) and (P δ), respectively.

4.3 Limits for the critical values
In this section we shall prove Theorem 4.1.2, that is, for any k ∈ N

lim
ε→0

ck,ε = ck. (4.39)

which means that the k-th level sets of the functionals Jε and J are topologically equiva-
lent by the Ljusternik-Schnirelman theory for even functionals used before. We begin by
clarifying some notation and establishing three propositions that are used in the proof of
Theorem 4.1.2.
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We have that, for any k ∈ N and ε, δ > 0

ck,ε = inf
A∈Ak,ε

max
u∈A

Jε(u), (4.40)

ck = inf
A∈Ak

max
u∈A

J(u), (4.41)

cδ
k = inf

A∈Aδ
k

max
u∈A

Jδ(u). (4.42)

Proposition 4.3.1. Let k ∈ N. Then the following points hold

∀ε > 0 : Ak ⊆ Ak,ε, (4.43)

∀ε > 0 : ck,ε ≤ ck · CΩ,ε, (4.44)

lim sup
ε→0

ck,ε ≤ ck, (4.45)

where CΩ,ε is as given in (4.31).

Proof. By Proposition 4.1.5, we have that the norms ‖·‖H1
0(Ω) and ‖·‖ε induce the same

topology. Therefore
Ak ⊆ Ak,ε.

Moreover, by (4.30), (4.40) and (4.41) we obtain

ck,ε = inf
A∈Ak,ε

max
u∈A

Jε(u)

= inf
A∈Ak

max
u∈A

Jε(u)

≤ CΩ,ε · inf
A∈Ak

max
u∈A

J(u)

= CΩ,ε · ck. (4.46)

Now, by Proposition 4.1.3 we have that

lim
ε→0

‖Vε‖L∞(Ω) = 0,

which, alongside (4.30) and (4.46), implies (4.45).

Proposition 4.3.2. Let k ∈ N and σ > 0. Then, ∃δ0, ε2 > 0 such that

∀δ ∈ (0, δ0), ∀ε ∈ (0, ε2) : cδ
k ≤ ck,ε + σ. (4.47)

Proof. 1.- Assume that ε > 0. By point (4.40) we have that

∃Aσ(ε) ∈ Ak,ε

such that
max

u∈Aσ(ε)
Jε(u) ≤ ck,ε + σ

4 . (4.48)
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2.- Proposition 4.1.3 also implies that

∀μ > 0, ∃ε̂ = ε̂(μ) > 0 : ε ∈ (0, ε̂) =⇒ ‖Vε‖L∞(Ω) < μ. (4.49)

Let’s choose
μ = 8σck + σ2

16C2
Ωc2

k

, (4.50)

and
ε0 = ε0(σ, k) = ε̂(μ).

From here on we assume that 0 < ε < ε0. Then, by points (4.1.3),(4.44), (4.48) and (4.50)
we get

c2
k,ε ≤ c2

k + C2
Ω‖Vε‖L∞(Ω) c2

k

≤ c2
k + σ

2 ck + σ2

16
=

[
ck + σ

4

]2
. (4.51)

Therefore
ck,ε ≤ ck + σ

4 . (4.52)

3. We choose
bk,σ = ck + σ

2 ,

so that, points (4.49) and (4.52) imply that

∀v ∈ Aσ(ε) : Jε ≤ bk,σ, (4.53)

thus obtaining, by (4.7),

∀v ∈ Aσ(ε) :
ˆ
RN

|∇v(x)|2dx ≤ 2bk,σ, (4.54)

∀v ∈ Aσ(ε) :
ˆ
RN

Vε(x) · |v(x)|2dx ≤ 2bk,σ. (4.55)

4. For ρ > 0 we denote
Vρ,ε = min

x∈RN \Ωρ
Vε(x). (4.56)

Assume that δ > 0, let D ∈ (0, 1) provided by Proposition 4.1.4 and let’s choose δ∗ > 1
such that

Rε,D,d∗ = B(0, Dg(ε)) \ Ωδ ⊆ R
N \ Ωδ.

Then
min

x∈Rε,D,d

Vε(x) ≤ Vδ,ε,
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by (4.29) we get
lim
ε→0

Vδ,ε = ∞. (4.57)

From point (4.55) we obtain that

∀v ∈ Aσ(ε) : ‖v‖2
L2(RN \Ωδ) =

ˆ
RN \Ωδ

|v(x)|2dx ≤ 2bk,σ

Vδ,ε

. (4.58)

On the other hand, by Theorem 2.3.5 and point (4.54) it holds that

∀v ∈ Aσ(ε) :‖v‖L2∗ (RN ) ≤ θ‖∇v‖L2(RN ) ≤ θ(2bk,σ)1/2,

where θ = θN > 0 depends on the dimension. Now

∀v ∈ Aσ(ε) :‖v‖L2∗ (RN \Ωδ) ≤ θ(2bk,ε)1/2. (4.59)

We let 0 < α < 1 be such that

1
p + 1 = 1 − α

2 + α

2∗ .

So that by points (4.58), (4.59) and the Interpolation Inequality shown in Remark 2.2.6,
it follows that, for any v ∈ Aσ(ε)

‖v‖Lp+1(RN \Ωδ) ≤‖v‖1−α
L2(RN \Ωδ) ·‖v‖α

L2∗ (RN \Ωδ)

≤
(

2bk,σ

Vδ,ε

)(1−α)/2

· θα(2bk,σ)α/2

= θα(2bk,σ)1/(p+1)

V
(1−α)/2

δ,ε

,

which, by point (4.57), implies that

lim
ε→0

max
v∈Aσ(ε)

‖v‖Lp+1(RN \Ωδ) = 0. (4.60)

6. Now, by (4.60) and for any s > 0 there exists ε1 = ε1(δ, s; σ, k) ∈ (0, ε0) such that

∀ε ∈ (0, ε1) : max
v∈Aσ(ε)

‖v‖Lp+1(RN \Ωδ) < δs. (4.61)

We choose now s = 1 and ε̂1 = ε1(δ, 1; σ, k) ∈ (0, ε0). Hence, we get

∀ε ∈ (0, ε̂1), ∀v ∈ Aσ(ε) : ‖v‖Lp+1(RN \Ωδ) < δ. (4.62)

If we assume that 0 < δ < 1, point (4.62) implies that

∀ε ∈ (0, ε̂1), ∀v ∈ Aσ(ε) : ‖v‖Lp+1(Ωδ) < 1 − δ. (4.63)
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7. We pick a cut-off function φδ ∈ C∞
0 (RN) such that, for some r > 1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀x ∈ Ωδ/2 : φδ(x) = 1;

∀x ∈ R
N \ Ωδ : φδ(x) = 0;

∀x ∈ Gδ : 0 < φδ(x) < 1;

∀x ∈ Gδ : |∇φδ(x)| ≤ 1
δr

,

(4.64)

where
Gδ = Ωδ \ Ωδ/2.

We define Φδ : Aσ(ε) ⊆ Mε → Mδ given by

Φδ[u] := φδ · u

‖φδ · u‖Lp+1(Ωδ)
.

Since φδ is odd, then Φδ is odd, now we need to prove that Φδ is bounded to apply point
iii) of Lemma 2.4.8 and get that

Φδ[Aσ(ε)] ∈ Aδ
k. (4.65)

Let’s prove that Φ is bounded and therefore continuous. Assume that ε ∈ (0, ε̃1), where

ε̃1 = min{ε̂1, ε1(δ/2, 1; σ, k)}.

a) By (4.63), for any v ∈ Aσ(ε), that

1 ≥‖φδv‖p+1
Lp+1(Ωδ)

=
ˆ

Ωδ/2
|v(x)|p+1dx +

ˆ
Gδ

|φδ(x)v(x)|p+1dx

≥
ˆ

Ωδ/2
|v(x)|p+1dx

≥
(

1 − δ

2

)p+1

≥ (1 − δ)p+1 (4.66)

so that φδ is well defined.

b) For any u, v ∈ Aσ(ε) ⊆ Mε we have that

∥∥Φδ[u] − Φδ[v]
∥∥

H1
0(Ωδ) =

∥∥∇(φδ(u − v))
∥∥

L2(Ωδ)

≤
∥∥φδ∇(u − v)

∥∥
L2(Ωδ) +

∥∥(u − v)∇φδ

∥∥
L2(Ωδ) . (4.67)
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Now, since the norms ‖·‖H1
0(Ω) and ‖·‖ε are still equivalent if we replace Ω by any

U ∈ R
N open and bounded, we get by (4.64) that

∥∥φδ∇(u − v)
∥∥

L2(Ωδ) =
(ˆ

Ωδ

φδ|∇(u − v)(x)|2dx

)1/2

≤‖u − v‖H1
0(Ωδ)

≤ ‖u − v‖ε . (4.68)

On the other hand, we have by (4.56) and (4.64) that

∥∥(u − v)∇φδ

∥∥
L2(Ωδ) =

(ˆ
Ωδ

|u(x) − v(x)|2 · |∇φδ(x)|2
)1/2

=
(ˆ

Gδ

|u(x) − v(x)|2 · |∇φδ(x)|2
)1/2

≤ 1
δr

(ˆ
Gδ

Vε(x)
Vε(x) · |u(x) − v(x)|2dx

)1/2

≤ 1
δr · min

y∈Gδ
Vε(y)

(
Vε(x) · |u(x) − v(x)|2dx

)1/2

≤ 1
δr · Vδ/2,ε

‖u − v‖ε . (4.69)

Moreover, from points (4.67),(4.68) and (4.69) it follows that

∥∥Φδ[u] − Φδ[v]
∥∥

H1
0(Ωδ) ≤

⎛⎝1 + 1
δr · Vδ/2,ε

⎞⎠ ‖u − v‖ε ,

showing that Φδ is Lipschitz continuous.

8. By (4.65) it follows that
cδ

k ≤ max
v∈Φδ [Aσ(ε)]

Jδ(v),

so that, we pick
u ∈ Aσ(ε), v = Φδ[u] ∈ Φδ[Aσ(ε)],

such that
cδ

k ≤ max
v∈Φδ [Aσ(ε)]

Jδ(v) + σ

4 . (4.70)

And we claim that
∃w ∈ Aσ(ε) : Jδ(v) ≤ Jε(w) + σ

2 . (4.71)

So that by (4.48), (4.70) and (4.71), it follows that

cδ
k ≤ Jδ(v) + σ

4 ≤ Jε(w) + 3σ

4
≤ max

u∈Aσ(ε)
Jε(u) + 3σ

4 ≤ ck,ε + σ.
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9. Recall our claim, (4.71), we need to prove it to conclude. Notice that taking u = w is
enough. Indeed, by (4.66) we have that

2(1 − δ)2 Jδ(v) ≤ 2 ‖φδu‖2
Lp+1(Ωδ) · Jδ(v)

= ‖φδu‖2
Lp+1(Ωδ) ·

∥∥∥∥∥∥∥
φδ u

‖φδ u‖Lp+1(Ωδ)

∥∥∥∥∥∥∥
2

H1
0(Ωδ)

=
∥∥∇(φδu)

∥∥2
L2(Ωδ)

=
ˆ

Ωδ

[u2|∇φδ|2 + 2uθδ∇u∇φδ + φ2
δ|∇u|2]dx. (4.72)

We have that ˆ
Ωδ

φ2
δ(x)|∇u(x)|2 ≤

ˆ
Ωδ

|∇u(x)|2dx ≤ 2Jε(u). (4.73)

Therefore, by remark (4.1.8) we obtain:
ˆ

Ωδ

u2(x)|∇φδ(x)|2dx ≤
ˆ

Gδ

u2(x)∇φδ(x)|2dx

≤ 1
δ2r

ˆ
Gd

u2(x)dx

≤ 1
δ2r

|Gd|(p−1)/(p+1) ‖u‖2
Lp+1(Gd) . (4.74)

Finally by applying (4.1.8) again alongside (4.54) and the CBS inequality on R
N and

L2(RN) we obtain
ˆ

Ωδ

2uφδ∇u∇φδdx ≤ 2
ˆ

Ωδ

|u| |φδ| |∇u| |∇φδ| dx

≤ 2
δr

ˆ
Gδ

|u| |∇u| dx

≤ 2
δr

(ˆ
Gδ

|∇u|2dx

)1/2 (ˆ
Gδ

|u|2dx

)1/2

≤ 2
δr

(2bk,σ)1/2|Gδ|(p−1)/2(p+1) ‖u‖Lp+1(Gδ) . (4.75)

We now assume that ε ∈ (0, ε2) where

ε2 = min{ε̃1, ε1(δ, s∗; σ, k)},

for some s∗ > 2r. Now, observe that δ2s∗ < δs∗ and by using (4.61) we get from points
(4.72) to (4.75) that,

(1 − δ)2Jδ(v) ≤ Jε(u) + ζ

2δs∗−2r, (4.76)

where
ζ = max

{
|Gδ|(p−1)/(p+1) + 2(2bk,σ)1/2|Gδ|(p−1)/2(p+1)

}
.
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Now let
0 < δ < 1 −

√
2

2 .

So that, by (4.53) and (4.76) we get

1
2Jδ(v) ≤ Jε(u) + ζ

2δs∗−2r

≤ bk,σ
ζ

2δs∗−2r, (4.77)

so that by combining points (4.76) and (4.77) we have

Jδ(v) ≤ Jε(u) + ζ

2δs∗−2r + 2δ Jδ(v) − δ2 Jδ(v)

≤ Jε(u) + ζ

2δs∗−2r + 2δ
(
2bk,σ) + ζδs∗−2r

)
,

so that it’s clear that we can find δ0 ∈ (0, 1 −
√

2
2 ) such that (4.71) holds for any δ ∈ (0, δ0)

and ε ∈ (0, ε2). We conclude our proof.

The following result collects the results of Lemmas 3.3 and 3.4 in [11].

Proposition 4.3.3. Let k ∈ N. Then

∀δ > 0 : cδ
k ≤ ck; (4.78)

∀σ > 0, ∃δσ > 0, ∀δ ∈]0, δσ[: ck ≤ cδ
k + σ. (4.79)

Proof of Theorem 4.1.2. Let σ > 0 be small. Let’s choose δσ as in (4.79), take δ0 = δ0(σ) >

0 and ε2 = ε2(σ) from Proposition 4.3.2. We set

δ̂σ = min{δσ, δ0}.

Then, by (4.44), (4.47) and (4.79) we have, for any δ ∈ (0, δ̂σ) and any ε ∈ (0, ε2), that

ck ≤ cδ
k + σ ≤ ck,ε + 2σ ≤ ck · CΩ,ε + 2σ.

We conclude that
lim
ε→0

ck,ε = ck,

by the arbitrariness of σ.
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4.4 Asymptotic profiles and concentration phenom-
ena

In this section want to prove Theorems 4.1.3 and 4.1.4.
Recall that Theorem 4.1.3 states that for some k ∈ N, as ε → 0, (wk,ε)ε>0 subconverges

in H1(RN) to some uk ∈ H1(RN) such that its restriction to Ω is another solution of (Pinf),
verifies

J(ûk|Ω) = ck,

where
ûk = (2ck)1/p−1uk.

Lemma 4.4.1. Let k ∈ N. Then (ŵk,ε)ε>0 weakly and pointwise subconverges to some
ûk ∈ H1(RN), as ε → 0.

Proof. By Theorem 4.1.2, for a given σ > 0, there exists εσ,1 > 0 such that, for any
ε ∈ (0, εσ,1), ˆ

RN

[|∇ŵk,ε(x)|2 + Vε|ŵk,ε(x)|2]dx = 2ck,ε ≤ 2ck + σ ≡ Bk,σ. (4.80)

Then, by Theorem 2.3.5, there exists CN > 0 such that for any ε ∈ (0, εσ,1)∥∥∥ŵk,ε

∥∥∥2

L2∗(RN) ≤ C2
N

ˆ
RN

|ŵk,ε(x)|2dx ≤ C2
NBk,σ. (4.81)

Let 0 < δ < 1. By Hölders inequality and (4.81), for any ε ∈ (0, εσ,1) we have that

‖ŵk,ε‖2
L2(Ωδ) ≤ |Ωδ|2/N · ‖ŵk,ε‖2

L2∗ (Ωδ)

≤ |Ωδ|2/N · ‖ŵk,ε‖2
L2∗ (RN )

≤ C2
N |Ωδ|2/N · Bk,σ. (4.82)

On the other hand, by (4.57), there exists εσ,2 ∈ (0, εσ,1) such that, for any ε ∈ (0, εσ,2), it
verifies that 1

Vδ,ε

< 1. Then, by (4.80) we obtain,

‖ŵk,ε‖2
L2(RN \Ωδ) ≤

ˆ
RN \Ωδ

Vε(x)
Vδ,ε

|ŵk,ε(x)|2dx ≤ Bk,σ. (4.83)

Then, (4.81), (4.82) and (4.83), for ε ∈ (0, εσ,2) it follows that

‖ŵk,ε‖2
H1(RN ) =

ˆ
RN

[|∇ŵk,ε(x)|2 + |ŵk,ε(x)|2]dx

≤ Bk,σ + C2
N |Ωδ|2/NBk,σ + Bk,σ

= Bk,σ · (2 + C2
N |Ω1|2/N). (4.84)

Hence, from (4.84) and Theorems 2.2.20 and [4, Th.3.18], there exists ûk ∈ H1(RN) such
that (ŵk,ε)ε>0 subconverges in H1(RN) weakly and pointwise.
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Lemma 4.4.2. Let k ∈ N. The function ûk is a weak solution of (Pinf) and verifies that
J(ûk|Ω) = ck.

Proof. Let ε > 0. Since ŵk,ε ∈ Mε is a critical point of Jε, by Remark 4.1.3, we have that
for any ϕ ∈ C∞

0 (RN)ˆ
RN

[∇ŵk,ε∇ϕ + Vε(x)ŵk,εϕ]dx = 2ck,ε

ˆ
RN

|ŵk,ε|p−1ŵk,εdx. (4.85)

Let ϕ ∈ C∞
0 (Ω). By points (4.82) and (4.83) we have, for any ε ∈ (0, εσ,2) that∣∣∣Vε(x)ŵk,ε(x)ϕ(x)

∣∣∣ ≤
∥∥∥ŵk,ε

∥∥∥
L2(Ω)

‖ϕ‖L2(Ω) ‖Vε‖L∞(Ω)

≤
[
1 + C2

N |Ω1|2/N
]

‖ϕ‖L2(Ω) ‖Vε‖L∞(Ω) .

And, by Proposition 4.3.1, we haveˆ
RN

Vε(x)ŵk,εϕ(x) → 0, as ε → 0. (4.86)

Moreover, by the compactness of the embedding in Theorem 4.1.5, we have that (ŵk,ε)ε>0

subconverges in Lp+1(RN) to ûk. Whence, by (4.85), (4.86), Theorem 4.1.2 and since ϕ is
arbitrary, we obtain

∀ϕ ∈ C∞
0 (Ω) :

ˆ
Ω

∇ûk∇ϕdx = 2ck

ˆ
Ω

|ûk|p−1ûkϕdx. (4.87)

Now, let’s take (ϕn)n∈N ⊆ C∞
0 (Ω) converging in Lp+1(Ω) to ûk|Ω. Therefore, by replacing

ϕ = ϕn in (4.87) and letting n → ∞, we get, by Lemma 4.4.2, ck = J(ûk|Ω).
For δ, α > 0 we write Γδ,α = {x ∈ R

N \ Ωδ / |ûk(x)| ≥ α}. We have that

∀δ, α : |Γδ,α| = 0. (4.88)

Indeed, looking for a contradiction, assume that

∃δ∗, α∗ > 0 : |Γδ∗,α∗| 	= 0, (4.89)

which implies that there exists η > 0 such that

|Γδ∗,α∗| ≥ η > 0.

Since for any δ ∈ (0, δ∗) we have that Γδ∗,α∗ ⊂ Γδ,α∗ it holds that

|Γδ,α∗| ≥ η > 0.

Now, since Ω is bounded and connected, by condition (V3) we have that there is some
δ′ ∈ (0, δ∗) such that for any ε > 0

∀δ ∈ (0, δ′) : Vδ,ε <
α2

∗η

2 . (4.90)

Mathematician 72 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Now let δ0 ∈ (0, δ′) be fixed. We have that
ˆ

Γδ0,α∗

|ûk|2 ≥ α2
∗η. (4.91)

On the other hand, we associate to each δ > 0

ε∗
δ = min

{
εσ,2,

Vδ,ε

(2ck)1/2

}
. (4.92)

And for any σ∗ > 0 there exists εσ∗ ∈ (0, εσ,2) such that

∀ε ∈ (0, εσ∗) : ‖ûk‖2 ≤ ‖ŵk,ε‖2 + σ∗.

Thus, for any ε ∈ (0, εσ∗) we set σ∗ = α2
∗η

6 . By points (4.83), (4.90) and (4.92) we have
that ˆ

Γδ0,α∗

|ûk|2 ≤ σ∗ +
ˆ

Γδ0,α∗

|wk,ε|2 ≤ α2
∗η

6 + Bk,σ <
α2

∗η

6 + Vδ,ε <
2α2η

3 ,

which contradicts (4.91). Hence |Γδ,α| = 0.
So that

ûk = 0, for a.e. x ∈ R
N \ Ω, (4.93)

and by Remark 2.3.4 and Theorem 2.3.1 it follows that

ûk|Ω ∈ H1
0(Ω).

We conclude by this and point (4.87).

Proof of Theorem 4.1.3. By the compactness of the injection Hε ⊆ L2(RN), Lemma 4.4.1
and point (4.93) imply that

lim
ε→0

‖ŵk,ε‖2
L2(RN ) = ‖ûh‖2

L2(RN ). (4.94)

Then, by (4.45) and (4.93) we have that

lim sup
ε→0

ˆ
RN

|∇ŵk,ε|2dx ≤ 2 lim sup
ε→0

ck,ε ≤ 2ck =
ˆ
RN

|∇ûk|2dx. (4.95)

Whence, by points (4.94) and (4.95) we obtain that

lim sup
ε→0

‖ŵk,ε‖H1(RN ) ≤ ‖ûk‖H1(RN ).

Finally, since H1(RN) is a Hilbert space, it’s uniformly convex by Proposition 2.2.2. So
that, by Theorem 2.2.11 we have that (ŵk,ε)ε>0 subconverges in H1(RN) to ûk, as ε → 0.
We conclude by Lemma 4.4.2.
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Remark 4.4.1 (Important). From [11] we know that we can strengthen our assumption
(V1) by assuming that V is of class Cα and that it can be proved that each weak solution
presented is a classical solution. From now on we will assume this, i.e., vk,ε and wk belong
to C2,α(RN) and are classical solutions of (Pε) and (Pinf), respectively.

Before proving Theorem 4.1.4 we shall present a useful proposition proven in [5] related
to our problem and elliptic inequalities. This result was proved for any Ω ⊂ R

N smooth
and bounded, however it can be extended to a not necessarily bounded Ω or regular ∂Ω.

Proposition 4.4.1. Let Ω ⊂ R
N be open and connected. If w ∈ H1

0(Ω), is a classical
solution of the elliptic inequality⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δw − f(w) ≥ 0 in Ω,

w > 0 in Ω,

w = 0 in ∂Ω,

(4.96)

where N ≥ 3, p + 1 ∈ (2, 2∗), and for some c > 0 f satisfies

t ∈ R
+ : tf(t) ≤ ctp+1, (4.97)

then there exists a constant C = C(c, p, N) > 0 such that

‖w‖L∞(Ω) ≤ C‖w‖4/[(N+2)−p(N−2)]
L2∗ (Ω) . (4.98)

Lemma 4.4.3. For any k ∈ N and a given σ > 0, there exists εσ,2 > 0 and K =
K(σ, N, k, p) > 0 such that

∀ε ∈ (0, εσ,2) : ‖wk,ε‖L∞(RN ) ≤ K. (4.99)

Proof. Let σ > 0 and εσ,2 as in the proof of Theorem 4.1.3. For any ε ∈ (0, εσ,2) we consider
the connected component A+

ε of

W +
ε = {x ∈ R

N : wk,ε > 0}.

Now, as wk,ε solves (P ′
ε), by the non-negativity of Vε it follows that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δwk,ε + wp
k,ε ≥ 0 x ∈ A+

ε ,

wk,ε > 0 x ∈ A+
ε ,

wk,ε = 0 x ∈ ∂A+
ε .

(4.100)

So that, by Proposition 4.4.1 and (4.81) it holds that

‖wk,ε‖L∞(A+
ε ) ≤ C‖wk,ε‖4/[(N+2)−p(N−2)]

L2∗ (A+
ε )

≤ C
[
C2

NBk,σ

]2/[(N+2)−p(N−2)]
= K. (4.101)
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By the arbitrariness of A+
ε we have that (4.101) holds for W +

ε . That is,

‖wk,ε‖L∞(W +
ε ) ≤ K.

Analogously we can obtain the same result for the region W −
ε = {x ∈ R

N : wk,ε < 0}.

Remark 4.4.2. Recall that

vk,ε(x) =
[
2ck,ε(εg(ε))2

]1/(p−1)
ŵk,ε

(
x

g(ε)

)
.

Therefore, we have that

‖vk,ε‖L∞(RN ) = sup
x∈RN

∣∣∣∣∣∣
[
2ck,ε(εg(ε))2

]1/(p−1)
ŵk,ε

(
x

g(ε)

)∣∣∣∣∣∣
≤

[
2ck,ε(εg(ε))2

]1/(p−1)
sup

x∈RN

∣∣∣∣∣∣ŵk,ε

(
x

g(ε)

)∣∣∣∣∣∣
=

[
2ck,ε(εg(ε))2

]1/(p−1)
‖ŵk,ε‖L∞(RN )

≤
[
2ck,ε(εg(ε))2

]1/(p−1)
K.

Now, by (4.25) we obtain

lim
ε→0

‖vk,ε‖L∞(RN ) ≤ lim
ε→0

[
2ck,ε(εg(ε))2

]1/(p−1)
K = 0.

And since for any k ∈ N : ‖ûk‖Lp+1(RN ) = ‖ŵk,ε‖Lp+1(RN ) = 1, for any ε ∈ (0, εσ,2) we have
that

lim inf
ε→0

‖vk,ε‖L∞[
2ck,ε(εg(ε))2

]1/(p−1) > 0.

We will apply a comparison argument in order to prove Theorem 4.1.4, following the
same process as in [11]. Hence, the following remark will be of use.

Remark 4.4.3. Let a, b, δ > 0, Ω ⊆ R
N bounded. Let U be a positive solution of the

problem ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ΔU(x) − 2bU(x) = 0, x ∈ R

N \ Ωδ,

U(x) = 0, x ∈ ∂Ωδ,

U(x) = 0, as |x| → ∞.

(4.102)

Then, U verifies
U(x) ≤ C · exp{−b · dist(x, Ωδ)}, x ∈ R

N \ Ωδ,

with
C = C(a, Ωδ) > 0.
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Recall the statement of Theorem 4.1.4. Let k ∈ N and δ > 0, there exists εδ > 0 and
C = C(N, k, p, δ) such that

∀x ∈ R
N , ∀ε ∈ (0, εδ) : |ŵk,ε(x)| <

C

(2ck)1/p−1 · exp
(
γδ,ε · dist(x, Ωδ)

)
, (4.103)

where
Ωδ = {x ∈ R

N : dist(x, Ω) < δ},

and
γδ,ε = γδ,ε(N, k, p) → −∞, as ε → 0.

Proof of Theorem 4.1.4. Let σ > 0, εσ,2 and K as in Lemma 4.4.3. By (4.57) and Lemma
4.99 we can pick εσ,3 ∈ (0, εσ,2) such that

∀ε ∈ (0, εσ,3) : Vδ,ε > K. (4.104)

Similarly as in (4.56), for any p > 0, we have that

Vp,ε = inf{Vε(x) : |x| > pg(ε)}.

So, for p = δ and ε ∈ (0, εσ,3) we have that

Vε(x) = 1
[εg(ε)]2 V

(
x

g(ε)

)
≥ inf{Vε(x) : |x| > δg(ε)}
= Vδ,ε.

From the above, (4.104) and by Lemma 4.4.3 it follows that

Fk,ε ≡ Vε(x) − |wk,ε|p−1 (4.105)

≥ Vδ,ε − K > 0.

Let U be a positive solution of problem (4.102). From the previous, we obtain

a = K, b = Vδ,ε − K

2 ≡ −γδ,ε.

Then, we have that ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ΔU(x) − [(Vδ,ε) − K]U(x) = 0, x ∈ R

N \ Ωδ,

U(x) = K, x ∈ ∂Ωδ,

U(x) = 0, as |x| → ∞.

(4.106)
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Therefore, by (4.105) we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ΔU(x) − Fk,ε(x)U ≤ 0, x ∈ R

N \ Ωδ,

U(x) = K, x ∈ ∂Ωδ,

U(x) → 0, as |x| → ∞.

(4.107)

Hence, since wk,ε solves (P ′
ε), from (4.106) and (4.107) it holds that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δ[U(x) − wk,ε(x)] − Fk,ε(x)[U(x) − wk,ε(x)] ≤ 0, x ∈ R
N \ Ωδ,

U(x) − wk,ε(x) > 0, x ∈ ∂Ωδ,

U(x) − wk,ε(x) → 0, as |x| → ∞.

(4.108)

Now as a consequence of Theorem 2.3.4 and by (4.108)

∀x ∈ R
N \ Ωδ : wk,ε(x) ≤ U(x).

Analogously, we can obtain

∀x ∈ R
N \ Ωδ : −U(x) ≤ wk,ε(x).

Finally, by Remark 4.4.3, for every x ∈ R
N \ Ωδ it follows that

|wk,ε(x)| ≤ U(x) ≤ C

2ck,ε

· exp
(
γδ,ε · dist(x, Ωδ)

)
, (4.109)

where C = C(K, δ) = C(σ, N, k, p, δ) > 0. Whence, we can obtain (4.103) by fixing a small
value for σ and enlarging C to make it independent of σ and so that (4.109) becomes valid
for x ∈ Ωδ. Indeed, we get

∀ε ∈ (o, εσ,3), ∀x ∈ R
N : |ŵk,ε(x)| ≤ C

(2ck)1/(p−1) exp
(

K − Vδ,ε

2 · dist(x, Ωδ)
)

.

Note that, clearly,
K − Vδ,ε

2 ≡ γδ,ε → −∞ as ε → 0.

We conclude by the arbitrariness of ε.
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Chapter 5

Conclusions and recommendations

5.1 Conclusions
In this project we proved the existence, multiplicity, concentration phenomena and decay
of solutions for the nonlinear Schrödinger equation⎧⎨⎩ε2Δv(x) − V (x) v(x) + |v(x)|p−1v(x) = 0, x ∈ R

N ,

v(x) → 0, as |x| → ∞,
(Pε)

where ε > 0.
We studied the Infinite Case as presented by Byeon & Wang, under the restrictions:

(V1) V ∈ C(RN) is non-negative;
(V2) V (x) → ∞, as |x| → ∞;
(V3) Z = {0};

(Vinf) ∀|x| ≤ 1 : V (x) = exp
(

− 1
a(x)

)
.

where b ∈ C(RN) was an Ω-quasi homogeneous function and a ∈ C(RN \ {0}) was an
asymptotically (Ω, b)-quasi homogeneous function.

The corresponding limit problem of (Pε) as ε → 0 was:⎧⎨⎩Δw(x) + |w(x)|p−1 w(x) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω,
(P)

where Ω ⊆ R
N was considered as a strictly star-shaped domain.

We can summarize the results present in this project as follows:

i) Using a Ljusternik-Schnirelman scheme and the properties of Krasnoselskii’s genus
we were able to prove the existence of an infinite number of solutions for (Pε) and
(P). Furthermore, we proved that for each topological level k there is at least a pair
of solutions for each problem.

ii) We proved
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• The critical levels of (Pε) converge to those of (P) as ε → 0.
• The solutions of (Pε) converge, up to scaling and subsequences, to a solution of

(P), for each topological level k.
• The solutions of (Pε) decay exponentially away from Ω.

iii) We needed concepts and results studied in several courses such as Functional Anal-
ysis, Measure Theory, Operator Theory, Partial Differential Equations and Calculus
of Variations for the development of this project. Moreover, results from Nonlinear
Analysis were needed, such as Krasnoselkii’s Genus, the Palais Smale condition and
the Ljusternik-Schnirelman scheme, which were not covered in courses offered in the
Mathematics career at Yachay Tech.

iv) The results we obtained are congruent to those of the works [6], [11] and [22]. This
work concludes the studies of the cases presented by Byeon and Wang that involve
a Laplacian operator of order one.

5.2 Recommendations
1. This work can be further expanded via numerical experimentation. Namely, one

could set a fixed value for σ and ε and approximate the solution via a shooting
method.

3. We conjecture that, by changing the Laplacian in (Pε) to a p-Laplacian with p > 1
it can be shown that similar results hold for the three cases.

2. The need for more efficient and reliable administrations in Yachay Tech cannot be
posponed any longer. The university has suffered enough incompetent administra-
tions. The immense potential of this University and its students is being greatly
wasted and yet, despite this, students and professors have managed to go forward
and achieve global scientific products.
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