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Abstract

This thesis consists of two parts. In the first part, we study the following
semilinear neutral differential equation in Rn with impulses and nonlocal
conditions:

d
dt
[
z(t)− g(t, zt)

]
= A(t)z(t) + F(t, zt), t ∈ (0, τ] \ {tk}k∈Ip ,

z(θ) = −[h(zτ1 , . . . , zτq)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k ∈ Ip,

where z(t) ∈ Rn is the state, A(t) is a n × n continuous matrix, 0 <
t1 < · · · < tp < τ, 0 < τ1 < · · · < τq < r < τ, Ip := {1, . . . , p}, zt is
the function [−r, 0] ∋ θ 7→ zt(θ) = z(t + θ) ∈ Rn, h : PWqp → PWr ,
Jk : [0, τ]× Rn → Rn, g,F : [0, τ]× PWr → Rn, and η ∈ PWr are appro-
priate functions. We investigate the existence of solutions via Karakostas’
fixed point theorem, the exact controllability by means of the Rothe’s fixed
point theorem and the Banach contraction theorem separately, and the ap-
proximate controllability using a technique developed by Bashirov et al.

In the second part, we extend the existence results of the previous system
to an infinite-dimensional setting. That is, we study the following system
in a general Banach space Z:

d
dt
[z(t)− g(t, zt)] = −Az(t) + F(t, zt), t ∈ (0, τ] \ {tk}k∈Ip ,

z(θ) = −[h(zτ1 , . . . , zτq)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(z(tk)), k ∈ Ip,

where z(t) ∈ Z is the state, A : D(A) ⊂ Z → Z is a sectorial operator, zt is
the function [−r, 0] ∋ θ 7→ zt(θ) = z(t + θ) ∈ Zα, Zα is the fractional power
space of A, g,F : [0, τ]× PWrα → Z, h : PWqpα → PWrα, Jk : Zα → Zα, and
η ∈ PWrα are appropriate functions. We address the existence of solutions
through Karakostas’ fixed point theorem and provide an application to
exemplify our results.

Keywords: neutral differential equations, impulses, nonlocal conditions,
Karakostas’ fixed point theorem, Rothe’s fixed point theorem, exact con-
trollability, approximate controllability.
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Resumen

Esta tesis consta de dos partes. En la primera parte, estudiamos la sigu-
iente ecuación diferencial semilineal de tipo neutral en Rn con impulsos y
condiciones no locales:

d
dt
[
z(t)− g(t, zt)

]
= A(t)z(t) + F(t, zt), t ∈ (0, τ] \ {tk}k∈Ip ,

z(θ) = −[h(zτ1 , . . . , zτq)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k ∈ Ip,

donde z(t) ∈ Rn es el estado, A(t) es una matriz continua de dimensión
n × n, 0 < t1 < · · · < tp < τ, 0 < τ1 < · · · < τq < r < τ, Ip := {1, . . . , p},
zt es la función [−r, 0] ∋ θ 7→ zt(θ) = z(t + θ) ∈ Rn, h : PWqp → PWr ,
Jk : [0, τ]× Rn → Rn, g,F : [0, τ]× PWr → Rn, y η ∈ PWr son funciones
adecuadas. Investigamos la existencia de soluciones a través del teorema
del punto fijo de Karakostas, la controlabilidad exacta mediante el teorema
del punto fijo de Rothe y el teorema de la contracción de Banach por sepa-
rado, y la controlabilidad aproximada utilizando una técnica desarrollada
por Bashirov et al.
En la segunda parte, extendemos los resultados de existencia del sistema
anterior a un escenario de dimensión infinita. Es decir, estudiamos el sigu-
iente sistema en un espacio de Banach general Z:

d
dt
[z(t)− g(t, zt)] = −Az(t) + F(t, zt), t ∈ (0, τ] \ {tk}k∈Ip ,

z(θ) = −[h(zτ1 , . . . , zτq)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(z(tk)), k ∈ Ip,

donde z(t) ∈ Z es el estado, A : D(A) ⊂ Z → Z es un operador sectorial,
zt es la función [−r, 0] ∋ θ 7→ zt(θ) = z(t + θ) ∈ Zα, Zα es el espacio
de potencia fraccionaria de A, g,F : [0, τ] × PWrα → Z, h : PWqpα →
PWrα, Jk : Zα → Zα, y η ∈ PWrα son funciones adecuadas. Abordamos la
existencia de soluciones a través del teorema del punto fijo de Karakostas
y proporcionamos una aplicación para ejemplificar nuestros resultados.

Palabras clave: ecuaciones diferenciales neutrales, impulsos, condiciones
no locales, teorema del punto fijo de Karakostas, teorema del punto fijo de
Rothe, controlabilidad exacta, controlabilidad aproximada.
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Chapter 1

Introduction

Differential equations arise naturally when the evolution of a real-life problem in
science and engineering is described mathematically. This is not a mere coincidence,
and Newton already knew it better than anyone in the late seventeenth century when
he claimed that "the laws of nature are expressed by differential equations".1

The description of a problem in mathematical language is referred to as a model
(or system, interchangeably). The complexity of the model depends on the nature
of the problem. The simplest model encountered in the literature consists of a law
governing the dynamics of the problem and some pre-established conditions, which
usually take the form z′(t) = f (t, z(t)) and z(t0) = z0, respectively, and together are
also known as an initial value problem. The preceding model represents a beautiful
abstraction, but unfortunately, it is not general enough to describe a wide range of
intrinsic phenomena affecting the behavior of the system. To improve the model, we
can follow several directions. Hereafter we briefly introduce three of them.

One direction is to replace the initial condition z(t0) = z0 of the system by the
nonlocal condition z(t0) + h(τ1, . . . , τq, z(·)) = z0. In this way, the model considers
more than one initial measurement. We refer the reader to [30, 31, 32, 65, 90, 95, 96,
108, 110], where several authors have reported improvements in applications when
considering nonlocal conditions.

Another direction is to include impulsive conditions of the form z(t+k ) = z(t−k ) +
Jk(z(tk)), which allow modeling instantaneous perturbations [94]. These conditions
allow us to describe evolution processes undergoing abrupt changes such as shocks,
harvesting, population dynamics, and the spread of diseases, to name a few. See
[1, 2, 3, 10, 13, 22, 33, 46, 53, 77, 80, 86, 91, 93, 94, 97, 98, 104, 107, 123] for applications
and more information.

A third direction is to consider a retarded argument r > 0 in the unknown function
of the model. In this way, our system takes the form z′(t) = f (t, z(t), z(t − r)). The
underlying meaning of this change is that the future state of the model depends on not
only the present but also the past. If the retarded argument also affects the derivative
of the system, then the differential equation is referred to as neutral. Previous results
in this direction can be found in [4, 6, 7, 8, 21, 23, 36, 41, 59, 62, 64, 66, 81, 109] and

1Taken from [9, pp. 1].
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references therein.
Once the model is properly described and accurately represents the problem as

possible, the next step before attempting to solve it is to assess whether the model
is well posed or not. That is, whether a solution exists or not (existence property),
and if so, whether it is unique or not (uniqueness property). These two properties are
essential when studying a differential equation. Another fundamental property also
studied without having an explicit solution is controllability. These three properties
will be covered in detail later.

In this work, we simultaneously follow the three directions described above and
study the existence and uniqueness of solutions for the following semilinear neutral
differential equation in Rn with impulses and nonlocal conditions.

d
dt
[
z(t)− g(t, zt)

]
= A(t)z(t) + F(t, zt), t ∈ (0, τ] \ {tk}k∈Ip ,

z(θ) = −[h(zτ1 , . . . , zτq)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k ∈ Ip,

(1.1)

where z(t) ∈ Rn is the state, A(t) is a n × n continuous matrix, 0 < t1 < · · · <
tp < τ, 0 < τ1 < · · · < τq < r < τ, Ip := {1, . . . , p}, zt is the time history function
[−r, 0] ∋ θ 7→ zt(θ) = z(t + θ) ∈ Rn, h : PWqp → PWr is the nonlocal function,
Jk : [0, τ]× Rn → Rn is the impulsive function, g,F : [0, τ]× PWr → Rn, and η ∈ PWr
are appropriate functions to be specified later, as well as the spaces PWr and PWqp.

Once we know that system (1.1) has a solution, we address the associated con-
trol problem. For each u fixed, we let F(t, zt) = B(t)u(t) + f (t, zt, u(t)). Then the
controllability problem is given by

d
dt
[
z(t)− g(t, zt)

]
= A(t)z(t) + B(t)u(t) + f (t, zt, u(t)), t ∈ (0, τ] \ {tk}k∈Ip ,

z(θ) = −[h(zτ1 , . . . , zτq)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k ∈ Ip,
(1.2)

where B(t) is a n × m continuous matrix, f : [0, τ]× PWr × Rm −→ Rn is a suitable
function to be specified later, the control function u belongs to the space C([0, τ], Rm),
and the remaining terms satisfy the same conditions as in system (1.1).

In the last part of the present work, we extend the above existence results2 to
an infinite-dimensional setting. This means that we no longer work in Rn, but in a
general Banach space Z. In this case, system (1.1) becomes

d
dt
[z(t)− g(t, zt)] = −Az(t) + F(t, zt), t ∈ (0, τ] \ {tk}k∈Ip ,

z(θ) = −[h(zτ1 , . . . , zτq)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(z(tk)), k ∈ Ip,

(1.3)

2To be more precise, we extend the above investigation when A(t) := A. If A(t) is not constant,
then using the verb to extend is not appropriate.

Mathematician 4 Final Grade Project
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where z(t) ∈ Z is the state, A : D(A) ⊂ Z → Z is a sectorial operator such that its
resolvent operator is compact, zt is the time history function [−r, 0] ∋ θ 7→ zt(θ) =
z(t + θ) ∈ Zα, Zα is the fractional power space of A, g,F : [0, τ] × PWrα → Z, h :
PWqpα → PWrα, Jk : Zα → Zα, and η ∈ PWrα are appropriate smooth functions. The
spaces PWrα and PWqpα are described below.

The difference between systems (1.1) and (1.3) may look inessential at first glance.
However, we assure the reader that this is not the case. The differences arise from
multiple viewpoints, such as the problem dimension, the approach, and techniques
used, to point out a few. While in problem (1.1) the dimension of the state of the
system is dim(Rn) = n < ∞, in problem (1.3), it is dim(Z) = ∞.3 Both systems also
differ in that (1.3) allows, in essence, studying partial (functional) differential equa-
tions while (1.1) does not because it is basically an ordinary (functional) differential
equation. The last distinction we mention here is that investigating (1.3) requires some
knowledge of Strongly Continuous Semigroup (SCS) Theory while (1.1) does not.

This manuscript is organized as follows.4

Summary of Chapter 2
This chapter provides a compilation of concepts and results that are fundamental

to our work. In Section 2.1, we present an overview of some basic results of Func-
tional Analysis and Operator Theory. Here we introduce properties of topological,
normed, Banach, and Hilbert spaces. We then review definitions and properties of
linear, bounded, closed, and compact operators. At the end of the section, we list the
Banach contraction theorem, Karakostas’ fixed point theorem, and Rothe’s fixed point
theorem. These theorems will be used to transform an existence and controllability
problem into a fixed point one.

Section 2.2 supplies a thorough and constructive literature review on the area of
differential equations (DEs) that will lead us to our problem statement (systems (1.1)
and (1.3)). For the sake of conciseness, this section covers both finite-dimensional and
infinite-dimensional cases. We begin with the simplest initial value problem (IVP)
studied by Peano and then escalate to system (1.1). Along the way, we recapitulate
linear differential equations and their properties. We also consider retarded differ-
ential equations (RDEs) and provide a literature review on that topic. Likewise, we
review systems with nonlocal conditions only and then RDEs with nonlocal condi-
tions. Following a constructive approach in the sense of complexity, we similarly
investigate impulsive differential equations (IDEs) only and then RDEs with impulses
and nonlocal conditions. Finally, we also study neutral differential equations (NDEs)
only and then NDEs with impulses and nonlocal conditions.

In Section 2.3, we give a summary of Control Theory and present some results on
the controllability of linear systems. We also define exact and approximate controlla-
bility.

Section 2.4 is devoted to Semigroup Theory. Here we first motivate strongly contin-
uous semigroups as an abstract description of a well-posed dynamical system. Then
we introduce the concept of infinitesimal generator of a SCS and list some of its

3Although both problems are infinite-dimensional.
4Some ideas for the presentation and organization of this manuscript were inspired by [34] and [33].
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properties. After a brief recapitulation about Spectral Theory, we introduce sectorial
operators and analytic semigroups. Finally, we define fractional powers of sectorial
operators and fractional power spaces.
Summary of Chapter 3

In this chapter, we present our research results in a finite-dimensional setting.
This chapter consists of two sections. The first one provides existence results. Here
we propose a formula for the solutions of system (1.1) and state an existence theorem.
This theorem is later proved using the Karakostas’ fixed point theorem. In the second
section, we present our controllability results. We use the Banach contraction theorem
and Rothe’s fixed point theorem separately to prove the exact controllability of system
(1.2). The difference between the two approaches relies on the given assumptions for
each case. The approximate controllability is shown employing a technique developed
by Bashirov et al.

The results presented in this chapter can be thought as an extension of the results
obtained by Cabada [33]. If g ≡ 0 in (1.1) and (1.2), then these systems are no longer
neutral and become the case studied by Cabada [33].
Summary of Chapter 4

This chapter extends the existence results presented in Chapter 3. As pointed out
before, this extension is in the sense of dimension. Again we use Karakostas’ fixed
point theorem to prove an existence theorem for system (1.3).
Summary of Chapter 5

In this chapter, we present our conclusions and recommendations.
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Chapter 2

Theoretical framework

In this chapter, we provide a compilation of concepts and results intended to make
this manuscript self-contained. No proof is provided unless it is strictly necessary.
For example, when it is not easily encountered in the literature. Nevertheless, for the
sake of completeness, most of the time, we do include a reference containing a proof.

We start with an overview on some necessary concepts and results of Functional
Analysis and Operator Theory, mainly taken from Kreyszig [78]. Then, we provide a
thorough and constructive literature review on the area of differential equations that
will lead us to our problem statement (systems (1.1) and (1.3)). We also review the
notion of controllability, which will be core in Section 3.2. Finally, we present some
more advanced concepts about Semigroup theory.

2.1 Topics on Functional Analysis and Operator Theory

This section gives concepts and results of Functional Analysis and Operator Theory
that are fundamental for the subsequent chapters.

2.1.1 Topological spaces

Our starting point is the simple but abstract notion of topology. This concept provides
the building blocks to construct a solid theory in Analysis.

Definition 1. Let Λ be an index set. Let Z be a nonempty set and T a family of subsets of Z.
We say that T is a topology on Z if and only if

(i) Both ∅ and Z belong to T .

(ii) If A1, A2 ∈ T , then A1 ∩ A2 ∈ T .

(iii) If (Aλ)λ∈Λ is an arbitrary family of elements of T , then
⋃

λ∈Λ

Aλ ∈ T .

7
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The pair (Z, T ) is called a topological space and the elements of T are referred to as open
sets. The complement of every open set is said to be a closed set.

Given a topological space (Z, T ) and z ∈ Z, we say that V ⊆ Z is a neighborhood of
z if and only if

∃O ∈ T : z ∈ O ⊆ V.

Let A, B, C, D, and E be subsets of Z. We define the closure of A, denoted by A, as the
smallest closed set containing A. B is said to be compact if and only if for every open
covering1 (Aλ)λ∈Λ of B there is a finite subset I of Λ such that (Aλ)λ∈I still covers
B. C is called relatively compact if and only if C is compact. D is said to be dense in E
if and only if E ⊂ D. For a deeper understanding of these topological concepts, we
refer the reader to [52, Chapters 1-3,9].

2.1.2 Normed spaces

We now turn our attention to the notion of norm and normed space.

Definition 2. A (real) normed (linear) space is a pair
(
Z, ∥ · ∥Z

)
, where Z is a linear space

and ∥ · ∥Z : Z → R is a functional satisfying

(i) [Non-negativity] ∀z ∈ Z : ∥z∥Z ≥ 0.

(ii) [Point-separating] ∀z ∈ Z : ∥z∥Z = 0 ⇐⇒ z = 0.

(iii) [Homogeneity] ∀z ∈ Z, ∀λ ∈ R : ∥λz∥Z = |λ|∥z∥Z.

(iv) [Triangle inequality] ∀z, y ∈ Z :
∥∥z + y

∥∥
Z ≤ ∥z∥Z +

∥∥y
∥∥

Z.

The functional ∥ · ∥Z is called a norm. When there is no risk of ambiguity, we simply denote
∥ · ∥ := ∥ · ∥Z

2 and refer to the normed space only as Z.

When working with normed spaces we can define a special open set called open
ball. These sets are important because they provide an useful characterization for
open sets.

Definition 3. Let Z be a normed space and z ∈ Z. For r > 0, the set

Br(z) =
{

y ∈ Z
∣∣∣ ∥∥z − y

∥∥
Z < r

}
is called an open ball. A subset A of Z is open if and only if for every z ∈ A there exists r > 0
such that Br(z) ⊆ A.

1A covering of B is a family (Aλ)λ∈Λ such that B ⊆
⋃

λ∈Λ

Aλ. It is called open if each Aλ is open.

2We will follow this convention mostly in the next chapter. But, for now, we will make clear the set
for which ∥ · ∥Z is a norm for the sake of completeness.
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A closed ball is intuitively defined as

Br(z) =
{

y ∈ Z
∣∣∣ ∥∥z − y

∥∥
Z ≤ r

}
.

Another special set is given in the following definition.

Definition 4. A subset C of a vector space Z is a convex set if and only if

∀z, y ∈ C, ∀λ ∈ [0, 1] : λz + (1 − λ)y ∈ C

Remark 1. Open balls and closed balls are convex sets.

We next consider a sequence of elements in a normed space Z, usually denoted as
(zn)n∈N ⊆ Z. We say that (zn)n∈N (strongly) converges to z ∈ Z3 if and only if

∀ϵ > 0, ∃N ∈ N : n > N =⇒ ∥zn − z∥Z < ϵ.

We call
(

zφ(n)

)
n∈N

4 a subsequence of (zn)n∈N whenever φ : N → N is a strictly

increasing function. A sequence (zn)n∈N is called a Cauchy sequence if and only if

∀ϵ > 0, ∃N ∈ N : n, m > N =⇒ ∥zn − zm∥Z < ϵ.

Clearly, any convergent sequence is a Cauchy sequence. The special normed spaces
such that all their sequences satisfy the converse are called Banach spaces.

Let ∥ · ∥1 and ∥ · ∥2 be two norms on a normed space Z. They are said to be
equivalent if and only if

∃c1, c2 > 0, ∀z ∈ Z : c1∥z∥1 ≤ ∥z∥2 ≤ c2∥z∥1.

In case Z is finite dimensional, all norms are equivalent. For a better understanding of
normed spaces and their properties, we refer the reader to [78, Ch. 2].

2.1.3 Hilbert spaces

As we have seen, the concept of norm generalizes the notion of distance in the real line
R. We next define a functional (·, ·)5, called inner product, which is a generalization of
the notion of scalar product in Rn6.

Definition 5. A (real) linear space Z is called an inner product space if and only if there is a
functional (·, ·) : Z × Z → R satisfying

3The phrase (zn)n∈N converges to z will be used interchangeably with lim
n→∞

zn = z, lim
n→∞

∥zn − z∥Z =

0, zn −→
n→∞

z, or zn → z as n → ∞.
4If we let nk = φ(k), then we refer to the subsequence as

(
znk

)
k∈N

.
5The notation ⟨·, ·⟩ is also used to denote an inner product.
6n ∈ N.
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(i) [Non-negativity] ∀z ∈ Z : (z, z) ≥ 0.

(ii) [Point-separating] ∀z ∈ Z : (z, z) = 0 ⇐⇒ z = 0.

(iii) [Linearity] ∀z, y, w ∈ Z, ∀λ ∈ R : (λz + y, w) = λ(z, w) + (y, w).

(iv) [Symmetry] ∀z, y ∈ Z : (z, y) = (y, z).

It is easy to see that ∥ · ∥Z = (·, ·)1/2 defines a norm on Z. Thus an inner product
space becomes a normed space. When Z is a Banach space, it is called a Hilbert space.
Any two elements z and y in a Hilbert space Z satisfy

|(z, y)| ≤ ∥z∥Z∥y∥Z. (2.1)

This inequality is known as the Cauchy-Bunyakovsky-Schwarz inequality (CBS) and
its proof is a standard problem that can be found in, e.g., [118, Lem. 6.20, pp. 180].

Let T : Z → Y be a bounded operator7, and let Z and Y be Hilbert spaces. Then
the (Hilbert) adjoint operator T∗ of T is the operator T∗ : Y → Z such that

∀z ∈ Z, y ∈ Y :
(
Tz, y

)
=
(
z, T∗y

)
.

It can be proven that the adjoint operator T∗ of T exists, is unique and is a bounded
linear operator with norm

∥T∥B(Z,Y) =
∥∥T∗∥∥

B(Y,Z). (2.2)

Moreover, if T : Z → Z has a bounded inverse T−1, so has T∗ with (T∗)−1 = (T−1)∗.
For further understanding of Hilbert spaces and their properties, we refer the reader
to [78, Ch. 3].

2.1.4 Bounded linear operators

Let Z, Y, W be normed spaces. A function T : Z → Y is referred to as an operator. It is
further called a linear operator if and only if

∀z, y ∈ Z, ∀λ ∈ R : T(λz + y) = λT(z) + T(y).

We denote by L(Z, Y) the collection of such operators. If a linear operator T : Z → Y
is such that

∃c > 0, ∀z ∈ Z : ∥Tz∥Y ≤ c∥z∥Z, (2.3)

then it is called a bounded operator. The set of all bounded linear operators is denoted
by B(Z, Y)8. This is a normed space (see, e.g., [78, Lem. 2.7-2, pp. 92]) when endowed
with the operator norm

∥T∥B(Z,Y) := inf
{

c > 0
∣∣∣ ∀z ∈ Z : ∥Tz∥Y ≤ c∥z∥Z

}
= sup

z ̸=0

∥Tz∥Y
∥z∥Z

= sup
∥z∥=1

∥Tz∥Y.

7What it means to be a bounded operator will be defined in the next subsection.
8When Y = Z, we simply write B(Z, Z) = B(Z).
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Obviously, for any c such that (2.3) holds,

∥T∥B(Z,Y) ≤ c. (2.4)

If T is bounded, we can write the following useful inequality.

∥Tz∥Y ≤ ∥T∥B(Z,Y)∥z∥Z. (2.5)

The composition of two bounded operators, say T as before and S : Y → W, is also
bounded, and moreover

∥ST∥B(Z,W) ≤ ∥S∥B(Y,W)∥T∥B(Z,Y).

The following theorem gives sufficient conditions for B(Z, Y) to be complete.

Theorem 1. If Y is Banach, so is B(Z, Y) when equipped with the operator norm.

See Kreyszig [78, Th. 2.10-2, pp. 118] for a proof.
If Y = R, then T is called a (linear or bounded, accordingly) functional and B(Z, R)

is usually denoted as Z∗. Clearly, Z∗ is a Banach space as a consequence of Theorem
1.

For a sequence of elements {Tn}n∈N in the normed space B(Z, Y) we can define
three types of convergence (see, e.g., [78, Def. 4.9-1, pp. 263]).

Definition 6. Let Z and Y be normed spaces, T ∈ B(Z, Y), and {Tn}n∈N be a sequence in
B(Z, Y). Then, {Tn}n∈N

(i) uniformly converges to T if and only if ∥Tn − T∥B(Z,Y) −→n→∞
0.

(ii) strongly converges to T if and only if ∀z ∈ Z : ∥Tnz − Tz∥Y −→
n→∞

0.

(iii) weakly converges to T if and only if ∀z ∈ Z, ∀ f ∈ Y∗ : | f (Tnz)− f (Tz)| −→
n→∞

0.

Noting that

| f (Tnz)− f (Tz)| ≤
∥∥ f
∥∥

Y∗∥Tnz − Tz∥Y ≤
∥∥ f
∥∥

Y∗∥Tn − T∥B(Z,Y)∥z∥Z

as a consequence of (2.5), we easily deduce that (i) =⇒ (ii) =⇒ (iii).

2.1.5 Closed linear operators

Definition 7. Let Z and Y be normed spaces and T : D(T) ⊆ Z → Y a linear operator with
domain D(T) ⊆ Z. Then T is called a closed linear operator if its graph

G(T) =
{
(z, y)

∣∣∣ z ∈ D(T) and y = Tz
}

is closed in the normed space Z × Y with the graph norm
∥∥(z, y)

∥∥
T = ∥z∥Z + ∥Tz∥Y.9 It

is customary to only write ∥z∥T :=
∥∥(z, y)

∥∥
T.

9Both ∥z∥ =
(
∥z∥2

Z + ∥Tz∥2
Y

)1/2
and ∥z∥ = max

{
∥z∥Z, ∥Tz∥Y

}
are equivalent norms.
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Proposition 1. T is a closed operator if and only if D(T) is a Banach space with respect to
the graph norm.

See Berezansky et al. [25, pp. 5] for a proof.
The following theorem provides a sequential characterization for closed operators,

which is sometimes more convenient in applications.

Theorem 2. Let Z and Y be normed spaces, T : D(T) ⊂ Z → Y be a linear operator, and
(zn)n∈N ⊆ D(T). Then T is a closed operator if and only if it has the following property. If
zn → z and Tzn → y, then z ∈ D(T) and Tz = y.

For a proof, see Kreyszig [78, Th. 4.13-3, pp. 293].

2.1.6 Compact linear operators

Let Z and Y be normed spaces. A linear operator is called a compact operator if and
only if

∀A ⊆ Z bounded : T(A) ⊆ Y is relatively compact.

The space of all compact linear operators will be denoted by K(Z, Y). In practice,
the following characterization is most useful when studying the compactness of an
operator.

Theorem 3. Let Z and Y be normed spaces and T : Z → Y a linear operator. Then T ∈
K(Z, Y) if and only if

∀ (zn)n∈N ⊆ Z bounded : (Tzn)n∈N ⊆ Y has a convergent subsequence.

See Kreyszig [78, Th. 8.1-3, pp. 407] for a proof.

Lemma 1. Let Z be a normed space, T ∈ K(Z), and S ∈ B(Z). Then TS ∈ K(Z) and
ST ∈ K(Z).

A proof of this lemma is given in [78, Th. 8.3-2, pp. 422].

2.1.7 More definitions

In this subsection, we introduce more concepts that will allow us to state Arzelà-
Ascoli theorem. We start with the concept of Lipschitz continuity (see, e.g., [56, pp.
9]). This concept is necessary to introduce the notion of equicontractivity (Definition
9) and the Banach contraction theorem (Theorem 6).

Definition 8. Let Z and Y be normed spaces and T : Z → Y be a mapping. T is called
Lipschitz continuous if and only if

∃k ≥ 0, ∀z, y ∈ Z :
∥∥Tz − Ty

∥∥
Y ≤ k

∥∥z − y
∥∥

Z.

The constant k is referred to as a Lipschitz constant for T. If k ∈ [0, 1), then T is called a
contraction.
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The next definition (see, e.g., [76, Def. 2.1]) applies to a family of operators. It
regards the family as equicontractive if all its members are contractions for the same
Lipschitz constant k ∈ [0, 1).

Definition 9. Let Z be a normed space. A family of operators {Tλ : Z → Z}λ∈Λ is said to be
equicontractive if and only if

∃k ∈ [0, 1), ∀λ ∈ Λ, ∀z, y ∈ Z :
∥∥Tλz − Tλy

∥∥
Z ≤ k

∥∥z − y
∥∥

Z.

The following definition can be found in [121, pp. 208].

Definition 10. Let Z be a normed space. A family of functions F =
{

f : [a, b] → Z
}

is said
to be (uniformly) equicontinuous if and only if

∀ϵ > 0, ∃δ > 0, ∀t, s ∈ [a, b], ∀ f ∈ F : |t − s| < δ =⇒
∥∥ f (t)− f (s)

∥∥
Z < ϵ,

or equivalently, if
∥∥ f (t)− f (s)

∥∥
Z → 0 as t → s independently of f ∈ F.

Definition 11. Let Z be a normed space. A family of functions
{

fλ : [a, b] → Z
}

λ∈Λ is said
to be uniformly bounded if and only if

∃M ≥ 0, ∀t ∈ [a, b], ∀λ ∈ Λ :
∥∥ fλ(t)

∥∥
Z ≤ M.

The next theorem is the n dimensional generalization of the classical Arzelà-Ascoli
theorem (see, e.g., [112, Th. 1.3, pp. 3]).

Theorem 4. If
(

fm
)

m∈N
⊆ C

(
[a, b], Rn) is a uniformly bounded and equicontinuous se-

quence of functions, then it has a subsequence
(

fmk

)
k∈N

that converges uniformly on [a, b] to
a function f ∈ C

(
[a, b], Rn).

A proof of an equivalent version of this theorem can be found in [45, Th. 3.1.2., pp.
62] or [106, Th. 45.4, pp. 278].

The following is another version of the classical Arzelà-Ascoli theorem and is re-
garded as the Arzelà-Ascoli theorem for abstract functions (see, e.g., [79, Th. 1.1.1,
pag. 3]).

Theorem 5. Let Z be a Banach space and F =
{

f : [a, b] → Z
}

be an equicontinuous family
of functions from [a, b] into Z. Let

(
fn
)

n∈N
be a sequence in F such that for each t ∈ [a, b] the

set
{

fn (t) : n ⩾ 1
}

is relatively compact in Z. Then, there is a subsequence
(

fnk

)
k∈N

which
is uniformly convergent on [a, b].

See Royden [120, Th. 33, pp. 179] for a proof.
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2.1.8 Fixed point theorems

Here we list some fixed point theorems we used to prove our results. The more
remarkable one is undoubtedly the Banach contraction theorem (see, e.g., [56, Th.
1.1]).

Theorem 6. Let Z be a Banach space and T : Z → Z be a contractive mapping. Then T has
a unique fixed point z ∈ Z, and Tn(y)10 → z as n → ∞ for each y ∈ Z.

See Smart [126, Th. 1.2.2, pp. 2] for a proof.
The next theorem is due to Karakostas [76, Th. 2.2].

Theorem 7. Let Z and Y be Banach spaces and D be a closed convex subset of Z, and let
P : D → Y be a continuous operator such that P(D) is a relatively compact subset of Y, and

Q : D ×P(D) → D

a continuous operator such that the family {Q(·, y) : y ∈ P(D)} is equicontractive. Then,
the operator equation

Q(z,P(z)) = z

admits a solution on D.

Now we state the Rothe’s fixed point theorem. Actually, it is a general version of
the finite dimensional Rothe’s fixed point theorem. The latter can be found in [38, pp.
59].

Theorem 8. Let Z be a Banach space and consider D ⊆ Z a closed convex subset containing
the zero of Z in its interior. Let Ψ : D → Z be a continuous function with Ψ(D) relatively
compact in Z and Ψ(∂D) ⊂ D. Then

∃z⋆ ∈ D : Ψ
(
z⋆
)
= z⋆.

A proof of Theorem 8 is given in [68, Th. 2, pp. 129].

2.2 Differential Equations

Recall from the classical theory of ordinary differential equations (ODEs) that the
following IVP 

d
dt

z(t) = f (t, z(t)), t ∈ [0, τ],

z(0) = z0 ∈ Rn,
(2.6)

or equivalently,

z(t) = z0 +
∫ t

0
f (s, z(s))ds, t ∈ [0, τ] (2.7)

10Tn(y) is defined inductively as T0(y) = y and Tn+1(y) = T(Tn(y)) for n ∈ N ∪ {0}.
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describes the time evolution of a physical system. It is well known that if f : D ⊆
R × Rn → Rn is a continuous function, where D is an open set, then (2.6) has at least
one local solution defined on some neighborhood of t = 0. A proof of this result
was originally given by Peano [114] in 1890 and is usually referred to as the Peano’s
existence theorem. For a proof with standard notation, we refer the reader to [81,
Vol. I, Th. 1.1.2, pp. 4]. In the case that f is continuous in D and locally Lipschitz
continuous in the second argument, system (2.6) has a unique local solution defined
on some neighborhood of t = 0. This result is also classic and is known as the Picard-
Lindelöf theorem. A proof of this theorem can be found in [61, Th. 3.1, pp. 18] or
[129, Th. 2.2, pp. 38]

2.2.1 Linear Systems of Differential Equations

In this section we develop the theory of neutral differential equation. Our starting
point is the non-autonomous inhomogeneous linear system of ordinary differential
equations

d
dt

z(t) = A(t)z(t) + b(t), t ∈ I, (2.8)

where z : I → Rn is the unknown, A(t) is an n × n matrix function defined on some
open interval I ⊆ R and b is a given function defined on I as well. If A(t) is a constant
matrix, say A(t) := A, then (2.8) is called autonomous. If b ≡ 0, then (2.8) is regarded
as homogeneous. The initial value problem (IVP) associated with (2.8) is given by

d
dt

z(t) =A(t)z(t) + b(t), t ∈ I,

z(t0) =z0 ∈ Rn, t0 ∈ I.
(2.9)

The following result is classic.

Theorem 9. If A and b are continuous on I, then for every pair (t0, z0) the solution of the
system (2.9) is unique and is given by

z(t) = Φ(t)Φ−1(t0)z0 + Φ(t)
∫ t

t0

Φ−1(θ)b(θ)dθ, t ∈ I, (2.10)

where Φ is the fundamental matrix of the homogeneous linear system. Such matrix satisfies11
d
dt

Φ(t) =A(t)Φ(t), t ∈ I,

Φ(0) =I.

See Sideris [125, Th. 4.1, pp. 54] for a proof.

11In the second equality, I represents the n × n identity matrix.
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Note that (2.10) generalizes the Variation of Parameters Formula (VPF) (see, e.g.,
[28, Eq. 41, pp. 278]). Indeed, if A is a constant matrix, then Φ(t) = exp(At) and
(2.10) reduces to the familiar VPF

z(t) = exp
(

A(t − t0)
)

z0 +
∫ t

t0

exp
(

A(t − θ)
)

b(θ)dθ, t ∈ I, (2.11)

where exp(·) is defined by its series representation. For t, θ ∈ I, we define Φ(t, θ) :=
Φ(t)Φ−1(θ). From this definition, Φ immediately satisfies the properties given in the
next proposition.

Proposition 2. For all t, τ, θ ∈ I we have that

(i) Φ(t, t) = I, t ≥ 0.

(ii) [Cocycle property] Φ(τ, t)Φ(t, θ) = Φ(τ, θ), 0 ≤ θ ≤ t ≤ τ.

(iii)
∂

∂t
Φ(t, θ) = A(t)Φ(t, θ).

(iv) Φ is continuous.

(v) 12 ∃M ≥ 1, ∃M0, ω > 0 : ∥Φ(t, θ)∥ ≤ M0 exp
(
ω(t − θ)

)
≤ M, 0 ≤ θ ≤ t ≤ τ.

(vi) Φ−1(θ, t) = Φ(t, θ).

For more details about these properties, see [39, Prop. 2.12, pp. 133] and [28, Prop. 1
& Prop. 2, pp. 289-292].

2.2.2 Retarded Differential Equations

Before providing the definition of a retarded differential equation (RDE), we estab-
lish preliminary notation. For that purpose, we consider the following discussion
developed by Hale in [8, Ch. 1, pp. 3].

For r > 0, we consider the set of continuous vector valued functions defined on
[−r, 0], denoted by C

(
[−r, 0], Rn). If τ > 0 and z ∈ C

(
[−r, τ], Rn), then for any

t ∈ [0, τ] we let zt ∈ C
(
[−r, 0], Rn) be defined by zt(θ) = z(t + θ), which is usually

called the time history function. The number r is referred to as the delay of the system.
We notice that zt ∈ C

(
[−r, 0], Rn) if and only if z ∈ C

(
[−r, τ], Rn). The function zt

is defined as the section of z on the interval [t − r, t] shifted to the interval [−r, 0] [59,
pp. 42]. See Figure 2.1.

Now we are ready to define a RDE.

Definition 12. If f : [0, τ]× C
(
[−r, 0], Rn)→ Rn is a given function, a RDE is defined by

the relation
d
dt

z(t) = f (t, zt) (2.12)
12Here, ∥ · ∥ represents any matrix norm.
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z
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Figure 2.1: This graph represents (not to scale) the quadratic function z(t) = t2,
t ∈ [−1, 2]. Here, τ = 2 and r = 1. For example, z2(θ) = z(2 + θ) = (2 + θ)2,
θ ∈ [−1, 0], and z0 is the restriction of z to θ ∈ [−1, 0].

If η ∈ C
(
[−r, 0], Rn) is given, then a solution z(t, η) of (2.12) with initial value η at

t = 0 is a continuous function defined on [−r, τ] such that z0(θ) = z(θ, η) = η(θ) for
θ ∈ [−r, 0]. Also, z(t, η) has a continuous derivative on (0, τ), a right hand derivative
at t = 0 and satisfies (2.12) for t ∈ [0, τ).

The IVP associated with (2.12) is given by
d
dt

z(t) = f (t, zt), t ∈ [0, τ],

z(θ) = η(θ), θ ∈ [−r, 0],
(2.13)

or equivalently,

z(t) =

η(0) +
∫ t

0
f (s, zs)ds, t ∈ [0, τ],

η(t), t ∈ [−r, 0].

We note that if r = 0, then system (2.13) reduces to (2.6). A proof concerning the
existence and uniqueness of solutions for system (2.13) based on the well-known
Schauder’s fixed point theorem can be found in [81, Vol. II, Th. 6.1.1, pp. 5].

Equation (2.12) is also known in the literature as a differential equation with a de-
lay argument and belongs to the wide category of differential equations with deviating
argument. There are three types of differential equations with deviating argument.
According to [4, pp. 674], the other two types are advanced differential equations of the
form

d
dt

z(t) = f (t, z(t), z(t + r)), t ≥ t0, r > 0

and neutral differential equations (NDEs) having the general structure

d
dt

z(t) = f (t, z(t), z(t − r), z′(t − r)), t ≥ t0, r > 0. (2.14)

Note that NDEs can be understood as a generalization of RDEs.
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2.2.3 Differential Equations with Nonlocal Conditions

The expression z(0) = z0 in (2.6) indicates that z0 is the initial condition, sometimes
also called local condition, of the system at time t = 0 and represents an initial mea-
surement. As pointed out in [108] and [95], sometimes it is better to have more than
one initial measurement. This can be achieved if instead of z(0) = z0 ∈ Rn we con-
sider the nonlocal condition z(0) + h(τ1, . . . , τq, z(·)) = z0 ∈ Rn, where h is a given
function and 0 < τ1 < · · · < τq < τ. This way, system (2.6) becomes

d
dt

z(t) = f (t, z(t)), t ∈ [0, τ],

z(0) = −h(τ1, . . . , τq, z(·)) + z0 ∈ Rn,
(2.15)

or equivalently,

z(t) =
[
z0 − h(τ1, . . . , τq, z(·))

]
+
∫ t

0
f (s, z(s))ds, t ∈ [0, τ]

under certain conditions. We note that if h(τ1, . . . , τq, z(·)) = 0, then system (2.15)
reduces to (2.6). The symbol h(τ1, . . . , τq, z(·))13 indicates that we can only replace
· by the points {τ1, . . . , τq} as remarked by Byszewski and Lakshmikantham in [32].
For instance, h(τ1, . . . , τq, z(·)) may be given by h(τ1, . . . , τq, z(·)) = C1z(τ1) + · · · +
Cqz(τq), where Ci, i ∈ Iq are given constants [95].

The existence and uniqueness of solutions for the general version14 of system (2.15)
were proved by Byszewski & Lakshmikantham [32] by means of the Banach contrac-
tion theorem. Remarks about the importance of nonlocal conditions can be found in
[32, Sec. 3, pp. 16] and the references therein.

If we add the term A(t)z(t) in (2.15), then we have
d
dt

z(t) = A(t)z(t) + f (t, z(t)), t ∈ [0, τ],

z(0) = −h(z) + z0 ∈ Rn,
(2.16)

or equivalently,

z(t) = Φ(t, 0)
[
z0 − h(z)

]
+
∫ t

t0

Φ(t, s) f (s, z(s))ds, t ∈ [0, τ].

The existence and uniqueness of solutions for the infinite dimensional version of sys-
tem (2.16) were studied by Byszewski [30, Th. 3.1] by using the Banach contraction
theorem. Using the same theorem, Leiva & Sivoli [90, Th. 3.1] derived existence results
for the infinite dimensional local version of system (2.16). In both cases, authors as-
sumed that A is the infinitesimal generator of a C0 semigroup. In contrast, Hernández

13Sometimes we simply write h(z) := h(τ1, . . . , τq, z(·)) to alleviate the notation.
14Instead of Rn, Byszewski and Lakshmikantham considered En, where E is a Banach space.

Mathematician 18 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

et al. [65, Th. 2.1] did the same as Byszewski, but they supposed A to be the generator
of an analytic semigroup. Liu & Chang [96] proposed the same model as Hernández
et al., but they used Schauder’s fixed point theorem [81] or Sadovskii’s fixed point
theorem [122] instead of the Banach contraction theorem. In [110], Ntouyas & Tsam-
atos investigated the existence of global solutions for the infinite dimensional version
of system (2.16) by means of the Leray-Schauder alternative theorem [130, Lem. 2.2].

If instead of f (t, z(t)) in (2.15) we consider f (t, zt) with the meaning given in
Subsection 2.2.2, then we have15

d
dt

z(t) = f (t, zt), t ∈ [0, τ],

z(θ) = −[h(zτ1 , . . . , zτq)](θ) + η(θ), θ ∈ [−r, 0],

or equivalently,

z(t) =


[
η(0)− [h(z)](0)

]
+
∫ t

0
f (s, zs)ds, t ∈ [0, τ],

η(t)− [h(zτ1 , . . . , zτq)](t), t ∈ [−r, 0].

If we combine the above results, it is easy to see now that solving the following
system16 

d
dt

z(t) = A(t)z(t) + f (t, zt), t ∈ [0, τ],

z(θ) = −[h(z)](θ) + η(θ), θ ∈ [−r, 0]
(2.17)

is equivalent to solving the integral equation

z(t) =

Φ(t, 0)
[
η(0)− [h(z)](0)

]
+
∫ t

0
Φ(t, s) f (s, zs)ds, t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0].

Byszewski and Akça [31] derived the existence and uniqueness of solutions for the
infinite dimensional version of system (2.17) by using the Banach contraction theorem.

2.2.4 Impulsive Differential Equations

Let p ∈ N. The basic form of an impulsive differential equation (IDE) is given by
d
dt

z(t) = f (t, z(t)), t ∈ [0, τ] \ {tk}k∈Ip ,

z(t+k ) = z(t−k ) + Jk(z(tk)), k ∈ Ip,
(2.18)

15In the context of RDEs, it is customary to use [h(zt1 , . . . , ztq)](θ) instead of h(τ1, . . . , τq, z(·)).
16For the sake of convenience, we will also use the notation [h(z)](θ) =: [h(zt1 , . . . , ztq)](θ).
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where Jk : Rn → Rn are suitable functions called jump functions and the impulsive
moments tk are such that 0 < t1 < · · · < tp < τ. As usual, z(t−k ) := limt→t−k

z(t) and

z(t+k ) := limt→t+k
z(t).

According to [2, Sec. 1.4, pp. 16], the theory of IDE was first introduced by Milman
& Myshkis [104] in 1960. Since then, IDE have been developed in modeling impul-
sive problems in physics, mathematical economy, population dynamics, mechanics,
optimal control, engineering, pharmcokinetics, ecology, chemistry, spread of disease,
and biotechnology to name a few [22, Sec. 2.1, pp. 11]. Remarkable in the area of
IDE are the works of Samoilenko & Perestyuk [123], Bainov & Simeonov [10], and
Lakshmikantham et al. [80].

An advantage of IDEs over ODEs is that IDEs allow to describe evolution processes
that at certain moments in time experience abrupt perturbations of state [107].

Let us consider the corresponding IVP associated with (2.18)
d
dt

z(t) = f (t, z(t)), t ∈ [0, τ] \ {tk}k∈Ip ,

z(0) = z0 ∈ Rn,

z(t+k ) = z(t−k ) + Jk(z(tk)), k ∈ Ip,

(2.19)

or equivalently,

z(t) = z0 +
∫ t

0
f (s, z(s))ds + ∑

0<tk<t
Jk(z(tk)), t ∈ [0, τ]. (2.20)

We note that if z(t+k )− z(t−k ) = 0, k ∈ Ip, then system (2.19) reduces to system (2.6),
and the solution (2.20) becomes (2.7)17, as expected.

Li et al. [93, Th. 3.1] used the Banach contraction theorem to show that (2.19) has a
unique periodic solution. The existence and uniqueness of solutions for the retarded
version of system (2.19) were studied by Ballinger and Liu [13, Cor. 3.1] without using
fixed point techniques. Liu [98, Th. 2,3,4] established some stability criteria for system
(2.19) using Lyapunov’s direct method. In [22, Sec. 3.2, Th. 3.3, pp. 68], Benchohra
et al. derived the existence of solutions for the retarded infinite dimensional version
of (2.19) by using a nonlinear alternative of Leray-Schauder type given in [56, Th. 4.1,
pp. 14]

If instead of z(0) = z0 ∈ Rn in (2.19) we consider nonlocal conditions, then we
have 

d
dt

z(t) = f (t, z(t)), t ∈ [0, τ] \ {tk}k∈Ip ,

z(0) = −h(z) + z0 ∈ Rn,

z(t+k ) = z(t−k ) + Jk(z(tk)), k ∈ Ip,

(2.21)

17Each Jk(z(tk)) = 0, k ∈ Ip and consequently ∑
0<tk<t

Jk(z(tk)) = 0.
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or equivalently,

z(t) =
[
z0 − h(z)

]
+
∫ t

0
f (s, z(s))ds + ∑

0<tk<t
Jk(z(tk)), t ∈ [0, τ].

The existence and uniqueness of solutions for system (2.21) were studied by Knapik
[77] by means of the Banach contraction theorem.

If we combine (2.17) with (2.19), then we readily see that solving the following
system 

d
dt

z(t) = A(t)z(t) + f (t, zt), t ∈ [0, τ] \ {tk}k∈Ip ,

z(θ) = −[h(z)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(z(tk)), k ∈ Ip,

(2.22)

is equivalent to solve the integral equation

z(t) =


Φ(t, 0)

[
η(0)− [h(z)](0)

]
+
∫ t

0
Φ(t, s) f (s, zs)ds

+ ∑
0<tk<t

Φ(t, tk)Jk(z(tk)), t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0].

In [33], Cabada studied the existence and uniqueness of system (2.22). The infinite
dimensional local version of system (2.22) were studied by Leiva & Sundar [91]. Later,
Leiva [86] investigated the same case but with nonlocal conditions, i.e., the infinite
dimensional version of (2.22). In these three papers, the authors used a fixed point
theorem developed by Karakostas [76, Th. 2.2] to show the existence. Akça et al. [3]
derived the existence and uniqueness by using the Banach contraction theorem. In
[46], Diagana & Leiva investigated the existence of bounded solutions for the non
retarded infinite dimensional version of system (2.22). They also used the Banach
contraction theorem. Liang et al. [94] and Fan & Li [53] studied the non retarded
infinite dimensional case with special emphasis on the nonlocal function h. The local
and non retarded infinite dimensional version of (2.22) was examined by Lui [97, Th.
2.1]. He used the Banach contraction theorem to show existence and uniqueness of
solutions for system (2.22). Abada et al. [1] derived existence results for both the local
and nonlocal infinite dimensional version of system (2.22) by means of a fixed point
theorem of Krasnoselskiii-Schaefer type developed by Burton & Kirk [29].

2.2.5 Neutral Differential Equations

In Subsection 2.2.2, we briefly introduced NDEs. In this Subsection, we provide a
more in-depth discussion. Our starting point is Equation (2.14). In the literature,
there are many ways to write or formulate Equation (2.14). For instance, Guo & Wu
[59, Sec. 2.3, pp. 58] regarded the relation

d
dt

g(zt) = f (zt) (2.23)

Mathematician 21 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

as a NDE, where f , g : C
(
[−r, 0], Rn) → Rn are suitable functions. Equations (2.14)

and (2.23) do not seem to be related at all. However, they are related because they
share the most important characteristic of a NDE: the derivative on the retarded term.
In the same direction, the direction we are going to follow as well, Hale & Cruz [62,
Sec. 3] considered a general version of (2.23) given by

d
dt
[
z(t)− g(t, zt)

]
= f (t, zt). (2.24)

The IVP associated with (2.24) is given by
d
dt
[
z(t)− g(t, zt)

]
= f (t, zt), t ∈ [0, τ],

z(θ) = η(θ), θ ∈ [−r, 0],
(2.25)

or equivalently,

z(t) =


[
η(0)− g(0, η)

]
+ g(t, zt) +

∫ t

0
f (s, zs)ds, t ∈ [0, τ],

η(t), t ∈ [−r, 0].

The existence of solutions for system (2.25) was studied by Arino et al. [7, Th. 3] while
Ntouyas & Sficas [109, Th. 2] obtained results on continuation of solutions.

Adding impulses to system (2.24) yield
d
dt
[
z(t)− g(t, zt)

]
= f (t, zt), t ∈ [0, τ] \ {tk}k∈Ip ,

z(θ) = η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(z(tk)), k ∈ Ip,

(2.26)

or equivalently,

z(t) =


[
η(0)− g(0, η)

]
+ g(t, zt) +

∫ t

0
f (s, zs)ds + ∑

0<tk<t
Jk(z(tk)), t ∈ [0, τ],

η(t), t ∈ [−r, 0].

In [21, Th. 3.1], Benchohra et al. used Schaefer’s fixed point theorem (see, e.g., [126,
pp. 29]) to show the existence of solutions for system (2.26). The same fixed point
theorem was applied by Benchohra & Ouahab [23, Th. 3.2] to obtain existence results
for a version of system (2.26) where the impulsive effects occur at variable times.

We finally add nonlocal conditions and the term A(t)z(t) to obtain
d
dt
[
z(t)− g(t, zt)

]
= A(t)z(t) + f (t, zt), t ∈ [0, τ] \ {tk}k∈Ip ,

z(θ) = −[h(z)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(z(tk)), k ∈ Ip,

(2.27)
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or equivalently,

z(t) =



Φ(t, 0)
[
η(0)− [h(z)](0)− g(0, η − h(z))

]
+
∫ t

0
Φ(t, s)

[
A(s)g(s, zs) + f (s, zs)

]
ds + g(t, zt)

+ ∑
0<tk<t

Φ(t, tk)Jk(z(tk)), t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0].

We note that if r = 0, h(z) = 0, z(t+k )− z(t−k ) = 0, k ∈ Ip, and g = 0, then system
(2.27) reduces to (2.6).

Anguraj & Karthikeyan [6] used the Banach contraction theorem to show the ex-
istence of the infinite-dimensional version of (2.27). The non impulsive and non re-
tarded infinite-dimensional version of (2.27) was studied by [36] by means of a fixed
point theorem developed by Sadovskii [122]. In [41], Cuevas et al. investigated the ex-
istence of solutions for the infinite dimensional local version of system (2.27) by means
of the Leray-Schauder alternative theorem [130, Lem. 2.2]. Hernández & Henríquez
[66] derived existence results for the local and non impulsive infinite dimensional
version of (2.27) using Sadovskii’s fixed point theorem [122]. Later, Hernández [64]
studied the same case, but he did consider impulses.

System (2.27) is the one we investigate in this project.

2.3 Controllability of Linear Systems

In this section, we briefly introduce notions about control theory. We mainly focus
on the concept of controllability and its characterization for linear systems. The main
references are [40, 43, 82, 127].

2.3.1 Control Theory

Control theory is the area of applied mathematics that deals with the behaviour of
dynamical systems. The main objective of control theory is to answer the question
of whether or not it is possible to reach a desired state from an initial state in a con-
trolled, stable, and optimal fashion [42, Ch. 11, pp. 220]. Surprisingly, the underlying
meaning of this question was addressed by Aristotle (384-322 BC) [5, pp. 1] as shown
in the following excerpt. According to Bennett [24], Aristotle wrote

”... if every instrument could accomplish its own work, obeying or anticipating the will of
others ... if the shuttle weaved and the pick touched the lyre without a hand to guide them,
chief workmen would not need servants, nor masters slaves.”

Aristotle, Politics, Book 1, chapter 3
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The modern control theory was started by Kálmán [72, 73, 74] in 1960. He introduced
the concept of controllability. This is the area of control theory that we mainly focus
on in this project.

2.3.2 Characterization of the Controllability of Linear Systems

In order to define the concept of controllability we consider the following linear sys-
tem

d
dt

z(t) = A(t)z(t) + B(t)u(t), t ∈ [0, τ], (2.28)

where A(t), B(t), and u are as in system (1.2).
The following definition can be found in [72, Def. 5.1].

Definition 13. The system (2.28) is said to be (exactly) controllable on [0, τ] if for every
z0, z1 ∈ Rn, there exists a control u ∈ L2 ([0, τ], Rm) such that the corresponding solution z
of (2.28) with initial condition z(0) = z0 satisfies z(τ) = z1.

When speaking of controllability, we can distinguish two concepts: exact controlla-
bility as in Definition 13 and approximate controllability. To appreciate the difference
between the two, we use system (1.2) to rephrase Definition 13 and present the defi-
nition of approximate controllability.

Definition 14. System (1.2) is said to be (exactly) controllable on [0, τ] if and only if for all
η ∈ PWr

18 and z1 ∈ Rn there exists u ∈ L2 ([0, τ], Rm) such that the solution z of (1.2)
corresponding to u verifies

z(0) + [h(zτ1 , . . . , zτq)](0) = η(0) and z(τ) = z1.

Definition 15. System (1.2) is said to be approximately controllable on [0, τ] if and only if
for all η ∈ PWr, z1 ∈ Rn, and ϵ > 0 there exists u ∈ L2 ([0, τ], Rm) such that the solution z
of (1.2) corresponding to u verifies

z(0) + [h(zτ1 , . . . , zτq)](0) = η(0) and
∥∥z(τ)− z1

∥∥
Rn < ϵ.

In what follows we give some useful characterizations for the controllability of
system (2.28). From Theorem 9, we know that system (2.28) has a unique solution
given by

z(t) = Φ(t, 0)z0 +
∫ t

0
Φ(t, θ)B(θ)u(θ)dθ, t ∈ [0, τ] (2.29)

when subjected to the initial condition z(0) = z0 ∈ Rn. This result leads us to the
definition of three particular operators (see, e.g., [43, Def. 4.1.3, pp. 143]).

18The meaning of PWr will be given in Section 3.1.
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Definition 16. The mapping

C : L2 ([0, τ], Rm) −→ Rn

u 7−→ C(u) =
∫ τ

0
Φ(τ, θ)B(θ)u(θ)dθ

is called the controllability operator, whose adjoint operator C∗ is the mapping

C∗ : Rn −→ L2 ([0, τ], Rm)
z 7−→ C∗(z)

given by [C∗(z)](t) = B∗(t)Φ∗(τ, t)z, t ∈ [0, τ]. The third operator is the Gramian opera-
tor W := CC∗ defined as

W : Rn −→ Rn

z 7−→ W(z) =
∫ τ

0
Φ(τ, θ)B(θ)B∗(θ)Φ∗(τ, θ)zdθ

If z(τ) = z1, then by (2.29) and Definition 16 we obtain

z1 − Φ(τ, 0)z0 = Cu.

From this expression, we see that the controllability of system (2.28) is closely related
with the surjectivity of C. In fact, the next lemma (see [69, Sec. 4, Th. 1 & Th. 2])
confirms such relation and provides others.

Lemma 2. The following statements are equivalent.

(i) The system (2.28) is controllable on [0, τ].

(ii) Ran(C) = Rn.

(iii) ker(C∗) = {0}.

(iv) ∃γ > 0, ∀z ∈ Rn \ {0} : (Wz, z) ≥ γ∥z∥2.

(v) W is invertible.

See Curtain & Zwart [43, Th. 4.1.7, pp. 147] for a proof.
By Lemma 2, the operator

S : Rn −→ L2 ([0, τ], Rm)
z 7−→ S(z)

given by [S(z)](t) = B∗(t)Φ∗(τ, t)W−1z = C∗ (CC∗)−1 z, t ∈ [0, τ] is well defined. It
is called the steering operator and it is a right inverse of C in the sense that CS = I.
Moreover,

∥W−1z∥ = ∥(CC∗)−1z∥ ≤ γ−1∥z∥, z ∈ Rn, 19 (2.30)
19This inequality follows from Lemma 2(iv) and CBS inequality (2.1).

∥z∥∥W−1z∥ ≥ (z, W−1z) ≥ γ∥W−1z∥2 =⇒ (2.30)
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and a control steering system (2.28) from z0 to z1 at time τ > 0 is given by

u(t) = B∗(t)Φ∗(τ, t)W−1(z1 − Φ(τ, 0)z0) = [S(z1 − Φ(τ, 0)z0)](t), t ∈ [0, τ]. (2.31)

The following lemma allows us to apply the theory developed in this subsection
to control functions in C([0, τ], Rm).

Lemma 3. Let D be any dense subspace of L2([0, τ], Rm). Then, system (2.28) is controllable
with control u ∈ L2([0, τ], Rm) if and only if it is controllable with control u ∈ D, i.e.,

Ran(C) = Rn ⇐⇒ Ran(C|D) = Rn,

where C|D is the restriction of C to D.

See Leiva [83, Lem. 2.3] for a proof.
When A and B are constant matrices, say A(t) := A and B(t) := B, we have the

following characterization for the controllability of system (2.28). It is known as the
Kálmán’s rank condition.

Theorem 10. The system (2.28) is controllable if and only if

rank[B|AB|A2B| · · · |An−1B] = n

See Kálmán [72, Cor. 5.5] for a proof.
Several authors have addressed the problem of controllability. For instance, Chang

et al. [37] investigated the controllability of the system (2.16) by means of Sadovskii’s
fixed point theorem [122]. They did so without requiring the compactness of the semi-
group. In [84], Rothe’s fixed point theorem was used to prove the exact controllability
of the local version of system (2.16). Tomar & Sukavanam [131] addressed the approx-
imate controllability of the infinite-dimensional local version of system (2.17). Leiva
[83] derived the exact controllability of the local and non retarded version of system
(2.22) by means of Rothe’s fixed point theorem. Later, Leiva & Rojas [89] did the same,
but this time they included nonlocal conditions. In [87], the exact controllability of
system (2.22) was studied using Rothe’s fixed point theorem, while in [88], the ap-
proximately controllability of the same system was assessed following the aforemen-
tioned scheme developed by Bashirov et al. The exact controllability of the infinite-
dimensional local version of system (2.22) (with infinite delay) was shown in [136] via
Schauder’s fixed point theorem. Chalishajar [35] analyzed the exact controllability
of the infinite-dimensional local version of system (2.27) (with infinite delay) without
assuming the compactness of the associated semigroup. This assumption is not trivial
since, otherwise, it is not possible to study exact controllability [26, 44, 132, 133].

.
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2.4 Semigroup Theory

In this section, we briefly introduce the theory of semigroups of linear operators. Our
main references are [43, 48, 55, 75, 79, 101, 113, 124, 135]. We will see that the notion
of semigroup of linear operators is a quite natural extension of the exponential of a
matrix to the exponential of a possible unbounded operator [135, pp. 35]. For now,
we discuss the concept of a dynamical system to motivate that of a semigroup of
bounded linear operators.

The evolution of a well-posed physical system in time is usually described by an
IVP of the form 

d
dt

z(t) =Az(t), t ≥ 0,

z(0) =z0,
(2.32)

where A : D(A) → Z is a time-independent linear operator with domain D(A) ⊂ Z,
Z is a Banach space, z : R+ → Z is the state of the system (z(t) is the state at time
t), and z0 ∈ D(A) is the initial state. The time-invariance of A reflects that of the
underlying physical mechanism. The well-posedness assumption is in the sense of
Hadamard [60]: there is a unique solution to the problem for some given class of
initial data and the solution varies continuously with the initial data [79, pp. 21-22].

Let T(t) transfer the state z(s) at time s to the state z(t + s) at time t + s. The
assumption that A does not depend on time implies that T(t) is independent of s.
The solution z(t + s) at time t + s can be computed as T(t + s)z0 or, alternatively,
we can solve for z(s) = T(s)z0, take this as initial data, and t units of time later the
solution becomes z(t + s) = T(t)T(s)z0. The uniqueness of the solution implies the
semigroup property T(t + s) = T(t)T(s), t, s ≥ 0 [55, pp. 5]. The requirement that
the state varies continuously with the initial state z0 implies that T(t) is a continuous
map on Z. For the initial condition z(0) = z0 to be satisfied we must have T(0) = I
[43, pp. 15].

2.4.1 Strongly Continuous Semigroups

The foregoing discussion shows how the concept of a dynamical system leads natu-
rally to the concept of a semigroup of bounded linear operators [43]. The following
definition can be found in [79, Def. 2.1.1, pp. 23].

Definition 17. Let Z be a Banach space and T(t) := {T(t)}t≥0 be a family of operators in
B(Z). T(t) is called a semigroup of bounded linear operators on Z if and only if

(i) T(0) = I,

(ii) [Semigroup property] ∀t, s ≥ 0 : T (t + s) = T (t) T (s).

If, in addition, T(t) satisfies
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(iii) ∀z ∈ Z : lim
t→0

∥∥T(t)z − z
∥∥

Z = 0,20

then T(t) is called a strongly continuous semigroup (or C0 semigroup) on Z. Furthermore,
if

(iv) lim
t→0

∥∥T(t)− I
∥∥
B(Z) = 0,21

then T(t) is referred to as a uniformly continuous semigroup in Z.

By (2.5), it is clear that (iv) implies (iii). This means that a uniformly continuous
semigroup is always a strongly continuous semigroup.

The following definition can be found in [113, Def. 3.1, pp. 48].

Definition 18. A strongly continuous semigroup {T(t)}t≥0 is said to be compact on Z if and
only if T(t) is a compact operator (see Subsection 2.1.6) for every t > 0.

Theorem 11. Let T(t) be a strongly continuous semigroup and t0 > 0. If T(t) is compact
for t > t0, then T(t) is continuous in the uniform operator topology for t > t0.

See Pazy [113, Th. 3.2, pp. 48] for a proof.
The operator A in (2.32) plays an important role in the theory of semigroups.

Definition 19. The (infinitesimal) generator A : D(A) ⊂ Z −→ Z of a strongly continu-
ous semigroup {T(t)}t≥0 on a Banach space Z is the linear operator

Az = lim
h→0

T(h)z − z
h

defined for every z in its domain

D(A) =

{
z ∈ Z

∣∣∣ lim
h→0

T(h)z − z
h

exists

}
.

Some useful properties of strongly continuous semigroup are listed below.

Theorem 12. Let T(t) be a strongly continuous semigroup and let A be its infinitesimal
generator with domain D(A) in Z. Then the following properties hold.

(i) There exist constant ω ≥ 0 and M ≥ 1 such that
∥∥T(t)

∥∥
B(Z) ≤ M exp(ωt), t ≥ 0.

(ii) D(A) = Z.

(iii) A is a closed linear operator on D(A).

For z ∈ Z
20Or equivalently, the map R+ ∋ t 7−→ T(t)z ∈ Z is right continuous at zero for every z ∈ Z.
21It is equivalent to say that the mapping R+ ∋ t 7−→ T(t) ∈ B(Z) is right continuous at zero.
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(iv) The map t −→ T(t)z is continuous from [0, ∞) into Z.

For z ∈ D(A)

(v) T(t)z ∈ D(A), t ≥ 0 is (strongly) differentiable in t and

d
dt

T(t)z = AT(t)z = T(t)Az, t ≥ 0.

For a proof of (i) in Theorem 12, see [113, Th. 2.2, pp. 4]. Item (iv) in Theorem 12 is
proven in [113, Cor. 2.3, pp. 4]. The remaining items are proven in [79, Th. 2.2.1, pp.
27].

It can be shown (see, e.g., [48, Th. 3.7, pp. 17]) that if A is a constant n × n matrix,
then T(t) is an uniformly continuous semigroup and

T(t) = exp(At) = ∑
k=0

(At)k

k!
.

In fact, T(t) = exp(At) is a uniformly continuous semigroup if and only if A ∈ B(Z).
The notation exp(At) is usually kept even when A is not a bounded operator. Besides,
it is useful for making explicit the generator. However, to avoid possible confusion,
we will not follow this convention (except in Theorem 18).

Remark 2. If ω = 0 in Theorem 12(i), then T(t) is called uniformly bounded since∥∥T(t)
∥∥
B(Z) ≤ M, t ≥ 0. (2.33)

Remark 3. Let T(t) be a strongly continuous semigroup with infinitesimal generator A (and
hence (i) in Theorem 12 holds). Then S(t) = exp(−ωt)T(t) is a uniformly bounded C0
semigroup with infinitesimal generator A − ωI.

Remark 4. Problem (2.32) is usually referred to as an abstract Cauchy problem.

Theorem 13. Let A on D(A) be the infinitesimal generator of a strongly continuous semi-
group T(t). Let f : [0, ∞) −→ Z be a strongly continuously differentiable function. Then
the Cauchy problem (2.32) has a unique solution z(t) = T(t)z0. Also, the inhomogeneous
Cauchy problem 

d
dt

z(t) =Az(t) + f (t), t ≥ t0,

z(t0) =z0 ∈ D(A),
(2.34)

has the unique solution

z(t) = T(t − t0)z0 +
∫ t

t0

T(t − s) f (s)ds, t ≥ 0. (2.35)

See Ladas & Lakshmikantham [79, Th. 2.2.2, pp. 29 & Th. 2.2.3, pp. 30].
From the comment preceding Remark 2, if A is a constant n × n matrix, then (2.35)

is exactly (2.11).

Mathematician 29 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

2.4.2 Sectorial Operators and Analytic Semigroups

Recall that the resolvent set ρ(A) of a linear operator A acting on a Banach space Z is
the set of all complex numbers λ for which (λI − A)−1 exists as a bounded operator
with dense domain in Z. The operator (λI − A)−1 is referred to as the resolvent of A
and the set σ(A) := C \ ρ(A) as the spectrum of A. These three concepts come from
one of the main branches of modern functional analysis called spectral theory of linear
operators. For a deeper understanding of these concepts, we refer the reader to [78,
Ch. 7, pp. 363].

The following theorems will be useful in the sequel.

Theorem 14. Let A be a linear operator acting on a Banach space X. If ρ(A) ̸= ∅, then A is
closed.

Proof. Let (zn)n∈N ⊆ D(A) be such that zn → z and Azn → y. Since ρ(A) ̸= ∅, it has
at least one element, say λ. By the continuity of (λI − A)−1, we can write

z = lim
n→∞

(λI − A)−1(λI − A)zn = (λI − A)−1 lim
n→∞

(λzn − Azn) = (λI − A)−1(λz − y)

Hence z ∈ D(T) since (λI − A)−1 maps X into D(A). Applying (λI − A) to the last
expression yields λz − Az = λz − y, whence Az = y. The result then follows from
Theorem 2.

Theorem 15. Let A be a linear operator. Then

∀λ, µ ∈ ρ(A) : (µI − A)−1 − (λI − A)−1 = (µ − λ)(µI − A)−1(λI − A)−122.

A proof of this theorem is provided in [78, Th. 7.4-1, pp. 379].

Theorem 16. Let A : D(A) ⊂ Z −→ Z be a linear operator. If the resolvent (λI − A)−1 of
A is compact for some λ ∈ ρ(A), then it is compact for all λ ∈ ρ(A).

Proof. Let λ ∈ ρ(A) such that (λI − A)−1 is compact. By the resolvent equation (see
Theorem 15),

(µI − A)−1 = (λI − A)−1 + (µ − λ)(µI − A)−1(λI − A)−1

for any µ ∈ ρ(A). The result then follows from Lemma 1.

We now introduce sectorial operators and analytic semigroups [63, Def. 1.3.1, pp.
18 & Def. 1.3.3, pp. 20].

Definition 20. A closed densely defined operator A acting on a Banach space Z is a sectorial
operator if and only if there exists ϕ ∈ (0, π/2), M ≥ 1, and a ∈ R such that

Sa,ϕ = {λ ∈ C | ϕ ≤ | arg(λ − a) |≤ π, λ ̸= a} ⊂ ρ(A)

and
∀λ ∈ Sa,ϕ : ∥(λI − A)−1∥B(Z) ≤

M
|λ − a| .
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a ϕ σ(A)Sa,ϕ

Im(λ)

Re(λ)

Figure 2.2: Sector Sa,ϕ in the complex plane C. The dotted line is intended to show
that ϕ ranges from 0 to π/2 but never reaches those points. We remark that the
spectrum of A is not necessarily bounded.

See Figure 2.2 for a graphical representation of Sa,ϕ.

Definition 21. A strongly continuous semigroup T(t) on a Banach space Z is an analytic
semigroup if and only if

∀z ∈ Z : the map t −→ T(t)z is real analytic for t > 0.

Theorem 17. If A is a sectorial operator, then −A is the infinitesimal generator of an analytic
semigroup T(t).

See Henry [63, Th. 1.3.4, pp. 20] for a proof.
The following theorem essentially states that without loss of generality, we can

always assume that a = 0 in Definition 20.

Theorem 18. If A is a sectorial operator as in Definition 20, so is the operator

B : D(A) ⊂ Z −→ Z

z 7−→ Bz = Az − az.

and the following properties hold.

(i) If λ + a ∈ ρ(A), then λ ∈ ρ(B) and (λI − B)−1 = ((λ + a)I − A)−1.

(ii) S0,ϕ ⊂ ρ(B).

(iii) If λ ∈ S0,ϕ, then ∥(λI − B)−1∥B(Z) ≤
M
|λ| .

22This identity is known as the resolvent equation.
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(iv) For t ≥ 0, exp(tB) ∈ B(Z) and exp(tB) = e−at exp(tA).

See [102, Prop. 2.3.4, pp. 38] for a proof.

2.4.3 Fractional powers of Sectorial Operators

Having introduced the concept of sectorial operators, we now turn to the concept of
fractional powers of sectorial operators. For doing so, we shall consider an operator
A−α and then define the fractional powers Aα of a sectorial operator A as (A−α)−1.

The following definition can be found in [63, Def. 1.4.1, pp. 24].

Definition 22. For a sectorial operator A : D(A) ⊂ Z −→ Z with Re σ(A) > 023 and
α > 0, we define the following operator

A−α : D(A−α) ⊂ Z −→ Z

z 7−→ A−αz =
1

Γ(α)

∫ ∞

0
tα−1T(t)zdt (2.36)

Theorem 19. If A is a sectorial operator in Z with Re σ(A) > 0, then

(i) ∀α > 0 : A−α ∈ B(Z).

(ii) ∀α > 0 : A−α is one to one.

(iii) ∀α, β > 0 : A−α A−β = A−(α+β).

(iv) ∀α ∈ (0, 1) : A−α =
sin(πα)

π

∫ ∞

0
λ−α(λI + A)−1dλ

See Henry [63, Th. 1.4.2, pp. 25] for a proof.

Definition 23. Let α > 0. Define the fractional powers of a sectorial operator A as Aα =
(A−α)−1 and A0 = I with domain D(Aα) = R(A−α). If α ∈ (0, 1) and z ∈ D(A) ⊂
D(Aα), then Aα has explicit formulation

Aαz =
sin(πα)

π

∫ ∞

0
λα−1A(λI + A)−1zdλ

A proof of the last part of this definition can be found in [113, Th. 6.9, pp. 72].

Theorem 20. Let Aα be defined as above. Then

(i) ∀α > 0 : Aα is a closed operator.

(ii) ∀α ≥ β > 0 : D(Aα) ⊂ D(Aβ).

(iii) ∀α ≥ 0 : D(Aα) = Z.

23By Re σ(A) > 0, we mean that ∀λ ∈ σ(A) : Re(λ) > 0.
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(iv) ∀α, β ∈ R : Aα Aβ = Aβ Aα = Aα+β on D(Aγ), where γ = max(α, β, α + β).

See Pazy [113, Th. 6.8, pp. 72] for a proof. In particular, item (i) in Theorem 20 follows
from Theorem 14. Indeed, since Aα is invertible with bounded inverse A−α, 0 ∈ ρ(A).
The conclusion is now immediate.

Theorem 21. Let −A be the infinitesimal generator of an analytic semigroup T(t). If 0 ∈
ρ(A), then

(i) ∀t > 0, ∀α ≥ 0 : T(t) : Z → D (Aα).

(ii) ∀z ∈ D (Aα) : T(t)Aαz = AαT(t)z.

A proof of this theorem is provided in [113, Th. 6.13, pp. 74].

Remark 5. Without loss of generality we can always assume that 0 ∈ ρ(A). If 0 ̸∈ ρ(A),
then instead of A we work with A − σI since 0 ∈ ρ(A − σI) is always possible for σ large
enough.

Theorem 22. Suppose A : D(A) ⊂ Z −→ Z is a sectorial operator with Re σ(A) > δ > 0.
For α ≥ 0, t > 0, there exists a finite constant Mα such that

∥AαT(t)∥ ≤ Mαt−α exp(−δt) ≤ Mαt−α (2.37)

i.e., the operator AαT(t) is bounded.

A proof of this theorem can be found in [63, Th. 1.4.3, pp. 26].

Proposition 3. Suppose A is sectorial with Re σ(A) > 0. Then the following are equivalent.

(i) A−1 is compact .

(ii) A−α is compact for all α > 0.

(iii) T(t) is compact for t > 0.

Proof. (i) =⇒ (iii). By Theorem 22, AT(t), t > 0 is bounded. Since A−1 is compact and
T(t) = A−1AT(t), t > 0, by Lemma 1, T(t) is compact for t > 0. (iii) =⇒ (ii). This
can be seen from (2.36) since the integral converges in the uniform operator topology
[51]. (ii) =⇒ (i). This follows immediately with α = 1.

Definition 24. If A is a sectorial operator in a Banach space Z, we define, for α ≥ 0

Zα = D
(

Aα
)

with the graph norm,
∥z∥Aα = ∥z∥+ ∥Aαz∥, z ∈ Zα, (2.38)

such that Re σ (A) > 0.
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It is customary to endow Zα with the norm

|z|α = ∥Aαz∥, z ∈ Zα (2.39)

(also referred to as the graph norm) instead of the graph norm (2.38). This convention
(which we will adopt) is based on the equivalence24 of both norms. Indeed, since Aα

has bounded inverse A−α ( and hence (2.5) holds), we have that

|z|α ≤ ∥z∥+ ∥Aαz∥ = ∥A−α Aαz∥+ ∥Aαz∥ ≤ (1 + ∥A−α∥)|z|α,

and therefore both norms are equivalent. The space Zα is usually referred to as the
fractional power spaces of A. Sometimes, it is also called as the interpolation space between
D(A) and Z since

D(A) ⊂ Zα ⊂ Zβ ⊂ Z (2.40)

for 0 ≤ β < α ≤ 1 (with Z0 = Z).

Theorem 23. If A is a sectorial operator in a Banach space Z, then Zα is a Banach space
with norm | · |α for α ≥ 0, Z0 = Z and, for α ≥ β ≥ 0, Zα is a dense subspace of Zβ with
continuous inclusion. If the resolvent of A is compact and 0 ∈ ρ(A), then the inclusion
Zα ⊂ Zβ is compact when α > β ≥ 0.

Proof. Let A be a sectorial operator acting on a Banach space Z. First, Zα endowed
with the norm (2.38) (and hence with (2.39)) is a Banach space as a consequence of
Proposition 1. Second, the density25 of Zα in Zβ follows from Theorem 20(iii) and
(2.40) since Zβ ⊂ Z = Zα. Third, by Theorem 20(iv), Aβz = Aβ−α Aαz, z ∈ Zα. Since
Aβ−α is bounded, it follows that

|Iz|β = |z|β = ∥Aβz∥ ≤ ∥Aβ−α∥∥Aαz∥ = c|z|α, (2.41)

where c = ∥Aβ−α∥ and I : Zα → Zβ is the identity operator. Inequality (2.41) shows
that I is bounded26 and therefore the inclusion Zα ⊂ Zβ is continuous. For the last
part, the compactness inclusion, we need to prove that (see Theorem 3)

∀ (zn)n∈N ⊆ Zα bounded : (Izn)n∈N ⊆ Zβ has a convergent subsequence.

Let (zn)n∈N ⊆ Zα ⊂ Zβ be a bounded sequence, say ∃M ≥ 0, ∀n ∈ N : |zn|α ≤ M.
By (2.41), ∥Aβzn∥ ≤ cM and so the sequence (Aβzn)n∈N is also bounded. Since the
resolvent of A is compact and 0 ∈ ρ(A), we have that A−1 is compact. Therefore,
by Proposition 3, A−β is compact and hence A−β Aβzn = Izn has a convergent subse-
quence. This concludes the proof.

24See at the end of Subsection 2.1.2.
25See at the end of Subsection 2.1.1.
26See Subsection 2.1.4.
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Chapter 3

Results in finite-dimensional systems

In this chapter, we present our research results in a finite-dimensional setting.

3.1 Existence results

This section is devoted to study the existence and uniqueness of solutions for the
following semilinear neutral differential equation in Rn with impulses and nonlocal
conditions.

d
dt
[
z(t)− g(t, zt)

]
= A(t)z(t) + f (t, zt), t ∈ [0, τ] \ {tk}k∈Ip ,

z(θ) = −[h(zτ1 , . . . , zτq)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k ∈ Ip,

(3.1)

where A(t) is a n × n continuous matrix, 0 < t1 < · · · < tp < τ, 0 < τ1 < · · · < τq <
r < τ, zt is the function [−r, 0] ∋ θ 7→ zt(θ) = z(t + θ) ∈ Rn, h : PWqp → PWr is the
nonlocal function, Jk : [0, τ]×Rn → Rn is the impulsive function, g, f : [0, τ]× PWr →
Rn are appropriate functions to be specified later, and η belongs to the Banach space
(see, e.g., [58, 97, 98])

PW
(
[−r, 0], Rn) = {η : [−r, 0] → Rn

∣∣∣ η is continuous except at the points θk,

where the one-sided limits η(θ−k ) and η(θ+k ) exist with

η(θ+k ) = η(θk) for all k ∈ Ip

}
(3.2)

provided with the norm ∥∥η
∥∥

r = sup
θ∈[−r,0]

∥∥η(θ)
∥∥

Rn .

In a similar way as (3.2) was defined, we consider the space PWτ

(
[0, τ], Rn) equipped

with the supremum norm ∥ · ∥τ. In the sequel, for the sake of simplicity we will write

PWr := PW
(
[−r, 0], Rn) and PWτ := PW

(
[0, τ], Rn) .
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Now, we define the natural Banach space where the solutions of problem (1.1) will
take place [88].

PWp :=
{

z : [−r, τ] → Rn
∣∣∣ z|[−r,0] ∈ PWr and z|[0,τ] ∈ PWτ

}
endowed with the supremum norm ∥ · ∥p. We will also consider(

Rn)q
= Rn × Rn × · · · × Rn︸ ︷︷ ︸

q−times

equipped with the norm

∥∥y
∥∥

q =
q

∑
i=1

∥∥yi
∥∥

Rn , y =
(

y1, . . . , yq

)
∈
(
Rn)q .

Similarly to PWr and PWτ, we define the Banach space PWqp := PW
(
[−r, 0], (Rn)q)

endowed with the norm

∥∥η
∥∥

qp = sup
t∈[−r,0]

∥∥η(t)
∥∥

q = sup
t∈[−r,0]

(
q

∑
i=1

∥∥ηi(t)
∥∥

Rn

)
, η =

(
η1, . . . , ηq

)
∈ PWqp.

3.1.1 Formula for the solutions of system (3.1).

We devote this subsection to find a formula for solutions of the semilinear neutral
differential equations with impulses and nonlocal conditions (3.1). Specifically, we
transform problem (3.1) into an integral differential equation problem, which allows
us to apply Karakosta’s fixed point theorem to prove the existence of solutions for
(3.1) in the next section.

From now on, we adopt the notation (introduced in Subsection 2.2.3) [h(z)](t) =
[h(zτ1 , . . . , zτq)](t) to indicate the value of the function in Rn and h(z) = h(zτ1 , . . . , zτq)
to denote the function in PWr.

Following the ideas presented in Section 2.2, specifically at the end, we state and
prove the following proposition.

Proposition 4. The system (3.1) has solution z on [−r, τ] if and only if z is a solution of the
following integral equation

z(t) =



Φ(t, 0)[η(0)− [h(z)](0)− g
(
0, η − h(z)

)
]

+
∫ t

0
Φ(t, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ)

]
dθ + g(t, zt)

+ ∑
0<tk<t

Φ(t, tk)Jk(tk, z(tk)), t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0].

(3.3)
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Proof.
( =⇒ ) Suppose that z is a solution for system (3.1) on [−r, τ]. Let z0 = η(0) −
[h(z)](0). On [0, t1), z is the solution of the system


d
dt
[z(t)− g(t, zt)] = A(t)z(t) + f (t, zt), t ∈ [0, t1),

z(0) = z0

and by the VPF (see (2.27)) we therefore obtain

z(t) = g(t, zt) + Φ(t, 0)[z0 − g
(
0, η − h(z)

)
] +

∫ t

0
Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ

for t ∈ [0, t1). As t → t−1 ,

z(t−1 ) =g(t1, zt1) + Φ(t1, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t1

0
Φ(t1, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ)

]
dθ. (3.4)

In the same way, on [t1, t2) z is the solution of the system


d
dt
[z(t)− g(t, zt)] = A(t)z(t) + f (t, zt), t ∈ [t1, t2),

z(t1) = z(t+1 )

and again the VPF yields

z(t) = g(t, zt) + Φ(t, t1)[z(t1)− g
(
t1, η − h(z)

)
] +

∫ t

t1

Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ

for t ∈ [t1, t2). Now, since z(t+1 ) = z(t−1 ) + J1(t1, z(t1)), we obtain that

z(t) =g(t, zt) + Φ(t, t1)
{

z(t+1 )− g
(
t1, η − h(z)

) }
+
∫ t

t1

Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ

=g(t, zt) + Φ(t, t1)
{

z(t−1 ) + J1(t1, z(t1))− g
(
t1, η − h(z)

) }
+
∫ t

t1

Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ.
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As a consequence of (3.4),

z(t) =g(t, zt) + Φ(t, t1)
{

g(t1, zt1) + Φ(t1, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t1

0
Φ(t1, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + J1(t1, z(t1))

− g
(
t1, η − h(z)

) }
+
∫ t

t1

Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ.

=g(t, zt) + Φ(t, t1)
{

Φ(t1, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t

0
Φ(t1, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + J1(t1, z(t1))

}
+
∫ t

t1

Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ, t ∈ [t1, t2).

Using the cocycle property of Φ yields

z(t) =g(t, zt) + Φ(t, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t1

0
Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + Φ(t, t1)J1(t1, z(t1))

+
∫ t

t1

Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ

=g(t, zt) + Φ(t, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t

0
Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + Φ(t, t1)J1(t1, z(t1)), t ∈ [t1, t2). (3.5)

As t → t−2 ,

z(t−2 ) =g(t2, zt2) + Φ(t2, 0)[z0 − g
(
0, η − h(z)

)
] (3.6)

+
∫ t2

0
Φ(t2, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + Φ(t2, t1)J1(t1, z(t1)). (3.7)

Accordingly, on [t2, t3), z satisfies the system
d
dt
[z(t)− g(t, zt)] = A(t)z(t) + f (t, zt), t ∈ [t2, t3),

z(t2) = z(t+2 )

and once again the VPF gives

z(t) =g(t, zt) + Φ(t, t2)[z(t2)− g
(
t2, η − h(z)

)
]

+
∫ t

t2

Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ, t ∈ [t2, t3).
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In the same way as before, since z(t+2 ) = z(t−2 ) + J2(t2, z(t2)), we have that

z(t) =g(t, zt) + Φ(t, t2)
{

z(t+2 )− g
(
t2, η − h(z)

) }
+
∫ t

t2

Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ

=g(t, zt) + Φ(t, t2)
{

z(t−2 ) + J2(t2, z(t2))− g
(
t2, η − h(z)

) }
+
∫ t

t2

Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ).

By (3.7),

z(t) =g(t, zt) + Φ(t, t2)
{

g(t2, zt2) + Φ(t2, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t2

0
Φ(t2, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + Φ(t2, t1)J1(t1, z(t1)) + J2(t2, z(t2))

− g
(
t2, η − h(z)

) }
+
∫ t

t2

Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ

=g(t, zt) + Φ(t, t2)
{

Φ(t2, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t2

0
Φ(t2, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + Φ(t2, t1)J1(t1, z(t1)) + J2(t2, z(t2))

}
+
∫ t

t2

Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ, t ∈ [t2, t3).

Again, using the cocycle property of Φ yields

z(t) =g(t, zt) + Φ(t, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t2

0
Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + Φ(t, t1)J1(t1, z(t1))

+ Φ(t, t2)J2(t2, z(t2)) +
∫ t

t2

Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ

=g(t, zt) + Φ(t, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t

0
Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ +

2

∑
k=1

Φ(t, tk)Jk(tk, z(tk)), t ∈ [t2, t3).

Proceeding inductively as above, for t ∈ [tp, tp+1) we have that

z(t) =g(t, zt) + Φ(t, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t

0
Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ +

p

∑
k=1

Φ(t, tk)Jk(tk, z(tk)), t ∈ [tp, tp+1).
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Therefore

z(t) =g(t, zt) + Φ(t, 0)[η(0)− [h(z)](0)− g
(
0, η − h(z)

)
]

+
∫ t

0
Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + ∑

0<tk<t
Φ(t, tk)Jk(tk, z(tk)), t ∈ [0, τ].

This shows that z satisfies (3.3).
( ⇐= ) Assume that z is solution of the integral equation (3.3). On the one hand, we
first show that (3.1)3 is satisfied. For doing so, we notice that at t1 we have that

z(t−1 ) =g(t1, zt1) + Φ(t1, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t1

0
Φ(t1, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ,

z(t+1 ) =g(t1, zt1) + Φ(t1, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t1

0
Φ(t1, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + Φ(t1, t1)J1(t1, z(t1))

by (3.4) and taking t → t+1 in (3.5), respectively. Summing up both expressions above
we get that

z(t+1 ) = z(t−1 ) + J1(t1, z(t1))

since (see Proposition 2(i)) Φ(t1, t1) = I. Similarly, at t2 we have that

z(t−2 ) =g(t2, zt2) + Φ(t2, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t2

0
Φ(t2, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + Φ(t2, t1)J1(t1, z(t1)),

z(t+2 ) =g(t2, zt2) + Φ(t2, 0)[z0 − g
(
0, η − h(z)

)
]

+
∫ t2

0
Φ(t2, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + Φ(t2, t1)J1(t1, z(t1))

+ Φ(t2, t2)J2(t2, z(t2)),

which implies that
z(t+2 ) = z(t−2 ) + J2(t2, z(t2)).

Proceeding inductively as above, we get that

z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k ∈ Ip.

On the other hand, differentiating z with respect to t, for t ∈ [0, τ) \ {tk}k∈Ip , we obtain
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that

d
dt
(
z(t)

)
=

d
dt

(
g(t, zt) + Φ(t, 0)

[
z0 − g(0, η − h(z))

]
+
∫ t

0
Φ(t, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ)

]
dθ + ∑

0<tk<t
Φ(t, tk)Jk(tk, z(tk))

)

=
d
dt

g(t, zt) + A(t)Φ(t, 0)[z0 − g
(
0, η − h(z)

)
]

+ A(t)
∫ t

0
Φ(t, θ)[A(θ)g(θ, zθ) + f (θ, zθ)]dθ + A(t)g(t, zt) + f (t, zt)

+ A(t) ∑
0<tk<t

Φ(t, tk)Jk(tk, z(tk)),

where we have used Proposition 2(iii) and the Leibniz product rule to differentiate
the integral term. By rearranging terms it finally follows that

d
dt
[
z(t)− g(t, zt)

]
=A(t)

{
g(t, zt) + Φ(t, 0)

[
z0 − g(0, η − h(z))

]
+
∫ t

0
Φ(t, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ)

]
dθ

+ ∑
0<tk<t

Φ(t, tk)Jk(tk, z(tk))

}
+ f (t, zt)

=A(t)z(t) + f (t, zt),

that is to say, z is a solution of (3.1).

3.1.2 Existence Theorems

In this section we shall prove our main result about the existence and uniqueness of
solutions for the semilinear neutral equation with impulses and nonlocal conditions
(3.1). To achieve this, we consider the following hypotheses1 on the terms involving
the system (3.1).

[H1] There exist positive constants Lg, γ, and dk, k ∈ Ip such that

(i) LgqM < γ + M
p

∑
k=1

dk <
1
2

,

(ii) Jk(t, 0) = 0 and
∥∥Jk(t, y)− Jk(t, z)

∥∥
Rn ≤ dk

∥∥y − z
∥∥

Rn , y, z ∈ Rn, t ∈ [0, τ],

1Each set of hypotheses is independent for each section.
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(iii) h(0) ≡ 0 and

∥∥[h(u)](t)− [h(v)](t)
∥∥

Rn ≤ Lg

q

∑
i=1

∥∥ui(t)− vi(t)
∥∥

Rn , t ∈ [−r, 0], u, v ∈ PWp,

where M is given in Proposition 2(v).

[H2] The function g satisfies

(i)
∥∥A(t)g(t, η1)− A(t)g(t, η2)

∥∥
Rn ≤ K

(∥∥η1
∥∥

r,
∥∥η2
∥∥

r

) ∥∥η1 − η2
∥∥

r, η1, η2 ∈ PWr,

(ii)
∥∥g(t, η1)− g(t, η2)

∥∥
Rn ≤ γ

∥∥η1 − η2
∥∥

r, η1, η2 ∈ PWr,

(iii)
∥∥A(t)g(t, η)

∥∥
Rn ≤ Ψ

(∥∥η
∥∥

r

)
, η ∈ PWr,

(iv)
∥∥g(t, η)

∥∥
Rn ≤ Ψ

(∥∥η
∥∥

r

)
, η ∈ PWr

and f satisfies

(v)
∥∥ f (t, η1)− f (t, η2)

∥∥
Rn ≤ K

(∥∥η1
∥∥

r,
∥∥η2
∥∥

r

) ∥∥η1 − η2
∥∥

r, η1, η2 ∈ PWr,

(vi)
∥∥ f (t, η)

∥∥
Rn ≤ Ψ

(∥∥η
∥∥

r

)
, η ∈ PWr,

where K ∈ C(R+ × R+, R+) and Ψ ∈ C(R+, R+) are non decreasing functions.
Items (i) and (v) are essentially local Lipschitz conditions because for each ball
BR(·) in PWr containing η1 and η2, K(

∥∥η1
∥∥,
∥∥η2
∥∥) is bounded by the constant

value K(∥·∥ + R, ∥·∥ + R). The reason for using these conditions will be evi-
dent when applying our infinite-dimensional results (Chapter 4), which is an
extension of the results in this chapter, to the Burgers equation (4.20).

[H3] There exists ρ > 0 such that

MΨ
(∥∥η

∥∥+ Lgq
(∥∥η̃

∥∥+ ρ
))

+

(
MLgq + M

p

∑
k=1

dk

)(∥∥η̃
∥∥+ ρ

)
+ (2Mτ + 1)Ψ

(∥∥η̃
∥∥+ ρ

)
< ρ,

where η̃ is a function given by

η̃(t) =

{
Φ(t, 0)η(0), t ∈ [0, τ],
η(t), t ∈ [−r, 0].
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[H4] Assume the following relation holds

M
{

Lgq (1 + γ) + 2τK
(∥∥η̃

∥∥+ ρ,
∥∥η̃
∥∥+ ρ

)}
<

1
2

.

Theorem 24. Suppose that [H1],[H2], and [H3] hold. Then, the system (3.1) has at least one
solution in PWp.

Proof. We shall transform the problem of proving the existence of solutions for system
(3.1) into a fixed point problem. For this, we define two operators

Q : PWp × PWp −→ PWp
(z, y) 7−→ Q(z, y)

defined by

[Q(z, y)](t) =


y(t) + g(t, zt) + ∑

0<tk<t
Φ(t, tk)Jk(tk, z(tk)), t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0]

and
P : PWp −→ PWp

y 7−→ P(y)

given by

[P(y)](t) =


Φ(t, 0)[η(0)− [h(y)](0)− g

(
0, η − h(y)

)
]

+
∫ t

0
Φ(t, θ)

[
A(θ)g(θ, yθ) + f (θ, yθ)

]
dθ, t ∈ [0, τ],

η(t), t ∈ [−r, 0].

We also consider the following closed and convex set

D = D(ρ, τ, η) =

{
y ∈ PWp

∣∣∣ ∥y − η̃∥p ≤ ρ

}
. (3.8)

With this setting, the problem of finding solutions for system (3.1) has been reduced
to the problem of finding solutions of the following operator equation

Q
(
z,P(z)

)
= z.

The rest of the proof will be given by steps as follows.

Step 1. P is a continuous mapping.
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For any z, y ∈ PWp and t ∈ [0, τ] let us denote the difference
∥∥[P(z)](t)− [P(y)](t)

∥∥
as Π1. From the definition of P we have that

Π1 ≤
∥∥Φ(t, 0)

∥∥{∥∥[h(y)](0)− [h(z)](0)
∥∥+ ∥∥g

(
0, η − h(y)

)
− g

(
0, η − h(z)

)∥∥}
+
∫ t

0

∥∥Φ(t, θ)
∥∥{∥∥A(θ)g(θ, zθ)− A(θ)g(θ, yθ)

∥∥+ ∥∥ f (θ, zθ)− f (θ, yθ)
∥∥}dθ.

Using Proposition 2(v) and applying hypotheses [H1](iii) and [H2](i)(ii)(v) we obtain
that

Π1 ≤ M
[

Lgq
∥∥z − y

∥∥+ γ
∥∥h(z)− h(y)

∥∥]
+ Mτ

[
K(∥z∥,

∥∥y
∥∥)∥∥z − y

∥∥+K(∥z∥,
∥∥y
∥∥)∥∥z − y

∥∥]
≤ M

[
Lgq
∥∥z − y

∥∥+ γLgq
∥∥z − y

∥∥]+ 2MτK(∥z∥,
∥∥y
∥∥)∥∥z − y

∥∥.

It follows that∥∥P(z)−P(y)
∥∥

p ≤ M
{

Lgq (1 + γ) + 2τK
(
∥z∥,

∥∥y
∥∥)} ∥∥z − y

∥∥
p

by taking supremum over t ∈ [−r, τ]. Hence P is locally Lipschitz, which implies the
continuity of P .

Step 2. P maps bounded sets of PWp into bounded sets of PWp.

In order to prove this statement, we will show that

∀R > 0, ∃ζ > 0, ∀y ∈ BR :
∥∥P(y)

∥∥
p ≤ ζ,

where BR = {y ∈ PWp :
∥∥y
∥∥

p ≤ R}. Let R > 0 and consider ζ = max{ξ,
∥∥η
∥∥}, where

ξ is a positive constant to be determined later. Let y ∈ BR. Then, on the one hand, we
have that ∥∥[P(y)](t)

∥∥ =
∥∥η(t)

∥∥ ≤
∥∥η
∥∥,

if t ∈ [−r, 0]. While, on the other hand,∥∥[P(y)](t)
∥∥ ≤

∥∥Φ(t, 0)
∥∥∥∥η(0)− [h(y)](0)− g(0, η − h(y))

∥∥
+
∫ t

0

∥∥Φ(t, θ)
∥∥ [∥∥A(θ)g(θ, yθ)

∥∥+ ∥∥ f (θ, yθ)
∥∥] dθ

≤ M
{∥∥η(0)

∥∥+ ∥∥[h(y)](0)∥∥+ ∥∥g(0, η − h(y))
∥∥}

+ M
∫ t

0

[
Ψ(
∥∥yθ

∥∥) + Ψ(
∥∥yθ

∥∥)] dθ

≤ M
{∥∥η(0)

∥∥+ Lgq
∥∥y
∥∥+ Ψ

(∥∥η − h(y)
∥∥) }+ τM2Ψ(

∥∥y
∥∥)

≤ M
{∥∥η(0)

∥∥+ Lgq
∥∥y
∥∥+ Ψ

(∥∥η
∥∥+ ∥∥h(y)

∥∥) }+ τM2Ψ(
∥∥y
∥∥)

≤ M
{∥∥η(0)

∥∥+ Lgq
∥∥y
∥∥+ Ψ

(∥∥η
∥∥+ Lgq

∥∥y
∥∥) }+ τM2Ψ(

∥∥y
∥∥)

≤ M
{∥∥η(0)

∥∥+ LgqR + Ψ
(∥∥η

∥∥+ LgqR
)
+ τ2Ψ(R)

}
= ξ
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if t ∈ [0, τ]. Here we have used [H1](iii) and [H2](iii)(iv)(vi). Now, taking supremum
over t ∈ [−r, τ], we have that ∥∥P(y)

∥∥ ≤ ζ.

Step 3. P maps bounded sets of PWp into equicontinuous sets of PWp.

Let us consider BR as above and let us show that P(BR) is equicontinuous on
[−r, τ]. On [−r, 0], the continuity of η immediately implies the result. Let us denote
the difference

∥∥[P(y)](s1)− [P(y)](s2)
∥∥ as Π2 for s1, s2 ∈ (0, τ]. From the definition

of P we have that

Π2 ≤
∥∥Φ(s1, 0)− Φ(s2, 0)

∥∥∥∥η(0)− [h(y)](0)− g
(
0, η − h(y)

)∥∥
+
∫ s2

0

∥∥Φ(s1, θ)− Φ(s2, θ)
∥∥∥∥A(θ)g(θ, yθ) + f (θ, yθ)

∥∥dθ

+
∫ s1

s2

∥∥Φ(s1, θ)
∥∥∥∥A(θ)g(θ, yθ) + f (θ, yθ)

∥∥dθ

≤
∥∥Φ(s1, 0)− Φ(s2, 0)

∥∥{∥∥η(0)
∥∥+ Lgq

∥∥y
∥∥+ ∥∥g

(
0, η − h(y)

)∥∥}
+
∫ s2

0

∥∥Φ(s1, θ)− Φ(s2, θ)
∥∥ [∥∥A(θ)g(θ, yθ)

∥∥+ ∥∥ f (θ, yθ)
∥∥] dθ

+
∫ s1

s2

∥∥Φ(s1, θ)
∥∥ [∥∥A(θ)g(θ, yθ)

∥∥+ ∥∥ f (θ, yθ)
∥∥] dθ

≤
∥∥Φ(s1, 0)− Φ(s2, 0)

∥∥{∥∥η(0)
∥∥+ Lgq

∥∥y
∥∥+ Ψ

(∥∥η
∥∥+ Lgq

∥∥y
∥∥) }

+ 2Ψ
(∥∥y

∥∥) ∫ s2

0

∥∥Φ(s1, θ)− Φ(s2, θ)
∥∥dθ + 2MΨ

(∥∥y
∥∥) (s1 − s2)

≤
∥∥Φ(s1, 0)− Φ(s2, 0)

∥∥{∥∥η(0)
∥∥+ LgqR + Ψ

(∥∥η
∥∥+ LgqR

) }
+ 2Ψ (R)

∫ s2

0

∥∥Φ(s1, θ)− Φ(s2, θ)
∥∥dθ + 2MΨ (R) (s1 − s2) → 0

as s1 → s2 by the continuity of Φ (see Proposition 2(iv)) and the fact that
∥∥η(0)

∥∥+
LgqR + Ψ

(∥∥η
∥∥+ LgqR

)
is bounded. Here we have considered [H2](iii)(iv)(vi) and

[H1](iii). This shows that P(BR) is equicontinuous since the convergence to zero is
independent of y (see Definition 10).

Let D be as in (3.8) for the subsequent steps.

Step 4. The subset P(D) is relatively compact in PWp.

Let D be a bounded subset of PWp. By Steps 2 and 3, P(D) is bounded and
equicontinuous in PWp. Let

(
yn
)

n∈N
⊆ P(D), then

yn|[−r,0] = η, ∀n ∈ N

Hence, yn|[−r,0] converges uniformly on [−r, 0].
Now, putting φn = yn|[0,τ], we get that (φn)n∈N ⊆ PWτ. Let us put t0 = 0 and

tp+1 = τ. Then, applying Arzelà-Ascoli Theorem 4, the sequence (φn)n∈N contains
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a subsequence (φ1
n)n∈N that converges in the interval [t0, t1]. Now, applying Arzelà-

Ascoli Theorem 4 again, we get that the sequence (φ1
n)n∈N contains a subsequence

(φ2
n)n∈N that converges in the interval [t1, t2]. Continuing with this process we find

a subsequence (φ
p+1
n )n∈N of (φn)n∈N that converges in each interval [tk, tk+1], with

k ∈ Ip. Therefore, φ
p+1
n = yp+1

n |[0,τ] converges on [0, τ]. Consequently, (φ
p+1
n )n∈N =

(yp+1
n )n∈N converges uniformly on [−r, τ]. Thus, P(D) is relatively compact, and the

proof of Step 4 is complete.

Step 5. The family
{
Q(·, y) : y ∈ P(D)

}
is equicontractive.

On the one hand, for any u, v ∈ PWp and t ∈ [−r, 0] we get that∥∥[Q(u,P(y))](t)− [Q(v,P(y))](t)
∥∥ ≤

∥∥[h(u)](t)− [h(v)](t)
∥∥

≤ Lgq∥u − v∥
≤ MLgq∥u − v∥.

While on the other hand, by using [H1](ii) and [H2](ii), for all t ∈ (0, τ] we obtain that∥∥[Q(u,P(y))](t)− [Q(v,P(y))](t)
∥∥ ≤

∥∥g(t, ut)− g(t, vt)
∥∥

+ ∑
0<tk<t

∥∥Φ(t, tk)
[

Jk(tk, u(tk))− Jk(tk, v(tk))
]∥∥

≤ γ∥u − v∥+ M
p

∑
k=1

∥∥Jk(tk, u(tk))− Jk(tk, v(tk))
∥∥

≤ γ∥u − v∥+ M
p

∑
k=1

dk
∥∥u(tk)− v(tk)

∥∥
≤ γ∥u − v∥+ M∥u − v∥

p

∑
k=1

dk

≤
(

γ + M
p

∑
k=1

dk

)
∥u − v∥.

It follows that

∥∥Q(u,P(y))−Q(v,P(y))
∥∥ ≤

(
γ + M

p

∑
k=1

dk

)
∥u − v∥ ≤ 1

2
∥u − v∥

by taking supremum over t ∈ [−r, τ] and using [H1](i). This shows that Q(·,P(y)) is
a contraction which does not depend on y ∈ P(D).

Let us consider the operator H = Q
(
·,P(·)

)
for the next step.

Step 6. The inclusion H (D) ⊂ D holds.
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Let z be a generic element in D. We have to prove that H(z) ∈ D. By (3.8), this is
equivalent to prove that ∥H(z)− η̃∥ ≤ ρ. For that purpose, from the definition of Q
and P , we notice that [H(z)](t) can be written as

[H(z)](t) =



Φ(t, 0)
[
η(0)− [h(z)](0)− g(0, η − h(z))

]
+
∫ t

0
Φ(t, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ)

]
dθ + g(t, zt)

+ ∑
0<tk<t

Φ(t, tk)Jk(tk, z(tk)), t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0],

which is exactly Equation (3.3).
Now, let us consider the difference ∥[H(z)](t)− η̃(t)∥ and denote it as Π3. On the

one hand, for t ∈ [−r, 0], we have that

Π3 ≤
∥∥[h(z)](t)∥∥ ≤ Lgq∥z∥ ≤ MLgq∥z∥ ≤ MLgq

(∥∥η̃
∥∥+ ρ

)
< ρ

by [H1](iii) and [H3]. While on the other hand, for t ∈ [0, τ], we have that

Π3 ≤ M
∥∥[h(z)](0)− g(0, η − h(z))

∥∥
+
∫ t

0

∥∥Φ(t, θ)
[
A(θ)g(θ, zθ) + f (θ, zθ)

]∥∥dθ +
∥∥g(t, zt)

∥∥
+ ∑

0<tk<t

∥∥Φ(t, tk)Jk(tk, z(tk))
∥∥

≤ M
{

Lgq∥z∥+
∥∥g(0, η − h(z))

∥∥}
+ 2MτΨ(∥z∥) + Ψ(∥z∥) + M ∑

0<tk<t

∥∥Jk(tk, z(tk))
∥∥

≤ M
{

Lgq∥z∥+ Ψ
(∥∥η

∥∥+ Lgq∥z∥
)}

+ 2MτΨ(∥z∥) + Ψ(∥z∥) +
(

M
p

∑
k=1

dk

)
∥z∥

≤ M

{
Lgq

(∥∥η̃
∥∥+ ρ

)
+ Ψ

(∥∥η̃
∥∥+ Lgq

(∥∥η̃
∥∥+ ρ

))}

+ 2MτΨ
(∥∥η̃

∥∥+ ρ
)
+ Ψ

(∥∥η̃
∥∥+ ρ

)
+

(
M

p

∑
k=1

dk

)(∥∥η̃
∥∥+ ρ

)
≤ MΨ

(∥∥η̃
∥∥+ Lgq

(∥∥η̃
∥∥+ ρ

))
+

(
MLgq + M

p

∑
k=1

dk

)(∥∥η̃
∥∥+ ρ

)
+ (2Mτ + 1)Ψ

(∥∥η̃
∥∥+ ρ

)
< ρ.
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Here we have used [H1](ii)(iii), [H2](iii)(iv)(vi), and [H3]. Now, by taking supremum
over t ∈ [−r, τ], we get that

∥H(z)− η̃∥ ≤ ρ.

By the arbitrariness of z ∈ D, we therefore conclude that H(z) ∈ D.
Finally, taking into account Steps 1, 4, 5, and 6 we note that the hypotheses of

Theorem 7 are satisfied and therefore we conclude that the operator equation

H(z) = z

admits a solution on D. This finishes the proof of Theorem 24.

Theorem 25. System (3.1) has a unique solution if [H4] is additionally assumed.

Proof. Suppose u and v are two solutions of system (3.1). Now, considering [H1] and
[H2] we have that∥∥u(t)− v(t)

∥∥ ≤
∥∥Φ(t, 0)

∥∥∥∥[h(u)](0)− [h(v)](0)
∥∥

+
∥∥Φ(t, 0)

∥∥∥∥g
(
0, η − h(u)

)
− g

(
0, η − h(v)

)∥∥
+
∫ t

0

∥∥Φ(t, θ)
∥∥∥∥A(θ)g(θ, uθ)− A(θ)g(θ, vθ)

∥∥dθ

+
∫ t

0

∥∥Φ(t, θ)
∥∥∥∥ f (θ, uθ)− f (θ, vθ)

∥∥dθ +
∥∥g(t, ut)− g(t, vt)

∥∥
+ ∑

0<tk<t

∥∥Φ(t, tk)
∥∥∥∥Jk(tk, u(tk))− Jk(tk, v(tk))

∥∥
≤ M

{
Lgq (1 + γ) + 2τK (∥u∥, ∥v∥)

}
∥u − v∥+

(
γ + M

p

∑
k=1

dk

)
∥u − v∥

≤ M
{

Lgq (1 + γ) + 2τK
(∥∥η̃

∥∥+ ρ,
∥∥η̃
∥∥+ ρ

)}
∥u − v∥+ 1

2
∥u − v∥

Bearing in mind the hypothesis [H4], and taking supremum over t ∈ [−r, τ] we get
that

∥u − v∥ ≤ ω∥u − v∥

with 0 ≤ ω < 1. This implies ∥u − v∥ = 0, and therefore u = v.

3.2 Controllability results

This section is devoted to prove that, under certain conditions on the nonlinear terms,
the controllability of the associated ordinary differential equation to a semilinear neu-
tral differential equations with impulses, delay and nonlocal conditions is robust. To
be more specific, we give a sufficient condition for the exact controllability of the
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following neutral differential equation with impulses, delay and nonlocal conditions
d
dt
[
z(t)− g(t, zt)

]
= A(t)z(t) + B(t)u(t) + f (t, zt, u(t)), t ∈ [0, τ] \ {tk}k∈Ip

z(θ) = −[h(z)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k ∈ Ip,
(3.9)

where B(t) is a n × m continuous matrix, f : [0, τ]× PWr × Rm −→ Rn is a suitable
function to be specified later, the control function u belongs to the space C([0, τ], Rm),
and the remaining terms satisfy the same conditions as in system (3.1).

3.2.1 Exact controllability using the Rothe’s fixed point theorem

In this section, we present our controllability result for system (3.9). For doing so, we
need to impose the following hypotheses on system (2.28) and the nonlinear terms in
system (3.9).

[h1] The system (2.28) is controllable on [0, τ].

[h2] The nonlinear terms in system (3.9) are globally Lipschitz, i.e.,

(i)
∥∥h(z)− h(w)

∥∥
r ≤ Lg∥z − w∥qp, z, w ∈ PWqp,

(ii)
∥∥g(t, η)− g(t, ψ)

∥∥
Rn ≤ L−1

∥∥η − ψ
∥∥

r, η, ψ ∈ PWr, t ∈ [0, τ],

(iii) ∥ f (t, η, u)− f (t, ψ, v)∥Rn ≤ L1

{∥∥η − ψ
∥∥

r + ∥u − v∥Rm

}
, η, ψ ∈ PWr, u, v ∈

Rm, t ∈ [0, τ],

(iv) ∥Jk(t, z)− Jk(t, w)∥Rn ≤ dk∥z − w∥Rn , z, w ∈ Rn, t ∈ [0, τ].

For all bounded set B in PWp there exists a continuous function ρ : [0, τ] → R+

depending on B such that ρ(0) = 0, and for all z ∈ B we have that

(v) ∥g(t2, zt2)− g(t1, zt1)∥Rn ≤ ρ
(
|t2 − t1|

)
∥z∥p, t2, t1 ∈ [0, τ],

(vi) ∥[h(z)](t2)− [h(z)](t1)∥Rn ≤ ρ
(
|t2 − t1|

)
∥z∥pq, t2, t1 ∈ [−r, 0].

[h3] (i) ∥ f (t, η, u)∥Rn ≤ a0
∥∥η(−r)

∥∥α0
Rn + ∥u∥β0

Rm + c0, η ∈ PWr, t ∈ [0, τ],

(ii) ∥Jk(t, z)∥Rn ≤ ak∥z∥αk
Rn + ck, k ∈ Ip, z ∈ Rn, t ∈ [0, τ],

(iii)
∥∥h(z)

∥∥
r ≤ e∥z∥η1

qp, z ∈ PWqp,

(iv) ∥g(t, η)∥ ≤ ∥η(−r)∥ω1
Rn , η ∈ PWr, t ∈ [0, τ],
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where 0 ≤ αk < 1, k ∈ Ip ∪ {0}, 0 ≤ β0 < 1, 0 ≤ ω1 < 1, and 0 ≤ η1 < 1.

Remark 6. Obviously, every bounded and globally Lipschitz function chosen conveniently,
satisfies the hypotheses [h2] and [h3].

By Section 3.1, we know that for all η ∈ PWr and u ∈ C([0, τ], Rm) the system (3.9)
admits one solution z(t) = z(t, η, u) given by

z(t) =



Φ(t, 0)[η(0)− [h(z)](0)− g(0, η − h(z))]

+ g(t, zt) +
∫ t

0
Φ(t, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ, u(θ))

]
dθ

+
∫ t

0
Φ(t, θ)B(θ)u(θ)dθ + ∑

0<tk<t
Φ(t, tk)Jk(tk, z(tk)), t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0].

(3.10)

Now, let us suppose for a moment that system (3.9) is exactly controllable. That is to
say (see Definition 14), for all η ∈ PWr and z1 ∈ Rn there exists u ∈ C([0, τ], Rm) (see
Lemma 3) such that the corresponding solution z(t) = z(t, η, u) of (3.9) satisfies

z(0) + [h(z)](0) = η(0) and z(τ) = z1,

i.e.,

z1 = Φ(τ, 0)
[
η(0)− [h(z)](0)− g(0, η − h(z))

]
+ g(τ, zτ) +

∫ τ

0
Φ(τ, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ, u(θ))

]
dθ

+
∫ τ

0
Φ(τ, θ)B(θ)u(θ)dθ + ∑

0<tk<τ

Φ(τ, tk)Jk(tk, z(tk)). (3.11)

Recognizing the second integral of the right hand side in (3.11) as the controllability
operator given in Definition 16 we can write

Cu =z1 − Φ(τ, 0)
[
η(0)− [h(z)](0)− g(0, η − h(z))

]
− g(τ, zτ)−

∫ τ

0
Φ(τ, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ, u(θ))

]
dθ

− ∑
0<tk<τ

Φ(τ, tk)Jk(tk, z(tk)).

Then
u(t) = B∗(t)Φ∗(τ, t)W−1L(z, u), t ∈ [0, τ],

where W is the Gramian operator (see Definition 16) and

L : PWp × C([0, τ], Rm) −→ Rn

(z, u) 7−→ L(z, u)
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is an operator given by

L(z, u) =z1 − Φ(τ, 0)
[
η(0)− [h(z)](0)− g(0, η − h(z))

]
− g(τ, zτ)−

∫ τ

0
Φ(τ, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ, u(θ))

]
dθ

− ∑
0<tk<τ

Φ(τ, tk)Jk(tk, z(tk)).

Next, we consider the operator

Ω : PWp × C([0, τ], Rm) −→ PWp × C([0, τ], Rm)

(z, u) 7−→ Ω(z, u) =
(
Ω1(z, u), Ω2(z, u)

)
,

where
Ω1 : PWp × C([0, τ], Rm) −→ PWp

(z, u) 7−→ Ω1(z, u)

is defined by

[Ω1(z, u)](t) =



Φ(t, 0)[η(0)− [h(z)](0)− g(0, η − h(z))]

+
∫ t

0
Φ(t, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ, u(θ))

]
dθ

+
∫ t

0
Φ(t, θ)B(θ)u(θ)dθ + g(t, zt)

+ ∑
0<tk<t

Φ(t, tk)Jk(tk, z(tk)), t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0]

and
Ω2 : PWp × C([0, τ], Rm) −→ C([0, τ], Rm)

(z, u) 7−→ Ω2(z, u)

is given by
[Ω2(z, u)](t) = B∗(t)Φ∗(τ, t)W−1L(z, u), t ∈ [0, τ].

Taking into account the discussion above, the following proposition is now obvious.

Proposition 5. System (3.9) is controllable if and only if the operator Ω has a fixed point, i.e.,

∃(z, u) ∈ PWp × C([0, τ], Rm) : Ω(z, u) = (z, u).

Now we are in position to present the main theorem of this section.

Theorem 26. Suppose conditions [h1], [h2] and [h3] hold. Then, the semilinear neutral
differential equation (3.9) is also controllable on [0, τ]. Moreover, for η ∈ PWr and z1 ∈ Rn
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there exists u ∈ C([0, τ], Rm) such that the corresponding solution z(t) = z(t, η, u) of (3.9)
satisfies

z1 =Φ(τ, 0)
[
η(0)− [h(z)](0)− g(0, η − h(z))

]
+ g(τ, zτ) +

∫ τ

0
Φ(τ, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ, u(θ))

]
dθ

+
∫ τ

0
Φ(τ, θ)B(θ)u(θ)dθ + ∑

0<tk<τ

Φ(τ, tk)Jk(tk, z(tk))

and
u(t) = B∗(t)Φ∗(τ, t)W−1L(z, u), t ∈ [0, τ].

Proof. The proof of this theorem will be given by steps.

Step 1. The operator Ω is continuous.

It is enough to prove that the operators Ω1 and Ω2 are continuous.
On the one hand, the continuity of Ω1 is proved as follows.

For t ∈ [0, τ], we get∥∥[Ω1(z, u)](t)− [Ω1(w, v)](t)
∥∥ ≤ N1∥z − w∥+ N2∥u − v∥,

where

N1 = M
[

Lg + L−1Lg + L−1 + τL−1∥A∥+ L1τ + d
]

N2 = Mτ [L1 + ∥B∥]

with d = ∑
0<tk<t

dk, ∥B∥ = sup
θ∈[0,τ]

∥∥B(θ)
∥∥, and ∥A∥ = sup

θ∈[0,τ]

∥∥A(θ)
∥∥.

For t ∈ [−r, 0] we have that∥∥[Ω1(z, u)](t)− [Ω1(w, v)](t)
∥∥ ≤ Lg∥z − w∥.

These two inequalities imply the continuity of Ω1.
On the other hand, the continuity of Ω2 follows from the continuity of B, Φ, and

L.

Step 2. The operator Ω maps bounded sets of PWp × C([0, τ], Rm) into equicontinuous sets
of PWp × C([0, τ], Rm).

In fact, let D be a bounded set of PWp × C([0, τ], Rm), and consider the following
inequalities.
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On the one hand, for 0 < t1 < t2 < τ and (z, u) ∈ D we get

∥∥[Ω1(z, u)](t2)− [Ω1(z, u)](t1)
∥∥ ≤

∥∥Φ(t2, 0)− Φ(t1, 0)
∥∥[∥∥η(0)

∥∥+∥∥h(z)
∥∥

+
∥∥g(0, η − h(z))

∥∥]
+
∫ t1

0

∥∥Φ(t2, θ)− Φ(t1, θ)
∥∥∥∥B(θ)

∥∥∥∥u(θ)
∥∥dθ

+
∫ t2

t1

∥∥Φ(t2, θ)
∥∥∥∥B(θ)

∥∥∥∥u(θ)
∥∥dθ

+ρ
(
|t2 − t1|

)
∥z∥+

∥∥Φ(t2, θ)− Φ(t1, θ)
∥∥

×
(∫ t1

0

∥∥A(θ)g(θ, zθ) + f (θ, zθ, u(θ))
∥∥dθ

)
+
∫ t2

t1

∥∥Φ(t2, θ)
∥∥∥∥A(θ)g(θ, zθ)+ f (θ, zθ, u(θ))

∥∥dθ

+ ∑
0<tk<t1

∥∥Φ(t2, tk)− Φ(t1, tk)
∥∥∥∥Jk(tk, z(tk))

∥∥
+ ∑

t1<tk<t2

∥∥Φ(t2, tk)
∥∥∥∥Jk(tk, z(tk))

∥∥.

For −r < t1 < t2 < 0, we have that

∥∥[Ω1(z, u)](t2)− [Ω1(z, u)](t1)
∥∥ ≤

∥∥η(t2)− η(t1)
∥∥ +∥∥[h(z)](t2)− [h(z)](t1)

∥∥
≤
∥∥η(t2)− η(t1)

∥∥+ ρ
(
|t2 − t1|

)
∥z∥p.

Since
∥∥Φ(t2, θ)− Φ(t1, θ)

∥∥ → 0, ρ
(
|t2 − t1|

)
→ 0 as t1 → t2 and the above inequali-

ties, we obtain that Ω1(D) is equicontinuous.
On the other hand, for 0 < t1 < t2 < τ and (z, u) ∈ D, the following estimate

holds.

∥∥[Ω2(z, u)](t2)− [Ω2(z, u)](t1)
∥∥ ≤

∥∥∥W−1L(z, u)
∥∥∥∥∥B∗(t2)Φ

∗(τ, t2)−B∗(t1)Φ
∗(τ, t1)

∥∥
Analogously, since

∥∥B∗(t2)Φ
∗(τ, t2)− B∗(t1)Φ

∗(τ, t1)
∥∥ → 0 as t2 → t1 and L(z, u) is

bounded in D, we get that Ω2(D) is equicontinuous.

Step 3. The set Ω(D) is relatively compact on PWp × C([0, τ], Rm).

Indeed, since the functions g, f , h, and Jk are smooth enough, there exist positive
constants M1, M2, M3, M4, and M−1 such that for all (z, u) ∈ D and all t ∈ [−r, τ] we
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have that ∥∥g(t, zt)
∥∥ ≤ M−1,∥∥ f (t, zt, u(t))
∥∥ ≤ M1,∥∥∥W−1L(z, u)
∥∥∥ ≤ M2,∥∥h(z)
∥∥ ≤ M3,∥∥Jk(t, z(t))
∥∥ ≤ M4.

Hence Ω(D) is bounded.
Now, let

{
φi = (φi1, φi2) : i ∈ N

}
be a sequence in Ω(D) ⊂ PWp × C([0, τ], Rm).

Since (φi2)i∈N is a sequence in Ω2(D) ⊂ C([0, τ], Rm), which is uniformly bounded
and equicontinuous, we can apply the Arzelà-Ascoli theorem directly to ensure the
existence of a convergent subsequence of (φi2)i∈N that, without loss of generality, we
can keep calling (φi2)i∈N.

On the other hand, we consider the sequence (φi1)i∈N, which is in Ω1(D) ⊂ PWp.
Since Ω1(D) is a uniformly bounded and equicontinuous family, on [−r, t1], there
exists a convergent subsequence (φ1

i1)i∈N ⊆ (φi1)i∈N by applying the Arzelà-Ascoli
theorem again. Now, consider (φ1

i1)i∈N on [t1, t2]. Then (φ1
i1)i∈N has a convergent sub-

sequence (φ2
i1)i∈N on [t1, t2]. Continuing with this process the subsequence (φ

p+1
i1 )i∈N

converges uniformly on each interval [−r, t1], [t1, t2], . . . , [tp, τ]. Therefore, the subse-
quence {φ

p+1
i = (φ

p+1
i1 , φ

p+1
i2 ) : i ∈ N} of (φi)i∈N is uniformly convergent. Hence

Ω(D) is compact, i.e., Ω(D) is relatively compact.

Step 4. The operator Ω satisfies the following condition.

lim
|||(z,u)|||→∞

|||Ω(z, u)|||
|||(z, u)||| = 0,

where

|||(z, u)||| = ∥z∥+ ∥u∥

is the norm in the Banach space PWp × C([0, τ], Rm).

From the definition of L,

∥L(z, u)∥ ≤∥z1∥+ ∥Φ(τ, 0)∥∥η(0)− [h(z)](0)− g(0, η − h(z))∥

+ ∥g(τ, zτ)∥+
∫ τ

0
∥Φ(τ, θ)∥∥A(θ)g(θ, zθ) + f (θ, zθ, u(θ))∥dθ

+ ∑
0<tk<τ

∥Φ(τ, tk)∥∥Jk(tk, z(tk))∥.
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Hypotheses [h2] and [h3] imply that

∥L(z, u)∥ ≤∥z1∥+ M∥η(0)∥+ M
[
e∥z∥η1 + 2ω1∥η∥ω1 + 2ω1eω1∥z∥ω1η1

]
+ ∥z∥ω1 + Mτ

[
∥A∥∥z∥ω1 + a0∥z∥α0 + ∥u∥β0 + c0

]
+ M ∑

0<tk<τ

[
ak∥z∥αk + ck

]
≤K + M

[
e∥z∥η1 + 2ω1eω1∥z∥ω1η1

]
+ ∥z∥ω1

+ Mτ
[
∥A∥∥z∥ω1 + a0∥z∥α0 + ∥u∥β0

]
+ M ∑

0<tk<τ

[
ak∥z∥αk

]
,

where K = ∥z1∥+ M
[
∥η(0)∥+ 2ω1∥η∥ω1 + τc0 + ∑0<tk<τ ck

]
. As consequence of (2.2)

and (2.30), we obtain∥∥[Ω2(z, u)](t)
∥∥ ≤ ∥B∗(t)∥∥Φ∗(τ, t)∥W−1L(z, u)∥ ≤ ∥B(t)∥∥Φ(τ, t)∥γ−1∥L(z, u)∥.

Hence,∥∥[Ω2(z, u)](t)
∥∥ ≤∥B∥Mγ−1K + ∥B∥M2γ−1 [e∥z∥η1 + 2ω1eω1∥z∥ω1η1

]
+ ∥B∥Mγ−1∥z∥ω1

+ ∥B∥M2γ−1τ
[
∥A∥∥z∥ω1 + a0∥z∥α0 + ∥u∥β0

]
+ ∥B∥M2γ−1 ∑

0<tk<τ

ak∥z∥αk . (3.12)

Likewise,∥∥[Ω1(z, u)](t)
∥∥ ≤M∥η(0)∥+ M

[
e∥z∥η1 + 2ω1∥η∥ω1 + 2ω1eω1∥z∥ω1η1

]
+ ∥z∥ω1 + Mτ

[
∥A∥∥z∥ω1 + a0∥z∥α0 + ∥u∥β0 + c0

]
+ M2τ∥B∥2γ−1∥L(z, u)∥+ M ∑

0<tk<τ

[
ak∥z∥αk + ck

]
≤K0 + K1

(
M∥η(0)∥+ M

[
e∥z∥η1 + 2ω1∥η∥ω1 + 2ω1eω1∥z∥ω1η1

]
+ ∥z∥ω1

+ Mτ
[
∥A∥∥z∥ω1 + a0∥z∥α0 + ∥u∥β0 + c0

]
+ M ∑

0<tk<τ

[
ak∥z∥αk + ck

] )
,

(3.13)

where K0 = M2τ∥B∥2γ−1∥z1∥ and K1 = M2τ∥B∥2γ−1 + 1. Let K2 = K1 + ∥B∥Mγ−1.
Then, by (3.12) and (3.13),

|||Ω(z, u)||| =
∥∥Ω1(z, u)

∥∥+ ∥∥Ω2(z, u)
∥∥

≤K3 + K4∥z∥ω1 + K5∥z∥ω1η1 + K6∥z∥η1+

K7∥z∥α0 + K8∥u∥β0 + K9 ∑
0<tk<τ

ak∥z∥αk ,

Mathematician 55 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

where

K3 = K0 + M
[
K1

(
∥η(0)∥+ τc0 + ∑

0<tk<τ

ck + 2ω1∥η∥ω1
)
+ ∥B∥γ−1K

]
,

K4 = K1 + ∥B∥Mγ−1 + K1Mτ∥A∥+ ∥B∥M2γ−1τ∥A∥, K5 = M2ω1eω1K2,

and

K6 = MeK2, K7 = Mτa0K2, K8 = MτK2, K9 = MK2.

Consequently,

|||Ω(z, u)|||
|||(z, u)||| =

∥∥Ω1(z, u)
∥∥+ ∥∥Ω2(z, u)

∥∥
∥z∥+ ∥u∥

≤ K3

∥z∥+ ∥u∥ + K4∥z∥ω1−1 + K5∥z∥ω1η1−1 + K6∥z∥η1−1+

K7∥z∥α0−1 + K8∥u∥β0−1 + K9 ∑
0<tk<τ

ak∥z∥αk−1,

whence

lim
|||(z,u)|||→∞

|||Ω(z, u)|||
|||(z, u)||| = 0.

Step 5. The operator Ω has at least one fixed point.

Actually, by the previous step, we have that for 0 < ρ < 1 there exists R > 0 such
that

|||Ω(z, u)|||
|||(z, u)||| < ρ if |||(z, u)||| ≥ R.

Therefore, if |||(z, u)||| = R, then |||Ω(z, u)||| ≤ ρ|||(z, u)||| ≤ ρR < R. This implies that

Ω
(
∂B(0, R)

)
⊂ B(0, R),

where B(0, R) is the closed ball of radius R centered at zero. The foregoing Steps 1,
2, 3, and 4 together with Theorem 8 allow us to conclude that there exists (z, u) ∈
PWp × C([0, τ], Rm) such that

Ω(z, u) = (z, u).

By Proposition 5 and Step 5, the system (3.9) is exactly controllable on [0, τ]. Further-
more,

u(t) = B∗(t)Φ∗(τ, t)W−1L(z, u)

and

z1 =Φ(τ, 0)
[
η(0)− [h(z)](0)− g(0, η − h(z))

]
+ g(τ, zτ) +

∫ τ

0
Φ(τ, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ, u(θ))

]
dθ

+
∫ τ

0
Φ(τ, θ)B(θ)u(θ)dθ + ∑

0<tk<t
Φ(τ, tk)Jk(tk, z(tk)).

This finishes the proof.
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3.2.2 Exact Controllability using the Banach contraction theorem

In this subsection, we will use the Banach contraction theorem to study the exact
controllability of the following system

d
dt
[
z(t)− g(t, zt)

]
= A(t)z(t) + B(t)u(t) + f (t, zt), t ∈ [0, τ] \ {tk}k∈Ip

z(θ) = −[h(z)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k ∈ Ip,

(3.14)

which admits a solution given by

z(t) =



Φ(t, 0)[η(0)− [h(z)](0)− g(0, η − h(z))]

+ g(t, zt) +
∫ t

0
Φ(t, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ)

]
dθ

+
∫ t

0
Φ(t, θ)B(θ)u(θ)dθ + ∑

0<tk<t
Φ(t, tk)Jk(tk, z(tk)), t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0].

(3.15)

We impose the following assumptions.

[A1] The system (2.28) is exactly controllable on [0, τ].

[A2] There exists constants dk, Lg > 0, k = 1, 2, . . . , p such that

(i)
∥∥Jk(t, y)− Jk(t, z)

∥∥
Rn ≤ dk

∥∥y − z
∥∥

Rn , y, z ∈ Rn, t ∈ [0, τ],

(ii)
∥∥[h(y)](t)− [h(v)](t)

∥∥
Rn ≤ Lg

q

∑
i=1

∥∥yi(t)− vi(t)
∥∥

Rn , y, v ∈ PWqp.

[A3] The function g satisfies

(i)
∥∥g(t, η1)− g(t, η2)

∥∥
Rn ≤ L−1

∥∥η1 − η2
∥∥

r, η1, η2 ∈ PWr,

and f satisfies

(ii)
∥∥ f (t, η1)− f (t, η2)

∥∥
Rn ≤ L1

∥∥η1 − η2
∥∥

r, η1, η2 ∈ PWr.

The following notations are introduced for convenience.

∥B∥∞ = sup
θ∈[0,τ]

∥B(θ)∥, ∥S∥ = sup
θ∈[0,τ]

∥B∗(θ)Φ∗(τ, θ)W−1∥, M1 = M sup
θ∈[0,τ]

∥A(θ)∥,

M2 = L−1 + LgMq + LgL−1Mq + M1L−1τ + ML1τ + MT, and T =
q

∑
k=1

dk.
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Lemma 4. If [A1], [A2], and [A3] hold, then the control function

u(t) = B∗(t)Φ∗(τ, t)W−1N(z) = C∗(CC∗)−1N(z) = SN(z), t ∈ [0, τ], (3.16)

transfer the system (3.14) from the initial state to z1 at time τ, where W is the Gramian
operator (see Definition 16) and

N : C([0, τ], Rm) −→ Rn

z 7−→ N(z)

is an operator given by

N(z) =z1 − Φ(τ, 0)
[
η(0)− [h(z)](0)− g(0, η − h(z))

]
− g(τ, zτ)−

∫ τ

0
Φ(τ, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ)

]
dθ

− ∑
0<tk<τ

Φ(τ, tk)Jk(tk, z(tk)).

Proof. Evaluating (3.15) at τ we obtain

z(τ) =Φ(τ, 0)[η(0)− [h(z)](0)− g(0, η − h(z))]

+ g(τ, zτ) +
∫ τ

0
Φ(τ, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ)

]
dθ

+
∫ τ

0
Φ(τ, θ)B(θ)u(θ)dθ + ∑

0<tk<τ

Φ(τ, tk)Jk(tk, z(tk))

=Φ(τ, 0)[η(0)− [h(z)](0)− g(0, η − h(z))]

+ g(τ, zτ) +
∫ τ

0
Φ(τ, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ)

]
dθ

+ Cu + ∑
0<tk<τ

Φ(τ, tk)Jk(tk, z(tk)).

Replacing the control (3.16) above yields

z(τ) =Φ(τ, 0)[η(0)− [h(z)](0)− g(0, η − h(z))]

+ g(τ, zτ) +
∫ τ

0
Φ(τ, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ)

]
dθ

+ CC∗(CC∗)−1N(z) + ∑
0<tk<τ

Φ(τ, tk)Jk(tk, z(tk))

=z1.

Theorem 27. Suppose that [A1], [A2], and [A3] hold. If

L−1 + MLgq + ML−1Lgq + τM1L−1 + MτL1 + τM∥B∥∞∥S∥M2 + MT < 1, (3.17)

then the system (3.14) is exactly controllable on [0, τ].
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Proof. We transform the controllability problem into a fixed point problem. For that
purpose, we consider the following operator

K : C([0, τ], Rn) −→ C([0, τ], Rn)

z 7−→ K(z)

given by

[K(z)](t) =Φ(t, 0)[η(0)− [h(z)](0)− g(0, η − h(z))]

+ g(t, zt) +
∫ t

0
Φ(t, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ)

]
dθ

+
∫ t

0
Φ(t, θ)B(θ)SN(z)dθ + ∑

0<tk<t
Φ(t, tk)Jk(tk, z(tk)), t ∈ [0, τ],

To apply Banach contraction theorem, we need to prove that K is a contraction map-
ping. For doing so, we estimate the difference Π4 :=

∥∥[K(y)](t)− [K(z)](t)
∥∥, t ∈ [0, τ]

for any z, y ∈ C([0, τ], Rn) as follows.
On the one hand, by the definition of K we get

Π4 ≤M∥g(0, η − h(z))− g(0, η − h(y))∥+ M∥[h(z)](0)− [h(y)](0)∥

+
∥∥g(t, zt)− g(t, yt)

∥∥+ ∫ t

0
∥Φ(t, θ)A(θ)[g(θ, zθ)− g(θ, yθ)]∥dθ

+
∫ t

0
∥Φ(t, θ)[ f (θ, zθ)− f (θ, yθ)]∥dθ +

∫ t

0
∥Φ(t, θ)B(θ)S[N(z)− N(y)]∥dθ

+ ∑
0<tk<t

∥Φ(t, tk)∥∥Jk(tk, z(tk))− Jk(tk, y(tk))∥.

Then, using the assumptions [A2] and [A3], and the above notation, we obtain

Π4 ≤L−1
∥∥z − y

∥∥+ MLgq
∥∥z − y

∥∥+ ML−1Lgq
∥∥z − y

∥∥+ τM1L−1
∥∥z − y

∥∥
+ MτL1

∥∥z − y
∥∥+ τM∥B∥∞∥S∥

∥∥N(z)− N(y)
∥∥+ MT

∥∥z − y
∥∥.

On the other hand, we have the estimate∥∥N(z)− N(y)
∥∥ ≤ M2

∥∥z − y
∥∥.

Taking supremum over t ∈ [0, τ] yields∥∥K(z)− K(y)
∥∥ ≤

{
L−1 + MLgq + ML−1Lgq + τM1L−1

+ MτL1 + τM∥B∥∞∥S∥M2 + MT
}∥∥z − y

∥∥.

Since L−1 + MLgq + ML−1Lgq + τM1L−1 + MτL1 + τM∥B∥∞∥S∥M2 + MT < 1, then
K is a contraction mapping (see Theorem 6), and consequently it has a fixed point.
This finishes the proof.
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3.2.3 Approximate controllability

In this section we shall study the approximate controllability of the following semi-
linear neutral differential equation with impulses and nonlocal conditions.

d
dt
[
z(t)− g(t, zt)

]
= A(t)z(t) + B(t)u(t) + f (t, zt, u(t)), t ∈ [0, τ] \ {tk}k∈Ip

z(θ) = −[h(z)](θ) + η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(tk, z(tk), u(tk)), k ∈ Ip,
(3.18)

For doing so, we will employ a technique developed by Bashirov et al. in [15, 16, 17, 18,
20, 19]. This technique uses the delayed feature of the system. The delay allows us to
prove approximate controllability by pulling back the control solution to a fixed curve
in a compressed period of time. From such fixed curve we can reach a neighborhood
of the final state in time τ by utilizing the exact controllability of the associated linear
system on any interval [τ − δ, τ] where 0 < δ < τ [88]. This technique has been used,
for instance, in [47, 57, 85, 88, 92].

Before using Bashirov et al. technique to address the approximate controllability
of the system (3.18), we illustrate its usage in the following more manageable system
without impulses and nonlocal conditions.

d
dt
[z(t)− Gz(t − r)] = Az(t) + Fz(t − r) + Bu(t), t ∈ [0, τ],

z(θ) = η(θ), θ ∈ [−r, 0].
(3.19)

Here, we also have considered A(t) := A, B(t) = B, g(t, zt) := Gz(t − r), and
f (t, zt, u(t)) := Fz(t − r), where A, B, F, and G are constant matrices of appropriate
dimension. Corresponding to the system (3.19)(when t0 = 0), we have the following
linear system 

d
dt

y(t) = Ay(t) + Bu(t), t ∈ [t0, τ],

y(t0) = z0 ∈ Rn.
(3.20)

From Theorem (10), the system (3.20) is controllable on [t0, τ] if and only if

rank[B|AB|A2B| · · · |An−1B] = n.

We note that Kálmán’s rank condition is purely algebraic and does not depend on
time. This realization leads us to the following remark.

Remark 7. The system (3.20) is controllable on any interval, particularly, on [t0, τ] with
t0 < τ.

In the literature, a similar controllability characterization can be found for system
(3.19). See, for example, [14, 70, 103, 111, 115, 117, 119, 134] and references therein.
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Remark 8. The system (3.19) is controllable if and only if

rank[∆(λ)B] = n and rank[B|GB|G2B| · · · |Gn−1B] = n,

where ∆(λ) = λI − λGe−λr − A − Fe−λr.

This summarizes the results on exact controllability for the system (3.19). Now, we
turn our attention to the approximate controllability.

Lemma 5. If system (3.20) is controllable, then system (3.19) is approximately controllable
on [0, τ].

Proof. Suppose that the system (3.20) is exactly controllable. Then, from Remark 7,
it is exactly controllable on any interval [t0, τ], with 0 ≤ t0 < τ. Therefore, for any
initial state z0 and a final state z1, there exists a control ut0 ∈ L2 ([t0, τ], Rm) such
that the corresponding solution of the initial value problem (3.20) satisfies y(τ) = z1.
Moreover, ut0 can be taken (see (2.31)) as follows

ut0(t) = B∗eA∗(τ−t)W−1
t0

(
z1 − eA(τ−t0)z0

)
, t ∈ [t0, τ],

where
Wt0 =

∫ τ

t0

eA(τ−θ)BB∗eA∗(τ−θ)dθ.

On the other hand, the solution of the initial value problem (3.19) is given by

z(t) =Gz(t − r) + eAt[η(0)− Gη(−r)]

+
∫ t

0
eA(t−θ)[AG + F]z(θ − r)dθ +

∫ t

0
eA(t−θ)Bu(θ)dθ.

Let η, z1 be the initial and the final state for system (3.19), respectively. Given ϵ > 0.
consider any fixed control u ∈ L2 ([0, τ], Rm) and the corresponding solution z of
(3.19) evaluated at t = τ − d,

z(τ − d) =Gz(τ − d − r) + eA(τ−d)[η(0)− Gη(−r)]

+
∫ τ−d

0
eA(τ−d−θ)[AG + F]z(θ − r)dθ +

∫ τ−d

0
eA(τ−d−θ)Bu(θ)dθ, (3.21)

where 0 < d < min{r, τ − r, ϵ/M} and

M = max
0≤θ≤τ

{∥∥∥eA(τ−d) (AG + F)
∥∥∥∥∥z(θ)

∥∥} .

Define the control

ud(t) =

{
u(t), t ∈ [0, τ − d],
uτ−d(t), t ∈ (τ − d, τ],

(3.22)
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where
uτ−d(t) = B∗eA∗(τ−t)G−1

τ−d(z1 − eAdz0)

and
z0 = e−AdGz(τ − d)− Gz(τ − d − r) + Fz(τ − d). (3.23)

Regard zd(t) := zd(t, η, ud) as the corresponding solution of (3.19) for the control ud,
which we evaluate at t = τ.

zd(τ) =Gzd(τ − r) + eAτ[η(0)− Gη(−r)]

+
∫ τ

0
eA(τ−θ)[AG + F]zd(θ − r)dθ +

∫ τ

0
eA(τ−θ)Bud(θ)dθ.

By Proposition 2(ii),

zd(τ) =Gzd(τ − r) + eAd
{

eA(τ−d)[η(0)− Gη(−r)]

+
∫ τ−d

0
eA(τ−d−θ)[AG + F]zd(θ − r)dθ +

∫ τ−d

0
eA(τ−d−θ)Bud(θ)dθ

}
+
∫ τ

τ−d
eA(τ−θ)[AG + F]zd(θ − r)dθ +

∫ τ

τ−d
eA(τ−θ)Bud(θ)dθ. (3.24)

Adding eAdGz(τ − d− r)− eAdGz(τ − d− r) = 0 to the right hand side of (3.24) yields

zd(τ) =Gzd(τ − r)− eAdGz(τ − d − r) + eAd
{

Gz(τ − d − r) + eA(τ−d)[η(0)− Gη(−r)]

+
∫ τ−d

0
eA(τ−d−θ)[AG + F]z(θ − r)dθ +

∫ τ−d

0
eA(τ−d−θ)Bu(θ)dθ

}
+
∫ τ

τ−d
eA(τ−θ)[AG + F]zd(θ − r)dθ +

∫ τ

τ−d
eA(τ−θ)Bud(θ)dθ

Therefore,

zd(τ) =Gzd(τ − r)− eAdGz(τ − d − r) + eAdz(τ − d)

+
∫ τ

τ−d
eA(τ−θ)[AG + F]zd(θ − r)dθ +

∫ τ

τ−d
eA(τ−θ)Bud(θ)dθ.

On (τ − d, τ], ud(t) = uτ−d(t) (see (3.22)) and hence

zd(τ) =Gzd(τ − r)− eAdGz(τ − d − r) + eAdz(τ − d)

+
∫ τ

τ−d
eA(τ−θ)[AG + F]zd(θ − r)dθ +

∫ τ

τ−d
eA(τ−θ)Buτ−d(θ)dθ. (3.25)

On the other hand, if we consider

z0 = e−AdGzd(τ − r)− Gz(τ − d − r) + z(τ − d),
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then the solution of the initial value problem (3.20), with t0 = τ − d, evaluated at τ
takes the form

z1 =yd(τ)

=eAdz0 +
∫ τ

τ−d
eA(t−θ)Buτ−d(θ)dθ

=Gzd(τ − r)− eAdGz(τ − d − r) + eAdz(τ − d) +
∫ τ

τ−d
eA(τ−θ)Buτ−d(θ)dθ (3.26)

Hence, from (3.25) and (3.26),

∥zd(τ)− z1∥ ≤
∫ τ

τ−d
∥eA(τ−d)∥∥AG + F∥∥zd(θ − r)∥dθ.

From the way we choose d, it turns out that zd(θ − r) = z(θ − r). Thus,

∥zd(τ)− z1∥ ≤
∫ τ

τ−d
∥eA(τ−d)∥∥AG + F∥∥z(θ − r)∥dθ < dM < ϵ.

Having introduced Bashirov et al. technique for studying the approximate con-
trollability (3.19), we now dedicate to proving the approximate controllability of the
system (3.18).

From Section 3.1, the system (3.18) admits a solution given by

z(t) =



Φ(t, 0)[η(0)− [h(z)](0)− g(0, η − h(z))]

+ g(t, zt) +
∫ t

0
Φ(t, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ, u(θ))

]
dθ

+
∫ t

0
Φ(t, θ)B(θ)u(θ)dθ + ∑

0<tk<t
Φ(t, tk)Jk(tk, z(tk), u(tk)), t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0].
(3.27)

From Subsection 2.3.2, we know that the corresponding linear system

d
dt

y(t) = A(t)y(t) + B(t)v(t), t ∈ [τ − δ, τ] (3.28)

admits only one solution (see Theorem 9 and (2.29)) given by

yδ(t) = Φ(t, τ − δ)z0 +
∫ t

τ−δ
Φ(t, θ)B(θ)vδ(θ)dθ, t ∈ [τ − δ, τ]. (3.29)

We also know that a control (see (2.31)) steering system (3.28) from z0 to yδ(τ) = z1 at
time τ > 0 is given by

vδ(t) = B∗(t)Φ∗(τ, t)W−1(z1 − Φ(τ, τ − δ)z0), t ∈ [τ − δ, τ].2 (3.30)

2Here W = CC∗ is defined by W(x) =
∫ τ

τ−δ
Φ(τ, θ)B(θ)B∗(θ)Φ∗(τ, θ)xdθ and C is given by C(vδ) =∫ τ

τ−δ
Φ(τ, θ)B(θ)vδ(θ)dθ.
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In order to prove the approximate controllability of the system (3.18) we need to
impose the following assumptions.

[a1] The linear system (3.28) is exactly controllable in any interval [t0, τ] with 0 <
t0 < τ.

[a2] The functions g and f satisfy

∥∥g(t, η)
∥∥ ≤ ρ

(∥∥η(−r)
∥∥) and

∥∥ f (t, η, ν)
∥∥ ≤ ϱ

(∥∥η(−r)
∥∥) ,

respectively, where ρ, ϱ : R+ −→ R+ are continuous functions.

The next theorem provides the approximate controllability of the system (3.18)
through Bashirov et al. technique.

Theorem 28. Under the hypotheses [a1] and [a2], the semilinear neutral differential equation
with impulses and nonlocal conditions (3.18) is approximately controllable on [0, τ].

Proof. Given ϵ > 0, consider any fixed control u ∈ L2 ([0, τ], Rm) and the correspond-
ing solution z(t) = z(t, η, u) of system (3.18). Also consider a number δ > 0 such that
0 < δ < min{r, τ − r, τ − tp, ϵ/MN}, where

M = sup
θ∈[0,τ]

{
∥Φ(τ, θ)∥∥A(θ)∥

}
,

N = max
θ∈[0,τ]

{
ρ
(
∥z(θ − r)∥

)
+ ϱ

(
∥z(θ − r)∥

)}
.

We define a control uδ ∈ L2 ([0, τ], Rm) as follows.

uδ(t) =

{
u(t), t ∈ [0, τ − δ],

vδ(t), t ∈ (τ − δ, τ],
(3.31)

where vδ is given in (3.30).
Now, on the one hand, let zδ(t) = zδ(t, η, uδ) be the corresponding solution of

(3.18) for the control uδ defined above. At time τ, we have that

zδ(τ) =Φ(τ, 0)[η(0)− [h(zδ)](0)− g(0, η − h(zδ))]

+ g(τ, zδ
τ) +

∫ τ

0
Φ(τ, θ)

[
A(θ)g(θ, zδ

θ) + f (θ, zδ
θ, uδ(θ))

]
dθ

+
∫ τ

0
Φ(τ, θ)B(θ)uδ(θ)dθ + ∑

0<tk<τ

Φ(τ, tk)Jk(tk, zδ(tk), uδ(tk)).

(3.32)
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By the cocycle property of Φ (see Proposition 2(ii)), we obtain

zδ(τ) =g(τ, zδ
τ) + Φ(τ, τ − δ)

{
Φ(τ − δ, 0)[η(0)− [h(zδ)](0)− g(0, η − h(zδ))]

+
∫ τ−δ

0
Φ(τ − δ, θ)

[
A(θ)g(θ, zδ

θ) + f (θ, zδ
θ, uδ(θ))

]
dθ

+
∫ τ−δ

0
Φ(τ − δ, θ)B(θ)uδ(θ)dθ + ∑

0<tk<τ

Φ(τ − δ, tk)Jk(tk, zδ(tk), uδ(tk))

}

+
∫ τ

τ−δ
Φ(τ, θ)

[
A(θ)g(θ, zδ

θ) + f (θ, zδ
θ, uδ(θ))

]
dθ

+
∫ τ

τ−δ
Φ(τ, θ)B(θ)uδ(θ)dθ.

(3.33)
If we add Φ(τ, τ − δ)g(τ − δ, zδ

τ−δ)− Φ(τ, τ − δ)g(τ − δ, zδ
τ−δ) = 0 to the right hand

side of (3.33), then it becomes

zδ(τ) =g(τ, zδ
τ) + Φ(τ, τ − δ)

{
Φ(τ − δ, 0)[η(0)− [h(z)](0)− g(0, η − h(z))]

+
∫ τ−δ

0
Φ(τ − δ, θ)

[
A(θ)g(θ, zθ) + f (θ, zθ, u(θ))

]
dθ + g(τ − δ, zτ−δ)

+
∫ τ−δ

0
Φ(τ − δ, θ)B(θ)u(θ)dθ + ∑

0<tk<τ

Φ(τ − δ, tk)Jk(tk, z(tk), u(tk))

}

+
∫ τ

τ−δ
Φ(τ, θ)

[
A(θ)g(θ, zδ

θ) + f (θ, zθ, uδ(θ))
]

dθ − Φ(τ, τ − δ)g(τ − δ, zδ
τ−δ)

+
∫ τ

τ−δ
Φ(τ, θ)B(θ)uδ(θ)dθ.

Hence,

zδ(τ) =g(τ, zδ
τ) + Φ(τ, τ − δ)z(τ − δ)− Φ(τ, τ − δ)g(τ − δ, zδ

τ−δ)

+
∫ τ

τ−δ
Φ(τ, θ)

[
A(θ)g(θ, zδ

θ) + f (θ, zδ
θ, uδ(θ))

]
dθ +

∫ τ

τ−δ
Φ(τ, θ)B(θ)uδ(θ)dθ.

Since uδ(θ) = vδ(θ), θ ∈ (τ − δ, τ] (see (3.31)), we get

zδ(τ) =g(τ, zδ
τ) + Φ(τ, τ − δ)z(τ − δ)− Φ(τ, τ − δ)g(τ − δ, zδ

τ−δ)

+
∫ τ

τ−δ
Φ(τ, θ)

[
A(θ)g(θ, zδ

θ) + f (θ, zδ
θ, vδ(θ))

]
dθ +

∫ τ

τ−δ
Φ(τ, θ)B(θ)vδ(θ)dθ.

On the other hand, the corresponding solution y(t) = y(t, z0, vδ) of the linear
system (3.28) at time τ is given by (see (3.29))

yδ(τ) = Φ(τ, τ − δ)z0 +
∫ τ

τ−δ
Φ(τ, θ)B(θ)vδ(θ)dθ. (3.34)
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Letting z0 = z(τ − δ) + Φ(τ − δ, τ)g(τ, zδ
τ) − g(τ − δ, zδ

τ−δ) and considering z1 =

yδ(τ), we then have that

∥zδ(t)− z1∥ =

∥∥∥∥∫ τ

τ−δ
Φ(τ, θ)

[
A(θ)g(θ, zδ

θ) + f (θ, zδ
θ, vδ(θ))

]
dθ

∥∥∥∥
≤
∫ τ

τ−δ
∥Φ(τ, θ)∥

[
∥A(θ)∥∥g(θ, zδ

θ)∥+ ∥ f (θ, zδ
θ, vδ(θ))∥

]
dθ

≤
∫ τ

τ−δ
M
[

ρ
(
∥zδ(θ − r)∥

)
+ ϱ

(
∥zδ(θ − r)∥

)]
dθ.

Now, we observe that 0 < δ < r and τ − δ ≤ θ ≤ τ implies θ − r ≤ τ − r < τ − δ and
consequently zδ(θ − r) = z(θ − r). Thus,

∥zδ(t)− z1∥ ≤
∫ τ

τ−δ
M
[
ρ
(
∥z(θ − r)∥

)
+ ϱ

(
∥z(θ − r)∥

)]
dθ ≤ δMN < ϵ.

Last inequality gives the approximate controllability (Definition 15) of system (3.18).
This finishes the proof.
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Chapter 4

Results in infinite-dimensional systems

This chapter extends the existence results presented in Chapter 3. This extension is in
the sense of dimension. While in Chapter 3, we worked in a finite-dimensional setting
(dim(Rn) = n < ∞), in this chapter, we work in an infinite-dimensional Banach space
Z (dim(Z) = ∞). As we shall see, this apparently minor change poses a significant
complication in the mathematical techniques and tools used to address the general
problem in the infinite-dimensional setting.

4.1 Existence results

In this section, we study the existence and uniqueness of solutions for the following
semilinear neutral evolution equation in a Banach space Z with impulses and nonlocal
conditions 

d
dt
[z(t)− g(t, zt)] = −Az(t) + f (t, zt), t ∈ (0, τ] \ {tk}k∈Ip ,

z(θ) + [h(zτ1 , . . . , zτq)](θ) = η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(z(tk)), k ∈ Ip,

(4.1)

where A : D(A) ⊂ Z → Z is a sectorial operator such that its resolvent operator
is compact, 0 < t1 < · · · < tp < τ, 0 < τ1 < · · · < τq < r < τ, zt is the time
history function [−r, 0] ∋ θ 7→ zt(θ) = z(t + θ) ∈ Zα, Zα is the fractional power
space of A, g, f : [0, τ] × PWrα → Z, h : PWqpα → PWrα, Jk : Zα → Zα, η ∈ PWrα

are appropriate smooth functions, and the spaces PWqpα and PWrα are defined below.
We assume without loss of generality (see Remark 5) that 0 ∈ ρ(A). By Theorem 17,
−A is the infinitesimal generator of an analytic semigroup T(t), which is compact as
a consequence of Proposition 3. We further assume without loss of generality (see
Remark 3) that T(t) is uniformly bounded. From Subsection 2.4.3, we can see that the
fractional power spaces Zα, 0 < α ≤ 1 are well defined. Moreover, Zα is dense in Z
(see Theorem 20(iii)), Zα is a Banach space (see Theorem 23) when endowed with the
norm | · |α (see (2.39)), and the embedding Zα ↪→ Zβ is compact (see Theorem 23) for
0 < β < α ≤ 1.

67



School of Mathematical and Computational Sciences YACHAY TECH

Here, PWrα is the Banach space

PW([−r, 0], Zα) =

{
η : [−r, 0] −→ Zα

∣∣∣ η is piecewise continuous
}

(4.2)

equipped with the supremum norm ∥ · ∥rα. Let [0, τ]′ = [0, τ] \ {tk}k∈Ip
. A suitable

Banach space to work with impulsive differential systems is the following.

PWpα :=
{

z : [−r, τ] −→ Zα
∣∣∣ z|[−r,0] ∈ PWrα, z|[0,τ] ∈ C

(
[0, τ]′, Zα

)
and the

one-sided limits z(t−k ), z(t+k ) exist with z(t−k ) = z(tk) for all k ∈ Ip

}
equipped with the supremum norm ∥ · ∥pα. Also, we shall consider the Banach space(

Zα
)q

= Zα × Zα × · · · × Zα︸ ︷︷ ︸
q−times

,

endowed with the norm

∥z∥qα =
q

∑
i=1

|zi|α, z = (z1, z2, . . . , zq) ∈
(
Zα
)q .

Similarly to PWrα, we define the Banach space

PWqpα := PW([−r, 0],
(
Zα
)q
) (4.3)

with norm

∥η∥qpα = sup
t∈[−r,0]

∥η(t)∥qα = sup
t∈[−r,0]

(
q

∑
i=1

|ηi(t)|α

)
, η =

(
η1, . . . , ηq

)
∈ PWqpα.

In order to prove the existence of solutions for system (4.1) we establish the fol-
lowing definition to characterize the compactness in C

(
[0, τ]′, Zα

)
.

Definition 25. Let z be a function belonging to C
(
[0, τ]′, Zα

)
. For i ∈ Ip, we define zi ∈

C([ti, ti+1], Zα) by

zi(t) =

{
z(t), t ∈ (ti, ti+1],

z(t+i ), t = ti,
(4.4)

and the set Hi = {yi : y ∈ H}, where H is any subset of C
(
[0, τ]′, Zα

)
.

The next lemma provides the aforementioned compactness characterization.

Lemma 6. A set H ⊂ C
(
[0, τ]′, Zα

)
is relatively compact in C

(
[0, τ]′, Zα

)
if, and only if,

each set Hi, i ∈ Ip, with t0 = 0 and tp+1 = τ, is relatively compact in C([ti, ti+1], Zα).

For more details regarding this characterization, we refer the reader to [67].
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4.1.1 Existence Theorems

This subsection is devoted to prove the main results of this chapter, which concerns
with the existence and uniqueness of mild solutions for the system (4.1). The follow-
ing definition characterizes such solutions (see, e.g., [6, 11, 12, 86]).

Definition 26. A function z ∈ PWpα is said to be a mild solution of problem (4.1) if it satisfies
the integral equation

z(t) =



T(t)[η(0)− [h(z)](0)− g(0, η − h(z))]

−
∫ t

0
AT(t − θ)g(θ, zθ)dθ +

∫ t

0
T(t − θ) f (θ, zθ)dθ + g(t, zt)

+ ∑
0<tk<t

T(t − tk)Jk(z(tk)), t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0].
(4.5)

Let us consider the following hypotheses.

[P1] There exist positive constants Lh, Υ, and dk, k ∈ Ip such that

(i) LhqM < Υ + M
p

∑
k=1

dk <
1
2

,

(ii) Jk(0) = 0 and |Jk(y)− Jk(z)|α ≤ dk|y − z|α, y, z ∈ Zα,

(iii) h(0) = 0 and

|[h(y)](t)− [h(v)](t)|α ≤ Lh

q

∑
i=1

|yi(t)− vi(t)|α, y, v ∈ PWpα,

where M is given in (2.33).

[P2] The map g : [0, τ]× PWrα → D(A) satisfies

(i) 1 ∥Ag(t, η1)− Ag(t, η2)∥ ≤ K
(
∥η1∥rα, ∥η2∥rα

)
∥η1 − η2∥rα, η1, η2 ∈ PWrα,

(ii) ∥Ag(t, η)∥ ≤ Ψ
(
∥η∥rα

)
, η ∈ PWrα,

(iii) ∥g(t, η1)− g(t, η2)∥ ≤ Υ∥η1 − η2∥rα, η1, η2 ∈ PWrα

and the mapping f : [0, τ]× PWrα → Z satisfies

1[P2](i) and [P2](ii) also work for Aα instead of A when 0 < α ≤ 1 by the continuous embedding
(see (2.41)). The constant c that appears in (2.41) will be deliberately omitted because it is irrelevant in
practical terms.
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(iv) ∥ f (t, η1)− f (t, η2)∥ ≤ K(∥η1∥rα, ∥η2∥rα)∥η1 − η2∥rα, η1, η2 ∈ PWrα,

(v) ∥ f (t, η)∥ ≤ Ψ(∥η∥rα), η ∈ PWrα,

where K ∈ C(R+ × R+, R+) and Ψ ∈ C(R+, R+) are non-decreasing functions.

[P3] There exists ρ > 0 such that

MΨ
(
∥η∥+ Lgq(∥η̃∥+ ρ)

)
+

(
MLgq + M

p

∑
k=1

dk

)
(∥η̃∥+ ρ)

+

(
2Mα

1 − α
τ1−α + 1

)
Ψ(∥η̃∥+ ρ) < ρ

where the function η̃ is defined as follows

η̃(t) =

{
T(t)η(0), t ∈ [0, τ],
η(t), t ∈ [−r, 0].

(4.6)

[P4] Assume the following relation holds.

MLgq(1 + Υ) + 2MαK
(
∥η̃∥+ ρ, ∥η̃∥+ ρ

) τ1−α

1 − α
<

1
2

.

Theorem 29. Suppose that [P1], [P2], and [P3] hold. Then problem (4.1) has a least one mild
solution in PWpα.

Proof. We base the argument on Theorem 7. To that end, we introduce two operators
Q and P as follows.

Q : PWpα × PWpα −→ PWpα

(z, y) 7−→ Q(z, y)

defined by

[Q(z, y)](t) =

 y(t) + g(t, zt) + ∑
0<tk<t

T(t − tk)Jk(z(tk)), t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0],

and
P : PWpα −→ PWpα

y 7−→ P(y)

given by

[P(y)](t) =


T(t)[η(0)− [h(y)](0)− g(0, η − h(y))]

−
∫ t

0
AT(t − θ)g(θ, yθ)dθ +

∫ t

0
T(t − θ) f (θ, yθ)dθ, t ∈ [0, τ],

η(t), t ∈ [−r, 0].

(4.7)

In what follows, we show that Q and P satisfy the hypotheses of Theorem 7.
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Step 1. P is a continuous mapping.

Let z, y ∈ PWpα and consider the difference

Π5 : = |[P(z)](t)− [P(y)](t)|α

=
∣∣∣T(t)[[h(y)](0)− [h(z)](0)] +

∫ t

0
AT(t − θ)[g(θ, yθ)− g(θ, zθ)]dθ

+ T(t)[g(0, η − h(y))− g(0, η − h(z))] +
∫ t

0
T(t − θ)[ f (θ, zθ)− f (θ, yθ)]dθ

∣∣∣
α

≤ |T(t)[[h(y)](0)− [h(z)](0)]|α +
∫ t

0
|AT(t − θ)[g(θ, yθ)− g(θ, zθ)]|αdθ

+ |T(t)[g(0, η − h(y))− g(0, η − h(z))]|α +
∫ t

0
|T(t − θ)[ f (θ, zθ)− f (θ, yθ)]|αdθ.

By definition of | · |α and the boundedness of T(t) we have that

Π5 ≤ ∥T(t)∥ · |[h(y)](0)− [h(z)](0)|α +
∫ t

0
∥Aα AT(t − θ)[g(θ, yθ)− g(θ, zθ)]∥dθ

+ ∥T(t)∥ · |g(0, η − h(y))− g(0, η − h(z))|α +
∫ t

0
∥AαT(t − θ)[ f (θ, zθ)− f (θ, yθ)]∥dθ.

By Theorem 12(v)2 (A and T(t) commute on D(A)), by Theorem 22 (AαT(t − θ) is
bounded), by (2.33) (∥T(t)∥ ≤ M), and by hypothesis [P1](iii) and [P2](iii), we obtain

Π5 ≤ MLgq∥y − z∥++
∫ t

0
∥AαT(t − θ)∥ · ∥A[g(θ, yθ)− g(θ, zθ)]∥dθ

+ MΥ∥h(y)− h(z)∥+
∫ t

0
∥AαT(t − θ)∥ · ∥[ f (θ, zθ)− f (θ, yθ)]∥dθ.

Hypotheses [P2](i)(iv) and (2.37) yield the following estimate.

Π5 ≤ MLgq∥y − z∥++
∫ t

0

Mα

(t − θ)α
∥A[g(θ, yθ)− g(θ, zθ)]∥dθ

+ MΥLgq∥y − z∥+
∫ t

0

Mα

(t − θ)α
∥[ f (θ, zθ)− f (θ, yθ)]∥dθ

≤ MLgq∥y − z∥++Mα

∫ t

0

1
(t − θ)α

K
(
∥zθ∥, ∥yθ∥

)
· ∥zθ − yθ∥dθ

+ MΥLgq∥y − z∥+ Mα

∫ t

0

1
(t − θ)α

K
(
∥zθ∥, ∥yθ∥

)
· ∥zθ − yθ∥dθ

≤ MLgq∥y − z∥+ MΥLgq∥y − z∥+ 2MαK
(
∥z∥, ∥y∥

)
∥z − y∥

∫ t

0

1
(t − θ)α

dθ.

After computing the integral, we finally obtain

Π5 ≤ MLgq∥y − z∥+ MΥLgq∥y − z∥+ 2MαK
(
∥z∥, ∥y∥

)
∥z − y∥ τ1−α

1 − α
. (4.8)

2Or Theorem 21(ii) with α = 1.
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Therefore,

∥P(z)−P(y)∥pα ≤
[

MLgq (1 + Υ) + 2MαK
(
∥z∥, ∥y∥

) τ1−α

1 − α

]
· ∥y − z∥pα, (4.9)

which means that P is continuous. In fact, (4.9) shows that P is locally Lipschitz.

Step 2. For a bounded set B ⊂ PWpα, P(B) is bounded in PWpα.

Let R > 0 and consider B := {z ∈ PWpα : ∥z∥ ≤ R}. Then, it is enough to show
that there exists ℓ > 0 such that for all y ∈ B we have that ∥P(y)∥ ≤ ℓ. Let us consider

ℓ = M
[
|η(0)|α + LgqR + Ψ(∥η∥+ LgqR∥)

]
+ 2Ψ(∥y∥)Mα

τ1−α

1 − α
.

For any y ∈ B, we get

|[P(y)](t)|α =
∣∣∣T(t)[η(0)− [h(y)](0)− g(0, η − h(y))]

−
∫ t

0
AT(t − θ)g(θ, yθ)dθ +

∫ t

0
T(t − θ) f (θ, yθ)dθ

∣∣∣
α

≤ ∥T(t)∥ · |η(0)− [h(y)](0)− g(0, η − h(y))|α

+
∫ t

0
|AT(t − θ)g(θ, yθ)|αdθ +

∫ t

0
|T(t − θ) f (θ, yθ)|αdθ

The definition of | · |α and hypothesis [P2](ii) allow us to write

|[P(y)](t)|α ≤ M
[
|η(0)|α + |[h(y)](0)|α + ∥Aαg(0, η − h(y))∥

]
+
∫ t

0
∥Aα AT(t − θ)g(θ, yθ)∥dθ +

∫ t

0
∥AαT(t − θ) f (θ, yθ)∥dθ

≤ M
[
|η(0)|α + Lgq∥y∥+ Ψ(∥η − h(y)∥)

]
+
∫ t

0
∥AαT(t − θ)∥∥Ag(θ, yθ)∥dθ +

∫ t

0
∥AαT(t − θ)∥∥ f (θ, yθ)∥dθ

By hypotheses [P2](ii)(v), it follows that

|[P(y)](t)|α ≤ M
[
|η(0)|α + LgqR + Ψ(∥η∥+ ∥h(y)∥)

]
+
∫ t

0

Mα

(t − θ)α
Ψ(∥yθ∥)dθ +

∫ t

0

Mα

(t − θ)α
Ψ(∥yθ∥)dθ

≤ M
[
|η(0)|α + LgqR + Ψ(∥η∥+ Lgq∥y∥)

]
+ 2Ψ(∥y∥)Mα

τ1−α

1 − α

≤ M
[
|η(0)|α + LgqR + Ψ(∥η∥+ LgqR)

]
+ 2Ψ(R)Mα

τ1−α

1 − α
,

and therefore ∥P(y)∥ ≤ ℓ.
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Step 3. For a bounded set B ⊂ PWpα, P(B) is an equicontinuous set in PWpα.

Let B be as above and let us show that P(B) is an equicontinuous family for
t ∈ [−r, τ]. For t ∈ [−r, 0] the result is clear. For t ∈ (0, τ], more attention is needed.
Let 0 < θ1 < θ2 < τ and consider the difference Π6 := |[P(y)](θ2) − [P(y)](θ1)|α.
From (4.7), we have that

Π6

=
∣∣∣ [T(θ2)− T(θ1)

]
[η(0)− [h(y)](0)− g(0, η − h(y))]

+
∫ θ1−ϵ

0
A
[
T(θ1 − θ)− T(θ2 − θ)

]
g(θ, yθ)dθ +

∫ θ1

θ1−ϵ
A
[
T(θ1 − θ)− T(θ2 − θ)

]
g(θ, yθ)dθ

−
∫ θ1−ϵ

0

[
T(θ1 − θ)− T(θ2 − θ)

]
f (θ, yθ)dθ −

∫ θ1

θ1−ϵ

[
T(θ1 − θ)− T(θ2 − θ)

]
f (θ, yθ)dθ

−
∫ θ2

θ1

AT(θ2 − θ)g(θ, yθ)dθ +
∫ θ2

θ1

T(θ2 − θ) f (θ, yθ)dθ
∣∣∣
α

Hence,

Π6 ≤
∣∣∣ [T(θ2)− T(θ1)

]
[η(0)− [h(y)](0)− g(0, η − h(y))]

∣∣∣
α

+
∫ θ1−ϵ

0
|A
[
T(θ1 − θ)− T(θ2 − θ)

]
g(θ, yθ)|αdθ

+
∫ θ1−ϵ

0
|
[
T(θ1 − θ)− T(θ2 − θ)

]
f (θ, yθ)|αdθ

+
∫ θ1

θ1−ϵ
|A
[
T(θ1 − θ)− T(θ2 − θ)

]
g(θ, yθ)|αdθ

+
∫ θ1

θ1−ϵ
|
[
T(θ1 − θ)− T(θ2 − θ)

]
f (θ, yθ)|αdθ

+
∫ θ2

θ1

|AT(θ2 − θ)g(θ, yθ)|αdθ +
∫ θ2

θ1

|T(θ2 − θ) f (θ, yθ)|αdθ.

Let Ei, i ∈ I6 denote each of the above six integrals, respectively. Thus,

Π6 ≤
∣∣∣ [T(θ2)− T(θ1)

]
[η(0)− [h(y)](0)− g(0, η − h(y))]

∣∣∣
α
+

6

∑
i=1

Ei. (4.10)

By the semigroup property in Definition 17(ii) we get that

T(θ1 − θ)− T(θ2 − θ) =
[
T(ϵ)− T(θ2 − θ1 + ϵ)

] [
T(θ1 − θ − ϵ)

]
Let us manipulate the first integral E1. By definition of | · |α and the above equality
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we get

E1 =
∫ θ1−ϵ

0
|A
[
T(θ1 − θ)− T(θ2 − θ)

]
g(θ, yθ)|αdθ

=
∫ θ1−ϵ

0
∥Aα A

[
T(θ1 − θ)− T(θ2 − θ)

]
g(θ, yθ)∥dθ

=
∫ θ1−ϵ

0
∥Aα A

[
T(ϵ)− T(θ2 − θ1 + ϵ)

] [
T(θ1 − θ − ϵ)

]
g(θ, yθ)∥dθ.

The boundedness of T(·) and hypothesis [P2](ii) imply that

E1 ≤ ∥T(ϵ)− T(θ2 − θ1 + ϵ)∥
∫ θ1−ϵ

0
∥Aα

[
T(θ1 − θ − ϵ)

]
∥∥Ag(θ, yθ)∥dθ

≤ ∥T(ϵ)− T(θ2 − θ1 + ϵ)∥
∫ θ1−ϵ

0
∥Aα

[
T(θ1 − θ − ϵ)

]
∥Ψ
(∥∥yθ

∥∥) dθ.

Theorem 22 yields

E1 ≤ ∥T(ϵ)− T(θ2 − θ1 + ϵ)∥
∫ θ1−ϵ

0

Mα

(θ1 − θ − ϵ)α
Ψ
(∥∥y

∥∥) dθ

and hence

E1 ≤ ∥T(ϵ)− T(θ2 − θ1 + ϵ)∥Ψ (R) Mα

∫ θ1−ϵ

0

1
(θ1 − θ − ϵ)α

dθ

= ∥T(ϵ)− T(θ2 − θ1 + ϵ)∥Ψ (R) Mα
(θ1 − ϵ)1−α

1 − α
(4.11)

Let us work with the second integral E2. Since this case is similar to E1, we omit the
step-by-step explanation and present only the computations.

E2 =
∫ θ1−ϵ

0
|
[
T(θ1 − θ)− T(θ2 − θ)

]
f (θ, yθ)|αdθ

=
∫ θ1−ϵ

0
∥Aα

[
T(θ1 − θ)− T(θ2 − θ)

]
f (θ, yθ)∥dθ

=
∫ θ1−ϵ

0
∥Aα

[
T(ϵ)− T(θ2 − θ1 + ϵ)

] [
T(θ1 − θ − ϵ)

]
f (θ, yθ)∥dθ

≤ ∥T(ϵ)− T(θ2 − θ1 + ϵ)∥
∫ θ1−ϵ

0
∥Aα

[
T(θ1 − θ − ϵ)

]
∥∥ f (θ, yθ)∥dθ

≤ ∥T(ϵ)− T(θ2 − θ1 + ϵ)∥
∫ θ1−ϵ

0
∥Aα

[
T(θ1 − θ − ϵ)

]
∥Ψ
(∥∥yθ

∥∥) dθ

≤ ∥T(ϵ)− T(θ2 − θ1 + ϵ)∥
∫ θ1−ϵ

0

Mα

(θ1 − θ − ϵ)α
Ψ
(∥∥y

∥∥) dθ

≤ ∥T(ϵ)− T(θ2 − θ1 + ϵ)∥Ψ (R) Mα

∫ θ1−ϵ

0

1
(θ1 − θ − ϵ)α

dθ

= ∥T(ϵ)− T(θ2 − θ1 + ϵ)∥Ψ (R) Mα
(θ1 − ϵ)1−α

1 − α
. (4.12)
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By Theorem (22) and hypothesis [P2](ii), E3 can be estimated as follows.

E3 =
∫ θ1

θ1−ϵ
|A
[
T(θ1 − θ)− T(θ2 − θ)

]
g(θ, yθ)|αdθ

≤
∫ θ1

θ1−ϵ
∥AαT(θ1 − θ)− AαT(θ2 − θ)∥∥Ag(θ, yθ)∥dθ

≤
∫ θ1

θ1−ϵ
∥AαT(θ1 − θ)− AαT(θ2 − θ)∥Ψ

(∥∥yθ

∥∥) dθ

≤ Ψ (R)
∫ θ1

θ1−ϵ
∥AαT(θ1 − θ)∥+ ∥AαT(θ2 − θ)∥dθ

≤ Ψ (R) Mα

∫ θ1

θ1−ϵ

1
(θ1 − θ)α

+
1

(θ2 − θ)α
dθ

=
MαΨ(R)

1 − α

{
(θ2 − θ1 + ϵ)1−α − (θ2 − θ1)

1−α + ϵ1−α
}

. (4.13)

For E4 we get the exact same bound.

E4 ≤ MαΨ(R)
1 − α

{
(θ2 − θ1 + ϵ)1−α − (θ2 − θ1)

1−α + ϵ1−α
}

. (4.14)

For E5, we obtain the following estimate.

E5 =
∫ θ2

θ1

|AT(θ2 − θ)g(θ, yθ)|αdθ

=
∫ θ2

θ1

∥Aα AT(θ2 − θ)g(θ, yθ)∥dθ

≤
∫ θ2

θ1

∥AαT(θ2 − θ)∥Ψ
(∥∥yθ

∥∥) dθ

≤ Ψ(R)Mα

∫ θ2

θ1

1
(θ2 − θ)α

dθ

≤ MαΨ(R)
1 − α

(θ2 − θ1)
1−α. (4.15)

As expected, E6 has the exact same bound as E5.

E6 ≤ MαΨ(R)
1 − α

(θ2 − θ1)
1−α. (4.16)
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From (4.10) and (4.11 – 4.16), we get the following estimate.

Π6 ≤
∣∣∣ [T(θ2)− T(θ1)

]
[η(0)− [h(y)](0)− g(0, η − h(y))]

∣∣∣
α
+

6

∑
i=1

Ei

≤ ∥T(θ2)− T(θ1)∥
[
|η(0)|α + LgqR + Ψ(∥η∥+ LgqR)

]
+ 2∥T(ϵ)− T(θ2 − θ1 + ϵ)∥Ψ (R) Mα

(θ1 − ϵ)1−α

1 − α

+ 2
MαΨ(R)

1 − α

{
(θ2 − θ1 + ϵ)1−α + ϵ1−α

}
Since T(t) is a compact operator for t > 0, then, by Theorem 11, T(t) is a uniformly
continuous semigroup away from zero, which implies that |[P(y)](θ2)− [P(y)](θ1)|α
goes to zero uniformly on y as θ2 − θ1 → 0, and therefore P(B) is equicontinuous.

Step 4. The set W = {P(y) : y ∈ B} is relatively compact in PWpα.

For t ∈ [−r, 0], the result is trivial since W(t) = {η(t)}. For t ∈ [0, τ], we proceed
as follows. According to Lemma 6, it is enough to prove that the corresponding set
W i is relatively compact in C([ti, ti+1], Zα) for i ∈ Ip with t0 = 0 and tp+1 = τ. By
Arzelà-Ascoli theorem for abstract functions (see Theorem 5), this reduces to prove
that W i(t) = {P(y)i(t) : y ∈ B} is relatively compact in Zα for each t ∈ [ti, ti+1].

For a fixed i ∈ Ip, we have that

W i(t) = T(t)η(0) + Vi(t), t ∈ [ti, ti+1],

where

Vi(t) =
{

vi(t) = T(t)[−[h(yi)](0)− g(0, η − h(yi))]

−
∫ t

0
AT(t − θ)g(θ, yθ i)dθ +

∫ t

0
T(t − θ) f (θ, yθ i)dθ : y ∈ B

}
.

By the compactness of T(t), it is sufficient to prove that Vi(t) is relatively compact in
Zα. We present two different methods of achieving this goal below.

First method. We consider ϵ ∈ (0, t) and the set

Vi,ϵ(t) =
{

vi,ϵ(t) = T(t)[−[h(yi)](0)− g(0, η − h(yi))]

−
∫ t−ϵ

0
AT(t − θ)g(θ, yθ i)dθ +

∫ t−ϵ

0
T(t − θ) f (θ, yθ i)dθ : y ∈ B

}
=
{

vi,ϵ(t) = T(t)[−[h(yi)](0)− g(0, η − h(yi))]

− T(ϵ)
∫ t−ϵ

0
AT(t − ϵ − θ)g(θ, yθ i)dθ

+ T(ϵ)
∫ t−ϵ

0
T(t − ϵ − θ) f (θ, yθ i)dθ : y ∈ B

}
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From the compactness of T(ϵ) for ϵ > 0, we get that Vi,ϵ(t) is relatively compact in
Zα for any ϵ. By Theorem 22, we obtain

|vi(t)− vi,ϵ(t)|α ≤
∫ t

t−ϵ
∥Aα AT(t − θ)g(θ, yθ i)∥dθ +

∫ t

t−ϵ
∥AαT(t − θ) f (θ, yθ i)∥dθ

≤
∫ t

t−ϵ
∥AαT(t − θ)∥∥Ag(θ, yθ i)∥dθ +

∫ t

t−ϵ
∥AαT(t − θ)∥∥ f (θ, yθ i)∥dθ

Hypotheses [P2](ii)(v) and (2.37) yield

|vi(t)− vi,ϵ(t)|α ≤ 2MαΨ(R)
1 − α

ϵ1−α.

This shows that we have a sequence of relatively compact sets arbitrarily close to
Vi(t), which implies that Vi(t) is relatively compact in Zα.

Second method. For 0 < α < β < 1, we have that

∥Aβvi(t)∥ ≤ ∥Aβ−αT(t)∥ · |[h(yi)](0) + g(0, η − h(yi))|α

+
∫ t

0
∥AβT(t − θ)Ag(θ, yθ i)∥dθ +

∫ t

0
∥AβT(t − θ) f (θ, yθ i)∥dθ.

Theorem 22 and hypothesis [P2](ii)(v) imply that

∥Aβvi(t)∥ ≤
Mβ−α

tβ−α

[
LgqR + Ψ(∥η∥+ ∥h(y)∥)

]
+
∫ t

0
∥AβT(t − θ)Ag(θ, yθ i)∥dθ +

∫ t

0
∥AβT(t − θ) f (θ, yθ i)∥dθ.

Hence,

∥Aβvi(t)∥ ≤
Mβ−α

tβ−α
i

[
LgqR + Ψ(∥η∥+ LgqR)

]
+

2MβΨ(R)
1 − β

τ1−β.

This shows that AβVi(t) is bounded in Z. By Proposition 3, A−β : Z → Zα3 is compact
and hence Vi(t) = A−β AβVi(t) is relatively compact in Zα.

Before continuing with the next step, we provide some necessary notation. Let D
denote the following closed and convex set

D = D(ρ, τ, η) =

{
y ∈ PWpα

∣∣∣ ∥y − η̃∥ ≤ ρ

}
, (4.17)

where η̃ is given in (4.6).

Step 5. The family {Q(·, y) : y ∈ P(D)} is equicontractive.

3 A−β maps Z into Zα because A−β = I ◦ A−β and Z A−β

−→ D(Aβ) = Zβ I
↪−→ Zα.
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Let z, x ∈ PWpα. For t ∈ [−r, 0], we get

|[Q(z,P(y))](t)− [Q(x,P(y))](t)|α ≤ |[h(z)](t)− [h(x)](t)|α
≤ Lhq∥z − x∥
≤ LhqM∥z − x∥.

On the other hand, for t ∈ [0, τ] , we obtain the following estimate.

|[Q(z,P(y))](t)− [Q(x,P(y))](t)|α ≤|g(t, zt)− g(t, xt)|α
+ ∑

0<tk<t
|T(t − tk)

[
Jk(z(tk))− Jk(x(tk))

]
|α

≤Υ∥z − x∥+ M
p

∑
k=1

|Jk(z(tk))− Jk(x(tk))|α

≤Υ∥z − x∥+ M
p

∑
k=1

dk|z(tk)− x(tk)|α

≤Υ∥z − x∥+ M∥z − x∥
p

∑
k=1

dk

≤
(

Υ + M
p

∑
k=1

dk

)
∥z − x∥. (4.18)

Taking supremum over t ∈ [−r, τ] and using hypothesis [P1](i) yield

∥Q(z,P(y))−Q(x,P(y))∥ ≤ 1
2
∥z − x∥,

which implies that Q(·,P(y)) is a contraction independently of y ∈ P(D).
For the next step, we consider the operator H = Q(·,P(·)).

Step 6. The property ∀z ∈ D : H(z) ∈ D holds.

For a generic element z in D, we have to prove that (see (4.17)) ∥H(z)− η̃∥ ≤ ρ.
For doing so, we first notice that

[H(z)](t) =



T(t)[η(0)− [h(z)](0)− g(0, η − h(z))]

−
∫ t

0
AT(t − θ)g(θ, zθ)dθ +

∫ t

0
T(t − θ) f (θ, zθ)dθ + g(t, zt)

+ ∑
0<tk<t

T(t − tk)Jk(z(tk)), t ∈ [0, τ],

η(t)− [h(z)](t), t ∈ [−r, 0].
(4.19)

For convenience, let Π7 := |[H(z)](t)− η̃(t)|α. On the interval [−r, 0] we have that

Π7 = |[h(z)](t)|α ≤ Lhq∥z∥ ≤ MLhq∥z∥
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as a consequence of [P1](iii). Since z ∈ D, ∥z − η̃∥ ≤ ρ and hence the reverse
triangle inequality yields ∥z∥ ≤ ∥η̃∥ + ρ. This and hypothesis [P3] let us write
Π7 ≤ MLhq(∥η̃∥+ ρ) < ρ. On the other hand, for t ∈ [0, τ], we proceed as follows.
First, the definition of | · |α and the boundedness of T(·) yield

Π7 ≤ ∥T(t)∥[|[h(z)](0)|α + ∥Aαg(0, η − h(z))∥] + ∥Aαg(t, zt)∥

+
∫ t

0
∥AαT(t − θ)∥∥Ag(θ, zθ)∥dθ +

∫ t

0
∥AαT(t − θ)∥∥ f (θ, zθ)∥dθ

+ ∑
0<tk<t

∥T(t − tk)∥|Jk(z(tk))|α

Second, Theorem 22, hypothesis [P1](ii)(iii), and [P2](ii)(v) let us write

Π7 ≤ M
[

Lgq∥z∥+ Ψ
(
∥η∥+ Lgq∥z∥

)]
+ Ψ(∥z∥)

+
2MαΨ(∥z∥)

1 − α
τ1−α + M

p

∑
k=1

dk|z(tk)|α

Third, by the reverse triangle inequality, we further obtain

Π7 ≤ M
[

Lgq(∥η̃∥+ ρ) + Ψ
(
∥η∥+ Lgq(∥η̃∥+ ρ)

)]
+ Ψ

(
∥η̃∥+ ρ

)
+

2MαΨ(∥η̃∥+ ρ)

1 − α
τ1−α + M(∥η̃∥+ ρ)

p

∑
k=1

dk

Lastly, after rearranging terms, we get

Π7 ≤ MΨ
(
∥η∥+ Lgq(∥η̃∥+ ρ)

)
+

(
MLgq + M

p

∑
k=1

dk

)
(∥η̃∥+ ρ)

+

(
2Mα

1 − α
τ1−α + 1

)
Ψ(∥η̃∥+ ρ)

Hence, by hypothesis [P3], Π7 < ρ. Taking supremum over t ∈ [−r, τ] yields the
desired result ∥H(z)− η̃∥ ≤ ρ.

Finally, Steps 1, 4, 5, and 6 satisfy the conditions of Theorem 7 and, consequently,
the equation H(z) = z has a solution, which is a mild solution of problem (4.1).

Theorem 30. In addition to the conditions of Theorem 29, suppose that [P4] holds. Then
problem (4.1) has only one mild solution in PWpα.

Proof. Let z and x be two solutions of problem (4.1). Denote by Π8 the difference
|z(t)− x(t)|α. Notice that

z(t) = [P(z)](t) + g(t, zt) + ∑
0<tk<t

T(t − tk)Jk(z(tk)), t ∈ [0, τ]
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and
x(t) = [P(x)](t) + g(t, xt) + ∑

0<tk<t
T(t − tk)Jk(x(tk)), t ∈ [0, τ].

Hence,

Π8 ≤ |[P(z)](t)− [P(x)](t)|α
+ |g(t, zt)− g(t, xt)|α + ∑

0<tk<t
∥T(t − tk)∥|Jk(z(tk))− Jk(x(tk))|α

By (4.8) and (4.18), we get

Π8 ≤ MLgq(1 + Υ)∥z − x∥+ 2MαK
(
∥z∥, ∥x∥

)
∥z − x∥ τ1−α

1 − α

+

(
Υ + M

p

∑
k=1

dk

)
∥z − x∥

Using the reverse triangle inequality again, we obtain

Π8 ≤
{

MLgq(1 + Υ) + 2MαK
(
∥η̃∥+ ρ, ∥η̃∥+ ρ

) τ1−α

1 − α

}
∥z − x∥

+

(
Υ + M

p

∑
k=1

dk

)
∥z − x∥

Hypotheses [P1](i) and [P4] imply the desired result z = x.

4.2 Applications

This section provides an example to illustrate the abstract results of this manuscript.
We will investigate the existence of solutions for a class of Burgers equation of neutral
type with impulses and nonlocal conditions of the form

∂

∂t

[
y(t, x) +

∫ x

0
γ(t)y(t − r, s)ds

]
= yxx(t, x) + y(t − r, x)yx(t − r, x)

+ p(t, y(t − r, x)), x ∈ Ω, t ∈ (0, τ] \ {tk}k∈Ip ,

y(t, 0) = y(t, π) = 0, t ∈ [0, τ],
y(θ, x) + h(y(τ1 + θ, x), . . . , y(τq + θ, x)) = η(θ, x), θ ∈ [−r, 0], x ∈ Ω,

y(t+k , x) = y(t−k , x) + Jk(y(tk, x)), x ∈ Ω, k ∈ Ip,
(4.20)

where Ω = [0, π], γ : R+ → R+ is a non-decreasing function such that γ(0) = 0
and γ(t) ≤ min{4∥ξ∥L∞[0,τ], L}. Here, η : [−r, 0]× Ω → R is a piecewise continuous
function. We assume that there exists L > 0, and ξ, β ∈ L∞[0, τ] such that

|p(t, u)− p(t, v)| ≤ L|u − v|, t ∈ [0, τ], u, v ∈ R, (4.21)
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and
|p(t, w)| ≤ ξ(t)|w|+ β(t), t ∈ [0, τ], w ∈ R. (4.22)

For simplicity, we also assume that h : Rq → R and Jk : R → R, when formulated
abstractly, satisfy [P1](ii) and [P1](iii), respectively.

Let Z = L2(Ω) and consider the linear operator A : D(A) ⊂ Z → Z defined by
Aϕ = −ϕxx, where D(A) = H1

0(Ω)∩ H2(Ω)4 [63, pp. 57 & pp. 119]. The properties of
the operator A are well-known in the literature (see, e.g., [36, 50, 54, 71, 96, 105, 116]).
Hereafter we mention some of them. The spectrum of A consists of only discrete
eigenvalues λn = n2, n ∈ N. Their corresponding normalized eigenvectors are given
by zn(x) = (2/π)1/2 sin(nx), x ∈ [0, π]. The collection of these functions {zn|n ∈
N} constitutes an orthonormal basis for Z. For all z ∈ D(A), the operator A has
representation

Az =
∞

∑
n=1

λn⟨z, zn⟩zn,

where ⟨·, ·⟩ is the inner product in Z. It is also well-known that A is a sectorial
operator (see Henry [63, Ch. 1] or [99, Ch. 2]), and therefore (see Theorem 17), −A
generates a compact analytic semigroup T(t) of uniformly bounded linear operators
on Z given by

T(t)z =
∞

∑
n=1

exp(−λnt)⟨z, zn⟩zn,

and satisfying ∥∥T(t)
∥∥
B(Z) ≤ exp(−λ1t) (4.23)

for t ≥ 0. See [124, Exa. 36.3, pp. 83] for a proof of the analyticity of T(t). The
compactness of T(t) can be seen from its formula since it can be understood as the
uniform limit of a sequence of finite-rank operators (see [27, Cor. 6.2, pp. 157]).
Inequality (4.23) follows from (2.4) and the estimation

∥T(t)z∥2
Z =

∞

∑
n=1

exp(−2λnt)|⟨z, zn⟩|2 ≤ exp(−2λ1t)
∞

∑
n=1

|⟨z, zn⟩|2 = exp(−2λ1t)∥z∥2
Z,

which is a consequence of Parseval’s identity (see, e.g., [124, Eq. 32.4, pp. 66]).
From Subsection 2.4.3, since A is a sectorial operator and 0 ∈ ρ(A), we see that it

is possible to define fractional powers of A. In particular, the operator A1/2 is given
by

A1/2z =
∞

∑
n=1

λ1/2
n ⟨z, zn⟩zn, z ∈ D(A1/2),

where (see [105, Sec. 4, pp. 212])

D(A1/2) =
{

z ∈ Z
∣∣∣ ∞

∑
n=1

λ1/2
n ⟨z, zn⟩zn ∈ Z

}
=
{

z ∈ Z
∣∣∣ z′ ∈ Z and z(0) = z(π) = 0

}
.

4To understand these spaces, we refer the reader to Brezis [27, Ch. 8 & 9] or Evans [49, Ch. 5].
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This means (see also [63, Exe. 3, pp. 18 or pp. 57 or pp. 93]) that Z1/2 = H1
0(Ω) with

norm | · |1/2.
To formulate (4.20) abstractly, we think of y(t, x) as a Z−valued function of time

which we denote by z(t), i.e., z(t) ∈ Z and [z(t)](x) = y(t, x). See [124, pp. 104],
[55, pp. 4], [100, pp. 3], and [63, pp. 16] for a more in-depth understanding of this
method. In this way, (4.20) can be written as

d
dt
[z(t)− g(t, zt)] = −Az(t) + f (t, zt), t ∈ (0, τ] \ {tk}k∈Ip ,

z(θ) + [h(z)](θ) = η(θ), θ ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(z(tk)), k ∈ Ip,

(4.24)

where 0 < t1 < · · · < tp < τ, 0 < τ1 < · · · < τq < r < τ, zt is the time history function
[−r, 0] ∋ θ 7→ zt(θ) = z(t + θ) ∈ Z1/2, and the functions g, f : [0, τ]× PWr1/2 → Z,
h : PWqp1/2 → PWr1/2, Jk : Z1/2 → Z1/2, η ∈ PWr1/2 are defined by

[g(t, ϕ)](x) = −
∫ x

0
γ(t)ϕ(−r, s)ds, x ∈ Ω,

[ f (t, ϕ)](x) = ϕ(−r, x)ϕx(−r, x) + p(t, ϕ(−r, x)), x ∈ Ω,
[[h(z)](θ)](x) = h(y(τ1 + θ, x), . . . , y(τq + θ, x)), x ∈ Ω,
[Jk(z(tk))](x) = Jk(y(tk, x)), k ∈ Ip, x ∈ Ω,

[η(θ)](x) = η(θ, x), x ∈ Ω, θ ∈ [−r, 0],

accordingly. The spaces PWqp1/2 and PWr1/2 are defined by (4.2) and (4.3), respec-
tively, with α replaced by 1/2.

Proposition 6. The functions f and g satisfy [P2].

Proof. Let us prove [P2](iv). We first note that f (t, ϕ) = ϕ(−r, ·)ϕx(−r, ·)+ p(t, ϕ(−r, ·)).
Hence, by (4.21), we have

∥ f (t, ϕ)− f (t, µ)∥Z

≤∥ϕ(−r, ·)ϕx(−r, ·)− µ(−r, ·)µx(−r, ·)∥Z + ∥p(t, ϕ(−r, ·))− p(t, µ(−r, ·))∥Z

≤∥ϕ(−r, ·)ϕx(−r, ·)− µ(−r, ·)µx(−r, ·)∥Z + L∥ϕ(−r, ·)− µ(−r, ·)∥Z. (4.25)

As in Tang & Wang [128] or Henry [63, pp. 57-58], we notice that

∥ϕ(−r, ·)ϕx(−r, ·)− µ(−r, ·)µx(−r, ·)∥Z

=∥ϕ(−r, ·)ϕx(−r, ·)− ϕ(−r, ·)µx(−r, ·) + ϕ(−r, ·)µx(−r, ·)− µ(−r, ·)µx(−r, ·)∥Z

≤∥ϕ(−r, ·)[ϕx(−r, ·)− µx(−r, ·)]∥Z + ∥[ϕ(−r, ·)− µ(−r, ·)]µx(−r, ·)∥Z

≤∥ϕ(−r, ·)∥L∞(Ω)∥ϕx(−r, ·)− µx(−r, ·)∥Z + ∥ϕ(−r, ·)− µ(−r, ·)∥L∞(Ω)∥µx(−r, ·)∥Z.
(4.26)

For any u ∈ Z1/2, we have that (see [128])

∥u∥2
L∞(Ω) ≤ 2∥u∥Z∥ux∥Z ≤ ∥u∥2

Z + ∥ux∥2
Z = |u|21/2 (4.27)
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as a consequence of Poincaré inequality (see, e.g., [27, Prop. 8.13, pp. 218]). Hence,

∥u∥L∞(Ω) ≤ |u|1/2 and ∥ux∥Z ≤ |u|1/2. (4.28)

These inequalities and (4.26) imply that

∥ϕ(−r, ·)ϕx(−r, ·)− µ(−r, ·)µx(−r, ·)∥Z

≤|ϕ(−r, ·)|1/2|ϕ(−r, ·)− µ(−r, ·)|1/2 + |ϕ(−r, ·)− µ(−r, ·)|1/2|µ(−r, ·)|1/2

≤
(
|ϕ(−r, ·)|1/2 + |µ(−r, ·)|1/2

)
|ϕ(−r, ·)− µ(−r, ·)|1/2.

Therefore, (4.25) becomes

∥ f (t, ϕ)− f (t, µ)∥Z ≤
(
|ϕ(−r, ·)|1/2 + |µ(−r, ·)|1/2

)
|ϕ(−r, ·)− µ(−r, ·)|1/2

+ L∥ϕ(−r, ·)− µ(−r, ·)∥Z

≤
(
|ϕ(−r, ·)|1/2 + |µ(−r, ·)|1/2

)
|ϕ(−r, ·)− µ(−r, ·)|1/2

+ L|ϕ(−r, ·)− µ(−r, ·)|1/2

≤
(
|ϕ(−r, ·)|1/2 + |µ(−r, ·)|1/2 + L

)
|ϕ(−r, ·)− µ(−r, ·)|1/2

≤
(
∥ϕ∥r1/2 + ∥µ∥r1/2 + L

)
∥ϕ − µ∥r1/2.

This shows [P2](iv).
To show [P2](v) we proceed as follows.

∥ f (t, φ)∥Z ≤∥φ(−r, ·)φx(−r, ·)∥Z + ∥p(t, φ(−r, ·))∥Z. (4.29)

The first term at the right-hand side of the inequality can be bounded by ∥φ∥2
r1/2 as a

consequence of (4.28).

∥φ(−r, ·)φx(−r, ·)∥Z ≤ ∥φ(−r, ·)∥L∞(Ω)∥φx(−r, ·)∥Z

≤ |φ(−r, ·)|1/2|φ(−r, ·)|1/2

≤ ∥φ∥2
r1/2. (4.30)

By (4.22), the second term squared satisfies

∥p(t, φ(−r, ·))∥2
Z =

∫ π

0
|p(t, φ(−r, s))|2ds

≤
∫ π

0

∣∣ξ(t)|φ(−r, s)|+ β(t)
∣∣2 ds

≤
∫ π

0

∣∣∣∥ξ∥L∞[0,τ]|φ(−r, s)|+ ∥β∥L∞[0,τ]

∣∣∣2 ds.

Using the well-known inequality

∀a, b ≥ 0, ∀q ≥ 1 : |a + b|q ≤ 2q(|a|q + |b|q), (4.31)
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we get (with q = 2)

∥p(t, φ(−r, ·))∥2
Z ≤

∫ π

0
4
(
∥ξ∥2

L∞[0,τ]|φ(−r, s)|2 + ∥β∥2
L∞[0,τ]

)
ds

= 4∥ξ∥2
L∞[0,τ]

∫ π

0
|φ(−r, s)|2ds + 4π∥β∥2

L∞[0,τ]

= 4∥ξ∥2
L∞[0,τ]∥φ(−r, ·)∥2

Z + 4π∥β∥2
L∞[0,τ].

Hence
∥p(t, φ(−r, ·))∥Z ≤ 2∥ξ∥L∞[0,τ]∥φ(−r, ·)∥Z + 2

√
π∥β∥L∞[0,τ].

By (4.27),

∥p(t, φ(−r, ·))∥Z ≤ 4∥ξ∥L∞[0,τ]|φ(−r, ·)|1/2 + 4∥β∥L∞[0,τ]

≤ 4∥ξ∥L∞[0,τ]∥φ∥r1/2 + 4∥β∥L∞[0,τ]. (4.32)

Therefore, by (4.29), (4.30), and (4.32), we obtain

∥ f (t, φ)∥Z ≤ ∥φ∥2
r1/2 + 4∥ξ∥L∞[0,τ]∥φ∥r1/2 + 4∥β∥L∞[0,τ].

Let us prove [P2](i) and [P2](ii). We begin noticing that

[Ag(t, ϕ)](x) = γ(t)ϕx(−r, x).

Hence
∥Ag(t, ϕ)− Ag(t, µ)∥Z = γ(t)∥ϕx(−r, ·)− µx(−r, ·)∥Z

By the second inequality in (4.28), we get

∥Ag(t, ϕ)− Ag(t, µ)∥Z ≤ γ(t)|ϕ(−r, ·)− µ(−r, ·)|1/2 ≤ γ(t)∥ϕ − µ∥r1/2.

Since γ(t) ≤ min{4∥ξ∥L∞[0,τ], L}, we obtain

∥Ag(t, ϕ)− Ag(t, µ)∥Z ≤ L∥ϕ − µ∥r1/2 ≤
(
∥ϕ∥r1/2 + ∥µ∥r1/2 + L

)
∥ϕ − µ∥r1/2.

The second inequality in (4.28) also implies that

∥Ag(t, φ)∥Z = γ(t)∥φx(−r, ·)∥Z ≤ γ(t)|φ(−r, ·)|1/2 ≤ γ(t)∥φ∥r1/2.

Consequently,

∥Ag(t, φ)∥Z ≤ 4∥ξ∥L∞[0,τ]∥φ∥r1/2 ≤ ∥φ∥2
r1/2 + 4∥ξ∥L∞[0,τ]∥φ∥r1/2 + 4∥β∥L∞[0,τ].

This shows [P2](i) and [P2](ii).
Here, the functions K and Ψ are defined by

K(u, v) = u + v + L and Ψ(w) = w2 + 4∥ξ∥L∞[0,τ]w + 4∥β∥L∞[0,τ],
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respectively.
Our last task is to show [P2](iii). For doing so, consider the following difference.

|[g(t, ϕ)](x)− [g(t, µ)](x)| ≤ γ(t)
∫ π

0
|ϕ(−r, s)− µ(−r, s)|ds

Now, by Hölder’s inequality (see, e.g., [27, Th. 4.6, pp. 92]),

|[g(t, ϕ)](x)− [g(t, µ)](x)| ≤
√

πγ(t)∥ϕ(−r, ·)− µ(−r, ·)∥Z

Inequality (4.27) implies that

|[g(t, ϕ)](x)− [g(t, µ)](x)| ≤
√

πγ(t)|ϕ(−r, ·)− µ(−r, ·)|1/2 ≤
√

πγ(t)∥ϕ − µ∥r1/2,

and hence,
∥g(t, ϕ)− g(t, µ)∥Z ≤ πγ(τ)∥ϕ − µ∥r1/2.

Therefore, [P2](iii) holds with Υ = πγ(τ).

We have the following result for system (4.20).

Theorem 31. Suppose dk is small enough for all k ∈ Ip. Then, system (4.20) has only one
mild solution defined in PWp1/2 for some τ > 0.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

In this manuscript, we studied a class of semilinear neutral differential equations with
impulses and nonlocal conditions. In Chapter 3, we addressed the finite-dimensional
case while in Chapter 4, the infinite-dimensional case. In the first case, we investi-
gated the existence and uniqueness of solutions via Karakostas’ fixed point theorem,
the exact controllability by means of the Rothe’s fixed point theorem and the Banach
contraction theorem separately, and the approximate controllability using a technique
developed by Bashirov et al. In the second case, we only assessed the existence and
uniqueness of solutions via Karakostas’ fixed point theorem and provided an example
to apply our results. Controllability results for this case are reserved for future work
due to time limitations. In advance, we know that it is only possible to study approx-
imate controllability because having a compact semigroup is incompatible with exact
controllability.

A part of the mathematical techniques and tools used in this manuscript are stan-
dard topics in an undergraduate program in mathematics. However, for the develop-
ment of this project, it was required to study (independently) non-curricular topics
such as IDEs, DEs with nonlocal conditions, NDEs, and Semigroup Theory. The last
two topics can be regarded as part of what is known as the Theory of Abstract Semi-
linear Cauchy Problems.

5.2 Recommendations

We recommend extending this work to fractional differential equations and differen-
tial equations on time scales.
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