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Resumen

Este trabajo desarrolla un marco para el análisis de modelos de espacio de estados combi-
nados con los filtros de Kalman, Kalman suavizado, Gibbs y part́ıculas para la estimación
de estados y parámetros desconocidos, determinando la precisión de los algoritmos, con
el propósito de analizar algunas series de tiempo de la macroeconomı́a del Ecuador. Esta
metodoloǵıa juega un papel importante en el área de la economı́a y las finanzas ade-
mas tiene muchas ventajas porque permite describir cómo las variables macroeconómicas
observadas se pueden relacionar con variables de estado potencialmente no observadas,
determinando la evolución en tiempo real, estimando tendencias no observadas, cambios
de estructuras y pronósticos en tiempos futuros. Para lograr los objetivos se proponen
tres modelos: el primero se utiliza para estimar el producto interno bruto del Ecuador. El
segundo modelo combina un modelo de espacio de estados con el modelo clásico ARIMA
(p, q, r) para ajustar la tasa del PIB y finalmente se considera un modelo para el análisis
simultáneo de series temporales de estrés relacionado con: ı́ndice de precios al consumidor,
ı́ndice de producción industrial y tasa de interés activa. En todos los casos estudiados,
las estimaciones obtenidas reflejan el comportamiento real de la economı́a ecuatoriana. La
ráız cuadrada del error cuadrático medio se utilizó como medida de bondad de ajuste para
medir la calidad de estimación de los algoritmos, obteniendo pequeños errores.

Palabras Clave: Sistemas dinamicos, Filtro de Kalman , Modelos de espacio
estado, Muestreador de Gibbs, Monte Carlo Samples, Modelos ARIMA and
Producto interno bruto.
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Abstract

This work develops a framework for the analysis of state-space models combined with
Kalman, Kalman smoothed, Gibbs and particle filters for the estimation of unknown states,
and parameters, determining the accuracy of the algorithms, to analyze some time series
of the macroeconomy of Ecuador. This methodology plays an important role in the area
of economics and finance and has many advantages because it allows describing how ob-
served macroeconomic variables can be related to potentially unobserved state variables,
determining the evolution in real time, estimating unobserved trends, changes of structures
and make forecasts in future times. To achieve the objectives, three models are proposed:
the first model is used to estimate Ecuador’s gross domestic product. The second model
combines a state space model with the classic ARIMA (p, q, r) model to adjust the GDP
rate and finally, it is considered a model for the simultaneous stress time series analysis
related to: consumer price index, industrial production index and active interest rate. In
all the cases studied, the estimates obtained reflect the real behavior of the Ecuadorian
economy. The square root of the mean square error was used as a measure of goodness of
fit to measure the quality of estimation of the algorithms, obtaining small errors.

Keywords: Dynamic system, Kalman filter, State space model, Gibbs sampler,
Monte Carlo Samples, ARIMA model and Gross domestic product
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Chapter 1

Introduction

In this work, a methodology based on filtering algorithms is applied to estimate states and
parameters in time series models that are used to model dynamic phenomena that evolve
over time. It is interesting to study the behavior of stochastic processes with partially ob-
served dynamics measured with errors; It is particularly interesting to study financial time
series of macroeconomic variables such as gross domestic product, unemployment rate,
prices of shares in the stock market, volatility of interest rates in the short and medium
term, commodity prices of primary products, and the neutral density of active risk among
other financial series.

In particular, this work presents an adjustment of a state space model to estimate
macroeconomic indicators of Ecuador. To achieve the objectives, three models are pro-
posed: the first model analyzes the gross domestic product of Ecuador corresponding to
the period 2000-2020. The second model is a combination of a state space model with
the ARIMA (p, q, r) models which will be used to adjust the GDP rate and finally it is
considered a model for the simultaneous analysis of several time series related to: consumer
price index, industrial production index and active interest rate. Each of these models are
estimated using the Kalman filter and Smoothed Kalman filter.
The rest of the thesis is as follows: in Section 2, the state space models and the Kalman
filter are described; Section 3 specifies the variables, models, and parameters to be used;
In section 4 the results and discussion of the studies carried out are presented; section 5
ends with the conclusions.

1.1 Background
There is an extensive literature on state space models beginning with the works of [1,
2, 3, 4, 5, 6] classical time series models such as those studied in [7], model of Markov
hidden discrete [8, 9, 10, 11]; stochastic volatility model used to model the time variance
of logarithmic returns on assets [12]; and the point change models used to model stock
prices [13]. The methodology allows estimating smoothed states with linear and non-linear
structures by implementing efficient computational algorithms.

Related works to this research highlight: In [14] was implemented the algorithms:

1
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Gibbs, Kalman filter, extended Kalman filter and particles filters, they analyze series of
oil gross domestic product (GDP), and not oil; and the dollar to bolivar exchange rate of
the Venezuelan economy; They also conducted a simulation study, demonstrating that the
algorithms estimate adequately.

In [15] describes a general procedure to make Bayesian inference based on the evalua-
tion of the plausibility of stochastic general equilibrium models through the Markov Chain
Monte Carlo methods, they implemented the Kalman filter to evaluate the likelihood func-
tion and finally apply the Metropolis Hastings algorithm to estimate the parameters of
the posterior distribution. They illustrate the methodology by using the basic stochastic
growth model, considering quarterly data for the Venezuelan economy from the first quar-
ter of (1984) to the third quarter of (2004). The empirical analysis carried out allows us to
conclude that the algorithms used works efficiently and at a low computational cost, the
estimates obtained are consistent, and the estimates of the predictions adequately reflect
the behavior of the product, employment, consumption and investment per capital of the
country. In [16] propose a methodology based on the state-space structure applying filter-
ing techniques such as the auxiliary particle filter to estimate the underlying volatility of
the system.

Additionally, they used a Markov chain Monte Carlo algorithm to estimate the pa-
rameters. The methodology was illustrated using a series of returns from simulated data,
and the series of returns corresponding to the Standard and Poor’s 500 price index for the
period 1999-2003. The results show that the proposed methodology allows to adequately
explain the dynamics of volatility when there is an asymmetric response to a shock of a
different sign. In [17] a methodology was applied based on state space models inspired
by the Monte Carlo Markov Chain sampling schemes, which simplifies the estimation and
prediction process of the Markov switching model. The general objective of this study was
to simultaneously determine: non-linearity, structural changes, asymmetries and outliers
that are characteristics present in many financial series. The methodology was empiri-
cally illustrated using series that measure the annual growth rate of industrial production
in the MERCOSUR countries. The study concludes that there is no reduction in eco-
nomic volatility, there is no reduction in the depth of economic cycles. At breakpoints,
outliers and non-linearity are observed in the data. It is evident that there are no com-
mon economic cycles for the countries analyzed. In [18], two recursive filtering algorithms
were implemented, the optimized particle filter, and the Viterbi algorithm, which allow
the joint estimation of states and parameters of stochastic volatility models in continuous
time, such as the Cox Ingersoll Ross and Heston model, using daily empirical data from
the time series of the S & P500 stock index returns. Furthermore, these parameters prove
that the Viterbi algorithm has less execution time than the optimized particle filter. In [19]
an estimation methodology based on the Monte Carlo sequential algorithm is proposed,
which jointly estimates the states and parameters, the relationship between the prices of
futures contracts and the spot prices of primary products, they determined the evolution
of prices and volatility of the historical data of the primary market (Gold and Soybeans),
using three algorithms: the sampling algorithm of sequential importance with resampling
(SISR), the Storvik algorithm, and the particle learning and smoothing algorithm (PLS).
The results conclude that the prices of products for future delivery at different expiration
dates with the spot price are highly correlated.

Mathematician 2 Graduation Project
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1.2 Problem statement
Filtering algorithms are applied to estimate states and parameters in time series models
that are used to model dynamic phenomena that evolve over time. It is interesting to study
the behavior of stochastic processes with partially observed dynamics measured with errors.
Due to the number of variables that make up the time series such as GDP, the data contain
errors that are a problem in their treatment. Elimination of errors allows us to extract
components of economic interest within each time series. Models for filtering data have
played a role in the economy, the Bayesian filters being notable for their precision. In the
present work, we propose the implementation and construction of state space models that
allow us to filter time series.

1.3 Objectives

1.3.1 General Objective
The general objective of this work is to implement Bayesian state space models that allow
us to estimate unknown parameters in order to filter the time series of the macroeconomy
of Ecuador.

1.3.2 Specific Objectives
• Bibliography review about time series, ARIMA models, space state models, Kalman

filter, Gibbs sampling and particle filter.

• Propose a state space model that allows us to filter the GDP of Ecuador through the
Kalman filter and Kalman smoothed.

• Implement an ARIMA model that allows us to filter the GDP rate of Ecuador through
the Kalman filter and Kalman smoothed.

• Use a Gibbs sampler and a particle filter algorithm that allows us to filter the macroe-
conomic series.

• Compare the different proposed filters using the mean square error metric.

1.3.3 Contribution
This thesis consists of overview of an article presented for the Conference on Information
and Communication Technologies of Ecuador.

• Bautista H., Saba I., Amaro I.: Estimation of the State Space Models: An Applica-
tion in Macroeconomic Series of Ecuador. In Rodriguez G., Fonseca C., Salgado J.,
Peréz-Gosendo P., Orellana M. (eds)Information and Communication Technologies
of Ecuador. TICEC2021. Communication in Computer and Information Science.
Springer, Cham.

Mathematician 3 Graduation Project



Chapter 2

Theoretical Framework

In this section, we present the main concepts and results that will be used to solve our
problem.

2.1 Preliminaries

Definition 1. The expected value of a random variable X is the average or average value
of X, and is given by

µx = E(X) =
∑
x

xP (X = x), if X is discrete,

µx = E(X) =
∫ ∞
−∞

xf(x), if X is continuous.
(2.1)

In general, let a function h(x), the expected value of h(x) is given by:

E(h(x))) =
∑
x

h(x)P (X = x), if X is discrete,

E(h(x)) =
∫ ∞
−∞

h(x)f(x), if X is continuous.
(2.2)

Theorem 1. Let X and Y be to random variables having finite expectation

• If c is a constan and P(X=c)=1, them E(cX)=cE(X).

• X + Y having finite expectation them E(X+Y)= E(X)+E(Y).

Theorem 2. Let X and Y two independent random variable that having finite expectation,
them XY have finite expectation and

E(XY ) = E(X)E(Y ). (2.3)

Proof. Let X and Y independent randon variables, by definition we have that

f(x, y) = fX(X)fY (Y ) (2.4)

4
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therefore∑
x

∑
y

|xy|f(x, y) =
∑
x

∑
y

|xy|fX(x)fY (y) =
∑
x

|x|fX(x)
∑
y

|y|fY (y) <∞. (2.5)

Definition 2. If X is a random variable with E(X) = µx, the variance of a random
variable X is defined as

σ2
x = V ar(X) = E(X − µx)2 = E(X2)− E(X)2. (2.6)

Definition 3. Let X and Y random vectors the covariance is defined

Cov(X, Y ) = E(X − E(X)(Y − E(Y ))) = E(XY )− E(X)E(Y ). (2.7)

Note that if X and Y are independent them Cov(X,Y)=0.
Some other important properties are illustrated below.
Let X and Y random variables that have moments of finite second order them

• V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y ).

• If c is a constant them V ar(c) = 0.

• If c is a constant and X is a random variable, them V ar(X + c) = V ar(X).

• V ar(aX + b) = a2V ar(X), a and b are constants.

Remark 1. In our study, we use Σxy to denote the valiance of two random variables.

Definition 4. We say that X is a normal random variable with parameters µ and σ2 or
X ∼ N(µ, σ2), if the density of X is given by

f(x) = 1√
2πσ

e−(x−µ)2/2σ2
. (2.8)

If X = (x1, ..., xn) is a random vector, it is called normal random vector with parameters
k-vector µ and k × k matrix Σ, if exist µ ∈ Rn, H ∈ Rn×k such that X = HZ + µ for
Zn ∼ N(0, 1) i.i.d. where Z ∈ Rk and Σ = HHT . The join distribution function is

fx(x1, ..., x2) =
exp{−1

2(x− µ)TΣ−1(x− µ)}√
(2π)k|Σ|

. (2.9)

Definition 5. We say that X has Generalized inverse Gaussian (GIG) distribution [20]
or x ∼ GIG(ψ, χ, φ) if its probability density function is given by

px = (x|ψ, χ, φ) =
(ψ
χ

φ/2)xφ−1

2Kφ(
√
ψχ)exp{−

1
2(χx−1 + ψx)} x > 0, ψ > 0, χ > 0, (2.10)

where Kφ(ζ) = (1/2)
∫∞
−∞ cosh(φζ) exp[−z cosh(ζ)]dζ is the Bessel function of third kind.

Mathematician 5 Graduation Project
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2.2 Bayesian inference
The results of Bayesian inference arise from the need to make probability about x given y
[21], these are derived from join density function (2.11) and Bayes’ rule (2.12)

p(x, y) = p(x)p(y|x), (2.11)

p(x|y) = p(x, y)
p(y) . (2.12)

If we join equation (2.11) and (2.12), we have the posterior density:

p(x|y) = p(x, y)
p(y) = p(x)p(y|x)

p(y) , (2.13)

where p(y) = ∑
x p(x)p(y|x) (discrete case) and p(y) =

∫
p(x)p(y|θ)dx in continuous case.

If we fixed y, we can omits p(y) since it don’t depends of parameter x to obtain

p(x|y) ∝ p(x)p(y|x), (2.14)

where p(x) is know as prior distribution of parameter x and p(y|x) as the likelihood
function.

Remark 2. We do not have information on the parameters x. The correct selection of a
prior distribution will be of vital importance in the results of the posterior distribution, we
can guide with the likelihood distribution. To deepen the subject we recommended [22].

Definition 6. The likelihood function of x is a mapping that associates the value p(y|x)
to each x. A common notacion is l(x; y) and it is defined as follows

l(·;x) :Ω→ R+,

x→ l(x; y) = p(y|x).
(2.15)

Suppose that we have two observation y1, y2, where y2 is not depending of y1, the
posterior function of x given y1 is

p(x|y1) = l1(x; y1)p(x), (2.16)

Now, let y2, we have that the posterior distribution of x given y1, y2 is

p(x|y1, y2) = p(y2|x, y1)p(x|y1)
p(y2|y1)

∝ p(y2|x)p(x|y1)
∝ l2(x; y2)l1(x; y1)p(x).

(2.17)

Note that, if we have y1, y2, ..., yn independent observation and proceeding in the same way
as (2.17), we have that the posterior function is

p(x|yn, ..., y1) ∝ l(x; yn)p(x|yn−1, ..., y1)

∝
n∏
i=1

li(x; yi)p(x)
(2.18)

Mathematician 6 Graduation Project
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Remark 3. The result of (2.18) is due to observations are independent, in (2.38) we show
what happens if observations are not independent.

Example 1. Suppose that we have an independent and identically normal distributed yt =
{y1, ..., yt} with unknown mean µ, know σ2 and distribution f(y|µ, σ2). In order to make
inference about parameter x = µ assume that the prior distribution on µ is N(0, σ2),
following the approximation in (2.18), the posterior distribution is

π(µ|yt) ∝ π(µ)l(yt;µ, σ)

∝ π(µ)
t∏
i=1

f(µ, σ|xi)

∝ exp{µ2/2σ2}
t∏
i=1

exp{−(yi − µ)2/2σ2}√
2πσ

∝ exp{µ2/2σ2} exp{−[t(µ− ȳ) + s2]/2σ2}σt

∝ exp{−(t+ 1)µ2/2σ2 + 2tµȳ/2σ2}

∝ exp{−(t+ 1)[µ− tȳ/(t+ 1)]2/2σ2},

(2.19)

as result have that the posterior distribution in µ is a normal distribution with mean tȳ/(t+
1) and variance σ2/(t+ 1), which is different to the classical estimator ȳ.

Definition 7. The maximum likelihood estimation (MLE) is the value x that maximize
l(x; y).

2.3 Stochastic Processes
A stochastic process is a collection or family of random variables {Xt, with t ∈ T},
ordered according to the subscript t which in general is usually identified with the time.
If T is a continuous set, for example R+, we say that Xt is a stochastic process of continue
parameter on the other hand, if T is discrete, for example N.e say that Xt is a stochastic
process of discrete parameter, moreover if for each t the random variable Xt is of continuous
type, we will say that the stochastic process is continuous state and if for each t the random
variable Xt is of discrete type, we will say that the stochastic process is a discrete state.

Remark 4. During our study, we are using a stochastic process of the discrete state.

Definition 8. (Marcovian ) [23] A Markov chain is a sequence of dependent random
variables {Xt}t∈N such that

p(Xt|X1, ..., Xt−1) = p(Xt|Xt−1). (2.20)

We can interpret (2.20) in such a way that the current state (Xt) only depends on the
previous state Xt−1.
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2.4 Time series
Time series are stochastic processes which principal idea is build a mathematical model
that provide plausible descriptions for sample data. Time series are a collection of random
variables {xt, t ∈ Z} where x1 denotes the first value in the time period, x2 denote the
second value in the period time. Using the definition of stochastic process we can say that
time series is a stochastic process of discrete state and discrete time.

Example 2. Gross Domestic Product of Ecuador

Gross Domestic Product of Ecuador (GDP) is a sum of all the goods and services pro-
duced within the national territory over a period of time. In figure 2.1 shows the GDP’s
Ecuador of the quarterly period.

Figure 2.1: Gross Domestic Product of Ecuador

2.5 ARIMA models
Autoregressive integrated moving average (ARIMA) models is a complementing of classical
regression which is not enough to explain to explain the behavior of dynamic series. The
introduction of ARIMA models implies the use of correlation generated through lagged
linear relations that help us to make better interpretation of data.

2.5.1 Autoregressive model
The Autoregressive model is a mathematical structure that makes use of previous states
to interpret the present state through a linear combination.

Definition 9. An Autoregressive model of order p, AR(p), is defined as

xt = φ1xt−1 + φ2xt−2 + ...+ φpxt−p + wt, (2.21)
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where φ1, φ2, ..., φp are constants, xt is stationary and wt ∼ N(0, σ2). The mean of
(2.21) is zero. If the mean of (2.21) is not zero, we can replace xt by xt− µ and rewrite as

xt = α + φ1xt−1 + φ2xt−2 + ...+ φpxt−p + wt, (2.22)

where
α = µ(1− φ1 − φ2...− φp).

Proposition 1. The mean of (2.21) is zero.

Proof.

E(xt) = φ1E(xt−1) + E(φ2xt−2) + ...+ E(φpxt−p) + E(wt)
µ = φ1µ+ φ2µ+ ...+ φpµ+ E(wt)

µ = E(wt)
1− φ1 − φ2 − ...− φp

= 0.
(2.23)

Example 3. Random walk is clear example of AR(1)-model and it is defined as

xt = xt−1 + wt, (2.24)

where wt is a withe noise and the initial condition x0 = 0. Clearly the mean of (2.24) is
zero. If we add a constant, δ 6= 0, to system:

xt = δ + xt−1 + wt, (2.25)

we say that (2.25) is a random walk with drift, see A.1.1.

Figure 2.2: Random Walk.

2.5.2 Vector autoregressive model
Vector autoregressive model is similar to AR model, only in this case we have k-variables.
We introduce the use of boldface letters in order to refer to vectors and matrices.
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Definition 10. Vector autoregressive model, VAR(p), of p order is defined

xt = α + Φ1xt−1 + ...+ Φpxt−p + wt, (2.26)

where Φi is a k × k transition matrix, wt is a vector white nose, xt = (xt1, ..., xtk)′ is a
k × 1 vector-value.

Follow the previous definition, we have VAR(1) model as

xt = α + Φxt−1 + wt, (2.27)

where Φ is a k×k transition matrix, wt is a vector white nose, xt = (xt1, ..., xtk)′ is a k×1
vector-value.

2.5.3 Mixed frequency model
In economics, the time series are normally recorded with different time variations. We
have, for example, that the gross domestic product is found on a quarterly basis and the
consumer price index on a monthly basis.

2.6 Monte Carlo Methods
Monte Carlo Methods is a special numerical techniques computing that allow us approxi-
mate integrals and relies in the use of random variables. these approximations are made
by law of large numbers, that is, if x1, ..., xN are distributed from g and independent, them
the empirical average

Ĵ = (h(x1) + ...+ h(xN))
N

(2.28)

converges (almost surely) to the integral

Eg(h(X)) =
∫
h(x)g(x)dx (2.29)

Example 4. Consider that we want to integrate h(x) = x3 exp−x on (0,∞). We can
generate 50000 random samples from uniform distribution U(0, 4000) them following (2.29)
we have that

Eg(h(X)) =
∫
h(x)g(x)dx

=
∫
x3e−x

1
4000dx,

(2.30)

continuing whit the approximation (2.28), we have that∫ ∞
0

x3e−xdx ≈ 4000 ∗ Eg(h(X)) ≈ 4000 ∗
∑5000
i=1 x

3
i e
−xi

50000 ; xi ∼ N(0, 4000), (2.31)

you can see the implementation of this example in A.1.2.

The computational cost is large and less accurate compared to other methods such as
Importance sampling.
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2.6.1 Importance sampling
Importance sampling continue using random variable to compute the approximation, but
in these case another join distribution function, q(·), is added

Eg(h(X)) =
∫
h(x)g(x)dx =

∫ h(x)g(x)
q(x) q(x)dx = Eq(

h(x)g(x)
q(x) ). (2.32)

Using the law of large numbers, we have that

Êq(
h(x)g(x)
q(x) ) = 1

N

N∑
i=1

h(Xi)g(Xi)
q(Xi)

, Xi ∼ q. (2.33)

The adjustment factor wi(Xi) = gi(Xi)/qi(Xi) is called the likelihood ratio.

2.7 State Space Models
State space models (SSM) are mathematical structures customized to the study of stochas-
tic processes, especially when data are contaminated with error. Some uses are the local-
ization of an airplane, cellphone signal, economic indicators such as the gross domestic
product (GDP).
A generalized SSM is in the form:

State equation : xt = h(xt−1, εt) or xt ∼ qt(· | xt−1). (2.34)

Observation equation : yt = g(xt, et) or yt ∼ ft(· | xt), (2.35)
where yt is the observation, xt is the (unobservable) state variable. Let yt = (y1, . . . , yt)′
denote the entire past sequence of the observations at time t and xj = (x1, . . . , xj)′ denotes
the entire history of the state before and at time j. Let’s recall that yt can be multi-
dimensional, moreover xt evolves through the conditional distribution qt(·) and underlying
states evolve with the function ht(·). Conditional distribution q(·) and state innovation εt
(or equivalent the function ht(·) are assumed be known.

Definition 11. Marcovian SSM assumes that ht(xt−1, εt) only depends on xt−1 and
gt(xt, et) only depends on xt, that is,

• State equation:
xt = h(xt−1, εt) or xt ∼ qt(· | xt−1). (2.36)

• Observation equation:

yt = g(xt, et) or yt ∼ ft(· | xt). (2.37)

The following diagram gives a graphic notion of the system.
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Figure 2.3: Markovian SSM.

We can see that state variable, xt, gives information to obtain yt through g(·). xt+1 is
obtained using xt and provides information to obtain yt+1. Using statistical inference that
at any time t the states x1, . . . , xt can be found given the observation y1, . . . , yt, up to time
t, we can obtain the posteriors distribution

p(x1, ..., xt|yt) ∝ p(x1, ..., xt, y1, ..., yt)

∝
t∏
i=1

p(yi|x1, ..., xi, y1, ..., yi−1)p(xi|x1, ...xi−1, y1, ..., yi−1)

∝
t∏
i=1

fi(yi|xi)qi(xi|xi−1).

(2.38)

2.7.1 Statistical inference
Principal objective of statistical inference are

• Filtering: Obtain the marginal posterior distribution p(xt|yt) and E[φ(xt|yt)].

• Prediction: Obtain the posterior distribution p(xt+1|y1, ..., yt) and E[φ(xt+1|yt)].

• Smoothing:Found the posterior distributionp(x1, ..., xt−1|y1, ..., yt) and estimate a value
that maximize p(x1, ..., xt|y1, ..., yt).

• Likelihood and parameter estimation.

Let θ be a collection unknown parameter’s in the model. Given all observation yT =
{yt, t = 1, ..., T} likelihood function is

L(θ) = p(yT |θ) =
∫
p(y1, ..., yT , x1, ..., xT |θ)dx1...dxT (2.39)

Another formulation is
L(θ) = p(yT |θ) =

T∏
t=1

p(yt|yt−1, θ) (2.40)

where
p(yt|yt−1, θ) =

∫
p(yt|xtyt−1, θ)p(xt|yt−1, θ)dxt. (2.41)

The Kalman filter needs a specific model to work and all theory developed is supported by
the following model.
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2.7.2 Linear Gaussian state space models
If the function are linear and the noise is Gaussian, we can rewrite (2.36) and (2.37) as

xt = Htxt−1 + Btbt + Wtwt

yt = Gtxt + Ctct + Vtvt,
(2.42)

where Ht, Gt, Bt, Ct, Wt and Vt are matrices, the input series (ct and bt) are known
and wt ∼ N(0, I) and vt ∼ N(0, I). In literature model (2.42) is known as dynamic linear
model see [5].

In order to maximize the understanding of this model, we will introduce the following
example which is a AR(1) with state space.

Example 5. ( 1-Dimensional Gaussian random walk)

xt = xt−1 + wt, wt ∼ N(0,W )

yt = xt + vt, wt ∼ N(0, V )
(2.43)

Using the R code A.1.3, we can plot a random walk with x0 = 2 as initial state, W = 0.25
and V = 1, 25. The is result joint the Kalman filter is presented in Fig. 2.4.

Example 6. Time Series With Observational Noises. It is a representation of the arima
models by the state space models.

If B and C are equal to zero,

H =



φ1 φ2 · · · φp−1 φp

1 0 · · · 0 0
0 1 · · · 0 0
... ... . . . ... 0
0 0 · · · 1 0


,

W′ = V′ = G = (1, 0, ..., 0)

and the state variable is xt = (zt, zt−1, ..., zt−p+1), we have that zt follows an AR(p) where
yt = zt + vt is the noise observation. Replacing everything in (2.42), we have that

zt

zt−1
...

zt−p+1

 =


φ1zt−1 + φ2zt−2 + ...+ φpzt−p

zt−1
...

zt−p+1

 +


wt

0
...
0


and

yt = zt + et where et = wt + vt
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Before to continue is indispensable the use of lemma 1 and lemma 2:

Lemma 1. If X ∼ N(µx,Σx)′ and Y = c+GX+Vv, where v ∼ N(0, I) and is independent
with X, them the join distribution of (X, Y ) isX

Y

 ∼ N


µX
µY

 ,

Σxx Σxy

Σyx Σyy


 (2.44)

where
Σxx = Σx

µy = E[Y ] = E[c+ Gx+ Vv]

= c+ GE[X] = c+ Gµx

Σxy = ΣxG′,

Σyx = GΣx,

Σyy = GΣxG′ + VV′

(2.45)

Proof. The first equation, Σxx = Σx, follows from the definition of variance. Let’s prove
third equation

Σxy = E[(X − µx)(Y − µy)′]

= E[(X − µx)(c+ GX + Vv − c−Gµx)′]

= E[(X − µx)((X − µx)′G′ + v′V ′)]

= ΣxG′ + E[(X − µx)v′V ′)]

= ΣxG′, X and v are independent.

(2.46)

Fourth equation is similar to third. Let’s prove fifth equation

Σyy = E[(Y − µy)(Y − µy)′]

= E[G(X − µx)(X − µx)′G′ + Vvv′V′]

= GE[(X − µx)(X − µx)′]G′ + VE[vv′]V′]

= GΣxG′ + VIV′ = GΣxG′ + VV′

(2.47)

Lemma 2. If X
Y

 ∼ N


µX
µY

 ,

Σxx Σxy

Σyx Σyy


 (2.48)

and we assume that Σ−1
yy exist, them

E(X|Y = y) = µx −ΣxyΣ−1
yy (y − µy)

V ar(X|Y = y) = Σxx −ΣxyΣ−1
yy Σyx

(2.49)
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2.8 Kalman Filter
In statistical inference of Kalman filter, the use of lemma 1 and lemma 2 are essential to
find p(xt|yt), where yt = (y1, ..., yt). The process is done recursively, following the steps
below:
1) Suppose at time t− 1 we have obtained µt−1 and Σt−1,

p(xt−1|yt−1) ∼ N(µt−1,Σt−1) (2.50)

. Before we observe yt, we can predict xt using

xt = Htxt−1 + Btbt + Wtwt (2.51)

moreover, since p(xt|yt−1) and wt are normal, we have that

p(xt|yt−1) ∼ N(µt|t−1,Σt|t−1) (2.52)

where

µt|t−1 = E[Htxt−1 + Btbt + Wtwt|yt−1]
= HtE[xt−1|yt−1] + Btbt

= Htµt−1 + Btbt

(2.53)

Σt|t−1 = V ar[Htxt−1 + Btbt + Wtwt|yt−1]
= V ar[Htxt−1|yt−1] + WtWt

= HtΣt−1H′t + WtW′
t

(2.54)

Now using yt = Gtxt+Ctct+Vtvt, (2.53 ) and (2.54), lemma 1 provides p(xt, yt|y1, ..., yt−1).
Finally, from lemma 2, we get p(xt|y1, ...yt−1, yt).

Using the previous information, we can expose the Kalman filter algorithm

Algorithm 1 Kalman filter
µt|t−1 = Htµt−1 + Btbt

Σt|t−1 = HtΣt−1H′t + WtW′
t

µt = µt|t−1 + Kt(yt −Ctct −Gtµt|t−1)
Σt = Σt|t−1 −KtGtΣt|t−1,

where
Kt = Σt|t−1G′t[GtΣt|t−1G′t + V′tVt]−1

In the literature, the matrix Kt is called the Kalman gain matrix.

Continuing with the example of 5, the observations of the Gaussian random walk were
filtered and presented below, the code used is detailed in A.1.3.
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Figure 2.4: Gaussian random walk
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2.9 Smoothing
Kalman Smoothing aims to find p(x1, ..., xT |yT ) given the entire observed sequence yT =
(y1, ..., yT ) and recursively obtains µt|T and Σt|T in a forward and backward two-pass algo-
rithm.

E(xt|yT ) = E(E(xt|xt+1,yT ))
= E(E(xt|xt+1,yt)|yT ),

V ar(xt|yT ) = E[V ar(xt|xt+1,yT )|yT ] + V ar[E(xt + yT )|yT ]
= E[V ar(xt|xt+1,yt)|yT ] + V ar[E(xt + yt)|yT ],

(2.55)

to obtain E(xt|xt+1,yt), we use[
xt|yt
xt+1|yt

]
∼ N

[
µt|t
µt+1|t

]
,

[
Σt|t Σt|tH′t+1

Ht+1Σt|t Σt+1|t

] , (2.56)

and Lemma 2 provides

E(xt|xt+1,yt) = µt|t + Jt(xt+1 − µt+1|t),
V ar(xt|xt+1,yt) = Σt|t −Σt|tH′t+1[Σt+1|t]−1Ht+1Σt

= Σt|t − JtΣt+1|tJ′t,
(2.57)

where Jt = ΣtHt+1[Σt+1|t]−1. Hence

E[E(xt|xt+1,yt)] = E[µt|t + Jt(xt+1 − µt+1|t)]
= µt|t + Jt(E(xt+1|yT − µt+1|t))
= µt|t + J(µt+1|T − µt+1|t)

(2.58)

and

V ar[E(xt|xt+1,yt)|yT ] = V ar[µt|t + Jt(xt+1)|µt+1|yT ]
= Jt[V (xt+1|yT )]J′t
= JtΣt+1|TJ′t,

(2.59)

moreover

E[V ar(xt|xt+1,yt)|yT ] = E[Σt|t − JΣt+1|tJ′t|yt]
= Σt|t − JtΣt+1|tJ′t.

(2.60)

Finally, putting everything together, we have Algorithm 5.

Prediction and Missing Data

Prediction is to get p(µt+d|y1, ..., yt), we can do it of recursive way

µt+d|t = E(xt+d|yt)
=E[E(xt+d|xt+d−1,yt)|yt]
=Ht+dµt+d−1|d + Bt+dbt+d,

(2.61)
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and
Σt+d|t = V ar(xt+d|yt)

= V ar[E(xt+d|xt+d−1,yt)|yt]
+ E[V ar(xt+d|xt+d−1,yt)|yt]
= H′t+dΣt+d−1Ht+d + W′

t+dWt+d.

(2.62)

For missing data, yt, just do a substitution µt|t = µt|t−1 and Σt|t = Σt|t−1.

Algorithm 2 Kalman smoothing
For t = T − 1, T − 2, ..., 1

µt|T = µt + Jt(µt+1|T − µt+1|t)
Σt|T = Σt + Jt(Σt+1|T −Σt+1|t)J′t

Where
Jt = ΣtHt+1[Σt+1|+t]−1.

A second method for estimating state space models is using the Gibbs sampler technique.

2.10 Gibbs sample
Suppose that we have a distribution function π(x) = p(x1, ..., xp), Gibbs sampler is the
ability to generate a sequence of observation from marginal distribution π(x1) and the
partial conditional distribution p(xi|x1, ..., xi−1). The algorithm is presented below

Algorithm 3 Gibbs Sampler

Start with an initial value x(1) = (x(1)
1 , ..., x

(1)
t )

At iteration j + 1
sample x(j+1)

1 ∼ π(x1|x(j)
2 , ..., x

(j)
t )

sample x(j+1)
2 ∼ π(x2|x(j+1)

1 , x
(j)
3 , ..., x

(j)
t )

...
sample x(j+1)

t ∼ π(xt|x(j+1)
1 , x

(j+1)
2 , ..., x

(j+1)
t−1 ).

To apply the Gibbs sampler, it is essential to define the likelihood of the model, and
the prior distributions of the parameters. We can rewrite (2.42) and add two variable, ψ
and ω, to obtain the model in (2.63).

xt = Htxt−1 + wt,

yt = Gtxt + vt,
(2.63)

where wt ∼ N(0, ψtΨ) and vt ∼ N(0, ωtΩ). The inference is made in the posterior distri-
bution that is computed as

p(Ψ,Ω|xt,yt, ψt, ωt) ∝ π(xt,yt|Ψ,Ω, ψ, ω)p(Ψ,Ω, ψ, ω) (2.64)
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Using the probability chain ruler as (2.38), we have that the likelihood function is

π(xt,yt|Ψ,Ω, ψ, ω) ∝ q(x0|µ0,Ψ)
n∏
t=1

q(xt|xt−1,Ψ)
n∏
t=1

f(yt|xt,Ω) (2.65)

where

q(xt|xt−1,Ψ) =
∫
p(xt|xt−1, ψt,Ψ)p1(ψt)dψt t = 1, ..., n

and

f(yt|xt,Ω) =
∫
p(yt|xt, ω)p2(wt)dwt, t = 1, ..., n.

Since ut and vt are normal, we have that (xt|xt−1, ψt,Ψ) ∼ N(Htxt−1, ψtΨ) and (yt|xt, ωt,Ω) ∼
N(Gtxt, ωtΩ) for t = 1, ..., n therefore the likelihood of (2.65) is

π(xt,yt|Ψ,Ω, ψ, ω) ∝ exp{− 1
2Ψ0

(x0−µ0)2− 1
2Ψ

n∑
t=1

1
ψt

(xt−Htxt−1)2− 1
2Ω

n∑
t=1

1
ωt

(yt−Gtxt)2}.

(2.66)
Let’s suppose that the prior distributions, for the parameters in (2.66), are given by Ψ =
σ2 ∼ Ig(a0, b0) and Ω = τ 2 ∼ Ig(c0, d0), where Ig denotes the Inverse Gamma distribution
and that σ2 and τ 2 are independent, that is, π(σ2, τ 2) = π(σ2)π(τ 2), considering that the
hyperparameters ψ and ω are known. Them the joint priori distribution of the parameters
is given by

π(σ2, τ 2) ∝ (σ2)−(a0+1)(τ 2)−(c0+1)exp[−( b0

σ2 + d0

τ 2 )]. (2.67)

Once the likelihood is defined in (2.66) and the prior in (2.67), we proceed to calculate the
posterior distribution

π(σ2, τ 2|xt,yt, ψt, ωt) ∝ π(xt,yt|σ2, τ 2, ψ, ω)π(σ2, τ 2, ψ, ω)

∝ (σ)−n
2 (τ 2)−n

2 exp[− 1
2σ2

n∑
t=1

1
ψt

(xt −Htxt−1)2]

× exp{− 1
2σ2

0
(x0 − µ0)2 − 1

2τ 2

n∑
t=1

1
ωt

(yt −Gtxt)2]

× (σ2)−(a0+1)(τ 2)−(c0+1)exp[−( b0

σ2 + d0

τ 2 )]}.

(2.68)

The posterior distribution has no known distribution to solve this we proceed to obtain
the complete conditional distributions using the Gibbs sampler. The process is iterative
using the equation (2.68), we can obtain the complete conditional posterior distribution
using the parameters of [24], is that

π(xt|xj 6=t, λt, ωt,Ψ,Ω,yt) ∼ N(at, Bt) = N(Bt, bt, Bt) (2.69)

where at, bt and Bt are defined in [24]. The complete conditional posterior distribution a

Mathematician 19 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

for σ2 is given by

π(σ2|ψ,xt,yt) ∝ (σ2)−(a0
n
2 +1)

× exp{− 1
σ2 [b0 + 1

2(x0 − µ0)2 + 1
2

n∑
t=1

(xt −Htxt−1)2

ψt
]}

∼ Ig(a0 + n

2 , b0 + 1
2(x0 − µ0)2 + 1

2

n∑
t=1

xt −Htxt−1)2

ψt

(2.70)

Similarly, the complete posterior conditional distribution for τ 2 is given by

π(τ 2|ω,xt,yt) ∝ (τ 2)−c0+ n
2 +1exp{− 1

τ 2 [d0 + 1
2

n∑
t=1

(yt −Gtxt)2

ωt
]}

∼ Ig[c0 + n

2 , d0 + 1
2

n∑
t=1

(yt −Gtxt)
ωt

]
(2.71)

Suppose that ψ and ω are aleatory variables distributed following an exponential model
ψt ∼ exp(θ) (we can consider θ = 2 to identify the complete conditional distribution as
known distribution) ; them, if it is known a prior that (xt|xt−1, ψt, σ

2) ∼ N(Htxt−1, ψtσ
2),

them the complete conditional posterior for ψt is given by

π(ψt|σ2,xt,yt) ∝ ψt−
1
2exp{−

1
2[ψt + (xt −Htxt−1)2

ψtσ2 ]}. (2.72)

At same way, we can assume that ωt ∼ exp(θ = 2), and as (yt|xt, ωt, τ 2) ∼ N(Gtxt, ωtτ
2),

we have that the conditional posterior for ωt is

π(ωt|τ 2,xt,yt) ∝ ω
− 1

2
t exp{−1

2(wt + (yt −Gtxt)2

ωtτ 2 )} (2.73)

with

π(ψt|σ2,xt,yt) ∼ GIG(1/2, 1, (xt −Htxt−1/σ
2)) (2.74)

π(ωt|τ 2,xt,yt) ∼ GIG(1/2, 1, (xt −Gtxt/τ
2)). (2.75)

Finally, we present the last filter

2.11 Particle samples
A different way of estimating the unknown states in the general model given in (2.36), is
to use the Monte Carlo method by Sequential Sampling known as particle filter [25]. To
develop the particle filter algorithm in detail, consider {x(i)

t , w
∗(i)
t }Ni=1 be a random sam-

ple characterizes by the probability posteriori density function π(xt|yt), where {x(i)
t , i =

1, ..., N} is a set of points obtained by the weight w∗(i)t . Moreover, the weight are nor-
malized such that ∑N

i=1 w
∗(i)
t = 1. Our goal is that at time t, we want to obtain a set of

samples {x(1)
t , ..., x

(N)
t } following the distribution π(xt|yt), it distribution at time t can be

approximated by an empirical distribution formed by the points of mass or particles
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πN(xt|yt) ≈
N∑
i=1

w
∗(i)
t δ(xt − x(i)

t ) (2.76)

where δ(.) is the Dirac function, using the approximation of posteriori distribution (2.76),
we can estimate the expected values of some function gn(xn) associate to the filtered
distribution π(xt|yy), that is

E[gn(xt)] =
∫
gn(xt)π(xt|yt)dxt. (2.77)

The weights w∗(i)t are obtained by the importance sampling principle (2.33).
Suppose that π(x) ∝ γ(x) is a probability density from which it is difficult to sample,

but γ(x) can be evaluated and consequently π(x) can also be evaluated. Them we proceed
as follows: let x(i) ∼ q(x), i = 1, ..., N be a sample generated from a proposed distribution
q(·), called the importance density. Them a good approximation of the density π(·) is given
by

π(x) ≈
N∑
i=1

w∗(i)δ(x− x(i)),

where
w∗(i) ∝ γ(x(i))

q(x(i)) (2.78)

is the normalized weight of the i-th particle. If the samples {x(i)
t , i = 1, ..., N} are chosen

to use a density of importance q(xt|yt) them the weights used to approximate the equation
on (2.76) are obtained using equation (19), that is

w
∗(i)
t ∝ π(x(i)

t |yt)
q(x(i)

t |yt)
. (2.79)

If the importance density can be factored such that

q(xt|yt) = q(xt|xt−1,yt)q(xt−1|yt−1) (2.80)

them we can get the samples x(i)
t starting from q(xt|yt) increasing each of the samples

that already exist x(i)
t−1 obtained from q(x(i)

t−1|yt−1) generating the new state x
(i)
t from

q(xt|xt−1,yt). To get the updated weights, the filtered distribution π(xt|yt) is expressed in
terms of π(xt−1|yt−1), π(yt|xt) and π(xt|xt−1), is that

π(xt|yt) ∝ π(yt|xt)π(xt|xt−1)π(xt−1|yt−1). (2.81)

For the justification of equation (2.81) see [24]. On the other hand, substituting equation
(2.80) and (2.81) in equation (2.79), we find the equation for the weights updated

w
∗(i)
t ∝ π(yt|x(i)

t )π(x(i)|x(i)
t−1)π(x(i)

t−1|yt−1)
q(x(i)

t |x
(i)
t−1,yt)q(x

(i)
t−1|yt−1)

= π(yt|x(i)
t )π(x(i)

t |x
(i)
t−1)

q(x(i)
t |x

(i)
t−1,yt)

w
∗(i)
t−1

(2.82)

Mathematician 21 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

where

w
∗(i)
t−1 = π(x(i)

t−1|yt−1)
q(x(i)

t−1|yt−1)
.

In particular, if we consider that q(xt|xt−1,yt) = q(xt|xt−1, yt), them the importance density
depends only on xt−1 and yt. This situation is suitable when it is necessary to obtain the
filtered estimator π(xt|yt) in a real time t. them the modified weights are as follows

w
∗(i)
t = π(yt|x(i)

t )π(x(i)|x(i)
t−1

t )
q(x(i)

t |xt−1)
, (2.83)

and the posterior filtered density πN(xt|yt) can be approximated by

πN(xt|yt) ≈
N∑
i=1

w
∗(i)
t δ(xt − x(i)

t ). (2.84)

Crisan and Doucet (2002) proved that when N → ∞ the equation given in (2.84) ap-
proximates the true posterior distribution π(xt,yt). To implement the algorithm, suppose
we have a set of random samples {x(i)

t , i = 1, ..., N} generated from the known function
π(xt−1|yt−1).
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Chapter 3

Methodology

3.1 Analysis of the Problem
In the first part of this work, a model for the gross domestic product and another model
for the GDP rate are presented. The quarterly time series that involves a total of 84 ob-
servations can be obtained from https://contenido.bce.fin.ec/home1/estadisticas/
bolmensual/IEMensual.jsp and correspond to the period 2000-2020. The 100% of data
was used for filtering models, corresponding to the period 2000-2017. In the forecast
section 4.1.4, this 80% of the data was used as training and the rest as testing [26]
corresponding to the period 2017-2020. In the second part of the work, a model for
multivariate analysis is proposed in which we will include three monthly time series:
consumer price index (CPI), industrial production index (IPI) and active interest rate
(ACI). Due to the limited accessibility of the data, the study covers the period 2016-2019,
the observations corresponding to CPI, IPI and ACI can be downloaded from https:
//www.ecuadorencifras.gob.ec/estadisticas/.

3.1.1 Kalman filter models

Model for gross domestic product of Ecuador

Using the time series corresponding to GDP, the model given in (3.1) was fitted. To
initialize the Kalman filter, prior values (µ1|0 and Σ1|0) were taken as (3.2).

yt = Ggxt + Vgvt, vt ∼ N(0, 1),
xt = Fgxt−1 + Wgwt, wt ∼ N(0, 1),

(3.1)

where

µ1|0 = (2, 2), Gg =
[
1 1
0 1

]
, Fg =

[
1 0

]
Σ1|0 =

[
1 0
0 1

]
, Vg =

[
0.05771

]
, Wg =

[
0.02610 0.000
0.000 0.000249

]
.

(3.2)

For estimation of V and W the maximum likelihood (MLE) estimation method is used,
provides by [27].
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Model for gross domestic product of Ecuador rate

ARIMA models need the data to be stationary but the Kalman filter is an adequate
methodology since allows us to work regardless of the stationarity of the data. After
carrying out the respective study of the autocorrelation function (ACF) and (PACF) partial
autocorrelation, the GDP rate data show stationarity and an AR (1) model with joined
intersection is proposed. To be able to work with the ARIMA models, it is necessary to
perform a representation in the state space models (3.4).

yt − µ = φ(yt−1 − µ) + εt, ε ∼ N(0, σ2). (3.3)
In this model the observation and state equation are:

yt = [1, 1]xt,

xt =
[

µ
yt − µ

]
=

[
1 0
0 φ

] [
µ

yt−1 − µ

]
+

[
0
εt

] (3.4)

The missing parameters were estimated by MLE with the help of [27] and, the results are
shown below

µ1|0 = (2, 2); Gp =
[
1 0
0 0.5254

]
, Fp =

[
1 1

]
,

Σ1|0 =
[
1 0
0 1

]
; Vp =

[
0

]
, Wp =

[
0 0
0 1.35 ∗ 10−8

]
.

(3.5)

Multiple variables

State space models allow us the possibility of working with several time series, together
with the ARIMA(p,q,r) models there is a great variety of analyzes. In model (3.6) presented
below, the matrix V[1,1] and V[2,2] obtained by MLE were altered in order to give the
reader a demonstration on the accuracy of the filtering [28].

yt =

yt1yt2
yt3

 =

1 0 0
0 1 0
0 0 1

xt +

20 0 0
0 0.5 0
0 0 2.93


vt1vt2
vt3

 vti ∼ N(0, 1)

xt =

xt1xt2
xt3

 =

1 0 0
0 1 0
0 0 1

xt−1 +

8.88 0 0
0 7.81 0
0 0 3.31


wt1wt2
wt3

 wt ∼ N(0, 1).

(3.6)

3.1.2 Algorithm Design
For the Kalman filter and Kalman smoothed, the adjustment of the models presented in
(3.6),(3.4) and (3.2) by using the dlm library [27]. The results obtained are exposed in the
results chapter 4 and the codes in annexes.

For the Gibbs filter, the results obtained in the section 2.10 were used, the algorithm
is described below
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Algorithm 4 Gibbs Sampler for GDP ans GDP rate
At iteration j + 1

sample xt ∼ π(xt|xj 6=t, ψ, σ2, τ 2,yt)
sample σ2 ∼ π(σ2|ψ,xt,yt)
sample τ 2 ∼ π(τ 2|ωt,xt,yt)
sample ψt ∼ π(ψ|σ2,xt,yt)
sample ωt ∼ π(ωt|τ 2,xt,yt).

For the Gibbs filter, the results obtained in the section 2.10 were used, the algorithm
is described below

Algorithm 5 Particle filter for GDP and GDP rate
Step one

sample {x(j)
0 } ∼ N(0, 1), j = 1, ..., N where N is the number of particles.

For i=1,...N sample
Sample {x(i)

t } ∼ q(xt|xt−1,yt), j = 1, ..., N where N is the number of particles.
For i=1,...N evaluate the weights

w
∗(i)
t ∝ w

∗(i)
t−1

π(yt|x̃(i)
t )π(x̃(i)

t |x̃
(i)
t−1)

q(x̃t|x̃(i)
t−1,yt)

.

For i=1,...N normalize the weights

w̃
∗(i)
t = w

∗(i)
t∑N

k=1 w
∗(k)
t

,
N∑
i=1

w̃
(i)
t = 1.
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Chapter 4

Results and Discussion

4.1 Results and Discussions
Macroeconomic processes are usually described by mathematical models with linear and
non-linear structures with Gaussian and non-Gaussian distributions that involve multiple
parameters and partially observed dynamic processes measured with errors that must be
estimated from data using classical statistics techniques such as the maximum likelihood
estimator or methods of Bayesian statistics. State space models provide a general structure
to study these stochastic processes. The filtering algorithms in the stage of the State space
models involve the sequential calculation of the subsequent distribution of the unknown
states xt given the observations y1, . . . , yn. For this, powerful computational algorithms
such as Kalman filter and its variants are required when models are linear with Gaussian
distributions, and when models are non-linear with non-Gaussian distribution, it is rec-
ommended to use particle filters and other approach techniques. In this work we focus
on Gaussian linear models and are analyzed series of macroeconomics of Ecuador and the
Kalman, Kalman smoothed, particle and Gibbs filters softened are implemented to esti-
mate and predict unknown states.
The development of technologies and calculation capacity in recent years has made it pos-
sible to have massive sets of economic data and techniques to analyze these economic
indices. Finance ministries and central banks need easy-to-interpret macroeconomic in-
formation to enable them to design policies to strengthen economic growth and preserve
society’s quality of life. Key economic indicators on which decision making is based are
usually published late, information is incomplete and economists can only gauge economic
conditions at the moment, information at a future time is scarce, which makes forecasting
and predicting the economy difficult to understand. There are also interconnected factors
in global economies, in which small disturbances that originate in one country spill over
into other economies, resulting in low productivity levels, loss of employment and imbal-
ance in the different economies.
This paper analyzes some economic indices in Ecuador to observe the behavior of these
variables in the last decades. The variables analyzed are: GDP, GDP rate, CPI, IPI, and
ACI, and to achieve this objective a dynamic Bayesian model and two learning algorithms
were considered, this combination includes missing data information and allows evaluating
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the economic reaction to possible shocks and provides real time information and allows
forecasting to market policy.

4.1.1 Gross domestic product of Ecuador
During the years 2000−2020, Fig. 4.1 shows the evolution of the average mean of the Gross
Domestic Product series estimated by the Kalman filter, Kalman smoothed, Gibbs filters
and particle filter together with true data. In the graph we can observe continuous growth
over time, and a very similar adjustment between estimated states and true observations.
It can also be appreciated that the algorithms mimic well the behavior of real data, these
algorithms have the property of reducing noise and softening the series. The Kalman
Smoothed filter captures the fluctuations of the economy and detects the peaks caused by
the sudden jumps in the GDP and are characterized by being less pronounced.

Figure 4.1: Evolution of the posteriori mean of the proposed model for the gross domestic
product of Ecuador.

Mathematician 27 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

4.1.2 Gross domestic product rate of Ecuador
Using the model for gross domestic product of Ecuador rate (3.4) together with the values
presented in (3.5), we can be show in Fig.4.2 the evolution of the posterior mean of the
series of the GDP rate of Ecuador during the period between the years 2000− 2020. Time
series of this style with constant mean and bounded variance as they are known in the
literature [28] are usually very complex to filter. The results obtained, (see Tab. 4.2) show
that the ARIMA models together with the Kalman filter are a good option in time series
analysis.

Figure 4.2: Evolution of the posteriori mean of the proposed model for the gross domestic
product of Ecuador rate.

Kalman, Kalman smoothed, particle and Gibbs filters show good behavior in the sim-
ulation of observations. In the Fig. 4.3, we can see the residual of the proposed system
to GDP and in Fig. 4.4 to GDP rate. The dynamics of the state space models allow
us an independent adjustment of the W and V matrices. In the present work, we use
algorithms that allowed us to obtain the values for mentioned matrices, but the researcher
could change these parameters and thus obtain a smaller or larger error in filtering the
data.

Using the mean square error metric, in Table 4.1 shows a measure of goodness of fit cal-
culated to all filters. The results obtained show a good estimate for all filters, highlighting
the particle filter for GDP and the Kalman filter for GDP rate.
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Figure 4.3: Estimation errors for the Kalman, Kalman smoothed, particle and Gibbs filters,
models (3.2) and (3.1).

Figure 4.4: Estimation errors for the Kalman, Kalman smoothed, particle and Gibbs filters,
models (3.4) and (3.5).

Table 4.1: Mean square error for GDP and GDP rate

GDP GDP rate
Kalman filter 0.0205 0.1744
Kalman smoothed 0.0230 0.2730
Particle filter 0.0027 0.3271
Gibbs filter 0.037 0.2095
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4.1.3 Multiple variables
The use of matrices in state space models allows us to work with several time series, reduc-
ing the cost of analysis. In Fig. 4.5 the results obtained by the multiple variables model
(3.6) are presented. As mentioned previously, the values of matrix V were modified, these
would allow us to control the accuracy of the filtering. It can be seen in Fig. 4.5 that the
filtering and smoothing values fit almost perfectly to the true observations while the CPI
observations show a large error, finally the ACI value was the one obtained by MLE.

Figure 4.5: Filtered and smoothed time series, first the consumer price index; second, the
industrial production index; third, activate interest rate.

Table 4.2 shows a measure of goodness of fit calculated in order to measure the quality
of estimation of the algorithms for all the series considered in the study, the mean square
error metric was evaluated for each filter used, obtaining small estimation errors.
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Table 4.2: Mean square error for multivariate model

CPI IPI ACI
Kalman filter 0.0299 0.0057 0.0154
Kalman smoothed 0.0437 0.014 0.0245

4.1.4 Forecast and New Observations
The dynamics of the state space models also allow us to make predictions, build confidence
intervals and extract the new observations from (2.35). Using the equation proposed in
(2.61) together with the model (3.1) the prediction of the posterior mean of GDP together
with the new observations are presented in Fig. 4.6. Similarly, using the proposed adjust-
ments for the GDP rate, the posterior mean prediction is shown in Fig. 4.7. The values
with the MSE metric (see.Table 4.2) suggest an acceptable prediction of the data.

Figure 4.6: Forescast, model GDP.
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Figure 4.7: Forescast, model GDP rate.
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Chapter 5

Conclusions

This thesis shows some applications of the space-state model in macroeconomics time
series of Ecuador, considering filtering algorithm techniques under a Bayesian statisti-
cal approach. The objectives of the research are addressed as follows: the implementa-
tion of statistical tools in macroeconomic problems that have a lot of variability in time,
non-linearity, non-stationary, structural changes, asymmetries and outliers that are char-
acteristics present in many financial series. The estimation capacity of the algorithms to
characterize and predict the nature of the stochastic phenomenon studied is compared, and
the influence of external factors that may be causing fluctuations in the economic system in
Ecuador is analyzed in real time. To illustrate the methodology, the macroeconomic series
are analyzed: Gross domestic product, GDP rate, consumer price index (CPI), industrial
production index (IPI) and active interest rate (ACI). An estimation of a linear Gaussian
state space model and an ARIMA model with state space structure is performed using the
Kalman, Kalman smoothed, particle and Gibbs filters and forecasts are obtained outside
the range of the analyzed data with the purpose of validating the model. In the results,
a linear growth in the GDP variable can be observed with a fall in the last period of the
series studied, which agrees with the reality of the economies in the world, the existence
of an economic pattern or atypical values is not detected, nor changes of structures. The
variable GDP rate shows fluctuations with a downward trend at the end of the analyzed
period, the same behavior shows the series CPI, IPI, and ACI. When the simultaneous
analysis of the CPI, IPI, and ACI series is carried out, fluctuations can be observed in
time, with a slight rebound around the year 2020. In reference to the predicted values, it
can be observed that the filters maintain a linear estimation trend. Both filters offer rela-
tively good predictive performance. It was used as a measure of goodness of fit to calibrate
the estimation quality of the algorithms, the mean square error metric, obtaining small
estimation errors. The study of time series has been a key factor in the economy, during
this work a series of models was presented together with a series of Bayesian algorithms
that allow series to be filtered, reducing their error. A joint study of the Marcovian state
space models and artificial intelligence will allow machine learning models to improve their
results.
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.1 Appendix 1. R code

.1.1 Random Walk

1 # Henry Bautista
2 # 10/9/2021
3 # Yachay Tech University
4 # Build a simple random walk and random walk with drift.
5

6 ranv = rnorm (150); # Random values
7 rw = cumsum (ranv); # Returns a vector whose elements are the

cumulative sums
8 srwd = ranv +.3;
9 rwd = cumsum (srwd); # Random walk drift =0.3

10 plot.ts(rwd , ylim=c( -5 ,50) , main="", ylab =’’) # Plot data
11 lines(rw , col =4); abline (h=0, col =4, lty =2); abline (a=0, b=.3, lty =2)
12 legend (" topleft ", legend = c( " Random walk"," Random walk whit drift" )

,cex=c (0.75) , ncol =1, lwd = c(1 ,1) , col = c("blue","black"), bty =
"y")

.1.2 Monte Carlo γ(4).

1 # Henry Bautista
2 # 10/9/2021
3 # Yachay Tech University
4 # Algorithm allows us compute the Gamma (4) integral with important

sampling method .
5 samples =c()
6 for(i in (1:200) ){
7 u<-runif (50000 ,0 ,40000)
8 ga <- function (x){xˆ{4 -1}* exp(-x)}
9 re =40000* sum(ga(u)) /(50000)

10 samples =c(samples ,re)}
11 summary ( samples )

.1.3 State space random walk

1 # Henry Bautista
2 # 10/9/2021
3 # Yachay Tech University
4 # The program build a state space random walk and the values obtaining

are filtered .
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5

6 x_0 = 2 # Inital value
7 t = seq (0, 200, 1)
8 x = c(x_0)
9 x_aux = matrix (0, length (t), 1)

10 y = c()
11 for (k in 2: length (t)) {
12 x[k] = x[k -1] + rnorm (1, 0, .25) # State equation and error
13 y[k -1] = x[k] + rnorm (1, 0, 1.25) # Observation equation
14 }
15 plot (t, x , type = "l", xlab = "time", col=" blue ",
16 ylab = "x(t), y(t)", ylim = c(-2,7),
17 main = " Gaussian random walk ")
18 points (y, col = " red ", cex = .5)
19 legend (" topleft ", lty=c(1, 0),
20 col = c(" blue ", "red"),
21 legend = c(" State variable ", " Observation "), pch = c(NA , 1) ,
22 bty = "o", cex = .45 , ncol =1)
23 ### Kalman Filter
24 data = y
25 ex = dlm(m0 = 1, C0 = 1.2 , FF = 1, V = .005 , GG = 1, W = .02) #

Simple state space model
26 KFstate = dlmFilter (data , ex) # Filter
27 plot ( x, type = "l", xlab = "time , k",
28 ylim = c(-2,7), col=" blue ",
29 ylab = "", main = " Gaussian random walk ")
30 points (y, col = " red ", cex = .5)
31 lines ( KFstate $m , type = "l", col = " green ")
32 legend (" topleft ", lty = c(1, 0, 1), pch = c(NA , 1, NA),
33 col = c(" blue ", "red", " green "),
34 legend = c(" State variable ", " Observation ", " Kalman

filter "),
35 bty = "o", cex = 0.5 , ncol =1)

.1.4 Data (GDP, GDP rate) and packages in R

1 # Henry Bautista
2 # 10/9/2021
3 # Yachay Tech University
4 # Treatment of the data used: # Data: https :// drive. google .com/drive /

folders /1 Fuk1Cxvv6jn2cKu2toTkyZrZtzs9Cfzi ?usp= sharing
5 library (dlm) # Kalman filter package
6 library ( MLmetrics )
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7 library ( tseries )
8 par(mfrow=c(2 ,1) , mar=c(3 ,3 ,1 ,1) , mgp=c(1.6 ,.6 ,0))
9 my_data <-read.csv("C:\\ Users ...\\ GDPf.csv", header =T)

10 GDPi <- my_data$per_gdp # GDP index
11 GDP_tri <- my_data$gdp_c # GDP
12 GDP_tri <- GDP_tri /1000000 # GDP in billions
13 GDPall_tri =as.ts( GDP_tri ) # Time series GDP
14 stt =2000 # Start year
15 edd =2020 # Start year
16 GDPall_tri =ts(GDPall_tri ,start = stt ,end=edd ,frequency = 4)
17 GDPi <-as.ts(GDPi) # Time series GDP index
18 GDPi=ts(GDPi ,start = stt ,end= edd , frequency = 4)

.1.5 Kalman filter for GDP model

1 # Henry Bautista
2 # 10/9/2021
3 # Yachay Tech University
4 # Program to filter time series using the Kalman filter , a model used

for GDP.
5

6 dlmSri <- dlmModPoly () # Model state space
7 m0( dlmSri )<-c(2 ,2)
8 diag(C0( dlmSri ))<-c(1 ,1)
9 buildFun <- function (x){ # Function to compute the maximum likelihood

(MLE)
10 diag(W( dlmSri ))[1:2] <- 1/ exp(x [1:2])
11 V( dlmSri ) <- cos(x[3]*x[3]) *0.0567
12 return ( dlmSri )
13 }
14 fit <- dlmMLE (c( GDPall_tri ), parm = rep (0, 3), build = buildFun ) #MLE
15 modelgdp <- buildFun ( fit$par ) # Model GDP
16 filtered <- dlmFilter (GDPall_tri , mod = modelgdp ) # Filtering
17 fore <- dlmForecast (filtered , nAhead = 15, sampleNew = 2 )
18 smoothed <- dlmSmooth ( filtered ) # Smoothed
19 resid. gdp_f3 <- residuals (filtered , sd = FALSE)
20 GDPf3_s <- dropFirst ( smoothed$s )[,1]
21 GDPf3_f <- dropFirst ( filtered$m )[,1]

.1.6 Kalman filter GDP rate model

1 # Henry Bautista
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2 # 10/9/2021
3 # Yachay Tech University
4 # Program to filter time series using the Kalman filter , a model used

for GDP.
5

6 parm_rest = function (parm){
7 return ( c(parm [1], exp(parm [2])) )
8 }
9 V=abs(rnorm (1, mean = 1,sd =1))

10 dlm1 = function (parm){ # Function to compute the maximum
likelihood (MLE)

11 parm = parm_rest (parm)
12 dlm = dlmModPoly (1) +
13 dlmModARMA (ar=parm [1], ma=NULL , sigma2 =parm [2])
14 # set initial state distribution
15 dlm$C0 [2 ,2] <- solve (1- parm [1]ˆ2) *parm [2]
16 return (dlm)
17 }
18 fit1 = dlmMLE (y=GDPi ,parm=c(0 ,0) ,build=dlm1 , hessian =T)
19 mod1 = dlm1( fit1$par ) # Model GDP rate
20 C0(mod1)[1 ,1] < -0.25 # Initial value
21 mod=mod1
22 V(mod1) <-0
23 filtered <- dlmFilter (GDPi , mod = mod) # Filtering
24 smoothed <- dlmSmooth ( filtered ) # Smoothed
25 fore <- dlmForecast (filtered , nAhead = 15, sampleNew = 2 )
26 resid. gdp_f3 <- residuals (filtered , sd = FALSE)
27 GDPf3_s <- dropFirst ( smoothed$s )[,1]
28 GDPf3_f <- dropFirst ( filtered$m )[,1]

.1.7 Program to filter time series using Gibbs filter

1 # Henry Bautista
2 # 10/9/2021
3 # Yachay Tech University
4 # Gibbs function for estimation space state , This function was used to

filter GDP and GDP rate.
5

6 gibbs. filter <- function (data ,kons ,theta ,FH){
7 require ( HyperbolicDist )
8 a0 <- kons [1] # Initial data
9 b0 <- kons [2]

10 c0 <- kons [3]
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11 d0 <- kons [4]
12 mu0 <- theta [1]
13 sigma0 .2 <- theta [2]
14 F <- FH [1]
15 H <- FH [2]
16 n <- length (data) # Length of the data. Simulation size.
17 mean.data <- mean(data)
18 sd.data <- sd(data)
19 # data <- (data - mean(data))/sd(data) # In case of standardizing

the data
20 x <- rep (0,n + 1) # States vector .
21 sigma .2 <- rep (0,n + 1) # Variance vector
22 tau .2 <- rep (0,n + 1) # Accuracy vector .
23 lambda <- rep (0,n + 1) # Vector of weights : lambdas .
24 omega <- rep (0,n + 1) # Vector of weights : omegas .
25 B <- rep (0,n + 1)
26 b <- rep (0,n + 1)
27 x[1] <- rnorm (1, mean = mu0 , sd = sqrt( sigma0 .2)) # Initial random

values
28 sigma .2[1] <- 1/ rgamma (1, shape = a0 ,scale = b0)
29 tau .2[1] <- 1/ rgamma (1, shape = c0 ,scale = d0)
30 lambda [1] <- rgig (1,c(.5 ,1 ,1))
31 omega [1] <- rgig (1,c(.5 ,1 ,1))
32 B[1] <- 1/(1/ sigma0 .2 + Fˆ2/( sigma .2[1]* lambda [1]))
33 b[1] <- mu0/ sigma0 .2 + Fˆ2*x[1]/( sigma .2[1]* lambda [1])
34 # Important sampling
35 for(t in 2:n){
36 x[t] <- rnorm (1, mean = b[t - 1]*B[t - 1],sd = sqrt(B[t - 1]))
37 sha <- a0 + t/2
38 scl <- b0 + 0.5/ lambda [t - 1]* sum ((x[2:t] - F*x[1:(t - 1)]) ˆ2)
39 sigma .2[t] <- 1/ rgamma (1, shape = sha ,scale = scl)
40 sha <- c0 + t/2
41 scl <- d0 + 0.5/ omega[t - 1]* sum (( data [1:(t - 1)] - H*x[2:t]) ˆ2)
42 tau .2[t] <- 1/ rgamma (1, shape = sha ,scale = scl)
43 psi <- (x[t] - F*x[t - 1]) ˆ2/ sigma .2[t]
44 lambda [t] <- rgig (1,c(.5,1, psi))
45 psi <- (data[t - 1] - H*x[t]) ˆ2/ tau .2[t]
46 omega[t] <- rgig (1,c(.5,1, psi))
47 B[t] <- 1/((1/ lambda [t - 1] + Fˆ2/ lambda [t])/sigma .2[t] + Hˆ2/( tau

.2[t]* omega[t]))
48 b[t] <- F*(x[t - 1]/ lambda [t - 1] + x[t]/ lambda [t])/sigma .2[t] + H

*data[t - 1]/( tau .2[t]* omega[t])
49 } # end for t
50 x[n + 1] <- rnorm (1, mean = b[n]*B[n],sd = sqrt(B[n]))

Mathematician 42 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

51 sha <- a0 + (n + 1)/2
52 scl <- b0 + 0.5/ lambda [n]* sum ((x[2:(n + 1)] - F*x[1:n]) ˆ2)
53 sigma .2[n + 1] <- 1/ rgamma (1, shape = sha ,scale = scl)
54 sha <- c0 + (n + 1)/2
55 scl <- d0 + 0.5/ omega[t - 1]* sum (( data [1:n] - H*x[2:(n + 1)]) ˆ2)
56 tau .2[n + 1] <- 1/ rgamma (1, shape = sha ,scale = scl)
57 lambda [n + 1] <- rgig (1,c(.5 ,1 ,(x[n + 1] - F*x[n]) ˆ2/ sigma .2[n + 1])

)
58 omega[n + 1] <- rgig (1,c(.5 ,1 ,( data[n] - H*x[n + 1]) ˆ2/ tau .2[n +

1]))
59 B[n + 1] <- 1/(1/( sigma .2[n + 1]* lambda [n + 1]) + Hˆ2/( tau .2[n + 1]*

omega[n + 1]))
60 b[n + 1] <- F*x[n]/( sigma .2[n + 1]* lambda [n]) + H*data[n]/( tau .2[n +

1]* omega[n])
61 x[n + 1] <- rnorm (1, mean = b[n + 1]*B[n + 1],sd = sqrt(B[n + 1]))
62 return (list(x = x[-1],
63 B = B[-1],b = b[-1],
64 sigma .2 = sigma .2[ -1] , tau .2 = tau .2[ -1] ,
65 lambda = lambda [-1], omega = omega [ -1]))
66 GDPigF = GDPigFA$x [2:( length ( GDPigFA$x ) -1)]
67 GDPigF <-as.ts( GDPigF ) # Time series data
68 GDPigF =ts(GDPigF ,start = stt , frequency = 4)

.1.8 Program to filter time series using particle filer

1 # Henry Bautista
2 # 10/9/2021
3 # Yachay Tech University
4 # Particle filter used in GDP and GDP rate filtering .
5

6 T <-length (c(GDPi))
7 x_true <- rep(NA , T)
8 obs <- c(GDPi)
9 sy <- 8

10 sx <- 7
11 T <- length (obs)
12 N <- 1000
13 # Create x and weight matrices
14 x <- matrix (nrow = N, ncol = T)
15 weights <- matrix (nrow = N, ncol = T)
16 # Intial (at t=1):
17 # Draw X from prior distribution
18 x[, 1] <- rnorm(N, 0, sx)
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19 # Calculate weights , i.e. probability of evidence given sample from X
20 weights [, 1] <- dnorm(obs [1], x[, 1], sy)
21 weights [, 1] <- weights [, 1]/ sum( weights [, 1]) # Normalise weights
22 # Weighted re - sampling with replacement . This ensures that X will

converge to the true distribution
23 x[, 1] <- sample (x[, 1], replace = TRUE , size = N, prob = weights [,

1])
24 for (t in seq (2, T)) {
25 # Predict x_{t} from previous time step x_{t -1}
26 # Based on process ( transition ) model
27 x[, t] <- rnorm(N, x[, t-1], sx)
28 # Calculate and normalise weights
29 weights [, t] <- dnorm(obs[t], x[, t], sy)
30 weights [, t] <- weights [, t]/ sum( weights [, t])
31 # Weighted resampling with replacement
32 x[, t] <- sample (x[, t], replace = TRUE , size = N, prob = weights [,

t])
33 }
34 GDPipF <- apply(x, 2, mean)
35 x_quantiles <- apply(x, 2, function (x) quantile (x, probs = c(0.025 ,

0.975) ))
36 GDPipF <-as.ts( GDPipF )
37 GDPipF =ts(GDPipF ,start = stt ,end= edd , frequency = 4)

.1.9 Plot filters

1 # Henry Bautista
2 # 10/9/2021
3 # Yachay Tech University
4 # Program plot the results of time series filtered with the 4 models

proposed .
5 dev.new ()
6 # GDP
7 GDPpF <-as.ts(GDPpF)
8 GDPpF=ts(GDPpF ,start = stt ,end= edd , frequency = 4)
9 GDPgF <-as.ts(GDPgF)

10 GDPgF=ts(GDPgF ,start = stt , frequency = 4)
11 dev.new ()
12 par(mfrow=c(1 ,1) , mar=c(3 ,3 ,1 ,1) , mgp=c(1.6 ,.6 ,0))
13 plot.ts(GDPall_tri , type="p",col = " purple ", xlab = "Time", ylab = "

Billons of dollars ", lwd = 1.5, cex =0.5)
14 lines(GDPf3_s , col = "blue",lty =3)
15 lines(GDPf3_f , col = "red",lty =4)
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16 lines(GDPpF , col = "green",lty =5)
17 lines(GDPgF , col = " coral4 ",lty =5)
18 legend (" topleft ", legend = c(" Observed ", " Smoothed "," Kalman filter ","

Particle filter ","Gibbs filter "),
19 lwd = c(1,1, 1,1,1),pch = c(1, NA , NA ,NA ,NA),lty = c(NA

,3 ,4 ,5 ,5) , col = c(" purple ", "blue","red","green"," coral4 "),
bty = "n")

20 # GDP rate
21 par(mfrow=c(1 ,1) , mar=c(3 ,3 ,1 ,1) , mgp=c(1.6 ,.6 ,0))
22 plot.ts(GDPi , ylim=c(-2,4), type="p",col = " purple ", xlab = "Time",

ylab = "%", lwd = 1.5, cex =0.5)
23 lines(GDPf3_s , col = "blue",lty =3)
24 lines(GDPf3_f , col = "red",lty =4)
25 lines(GDPipF , col = "green",lty =5)
26 lines(GDPigF , col = " coral4 ",lty =5)
27 legend (" topright ", legend = c(" Observed ", " Smoothed "," Kalman filter ",

" Particle filter ","Gibbs filter "), lwd = c(1,1, 1,1,1), pch = c(1,
NA , NA , NA ,NA),lty = c(NA ,3 ,4 ,5 ,5) , col = c(" purple ", "blue","red",
"green"," coral4 "), bty = "n")

.1.10 Multivariate model

1 # Henry Bautista
2 # 10/9/2021
3 # Yachay Tech University
4 # Kalman filter for Multivariate model.
5

6 library (dlm)
7 library ( MLmetrics )
8 my_data <-read.csv("C:\\ Users ...\\ va_me_geall .csv", header =T)
9 CPI_me <- my_data$val_CPI

10 IPI_me <- my_data$value_IPI
11 AcIR_me <- my_data$A_IR
12 AcIR_me =( AcIR_me -mean( AcIR_me ))
13 IPI_me =( IPI_me -mean( IPI_me ))/sd( IPI_me )
14 # Transform to time series
15 CPI_me =as.ts( CPI_me )
16 IPI_me =as.ts( IPI_me )
17 AcIR_me =as.ts( AcIR_me )
18 GDP2016_tri =as.ts( GDP2016_tri )
19 CPI_me =ts(CPI_me ,start = 2016 , frequency = 12)
20 IPI_me =ts(IPI_me ,start = 2016 , frequency = 12)
21 AcIR_me =ts(AcIR_me ,start = 2016 , frequency = 12)
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22 GDP2016_tri =ts( GDP2016_tri [1:20] , start = 2016 , frequency = 4)
23 # Matrix definition
24 The= matrix (c(1 ,1 ,1) , ncol = 1,nrow = 3)
25 FF= matrix (c(1 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,1) , ncol = 3,nrow = 3)
26 GG= matrix (c(1 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,1) , ncol = 3,nrow = 3)
27 VV= matrix (c(abs(rnorm (1)) ,0,0,0,abs(rnorm (1)) ,0,0,0,abs(rnorm (1))),

ncol = 3,nrow = 3)
28 WW= matrix (c(abs(rnorm (1)) ,0,0,0,abs(rnorm (1)) ,0,0,0,abs(rnorm (1))),

ncol = 3,nrow = 3)
29 CO= matrix (c(1,0,0,0, abs(rnorm (1)) ,0,0,0,abs(rnorm (1))), ncol = 3,nrow

= 3)
30 M0= matrix (c(0.4 , -0.5 , abs(rnorm (1))), ncol = 1,nrow = 3)
31 me <-dlm(FF = FF , V = VV , GG =GG , W =WW , m0 = M0 , C0 = CO)
32 y = cbind(CPI_me , IPI_me , AcIR_me );
33 buildFun <- function (x) { # Function to compute MLE.
34 me <-dlm(FF = FF , V = VV , GG =GG , W =WW , m0 = M0 , C0 = CO)
35 diag(W(me))[1:3] <- exp(x [1:3])
36 diag(V(me))[1:3] <- exp(x [4:6])
37 return (me) }
38 ma <- dlmMLE (y,parm = rep (0 ,6) , build = buildFun ) # Model definition

for Multivariate data
39 me= buildFun (log(abs( ma$par )))
40 W(me)[2 ,2]= 2 # Initial value
41 V(me)[2 ,2]=2
42 fil <- dlmFilter (y, mod = me)
43 mos= dlmSmooth (fil)
44 dev.new () # Plot data
45 plot( CPI_me )
46 lines(fil$m [,1], col="red")
47 lines(mos$s [,1], col="blue")
48 plot( IPI_me )
49 lines(fil$m [,2], col="red")
50 lines(mos$s [,2], col="blue")
51 plot( AcIR_me )
52 lines(fil$m [,3], col="red")
53 lines(mos$s [,3], col="blue")
54 # Plot data
55 dev.new ()
56 par(mfrow=c(3 ,1) , mar=c(3 ,3 ,1 ,1) , mgp=c(1.6 ,.6 ,0))
57 plot(CPI_me , type=’l’, pch =19, xlab=’day ’,ylab = "CPI (%)",col="black

", cex =0.5)
58 lines(mos$s [,1], col="blue");
59 lines(fil$m [,1], col="red");
60 legend (" topleft ", legend = c(" Observed "," Kalman filter ", " Kalman
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Smoothed "), lwd = c(1 ,1 ,1) , col = c("black","red", "blue"), bty = "
n")

61 plot(IPI_me , type=’l’, pch =19, xlab=’day ’,ylab = "IPI (%)", col="
black",cex =0.5)

62 lines(mos$s [,2], col="blue");
63 lines(fil$m [,2], col="red");
64 legend (" topleft ", legend = c(" Observed "," Kalman filter ", " Kalman

Smoothed "),
65 lwd = c(1 ,1 ,1) , col = c("black","red", "blue"), bty = "n")
66 plot(AcIR_me , type=’l’, pch =19, xlab=’day ’,ylab = "ACI (%)",col="

black", cex =0.5)
67 lines(mos$s [,3], col="blue");
68 lines(fil$m [,3], col="red");
69 legend (" bottomleft ", legend = c(" Observed "," Kalman filter ", " Kalman

Smoothed "), lwd = c(1 ,1 ,1) , col = c("black","red", "blue"), bty = "
n") ;
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