
 

UNIVERSIDAD DE INVESTIGACIÓN DE 

TECNOLOGÍA EXPERIMENTAL YACHAY 

 

Escuela de Ciencias Matemáticas y Computacionales 

 

Forecasting time series by using deep neural networks 

 

Trabajo de integración curricular presentado como requisito para la 

obtención del título de Ingeniero en Tecnologías de la Información 

 

Autor: 

Oscar Vega 

 

Tutor: 

Oscar Chang. Ph.D. 

   

Urcuquí, 1 de diciembre del 2021 



Hacienda San José s/n y Proyecto Yachay, Urcuquí  |  Tlf: +593 6 2 999 500  |  info@yachaytech.edu.ec

www.yachaytech.edu.ec

Urcuquí, 1 de diciembre de 2021
SECRETARÍA GENERAL

(Vicerrectorado Académico/Cancillería)
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES

CARRERA DE TECNOLOGÍAS DE LA INFORMACIÓN
ACTA DE DEFENSA No. UITEY-ITE-2021-00029-AD

 
A los 1 días del mes de diciembre de 2021, a las 10:00 horas, de manera virtual mediante videoconferencia, y ante el Tribunal Calificador,
integrado por los docentes:

 
Presidente Tribunal de Defensa Dr. IZA PAREDES, CRISTHIAN RENE , Ph.D.

Miembro No Tutor Dr. MAYORGA ZAMBRANO, JUAN RICARDO , Ph.D.

Tutor Dr. CHANG  TORTOLERO, OSCAR GUILLERMO , Ph.D.

 
El(la) señor(ita) estudiante VEGA ARELLANO, OSCAR ANDRES, con cédula de identidad No. 1003618228, de la ESCUELA DE
CIENCIAS MATEMÁTICAS Y COMPUTACIONALES, de la Carrera de TECNOLOGÍAS DE LA INFORMACIÓN, aprobada
por el Consejo de Educación Superior (CES), mediante Resolución RPC-SO-43-No.496-2014, realiza a través de videoconferencia, la
sustentación de su trabajo de titulación denominado: Forecasting time series using deep neural net, previa a la obtención del título de 
INGENIERO/A EN TECNOLOGÍAS DE LA INFORMACIÓN.

 
El citado trabajo de titulación, fue debidamente aprobado por el(los) docente(s):

 
Tutor Dr. CHANG  TORTOLERO, OSCAR GUILLERMO , Ph.D.

 
Y recibió las observaciones de los otros miembros del Tribunal Calificador, las mismas que han sido incorporadas por el(la) estudiante.

 
Previamente cumplidos los requisitos legales y reglamentarios, el trabajo de titulación fue sustentado por el(la) estudiante y examinado por
los miembros del Tribunal Calificador. Escuchada la sustentación del trabajo de titulación a través de videoconferencia, que integró la
exposición de el(la) estudiante sobre el contenido de la misma y las preguntas formuladas por los miembros del Tribunal, se califica la
sustentación del trabajo de titulación con las siguientes calificaciones:

 
Tipo Docente Calificación
Presidente Tribunal De Defensa Dr. IZA PAREDES, CRISTHIAN RENE , Ph.D. 9,0

Tutor Dr. CHANG  TORTOLERO, OSCAR GUILLERMO , 
Ph.D.

10,0

Miembro Tribunal De Defensa Dr. MAYORGA ZAMBRANO, JUAN RICARDO , Ph.D. 8,5

 
Lo que da un promedio de: 9.2 (Nueve punto Dos), sobre 10 (diez), equivalente a: APROBADO

 
Para constancia de lo actuado, firman los miembros del Tribunal Calificador, el/la estudiante y el/la secretario ad-hoc.

 
 

VEGA ARELLANO, OSCAR ANDRES
Estudiante

 
 

Dr. IZA PAREDES, CRISTHIAN RENE , Ph.D.
Presidente Tribunal de Defensa

 
 

Dr. CHANG  TORTOLERO, OSCAR GUILLERMO , Ph.D.
Tutor

 
 

Dr. MAYORGA ZAMBRANO, JUAN RICARDO , Ph.D.
Miembro No Tutor



Hacienda San José s/n y Proyecto Yachay, Urcuquí  |  Tlf: +593 6 2 999 500  |  info@yachaytech.edu.ec

www.yachaytech.edu.ec

 
 

MEDINA BRITO, DAYSY MARGARITA
Secretario Ad-hoc



Autoŕıa
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Abstract

Forecasting and time series analysis plays a crucial role in many applications such as
complex networks, demand forecasting, financial predictions, patient response to prescribed
drugs, etc. In general, time series data behaves as a highly nonlinear process because of its
stochastic nature; for instance, forecasting exports index data is very challenging, since this
data is observed daily, weekly or even monthly. Recently improved prediction techniques
based on Artificial Intelligence (AI) and Deep Neural Networks (DNNs) have appeared
demonstrating excellent accuracy.

This work explores the combination of several DNNs techniques such as Multilayer
Perceptron (MLP), Long Short-Term Memory (LSTM) and Convolutional Neural Net-
work (CNN) for time series data prediction by using the concept of sliding window. The
used dataset correponds to the Ecuadorian banana exports; it is stored in the Central Bank
of Ecuador database and contains a register of the monthly banana exports over a period
of 20 years. Experiments were carried out using Python 3 with Tensorflow & Keras, which
makes possible to combine the capacity of inference of these networks. The results are
analyzed by comparing the number of trainable parameters, sliding window size and root
mean squared error (RMSE) values between six models: three sequential models such as
MLP, LSTM and CNN, and three non-sequential models that combine MLP, LSTM and
CNN in a parallel structure. The main results of this research show that by combining two
DNNs in parallel, the computational complexity is decreased, and the capacity of inference
and prediction in time series forecasting is improved.

Keywords: Time Series Forecasting, Deep Neural Networks (DNNs), Multilayer Per-
ceptron (MLP), Long Short-Term Memory (LSTM) and Convolutional Neural Network
(CNN)Sliding Window.
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Resumen

El análisis de predicciones y series de tiempo juegan un papel importante en muchas
aplicaciones como redes complejas, predicción de la demanda, financieras, respuesta de
pacientes a medicamentos recetados, etc. En general, los datos de series de tiempo se
comportan como un proceso altamente no lineal a causa de su naturaleza estocástica; por
ejemplo, predecir los datos de ı́ndices de exportaciones es muy desafiante ya que estos datos
son registrados diariamente, semanalmente o incluso mensualmente. Recientemente varias
técnicas de predicción mejoradas basadas en Inteligencia Artificial y Redes Neuronales
Profundas han aparecido demostrando una excelente precisión.

Este trabajo explora la combinación de varias técnicas de Redes Neuronales Profun-
das (DNN en inglés) como Perceptrón Multicapa (MLP en inglés), Memoria de Largo
Plazo (LSTM en inglés) and Redes Neuronales Convolucionales (CNN en inglés) para la
predicción de series de tiempo con el uso de la técnica de ventana deslizante. El conjunto
de datos utilizado pertenece a las exportaciones de banano ecuatoriano, el cual está alma-
cenado en la base de datos del Banco Central del Ecuador, y contiene el registro mensual
de las exportaciones de banano hechas durante un periodo de 20 años. Los experimentos
fueron llevados a cabo en Python 3 con Tensorflow & Keras, los cuales nos permiten com-
binar la capacidad de inferencia de estas redes. Finalmente, los resultados son analizados
al comparar el número de parámetros por entrenar, tamaño de ventana deslizante y valores
de la ráız del error cuadrático medio (RMSE en inglés) entre seis modelos: tres modelos
sequenciales como MLP, LSTM y CNN, y tres modelos no secuenciales que combinan MLP,
LSTM y CNN en una estructura paralela. Los principales resultados de esta investigación
muestran que al combinar dos DNN en una estructura paralela la complejidad computa-
cional disminuye y la capacidad de inferencia e predicción en la tarea de predicción de
series de tiempo mejora.

Palabras Clave: Predición de Series de Tiempo, Redes Neuronales Profundas (DNNs),
Perceptron Multicapa (MLP), Memoria de Largo Plaza (LSTM), Redes Neuronales Con-
volucionales (CNN), Ventana deslizante.
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Chapter 1

Introduction

1.1 Background
Forecasting and time series analysis are relevant topics because they can help to explore
and analyze different characteristics of data related to several fields such as traffic, finance,
engineering, complex networks, and so on, [4]. The aim of time series analysis is to study
the path observations of time series and build a model to describe the structure of data
and then predict the future values of time series, [5]. For example, predicting projects’
costs in order to optimize prices and schedule projects.

There are several traditional time series methods which have been proposed for time
series predictions. For instance, stochastic methods, support vector machines (SVM), auto-
regressive integrated moving average (ARIMA), exponetial smoothing, etc., have success-
fully solved different time series forecasting problems, [4]. However, these approaches are
not easily scalable to large datasets, [6], and require that the data follow a certain distribu-
tion which makes them unable to learn complicated non-linear patterns and relationships,
[7].

Rencently, deep neural networks (DNNs) techniques have received an increasing amount
of attention in time series analysis. Unlike traditional forecasting models, DNNs have a
strong capability to identify complex patterns within and across non-linear relationships,
extract higher order features, and can do so from datasets of raw time series with consid-
erably less human effort, [8]. Moreover, studies that use DNNs for time series have shown
great results and provide an extensive vision in the use of several DNNs architectures for
time series analysis, [9].

1.2 Problem statement
The analysis of time series data that show the development of external trade, such as
exports, plays an important role in a country’s economy. For instance, in the last 25 years,
Ecuador has been the leading exporter of bananas in the world. Actually, its banana trade
represents for the country, after oil, the second source of income for its economy, [10].
Moreover, its exports have undergone a huge variation. According to [11], the exportation

1
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of this fruit until October 2020 amounts to 260.6 million of boxes, which represents 8.5%
more than the exportation made in the same period of 2019 and higher figure in comparison
with the figures reached 2016, 2017 and 2018.

On the one hand, DNNs techniques have caught the attention of many economic agents
which are interesting in export forecast because these approaches provide valuable infor-
mation and can help economic policy makers, monetary authorities, and exporting firms in
making decisions, [12]. On the other hand, during the last years several techniques such as
Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term
Memory (LSTM) model, among others, have been developed for predicting time series
data.

This work aims to explore and combine several deep neural networks based methods
such as MLP, CNN, and LSTM in order to know if by combining these networks, in a
parallel structure, it is possible to improve the capacity of inference and learning of a
single network. Moreover, to know which one of these offers best predictions regarding
lower forecast errors and higher accuracy of forecasts, its going to be apply a specific
dataset of the number of monthly banana exports, measure in metric tons and thousands
of united states dollar (USD) first on board (FOB), made by Ecuador between the years
2000-2020.

1.3 Objectives

1.3.1 General objective
• To propose an exports prediction method based on the combination of deep neural

networks.

1.3.2 Specific objectives
• To implement several deep neural networks from a combination of MLP, LSTM and

CNN to do the predictions.

• To compare and analyze the performance and accuracy of all deep neural networks.

• To select the most accurate model based on metrics such as root mean squared error
(RMSE) and loss value.

Information Technology Engineer 2 Graduation Project



Chapter 2

Theoretical framework

This chapter gives an overview of the theoretical foundations of time series analysis and
artificial neural networks. In the context of computational science, the following questions
are answered:

• What is a time series?

• What is an artificial neural network?

• What is a deep neural network?

In order to answer the previous questions, this chapter starts with the theoretical
foundation of time series and its main components. Then, the definition of artificial neural
networks and its main components are presented. Finally, the concept of deep neural
networks, optimizer and three of the most popular models for time series forecasting are
presented.

2.1 Time series
A time series is a set of observations measured sequentially through time (every hour, day,
week, month, year, or any other regular interval). Depending on the nature of analysis
and practical needs, there can be applied different kinds of time series, [13]. Typically a
time series (see Figure 4.2) is represented by a graph where the observations are plotted
against corresponding time in order to visualize and analyze the pattern of the data.
Some examples are: the continuous monitoring of a person’s heart rate, hourly readings
of temperature, daily sales price of a company stock, monthly imports-exports of any
particular product in a country, among several others.

2.2 Components of a time series
Usually a time series is composed and affected by four main components: Trend, Cyclical,
Seasonal and Irregular components (see Figure 2.1).
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Figure 2.1: Components of a time series. Source: [1].

2.2.1 Trend
The tendency of a time series to increase, decrease or stagnate over a long period of time
is named as Secular Trend or Trend. In other words, that trend is the long term direction
in a time series, [13]. For example, time series data relating to population growth, number
of houses in a country, etc., show an increasing trend, whereas a decreasing trend can be
visualized in series relating to mortality rates, quantity of available natural resources, etc.

2.2.2 Seasonal
Seasonal variations in a time series are fluctuations within a year during a season, [13].
Some relevant factors that produce seasonal variations are: weather and climate conditions,
customs, etc. For example, sales of ice-cream increase during summer, sales of woolen
cloths increase during winter. Seasonal variation is a relevant component for businessmen,
shopkeeper and producers because it help to organize and make proper future plans, [13].

2.2.3 Cyclical
The cyclical variations are the oscillatory movements in a time series and details the
medium-term changes which repeat in cycles. The duration of a cycle extends over around
two or more years. Most of the economic and financial time series show some kind of
cyclical variation, [13]. For example a business cycle consists of four phases: Prosperity,
Decline, Depression and Recovery.
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2.2.4 Irregular
Unpredictable factors, which are not regular and also do not repeat in a particular pattern,
produce the irregular or random variations in a time series. These variations are caused by
events such as a rise in prices of steel due to strike in the factory, accident due to failure of
the break, flood, war, strike, earthquake, revolution, etc. There is no statistical technique
for measuring random fluctuations in a time series, [13].

2.3 Artificial neural networks (ANNs)
ANNs are computerized models of a human brain designed to simulate the way in which
human brain processes information, [2]. For instance, ANNs are trained through experience
with appropriate learning examples (data) just as people do, not from programming, [2].
So, the main advantage of ANNs over other computational models is that they can learn
to solve problems by itself, [14]. Some other advantages include:

• Adaptive learning: An ability to learn how to do tasks based on the data given
for training or initial experience, [15].

• Self-Organisation: ANNs can create its own organisation or representation of the
information it receives during learning time, [15].

• Real Time Operation: ANNs computations may be carried out in parallel, that
is why during the last years hardware devices have been designed and manufactured
in order to take advantage of this capability, [15].

2.4 ANNs components
There are many types of neural networks designed for several purposes, [2]; however, most
of them can be described by the neurons, weights, neurons layers, and transfer functions
of their neurons (see Figure 2.2).

2.4.1 Neurons
The artificial neuron is the component designed to simulate the function of the biological
neuron. The inputs or arriving signals, multiplied by the connection weights (adjusted)
are first summed (combined) and then passed through a activation function to produce the
output for that neuron, [2].

2.4.2 Neurons layers
An ANN is a system of fully interconnected neurons which it is organized in three types of
layers: the input layer, the output layer, and the hidden layers between them. The input
layer neurons receive data from a data file, the output layer neurons provides the final
result or response to the input data, and the hidden layers neurons is the responsible for
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communicating with other neurons. So, they are part of the large internal pattern that
determines a solution to the problem, [2], and process the data. Theory says that most
functions can be approximated using a single hidden layer, [16].

2.4.3 Transfer or activation function
An ANN use the transfer or activation functions to transform an input signal into an
output signal which in turn is the input parameter to the next layer in the network, [17].
Therefore, the activation function is the weighed sum of the neuron’s inputs and it may
be anything like sigmoid, hyperbolic, tangent functions, among others, [18].

Figure 2.2: Artificial neural network and neuron model, respectively. Source: [2].

2.5 Deep neural networks (DNNs)
A Deep neural network (DNN) is a multilayer techniques that has gained popularity among
researchers. DNNs are characterized by having more than one layer of hidden units among
its inputs and its outputs, [19]. In recent years, DNNs have received an increasing amount
of attention in time series analysis due to its capability of mapping highly nonlinear input-
output data samples, [20], to extract higher order features, and identify complex patterns
within and across it, [8].

2.5.1 Multilayer Perceptron
Multilayer Perceptron (MLP) is a type of DNN that consists of input layer, output layer
and hidden layers between these two layers. In these layers it’s found a system of simple
interconnected neurons, or nodes associated to weights, which is a model that represents
a nonlinear mapping between an input and an output, [21]. The number of these layers
depends on the problem, [22]; therefore, optimizing the number of hidden layers and the
number of neurons in each hidden layer can increase the speed and efficiency of the neural
network, [23].

MLP is one of the most popular models in time series forecasting which is predomi-
nantly trained using the Backpropagation (BP) algorithm, [24]. The BP algorithm uses
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the gradient descent technique where it is expected that the weights will converge to the
global minimum of the error surface, [21]. On the one hand, the BP algorithm may be im-
plemented as an on-line training where the network weights are adjusted after each pattern
has been presented, [21]. On the other hand, it may be implemented as an batch training,
where the summed error for all patterns is used to update the weights, [21].

2.5.2 Long Short-Term Memory
Long Short-Term Memory (LSTM) was designed as a specific type of recurrent neural
network (RNN) in order to model temporal sequences. LSTM was initially introduced
by Hochreiter and Schmidhuber (1997), and the main objectives of LSTM are to model
long-term dependencies and determine the optimal time lag, for time series problems, more
accurately than the traditional RNN, [25].

LSTM is a type of DNN that consist of one input layer, one output layer, and recurrent
hidden layers between these two layers. Unlike traditional ANNs, the basic unit of the
hidden layers are the memory blocks, [26]. A memory block has four main elements: the
memory cell, and the three logistic gates. The memory block holds information and the
logistic gates specify the flow of data inside the LSTM, [27]. The input gate writes and
update states into the memory cell, the output gate decides what the next hidden state
should be, and the forget gate controls what information to throw away from memory and
decides how much of the past it should remember.

The LSTM gates are similar to the artificial neurons in an ANN since they are multi-
plicative analog sigmoid-activated nodes, [27]. Moreover, the process of manipulating the
states trough these gates is relevant because it helps to the recurrent network to remember
what it needs, to forget what is no longer useful and lastly to solve vanishing gradient and
exploding gradients problems, [27].

2.5.3 Convolutional Neural Network
Convolutional Neural Networks (CNNs) are similar to traditional ANNs since they are
comprised of neurons organized in three dimensions: the spatial dimensionality of the
input (height and the width) and the depth, which self-optimise through learning, [28].
Moreover, these neurons reside into three types of layers (convolutional layers, pooling
layers and fully-connected layers) which are part of the CNNs as well.

CNNs are a type of DNN which has recently gained popularity due to its success in
time series problems, [29]. Unlike traditional ANNs, the output of any given CNN layer is
connected only to local regions in the input. This is achieved by sliding a filter or weight
matrix over the input, and at each point it is computed the dot product between the
two; in other words, it is computed a convolution between the input and filter. Hence,
this structure has allowed to the model to recognize specific patterns in the input data by
learning through filters, [30].
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2.6 Optimizer
Training very large deep neural networks can involve a lot of time. There are four ways to
speed up the training and reach a better solutions: applying a good initialization strategy
for the connection weights, using a good activation function, using Batch Normalization,
and using a faster optimizer than the regular gradient descent optimizer, [3].

Adam optimization

Adam stands for adaptive moment estimation. It is an optimization algorithm that can
be used instead of the classical stochastic gradient descent procedure to update network
weights iterative based in training data, [31]. Adam combines the ideas of momentum
optimization and root mean squared propagation (RMSProp): just like momentum opti-
mization it keeps track of an exponentially decaying average of past gradients (steps 2.1),
and just like RMSProp it keeps track of an exponentially decaying average of past squared
gradients (steps 2.2).

m← β1m− (1− β1)∇θJ(θ) (2.1)
s← β2s + (1− β2)∇θJ(θ)⊗∇θJ(θ) (2.2)

m̂← m
1− β1

t (2.3)

ŝ← s
1− β2

t (2.4)

θ ← θ + ηm̂�
√

ŝ + ε (2.5)

Steps 2.3 and 2.4 are a technical detail: since m and s are initialized at 0, they will be
biased toward 0 at the beginning of training, so these two steps will help boost m and s
at the beginning of training, [3]. J(θ) represents the cost function of the gradient descent
with regards to the weights ∇θJ(θ). A detailed information about gradient descent and
its main variants can be found in [3].

Adam configuration parameters:

In [32] it is suggested that good values for testing machine learning problems may be: η =
0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8.

• η: The learning rate is the proportion in which the weights are updated. Larger
values (e.g. 0.3) results in a faster initial learning before the rate is updated. Smaller
values (e.g. 1.0−5) slow down the learning during training.

• β1: The exponential decay rate for the first moment estimates.

• β2: The exponential decay rate for the second moment estimates.

• ε: Is a very small number to prevent any division by zero in the implementation.
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2.7 Building complex DNNs
In this section, the software and tools used to assembled different types of DNNs are
described. The following questions are answered over the course of this section:

• What is Tensorflow & Keras?

• How to assemble sequential and non-sequential DNN?

In addition, several structures of DNNs with code and graph examples are explained.

2.7.1 Tensorflow & Keras
Tensorflow is an open source platform for distributed numerical computations. It was de-
signed to distribute the computations across potentially hundreds of multi-GPU servers in
order to train and execute very large neural networks efficiently, [3]. Moreover, TensorFlow
was developed at Google as a flexible ecosystem of libraries, tools, and community resources
to support machine learning and deep neural networks research; in fact, the system can be
applied to a wide variety of other domains, [33].

Keras is a high level Deep Learning API designed for solving machine learning problems.
It can run on top of either TensorFlow, Theano or Microsoft Cognitive Toolkit (CNTK);
for instance, TensorFlow has its own implementation of this API which is named tf.keras
and it provides support for several advanced TensorFlow features such as to assemble, fit,
train and evaluate neural networks, [3].

Tensorflow & Keras offers two ways to build neural networks. On the one hand, the
Sequential API is quite easy to use for assembling sequential models which are topologies
extremely common, [3]. On the other hand, it is sometimes useful to assemble neural
networks with more complex topologies, or with multiple inputs or outputs, [3]; therefore,
Tensorflow & Keras offers the functional application programming interface (API) for this
type of non-sequential models.

2.7.2 Non-sequential and sequential models
One example of a non-sequential neural network is a Wide & Deep neural network. This
type of neural network was introduced in [34], where its structure connects all or part of
the inputs directly to the output layer (see Figure 2.3). In fact, due to this architecture
the neural network can learn both simple rules (through the short path) and deep patterns
(using the deep path), [3]. On the contrary, a common neural network such as MLP may
distorted, by this sequence of transformations, the simple patterns in the data due to it
forces to all the data to flow through the full stack of layers, [3].

Example 1 of non-sequential model

In this first example, the code shows how to assemble the Wide & Deep neural network
depicted on Figure 2.3:
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Figure 2.3: Wide & deep neural network. Source: [3].

Listing 2.1: Python code to assemble a Wide & Deep neural network

1 input = Input(shape =(12 , 1))

2 hidden_1 = Dense (7, activation =’relu ’)(input)

3 hidden_2 = Dense (7, activation =’relu ’)( hidden_1 )

4 concat = Concatenate ([ input , hidden_2 ])

5 output = Dense (1)( concat )

6 model = Model( inputs =input , outputs = output )

7 model. compile (loss=’mean_squared_error ’, optimizer =’adam ’, metrics

=[ rmse ])

8 plot_model (model , to_file =’Wide&Deep ’, show_shapes =True)

9 model. summary ()

Analysis of each line:

• Line 1: it creates an Input object, named input, that contains the inputs parameters
for the network.

• Line 2: it creates a Dense layer, named hidden 1, with 7 neurons and the ReLU
activation function. Once the Dense layer is created, notice that hidden 1 acts as
function and input is called like a function, as well. That is why this is called
functional API. Note that this initial lines are just telling to Keras how it should
connect the layers together and no actual data is being processed yet. It is necessary
to point out a Dense layer in Keras it is considered an usual layer which can contain
several neurons and in this case acts such as a hidden layer.

• Line 3: it creates a second hidden layer which it is used as a function. Note that the
output of the first hidden layer pass as input for the second hidden layer.

• Line 4: it this is the key step to build the wide path. Here a concatenate layer is
created in order to use it as a function and for concatenating the input (wide path)
and the output (deep path) of the second hidden layer. Note: to build a sequential

Information Technology Engineer 10 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

model this line needs to be deleted and hidden 2 may pass as input parameter to the
output layer.

• Line 5: it creates the output layer with a single neuron and no activation function.
Once again notice that the output is called like a function since it is passed as input,
the result of the concatenation.

• Line 6: it creates the Keras Model by specifying which inputs and outputs to use.

• Line 7: once it is assembled the Keras model, it is necessary to compile the model,
train it, evaluate it and use it to make predictions. Here the loss, optimizer and
metrics are: mean squared error, Adam and root mean squared error, respectively

• Line 8: the plot model saves a graph of the neural network. In this example, the
image is save as a file named ”Wide&Deep”

• Line 9: the model.summary displays the relevant information about the structure of
the network such as number of layers, neurons, weights, etc.

Example 2 of non-sequential model

Figure 2.4: Wide & deep neural network with multiple inputs. Source: [3].

The following code sends a subset of the input features through the wide path, and a
different subset (overlapped) through the deep path. One solution for this problem is to
use multiple inputs. For instance, send 5 features through the deep path (features 0 to 4),
and 6 features through the wide path (features 2 to 7) as on Figure 2.4:

Listing 2.2: Python code to assemble a Wide & Deep neural network with multiple inputs

1 input_A = Input(shape =(5, 1))

2 input_B = Input(shape =(6, 1))

3 hidden_1 = Dense (7, activation =’relu ’)( input_B )

4 hidden_2 = Dense (7, activation =’relu ’)( hidden_1 )

5 concat = Concatenate ([ input_A , hidden_2 ])
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6 output = Dense (1)( concat )

7 model = Model( inputs =[ input_A , input_B ], outputs = output )

8 model. compile (loss=’mean_squared_error ’, optimizer =’adam ’, metrics

=[ rmse ])

9 plot_model (model , to_file =’Wide&Deep ’, show_shapes =True)

10 model. summary ()

Analysis of each line:

• The code is exactly the same as the above example. However, the line 1 and 2 have
a different input shape since it pass different sections of the same data. Moreover, in
the line 7 it is also necessary specify that there are two inputs instead of one as on
the previous example.

Example 3 of non-sequential model

Figure 2.5: Parallel deep neural network with multiple networks.

Finally, this code uses the wide path to assemble a CNN and combine it with another
different neural network such as MLP as on Figure 2.5:

Listing 2.3: Python code to combine CNN & MLP

1 input = Input(shape =(12 , 1))

2 hidden_1 = Dense (7, activation =’relu ’)(input)

3 drop_1 = Dropout (0.1)( hidden_1 )

4 hidden_2 = Dense (7, activation =’relu ’)( drop_1 )
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5 flatten_1 = Flatten ()( hidden_2 )

6 cnn1D = Conv1D ( filters =4, kernel_size =7, strides =1, activation =’

relu ’, padding ="same")(input)

7 mxPl1D = MaxPooling1D ( pool_size =2)(cnn1D)

8 flatten_2 = Flatten ()( mxPl1D )

9 drop_3 = Dropout (0.1)( flatten_2 )

10 concatenated_1 = Concatenate ([ drop3 , flatten_1 ])

11 drop_2 = Dropout (0.1)( concatenated_1 )

12 output = Dense (1)( drop_2 )

13 model = Model( inputs =input , outputs = output )

14 model. compile (loss=’mean_squared_error ’, optimizer =’adam ’, metrics

=[ rmse ])

15 plot_model (model , to_file =’CNN_MLP ’, show_shapes =True)

16 model. summary ()

Analysis of each line:

• Line 1: it creates an Input object, named input, that contains the inputs parameters
for MLP and CNN.

• Line 2: it creates a Dense layer, name hidden 1, with 7 neurons and the ReLU
activation function.

• Line 3: it creates a Drop layer, named drop 1, which it is used as a function because
it is passed the previous layer, dense1, as a function.

• Lines 2 to 5: they create several layers in order to assemble a MLP with 2 hidden
layers and 1 drop layer between both layers.

• Line 6: it creates a Convolutional layer (1 dimension) with 4 filters, a kernel size of
7x1, size of the stride equal to 1, RelU activation and padding of ”same”. Notice that
the purpose of this code is combine two different DNNs. So, since this is the first
layer of the CNN, it is necessary to pass the inputs1 created in line 1, just as the
same way that it is made for the first Dense layer of MLP in line 2.

• Line 7 to 9: they create a Max Pooling, Flatten and a Drop layer, respectively. This
layers are passed as function to its respective next layers, just as it is made for MLP.

• Line 10: this is the key step to combine two networks. Here the Concatenate layer is
created in order to concatenate the outputs of the two last layers of CNN and MLP
(drop3 and flatten1, respectively and passed these as function).

• Line 11-12: they create a Drop and Dense layer with 1 neuron, where all the con-
catenated outputs will pass to finally obtain the result.

• Line 13-14: Once it is assembled the Keras model it is necessary to compile the model,
train it, evaluate it and use it to make predictions. Here it is used as loss, optimizer
and metrics: mean squared error, Adam and root mean squared error, respectively.
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• This DNN is assembled to predict one month of banana exports, that is why there
are one neuron at the last layer. The 12 inputs in the first layer correspond to the
samples of the monthly banana exports.
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Chapter 3

State of the art

Vasquez, [35], and Mayón, [10], show the importance of banana trade for Ecuador which
becomes the second product more exported in the country and a relevant source of incomes
for the development of its economy. Hence, in this work it will be explored the time
series assembled from Ecuadorian banana trade regarding time and exports, by using a
combination of several popular deep neural networks.

DNN’s use several hidden layers as a learning technique, for mapping highly nonlinear
input-output data, and have gained an increasing popularity in the time series analysis
research, [20]. Horák, Šuleř & Vrbka, [36], show how most researches indicate that DNN’s
models are better than traditional statistical or mathematical models. This work is relevant
because they compare the accuracy of time series by means of regression analysis and deep
neural networks on the example of the USA exports to China. Moreover, they discuss the
possible uses and advantages of deep neural networks in practice.

Chang et al., [37], propose a DNN which explores a few years of weekly pharmaceutical
sales data and learns to make assertive predictions. The authors assembled a time series
from one variable (weekly pharmaceutical sales), normalized these data, and applied the
sliding window method to obtain different learning scenarios to predict a “near future”. It is
important take into account this system because it produced a good hit rate of forecasting,
where many values from the original time series data were well predicted.

LSTM is a subtype of DNN that is able to keep lots of information and it is more
appropriate for modeling economic data where there is a long-term dependence in time
series due to the lagged effect, [38]. Vidya & Prabheesh, [39], measured and predicted the
future trade interconnectedness among countries before and after the COVID-19 outbreak.
This study is relevant, since they propose an optimized LSTM model, with: one input
layer, one output layer, and one hidden layer which store 50 LSTM cells, which minimized
its MSE when it predicts the future values of exports and imports up to the end of the
year 2020.

Naqvi et al., [40], focused on developing an accurate wheat production forecasting
model by using LSTM neural networks in conjunction with a data pre-processing smoothing
mechanism. Its smoothing function works with a polynomial of degree two, and a window
size of four years that is used to further improve the prediction accuracy. The importance
of this paper is crucial since they show despite of having excellent forecasting capabilities,
ANN and LSTM-NN have had limited application in the field of agriculture and crop
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production forecasting.
Convolutional Neural Network (CNN) is another subtype of DNN that has several full-

connected layers. It uses this name from mathematical linear operation between matrixes
named convolution and has excellent performance in processing two-dimensional data such
as images and videos, [41]. Kouassi & Moodley, [42], used a hybrid deep neural net-
work structure named TreNet that combines both a LSTM and a CNN, and takes in a
combination of raw data points and trend lines such as its input for making predictions.
Moreover, the authors suggest the importance of using an appropriate validation method
for evaluating and developing machine learning models for trend prediction in time series
data.

Borovykh, Bohte & Oosterlee, [30], study the performance of a CNN known as WaveNet.
The network uses layers of dilated convolutions applied to the inputs in order for learning
the trends and relations in and between the data. It is relevant to know that the authors
proved that WaveNet model is a strong competitor to LSTM models, in particular when
taking into consideration the training time. In addition, they conclude that even though
time series forecasting remains a complex task and finding one model that fits all is hard,
WaveNet is a simple, efficient and easily interpretable network that can act as a strong
baseline for forecasting.

Li et al., [43], proposed a hybrid deep learning model by combining wavelet packet
decomposition (WPD) and long short-term memory (LSTM). The network is used to pre-
dict one-hour-ahead of photovoltaics (PV) power with five-minute intervals. First, WPD
decompose the original PV power series into sub-series. Then, four independent LSTM
networks are applied to the sub-series in order to predict the results. This study is relevant
because they demonstrated that its proposed hybrid model shows a superior performance
than LSTM, MLP, gate recurrent (GR) and recurrent neural networks (RNN).

Huang et al., [44], assembled a hybrid deep neural model named WPD–CNN–LSTM-
MLP for solar irradiance forecasting. The structure of this network is based on multi-
branches with multi-variable inputs that includes hourly solar irradiance and three cli-
mate variables such as: temperature, relative humidity, and wind speed and their com-
bination. This paper shows the importance of these new hybrid models; for example,
WPD–CNN–LSTM-MLP is able to extracts the inherent characteristics of multi-layer in-
puts, overcomes the problems of traditional models, and achieves higher accurate forecast-
ing results.
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Chapter 4

Methodology

In this chapter the methodology applied to assemble and compare the DNNs structures, is
described (see Figure 4.1). The following questions are answered in this chapter:

• Where the dataset comes from?

• How to normalize the data set?

• How to transforms the dataset into a supervised learning problem?

• What is the structure of the DNNs assembled?

• How does the training process for the sequential and non-sequential DNNs work?

• Which metrics will be used to compare the performance of each model?

Figure 4.1: Methodology stages

4.1 Hardware and software
The entire project is developed on a Linux OS: Ubuntu 20.04. It is used Python 3.8.5 with
the support of tools such as Tensorflow 2.3.1 & Keras 2.4.3 that is described in section 2.7.
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4.2 Dataset
The two datasets analyzed in this project are available on the website of Central Bank
of Ecuador1, which it is updated each month. Both datasets contain 248 values which
represent the quantity of monthly banana exports, measured in metric tons and thousands
of USD FOB, made by Ecuador from January 2000 to August 2020. All this data is stored
in a .csv file and it is divided into 75% for training, 5% for validation and 20% for testing.

Figure 4.2: Time series

4.2.1 Data normalization
The effectiveness of any learning algorithm is heavily dependent on the normalization
method. The time series data can have a wide range of values, so it need to be scaled to a
common range of values to speed up the learning process, [45]. An adequate normalization
previous to the training process of the DNN allows the model to be less sensitive to the
scale of features, to reduce significantly calculation time, to converge to better weights and,
in turn, leads to improve the accuracy of the model, [46].

There are several data normalization techniques available. In this case it is used the
Min-Max normalization, where all the data is scaled to a range between [0, 1] by using the
next formula:

xnorm = (xi −min(x))
max(x)−min(x) (4.1)

Where:

• xi: is the the original value, of the time series, at the time i
1https://www.bce.fin.ec/index.php/informacioneconomica/sector-externo
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• xnorm: is the normalized value of the time series

• min(x): is the minimum value of the time series

• max(x): is the maximum value of the time series

4.2.2 Data as supervised learning
The sliding window method is one of the several techniques to convert the data into a
supervised learning problem. Once the data pass by the process of normalization, this
method place the values of the time series data in temporary segments, [20]. For instance,
after selecting the first segment, the next segment is selected from the end of the first
segment; then, the process is repeated until all time series data are segmented. In Figure
4.3 it is appreciated a graphical representation of the sliding window method and how it
use the time series data as inputs and outputs to feed a neural network.

Figure 4.3: Sliding window process.

According to [20], the size of the window and segment can increase until the less error
approximation is reached. Therefore, in this project is used a window size of 6, 12 and 24
values. It means that we move around the values taking 6, 12 and 24 moths as inputs and
1 month as output.

4.3 DNNs: Sequential models for forecasting
In this section the structure of the three most common DNNs, such as MLP [24], LSTM
[25] and CNN [29], found in literature to make time series predictions, it is defined. It is
important to mention that in the testing phase, once a new export value is predicted, then
that value is also used to do the new predictions.
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4.3.1 MLP
MLP is the first deep neural network considered. Its structure is similar to the one pre-
sented in [37]; then, from this study are extracted the most important parameters such as
the number of neurons, learning coefficient, loss function, etc. Moreover, a few other pa-
rameters are calculated experimentally to obtain the expected results of this project. Table
4.1 shows the final parameters setup for this model and Figure 4.4 depicts the structure
for a MLP with 6 inputs.

Input Layer Hidden Layers Output Layer

Dropout Dropout
Fl

at
te

n
Figure 4.4: Graph for MLP.

Hiperparameters #
Input layer 6,12,24
Neurons on input layer 1
Hidden layer(s) 3
Neurons by hidden layer 7
Activation function ReLU
Flatten Layer 1
Optimizer “Adam”
Loos function Root Mean Squared Error
Dropout layers 3
Dropout value 0.1
Mini-batch size 32
Epochs 700

Table 4.1: Hiperparameters for MLP
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The process of training for MLP works in the following way:

• Once the monthly exports dataset has been normalized and reshaped as a supervised
learning problem, the input layer receives the information through the 6, 12 and 24
inputs neurons(this number depends on the size of the sliding window).

• Next, the inputs neurons propagate this information, in a sequential way, to the next
two hidden layers which are composed of 7 neurons. These neurons are in charge of
computing a weighted sum between their respective weights and the data coming from
the previous hidden layers. After that, hidden neurons apply the ReLU activation
function to the weighted sum obtained in each hidden layer.

• Now, the output layer which in this case has only one neuron, receives the 7 outputs
of hidden layer, and performs a weighted sum and applies again the RELU activation
function in order to obtain the final output. This output corresponds to the export
prediction one month ahead after the input data.

• Finally, Once the output is computed for one complete batch, in this case a batch
size of 21, the DNN computes the RMSE loos function by comparing actual output
to the desired (target) output in order to adjust weights and minimise the overall
error by using the “Adam” optimizer and BackPropagation.

• One relevant point to keep in mind is that the only purpose of the Flatten layer is to
reshape the size of the data that pass thought it. For example, if flatten is applied to
a layer which have a input shape as (batch size, 2,2), then the output shape of the
layer will be (batch size, 4). Moreover, the purpose of the Dropout layer is randomly
sets input units to 0 with a frequency of rate at each step during training time, which
helps to prevent overfitting, [47].

4.3.2 LSTM
LSTM is the second deep neural network considered. Its structure is similar to the one
presented in [27]; then, from this study are extracted the most important parameters such
as the number of neurons, learning coefficient, loss function, etc. Moreover, a few other
parameters are calculated experimentally to obtain the expected results of this project.
Table 4.2 shows the final parameters setup for this model, and Figure 4.4 depicts the
structure for a LSTM with 6 inputs as data.
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Figure 4.5: Graph for LSTM.

Hiperparameters #
Input layer 6,12,24
Neurons on onput layer 1
Hidden layer(s) 3
Neurons by hidden layer 7
Activation function ReLU
Flatten Layer 1
Optimizer “Adam”
Loos function Root Mean Squared Error
Dropout layers 3
Dropout value 0.1
Mini-batch size 32
Epochs 700

Table 4.2: Hiperparameters for LSTM

The process of training for LSTM works in the following way:

• This process works in the same way such as MLP; however, LSTM is composed of
three additional logic gates ,within a cell (or neuron), which have also an associated
weight. Unlike other neural networks, a LSTM performs several operations (not just
weigted sum) within the cells to obtain the output. These operations such as sigmoid
activation, tangential activation, pointwise multiplication, pointwise addition and
vector concatenation allows to this type of DNN to keep or forget the information,
[48].
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4.3.3 CNN
CNN is the third deep neural network considered. Its structure is similar to the one
presented in [37]; then, from this study are extracted the most important parameters such
as the number of neurons, learning coefficient, loss function, etc. Moreover, a few other
parameters are calculated experimentally to obtain the expected results of this project.
Table 4.3 shows the final parameters setup for this model, and Figure 4.6 depicts the
structure for a CNN with 6 inputs as data.

Output Layer

1D Convolution

1D Max-Pool 1D Max-Pool

1D Convolution

1D Max-Pool

1D Convolution

Input Layer

Flatten

Dropout

Figure 4.6: Graph for CNN

Hiperparameter #
Input layer 6,12,24
Conv1D layer 3
Filters by Conv1D 4,8,16
Kernel size by Conv1D 7,5,3
Stride size by Conv1D 1
Max-Pooling layer 3
Pool size by Max-Pol 2
Stride size by Max-Pol 1
Activation ReLU
Optimizer “Adam”
Loos function Root Mean Squared Error
Dropout layer 3
Dropout value 0.1
Mini-batch size 32
Epochs 700

Table 4.3: Hiperparameters for CNN

The process of training for CNN works in the following way:
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• This process works in the same way such as MLP; however, it has additional con-
volutional layers. These convolutional layers replace the fully connected layers, and
therefore reducing the amount of weights in its structure, [49]. Unlike other neural
networks, a CNN performs several operations (not just weigted sum) with filters of
different sizes in order obtain the output. These operations usually are the convolu-
tional product between the convolutional layers and the filters.

4.4 DNNs: Non-sequential models for forecasting
In this section, it is defined the structure of the three non-sequential DNNs models proposed
in this project to make time series predictions. It is important to mention that the structure
of this networks use the wide path to assemble another DNN in order to combine two
different models such as shown in Figure 2.5. Moreover, during the testing phase all these
networks use the previously predicted values to predict the new exports values.

4.4.1 MLP&LSTM
MLP and LSTM are combined to assemble this fourth neural network. Its structure and
hiperparameters are the same as the described on Table 4.1 and Table 4.2 for MLP and
LSTM, respectively; however, it is decreased the number of hidden layers to two. Figure
4.7 depicts the final structure setup for this model.

...
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Input Layer Hidden Layers Output LayerConcat Layer

...

... ...

Dropout

Dropout

Flat
ten

Flatten

Figure 4.7: Graph for MLP&LSTM.
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The training process of this model works of the same way that the previous models;
however, the number of hidden layers is reduced to two and one concatenation layer is
added in order to concatenate the outputs of the hidden layers of both DNNs. Then, the
concatenated data pass thought the regularization dropout and output layers to obtain the
final output that corresponds to the export prediction one month ahead after the input
data.

4.4.2 LSTM&CNN
LSTM and CNN are combined to assemble this fifth neural network. Its structure and
hiperparameters are the same as the described on Table 4.2 and Table 4.3 for LSTM and
CNN, respectively; however, the number of hidden layers is two for LSTM, and for CNN
there is only one convolutional and max-polling layer. Figure 4.8 depicts the final structure
and parameters setup for this model.

...

...

...
Input Layer Hidden Layers Output LayerConcat Layer

......
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Dropout

Dropout
Flatten

Flatten

Figure 4.8: Graph for LSTM&CNN.

The training process and structure of this model works in the same way that the
previous model described for MLP&LSTM, but instead of having a MLP there is a CNN
assembled with one 1D convolutional and max pooling layer.

4.4.3 CNN&MLP
CNN and MLP are combined to assemble this last neural network. Its structure and
parameters are the same as the described on Table 4.3 and Table 4.1 for CNN and MLP,
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respectively; however, the number of hidden layers is two for MLP, and for CNN there is
only one convolutional and max-polling layer. Figure 4.9 depicts the final structure and
parameters setup for this model.
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Input Layer Hidden Layers Output LayerConcat Layer

Convolution Max-Pool
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Dropout

Dropout
Flatten

Flatten

Figure 4.9: Graph for CNN&MLP.

The training process and structure of this model works in the same way that the
previous model described for MLP&LSTM, but instead of having a LSTM there is a CNN
assembled with one 1D convolutional and max pooling layer.

4.5 Metrics
In this section is explained the metrics selected to measure the performance and accuracy
of the six DNNs proposed to predict the monthly banana exports. Then, the metrics used
are: accuracy, window size and number of parameters.

4.5.1 Accuracy
Several metrics, such as is root mean squared error (RMSE), are used to measure the
performance and accuracy of deep neural networks. RMSE is the standard deviation of the
residuals; in other words, it is a measure of how spread out the residuals or prediction errors
are around the line of best fit, [50]. As RMSE is mainly used for forecasting research, it has
been considered such an excellent general-purpose error metric for numerical predictions,
[50], for this project. RMSE is formulated as follows:
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RMSE =
√√√√ 1
n

n∑
i=1

(ŷi − yi)2 (4.2)

Where:

• ŷi is the predicted value

• yi is the observation

• n is the number of observations available for analysis

4.5.2 Window size and number of parameters
Here it is considered a window size of 6, 12 and 24 values, since in subsection 4.2.2 it
is mentioned that the size of the window and segment can increase until the less error
approximation is reached, [20]. Moreover, when the window size increase, the number of
parameters in the input layer increase as well; therefore, it means that there will be a higher
number of parameters to train. In fact, training these parameters have a computational
cost for the network, because it involves to compute a lot of floating point operations which
are in charge of updating the weights and biases (parameters) of a DNN.

4.6 Overall system model
Once it was defined all the hyperparameters and configuration that it will be used, Figure
4.10 shows a flowchart of the overall system model proposed in this research. In general
terms: first, we input the time series; second, we normalize the data and reframe it with
three different window sizes; fourth, we feed the DNNs models with the preprocessed data;
finally, we made the forecasting task and compare the results based on the established
metrics.

Figure 4.10: Flowchart of the overall system model
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Chapter 5

Results and discussion

This chapter describes the results obtained after the application of the methodology with
all the deep neural networks proposed. Moreover, in order to compare the behavior and
accuracy of this networks, two different time series are analyzed.

5.1 Time series 1
The first time series studied is composed of the monthly banana exports, measured in
metric tons, from January 2000 to August 2020 (see Figure 5.1). It is clear that this series
has a growing tendency with seasonal and cyclical variations or movements.

Figure 5.1: Time series 1

The results obtained with the six DNNs for this first time series are shown below:
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5.1.1 Window size

Window size: 6
Epochs: 700

Model/Error
Number of
Parameters

Loos
Train

Loos
Test

RMSE
Train

RMSE
Test

RMSE
Train

RMSE
Test

MLP 169 0.010 0.040 0.083 0.169 46995.17 93161.06
LSTM 1.135 0.011 0.053 0.087 0.20 49582.42 107037.33
CNN 727 0.009 0.043 0.079 0.176 45167.48 96215.48

MLP & LSTM 827 0.009 0.037 0.081 0.156 45601.62 89383.41
CNN & LSTM 759 0.008 0.039 0.076 0.165 43317.58 91919.80
CNN & MLP 157 0.009 0.030 0.079 0.138 45804.62 80703.85

Table 5.1: Loss and RMSE for each model with a window size = 6

Table 5.1 shows that for the sequential or single models, CNN and MLP has the better
results for each metric. It also shows that for the non-sequential or combined models, CNN
& MLP is the best network.

Window size: 12
Epochs: 700

Model/Error
Number of
Parameters

Loos
Train

Loos
Test

RMSE
Train

RMSE
Test

RMSE
Train

RMSE
Test

MLP 211 0.008 0.017 0.077 0.108 43212.47 61832.31
LSTM 1.177 0.006 0.070 0.062 0.226 35976.25 122154.53
CNN 839 0.005 0.019 0.062 0.108 35744.58 63878.42

MLP & LSTM 911 0.006 0.010 0.064 0.076 36762.80 46699.41
CNN & LSTM 813 0.008 0.029 0.072 0.139 41507.42 79580.94
CNN & MLP 211 0.004 0.008 0.056 0.071 32584.83 43001.80

Table 5.2: Loss and RMSE for each model with a window size = 12

Table 5.2 shows that for the sequential or single models, CNN and MLP has the better
results for each metric. It also shows that for the non-sequential or combined models, CNN
& MLP is the best network.
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Window size: 24
Epochs: 700

Model/Error
Number of
Parameters

Loos
Train

Loos
Test

RMSE
Train

RMSE
Test

RMSE
Train

RMSE
Test

MLP 295 0.004 0.011 0.054 0.079 31256.45 49731.17
LSTM 1.261 0.005 0.022 0.056 0.118 33028.82 69279.90
CNN 1.175 0.002 0.022 0.043 0.128 24995.99 68911.04

MLP & LSTM 1.079 0.004 0.026 0.053 0.129 30134.83 74645.47
CNN & LSTM 921 0.003 0.015 0.045 0.096 26558.19 57177.65
CNN & MLP 319 0.004 0.006 0.051 0.065 29956.30 37139.57

Table 5.3: Loss and RMSE for each model with a window size = 24

Table 5.2 shows that for the sequential or single models, CNN and MLP has the better
results for each metric. It also shows that for the non-sequential or combined models, CNN
& MLP is the best network.

In general, Tables 5.1, 5.2 and 5.3 show that for the sequential or single models, CNN
and MLP present the best values for each metric; however, MLP overcomes to CNN with
test results and CNN overcomes to MLP with the train results. It also shows that for the
non-sequential or combined models, CNN & MLP has the better values. In fact, CNN
& MLP is the best model in the three tables because its accuracy with the training and
testing dataset are better than the rest of non-sequential and sequential models.

Moreover, Table 5.1, 5.2 and 5.3 show that while the window size increase, the Loss
and RMSE for training and test dataset in all the models decrease. It also shows that
CNN have a value of 0.022 and 0.128 for Loss test and RMSE test, respectively; however,
Table5.2 it has values of 0.019 and 0.108. It means that, the Loss and RMSE value for the
test dataset on CNN start to increase. The same pattern is seem for the CNN&MLP and
MLP&LSTM.

Lastly, Table 5.1, 5.2 and 5.3 also show that while the window size increase, the number
of parameters to train in each one of the models increase. Furthermore, when a model is
combined with another one, the number of parameters can also increase or decrease. For
instance, Table 5.3 shows that LSTM has 1.261 parameters to train; however, when it is
combined with CNN, the number parameters to train decrease to 921 for CNN&LSTM.
Another example is with MLP, which has 295 parameters and when it is combined with
CNN, the number of parameters increase to 329 for CNN&MLP

5.1.2 Loss and RMSE
The results presented in the following subsections 5.1.2, 5.1.3, 5.1.4 and 5.1.5 are based on
the configuration of sliding window size equal to 24.

Figure 5.2 depicts how the Loss value decreases for all the models during the train.
It shows that CNN and CNN&MLP have the lower values (0.002 and 0.004 respectively,
according to Table 5.3 ) and converge from around 200 epochs. It is also interesting see

Information Technology Engineer 31 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

that MLP converges faster than the rest of models; however, from around 600 epochs, it
start to increase its Loss values. In addition, Figure 5.2 shows that LSTM model needs
from around 400 epochs to converge and has the highest Loss value, as it is also seem on
Table 5.3 where its result is 0.005.
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Figure 5.2: Loss function values for the six DNNs models

Figure 5.3 shows how the RMSE value decreases for all the models during the train. It
shows that, for all the models, the RMSE values have a very similar behavior as on Figure
5.2; however, its results are highest. Then, CNN and and CNN&MLP have the lower
values (0.043 and 0.051 respectively) and LSTM has the highest value (0.056). These
RMSE values can be also seen on Table 5.3
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Figure 5.3: RMSE values for the six DNNs models
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5.1.3 LSTM&MLP vs LSTM
Figure 5.4 shows the predicted values for the training dataset with LSTM and LSTM&MLP.
LSTM seems have some smooth across the series, probably it needs more epochs of training
since it has more parameter for training than MLP and LSTM&MLP. Nevertheless, it is
appreciated that when LSTM is combined with MLP the smooth disappear and the results
improve. Table 5.3 shows that the Loss and RMSE value for LSTM are 0.005 and 0.056
respectively, and for LSTM&MLP are 0.004 and 0.053. Moreover the difference between the
predicted values and the real ones of LSTM and LSTM-MLP is 33k and 30k, respectively.
Then, LSTM&MLP has better results on training.
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Figure 5.4: LSTM&MLP vs LSTM

Figure 5.5 shows the predicted values for the test dataset with LSTM and LSTM&MLP.
From the 20 month the LSTM values start to drift away while the LSTM&MLP values are
closer to the real ones. Table 5.3 shows that the Loss and RMSE value for LSTM are 0.022
and 0.118 respectively, and for MLP&LSTM are 0.026 and 0.129. Moreover the difference
between the predicted values and the real ones of LSTM and LSTM&MLP is 69k and 74k,
respectively. Then, LSTM has better results on test.
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Figure 5.5: LSTM&MLP vs LSTM

5.1.4 CNN&LSTM vs CNN
Figure 5.6 shows the predicted values for the training dataset with CNN and CNN&LSTM.
Both of the models shows a good performance and there are some regions where its values
are overlapped with the real values. Table 5.3 shows that the Loss and RMSE value for
CNN are 0.002 and 0.043 respectively, and for CNN&LSTM are 0.003 and 0.045. Moreover
the difference between the predicted values and the real ones of CNN and CNN&LSTM is
24k and 26k, respectively. Then, CNN has better results on training.
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Figure 5.6: CNN&LSTM vs CNN

Figure 5.7 shows the predicted values for the test dataset with CNN and CNN&LSTM.
The CNN&LSTM values are closer than CNN. Table 5.3 shows that the Loss and RMSE
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values for CNN are 0.022 and 0.128 respectively, and for CNN&LSTM are 0.015 and 0.096.
Moreover the difference between the predicted values and the real ones of CNN and CNN-
LSTM is 68k and 57k, respectively. Then, CNN&LSTM has better results on test.
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Figure 5.7: CNN&LSTM vs CNN

5.1.5 CNN&MLP vs MLP
Figure 5.8 shows the predicted values for the training dataset with MLP and CNN&MLP.
Both of the models shows a good performance. It seems that combine CNN with MLP
improve the results of MLP at the beginning of the series, then from 50 month its values
seems very similar. Table 5.3 shows that the Loss and RMSE value for MLP are 0.004
and 0.054 respectively, and for CNN&MLP are 0.004 and 0.051. Moreover the difference
between the predicted values and the real ones of MLP and CNN&MLP is 31k and 29k,
respectively. Then, CNN&MLP has better results on training.
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Figure 5.8: CNN&MLP vs MLP

Figure 5.9 shows the predicted values for the test dataset with MLP and CNN&MLP.
Both of the models shows a good performance where its values are almost overlapped and
close to the real ones. Table 5.3 shows that the Loss and RMSE value for MLP are 0.011
and 0.079 respectively, and for CNN&MLP are 0.006 and 0.065. Moreover the difference
between the predicted values and the real ones of MLP and CNN&MLP is 49k and 37k,
respectively. Then, CNN&MLP has better results on test.
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Figure 5.9: CNN&MLP vs MLP
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5.2 Time series 2
The second time series studied is composed of the monthly banana exports, measured in
thousands of USD FOB, from January 2000 to August 2020, see Figure 5.10. It is clear
that this series has a growing tendency with seasonal and cyclical variations or movements.

Figure 5.10: Time series 2

The results obtained with the six DNNs for this sencond time series are shown below:

5.2.1 Window size

Window size: 6
Epochs: 700

Model/Error
Number of
Parameters

Loos
Train

Loos
Test

RMSE
Train

RMSE
Test

RMSE
Train

RMSE
Test

MLP 169 0.002 0.016 0.040 0.091 20987.32 49585.02
LSTM 1.135 0.004 0.037 0.048 0.170 24422.88 74031.50
CNN 727 0.002 0.027 0.039 0.144 20613.59 64145.16

MLP & LSTM 827 0.002 0.021 0.038 0.112 19581.64 55960.84
CNN & LSTM 759 0.002 0.014 0.036 0.085 18939.34 45964.15
CNN & MLP 157 0.002 0.013 0.037 0.077 19394.01 43873.97

Table 5.4: Loss and RMSE for each model with a window size = 6
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Table 5.4 shows that for the sequential or single models, MLP has the better results for
each metric. It also shows that for the non-sequential or combined models, CNN & MLP
is the best network.

Window size: 12
Epochs: 700

Model/Error
Number of
Parameters

Loos
Train

Loos
Test

RMSE
Train

RMSE
Test

RMSE
Train

RMSE
Test

MLP 211 0.004 0.022 0.050 0.127 24773.12 57991.13
LSTM 1.177 0.002 0.010 0.033 0.065 17469.14 38923.86
CNN 839 0.002 0.014 0.040 0.089 20411.20 45836.32

MLP & LSTM 911 0.002 0.011 0.033 0.070 17351.91 41208.48
CNN & LSTM 813 0.001 0.012 0.029 0.078 15942.77 42111.40
CNN & MLP 211 0.001 0.009 0.028 0.063 15200.60 38370.19

Table 5.5: Loss and RMSE for each model with a window size = 12

Table 5.5 shows that for the sequential or single models, LSTM has the better results
for each metric. It also shows that for the non-sequential or combined models, CNN &
MLP is the best network.

Window size: 24
Epochs: 700

Model/Error
Number of
Parameters

Loos
Train

Loos
Test

RMSE
Train

RMSE
Test

RMSE
Train

RMSE
Test

MLP 295 0.001 0.010 0.030 0.064 15905.56 38768.74
LSTM 1.261 0.002 0.010 0.036 0.072 18785.04 40211.68
CNN 1.175 0.002 0.016 0.040 0.98 20787.56 48797.16

MLP & LSTM 1.079 0.001 0.009 0.031 0.060 16400.57 37723.77
CNN & LSTM 921 0.001 0.010 0.031 0.066 16080.10 38724.62
CNN & MLP 319 0.002 0.010 0.035 0.065 17809.02 39268.57

Table 5.6: Loss and RMSE for each model with a window size = 24

Table 5.6 shows that for the sequential or single models, MLP has the better results for
each metric. It also shows that for the non-sequential or combined models, MLP & LSTM
is the best network.

On the one hand, Tables 5.5 and 5.6 show that for the sequential or single models, LSTM
and MLP present the best values for each metric. On the other hand, on Table 5.5 CNN
overcomes to LSTM, since it starts with higher values than the rest of networks. Moreover,
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MLP is the only non-sequential model that improve its results when it is incremented the
window size to 24 . For example, on Table 5.5 CNN has a value of 0.014 and 0.089 for Loss
test and RMSE test, respectively; however, on Table 5.6 these values increase to 0.016 and
0.098. The same pattern occurs for results of LSTM.

Tables 5.4, 5.5, and 5.6 also shows that for the non-sequential or combined models,
CNN&MLP and MLP&LSTM are the best models because its results for the training and
testing dataset are better than the rest of non-sequential and sequential models. However,
CNN & MLP is the best model when it has a window size of 12 and MLP & LSTM when
it has a window size of 24. It means that, the results of CNN & MLP do not improve when
the window size increase to 24.

On the one hand, Tables 5.4, 5.5, and 5.6 show that while the window size increase, the
Loss and RMSE for training and test dataset in all the models can decrease or increase.
On the other hand, these tables also show that while the size increase, the number of
parameters to train of the models can increase or increase, just as it is decribed on section
5.1.1.

5.2.2 Loss and RMSE
The results presented in the following subsections 5.2.2, 5.2.3, 5.2.4 and 5.2.5 are based on
the configuration of sliding window size equal to 24.

Figure 5.11 depicts how the Loss value decreases for all the models during the train. It
shows that MLP, LSTM&MLP and CNN&MLP have the lowest values (0.001 according
to Tables 5.6,5.6 and 5.2, respectively). Moreover, it is interesting see that all the models
converge from around 100 epochs, unlike CNN which needs around 400 epochs. Moreover,
the Loss train values for all the models vary from 0.001 and 0.002; however, if we consider
the Loss test values, Table 5.6 shows that the results for CNN is 0.016 and for all the rest
of models is 0.010.
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Figure 5.11: Loss function values for the six DNNs models
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Figure 5.12 shows how the RMSE value decreases for all the models during the train. It
shows that, for all the models, the RMSE values have a very similar behavior as on Figure
5.11; however, its values are higher. Then, MLP has has the lowest value (0.030) and CNN
has the highest value (0.040). These RMSE values can be also seen on Table5.6
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Figure 5.12: RMSE values for the six DNNs models

5.2.3 LSTM&MLP vs LSTM
Figure 5.13 shows the predicted values for the training dataset with LSTM and LSTM&MLP.
Both of the models seems have some smooth until the month 60, then from that mounth
the values seems closer to the real ones. Nevertheless, it is appreciated that when LSTM
is combine with MLP some of the smooth disappear and the results improve. Table 5.6
shows that the Loss and RMSE values for LSTM are 0.002 and 0.036 respectively, and
for LSTM&MLP are 0.001 and 0.031. Moreover the difference between the predicted val-
ues and the real ones of LSTM and LSTM-MLP is 15k and 16k, respectively. Then,
LSTM&MLP has better results on training.
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Figure 5.13: LSTM&MLP vs LSTM

Figure 5.14 shows the predicted values for the test dataset with LSTM and LSTM&MLP.
The LSTM&MLP values are closer to the real ones, than LSTM. Table 5.6 shows that the
Loss and RMSE values for LSTM are 0.010 and 0.072 respectively, and for MLP&LSTM
are 0.009 and 0.060. Moreover the difference between the predicted values and the real
ones of LSTM and MLP&LSTM is 40k and 37k, respectively. Then, MLP&LSTM has
better results on test.
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Figure 5.14: LSTM&MLP vs LSTM
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5.2.4 CNN&LSTM vs CNN
Figure 5.15 shows the predicted values for the training dataset with CNN and CNN&LSTM.
Both of the models shows a good performance. It seems that combine LSTM with CNN
improve the results of CNN since at the beginning of the series CNN have a straight trend
until the 60 month, then from that month the values of both models seems very similar.
Table 5.6 shows that the Loss and RMSE value for CNN are 0.002 and 0.040 respectively,
and for CNN&LSTM are 0.001 and 0.031. Moreover the difference between the predicted
values and the real ones of CNN and CNN&LSTM is 20k and 16k, respectively. Then,
CNN&LSTM has better results on training.
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Figure 5.15: CNN&LSTM vs CNN

Figure 5.16 shows the predicted values for the test dataset with CNN and CNN&LSTM.
CNN seems have, until the 10 month, better values; however, from that month the CNN&LSTM
values are closer than CNN. Table 5.6 shows that the Loss and RMSE values for CNN are
0.016 and 0.098 respectively, and for CNN&LSTM are 0.010 and 0.066. Moreover the
difference between the predicted values and the real ones of CNN and CNN-LSTM is 48k
and 38k, respectively. Then, CNN&LSTM has better results on test.
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Figure 5.16: CNN&LSTM vs CNN

5.2.5 CNN&MLP vs MLP
Figure 5.17 shows the predicted values for the training dataset with MLP and CNN&MLP.
Both of the models shows a good performance. It seems combine CNN with MLP improve
the results of MLP across all the series. Table 5.6 shows that the Loss and RMSE values
for MLP are 0.001 and 0.030 respectively, and on Table 5.5 for CNN&MLP are 0.001
and 0.028. Moreover the difference between the predicted values and the real ones of
MLP and CNN&MLP is 15.9k and 15.2k, respectively. Then, CNN&MLP has better
results on training. In this case are considered Tables 5.5 and 5.6 because MLP has better
performance with a window size of 24 and CNN&MLP with a window size of 12.
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Figure 5.17: CNN&MLP vs MLP
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Figure 5.18 shows the predicted values for the test dataset with MLP and CNN&MLP.
Both of the models shows a good performance where its values are almost overlapped and
close to the real ones. Table 5.6 shows that the Loss and RMSE value for MLP are 0.010
and 0.064 respectively, and on Table 5.5 for CNN&MLP are 0.009 and 0.063. Moreover
the difference between the predicted values and the real ones of MLP and CNN&MLP is
38.7k and 38.3k, respectively. Then, CNN&MLP has better results on test. In this case
are considered Tables 5.5 and 5.6 because MLP has better performance with a window size
of 24 and CNN&MLP with a window size of 12.
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Figure 5.18: CNN&MLP vs MLP
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Chapter 6

Conclusions

In general terms, the main goal of this project is to implement, evaluate and compare
the performance and accuracy of the combination of three different DNNs structures, in
order to do a time series prediction. At a more technical and specific level, the following
conclusions are listed below.

First, it was proved that, increasing the sliding window size improved the performance
of a DNN because it allowed to compute better results in metrics such as RMSE and Loss.
On the one hand, an sliding window of size 12 is the optimal value calculated in order to
do exports predictions with models such as CNN, CNN&MLP and MLP&LSTM. On the
other hand, increasing this hyperparameter to 24 is better for models such as MLP, LSTM
and CNN&LSTM.

Second, it was demonstrated that the proposed non-sequential DNNs overcame the per-
formance of the sequential ones because they combined the capacity of inference of two or
more different networks. For instance, the network that obtained the best results regarding
RMSE and Loss(in the training and testing stage) is the non-sequential CNN&MLP, whose
layers were assembled in a parallel structure from two different models, such as MLP and
CNN, that also shown excellent values among the sequential networks.

Third, it was proved the computational complexity of proposed non-sequential DNNs
is lesser compared with the sequential ones because they had a small number of trainable
parameters. For instance, the best model presented in this work (MLP&CNN) had a total
of 319 trainable parameters and shown a superior performance over other networks, such
as CNN and LSTM, which had more than 1000 trainable parameters

Finally in this project,for time series prediction, a novel and effective method based on
the combination of deep neural networks was developed and presented. This method pro-
duces good results and successfully predicts the monthly banana exports made by Ecuador.
This AI tool is important for a country where banana export represent the second source
of incomes for its developing economy.

Future work

As future work it is possible to analyze the performance and accuracy of these same net-
works or others, but this time instead of having two parallel networks, it may be include
include the wide path. The wide path helps to the network to learn both simple rules
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(through the short path) and deep patterns (using the deep path); therefore, assemble a
DNN including this structure can be beneficial, in order to know if it is possible to obtain
better results that the ones presented in this work.

In this project are also presented the predictions of several DNNs with a time series
of just one variable. However, as future work it is possible to scale the data processing
and change the algorithms in order to do forecasting of a multivariate time series with
the support of Tensorflow&Keras (or any other tool) that provides a good environment to
train and evaluate DNNs.

The structure and hyperparameters plays a important role during the assembling, train-
ing and evaluating of a DNN. Therefore, as future work it is also recommended to vary the
values of each one of these features in all the DNNs presented. In this way, it is possible to
found a better configuration for all the DNNs and improve the accuracy and performance
that these networks shown in this project.

Finally, the web page of Central Bank of Ecuador release new exports values every
month; in fact, it is possible to found many information about the several products that
Ecuador exports, in dollars or boxes. Therefore, the study and analyze of forecasting the
Ecuadorian exports of any product, such as bananas in this case, is a rich source for further
research.
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