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Resumen

Por muchos años, uno de los objetivos de teoŕıa de control ha sido probar la siguiente
conjetura: bajo la influencia de ciertos fenómenos intŕınsecos, tales como impulsos, retrasos
y condiciones no locales, que son fenómenos intŕınsecos, la controlabilidad no cambia. Es
decir, si consideramos estas tres caracteŕısticas como perturbaciones del sistema, lo cual
es muy natural en los problemas de la vida real, la controlabilidad mantiene su robustez.
Tomando esto en cuenta, este trabajo está dedicado a estudiar la existencia, unicidad de
las soluciones y la controlabilidad de un sistema semilineal impulsivo con retardo infinito y
condiciones no locales. Para lograr este objetivo, primero seleccionamos adecuadamente el
espacio de fase de tal manera que satisfaga la teoŕıa axiomática formulada por Hale y Kato
para estudiar ecuaciones diferenciales con retardo infinito. Después de definir el espacio
en el que trabajaremos, desarrollamos las tres pruebas principales de nuestro estudio. La
existencia de soluciones y la controlabilidad exacta se reducen al problema de encontrar los
puntos fijos de operadores, para lo cual aplicamos el teorema del punto fijo de Karakosta,
que es una extensión del teorema del punto fijo de Krasnosel’skii y el teorema del punto
fijo de Rothe, respectivamente. La última prueba trata del uso de una técnica desarrollada
por A. Bashirov et. at, que evaden el uso de teoremas de punto fijo y se aplicarán para
demostrar la controlabilidad aproximada del sistema semilineal. Al final de la prueba de
existencia mostramos un ejemplo que involucra impulsos, retardo infinito y condiciones no
locales.

Palabras Clave: sistema semilineal, impulsos no instantáneous, retardo in-
finito, condiciones no locales, controlabilidad, existencia, teorema del punto
fijo, bashirov, unicidad
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Abstract

For many years, one of the goals of control theory has been to prove the following con-
jecture: under conditions such as impulses, delays, and non-local conditions, which are
intrinsic phenomena, the controllability of a system does not change. That is, if we con-
sider these three characteristics as disturbances of the system, which is very natural in
real-life problems, the controllability of the system turns out to be robust. Taking into ac-
count this phenomena, this work is devoted to study the existence, uniqueness of solutions,
and the controllability of an impulsive semilinear system with infinite delay and non-local
conditions. To achieve this goal, we first select the phase space adequately in such a way
that it satisfies the axiomatic theory formulated by Hale and Kato to study differential
equations with infinite delay. After defining the space we will be working on, we develop
the three main proofs of our study. The existence of solution, and the exact controllability
are reduced to the problem of finding the fixed points of an operator, for doing so, we apply
Karakosta’s Fixed Point Theorem (an Extension of Krasnosel’skii’s Fixed Point Theorem)
and Rothe’s Fixed Point Theorem, respectively. The third proof use a technique developed
by A. Bashirov et. al, which evades the use of fixed point theorems and will be applied to
prove the approximate controllability of the semi-linear system. At the end of the existence
proof, we show an example that involves impulses, infinite delay, and non-local conditions.

Keywords: semilinear system, non-instantaneous impulses, infinite delay, non-
local conditions, controllability, existence, fixed point theorem, bashirov, unique-
ness
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Chapter 1

Introduction

1.1 Background
Modeling real-life problems that help to predict future changes has become of great im-
portance in the latest times, and control them even more. Nevertheless, it was not always
considered as indispensable as it is now. During the development of society in ancient
times and nowadays, control systems appear naturally, but not each improvement made
has had a mathematical foundation on it. Control problems have been studied for a long
time, but not from the mathematical point of view; the first work in control theory that
is worth mentioning is a regulatory mechanism with a float in Greece, around 250 BC, [1].
However, the most relevant antecedent was developed in 1788: James Watt’s centrifugal
regulator that worked with automatic feedback, [2]. Approximately until the end of the
19th century, control problems were considered merely intuitive, but as the necessity to im-
prove the responses and the precision of the control system appears, control theory started
its development. The 20th century, in particular between 1960 and 1990, control theory
was roughly investigated. The most important and remarkable were the works presented
by Kalman et al, which represent the base of the control theory we have now.

To achieve a better model, and in the attempt of making it as precise as possible,
there exist the need of setting conditions such as impulses, delay, and non-local conditions.
These perturbations are intrinsic phenomena of a real-life problem. Lately, several studies
in control theory have focused on proving the conjecture that controllability is preserved
under the three perturbations mentioned above.

In fact, let’s consider abrupt changes in the state which would imply the use of impulsive
equations. These kinds of equations had caught the interest of many scientists in a variety
of fields such as biology, economy, neural networks, and others. In [3] the authors study
some mathematical models involving impulsive equations, i.e. Lasota-Wazewska model,
Hematopoiesis models, and others regarding Biological models. In the rest of fields, to
mention some we have impulsive models in Populations dynamics, impulsive Hopfield Neu-
ral Network, impulsive Price Fluctuations Models. The impulses could be instantaneous,
where the changes on the states are short and the non-instantaneous ones, that remain for
a finite interval of time. Considering the first case, we can see studies such as [4] and [5],
where the authors prove the controllability of a system by using fixed point theorems. On

1



School of Mathematical and Computational Sciences Yachay Tech University

the other hand, systems that take into consideration non-instantaneous impulses are con-
sidered in [6], where the existence of a solution of this type of impulsive system is studied.
In [7], a study of controllability by using different approaches is carried out. In both cases,
instantaneous and non-instantaneous, the conjecture restricted to impulses is proved.

The other two characteristics, non-local conditions and delayed differential equations
are also of our interest. The first one was a concept introduced in [8]. It is a Cauchy
problem that helps to get a more precise model of a real-life problem. To mention a few,
we have [9] and [10] that are studies related to systems containing these constraints and
where no problem arises in the controllability. Concerning to the second part, in [3] it
can be found models in Neural Networks and Economy that also delays,i.e., differential
equations where the time derivatives depend on the solution at previous times:

d

dt
z(t) = f(t, zt)

where, f : R+ × H → R, zt(θ) = z(θ + t) and H is the phase space to be specified later,
defined on (−∞, 0]. It is known that when r < ∞, the use of the space of continuous
functions like the phase space of the solution, as it is defined on [11], [12] and [13], is not
always an option to be considered in retarded equations. Especially, if we want to avoid
problems on the existence, uniqueness, and stability of the solution of the system under
study. This problem becomes even worst when we take r = ∞, that is, part of the initial
functions is always contained by the state zt. As a consequence, a deeper analysis must
be taken into consideration for differential equations with infinite delay. Hale and Kato in
[14] defined appropriated conditions for this kind of system, which will be detailed later.
Notice that neither in a system with non-local conditions nor with delay, the controllability
is destroyed. So, the conjecture with each of these two perturbations holds.

It can also be considered more than one perturbation simultaneously in the same system.
That is the case of [15], [16] and [17], to mention a few, where impulses and non-local
conditions are added to the known linear control system. We can see in [18] and [19] that
the authors focus on bounded and unbounded delayed systems with impulses, respectively.
It can even be possible to add more than two characteristics as it was done in [20], [21]
and [22] where the controllability of systems is studied by using fixed point theorems, and
in the case of the last one, techniques avoiding it, used by Bashirov in [23], [24] and [25].
It is worth emphasizing, that the controllability under the influence of one, two, or even
three of the perturbations is not ruined.

1.2 Setting of the problem
The system under study contains these three mentioned perturbations simultaneously, that
is, non-instantaneous impulses, infinite delay and non-local conditions at the same time,
and it is defined as follows:

z′(t) = A(t)z(t) + F(t, zt), t ∈ Ik, k = 0, 1, 2, . . . ,
z(s) + h(zπ1 , . . . , zπq)(s) = ϕ(s), s ∈ R− = (−∞, 0],
z(t) = Gk(t, z(t−k )), t ∈ Jk, k = 1, 2, . . . ,

(1.1)

Mathematician 2 Graduation Project
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where I0 = (0, t1], Ik = (sk, tk+1], Jk = (tk, sk], 0 = s0 < t1 < s1 < t2 < s2 < · · · < sk−1 <
tk −→ ∞, as k −→ ∞. There exists a fixed number ζ > 0 such that πq ≤ min{ζ, τ},
where [0, τ) is the maximal interval of local existence of solutions of problem (1.1); and
0 ≤ π1 < π2 < · · · < πq, i = 1, . . . , q, selected under certain rules marked by the real life
problem that the mathematical model could represent, such as: πi = iπq/q, i = 1, . . . , q.
Some measurements at more places are incorporated with the use of non-local conditions,
which is one the advantages of it in order to get better models. h : Hq → H, ϕ : R− −→
Rn, ϕ ∈ H. F : R+ × H −→ Rn is an smooth enough function, Gk : Jk × Rn −→
Rn, k = 1, 2, 3, . . . , are continuous and represents the impulsive effect in the system
(1.1), i.e., we are considering that the system can have abrupt changes that stay there for
a finite interval of time. These alterations in state might be due to certain external factors,
which cannot be well described by pure ordinary differential equations, (see, for instance,
[26] and reference therein). Here, A(t) ∈ Rn×n is a continuous matrix function and the
function zt(θ) = z(t + θ) for θ ∈ (−∞, 0] illustrate the history of the state up to the time
t, and also remembers much of the historical past of ϕ, carrying part of the present to the
past. It is important to remark that this system will be used to prove the existence of
solutions of (1.1).

In order to study the controllability of (1.1), the function F in (1.1) will be taken
as F(t, zt) = B(t)u(t) + f(t, zt, u(t)) for every fixed u ∈ L2(0, τ ;Rm). Thus, the system
becomes:


z′(t) = A(t)z(t) + B(t)u(t) + f(t, zt, u(t)), t ∈ Ik, k = 0, 1, 2, . . . , p
z(s) + h(zπ1 , . . . , zπq) = φ(s), s ∈ R− = (−∞, 0],
z(t) = Gk(t, z(t−k )), t ∈ Jk, k = 1, 2, · · · , p

(1.2)

where 0 = s0 < t1 < s1 < t2 < s2 < · · · < sp < tp+1 = τ , B ∈ Rn×m, the control u belongs
to L2(0, τ ;Rm). f : R+ ×H×Rm −→ Rn is an smooth enough function in (1.1) and φ ∈ H.
The rest of terms are defined as in (1.1). Here, notice that we have a finite number of
impulses, since our main objective is to prove the controllability of the system on a finite
interval [0, τ ].

Something that it is worth to mention, as we will use it, is that some authors have
considered the differential system with non-instantaneous impulses of the following form

y′(t) = Ay(t) + F(t, y(t)), t ∈ (si, ti+1], i = 0, 1, . . . ,m,
y(t) = Gi(t, y(t)), t ∈ (ti, si], i = 1, . . . ,m,
y(0) = y0,

(1.3)

who was firstly introduced by Hernandez in [27]. Fec̆kan et. al. consider in [28] a special
remark over the impulsive condition of (1.3). It specifies that, there are positive constants
dk, k = 1, 2, . . . , p such that

∥Gk(t, z1) −Gk(t, z2)∥ ≤ dk∥z1 − z2∥, ∀ z1, z2 ∈,Rn, t ∈ [tk, sk],

where, Gk ∈ C
(
[tk, sk];R

)
and max{dk : k = 1, 2, . . . , p} < 1 is a necessary condition. Then

the Banach fixed point theorem gives a unique yk ∈ C([tk, sk],R) such that z = Gk(t, z) iff
z = yk(t). So (1.3) is equivalent to

z(t) = yk(t), t ∈ (tk, sk], k = 1, 2, 3, . . . , p,

Mathematician 3 Graduation Project
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which does not depend on the state variable z(·). Thus, it was necessary to modify the
impulses of the system (1.3) and consider the condition:

z(t) = Gk(t, z(t−k )), t ∈ (tk, sk], k = 1, 2, 3, . . . , p.

This work shall prove that under some conditions on F , Gk and h, the problem (1.1)
admits a solution on (−∞, τ ], for some τ > 0. Then, under some additional conditions,
we shall prove that this solution can be extended on the whole real line R. Finally, after
the existence, uniqueness, and the prolongation of solutions are proved, we consider (1.2)
for the controllability proofs under some other different conditions on f , h and Gk, which
will be stated later on the Chapter 3

The next Chapter, that is Chapter 2, is focused on state some important definitions,
theorems, and lemmas, that are a clue key in the development of the main results of this
work. It begins with some necessary linear control theory, then it continues with the spaces
where the operators of the proofs are defined and finally it mentions some of the two fixed
point theorems that we used, Arzelà Ascoli theorem and other results.

Chapter 3 aim is to show the main results of this work. It starts with the proofs, unique-
ness, and prolongation of solutions of (1.1), where Karakosta’s fixed point theorem is used,
followed by a mathematical example. Then, it continues with the proofs of approximate
controllability, where Bashirov techniques that avoid the use of fixed-point is used, and it
concludes with the proof of exact controllability by applying Rothe’s fixed point theorem.

Finally, Chapter 4 presents a conclusion of the work and at the end, a final remark is
given.

Mathematician 4 Graduation Project



Chapter 2

Theoretical Framework

This chapter is devoted to state, without proofs, some of the necessary definitions, theorems
and lemmas that are fundamental to achieve the main objective of this work.

2.1 Linear control systems in finite dimensional spaces
Since we are focusing on non-autonomous linear systems, we shall consider, in the first
place, the following linear system:

z′(t) = A(t)z(t) (2.1)
where, A(·) is a n×n continuous matrix and z(t) ∈ Rn. Its fundamental matrix is denoted
by Φ and it is the solution of the Cauchy Problem

dΦ(t)
dt

= A(t)Φ(t),

Φ(0) = I.

The evolution operator is defined by U(t, s) = Φ(t)Φ−1(s), s, t ∈ R, also we will consider
the following bound

M = sup
t,s∈[0,τ ]

∥∥U(t, s)
∥∥

Let’s now take into consideration the following linear control system with initial condition z
′(t) = A(t)z(t) + B(t)u(t), z(t) ∈ Rn, t ∈ [t0, τ ]

z(t0) = z0 (2.2)

where B(·) is a continuous matrix of dimension n × m. The rest of terms are defined in
the same way as in (2.1). The previous system admits only one solution, which is given by

z(t) = U(t, t0)z0 +
∫ t

t0
U(t, ϱ)B(ϱ)u(ϱ)dϱ, t ∈ [t0, τ ] (2.3)

5
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Definition 2.1 The system in (2.2) is controllable on [t0, τ ] if given two points z0 and z1,
there exist a control u ∈ L2(t0, τ ;Rm) such that the corresponding solution of (2.2), z(·),
satisfies the boundary conditions

z(t0) = z0 and z(τ) = z1.

It is known that the controllability of (2.2), with t0 = 0, is obtained by the surjectivity of
the operator G : L2(0, τ ;Rm) → Rn, which is defined by

Gu =
∫ τ

0
U(τ, ϱ)B(ϱ)u(ϱ)dϱ, (2.4)

and, a control u ∈ L2([0, τ ];Rm), that steers the system (2.2) from the initial state z0 to a
final state z1 on [0, τ ], is given as follows:

u(ϱ) = B∗(t)U∗(τ, ϱ)(W[0,τ ])−1(z1 − U(τ, 0)z0), ϱ ∈ [0, τ ], (2.5)

where, W[0,τ ] : Rn → Rn is the Controllability Gramian Operator in the interval [0, τ ],
defined as

W[0,τ ]z = GG∗z =
∫ τ

0
U(τ, ϱ)B(ϱ)B∗(ϱ)U∗(τ, ϱ)z dϱ. (2.6)

In fact, the next theorem is a characterization of the controllability of system (2.2). The
proof can be seen in [29].

Theorem 2.1 The following statements are equivalent:

i) The system (2.2) is controllable on the interval [0, τ ].

ii) Rg(G) = Rn.

iii) There exist λ > 0 such that

λ
∥∥∥B∗(·)Φ−1∗(·)z

∥∥∥
L2

≥∥z∥Rn , z ∈ Rn.

iv) If B∗(t)Φ−1∗(t)z = 0 with 0 ≤ t ≤ τ , then z = 0.

v) The matrix
W[0,τ ] =

∫ τ

0
Φ−1(ϱ)B(ϱ)B∗(ϱ)Φ−1∗dϱ

is positive definite, i.e., there exist β > 0 such that

⟨Wz, z⟩ ≥ β∥z∥2 .

Moreover, given z1, z0 ∈ [0, τ ], the control a (2.5) transfer the system from the initial
state z0 to the final state z1.

Mathematician 6 Graduation Project
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The adjoint operator G∗ : Rn → L2([0, τ ];Rm), which is actually used in the proof of last
theorem, is given by

(G∗z)(ϱ) = B∗(ϱ)U∗(τ, ϱ)z ϱ ∈ [0, τ ]. (2.7)
In the same way, the linear system (2.2) is controllable on [α, β] ⊆ [0, τ ], if and only if, the
controllability operator given by

Gαβu =
∫ β

α
U(β, ϱ)B(ϱ)u(ϱ)dϱ, u ∈ L2([α, β];Rm), (2.8)

is surjective. i.e., The Gramian Operator W[α,β] given by

GαβG∗
αβz = W[α,β]z =

∫ β

α
U(β, ϱ)B(ϱ)B∗(ϱ)U∗(β, ϱ)zdϱ, (2.9)

is invertible. For the foregoing matrix, there exist δα > 0 such that
∥∥∥W−1

[α,β]

∥∥∥ < 1
δα

, and a
control u steering the linear system (2.2) from zα to zβ on [α, β] is given by

u(ϱ) = B∗(ϱ)U∗(β, ϱ)(W[α,β])−1(zβ − U(β, α)zα), ϱ ∈ [α, β]. (2.10)

In particular, for τ > 0 and 0 < δ < τ , we consider the following system{
y′ = A(t)y(t) + B(t)u(t), y ∈ Rn, t ∈ [τ − δ, τ ],
y(τ − δ) = z0,

(2.11)

which admits only one solution given by

y(t) = U(t, τ − δ)z0 +
∫ t

τ−δ
U(t, ϱ)B(ϱ)u(ϱ)dϱ, t ∈ [τ − δ, τ ], (2.12)

Corresponding with (2.11), we shall denote the Gramian controllability matrix by:

Wτδ =
∫ τ

τ−δ
U(τ, ϱ)B(ϱ)B∗(ϱ)U∗(τ, ϱ)dϱ. (2.13)

As it can be seen in [20], the system (2.11) is controllable on [τ − δ, τ ] if, and only if, the
matrix Wτδ is invertible. Moreover, a control that steers the system (2.11) from the initial
state z0 to a final state z1 on the interval [τ − δ, τ ] is given by

vδ(ϱ) = B∗(ϱ)U∗(τ, ϱ)W−1
τδ (z1 − U(τ, τ − δ)z0), ϱ ∈ [τ − δ, τ ]. (2.14)

i.e., the corresponding solution yδ(t) of the linear system (2.11) satisfies the boundary
condition:

yδ(τ − δ) = z0 and yδ(τ) = z1. (2.15)

Remark 2.1 When we study the exact controllability in L2-spaces and we are dealing with
finite-dimensional linear control systems, it is important to keep in mind that the system
under study is controllable iff, it is controllable with controls in any dense subspace of L2.
Thus, the system (2.2) is controllable with controls on L2 iff, it is controllable with controls
on PWu(see [30]).
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2.2 Spaces, definitions, lemmas and theorems
In this section, we shall define the spaces where our problem will be studied, and will
review some definitions, theorems and lemmas that are used to prove the main results of
this work.

First of all, let us define the control function space PWu = PWu(((0, τ ];Rm), by

PWu =
{
u : (0, τ ] → Rm : u is bounded and u ∈ C(I;Rm)

}
.

where I = ⋃N
i=0(si, ti+1], endowed with the norm

∥u∥0 = sup
t∈[0,τ ]

∥∥u(t)
∥∥
Rm

Also, let us define PW = PW((−∞, 0];Rn) as the normalized piecewise continuous func-
tions, as follows:

PW =
{
φ : (−∞, 0] −→ Rn : φ

∣∣∣∣
[a,0]

is a piecewise continuous function, ∀a < 0
}

Using ideas from [31], we consider a function g : R → R+ satisfying the following conditions.

a) g(0) = 1,

b) g(−∞) = +∞,

c) g is decreasing.

Remark 2.2 A particular function, that holds the conditions above-mentioned, is g(s) =
exp (−as), with a > 0.

−3 −2 −1 1 2 3 4

1

2

3

4

g

(0, 1)

Figure 2.1: Example of g function described above.

Now, we define the following functions space

Cg =
{
z ∈ PW : sup

s≤0

∥z(s)∥
g(s) < ∞

}
.

Cg is a Banach space, and a sketch of the proof is given in [32]:
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Lemma 2.1 The space Cg equipped with the norm

∥z∥Cg = sup
s≤0

∥z(s)∥
g(s) , z ∈ Cg,

is a Banach space.

Our phase space will be
H := Cg,

equipped with the norm
∥z∥Cg = ∥z∥H.

We shall take into consideration the following space PWgτ := PWgτ ((−∞, τ ];Rn) defined
by

PWgτ =
{
z : (−∞, τ ] → Rn : z

∣∣∣∣
R−

∈ H and z

∣∣∣∣
(0,τ ]

is a continuous except at tk,

k = 1, 2, ..., p ,with sp−1 < τ where side limits z(t+k ), z(t−k ) exist and z(t+k ) = z(tk)},

which is larger, and where z(t+k ) = limt→t+
k
z(t), z(t−k ) = limt→t−

k
z(t). From Lemma (2.1),

we have the following lemma:

Lemma 2.2 PWgτ is a Banach space endowed with the norm

∥z∥PWgτ
=
∥∥∥z|R−

∥∥∥
Cg

+
∥∥z|I∥∥∞

where
∥∥z|I∥∥∞ = sup

t∈I=(0,τ ]

∥∥z(t)∥∥.
It is not hard to verify that the axiomatic theory proposed by Hale and Kato for the phase
space of retarded equations with infinite delay is satisfied:

A1) If z belongs to the whole space where the differential equation is defined, then for
every t ∈ [0, τ ] the following conditions hold:

i) zt is in H;
ii) ∥z(t)∥Rn ≤ H∥zt∥H;
iii) ∥zt∥H ≤ K(t) sup{∥z(s)∥ : 0 ≤ s ≤ t} +M(t)∥z0∥H, where H ≥ 0 is a constant,

K, M : [0,∞) → [0,∞), K is continuous and M is locally bounded, and
H, K, M are independent of z(t).

A2) For the function z(·) in A1), zt is a H−valued continuous function on [0, τ ].

A3) The space H is complete.
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More detail about this theory can be found in[14, 31, 33, 34].
Now, let us denote by

Hq = H × H × ...× H =
q∏

i=1
H,

i.e.,
z = (z1, ..., zq)T ∈ Hq,

and the norm in the space Hq is given by

∥y∥Hq =
q∑

i=1
∥yi∥H .

The following Lemma is a key to obtain our results. In fact, it is stronger than the axiom
A1)-iii) from Hale and Kato axiomatic theory previously mentioned. Its proof, which can
be found in [32], is due to the fact that the function g is defined on the whole real line.

Lemma 2.3 For all function z ∈ PWgτ the following estimate holds for all ϱ ∈ [0, τ ]:

∥zϱ∥H ≤ ∥z∥PWgτ .

Definition 2.2 (Exact Controllability) The system (1.2) is said to be exactly control-
lable on [0, τ ] if for every ϕ ∈ H, z1 ∈ IRn, there exists u ∈ L2(0, τ ;Rm) such that the
solution z(t) of (1.2) corresponding to u verifies:

z(0) + h(zπ1 , . . . , zπq)(0) = ϕ(0) and z(τ) = z1.

Figure 2.2: Exact Controllability

Definition 2.3 (Approximate Controllability) The system (1.2) is said to be ap-
proximately controllable on [0, τ ] if for every ϕ ∈ H, z1 ∈ IRn and ϵ > 0, there exists
u ∈ L2([0, τ ];Rm) such that the solution z(t) of (1.2) corresponding to u verifies:

z(0) + h(zπ1 , . . . , zπq)(0) = ϕ(0), and
∥∥∥z(τ) − z1

∥∥∥
Rn
< ϵ.

In addition to the definitions of the spaces and some related lemmas, it is also necessary to
state some extra definitions, lemmas and theorems that will take part in the development
of the proofs of the main results.
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Figure 2.3: Approximate Controllability

Definition 2.4 (Equicontractivity) Let Z be a Banach space and {Tn}n∈I be a family
of operators Tn : Z → Z. The family {Tn}n∈N is said to be equicontractive, if there exists
0 < L < 1 such that:

∥Tnz1 − Tnz2∥ ≤ L∥z1 − z2∥ , z1, z2 ∈ Z, n ∈ I = N

Lemma 2.4 (Gronwall inequality) Let v : [a, b] → R and η : [a, b] → R+ be continuous
functions. Consider the continuous function y : [a, b] → R such that

y(t) ≤ v(t) +
∫ t

a
η(s)y(s)ds, t ∈ [a, b],

Then, for all t ∈ [a, b], we have

y(t)t ≤ v(t)
∫ t

a
v(s)η(s)exp

(∫ t

s
v(u)du

)
ds,

In particular, if f(t) ≡ k

y(t) ≤ kexp

(∫ t

a
v(s)ds

)
,

Theorem 2.2 (G.L. Karakostas Fixed Point Theorem, [35]) Let Z and Y be Banach
spaces and D be a closed convex subset of Z. Also, let C : D → Y be a continuous
operator such that C(D) is a relatively compact subset of Y , and

T : D × C(D) → D

is a continuous operator such that the family {T (·, y) : y ∈ C(D)} is an equicontractive
family. Then, the operator equation

T (z, C(z)) = z

admits a solution on D.

Theorem 2.3 ( Rothe’s Fixed Theorem, [36]) Let Z be a Banach space. Let B ⊂ Z be a
closed convex subset such that the zero of Z is contained in the interior of B. Let Φ : B → Z

be a continuous mapping with Φ(B) relatively compact in Z and Φ(∂B) ⊂ B. Then there
is a point z∗ ∈ B such that Φ(z∗) = z∗.
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Chapter 3

Main Results

As it was already mentioned, the aim of this chapter is to prove the results of this work.

3.1 Existence and uniqueness of a solution
This first section is devoted to prove the existence and uniqueness of solution with some
other important results and not less important to find a solution for the semilinear system
with non-instantaneous impulses, infinite delay and non-local conditions (1.1).

3.1.1 Integral formula of the solution

Proposition 3.1 Let F , Gk and h be smooth functions. Then, problem (1.1) admits a
solution z(·) on (−∞, τ ], if and only if, z(·) satisfies the following integral equation for
k = 1, 2, . . .

z(t) =



U(t, 0)[ϕ(0) − h(zπ1 , . . . , zπq)(0)] +
∫ t

0
U(t, s)F(s, zs)ds, t ∈ I0 = [0, t1]

U(t, sk)Gk(sk, z(t−k )) +
∫ t

sk

U(t, s)F(s, zs)ds, t ∈ Ik

Gk(t,z(t−k ))), t ∈ Jk,

ϕ(t)−h(zπ1 , . . . , zπq)(t) t ∈ (−∞, 0]
(3.1)

Proof ⇒) Suppose that z is a solution of the problem (1.1).

• By the variation of constant formula, for t ∈ [0, t1], we obtain

z(t) = U(t, 0)[ϕ(0) − h(zπ1 , . . . , zπq)(0)] +
∫ t

0
U(t, s)F(s, zs)ds

13
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Figure 3.1: Scheme of the behaviour of the solution

• For t ∈ Ik, we use the variation constant formula again

z(t) = U(t, sk)z(sk) +
∫ t

sk

U(t, s)F(s, zs)ds

= U(t, sk)Gk(sk, z(t−k )) +
∫ t

sk

U(t, s)F(s, zs)ds

The other two cases are explicitly defined, then it is not necessary to prove them.
By continuity, the solution z shall be defined on each sk, k = 0, 1, 2, ... by

z(sk) = z(s−
k ) = z(s+

k ) = G(sk, z(t−k ))

and for k = 0
z(s0) = z(0)) = ϕ(0) − h(zπ1 , . . . , zπq)(0)

⇐)

• Let us consider t ∈ (0, t1]. Then, applying Leibniz’s rule, we get

z′(t) = d

dt

[
U(t, 0)[ϕ(0) − h(zπ1 , . . . , zπq)(0)] +

∫ t

0
U(t, s)F(s, zs)ds

]

= A(t)U(t, 0)[ϕ(0) − h(zπ1 , . . . , zπq)(0)] +
∫ t

0

∂

∂t
U(t, s)F(s, zs)ds

+ U(t, t)F(t, zt)

= A(t)U(t, 0)[ϕ(0) − h(zπ1 , . . . , zπq)(0)] + A(t)
∫ t

0
U(t, s)F(s, zs)ds+ F(t, zt)

= A(t)
{

U(t, 0)[ϕ(0) − h(zπ1 , . . . , zπq)(0)] +
∫ t

0
U(t, s)F(s, zs)ds

}
+ F(t, zt)

= A(t)z(t) + F(t, zt).
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• Consider now t ∈ Ik, k = 1, 2, 3, · · ·

z′(t) = d

dt

[
U(t, sk)Gk(sk, z(t−k )) +

∫ t

sk

U(t, s)F(s, zs)ds
]

= A(t)U(t, sk)Gk(sk, z(t−k )) +
∫ t

sk

∂

∂t
U(t, s)F(s, zs)ds+ U(t, t)F(t, zt)

= A(t)
[
U(t, sk)Gk(sk, z(t−k )) +

∫ t

sk

U(t, s)F(s, zs)ds
]

+ F(t, zt)

= A(t)z(t) + F(t, zt).

Since the other two cases are explicitly defined, it is not necessary to prove them.

3.1.2 Hypotheses
It is necessary, in order to use Karakosta’s fixed point theorem, to state some conditions
on the functions and operators. The hypotheses that we shall consider are the following:

(H1) The function F : R+ × H −→ Rn satisfies the following conditions:

i)
∥∥F(t, z) − F(t, x)

∥∥
Rn ≤ K(∥z∥H , ∥x∥H) ∥z − x∥H , ∀z, x ∈ H, ∀t ∈ Ik

ii)
∥∥F(t, z)

∥∥
Rn ≤ ψ̃(∥z∥H), ∀z ∈ H,

where K : R+ ×R+ → R+ and ψ̃ : R+ → R+ are continuous and increasing functions.

(H2) There exist constants dq, L > 0 such that, for all k = 1, 2, ..., and y, z ∈ Rn, ℓ, t ∈ Jk

we have that:

i)
∥∥Gk(t, y) −Gk(ℓ, z)

∥∥
Rn ≤ L

{
|t− ℓ| + ∥y − z∥Rn

}
.

ii) There exists Θ ≥ 0 such that ∥Gk(t, 0)∥ ≤ Θ, k = 1, 2, · · · , t ∈ Jk, and∥∥h(x) − h(y)
∥∥
H ≤ dq ∥x− y∥Hq , ∀x, y ∈ Hq,

with h(0) = 0, where,
M(L+ dqq) <

1
2

(H3) There exist τ, ρ > 0 such that

M
((
dqq + L

)
(∥ϕ̃∥ + ρ) + τ ψ̃(∥ϕ̃∥ + ρ) + Θ

)
<
ρ

2 ,

where the function ϕ̃ ∈ PWgτ is defined by

ϕ̃ =



U(t, 0)ϕ(0), t ∈ I0,

ϕ(t), t ∈ R−,

0, t ∈ Ik,

0, t ∈ Jk.

(3.2)
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Theorem 3.1 Suppose that the hypothesis (H1)-(H3) hold. Then, system (1.1) has at
least one solution on (−∞, τ ].

3.1.3 Existence of solutions
Since we want to apply Karakosta’s fixed point theorem, we consider the following opera-
tors:

T :PWgτ × PWgτ −→ PWgτ ,

C :PWgτ −→ PWgτ ,

where

T (z, y)(t) =


ϕ(t) − h(zπ1 , . . . , zπq)(t), t ∈ (−∞, 0],
y(t), t ∈ I0,
y(t) + U(t, sk)Gk(sk, z(t−k )), t ∈ Ik,
Gk(t, z(t−k ))), t ∈ Jk

and

C(z)(t) =



U(t, 0)[ϕ(0) − h(zπ1 , . . . , zπq)(0)] +
∫ t

0
U(t, s)F(s, zs)ds, t ∈ I0,∫ t

sk

U(t, s)F(s, zs)ds, t ∈ Ik,

ϕ(t), t ∈ R−,
0 t ∈ Jk

Also, the following closed and convex set

D = D(ρ, τ, ϕ) =
{
y ∈ PWgτ : ∥y − ϕ̃∥ ≤ ρ

}
, (3.3)

where the function ϕ̃ is defined in (3.2). Therefore, the problem of solving system (1.1) is
reduced to find solutions of the operator equation

T (z, C(z)) = z.

To find solutions of such equation, we shall apply Karakostas Fixed Point Theorem as it
was mentioned. We are going to verify that the operators C and T satisfy the assumptions
presented in Theorem 2.2. First, we will prove that the operator C is continuous and that
C(D) is a relatively compact set. After that, we shall prove that {T (·, y) : y ∈ C(D)} is
equicontractive and that T (·, C(·))(D) ⊆ D. Therefore, we divide the proof in the following
steps:

Step 1: C is a continuous operator.
In order to prove this, we shall use the hypotheses (H1)-i),(H2)-ii) and Lemma 2.3. We
have the following equalities for z, y ∈ PWgτ .

• Consider t ∈ (−∞, 0]. Then,

∥C(z)(t) − C(y)(t)∥Rn = ∥ϕ(t) − ϕ(t)∥Rn = 0, (3.4)

that is, ∥
(
C(z) − C(y)

) ∣∣∣∣
R−

∥H = 0.
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• Now, let’s consider t ∈ (0, t1]; then we have that

∥C(z)(t) − C(y)(t)∥Rn ≤
∥∥∥∥∥U(t, 0)h(zπ1 , . . . , zπq)(0) +

∫ t

0
U(t, s)F(s, zs)ds

−U(t, 0)h(yπ1 , . . . , yπq)(0) −
∫ t

0
U(t, s)F(s, ys)ds

∥∥∥∥∥
Rn

≤ M∥h(yπ1 , . . . , yπq)(0) − h(zπ1 , . . . , zπq)(0)∥Rn

+M
∫ t

0
∥F(s, zs) − F(s, ys)∥Rnds

≤ Mdq∥z̃ − ỹ∥Hq +M
∫ t

0
K(∥zs∥H, ∥ys∥H)∥zs − ys∥Hds

≤ Mdqq∥z − y∥H +M
∫ t

0
K(∥z∥, ∥y∥)∥z − y∥ds

≤ Mdqq∥z − y∥ +Mt1K(∥z∥, ∥y∥)∥z − y∥

Hence, on the interval (0, t1], we get that

∥C(z)(t) − C(y)(t)∥Rn ≤
(
Mdqq +MτK(∥z∥, ∥y∥)

)
∥z − y∥. (3.5)

• Consider t ∈ Ik, for k = 1, 2, . . . ,. Then

∥C(z)(t) − C(y)(t)∥Rn =
∥∥∥∥∥
∫ t

sk

U(t, s)F(s, zs)ds−
∫ t

sk

U(t, s)F(s, ys)ds
∥∥∥∥∥
Rn

≤
∫ t

sk

∥U(t, s)∥∥F(s, zs) − F(s, ys)∥Rnds

≤ M
∫ t

sk

K(∥zs∥H, ∥ys∥H)∥zs − ys∥Hds

≤ MK(∥z∥, ∥y∥)∥z − y∥τ.

Therefore, on Ik we get that

∥C(z)(t) − C(y)(t)∥Rn ≤ τMK(∥z∥, ∥y∥)∥z − y∥. (3.6)

Since ∥C(z)(t) − C(y)(t)∥Rn = 0 for t ∈ Jk, k = 1, 2, . . . , we get in combination
with (3.4), (3.5) and (3.6) that the operator C is locally Lipschitz, which implies the
continuity of the operator C.

Step 2: C maps bounded sets of PWgτ into bounded sets of PWgτ .
It is enough to prove that for any R > 0 there exists r > 0 such that for each
y ∈ BR =

{
z ∈ PWgτ : ∥z∥ ≤ R

}
, we have that ∥C(y)∥ ≤ r.

Indeed, let’s consider an arbitrary R > 0 and z ∈ BR. Then, due to Lemma 2.3 and
hypotheses (H1)-ii)-(H2)-ii), we get the following:

• For t ∈ (−∞, 0], we obtain that

∥C(z)(t)∥Rn = ∥ϕ(t)∥Rn ,

from which follows that,∥∥∥(C(z))
∣∣
R−

∥∥∥
H

= sup
t≤0

∥C(z)(t)∥Rn

g(t) = sup
t≤0

∥ϕ(t)∥Rn

g(t) = ∥ϕ∥H := R1 (3.7)
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• For t ∈ (0, t1], we have instead that,

∥C(z)(t)∥Rn ≤
∥∥∥∥U(t, 0)

{
ϕ(0) − h(zπ1 , . . . , zπq)(0)

}∥∥∥∥
Rn

+
∫ t

0
∥U(t, s)F(s, zs)∥Rnds

≤ M∥ϕ(0) − h(zπ1 , . . . , zπq)(0)∥Rn +M
∫ t

0
ψ(∥zs∥H)ds

≤ M∥ϕ(0)∥Rn +M∥h(zπ1 , . . . , zπq)(0)∥Rn +Mt1ψ(∥z∥)
≤ M∥ϕ(0)∥Rn +Mdq∥z̃∥Hq +Mt1ψ(∥z∥)
≤ M∥ϕ(0)∥Rn +Mdqq∥z∥H +Mt1ψ(∥z∥)
≤ M∥ϕ(0)∥Rn +Mdqq∥z∥ +Mt1ψ(∥z∥)
≤ M∥ϕ(0)∥Rn +MdqqR +Mt1ψ(R) := R2

• For t ∈ Ik, we have

∥C(z)(t)∥Rn =
∫ t

sk

∥U(t, s)F(s, zs)∥Rnds

≤ M
∫ t

sk

ψ(∥zs∥H)ds

≤ Mψ(∥z∥)τ ≤ τMψ(R) := R3.

Hence, letting r = R1 +R2 +R3, we get that ∥C(z)∥ ≤ r.

Step 3: C maps bounded sets of PWgτ into equicontinuous sets of PWgτ .
Let’s consider BR as it was previously defined in the foregoing step. We shall prove that
C(BR) is an equicontinuous family.
Since the equicontinuity on (−∞, 0] is trivial, we only need to prove the equicontinuity in
the remain part.
Let’s take y ∈ BR, and consider Lemma 2.3 and hypotheses (H1)-ii), (H2)-ii). Then, we
get that

• For t1, t2 ∈ I0 such that 0 < t1 < t2, it turns out that

∥C(y)(t2) − C(y)(t1)∥Rn =
∥∥∥∥U(t2, 0)

{
ϕ(0) − h(yπ1 , , . . . , yπq)(0)

}
+
∫ t2

0
U(t2, s)F(s, ys)ds

− U(t1, 0)
{
ϕ(0) − h(yπ1 , , . . . , yπq)(0)

}
−
∫ t1

0
U(t1, s)F(s, ys)ds

∥∥∥∥∥
Rn

≤ ∥(U(t2, 0) − U(t1, 0))
{
ϕ(0) − h(yπ1 , . . . , yπq)(0)

}
∥Rn

+
∥∥∥∥∥
∫ t1

0
U(t2, s)F(s, ys)ds+

∫ t2

t1
U(t2, s)F(s, ys)ds

−
∫ t1

0
U(t1, s)F(s, ys)ds

∥∥∥∥∥
Rn
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≤ ∥U(t2, 0) − U(t1, 0)∥∥ϕ(0) − h(yπ1 , . . . , yπq)(0)∥Rn

+
∫ t1

0
∥U(t2, s) − U(t1, s)∥∥F(s, ys)∥ds

+
∥∥∥∥∥
∫ t2

t1
U(t2, s)F(s, ys)ds

∥∥∥∥∥
Rn

≤ ∥U(t2, 0) − U(t1, 0)∥
(
∥ϕ(0)∥ + dq∥y∥Hq

)
+M

∫ t2

t1
ψ̃(∥ys∥H)ds+

∫ t1

0
∥U(t2, s) − U(t1, s)∥ψ̃(∥ys∥H)ds

≤ ∥U(t2, 0) − U(t1, 0)∥
(
∥ϕ(0)∥ + dqq∥y∥

)
+Mψ̃(∥y∥)(t2 − t1) + ψ̃(∥y∥)

∫ t1

0
∥U(t2, s) − U(t1, s)∥ds

≤ ∥U(t2, 0) − U(t1, 0)∥
(
∥ϕ(0)∥ + dqqR

)
+Mψ̃(R)(t2 − t1) + ψ̃(R)

∫ t1

0
∥U(t2, s) − U(t1, s)∥ds.

By the continuity of the evolution operator, we have that

∥C(y)(t2) − C(y)(t1)∥Rn → 0 as t2 → t1 (3.8)

independently on y ∈ BR.

• for t1, t2 ∈ Ik such that 0 < t1 < t2, we have that

∥C(y)(t2) − C(y)(t1)∥Rn =
∥∥∥∥∥
∫ t2

sk

U(t2, s)F(s, ys)ds−
∫ t1

sk

U(t1, s)F(s, ys)ds
∥∥∥∥∥
Rn

=
∥∥∥∥∥
∫ t1

sk

(U(t2, s) − U(t1, s))F(s, ys)ds

+
∫ t2

t1
U(t2, s)F(s, ys)ds

∥∥∥∥∥
Rn

≤
∫ t1

sk

∥U(t2, s) − U(t1, s)∥∥F(s, ys)∥ds

+
∫ t2

t1
∥U(t2, s)∥∥F(s, ys)∥ds

≤
∫ t1

sk

∥U(t2, s) − U(t1, s)∥ψ̃(∥ys∥H)ds+M
∫ t2

t1
ψ̃(∥ys∥H)

≤ ψ̃(∥y∥)
∫ t1

sk

∥U(t2, s) − U(t1, s)∥ds+Mψ̃(∥y∥)(t2 − t1)

≤ ψ̃(R)
∫ t1

sk

∥U(t2, s) − U(t1, s)∥ds+Mψ̃(R)(t2 − t1)

The continuity of U(t, s) implies that

∥C(y)(t2) − C(y)(t1)∥Rn → 0 as t2 → t1 (3.9)

independently on the chosen y.
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Therefore, from the definition of the operator C and (3.8) and (3.9), we can conclude that
BR is an equicontinuous family.
Step 4: The subset C(D) is relatively compact in PWgτ . Without loss of generality we
can assume that tp ≤ τ . Let D ⊂ PWgτ be the bounded set defined in (3.3) and let us take
a sequence {yn}n∈N ⊆ C(D). By steps 2 and 3, it is bounded and equicontinuous in PWgτ .
Note that yn|(−∞,0] = ϕ, then by Arzelá-Ascoli theorem applied to

{
yn|(0,t1]

}
n∈N

⊂ C((0, t1]),
there exist an uniformly convergent subsequence {y1

n}n∈N on (−∞, t1]. Let’s consider
now the sequence {y1

n}n∈N on the interval (t1, t2], which is also bounded and equicon-
tinuous. Then, applying Arzelá-Ascoli theorem, it has a convergent subsequence {y2

n}n∈N
over (t1, t2]. This sequence is actually an uniformly convergent subsequence of {yn}n∈N
over (−∞, t2]. We continue this process iteratively over each interval (t2, t3], · · · , (tp, τ ]
and finally arrive to the conclusion that the subsequence {yp

n}n∈N ⊆ {yn}n∈N is uniformly
convergent on the whole interval (−∞, τ ]. This implies that C(D) is compact, and so the
operator C.
Step 5: The family {T (·, y) : y ∈ C(D)} is equicontractive.
Let us take z, x ∈ PWgτ and y ∈ C(D). Also, consider Lemma 2.3 and (H2), then

• Let us chose t ∈ (−∞, 0]. Then

∥∥T (z, C(y))(t) − T (x, C(y))(t)
∥∥
Rn

g(t) =

∥∥∥h(zπ1 , . . . , zπq)(t) − h(xπ1 , · · · , xπq)(t)
∥∥∥
Rn

g(t)
≤
∥∥∥h(zπ1 , . . . , zπq) − h(xπ1 , · · · , xπq)

∥∥∥
H

≤ dq ∥z̃ − x̃∥Hq

≤ dqq ∥z − x∥H

≤ dqq∥z − x∥.

By taking the supremum on t ∈ R−, we have that,∥∥∥(T (z, C(y)) − T (x, C(y)))
∣∣
R−

∥∥∥
H

≤ dqq∥z − x∥. (3.10)

• Let t ∈ I0. Then, we have that∥∥T (z, C(y))(t) − T (x, C(y))(t)
∥∥
Rn = ∥y(t) − y(t)∥Rn = 0.

• Let t ∈ Ik. Then,we have∥∥T (z, C(y))(t) − T (x, C(y))(t)
∥∥
Rn =

∥∥∥U(t, sk)Gk(sk, z(t−k ))

− U(t, sk)Gk(sk, x(t−k )))
∥∥∥
Rn

≤ M
∥∥∥Gk(sk, z(t−k )) −Gk(sk, x(t−k )))

∥∥∥
Rn

≤ ML∥z − x∥.

Thus, ∥∥T (z, C(y))(t) − T (x, C(y))(t)
∥∥
Rn ≤ ML∥z − x∥, t ∈ (0, τ ]. (3.11)

Mathematician 20 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

• Consider t ∈ Jk. Then, we get∥∥T (z, C(y))(t) − T (x, C(y))(t)
∥∥
Rn ≤

∥∥∥Gk(t, z(t−k ))) −Gk(t, x(t−k )))
∥∥∥
Rn

≤ L∥z(t−k )) − x(t−k ))∥Rn

≤ L∥z − x∥.

Hence, ∥∥T (z, C(y))(t) − T (x, C(y))(t)
∥∥
Rn ≤ L∥z − x∥. (3.12)

Therefore, from the foregoing inequalities and equation (3.12), we get that

∥T (z, C(y)) − T (x, C(y))∥ < 1
2∥z − x∥.

which is a contraction independently of y ∈ C(D). So , the family {T (·, y) : y ∈ C(D)} is
equicontractive.

Step 6: Finally, we shall prove that
T (·, C(·))(D(ρ, τ, ϕ)) ⊆ D(ρ, τ, ϕ)

Let us consider z ∈ D(ρ, τ, ϕ). In order to prove Step 6, we shall take into consideration
Lemma 2.3, the hypotheses (H2)-ii), (H1)-ii) and (H3).

• Let t ∈ (−∞, 0]. Then, we have the following estimate
1
g(t)∥T (z, C(z))(t) − ϕ̃(t)∥Rn = 1

g(t)∥h(zπ1 , . . . , zπq)(t)∥Rn

≤ dq∥z̃∥Hq

≤ dqq∥z∥H

≤ dqq∥z∥
≤ dqq(∥ϕ̃∥ + ρ) < ρ/2.

• Next, for t ∈ I0, we get that

∥T (z, C(z))(t) − ϕ̃(t)∥Rn ≤ Mdq ∥z̃∥Hq +
∫ t

0

∥∥U(t, s)F (s, zs)
∥∥
Rn ds

≤ Mdqq ∥z∥H +M
∫ t

0
ψ̃(∥zs∥H)ds

≤ Mdqq ∥z∥ + t1Mψ̃(∥z∥)
≤ Mdqq(∥ϕ̃∥ + ρ) +Mτψ̃(∥ϕ̃∥ + ρ)
< ρ/2.

• Considering t ∈ Ik, we get that

∥T (z, C(z))(t) − ϕ̃(t)∥Rn ≤ ∥U(t, sk)Gk(sk, z(t−k ))∥ +
∫ t

sk

∥∥U(t, s)F(s, zs)
∥∥ ds

≤
∥∥U(t, sk)

∥∥∥∥∥Gk(sk, z(t−k )) −Gk(sk, 0) +Gk(sk, 0)]
∥∥∥

+
∫ t

sk

∥∥U(t, s)
∥∥∥∥F(s, zs)

∥∥ ds
≤ M [L(∥ϕ̃∥ + ρ) + τ ψ̃(∥ϕ̃∥ + ρ) + Θ] < ρ/2
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• Finally, to complete this part, if t ∈ Jk, we get that

∥T (z, C(z))(t) − ϕ̃(t)∥Rn = ∥Gk(t, z(t−k )))∥ ≤ L∥z∥ + Θ
≤ L(∥ϕ̃∥ + ρ) + Θ < ρ/2

Hence, T (·, C(·))D(ρ, τ, ϕ) ⊆ D(ρ, τ, ϕ).
Since Step 1, Step 4 and Step 5 hold, the conditions of Karakostas Fixed Point Theorem
are satisfied for the closed and convex set given in (3.3), and the proof of Theorem 3.1
immediately follows by applying Theorem 2.2.

3.1.4 Uniqueness and prolongation of solutions

Theorem 3.2 In addition to the conditions of Theorem 3.1, we suppose that for ρ, τ > 0
the following inequality holds

τMK(∥ϕ̃∥ + ρ, ∥ϕ̃∥ + ρ) +M [dqq + L] < 1
2 .

Then, the problem (1.1) has only one solution on (−∞, τ ].

In order to prove the uniqueness of the solution, let z1 and z2 be two solutions for
problem (1.1). Then, we have that:

• Consider the following estimate for t ∈ (−∞, 0]:

1
g(t)∥z1(t) − z2(t)∥Rn = 1

g(t)∥h(z2
π1 , . . . , z

2
πq

)(t) − h(z1
π1 , . . . , z

1
πq

)(t)∥

≤ dq∥z̃2 − z̃1∥Hq

≤ dqq∥z2 − z1∥H

<
1
2∥z2 − z1∥.

• Now, let t ∈ (0, t1],

∥z2(t) − z1(t)∥ ≤ ∥U(t, 0)[ϕ(0) − h(z2
π1 , . . . , z

2
πq

)(0)] +
∫ t

0
U(t, s)F(s, z2

s)ds

− U(t, 0)[ϕ(0) − h(z1
π1 , · · · , z1

πq
)(0)] −

∫ t

0
U(t, s)F(s, z1

s)ds∥

≤ M∥h(z1
π1 , . . . , z

1
πq

)(0) − h(z2
π1 , . . . , z

2
πq

)(0)∥Rn

+
∫ t

0
∥U(t, s)∥∥F(s, z2

s) − F(s, z1
s)∥Rnds

≤ Mdq∥z1 − z2∥Hq +M
∫ t

0
K(∥z2

s∥H, ∥z1
s∥H)∥z1

s − z2
s∥Hds

≤
{
Mdqq +Mt1K(∥z2∥, ∥z1∥)

}
∥z1 − z2∥

≤
{
Mdqq +Mt1K(∥ϕ̃∥ + ρ, ∥ϕ̃∥ + ρ)

}
∥z1 − z2∥

<
1
2∥z1 − z2∥.
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• Now, we consider t ∈ Ik. Then

∥z2(t) − z1(t)∥ =
∥∥∥∥∥U(t, sk)Gk(sk, z

2(t−k )) +
∫ t

sk

U(t, s)F(s, z2
s)

− U(t, sk)Gk(sk, z
1(t−k )) −

∫ t

sk

U(t, s)F(s, z2
s)ds

∥∥∥∥∥
≤ M∥Gk(sk, z

2(t−k )) −Gk(sk, z
1(t−k ))∥

+M
∫ t

sk

∥F(s, z2
s) − F(s, z1

s)∥Rnds

≤ ML∥z2 − z1∥ +M
∫ t

sk

K(∥z2
s∥H, ∥z1

s∥H)∥z2
s − z1

s∥Hds

≤ ML∥z2 − z1∥ +M(tk+1 − sk)K(∥z2∥, ∥z1∥)∥z2 − z1∥
≤ ML∥z2 − z1∥ +M(tk+1 − sk)K(∥ϕ̃∥ + ρ, ∥ϕ̃∥ + ρ)∥z2 − z1∥
≤
[
ML+MτK(∥ϕ̃∥ + ρ, ∥ϕ̃∥ + ρ)

]
∥z2 − z1∥

<
1
2∥z2 − z1∥.

• Consider t ∈ Jk. Then we have that

∥z2(t) − z1(t)∥ = ∥Gk(t, z2(t−k )) −Gk(t, z1(t−k ))∥
≤ L∥z2(t−k ) − z1(t−k )∥

<
1
2∥z2 − z1∥.

Hence, from the foregoing inequalities and the last expression, we get that

∥z2 − z1∥ < ∥z2 − z1∥,

which implies that z1 = z2.
In remaining part of this subsection we shall study the prolongation of the solutions of
problem (1.1). To this end, we shall consider the following subset D̃ of Rn:

D̃ = {y ∈ Rn : ∥y∥Rn ≤ ρ}. (3.13)

Therefore, for all z ∈ D, we have that z(t) − ϕ̃(t) ∈ D̃ for −∞ < t ≤ τ .

Definition 3.1 We shall say that (−∞, τ1) is a maximal interval of existence for the
solution z(·) of problem (1.1) if there is not solution of the (1.1) on (−∞, τ2) with τ2 > τ1.

Theorem 3.3 Suppose that the conditions of Theorem 3.2 hold. If z is a solution of
problem (1.1) on (−∞, τ1) and τ1 is maximal, then either τ1 = +∞ or there exists a
sequence τn → τ1 as n → ∞ such that z(τn) − ϕ̃(τn) → ∂D̃.
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Proof Suppose, for the purpose of contradiction, that τ1 < ∞ and there exist a neighbor-
hood N of ∂D̃ such that z(t) − ϕ̃(t) does not enter in it, for 0 < s2 ≤ t < τ1. We can take
N = D̃\B, where B is a closed subset of D̃, then z(t) − ϕ̃(t) ∈ B for 0 < sp−1 < t < τ1.
We need to prove that lim

t→τ−
1

{z(t) − ϕ̃(t)} = z1 − ϕ̃(τ1) ∈ B. For that purpose, it enough to

prove that lim
t→τ−

1

z(t) = z1, and we will divide the proof in two cases:

• Suppose that 0 ≤ sp−1 < tp ≤ t < τ1. Then consider t, ℓ > 0 such that

0 < tp < ℓ < t < τ1 ≤ sp.

Hence t, l ∈ Jp and

∥z(t) − z(ℓ)∥ = ∥Gp(t, z(t−p ) −Gp(ℓ, z(t−p ))∥ ≤ L
{
|t− ℓ|

}
.

Then
∥z(t) − z(ℓ)∥ ≤ L|t− ℓ| → 0 as t, ℓ → 0.

Therefore, lim
t→τ1

z(t) = z1 exists in Rn, and since B is closed, z1 − ϕ̃(τ1) belongs to B.

• Suppose that 0 ≤ sp−1 < τ1 ≤ tp. Indeed, if we consider 0 ≤ sp−1 < ℓ < t < τ1 ≤ tp,
then t, ℓ ∈ Ip and

∥z(t) − z(ℓ)∥Rn ≤ ∥U(t, sp−1) − U(ℓ, sp−1)∥∥Gp(sp−1, z(t−p−1))∥Rn

+
∫ ℓ

sp−1
∥U(t, s) − U(ℓ, s)∥∥f(s, zs)∥ds

+
∫ t

ℓ
∥(U(t, s)∥∥f(s, zs)∥ds

≤ ∥U(t, sp−1) − U(ℓ, sp−1)∥∥Gp(sp−1, z(t−p−1))∥Rn

+
(∫ ℓ

sp−1
∥U(t, s) − U(ℓ, s)∥ds+

∫ t

ℓ
∥(U(t, s)∥ds

)
ψ̃(∥z∥)

≤ ∥U(t, sp−1) − U(ℓ, sp−1)(∥L∥z∥ + Θ)

+
(∫ ℓ

sp−1
∥U(t, s) − U(ℓ, s)∥ds+

∫ t

ℓ
∥(U(t, s)∥ds

)
ψ̃(∥z∥)

≤ ∥U(t, sp−1) − U(ℓ, sp−1)(∥L∥z∥ + Θ)

+
(∫ ℓ

sp−1
∥U(t, s) − U(ℓ, s)∥ds+

∫ t

ℓ
∥(U(t, s)∥ds

)
ψ̃(R)

Since U(t, s) is uniformly continuous on t, s ≥ 0, then ∥z(t) − z(l)∥Rn goes to zero as
ℓ → τ1. Therefore, lim

t→τ1
z(t) = z1 exists in Rn, and since B is closed, z1 − ϕ̃(τ1) belongs to

B. This will contradict the maximality of τ1. In fact, we have that z1 ∈ B+ ϕ̃(τ1),which is
contained in the interior of the ball D̃+ ϕ̃(τ1). Hence, z(·) can be extended to (−∞, τ1]. In
this regard, for ϵ small enough, the following initial value problem admit only one solutions
on (−∞, τ1 + ϵ)v

′(t) = A(t)v(t) + f(t, vt), t ∈ (τ1, τ1 + ϵ)
v(s) + h(vπ1 , vπ2 , vπ3 , . . . , vπq)(s) = ϕ(s), s ∈ (−∞, τ1],

(3.14)
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This is a contradiction with the maximality of τ1. So, the proof is completed.

Corollary 3.1 Under the conditions of Theorem 3.1, and assuming the following condition

∥F(t, ϕ)∥ ≤ µ(t)(1 + ∥ϕ(0)∥Rn), ϕ ∈ H, t ∈ R, (3.15)

where µ(·) is a continuous function on (−∞,∞), the unique solution of problem (1.1)
exists on (−∞,∞).

Proof We will divide the proof in two cases:

• suppose that 0 ≤ sp−1 < tp < τ1. Then 0 ≤ sp−1 < tp < t < τ1 ≤ sp. Therefore,

∥z(t)∥Rn = ∥Gp(t, z(t−p ))∥Rn ≤ L∥z(t−p )∥ + Θ.

• Suppose that 0 ≤ sp−1 < τ1 ≤ tp. Then, for t ∈ [sp−1, τ1] ⊂ Ip we have that

∥z(t)∥Rn ≤ ∥U(t, sp−1)∥∥Gk(sp−1, z(t−p ))∥Rn +
∫ t

sp−1
∥U(t, s)∥∥F(s, zs)∥ds

≤ M(L∥z(t−p )∥Rn + Θ) +
∫ t

sp−1
Mµ(s)(1 + ∥z(s)∥Rn)ds

≤ M(L∥z(t−p )∥Rn + Θ) +
∫ τ

sp−1
Mµ(s)ds+

∫ t

sp−1
Mµ(s)∥z(s)∥Rnds

≤ M

(
L∥z(t−p )∥Rn + Θ +

∫ τ

sp−1
µ(s)ds

)
+
∫ t

sp−1
Mµ(s)∥z(s)∥Rnds

Then, applying Gronwall Inequality, we obtain that

∥z(t)∥Rn ≤ M

(
L∥z(t−p )∥Rn + Θ +

∫ τ

sp−1
µ(s)ds

)
e

∫ τ

sp−1
Mµ(s)ds

,

The two cases imply that ∥z(t)∥Rn remains bounded as t → τ1, then applying Theorem 3.3
we get the required result.

3.1.5 Application
In this section we shall consider an example of semi-linear system with infinite delay, non-
instantaneous impulses and non-local conditions where Theorem 3.1 can be applied

z′(t) = −z(t) + e
− zt(−1)

10(t+5)3 , t ∈ Ik

z(s) =
(
1 + sin z

302

)
(s) + ϕ(s), s ∈ (−∞, 0]

z(t) = sin(z(t−
k

))
4(tk+8)4 · cos(t− tk), t ∈ Jk

(3.16)

In this case we have that the terms involving system (1.1) are given by: A(t) = −1,
F(t, z) = exp

{
− z

10(t+5)3

}
, h(z) = 1 + sin(z)

302 and Gk(t, z) = sin(z)
4(tk+84) · cos(t − tk). Then. we

have,
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∣∣F(t, z) − F(t, x)
∣∣ =

∣∣∣∣e− z
10(t+5)3 − e

− x
10(t+5)3

∣∣∣∣ ≤ 1
10·53 |z − z̃| ,∣∣Gk(t, z) −Gk(t, x)

∣∣ ≤ 1
4(t+8)4

∣∣sin(z) − sin(x)
∣∣ ≤ 1

4·84 |z − x| ,∣∣h(z) − h(x)
∣∣ = 1

302

∣∣sin(z) − sin(x)
∣∣ ≤ 1

302 |z − x| ,
(3.17)

In this case, we have that

q = 1, U(t, s) = e−(t−s), M = 1, K = 1
10 · 53

and ∣∣F(t, z)
∣∣ ≤

∣∣F(t, z) − F(t, 0)
∣∣+∣∣F(t, 0)

∣∣ ≤ 1
10 · 53 |z| + 1. (3.18)

Therefore, if we put Ψ̃(ξ) = 1
10·53 ξ + 1, with ξ ≥ 0, then∣∣F(t, z)

∣∣ ≤ Ψ̃(|z|)

Now, for ε > 0 small enough, let’s take as initial function

ϕ(s) = εcos(s), s ∈ R

and define
ϕ̃(t) =

{
e−tϕ(0) , t ≥ 0
ϕ(t) t ∈ (−∞, 0]

Then, we have

ψ̃
(∥∥∥ϕ̃∥∥∥+ ρ

)
=

∥∥∥ϕ̃∥∥∥+ ρ

10 · 53 + 1

≤ ε+ ρ

10 · 53 + 1

Therefore, the last condition of the hypothesis H2-ii) is satisfied. In fact,

M(L+ dqq) = (L+ dq)

=
(

1
4 · 84 + 1

302

)

= 4321
3686400 (3.19)

≤ 1
2

Since Gk(t, 0) = 0, then, Θ = 0. Hence, the condition of the hypothesis H3) is satisfied. In
fact, the following inequality

M(dqq + L)
(∥∥∥ϕ̃+ ρ

∥∥∥)+ τ ψ̃
(∥∥∥ϕ̃∥∥∥+ ρ

)
= (dq + L)

(∥∥∥ϕ̃+ ρ
∥∥∥)+ τ ψ̃

(∥∥∥ϕ̃∥∥∥+ ρ
)

=
(

1
4 · 84 + 1

302

)
(ε+ ρ) + τ

(
ε+ ρ

10 · 53 + 1
)

≤ ρ

2

Mathematician 26 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

holds for infinitely many values of τ , ρ and ε. In particular, we can take, for example,
τ = 1

4 , ρ = 1 and ε = 1. So, we get that(
1

4 · 84 + 1
302

)
(ε+ ρ) + τ

(
ε+ ρ

10 · 53 + 1
)

=
(

1
4 · 84 + 1

302

)
(1 + 1) + 1

4

(
1 + 1
10 · 53 + 1

)

= 8642
3686400 + 1

4

(
1252
1250

)

= 23292389
92160000 (3.20)

≤ 1
2 .

Thus, by (3.18),(3.17),(3.19),(3.20) we have that H1)-H3) holds. So, Theorem 3.1 ensures
the existence of solutions for problem (3.16).

3.2 Approximate controllability
In order to study the controllability of system (1.2), with techniques that evade the use of
fixed point Theorems, We will assume the following conditions on the nonlinear term f .

|f(t, φ, u)| ≤ ζ(∥φ(−tp)∥) u ∈ Rm, φ ∈ H, t ∈ [0, τ ] (3.21)
where ζ : R+ → [0,∞) is a continuous function. In particular, ζ(ξ) = a(ξ)β +b, with β ≥ 1.

Also, we shall assume the following hypothesis:
A1) The linear control system (2.11) is exactly controllable on any interval [τ − δ, τ ],

for all δ with 0 < δ < τ .
Since, the system (1.2) was slightly changed, the solution was also altered. Therefore, once
the existence and uniqueness of solution is proved, for the controllability part, the solution
for k = 1, . . . , p is given by

z(t) =



U(t, 0)[φ(0) − h(zπ1 , . . . , zπq)(0) +
∫ t

0
U(t, s)f(s, zs, u(t))ds

+
∫ t

0
U(t, s)B(s)u(s)ds, t ∈ I0

U(t, sk)Gk(t, z(t−k )) +
∫ t

sk

U(t, s)f(s, zs, u(t))ds

+
∫ t

sk

U(t, s)B(s)u(s)ds, t ∈ Ik

Gk(t, z(t−k )), t ∈ Jk

φ(t)−h(zπ1 , . . . , zπq)(t), t ∈ (−∞, 0]
(3.22)

Theorem 3.4 If the functions f,Gk, h are smooth enough, condition (3.21) holds and the
linear system (2.11) is exact controllable on any interval [τ − δ, τ ], 0 < δ < τ , then system
(1.2) is approximately controllable on [0, τ ].
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Proof Consider ϕ ∈ H, a final state z1 and ϵ > 0, we want to find a control uϵ ∈ L2(0, τ ;Rm)
steering the system to a ball of center z1 and radius ϵ > 0 on [0, τ ]. In indeed, we consider
any fixed control u ∈ L2(0, τ ;Rm) and the corresponding solution z(t) = z(t, 0, ϕ, u) of the
problem (1.2).
For 0 < δ < min{τ − sp, sp,

ϵ
MK

}, we define the control uϵ ∈ L2(0, τ ;Rm) as follows

uϵ(t) =
{
u(t), if 0 ≤ t ≤ τ − δ,
vδ(t), if τ − δ < t ≤ τ.

where K = sups∈[0,τ ]{ζ(∥z(s)∥} and

vδ(t) = B∗(t)U∗(τ, t)(Wτδ)−1(z1 − U(τ, τ − δ)z(τ − δ)), τ − δ < t ≤ τ.

Since 0 < δ < τ−sp, then τ−δ > sp; and using the cocycle property U(t, l)U(l, s) = U(t, s),
the associated solution zδ(t) = z(t, 0, ϕ, uϵ) of the time-dependent impulsive semilinear
retarded differential equation with infinite delay and nonlocal (1.2), at time τ , can be
expressed as follows:

zδ(τ) = U(τ, sp)Gk(sp, z
δ(s−

p )) +
∫ τ

sp

U(τ, s)f(s, zs, u
ϵ(s))ds+

∫ τ

sp

U(τ, s)B(s)uϵ(s)ds

= U(τ, τ − δ)
{

U(τ − δ, sp)Gp(sp, z
δ(s−

p )) +
∫ τ−δ

sp

U(τ − δ, s)[B(s)u(s)ds

+f(s, zδ
s , u(s))]ds

}
+
∫ τ

τ−δ
U(τ, s)[B(s)vδ(s) + f(s, zδ

s , v
δ(s))]ds

Therefore,

zδ(τ) = U(τ, τ − δ)z(τ − δ) +
∫ τ

τ−δ
U(τ, s)[B(s)vδ(s) + f(s, zδ

s , v
δ(s))]ds.

The corresponding solution yδ(t) = y(t, τ − δ, z(τ − δ), vδ) of the initial value problem
(2.11) at time τ , for the control vδ and the initial condition z0 = z(τ − δ), is given by:

yδ(τ) = U(τ, τ − δ)z(τ − δ) +
∫ τ

τ−δ
U(τ, s)B(s)vδ(s)ds,

and because of our assumption, we get that the conditions in (2.15) holds, particularly:

yδ(τ) = z1.

Thus, ∥∥∥zδ(τ) − z1)
∥∥∥ ≤

∫ τ

τ−δ

∥∥U(τ, s)
∥∥∥∥∥f(s, zδ

s , v
δ(s))

∥∥∥ ds. (3.23)

Now, since 0 < δ < sp and τ − δ ≤ s ≤ τ , then s− sp ≤ τ − sp < τ − δ and

zδ(s− sp) = z(s− sp).

Hence, since δ satisfies 0 < δ < min{sp, τ − sp,
ϵ

MK
}, from (3.23) we get:
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∥∥∥zδ(τ) − z1)
∥∥∥ ≤

∫ τ

τ−δ

∥∥U(τ, s)
∥∥∥∥∥f(s, zs, v

δ(s))
∥∥∥ ds

≤ M
∫ τ

τ−δ
ζ(
∥∥∥z(s− sp)

∥∥∥)ds
≤ MK(τ − τ + δ) ≤ ϵ

which completes the proof.
The geometric representation of this theorem can be found below:

Figure 3.2: Geometric representation of Theorem 3.4

3.3 Exact controllability
The main objective of this section is to use Rothe’s fixed point to prove that the system in
(1.2) is exactly controllable. In order to do that, we shall consider the following hypotheses:

E1) The nonlinear function f : R+ × H × Rm −→ Rn satisfies∥∥f(t, νt, u)
∥∥
Rn ≤ a0∥νt∥α0

H + b0∥u∥β0
Rm + c0, t ∈ (0, τ ], ν ∈ H, u ∈ Rm.

E2) The non instantaneous impulses function, Gk ∈ C
(
(tk, sk] × Rn;Rn

)
for all k =

1, 2, 3, . . . , p and satisfies: ∥∥Gk(t, z)
∥∥
Rn ≤ ak∥z∥αk

Rn + ck,

and ∥∥ Gk(s, z) −Gk(t, w)
∥∥ ≤ dk

(
|s− t| +∥z − w∥

)
.

E3) The function for the non local condition h : Hq :−→ H satisfies, for z, w ∈ Hq, the
following conditions: ∥∥h(z)

∥∥
H ≤ c∥z∥η

Hq ,

and ∥∥h(z) − h(w)
∥∥
H ≤ dq∥z − w∥Hq ,

where η, αk, β0 ∈ [0, 1) and ak, b0, ck, dk, c, dq are positive constants with
k = 0, 1, 2, 3, · · · , p.
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In addition to the conditions imposed to the operators and functions involving the system,
it is also necessary to define some operators that help us to prove the controllability of the
system (1.2).

S1 : PWgτ × PWu −→ PWgτ

(z, u)(t) 7−→ y(t) := S1(z, u)(t)

S2 : PWgτ × PWu −→ PWu

(z, u)(t) 7−→ v(t) := S2(z, u)(t)

where, arbitrary states ztk+1 , with k = 0, 1, 2, . . . , p, are given by:

y(t) =



φ(t) − h(zπ1 , . . . , zπq)(t), t ∈ (−∞, 0]

U(t, 0)[φ(0) − h(zπ1 , . . . , zπq)(0) +
∫ t1

0
U(t, s)f(s, zs, u(t))ds

+
∫ t1

0
U(t, s)B(s)(Υ0L0(z, u))(s)ds, t ∈ I0

U(t, sk)Gk(t, z(t−k )) +
∫ t

sk

U(t, s)f(s, zs, u(t))ds

+
∫ t

sk

U(t, s)B(s)(ΥkLk(z, u))(s)ds, t ∈ Ik

Gk(t, z(t−k )), t ∈ Jk

(3.24)
and

v(t) =
ΥkLk(z, u) := B∗(t)U∗(tk+1, t)(W[sk,tk+1])−1Lk(z, u)(t), t ∈ (sk, tk+1]

0, t ∈ (tk, sk)
(3.25)

where,

Lk(z, u) = ztk+1 − U(tk+1, sk)Gk(sk, z(t−k )) −
∫ tk+1

sk

U(tk+1, s)f(s, zs, u(s))ds, (3.26)

and

W[sk,tk+1]z =
∫ tk+1

sk

U(tk+1, s)B(s)B∗(s)U∗(tk+1, s)zds, (3.27)

with δk > 0, such that for each k, we have that the Grammian operator
∥∥∥(W[sk,tk+1])−1

∥∥∥ < 1
δk

.

Now, using the foregoing operators, we shall define an operator S to transform the problem
of controllability into a problem of finding fixed point of it.

S : PWgτ × PWu −→ PWgτ × PWu

(z(t), u(t)) 7−→ S(z, u) = (S1(z, u)(t),S2(z, u)(t))

The following remark describes the properties of S and it can be trivially shown from the
definition of it.
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Remark 3.1 The semi-linear system with non-instantaneous impulses, infinite delay, and
nonlocal conditions (1.2) is controllable on [0, τ ], iff, for all initial state φ ∈ PW and a
final state z1 the operator S has a fixed point. i.e., there exist (z, u) in the domain of S
satisfying S(z, u) = (z, u).

Theorem 3.5 Under the conditions E1)-E3), the system (1.2) is controllable. This is
equivalent to say that the operator S defined above has a fixed point. Moreover, given
φ ∈ H, z1 ∈ Rn and arbitrary points ztk+1 ∈ Rn, k = 0, 1, 2, . . . , p there exists a control
u ∈ PWu such that the corresponding solution z(·) of (1.2) satisfies:

z(0) − h(zπ1 , . . . , zπq)(0) = φ(0), z(tk+1) = ztk+1 , k = 0, 1, 2, . . . , p

where
z(tp+1) = ztp+1 = z1.

In addition, for all t ∈ (sk, tk+1] and k = 0, 1, 2, . . . , p

u(t) = B∗(t)U∗(tk+1, t)(W(sk,tk+1])−1Lk(z, u),

with Lk(z, u) as showed in (3.26)

The proof of this theorem will be given by steps.
Step 1 Operator S is continuous.

Consider hypotheses E2) and E3) and lemma (2.3). Since the solution depends on the
inteval we have to consider the following cases:

i) t ∈ (0, t1]∥∥S1(z, u)(t) − S1(w, v)(t)
∥∥ ≤ Ĉ0∥z − w∥ + D̂0 sup

s∈(0,t1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s))
∥∥

ii) t ∈ (tk, sk] ∥∥S1(z, u)(t) − S1(w, v)(t)
∥∥ ≤ d0∥z − w∥

iii) t ∈ (sk, tk+1]∥∥S1(z, u)(t) − S1(w, v)(t)
∥∥ ≤ Ĉk∥z − w∥

+ D̂k sup
s∈(sk,tk+1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s))
∥∥

iv) t ∈ (−∞, 0], then ∥∥S1(z, u)(t) − S1(w, v)(t)
∥∥ ≤ dqq∥w − z∥
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where,

Ĉk = Ck[1 + K̂k], D̂k = Dk[1 + D̂], K̂k = (tk+1 − sk)∥B∥2 M2

δk

,

C0 = Mdqq, Ck = Mdk, Dk = M(tk+1 − sk)

Then, because of the continuity of f , Gk, h, we get that S1 is continuous.
Aditionally, S2 is continuous since B, U , Lk, and (W[sk,tk+1])−1 are also continuous. Using
this two results we obtain as consequence, that the operator S is continuous. Note that in
the interval (−∞, 0] we get right bound of S1 from the hypothesis E3), and the operator
S2 is zero there.

Step 2 Operator S maps bounded sets into equicontinuous sets.
First, we notice that

∥∥S(z, u)(t2) − S(z, u)(t1)
∥∥ =

∥∥S1(z, u)(t2) − S1(z, u)(t1)
∥∥ (3.28)

+
∥∥S2(z, u)(t2) − S2(z, u)(t1)

∥∥
Now, let D ⊂ PWgτ be a bounded set and recall that S(D) = (S1(D),S2(D)). Then, for
S1, we consider hypothesis E2) and the following cases:

i) Let l1, l2 ∈ (0, t1] such that 0 < l1 < l2 ≤ t1

∥∥S1(z, u)(l2) − S1(z, u)(l1)
∥∥ ≤

∥∥∥U(l2, 0){φ(0) − h(zπ1 , . . . , zπq)(0)}

+
∫ l2

0
U(l2, s)B(s)(ΥL(z, u))(s)ds

+
∫ l2

0
U(l2, s)f(s, zs, u(s))ds

− U(l1, 0){φ(0) − h(zπ1 , . . . , zπq)(0)}

+
∫ l1

0
U(l1, s)B(s)(ΥL(z, u))(s)ds

+
∫ l1

0
U(l1, s)f(s, zs, u(s))ds

∥∥∥∥∥
≤

∥∥U(l2, 0) − U(l1, 0)
∥∥∥∥∥φ(0) − h(zπ1 , . . . , zπq)(0)

∥∥∥
+

∫ l1

0

∥∥U(l2, s) − U(l1, s)
∥∥∥∥B(s)(Υ0L0(z, u))(s)

∥∥ ds
+

∫ l2

l1

∥∥U(l2, s)
∥∥∥∥B(s)(Υ0L0(z, u))(s)

∥∥ ds
+

∫ l1

0

∥∥U(l2, s) − U(l1, s)
∥∥∥∥f(s, zs, u(s))

∥∥ ds
+

∫ l2

l1

∥∥U(l2, s)
∥∥∥∥f(s, zs, u(s))

∥∥ ds
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ii) Let us take l1, l2 ∈ (tk, sk] such that tk < l1 < l2 ≤ sk∥∥S1(z, u)(l2) − S1(z, u)(l1)
∥∥ =

∥∥∥Gk(l2, z(t−k )) −Gk(l1, z(t−k )
∥∥∥

≤ d0|l2 − l1|

iii) l1, l2 ∈ (sk, tk+1] such that sk < l1 < l2 ≤ tk+1∥∥S1(z, u)(l2) − S1(z, u)(l1)
∥∥ ≤

∥∥∥U(l2, sk)Gk(sk, z(t−k ))

+
∫ l2

sk

U(l2, s)B(s)(ΥkLk(z, u))(s)ds

+
∫ l2

sk

U(l2, s)f(s, zs, u(s))ds− U(l1, sk)Gk(sk, z(t−k ))

+
∫ l1

sk

U(l1, s)B(s)(ΥkLk(z, u))(s)ds

+
∫ l1

sk

U(l1, s)f(s, zs, u(s))ds
∥∥∥∥∥

≤
∥∥U(l2, sk) − U(l1, sk)

∥∥∥∥∥Gk(sk, z(t−k ))
∥∥∥

+
∫ l1

sk

∥∥U(l2, s) − U(l1, s)
∥∥∥∥B(s)(ΥkLk(z, u))(s)

∥∥ ds
+

∫ l2

l1

∥∥U(l2, s)
∥∥∥∥B(s)(ΥkLk(z, u))(s)

∥∥ ds
+

∫ l1

sk

∥∥U(l2, s) − U(l1, s)
∥∥∥∥f(s, zs, u(s))

∥∥ ds
+

∫ l2

l1

∥∥U(l2, s)
∥∥∥∥f(s, zs, u(s))

∥∥ ds
and ∥∥S2(z, u)(l2) − S2(z, u)(l1)

∥∥ ≤
∥∥U(tk+1, l2)B(l2) − U(tk+1, l1)B(l1)

∥∥
×
∥∥∥(W[sk,tk+1])−1Lk(z, u)

∥∥∥
iv) Consider l1, l2 ∈ (−∞, 0] such that −∞ ≤ l1 ≤ l2 ≤ 0, then we get

∥∥S1(z, u)(l2) − S1(z, u)(l1)
∥∥ =

∥∥∥φ(l2) − h(zπ1 , . . . , zπq)(l2) − φ(l1)

+ h(zπ1 , . . . , zπq)(l1)
∥∥∥

≤
∥∥φ(l2) − φ(l1)

∥∥ ∥∥∥h(zπ1 , . . . , zπq)(l2)

−h(zπ1 , . . . , zπq)(l1)
∥∥∥ .

By the continuity of the evolution operator U and W[sk,tk+1], the boundedness of h on D,
with l2 and l1 close enough, and i), ii), iii), iv), the equicontinuity of the sets S1(D) and
S2(D) is obtained, which at the same time implies the equicontinuity of S(D).
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Step 3 For any bounded subset D ⊂ PWgτ × PWu, S(D) is relatively compact.
Let D be a bounded subset of PWgτ × PWu. By the continuity of f , L, and Gk, it follows
that

∥f(·, z, u)∥0 ≤ sup
s∈(0,τ ]

∥∥f(s, zs, u(s))
∥∥ , ∥W−1

[sk,tk+1]Lk∥ ≤ Tk, ∥Gk∥ ≤ Tk+p+1

k = 1, 2, . . . , p, ∀(z, u) ∈ D,

where ∥Gk∥ = supt∈(0,τ ]{∥Gk(t, z(t−k ))∥Rn , T1, · · · , T2p+1 ∈ R. Therefore, S(D) is uniformly
bounded.
Now, we consider a sequence {ψi = (yi, vi) : i = 1, 2, . . . , } in S(D). Since {vi : i =
1, 2, . . . , } is contained in S2(D) ⊂ PWu and S2(D) is an uniformly bounded and equicon-
tinuous family, by Arzelà-Ascoli Theorem we can assume, without loss of generality, that
{vi : i = 1, 2, . . . , } converges.
On the other hand, since {yi : i = 1, 2, . . . , } is contained in S1(D) ⊂ PWgτ ((−∞, τ ];Rn),

then yi

∣∣∣∣
(−∞,−τq ]

= ϕ− h(ϕΠ1 , ϕΠ2 , . . . , ϕΠq), i = 1, 2, . . . ,.

Taking into account that yi : i = 1, 2, . . . , } is bounded and equicontinuous in [0, t1], we can
apply Arzelà-Ascoli Theorem to ensure the existence of a subsequence {y1

i : i = 1, 2, . . . , }
of {yi : i = 1, 2, . . . , }, which is uniformly convergent on [0, t1]. Now, consider the sequence
{ϕ1

i : i = 1, 2, . . . , } on the interval [t1, t2]. On this interval the sequence {y1
i : i = 1, 2, . . . , }

is uniformly bounded and equicontinuous, and for the same reason, it has a subsequence
{y2

i : i = 1, 2, . . . , } uniformly convergent on [0, t2]. In this way, for the intervals [t2, t3],
[t3, t4], . . . , [tp, τ ], we see that the sequence {ϕp+1

i : i = 1, 2, . . . , } converges uniformly on
the interval [0, τ ].
Besides, in the interval [−Πq, 0] the function yi is piecewise continuous, then repeating
the foregoing process we can assume that the subsequence {ψp+1

i = (yp+1
i , vp+1

i ) : i =
1, 2, . . . , p} converges uniformly on (−∞, τ ]. This means that S(D) is compact, i.e., S(D)
is relatively compact.

Step 4.
The following limit holds

lim
∥(z,u)∥→∞

∥∥S(z, u)
∥∥∥∥(z, u)
∥∥ = 0,

where ∥·∥ is the norm in the space PWgτ × PWu. In fact, first we have to make a lot of
computations:

i) For t ∈ (0, t1], we have that
∥∥L0(z, u)

∥∥ ≤
∥∥∥zt1

∥∥∥+M∥φ∥ +Mcq∥z∥η +Mt1[a0∥z∥α0 + b0∥u∥β0
Rm + c0]

Which implies that S2 and S1 as follows:

∥∥S2(z, u)(t)
∥∥ ≤ M∥B∥

δ0

∥∥∥zt1
∥∥∥+ ∥B∥M2

δ0
∥φ∥ + ∥B∥M2

δ0
cq∥z∥η

+ ∥B∥M2t1
δ0

[a0∥z∥α0 + b0∥u∥β0
Rm + c0]
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and,∥∥S1(z, u)(t)
∥∥ ≤ M∥φ∥ +Mcq∥z∥η +Mt1[a0∥z∥α0 + b0∥u∥β0

Rm + c0] +M∥B∥ t1

×
{
M∥B∥
δ0

∥∥∥zt1
∥∥∥+ ∥B∥M2

δ0
∥φ∥ + ∥B∥M2

δ0
cq∥z∥η

+ ∥B∥M2t1
δ0

[a0∥z∥α0 + b0∥u∥β0
Rm + c0]

}

From the above inequality, we get the foregoing estimate S∥∥S(z, u)
∥∥ =

∥∥S1(z, u)
∥∥+

∥∥S2(z, u)
∥∥

≤ E0∥φ∥ +H0

∥∥∥zt1
∥∥∥+D0∥z∥η + F0[a0∥z∥α0 + b0∥u∥β0

Rm + c0]

and therefore,∥∥S(z, u)(t)
∥∥∥∥(z, u)

∥∥ ≤ E0∥φ∥+H0∥zt1∥
∥z∥+∥u∥ +D0∥z∥η−1 + F0

[
a0∥z∥α0−1 (3.29)

+ b0∥u∥β0−1
Rm + c0

∥z∥+∥u∥

]

ii) For t ∈ (sk, tk+1], we got the following bound
∥∥Lk(z, u)

∥∥ ≤
∥∥∥ztk+1

∥∥∥+M [ak∥z∥αk + ck] +M(tk+1 − sk)[a0∥z∥α0 + b0∥u∥β0
Rm + c0]

Which give us for operator S2 that

∥∥S2(z, u)(t)
∥∥ ≤ M∥B∥

δk

∥∥∥ztk+1
∥∥∥+ ∥B∥M2

δk

[ak∥z∥αk + ck]

+ ∥B∥M2(tk+1 − sk)
δk

[a0∥z∥α0 + b0∥u∥β0
Rm + c0]

and, for operator S1 that

∥∥S1(z, u)(t)
∥∥ ≤ M [ak∥z∥αk + ck] +M(tk+1 − sk)∥B∥

[
M∥B∥
δk

∥∥∥ztk+1
∥∥∥

+ ∥B∥M2

δk

[ak∥z∥αk + ck] + ∥B∥M2(tk+1 − sk)
δk

[a0∥z∥α0 + b0∥u∥β0
Rm + c0]

]
+M(tk+1 − sk)[a0∥z∥α0 + b0∥u∥β0

Rm + c0]

Hence, the operator S, becomes:
∥∥S(z, u)(t)

∥∥∥∥(z, u)
∥∥ ≤ Ek

[
ak∥z∥αk−1 + ck

∥z∥ +∥u∥

]
+
Hk

∥∥∥ztk+1
∥∥∥

∥z∥ +∥u∥
(3.30)

+ Fk

[
a0∥z∥α0−1 + b0∥u∥β0−1

Rm + c0

∥z∥ +∥u∥

]
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iii) For t ∈ (tk, sk], we have that∥∥S1(z, u)(t)
∥∥ ≤ ak∥z∥αk + ck

implying that ∥∥S(z, u)(t)
∥∥∥∥(z, u)

∥∥ ≤ ak∥z∥αk−1 + ck

∥z∥ +∥u∥
(3.31)

where,

D0 =
Mcq + ∥B∥2 M3t1cq

δ0
+ ∥B∥M2cq

δ0

 Ek =
M + (tk+1 − sk)∥B∥2 M3

δk

+ ∥B∥M2

δk



Hk =
(tk+1 − sk)∥B∥2 M2

δk

+ ∥B∥M
δk


and Fk =

(tk+1 − sk)2∥B∥2 M3

δk

+M(tk+1 − sk) + (tk+1 − sk)∥B∥M2

δk


Hence, considering the hypotheses (E1)-(E3) with the Lemma 2.3 and 0 < αk < 1, 0 <
β0 < 1, k = 0, 1, . . . , p , 0 < η < 1, it follows from (3.29), (3.30) and (3.31) that for any
t ∈ (0, τ ]

lim
∥(z,u)∥→∞

∥∥S(z, u)
∥∥∥∥(z, u)
∥∥ = 0,

Now, we are ready to prove that operator S has fixed point. In fact, for a fixed 0 < ρ < 1,
there exists r > 0 big enough, such that

∥∥S(z, u)
∥∥ ≤ ρ

∥∥(z, u)
∥∥ , for all

∥∥(z, u)
∥∥ ≥ r.

In particularly, if take
∥∥(z, u)

∥∥ = r, then
∥∥S(z, u)

∥∥ ≤ ρr < r. Consequently,

S(∂B(0, r)) ⊂ B(0, r).

Hence, applying Rothe’s Fixed Point Theorem 2.3, we conclude that the operator S has a
fixed point (z, u) ∈ PWgτ × PWu. i.e., S(z, u) = (z, u), which prove the controllability of
system (1.2).

Moreover, from the definition of the operator S and the prove of the above theorem,
we got that letting φ ∈ H, z1 ∈ Rn and arbitrary points ztk+1 ∈ Rn, k = 0, 1, 2, . . . , p,
there exists a control u ∈ PWu such that

u(t) = B∗(t)U∗(tk+1, t)(W(sk,tk+1])−1Lk(z, u)

for t ∈ (sk, tk+1] , k = 1, 2, · · · , p. Replacing u into the solution (3.22), and evaluating it
at t = 0, t1, tk+1, we obtain that:

z(0) + h(zπ1 , . . . , zπq)(0) = φ(0),
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z(t1) = U(t1, 0)[φ(0) − h(zπ1 , . . . , zπq)(0)] +
∫ t1

0
U(t1, s)f(s, zs, u(s))ds

+
∫ t1

0
U(t1, s)B(s)B∗(s)U∗(t1, s)(W(0,t1])−1{zt1 − U(t1, 0)[φ(0)

−h(zπ1 , . . . , zπq)(0)] −
∫ t1

0
U(t1, v)f(v, zv, u(v))dv]}ds

= U(t1, 0)[φ(0) − h(zπ1 , . . . , zπq)(0)] +
∫ t1

0
U(t1, s)f(s, zs, u(s))ds

+(W(0,t1])(W(0,t1])−1{zt1 − U(t1, 0)[φ(0) − h(zπ1 , . . . , zπq)(0)]

−
∫ t1

0
U(t1, v)f(v, zv, u(v))dv} := zt1

z(tk+1) = U(tk+1, sk)Gk(sk, z(t−k )) +
∫ tk+1

sk

U(tk+1, s)f(s, zs, u(s))ds

+
∫ tk+1

sk

U(tk+1, s)B(s)B∗(s)U∗(tk+1, s)(W(sk,tk+1])−1{ztk+1

−U(tk+1, si)Gk(sk, z(t−k )) −
∫ tk+1

sk

U(t1, v)f(v, zv, u(v))dv}ds

= U(tk+1, sk)Gk(sk, z(t−k )) +
∫ tk+1

sk

U(tk+1, s)f(s, zs, u(s))ds

+(W(sk,tk+1])(W(sk,tk+1])−1{ztk+1 − U(tk+1, sk)Gk(sk, z(t−k ))

−
∫ tk+1

sk

U(tk+1, v)f(v, zv, u(v))dv} := ztk+1 .

Observe that, if k = p, then z(tp+1) = ztp+1 = z1, and since tp+1 = τ , we get that z(τ) = z1.
This complete the proof.
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Chapter 4

Conclusions and final remarks

In this work we have successfully proved the existence and uniqueness of solutions of
retarded equations with infinite delay, infinite many non-instantaneous impulses, and non-
local conditions; by using Karakosta’s fixed point theorem, and after showing that the phase
space that we choose satisfies the axioms proposed by Hale and Kato to study retarded
equations with unbounded delay. The choice made for the phase space was a subspace of
the piecewise continuous functions due to impulses and non-local conditions. Once we have
proved the existence of solutions for this type of equation, we opened the door to study
another aspect related to this type of problem, such as the controllability, the stability,
the existence of bounded solutions, periodic solutions, almost periodic solutions, and in
general other topics of dynamical systems.

We focused on controllability, where by using the fixed point approach and Bashirov
techniques, we have proved the approximate and the exact controllability of the system,
which contains infinitely many non-instantaneous impulses, non-local conditions, and in-
finite delay. The showed proofs confirmed that impulses, delays, and non-local conditions
are, under some conditions, intrinsic phenomena that do not destroy the controllability of
a system. That is, if we consider these elements as disturbances of the system, it turns out
that the controllability is robust under these influences not taken into account in many
mathematical models that represent extremely important problems in real life.

Our future research will focus on studying the same results for evolution equations in
infinite-dimensional Banach. Those are the existence of bounded solutions of such equa-
tions, uniqueness, stability, controllability, as well as, other aspects of dynamical systems.
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[23] A. E. Bashirov, N. Mahmudov, N. Şemı, and H. Etıkan, “Partial controllability con-
cepts,” International Journal of Control, vol. 80, no. 1, pp. 1–7, 2007.

[24] A. E. Bashirov and M. Jneid, “On partial complete controllability of semilinear sys-
tems,” in Abstract and Applied Analysis, vol. 2013. Hindawi, 2013.

[25] A. E. Bashirov and N. Ghahramanlou, “On partial approximate controllability of
semilinear systems,” Cogent Engineering, vol. 1, no. 1, p. 965947, 2014.

Mathematician 42 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

[26] V. Lakshmikantham, P. S. Simeonov et al., Theory of impulsive differential equations.
World scientific, 1989, vol. 6.

[27] E. Hernández and D. O’Regan, “On a new class of abstract impulsive differential
equations,” Proceedings of the American Mathematical Society, vol. 141, no. 5, pp.
1641–1649, 2013.
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Appendix A

Some bounds

In Chapter 3, section 3, some bounds in some steps are presented. This chapter’s aim is
to show the computations made in those steps. Considering the first step, we got that∥∥L0(z, u) − L0(w, v)

∥∥ ≤ Mdqq∥z − w∥ +Mt1 sup
s∈(0,t1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s))
∥∥

and ∥∥Lk(z, u) − Lk(w, v)
∥∥ ≤ Mdk∥z − w∥ +Mt1 sup

s∈(sk,tk+1]

∥∥f(s, zs, u(s))

− f(s, ws, v(s))
∥∥ (tk+1 − sk)

In fact, for the first inequality, we get

∥∥L0(z, u)(s) − L0(w, v)(s)
∥∥ =

∥∥∥∥∥zt1 − U(t1, 0)G0(0, z(t−1 )) −
∫ t1

0
U(t1, s)f(s, zs, u(s))ds

− wt1 + U(t1, 0)G0(0, w(t−1 )) +
∫ t1

0
U(t1, s)f(s, ws, v(s))ds

∥∥∥∥∥
≤
∥∥U(t1, 0)

∥∥ ∥∥∥−h(zπ1 , . . . , zπq)(0) + h(wπ1 , . . . , wπq)(0)
∥∥∥
Rn

+
∫ t1

0

∥∥U(t1, s)
∥∥ ∥∥f(s, zs, u(s)) − f(s, ws, v(s)

∥∥ ds
≤ M

∥∥∥h(zπ1 , . . . , zπq) − h(wπ1 , . . . , wπq)
∥∥∥
H

+M
∫ t1

0
sup

s∈(0,t1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥ ds

≤ Mdq ∥z − w∥Hq +Mt1 sup
s∈(0,t1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s))
∥∥

≤ Mdqq ∥z − w∥H +Mt1 sup
s∈(0,t1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥

≤ Mdqq ∥z − w∥ +Mt1 sup
s∈(0,t1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s))
∥∥ ,

and for the last one, we have that
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∥∥Lk(z, u)(s) − Lk(w, v)(s)
∥∥ =

∥∥∥ztk+1 − U(tk+1, sk)Gk(sk, z(t−k ))

−
∫ t

sk

U(tk+1, s)f(s, zs, u(s))ds

− wtk+1 + U(tk+1, sk)Gk(sk, w(t−k ))

+
∫ t

sk

U(tk+1, s)f(s, ws, v(s))ds
∥∥∥∥∥

≤
∥∥U(tk+1, sk)

∥∥∥∥∥Gk(sk, z(t−k )) −Gk(sk, w(t−k ))
∥∥∥

+
∫ t

sk

∥∥U(tk+1, s)
∥∥∥∥f(s, zs, u(s)) − f(s, ws, v(s)

∥∥
≤ Mdk∥z − w∥
+M sup

s∈(sk,tk+1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥ (tk+1 − sk)

Once, we have compute these two bound, consider the bounds on the first step of the exact
controllability proof.

i) In the case of t ∈ (sk, tk+1), we had that

∥∥S1(z, u)(t) − S1(w, v)(t)
∥∥
Rn =

∥∥∥∥∥U(t, sk)Gk(t, z(t−k )) +
∫ t

sk

U(t, s)f(s, zs, u(s))ds

+
∫ t

sk

U(t, s)B(s)(ΥkLk(z, u))(s)ds

− U(t, sk)Gk(t, w(t−k )) −
∫ t

sk

U(t, s)f(s, ws, v(s))ds

−
∫ t

sk

U(t, s)B(s)(ΥkLk(w, v))(s)ds
∥∥∥∥∥

≤
∥∥U(t, sk)

∥∥∥∥∥Gk(t, z(t−k )) −Gk(t, w(t−k ))
∥∥∥

+
∫ t

sk

∥∥U(t, s)
∥∥∥∥f(s, zs, u(s)) − f(s, ws, v(s))

∥∥ ds
+
∫ t

sk

∥∥U(t, s)
∥∥∥∥B(s)

∥∥∥∥ΥkLk(z, u)(s) − ΥkLk(w, u)(s)
∥∥

≤ Mdk∥z − w∥

+M
∫ t

sk

sup
s∈(sk,tk+1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥]ds

+M∥B∥
∫ t

sk

∥∥B∗(s)
∥∥∥∥U∗(tk+1, s)

∥∥∥∥∥W−1
[sk,tk+1]

∥∥∥
×
∥∥Lk(z, u)(s) − Lk(w, u)(s)

∥∥ ds
≤ Mdk∥z − w∥
+M sup

s∈(sk,tk+1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥](tk+1 − sk)

+ M2∥B∥2

δk

∫ t

sk

∥∥Lk(z, u)(s) − Lk(w, u)(s)
∥∥
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≤ Mdk∥z − w∥ + M2∥B∥2

δk

∫ t

sk

[
Mdk∥z − w∥

+ M sup
s∈(sk,tk+1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥](tk+1 − sk)


+M sup

s∈(sk,tk+1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥](tk+1 − sk)

≤ Mdk∥z − w∥ + M2∥B∥2 (tk+1 − sk)
δk

[
Mdk∥z − w∥

+ M sup
s∈(sk,tk+1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥](tk+1 − sk)


+M sup

s∈(sk,tk+1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥](tk+1 − sk)

Finally getting that

∥∥S1(z, u)(t) − S1(w, v)(t)
∥∥
Rn ≤ Mdk∥z − w∥

1 + M2∥B∥2 (tk+1 − sk)
δk


+M sup

s∈(sk,tk+1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥](tk+1 − sk)

×

1 + M2∥B∥2 (tk+1 − sk)
δk


ii) Consider t ∈ Jk, then we had

∥∥S1(z, u)(t) − S1(w, v)(t)
∥∥
Rn ≤

∥∥∥Gk(t, z(t−k )) −Gk(t, w(t−k ))
∥∥∥

≤ dk∥z − w∥

iii) Let t ∈ (−∞, 0], then we get
∥∥S1(z, u)(t) − S1(w, v)(t)

∥∥
Rn ≤

∥∥∥h(yπ1 , . . . , yπq)(t) − h(zπ1 , . . . , zπq)(t)
∥∥∥
Rn

≤
∥∥∥h(yπ1 , . . . , yπq) − h(zπ1 , . . . , zπq)

∥∥∥
H

≤ dq∥z − w∥Hq

≤ dqq∥z − w∥H

≤ dqq∥z − w∥

iv) For t ∈ (0, t1], we got
∥∥S1(z, u)(t) − S1(w, v)(t)

∥∥
Rn =

∥∥∥U(t, 0){φ(0) − h(zπ1 , . . . , zπq)(0)}

+
∫ t

0
U(t, s)f(s, zs, u(s))ds

+
∫ t

0
U(t, s)B(s)(Υ0L0(z, u))(s)ds
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− U(t, 0){φ(0) − h(yπ1 , . . . , yπq)(0)}

−
∫ t

0
U(t, s)f(s, ws, v(s))ds

−
∫ t

0
U(t, s)B(s)(Υ0L0(w, v))(s)ds

∥∥∥∥∥
Rn

≤
∥∥∥U(t, s)[h(yπ1 , . . . , yπq)(0) − h(zπ1 , . . . , zπq)(0)]

+
∫ t

0
U(t, s)B(s)[Υ0L0(z, u)(s) − Υ0L0(w, v)(s)]ds

+
∫ t

0
U(t, s)[f(s, zs, u(s)) − f(s, ws, v(s))]ds

∥∥∥∥∥
Rn

≤
∥∥U(t, s)

∥∥∥∥∥h(yπ1 , . . . , yπq)(0) − h(zπ1 , . . . , zπq)(0)
∥∥∥
Rn

+
∫ t

0

∥∥U(t, s)
∥∥∥∥B(s)

∥∥∥Υ0∥
∥∥L0(z, u) − L0(w, v)

∥∥ ds
+
∫ t

0

∥∥U(t, s)
∥∥∥∥f(s, zs, u(s)) − f(s, ws, v(s))

∥∥ ds
≤ M

∥∥∥h(yπ1 , . . . , yπq) − h(zπ1 , . . . , zπq)
∥∥∥
H

+M∥B∥
∫ t

0

∥∥B∗(s)
∥∥∥∥U∗(t1, s)

∥∥∥∥∥W−1
[0,t1]

∥∥∥ ∥∥L0(z, u)

− L0(w, v)
∥∥ ds+M

∫ t

0

∥∥f(s, zs, u(s)) − f(s, ws, v(s))
∥∥ ds

≤ Mdq∥z − w∥Hq + M2∥B∥2

δ0

∫ t

0

∥∥L0(z, u) − L0(w, v)
∥∥ ds

≤ Mdqq∥z − w∥H + M2∥B∥2

δ0

[
Mdqq∥z − w∥

+ Mt1 sup
s∈(0,t1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥ t1

≤ Mdqq∥z − w∥ + M2∥B∥2

δ0

[
Mdqq∥z − w∥

+ Mt1 sup
s∈(0,t1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥ t1

Which implies that, for t ∈ Ik:

∥∥S1(z, u)(t) − S1(w, v)(t)
∥∥
Rn ≤ Mdqq∥z − w∥

1 + M2∥B∥2 t1
δ


+Mt1 sup

s∈(0,t1]

∥∥f(s, zs, u(s)) − f(s, ws, v(s)
∥∥]

×

1 + M2∥B∥2 t1
δ



Mathematician 50 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

We finally let

Ĉk = Ck[1 + K̂k], D̂k = Dk[1 + D̂], K̂k = (tk+1 − sk)∥B∥2 M2

δk

,

C0 = Mdqq, Ck = Mdk, Dk = M(tk+1 − sk)

and we obtain the results showed in the main proof.
Let’s consider now, the bounds on the step four of the proof of exact controllability. We
will first compute the bounds of each operator, then the bound of ∥S(z,u)∥

∥(z,u)∥ .

i) Consider t ∈ (0, t1], then we have by using E1),E3) and Lemma (2.3) that the bounds
are given by

∥∥L0(z, u)
∥∥ =

∥∥∥∥∥zt1 − U(t1, 0)G0(0, z(t−1 )) −
∫ t1

0
U(t1, s)f(s, zs, u(s))ds

∥∥∥∥∥
≤
∥∥∥zt1

∥∥∥+
∥∥U(t1, 0)

∥∥∥∥∥G0(0, z(t−1 )
∥∥∥+

∫ t1

0

∥∥U(t1, s)
∥∥∥∥f(s, zs, u(s))

∥∥ ds
≤
∥∥∥zt1

∥∥∥+
∥∥∥φ(0) − h(zπ1 , . . . , zπq)(0)

∥∥∥+M{a0∥zt∥α0
H + b0∥u∥β0

Rm + c0}t1
≤
∥∥∥zt1

∥∥∥+M∥φ∥ +Mc∥z∥η
Hq +Mt1{a0∥z∥α0 + b0∥u∥β0

Rm + c0}

≤
∥∥∥zt1

∥∥∥+M∥φ∥ +Mcq∥z∥η
H +Mt1{a0∥z∥α0 + b0∥u∥β0

Rm + c0}

≤
∥∥∥zt1

∥∥∥+M∥φ∥ +Mcq∥z∥η +Mt1{a0∥z∥α0 + b0∥u∥β0
Rm + c0}

which implies that∥∥S2(z, u)(t)
∥∥ =

∥∥Υ0L0(z, u)(t)
∥∥

≤
∥∥∥B∗(t)U(tk+1, t)(W[0,t1])−1

∥∥∥∥∥L0(z, u)(t)
∥∥

≤ ∥B∥M
δ0

[∥∥∥zt1
∥∥∥+M∥φ∥ +Mcq∥z∥η +Mt1{a0∥z∥α0 + b0∥u∥β0

Rm + c0}
]

≤
M∥B∥

∥∥∥zt1
∥∥∥

δ0
+ M2∥B∥∥φ∥

δ0
+ M2∥B∥ cq∥z∥η

δ0

+ M2∥B∥ t1
δ0

{a0∥z∥α0 + b0∥u∥β0
Rm + c0}

and that,

∥∥S1(z, u)(t)
∥∥ =

∥∥∥∥∥U(t, 0){φ(0) − h(zπ1 , . . . , zπq)(0)} +
∫ t

0
U(t, s)f(s, zs, u(s))ds

+
∫ t

0
U(t, s)B(s)(Υ0L0(z, u))(s)ds

∥∥∥∥∥
≤
∥∥U(t, 0)

∥∥ ∥∥φ(0)
∥∥+

∥∥U(t, 0)
∥∥ ∥∥∥h(zπ1 , . . . , zπq)(0)

∥∥∥
+
∫ t

0

∥∥U(t, s)
∥∥ ∥∥f(s, zs, u(s))

∥∥ ds
+
∫ t

0

∥∥U(t, s)
∥∥ ∥∥B(s)

∥∥ ∥∥(Υ0L0(z, u))(s)
∥∥ ds
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≤ M ∥φ∥ +Mc ∥z∥η
Hq + t1M{a0 ∥z∥α0

H + b0 ∥u∥β0
Rm + c0}

+M ∥B∥
∫ t

0

∥∥B∗(s)
∥∥ ∥∥U∗(t1, s)

∥∥ ∥∥∥(W[0,t1])−1
∥∥∥ ∥∥L0(z, u)(t)

∥∥
≤ M ∥φ∥ +Mcq ∥z∥η

H + t1M{a0 ∥z∥α0 + b0 ∥u∥β0
Rm + c0}

+ M2 ∥B∥2

δ0

∫ t

0

[∥∥∥zt1
∥∥∥+M ∥φ∥ +Mcq ∥z∥η

+ Mt1{a0 ∥z∥α0 + b0 ∥u∥β0
Rm + c0}

]
≤ M ∥φ∥ +Mcq ∥z∥η + t1M{a0 ∥z∥α0 + b0 ∥u∥β0

Rm + c0}

+ M2 ∥B∥2 t1
δ0

[∥∥∥zt1
∥∥∥+M ∥φ∥ +Mcq ∥z∥η +Mt1{a0 ∥z|α0

+ b0 ∥u∥β0
Rm + c0}

]
≤ M ∥φ∥

1 + M2 ∥B∥2 t1
δ0

+Mcq ∥z∥η

1 + M2 ∥B∥2 t1
δ0


+
∥∥∥zt1

∥∥∥
M2 ∥B∥2 t1

δ0

+ t1M{a0 ∥z∥α0 + b0 ∥u∥β0
Rm + c0}

×

1 + M2 ∥B∥2 t1
δ0


Therefore,∥∥S(z, u)

∥∥∥∥(z, u)
∥∥ =

∥∥S1(z, u)
∥∥∥∥(z, u)
∥∥ +

∥∥S2(z, u)
∥∥∥∥(z, u)
∥∥

≤

∥∥∥zt1
∥∥∥∥∥(z, u)
∥∥ ·

M2∥B∥2 t1
δ0

+ M∥B∥
δ0

+ M∥φ∥∥∥(z, u)
∥∥ ·

1 + M2∥B∥2 t1
δ0

+ M∥B∥
δ0


+ Mcq∥z∥η∥∥(z, u)

∥∥ ·

1 + M2∥B∥2 t1
δ0

+ M∥B∥
δ0


+ Mt1{a0∥z∥α0 + b0∥u∥β0

Rm + c0}∥∥(z, u)
∥∥ ·

1 + M2∥B∥2 t1
δ0

+ M∥B∥
δ0


≤

∥∥∥zt1
∥∥∥

∥z∥ +∥u∥
·

M2∥B∥2 t1
δ0

+ M∥B∥
δ0

+ M∥φ∥
∥z∥ +∥u∥

·

1 + M2∥B∥2 t1
δ0

+ M∥B∥
δ0

]
+ Mcq∥z∥η

∥z∥ +∥u∥
·

1 + M2∥B∥2 t1
δ0

+ M∥B∥
δ0


+ Mt1{a0∥z∥α0 + b0∥u∥β0

Rm + c0}
∥z∥ +∥u∥

·

1 + M2∥B∥2 t1
δ0

+ M∥B∥
δ0


≤

∥∥∥zt1
∥∥∥

∥z∥ +∥u∥
·

M2∥B∥2 t1
δ0

+ M∥B∥
δ0

+ ∥φ∥
∥z∥ +∥u∥

·

M + M3∥B∥2 t1
δ0
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+ M2∥B∥
δ0

]
+ ∥z∥η

∥z∥
·

Mcq + M3cq∥B∥2 t1
δ0

+ M2cq∥B∥
δ0


+
a0∥z∥α0

∥z∥
+ b0∥u∥β0

Rm

∥u∥
+ c0

∥z∥ +∥u∥

 ·

Mt1 + M3∥B∥2 t21
δ0

+ M2t1∥B∥
δ0


≤ H0

∥∥∥zt1
∥∥∥

∥z∥ +∥u∥
+ E0

∥φ∥
∥z∥ +∥u∥

+D0∥z∥η−1

+ F0

[
a0∥z∥α0−1 + b0∥u∥β0−1

Rm + c0

∥z∥ +∥u∥

]

ii) Let t ∈ (sk, tk+1], then we have by using E1), E2) and Lemma (2.3) that the bounds
for this case are the following:

∥∥Lk(z, u)
∥∥ =

∥∥∥∥∥ztk+1 − U(tk+1, sk)Gk(sk, z(t−k )) −
∫ tk+1

sk

U(tk+1, s)f(s, zs(u(s)))ds
∥∥∥∥∥

≤
∥∥∥ztk+1

∥∥∥+
∥∥U(tk+1, sk)

∥∥∥∥∥Gk(sk, z(t−k ))
∥∥∥

+
∫ tk+1

sk

∥∥U(tk+1, s)
∥∥∥∥f(s, zs(u(s)))

∥∥ ds
≤
∥∥∥ztk+1

∥∥∥+Mak∥z∥αk

Rn +Mck +M(tk+1 − sk){a0∥z∥α0
H + b0∥u∥β0

Rm + c0}

≤
∥∥∥ztk+1

∥∥∥+Mak∥z∥αk

Rn +Mck +M(tk+1 − sk){a0∥z∥α0 + b0∥u∥β0
Rm + c0}

which helps us to get operator S2:∥∥S2(z, u)(t)
∥∥ =

∥∥ΥkLk(z, u)(t)
∥∥

≤ ∥B∥M
δk

∥∥Lk(z, u)(t)
∥∥

≤ ∥B∥M
δk

[∥∥∥ztk+1
∥∥∥+Mak∥z∥αk

Rn +Mck +M(tk+1 − sk){a0∥z∥α0

+ b0∥u∥β0
Rm + c0}

]
and also operator S1, as it is showed below:

∥∥S1(z, u)(t)
∥∥ =

∥∥∥∥∥U(t, sk)Gk(t, z(t−k )) +
∫ t

sk

U(t, s)f(s, zs, u(s))ds

+
∫ t

sk

U(t, s)B(s)(ΥkLk(z, u))(s)ds
∥∥∥∥∥

≤
∥∥U(t, sk)

∥∥∥∥∥Gk(t, z(t−k ))
∥∥∥+

∫ t

sk

∥∥U(t, s)
∥∥∥∥f(s, zs, u(s))

∥∥ ds
+
∫ t

sk

∥∥U(t, s)
∥∥∥∥B(s)

∥∥∥∥(ΥkLk(z, u))(s)
∥∥ ds

≤ M [ak∥z∥αk

Rn + ck] +M(tk+1 − sk){a0∥z∥α0
H + b0∥u∥β0

Rm + c0}

+ M2∥B∥2

δk

(tk+1 − sk)
[
Mck +M(tk+1 − sk){a0∥z∥α0

H + b0∥u∥β0
Rm + c0}
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+
∥∥∥ztk+1

∥∥∥+Mak∥z∥αk

Rn

]

≤ Mak∥z∥αk

Rn

M2∥B∥2 (tk+1 − sk)
δk

+ 1


+Mck

M2∥B∥2 (tk+1 − sk)
δk

+ 1


+M(tk+1 − sk){a0∥z∥α0 + b0∥u∥β0
Rm + c0}

M2∥B∥2 (tk+1 − sk)
δk

+ 1


+
∥∥∥tk+1

∥∥∥
M2∥B∥2 (tk+1 − sk)

δk


Thus, the final bound is given by:∥∥S(z, u)

∥∥∥∥(z, u)
∥∥ =

∥∥S1(z, u)
∥∥∥∥(z, u)
∥∥ +

∥∥S2(z, u)
∥∥∥∥(z, u)
∥∥

≤

∥∥∥ztk+1
∥∥∥∥∥(z, u)
∥∥ ·

M2∥B∥2 (tk+1 − sk)
δk

+ M∥B∥
δk


+ Mak∥z∥αk

Rn∥∥(z, u)
∥∥

M2∥B∥2 (tk+1 − sk)
δk

+ ∥B∥M
δk

+ 1


+ Mck∥∥(z, u)
∥∥
M2∥B∥2 (tk+1 − sk)

δk

+ M∥B∥
δk

+ 1


+ M(tk+1 − sk)∥∥(z, u)
∥∥ {a0∥z∥α0 + b0∥u∥β0

Rm + c0}

M2∥B∥2 (tk+1 − sk)
δk

+ 1

+ M∥B∥
δk

]

≤

∥∥∥ztk+1
∥∥∥

∥z∥ +∥u∥
·

M2∥B∥2 (tk+1 − sk)
δk

+ M∥B∥
δk


+ Mak∥z∥αk

Rn

∥z∥ +∥u∥

M2∥B∥2 (tk+1 − sk)
δk

+ ∥B∥M
δk

+ 1


+ Mck

∥z∥ +∥u∥

M2∥B∥2 (tk+1 − sk)
δk

+ M∥B∥
δk

+ 1


+ M(tk+1 − sk)
∥z∥ +∥u∥

{a0∥z∥α0 + b0∥u∥β0
Rm + c0}

M2∥B∥2 (tk+1 − sk)
δk

+ 1

+ M∥B∥
δk

]

≤ Hk

∥∥∥ztk+1
∥∥∥

∥z∥ +∥u∥
+ ak∥z∥αk

Rn

∥z∥ +∥u∥

M3∥B∥2 (tk+1 − sk)
δk

+ ∥B∥M2

δk

+M
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+ Mck

∥z∥ +∥u∥

M2∥B∥2 (tk+1 − sk)
δk

+ M∥B∥
δk

+ 1


+
 a0∥z∥α0

∥z∥ +∥u∥
+ b0∥u∥β0

Rm

∥z∥ +∥u∥
+ ∥c0∥

∥z∥ +∥u∥


M3∥B∥2 (tk+1 − sk)2

δk

+M(tk+1 − sk) + M2(tk+1 − sk)∥B∥
δk

]

≤ Hk

∥∥∥ztk+1
∥∥∥

∥z∥ +∥u∥
+ Ek

[
ak∥z∥αk−1

Rn + ck

∥z∥ +∥u∥

]

+ Fk

{
a0∥z∥α0−1 + b0∥u∥β0−1

Rm + c0

∥z∥ +∥u∥

}

iii) Next, considering hypothesis E2) for t ∈ (tk, sk], we have
∥∥S1(z, u)(t)

∥∥ =
∥∥∥Gk(t, z(t−k ))

∥∥∥
≤ ak∥z∥αk + ck

which implies that ∥∥S(z, u)
∥∥∥∥(z, u)
∥∥ =

∥∥S1(z, u)
∥∥∥∥(z, u)
∥∥ +

∥∥S2(z, u)
∥∥∥∥(z, u)
∥∥

≤ ak∥z∥αk∥∥(z, u)
∥∥ + ck∥∥(z, u)

∥∥
≤ ak∥z∥αk

∥z∥ +∥u∥
+ ck

∥z∥ +∥u∥
≤ ak∥z∥α−1 + ck

∥z∥ +∥u∥

where, Hk, Ek, D0 and Fk were defined in the last section.
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