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Resumen
En el marco de la Relatividad General, el desacople gravitacional ha llegado a ser una herramienta útil para extender
las soluciones isótropas a dominios anisótropos. En este trabajo nosotros obtenemos dos nuevas soluciones para
objetos ultracompactos a través del desacople gravitacional. Por un lado, nosotros hemos considerado complejidad
polinómica y obtuvimos dos modelos diferentes para el interior estelar. Por otra parte, las soluciones fueron bien
pegadas con dos vacíos modificados diferentes. La densidad de energía es monótonamente decreciente y el horizonte
de eventos de la estrella es ausente, como es requerido.

Palabras Clave: mínima deformación geométrica , vacío deformado, gravastars, complejidad polinomial.
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Abstract
In the framework of General Relativity, the gravitational decoupling has become a useful tool to extend isotropic

solutions to anisotropic domains. In this work we obtain two new solutions describing ultracompact objects by the
gravitational decoupling. On one hand, we have considered a polynomial complexity and obtained two different
models for stellar interiors. On the other hand, the solutions have been matched to two different modified vacuums.
The energy density is monotonously decreasing and the event horizon of the star is absent as required.

Keywords: minimal geometric deformation, deformed vacuum, gravastars, polynomial complexity.
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Chapter 1

Introduction

The study of Black Holes (BH) in General Relativity (GR) has been one of the most important topics in the scientific
literature. Although, Albert Einstein in 19161 proposed the principles of GR, it was not until 1960’s that the term
Black Hole was used. Though the BH’s are already accepted as astrophysical objects, they continue to be objects of
discussion due to the singularity present at its center. However, since they appear to be real, they are often used to
test strong gravitational fields, to study gravitational waves2 3 4 and in the present, owning to the first image taken of
a BH, to study its shadows5 6.

From the mathematical point of view, GR seems to be incomplete due to the singularities that appear in the
description of BH’s. In this sense, some studies are dedicated to propose new theories, new astrophysical objects sim-
ilar to BH like regular BH’s7 8 9, traversable wormholes10 11 and ultracompact stars, or generalizations of the theory12.

Ultracompact stars or "gravastars" were modeled firstly by Mazur and Mottola13 (MM) by the use of the
Schwarzschild interior solution in a special case that was the base for further studies in the recent years14 15.
Recently, the MM model has been extended to anisotropic domains by the Gravitational Decoupling (GD) through
the Minimal Geometric Deformation (MGD) approach15 and in contrast to the original solution, the resulting
configuration can be matched smoothly with a modified vacuum so the thin shell approach can be avoided. In this
work we follow the ideas in15 and construct an anisotropic ultracompact star by using the recently introduced concept
of complexity16.

1.1 Problem Statement
This work is devoted to the study of new solutions for ultracompact stars which mimic the exterior geometry of a BH
without singularities nor event horizon. We assume static and spherically symmetric spacetimes so the Einstein field
equations correspond to five equations with three unknowns. In order to reduce the number of degrees of freedom

1



2 1.2. GENERAL AND SPECIFIC OBJECTIVES

we employ the GD by MGD to extent the well known MM gravastar model to anisotropic domains. To close the
system of differential equation we implement the concept of complexity of self gravitating spheres.

1.2 General and Specific Objectives
The main goal of this project is twofold. The first one is based on the obtaining of an alternative model for gravastar
by the use of a complexity factor for the interior region. The second one is to provide an MGD deformed vacuum
for the exterior geometry of the particular configuration taking into account that the exterior region must match with
the proposed interior configuration.

This work is organized as follows. In chapter 2 we develop the theoretical background of GR and the basics for
the description of gravastars. Chapter 3 is focused on the proposal of two new solutions based on the complexity
factor as a polynomial expression for the interior region which will be matched with two exterior geometries by the
use of MGD approach. Finally, the conclusions are shown in chapter 4.

In this work, instead of using the CGS units where G = 6.674×10−8 cm3/g s2, c=3 ×1010 cm/s, we will be using
the Geometrized Unit System where G = c = 1 and κ = 8π. Also the signature of the metric will be (+,−,−,−).



Chapter 2

Theoretical Background

In this chapter we summarize the basic elements of GR starting from the Einstein field equations to continue
describing both the interior and exterior Schwarzschild solution. Next, we explain the necessary conditions to match
the interior with the exterior solutions and then, we review in detail the GD by MGD. Finally, we study complexity
in the context of GR and the basics to describe a gravastar.

2.1 General Relativity
GR is a geometric theory of gravitation where gravity is not considered as a force but as a consequence of the
curvature of the spacetime itself17. The new concept of gravity helps us to describe some problems which could
not be explained through classical theories as the bending of light, the precession of the perihelion of Mercury, the
gravitational redshift, and the motion of particles around massive objects18.

GR is based on the equivalence and covariance principles. The first one states tha5 as the inertial and gravitational
mass are indistinguishable it is impossible to differentiate between free falling observers and accelerated observes in
a small region of spacetime. The second principle remarks the invariance of physical laws under coordinate transfor-
mations. The concepts of GR establish that the spacetime where we live is a four dimentioinal pseudo Riemannian .
It remarks the difference between a simple Euclidean spaceRn from a pseudo Riemannian space of (3+1) dimensions.

All the information of our spacetime is codified in the Einstein field equations (EFE), which corresponds to a
set of ten non linear differential equations for the metric gµν and represent a connection between the mass and the
energy which tell us how the spacetime warp in the presence of matter1.

3



4 2.1. GENERAL RELATIVITY

2.1.1 Einstein field equations

EFE are given by

Gµν = κTµν, (2.1)

where Gµν is the Einstein tensor which encodes information of the geometry of the spacetime, Tµν is the energy
momentum tensor which acts as the source of a gravitational field and κ is 8π.

The Einstein tensor can be written as,

Gµν = Rµν −
1
2

Rgµν, (2.2)

where gµν is the metric, which is a symmetric (0, 2) rank tensor, Rµν is the Ricci tensor and R is the Ricci scalar that
can be written as

R = gµνRµν, (2.3)

Rµν = Rαµαν, (2.4)

where Rαµαν is the Riemann tensor that, in terms of the Christoffel symbols, reads

Rλµρν = ∂ρΓ
λ
µν − ∂νΓ

λ
µρ + Γ

λ
σρΓ

σ
µν − Γ

λ
σνΓ

σ
µρ. (2.5)

Additionally, the Christoffel symbols can be written as

Γνλµ =
1
2

gνσ(∂µgσλ + ∂λgσµ − ∂σgµλ). (2.6)

From the definition above the Riemann tensor is endowed with the following symmetries

Rµνλρ = Rλρµν, (2.7)

Rµνλρ = −Rνµλρ, (2.8)

Rµνλρ = −Rµνρλ, (2.9)

Rµνλρ + Rµρνλ = −Rµλρν. (2.10)

In this regard, Gµν is a symmetric tensor and as a consequence, the Einstein equations corresponds to a set of ten
second order and coupled differential equations.

The energy momentum tensor encodes the information of the matter content. For an isotropic fluid the energy
momentum tensor in the tensorial form reads as19 20 21
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Tµν = (ρ + p) UµUν + pgµν, (2.11)

or in a matrix form as,

T µν =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 (2.12)

It is worth mentioning that the energy momentum tensor is covariantly conserved, namely ∇µT µν = 0 .

2.2 Schwarzschild exterior solution
The first exact solution of the Einstein field equations were found by K. Schwarzschild22 and describe the exterior
geometry around a central object in a static and spherically symmetric spacetime. In this section we derive the
Schwarzschild exterior solution in some detail. Let us start by assuming a line element parametrized as

ds2 = e2α(r)dt2 − e2β(r)dr2 − r2
[
dθ2 + sin2(θ)dϕ2

]
, (2.13)

where
(
dθ2 + sin2(θ)dϕ2

)
can be also seen as dΩ2 that acts as the angular part, and α(r) and β(r) are functions of the

radial coordinate only. Note that the metric (2.13) does not depend explicitly on time and is invariant under rotation
as required.

The non vanishing Christoffel symbols associated with the metric (2.13) read

Γt
tr =∂rα,

Γθrθ =1/r,

Γr
ϕϕ = − re−2β sin2 θ,

Γr
tt =e2(α−β)∂rα,

Γr
θθ = − re−2β,

Γθϕϕ = − sin θ cos θ,

Γr
rr =∂rβ,

Γ
ϕ
rϕ =1/r,

Γ
ϕ
θϕ =

cos θ
sin θ
,

(2.14)

from where, the components of the Riemann tensor are given by



6 2.2. SCHWARZSCHILD EXTERIOR SOLUTION

Rt
rtr =∂rα∂rβ − ∂

2
rα − (∂rα)2,

Rt
θtθ = − re−2β∂rα,

Rt
ϕtϕ = − re−2β sin2 θ∂rα,

Rr
θrθ =re−2β∂rβ,

Rr
ϕrϕ =re−2β sin2 θ∂rβ,

Rθϕθϕ =(1 − e−2β) sin2 θ.

(2.15)

Using Eqs. (2.15), the components of the Ricci tensor are

Rtt =e2(α−β)
[
∂2

rα + (∂rα)2 − ∂rα∂rβ +
2
r
∂rα

]
,

Rrr = − ∂
2
rα − (∂rα)2 + ∂rα∂rβ +

2
r
∂rβ,

Rθθ =e−2β [r(∂rβ − ∂rα) − 1
]
+ 1,

Rϕϕ = sin2 θRθθ.

(2.16)

As we are dealing with a vacuum solution, the components of the Ricci tensor must vanish independently. Then,
we can write

e2(α−β)Rtt + Rrr =
2
r

(∂rα + ∂rβ) = 0, (2.17)

from where α = −β + constant. Now, by a rescaling of the time in the form of e−ct, is possible to set the constant to
zero. So,

α(r) = −β(r). (2.18)

Setting Rθθ = 0, it yields

e2α(2r∂rα + 1) = 1, (2.19)

from where

e2α = 1 −
RS

r
, (2.20)

where RS = 2M is the Schwarzschild radius∗.Finally, the Schwarzschild metric reads

ds2 =

(
1 −

2M
r

)
dt2 −

(
1 −

2M
r

)−1

dr2 − r2dΩ. (2.21)

∗Actually RS is 2GM/c2 and it is found in the weak field case 22
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At this point some comments are in order. First, note that the solution is asymptotically flat, namely, the
Minkowski metric is recovered in the limits r → ∞. Second, the parameter M is the mass of the central object which
can be identified in the weak field limit approximation. Finally, it is worth noticing that Eq. (2.21) diverges both at
r = RS and r = 0. In this regard, the radius of the central object should be R > RS in order to avoid the singularities
of gµν. However, as we shall discuss below, in the study of black holes a detailed discussion about those singularities
is compulsory.

2.2.1 Spherically symmetric black hole

In this section we go a step further in the discussion of the metric (2.21) in order to establish the nature of the
singularities appearing at r = RS and r = 0.

To this end, we start analyzing the null geodesics ( ds2 = 0) where θ and ϕ are constants. Then, we have,(
1 −

2M
r

)
dt2 −

(
1 −

2M
r

)−1

dr2 = 0, (2.22)

dt
dr
= ±

(
1 −

2M
r

)−1

, (2.23)

from where,

t± = ± [r + 2M ln (r − 2M)] . (2.24)

Note that the plus and minus, represent the slopes of the light cones as can be seen in the figure 2.1†. If a particle
goes from r > 2M to r < 2M, it will take an infinite time to pass the point r = 2M since the light cone at r > 2M
starts closing up and its future world line will go undoubtedly to infinity. Therefore, the particle will never pass the
limit at the Schwarzschild radius because it will take an infinite time. Conversely, in the region r < 2M both the
timelike and spacelike roles are interchange and as a consequence the worldline of a particle will end unavoidably at
the singular point r = 0.

An alternative route to evaluate the geometry of singular points is through the invariants constructed as contraction
of the Riemann tensor. In the literature, the basic scalars are

R = gµνRµν, (2.25)

R2 = RµνRµν, (2.26)

K = RµνλρRµνλρ, (2.27)

which correspond to the Ricci, Ricci squared and the Kretschmann scalar, respectively. Given that the scalars capture
all the information encoded in the Riemann tensor, we say that a point is a real singularity whenever some of the

†Actually, the light cone can be described by the intersection of the null geodesics
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Figure 2.1: Null geodesics for Schwarzschild metric. The solid red lines corresponds to the ingoing lines whereas
the dashed blue lines corresponds to the outgoing lines. The intersection between them define the light cones.

invariants defined above diverges at this point. As we are dealing with a vacuum solution, the Ricci and the Ricci
squared vanish and the Kretschmann reads

RµνρσRµνρσ =
48M2

r6 = K . (2.28)

Note that Eq. (2.28) reveals that r = 0 is the only real singularity of the solution so, the divergence of the metric at
r = RS should correspond to a bad choice of coordinates. A more adequate set is given by the Eddington–Finkelstein
coordiantes23 24 25 which we define in what follows.

Let us consider the following transformation

t̃ = t± + 2M ln |r − 2M|, (2.29)

where t± is given by (2.24). Then, from (2.29) we get,

t̃− = −r, (ingoing) (2.30)

t̃+ = r + 4M ln |r − 2M|. (outgoing) (2.31)

In figure 2.2 it is shown the spacetime diagram in the Eddintong–Finkelstein coordinates. Note that, the future
world line that passes through the light cone goes form r > 2M to r < 2M which means that the particle can traverse
the Schwarzschild radius in contrast to what is obtained in terms of the Schwarzschild coordinates. Furthermore, it is
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Figure 2.2: Null geodesics for Eddington–Finkelstein metric. The solid red lines corresponds to the ingoing lines
whereas the dashed blue lines corresponds to the outgoing lines. The intersection between them define the light
cones.

worth mentioning that once the particle traverse the event horizon, it will end up at r = 0 and moreover, the particle
will not have a connection with the exterior region. In this respect, the regions r < RS and r > RS are causally
disconnected and it is said that the surface RS = 2M defines the event horizon of the solution. Roughly speaking,
the above configuration can be thought as the result of a complete gravitational collapse and, given that even light
cannot escape from the r < RR, it is known as Black Hole.

2.3 Schwarzschild interior solution
In this section we obtain the Schwarzschild interior configuration which corresponds to a static and spherically
symmetric solution supported by a perfect fluid26. Let us parametrize the line element as

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dΩ2. (2.32)

Using (2.32) and the energy momentum tensor for a perfect fluid given by Eq. (2.12), the Einstein field equations
read‡

‡The intermediate steps are shown, in detail, in appendix A.
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κρ = e−λ
(
λ′

r
−

1
r2

)
+

1
r2 , (2.33)

κp = e−λ
(
ν′

r
+

1
r2

)
−

1
r2 , (2.34)

κp =
e−λ

4

(
2ν′′ + ν′2 + 2

ν′

r
− ν′λ′ − 2

λ′

r

)
. (2.35)

Note that Eqs. (B.3), (B.3) and (B.3) correspond to a set of three equations and four unknowns, namely {ν, λ, ρ, p},
so an extra condition should be provided in order to close the system. In this case, we shall assume an uniform
energy density, namely ρ = ρ0, which is equivalent to

e−λ = 1 −
r2

C2 , (2.36)

from where

eν =

A − B
(
1 −

r2

C2

)1/22

. (2.37)

Using (2.36) and (2.37), the matter sector reads

κρ =
3

C2 , (2.38)

or
κp =

1
C2

[
3B(1 − r2/C2)1/2 − A
A − B(1 − r2/C2)1/2

]
. (2.39)

2.3.1 Matching conditions

The interior solution obtained previously contains indeterminacies encoded in the constant of integration. In order
to provide a physical meaning of such constants, it is required to match the interior configuration with some exterior
geometry at r = R which defines the radius of the star. In this regard, a set of necessary and sufficient conditions are
the continuity of the first and the second fundamental form which read

[
ds2

]
Σ
= 0, (2.40)

and [
Gµνrν

]
Σ
= 0, (2.41)

where Σ corresponds to the surface of the star. Using (2.32), Eq. (2.40) reads eν|Σ− = eν|Σ+ and eλ|Σ− = eλ|Σ+ . Now,
if we consider the exterior Schwarzschild solution as the exterior geometry we obtain

eν(R) = e−λ(R) = 1 −
2M
R
, (2.42)
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with M and R the total mass and the radius of the star, respectively.

Similarly, the second fundamental form leads to p|Σ− = p|Σ+ which in this case reads

p(R) = 0. (2.43)

For the Schwarzschild interior solution we have

C2 =
R3

2M
, (2.44)

A = 3B

√
1 −

2M
R
, (2.45)

B = 1/2. (2.46)

Finally, the metric of the metric can be written as

ds2 =

[
1
4

(
3
√

1 − H2R2 −
√

1 − H2r2
)2
]

dt2 −
(
1 − H2r2

)−1
dr2 − r2

(
dθ2 + sin θ2dϕ2

)
, (2.47)

where H2 = 2M
R3 .

The previous development represent one of the most important and simple interior solutions. However, there are
different solutions as a consequence of the application of distinct assumptions according to the problem we want to
solve (see Appendix B for instance).

2.4 Minimal Geometric Deformation

2.4.1 Einstein field equations by MGD

In this section we review some aspects of GD by MGD (for more details, see27). Let us start with the Einstein field
equations (EFE)

Gµν = Rµν −
1
2

gµνR = κTµν (2.48)

where
Tµν = T (s)

µν + αθµν . (2.49)

In the above equation κ = 8π represents the matter content of a known solution of Einstein’s field equations,
namely the seed sector, and θµν describes an extra source that is coupled by means of the parameter α. Such a
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coupling is introduced in order to control the effect of θµν on T (s)
µν . Since the Einstein tensor satisfies the Bianchi

identity28, the total energy–momentum tensor satisfies

∇µT µν = 0 . (2.50)

It is important to point out that, whenever ∇µT µν(s) = 0, the following condition necessarily must be satisfied

∇µθ
µν = 0 , (2.51)

and as a consequence, there is no exchange of energy-momentum tensor between the seed solution and the extra
source θµν (the interaction is purely gravitational).

From now on, let us consider a static, spherically symmetric space-time sourced by

T µ(s)
ν = diag(ρ(s),−p(s)

r ,−p(s)
⊥ ,−p(s)

⊥ ) (2.52)

θ
µ
ν = diag(θ00, θ

1
1, θ

2
2, θ

2
2) (2.53)

and a line element given by

ds2 = eνdt2 − eλdr2 − r2(θ2 + sin2 θdϕ2). (2.54)

Replacing (2.52), (2.53) and (2.54) in (2.1) and (2.49), the EFE read

κρ =
1
r2 + e−λ

(
λ′

r
−

1
r2

)
, (2.55)

κpr = −
1
r2 + e−λ

(
ν′

r
+

1
r2

)
, (2.56)

κp⊥ =
1
4

e−λ
(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
(2.57)

where we have defined

ρ = ρ(s) + αθ00 , (2.58)

pr = p(s)
r − αθ

1
1 , (2.59)

p⊥ = p(s)
⊥ − αθ

2
2 . (2.60)

Note that given the non-linearity of Einstein equations the decomposition (2.49) does not lead to two set of
equations, one for each source involved. Nevertheless, contrary to the broadly belief, such a decoupling is possible
in the context of MGD as we shall demonstrate in what follows.
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2.4.2 Gravitational decoupling

Let us introduce a geometric deformation in the metric functions given by

ν −→ ξ + αg, (2.61)

e−λ −→ e−µ + α f , (2.62)

where { f , g} are the so-called decoupling functions and α is the same free parameter that “controls” the influence of
θµν on T (s)

µν . In this work we shall concentrate in the particular case g = 0 and f , 0. Now, replacing (2.61) and
(2.62) in the system (2.55-2.57), we are able to split the complete set of differential equations into two subsets: one
describing a seed sector sourced by the conserved energy-momentum tensor, T (s)

µν

κρ(s) =
1
r2 + e−µ

(
µ′

r
−

1
r2

)
, (2.63)

κp(s)
r = −

1
r2 + e−µ

(
ν′

r
+

1
r2

)
, (2.64)

κp(s)
⊥ =

1
4

e−µ
(
2ν′′ + ν′2 − µ′ν′ + 2

ν′ − µ′

r

)
,

(2.65)

and the other set corresponding to quasi-Einstein field equations sourced by θµν

κθ00 = −
f

r2 −
f ′

r
, (2.66)

κθ11 = − f
(
ν′

r
+

1
r2

)
, (2.67)

κθ22 = −
f
4

(
2ν′′ + ν′2 + 2

ν′

r

)
−

f ′

4

(
ν′ +

2
r

)
.

(2.68)

As we have seen, the components of θµν satisfy the conservation equation ∇µθµν = 0, namely

θ′11 −
ν′

2
(θ00 − θ

1
1) −

2
r

(θ22 − θ
1
1) = 0. (2.69)

Deformed vacuum

Hitherto, we have discussed the general aspects of GD by MGD without any specification of the system under study.
However, if the system under consideration is the interior of some stellar configuration, the solution obtained will
be valid only up to certain radius R which define the surface of the star. In this regard, the matching between the
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interior solution with some exterior geometry for r > R is mandatory and in most of the cases, it is sufficient to
take the Schwarzschild vacuum solution as the exterior metric. However, as it was demonstrated in15, a suitable
MGD–gravastar solution is possible whenever the exterior geometry is also a MGD–modified vacuum, namely

ds2 =

(
1 −

2M
r

)
dt2 −

[
1 −

2M
r
+ αg(r)

]−1

dr2 − r2dθ2 − r2 sin2θ dϕ2 ,

(2.70)

with g(r) is the decoupling function for the exterior solution. A list of MGD–modified vacuum solutions can be
found in Ref.29. Now, in order to match smoothly the interior metric with the outside one above on the boundary
surface Σ, we require

eν
∣∣∣∣
Σ−
=

(
1 −

2M
r

) ∣∣∣∣∣∣
Σ+

, (2.71)

eλ
∣∣∣∣
Σ−
=

[
1 −

2M
r
+ αg(r)

]−1 ∣∣∣∣∣∣
Σ+

, (2.72)

pr(r)
∣∣∣∣
Σ−
= pr(r)

∣∣∣∣
Σ+
, (2.73)

which corresponds to the continuity of the first and second fundamental form across that surface.

To conclude this section, we would like to emphasize the importance of GD by MGD as a useful tool to find
solutions of EFE. As it is well known, in static and spherically symmetric spacetimes sourced by anisotropic fluids,
EFE reduce to three equations given by (2.55), (2.56) and (2.57) and five unknowns, namely {ν, λ, ρ, pr, p⊥}. In this
sense, two auxiliary conditions must be provided: metric conditions, equations of state, etc. However, given that
in the context of MGD a seed solution should be given, the number of degrees of freedom reduces to four and, as
a consequence, only one extra condition is required. In general, this condition is implemented in the decoupling
sector given by Eqs. (2.66), (2.67) and (2.68) as some equation of state which leads to a differential equation for
the decoupling function f . In this work, we take an alternative route to find the decoupling function; namely, the
complexity factor that we shall introduce in the next section.

2.5 Complexity of compact sources
Recently, a new definition for complexity for self–gravitating fluid distributions has been introduced in Ref.16.
This definition is based on the intuitive idea that the least complex gravitational system should be characterized
by a homogeneous energy density distribution and isotropic pressure. Now, as demonstrated in16, there is a scalar
associated to the orthogonal splitting of the Riemann tensor30 in spherically symmetric space–times which capture
the essence of what we mean by complexity, namely

YT F = 8πΠ −
4π
r3

∫ r

0
r̃3ρ′dr̃, (2.74)
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with Π ≡ pr − p⊥. Also, it can be shown that (2.74) allows to write the Tolman mass as,

mT = (mT )Σ

(
r
rΣ

)3

+ r3
∫ rΣ

r

e(ν+λ)/2

r̃
YT Fdr̃, (2.75)

which can be considered as a solid argument to define the complexity factor by means of this scalar given that this
function, encompasses all the modifications produced by the energy density inhomogeneity and the anisotropy of
the pressure on the active gravitational mass.

Note that the vanishing complexity condition (YT F = 0) can be satisfied not only in the simplest case of isotropic
and homogeneus system but in all the cases where

Π =
1

2r3

r∫
0

r̃3ρ′dr̃. (2.76)

In this respect, the vanishing complexity condition leads to a non–local equation of state that can be used as a
complementary condition to close the system of EFE (for a recent implementation, see31, for example). Similarly, we
can provide a particular values of YT F and use this information to find a family of solutions with the same complexity
factor. An example of how this can be achieved can be found in31. In this work, we shall propose a suitable value
for the complexity factor to find a new solution for an ultracompact star.

2.6 Ultracompact Schwarzschild star
In this section we briefly review the Schwarschild interior in the ultracompact regime. As it is well known, the metric
for this configuration reads

ds2 = eνdt2 − eλdr2 − r2
(
dθ2 + sin θ2dϕ2

)
, (2.77)

where

eν =
1
4

(
3
√

1 − H2R2 −
√

1 − H2r2
)2

(2.78)

e−λ = 1 − H2r2, (2.79)

with M the mass, R the radius of the star and

H2 =
2M
R3 . (2.80)

The Schwarzschild interior is sourced by a perfect fluid with uniform density ρ = ρ0 and a pressure given by
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p = ρ0

 1 − H2r2 −
√

1 − H2R2

3
√

1 − H2R2 −
√

1 − H2r2

 . (2.81)

At this point a couple of comments are in order. First, the Buchdahl limit set an upper bound of the compactness
parameter, M/R, which entails a condition on the radius of the star, namely

R >
9
4

M > 2M. (2.82)

The Buchdahl limit ensure that the pressure is finite and positive everywhere inside the star, as required for stable
configurations. Second, note that the pressure (2.81) is regular except at some radius R0 given by

R0 = 3M

√
1 −

8
9

R
M
< R. (2.83)

Now, as noted by Mazur and Mottola, in the ultracompact limit, namely, when both R and R0 approach to the
Schwarzschild radius 2M, the interior solution corresponds to a patch of the de Sitter solution. More precisely, the
solution reads,

eν =
1
4

(
1 − H2r2

)
(2.84)

e−λ = 1 − H2r2 (2.85)

p = −ρ = constant, (2.86)

for r < 2M. It can be shown that the above solution join with the Schwarzschild vacuum in a way that the Israel
second junction condition is violated. This implies that the presence of a δ–distribution of stresses is necessary to
give a correct interpretation of the Schwarzschild star beyond the Buchdahl limit. However, as we shall demonstrate
in what follows, the ultracompact solutions obtained by MGD does not require the existence of such a distribution
of matter given that the metric functions join smoothly through the surface Σ.



Chapter 3

Results & Discussion

In this chapter, we develop a gravastar model supported by anisotropic fluids by the use of complexity.

3.1 Ultracompact star by gravitational decoupling
The MM gravastar given by (2.84), (2.85) and (2.86) was recently extended by MGD in15. In this case, the metric
reads

eν =
1
4

(
1 − H2r2

)
(3.1)

e−λ = 1 − H2r2 + α f (r), (3.2)

with

f (r) =
(
1 − H2r2

)
Hnrn, (3.3)

and α ≥ −1 to ensure that grr is positive definite as r → 2M. As demonstrated in15, the above solution is ill–matched
with the Schwarzschild vacuum because it requires α = −3/2 < −1 which violates the previous requirement for α
to ensure the correct behaviour of grr. To overcome this difficulty, the proposed exterior solution was the modified
vacuum

eν = = 1 −
2M

r
(3.4)

e−λ =
(
1 −

2M
r

) (
1 +

ℓ

2r − 3M

)
, (3.5)

17
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with ℓ a constant with units of a length. The reader is referred to Ref.29 where the MGD–modified vacuum (3.4) and
(3.5) was obtained and discussed in detail. It is worth mentioning that the decoupling function (3.3) leads to stable
interior solutions only for n = 2.

The figure 3.1 we show the radial metric as a function of the radius. The function is non uniform and monotonic
as expected. Besides, since it is positive everywhere, it indicates the absence of the Event Horizon.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

r/M

e
-
λ
(r
)

Figure 3.1: The deformed radial metric component for a gravastar n = 2 and N = 2.

The matter sector for this solution reads

ρ =


24M2−5r2

(8π)16M4 r < 2,
M2

8πr2(2r−3M)2 r > 2,
(3.6)

pr =


3r2

(8π)16M4 −
1

8πM2 r < 2,

− M
8πr2(2r−3M) r > 2,

(3.7)

p⊥ =


5r2

(8π)16M4 −
1

8πM2 r < 2,
M(r−M)

8πr2(2r−3M)2 r > 2,
(3.8)

In figure 3.2 it is shown the density, the radial and the tangential pressure. Note that the density is monotonously
decreasing as required and the tangential pressure has a discontinuity that remarks the surface of the star.
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Figure 3.2: The density ρ̃ (black line), the radial pressure p̃r (dashed blue line) and the tangential pressure p̃t (dotted
red line), with α = −1 and ℓ = −M, for a gravastar n = 2 and N = 2.

3.2 Ultracompact stars with polynomial complexity
In order to provide an alternative MGD–gravastar solution, in this work we use the complexity factor previously
introduced in Sect. 2.5, as an auxiliary condition to close the system and find the decoupling function f . It can be
checked that, imposing the broadly used vanishing complexity condition, it does not lead to well behaved interiors
so in this work we shall provide another value for the complexity and we shall use the solution given by (3.1), (3.2)
and (3.3) as a guide.

A straightforward computation reveals that for n = 2, the MGD gravastar model of Ref.15 has a complexity given
by

YT F = αH4r2. (3.9)

Based on the above result, in this work we propose a polynomial complexity, namely

YT F =

N∑
i=0

airi, (3.10)

which contains (3.9) as a particular case. Indeed, (3.9) is recovered for N = 2, a0 = a1 = 0 and a2 = αH4. Now,
replacing (3.1) and (3.2) in (3.10) we obtain
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αH2r
[
H2r (2 f − r f ′) + f ′

]
2
(
H2r2 − 1

)2 =

N∑
i=0

airi, (3.11)

which depending on the values of N, provides a differential equation for the decoupling function.

It can be shown that if either a0 or a1 are not vanishing factors, the solution of (3.11) leads to divergent interior
solutions so this possibilities must be discarded and, as a consequence, (3.11) now reads

αH2r
[
H2r (2 f − r f ′) + f ′

]
2
(
H2r2 − 1

)2 =

N∑
i≥2

airi, (3.12)

which can be easily integrated to obtain

f = −
2
αH2

(
1 − H2r2

) N∑
i≥2

airi

i
. (3.13)

For example, for N = 3 we obtain

f =
2
αH2

(
1 − H2r2

) (a2r2

2
+

a3r3

3

)
, (3.14)

from where

eν =
1
4

(
1 − H2r2

)
, (3.15)

e−λ =
(
1 − H2r2

) [
1 −

2
H2

(a2

2
r2 +

a3

3
r3

)]
, (3.16)

ρ = −
9a2 + 8a3r

24πH2 +
15a2r2 + 12a3r3

24π
+

3H2

8π
, (3.17)

pr =
3a2 + 2a3r

24πH2 −
9a2r2 + 6a3r3

24π
−

3H2

8π
, (3.18)

p⊥ =
a2 + a3r

8πH2 −
5a2r2 + 4a3r3

8π
−

3H2

8π
. (3.19)

It is worth mentioning that in Eq. (3.14) we have discarded the term with the integration constant because it
leads to divergence in the interior of the configuration.

To proceed with the analysis, we need to provide an exterior geometry and we shall explore two different
MGD–modified vacuum.
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3.2.1 Exterior 1

Let us consider

eν = 1 −
2M

r
, (3.20)

e−λ =
(
1 −

2M
r

) (
1 +

ℓ

2r − 3M

)
, (3.21)

ρ = −
ℓM

8πr2(3M − 2r)2 , (3.22)

pr = −
ℓ

24πMr2 − 16πr3 , (3.23)

p⊥ =
ℓ(M − r)

8πr2(3M − 2r)2 . (3.24)

The continuity of the radial pressure requires

a2 = −
128a3M6 + 3l + 9M

96M5 , (3.25)

while the continuity of the first fundamental form is automatically fulfilled.

In figure 3.3 we show how the radial metric e−λ as a function of r for the specific values in the legend.
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Figure 3.3: Deformed radial metric component of the first exterior geometry by polynomial complexity up to third
order.

Note that, as in Ref.15, the metric function e−λ is smoothly continuous though the stellar surface. In figure 3.4
we show the matter sector for the specific values in the legend where we note that not only the radial pressure but
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the density are continuous though the surface Σ in accordance with the results previously reported in15. In addition,
note that the cusp–like matching of the tangential defines the surface of the star.
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Figure 3.4: ρ (black line), pr (blue dashed line) and p⊥ (red dotted line) for a3 = 0.01 and l = −1

3.2.2 Exterior 2

In this case we consider the MGD–deformed vacuum (see Ref.29 for details)

eν = 1 −
2M

r
, (3.26)

e−λ =
(
1 −

2M
r

) [
1 +

β

(r + M)2(a−1)

]
, (3.27)

ρ =
β (M + r)1−2a [(3 − 4a)M + (2a − 3)r]

8πr2 , (3.28)

pr =
β(M + r)2−2a

8πr2 , (3.29)

p⊥ = β
(a − 1)(M − r)(M + r)1−2a

8πr2 , (3.30)

where a > 1 to ensure asymptotic flatness. The continuity of the radial pressure leads to

a2 = −
1
32

3−2a−1M−2a−4
(
128 32aa3M2a+5 + 32a+2M2a + 27βM2

)
, (3.31)

and, as in the previous case the continuity of the first fundamental form is satisfied by construction.
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In figure 3.5 we show how the radial metric e−λ as a function of r for the specific values in the legend. Again, it
is noticeable the smooth behaviour of the metric function.
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Figure 3.5: Deformed radial metric component of the second exterior geometry by polynomial complexity up to
third order.

In figure 3.6 we show the matter sector as a function of r for the specific values in the legend and again, we note
the continuity in both the radial pressure and the density. However, in contrast to the previous case, the tangential
pressure is discontinuous at the surface.
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Figure 3.6: ρ (black line), pr (blue dashed line) and p⊥ (red dotted line) for a3 = 0.01, β = −9 and a = 2





Chapter 4

Conclusions & Outlook

In this work we constructed a new ultracompact anisotropic star solution in the framework of the Gravitational
Decoupling by the Minimal Geometric Deformation approach. As the auxiliary condition to close the system of
differential equations we used the complexity factor of self–gravitating fluids. Inspired by the results found in15,
we proposed a polynomial complexity and obtained that the interior solution obtain can be well–matched to two
different modified vacuum. The solution obtained here, contains the reported in Ref.15 as an special case. Ore
findings here indicate that the solution fulfill the requirements of a stable configuration, namely, i) the solution is
regular at the origin, ii) the mass and the radius are well defined, iii) the density is positive everywhere and decreases
monotonically to the surface and iv) the radial pressure is non–uniform and monotonic as expected.

Although we only analysed the case N = 3 here, it can be easily shown that higher orders can also provide suitable
gravastar models for particular values of the free parameters involved (see for instance, appendix C). However, it
should be interesting to consider higher orders in the polynomial complexity matched to different modified vacuum
to explore to what extend the model leads to well behaved solutions.
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Appendix A

Interior Schwarzschild solution

Given the metric,

ds2 = eν(r)dt2 − e−λ(r)dr2 − r2dΩ2,

we can calculate the Christoffel symbols using equation,

Γνλµ =
1
2

gνσ(∂µgσλ + ∂λgσµ − ∂σgµλ).

Note that, here we are going to represent the derivative with a simple comma (,). Moreover, in the calculation
we can note that in all the cases, most of the components will vanish or will cancel due to the diagonalization of the
metric. Then, the nonzero Christoffel symbols are,

Γ0
01 =

1
2

g00 (
g00,1 +��g01,0 −��g01,0

)
,

=
1
2

1
eν
∂

∂r
eν =

ν′

2
,

(A.1)

Γ1
00 =

1
2

g11 (
��g10,0 +��g10,0 − g00,1

)
,

=
1
2

(
−

1
eλ

) (
−
∂

∂r
eν

)
=
ν′

2
e−λ+ν,

(A.2)

Γ1
11 =

1
2

g11 (
g10,0 +��g10,0 −��g00,1

)
,

=
1
2

(
−

1
eλ

) (
−
∂

∂r
eλ

)
=
λ′

2
,

(A.3)
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Γ1
22 =

1
2

g11 (
��g12,2 +��g12,2 − g22,1

)
,

=
1
2

(
−

1
eλ

) (
−
∂

∂r
r2

)
= −re−λ,

(A.4)

Γ1
33 =

1
2

g11 (
��g13,3 +��g13,3 − g33,1

)
,

=
1
2

(
−

1
eλ

) [
−
∂

∂r
r2 sin2 (θ)

]
,

= − r sin2 (θ)e−λ,

(A.5)

Γ2
12 =

1
2

g22 (
��g21,2 + g22,1 −��g12,2

)
,

=
1
2

(
−

1
r2

) (
−
∂

∂r
r2

)
=

1
r
,

(A.6)

Γ2
33 =

1
2

g22 (
��g23,3 +��g23,3 − g33,2

)
,

=
1
2

(
−

1
r2

) [
−
∂

∂θ
r2 sin2 (θ)

]
,

= − sin (θ) cos (θ),

(A.7)

Γ3
13 =

1
2

g33 (
��g31,3 + g33,1 −��g13,3

)
,

=
1
2

[
−

1
r2 sin2 (θ)

] [
−
∂

∂r
r2 sin2 (θ)

]
,

=
1
r
,

(A.8)

Γ3
23 =

1
2

g33 (
��g32,3 + g33,2 −��g23,3

)
,

=
1
2

[
−

1
r2 sin2 (θ)

] [
−
∂

∂θ
r2 sin2 (θ)

]
,

= cot (θ).

(A.9)

Given the Christoffel symbols we can go through the Riemann tensor,

Rλµρν = ∂ρΓ
λ
µν − ∂νΓ

λ
µρ + Γ

λ
σρΓ

σ
µν − Γ

λ
σνΓ

σ
µρ.
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Then,

R1
010 =

e−λ+ν

4

(
ν′2 − λ′ν′ + 2ν′′

)
, (A.10)

R2
020 =

1
r
ν′

2
e−λ+ν, (A.11)

R3
030 =

1
r
ν′

2
e−λ+ν, (A.12)

R0
101 =

(
−
∂

∂r
ν′

2

)
+
ν′

2

(
−λ

2
−
ν′

2

)
, (A.13)

R2
121 =

λ′

2r
, (A.14)

R3
131 =

λ′

2r
, (A.15)

R0
202 =

ν′

2

(
−re−λ

)
, (A.16)

R1
212 =

λ′

2
re−λ, (A.17)

R3
232 = 1 − e−λ, (A.18)

R0
303 =

ν′

2

[
−r sin2 (θ)e−λ

]
, (A.19)

R1
313 =

λ′

2

[
−r sin2 (θ)e−λ

]
, (A.20)

R2
323 = sin2 (θ)

(
1 − e−λ

)
. (A.21)

Now, is possible for us to construct the Ricci tensor and the Ricci scalar,

Rµν = Rαµαν,

R = gµνRµν,

R00 =
e−λ+ν

4r

[
ν′

(
4 − λ′r

)
+ rν′2 + 2ν′′r

]
, (A.22)

R11 =
1
4r

[
λ′(4 + rν′) − rν′2 − 2rν′′

]
, (A.23)

R22 =
e−λ

2

(
rλ′ − rν′ + 2eλ − 2

)
, (A.24)

R33 =
e−λ

2
sin2 (θ)

(
rλ′ − rν′ + 2eλ − 2

)
, (A.25)

and,

R =
e−λ

2r2

(
4rν′ − 4rλ′ + r2ν′2 + 2r2ν′′ − 4eλ + 4 − r2ν′λ′

)
. (A.26)
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Then, we can compose the Einstein tensor Gµν,

Gµν = Rµν −
1
2

gµνR = kTµν.

Therefore, we have,

G0
0 =

1
r2

[
r
(
1 − e−λ

)]′
= kρ, (A.27)

G1
1 = −

1
r2

(
1 − e−λ

)
+
ν′

r
e−λ = kp, (A.28)

G2
2 =

e−λ

4

(
2ν′′ + ν′2 + 2

ν′

r
− ν′λ′ − 2

λ′

r

)
= kp, (A.29)

where the last equation can be rewritten as,

0 =
d
dr

(
e−λ − 1

r2

)
+

d
dr

(
e−λν′

2r

)
+ e−λ−ν

d
dr

(
e−νν′

2r

)
.

This change was made in order to make easier the calculation. Now, to solve Einstein equations we need to
provide an extra information,

e−λ = 1 −
r2

C2 .

Then, by the use of the previous equation we can simplify the Einstein equation for G2
2,

d
dr

[(
1 −

r2

C2

)
ν′

2r

]
+

(
1 −

r2

C2

)
e−ν

d
dr

(
e−νν′

2r

)
= 0, (A.30)

After the derivation of the previous equation, we get a second order differential equation, all in terms of ν,

0 = ν′′
(

1
r
−

r
C2

)
−
ν′

r2 +
ν′2

2

(
1
r
−

r
C2

)
. (A.31)

The previous equation (A.31) can be solved by using different mathematical methods, which results in,

eν =

A − B
(
1 −

r2

C2

)1/22

. (A.32)

Finally, by using the previous solution we can solve easily the other Einstein field equations that after all, should
be matched with the exterior solution by the use of the fundamental forms of continuity as was shown in the section
2.3.



Appendix B

Tolman IV solution

We are going to develop the Tolman IV solution32. We are dealing with a sphere of perfect fluid surrounded by
vacuum. Then, in this case, we are going to solve EFE (B.3-B.3) making the following geometrical constrain,

eνν′

2r
= constant. (B.1)

As we should note, the equation (B.1) is a simple differential equation, which can be solved in order to obtain a
valid solution for ν(r). Then,

ν′ =
B2

A2 re−ν,

⇒ ν = log
(

B2

A2 r2 + B2
)
,

from where

⇒ eν = B2
(
1 +

r2

A2

)
. (B.2)

The EFE reads,

κρ = e−λ
(
λ′

r
−

1
r2

)
+

1
r2 ,

κp = e−λ
(
ν′

r
+

1
r2

)
−

1
r2 ,

κp =
e−λ

4

(
2ν′′ + ν′2 + 2

ν′

r
− ν′λ′ − 2

λ′

r

)
,

where the last equation can be written in a more convenient way as32

31
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0 =
d
dr

(
e−λ − 1

r2

)
+

d
dr

(
e−λν′

2r

)
+ e−λ−ν

d
dr

(
e−νν′

2r

)
.

Note that, the previous equation is simpler, because the first term vanishes due to the geometrical constrain. So
that, making a simple integration we obtain,

e−λ − 1
r2 +

e−λν′

2r
= −

1
C2 . (B.3)

As we can see in the above equation, − 1
C2 represents a simple constant as a consequence of the integration. Now,

the second step is to substitute the solution of ν (B.2) into the previous equation. Then, at the end, we are going to
have,

e−λ =

(
1 − r2/C2

) (
1 + r2/A2

)
1 + 2r2/A2 . (B.4)

With the previous solutions of ν and λwe obtain the expressions for the density and the pressure from the Einstein
field equations, (B.3) and (B.3). Then, we have,

κρ =
1
A2

1 + 3A2/C2 + 3r2/C2

1 + 2r2/A2 +
2
A2

1 − r2/C2(
1 + 2r2/A2)2 , , (B.5)

κp =
1
A2

1 − A2/C2 − 3r2/C2

1 + 2r2/A2 . (B.6)

Next, we need to apply the matching conditions in order to match the interior with the exterior solution for a
smooth transition between these two. Then, the firs and second fundamental form of continuity (2.40 and 2.41) gives
us the following values for the constants,

A2 =
R2 (R − 3M)

M
, (B.7)

B2 = 1 −
3M
R
, (B.8)

C2 =
R3

M
. (B.9)

Then, the expressions for ν, λ, ρ and p are,
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eν = 1 +
M

(
r2 − 3R2

)
R3 , (B.10)

e−λ =

(
R3 − Mr2

) [
R3 + M

(
r2 − 3R2

)]
2MR3r2 − 3MR5 + R6 , (B.11)

κρ =
3M

[
2R6 + 3MR3

(
r2 − 3R2

)
+ M2

(
2r4 − 7R2r2 + 9R4

)]
R3 (

2Mr2 − 3MR2 + R3)2 , (B.12)

κp =
3M2(R2 − r2)

2MR3r2 − 3MR5 + R6 . (B.13)

With this in mind, we can actually see better the behavior of the density and the pressure inside the sphere of
the perfect fluid. Figures (B.1) and (B.2) show the density function and the pressure function respectively. Actually,
both functions took the values for the compactness parameter as 0.2 (i.e u = M/R). Moreover, the figures exhibit a
decreasing behavior as was expected with the zero value in the region of r = 2M. Therefore, the interior solution
was matched very good with the exterior vacuum configuration where the density and the pressure have a smooth
transition to a constant zero value.
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Figure B.1: Density function for Tolman IV solution with the compactness parameter of 0.2
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Figure B.2: Pressure function for Tolman IV solution with the compactness parameter of 0.2
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Higher order solution for gravastar

The interior region of the gravastar by polynomial expression can be seen as,

f ∗ =
2
αH2 (1 − H2r2)

N∑
i≥2

airi

i
, (C.1)

since in section 3.1 was devoted to the study of N = 3, we can consider a further case. Therefore, here we will treat
the problem up to the fifth order. Again, we should notice that a0 and a1 must be zero in order to avoid singularities.
With this in mind, our new interior function f ∗(r) has the form,

f ∗ =
2
αH2 (1 − H2r2)

(
a2

2
r2 +

a3r3

3
+

a4r4

4
+

a5r5

5

)
, (C.2)

with the previous expression, the metric components lead to,

eν =
1
4

(
1 − H2r2

)
, (C.3)

e−λ =
(
1 − H2r2

) [
1 +

2
H2

(
a2r2

2
+

a3

3
r3 +

a4r4

4
+

a5r5

5

)]
. (C.4)

Then, the matter sector for r < 2M read,

ρ =
3H2r3 [r (32a5r + 35a4) + 40a3] + 30a2

(
5H2r2 − 3

)
− r

(
72a5r2 + 75a4r + 80a3

)
+ 90H4

240πH2 , (C.5)

pr =
−3H2r3 [3r (4a5r + 5a4) + 20a3] + a2

(
30 − 90H2r2

)
+ r [3r (4a5r + 5a4) + 20a3] − 90H4

240πH2 , (C.6)

p⊥ =
−H2r3 [r (32a5r + 35a4) + 40a3] + a2

(
10 − 50H2r2

)
+ 10r [r (a5r + a4) + a3] − 30H4

80πH2 . (C.7)
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while for the region r > 2M, we have

eν = 1 −
2M

r
, (C.8)

e−λ =
(
1 −

2M
r

) (
1 +

ℓ

2r − 3M

)
, (C.9)

ρ = −
ℓM

8πr2(3M − 2r)2 , (C.10)

pr = −
ℓ

24πMr2 − 16πr3 , (C.11)

p⊥ =
ℓ(M − r)

8πr2(3M − 2r)2 , (C.12)

likewise the section 3.2.1, the first fundamental form is automatically fulfilled and the continuity in the radial pressure
gives us,

a2 = −
1536a5M8 + 960a4M7 + 640a3M6 + 45M + 15ℓ

480M5 . (C.13)

As we see, since we increase the order in the polynomial complexity factor, we will have more and more degrees
of freedom. In this particular case, for N = 5, we have 3 degrees of freedom. However, we should notice that for
these unknown constants we have a condition in order to have a suitable model for our gravastar. This condition
relates to the requirement that the deformed radial metric component should be positive with just one root at the
surface of the star. Also, we should consider the decreasing behavior in the energy density function. Therefore,
with these limitations, we should set all the values of the constants very small. For instance, in this case, we chose
a3 = a4 = a5 = 0.001 and ℓ = −M likewise the previous case for N = 3.

With this in mind, on the one hand the figure C.1 shows the effective parameters functions through the surface of
the star at r = 2M. As we notice, they obey all the requirements to have a physically acceptable model. The density
function decreases monotonically since we reach the surface. Moreover, the radial pressure and the density have
smooth transitions between the interior and the exterior region. Whereas, the tangential pressure has no analytical
solution at r = 2M.

On the other hand, The radial deformed metric component is illustrated in the figure C.2. The function is positive
everywhere and it presents one root at exactly the surface of the star. As it was expected, we do not have an emergence
of an event horizon since eλ(r) does not change its sign.

Furthermore, it can be shown that for the second exterior deformed function, we get a suitable solution too.
Besides, we can consider cases of higher order terms which will give us well behaved solutions. However, while we
increase the order, we will be increasing the unknown constants which give us some kind of limitation.
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Figure C.1: Effective parameters for gravastar by complexity at the order of 5. The density ρ (black line), the radial
pressure pr (dashed blue line) and the tangential pressure p⊥ (dotted red line) in the interior and in the exterior region
of the ultracompact star, with a3 = a4 = a5 = 0.001 and ℓ = −M.
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Figure C.2: Deformed radial metric component by complexity at N=5. The thick grey lines denote the surface of the
star and the 0 limit to remark that the function is continuous and positive through the radius of the ultracompact star.
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